NASA Astrophysics Data System (ADS)
Lasche, George; Coldwell, Robert; Metzger, Robert
2017-09-01
A new application (known as "VRF", or "Visual RobFit") for analysis of high-resolution gamma-ray spectra has been developed using non-linear fitting techniques to fit full-spectrum nuclide shapes. In contrast to conventional methods based on the results of an initial peak-search, the VRF analysis method forms, at each of many automated iterations, a spectrum-wide shape for each nuclide and, also at each iteration, it adjusts the activities of each nuclide, as well as user-enabled parameters of energy calibration, attenuation by up to three intervening or self-absorbing materials, peak width as a function of energy, full-energy peak efficiency, and coincidence summing until no better fit to the data can be obtained. This approach, which employs a new and significantly advanced underlying fitting engine especially adapted to nuclear spectra, allows identification of minor peaks that are masked by larger, overlapping peaks that would not otherwise be possible. The application and method are briefly described and two examples are presented.
NASA Astrophysics Data System (ADS)
Zhang, Qingli; Sun, Guihua; Ning, Kaijie; Shi, Chaoshu; Liu, Wenpeng; Sun, Dunlu; Yin, Shaotang
2016-11-01
The Judd-Ofelt theoretic transition intensity parameters of luminescence of rare-earth ions in solids are important for the quantitative analysis of luminescence. It is very difficult to determine them with emission or absorption spectra for a long time. A “full profile fitting” method to obtain in solids with its emission spectrum is proposed, in which the contribution of a radiative transition to the emission spectrum is expressed as the product of transition probability, line profile function, instrument measurement constant and transition center frequency or wavelength, and the whole experimental emission spectrum is the sum of all transitions. In this way, the emission spectrum is expressed as a function with the independent variables intensity parameters , full width at half maximum (FWHM) of profile functions, instrument measurement constant, wavelength, and the Huang-Rhys factor S if the lattice vibronic peaks in the emission spectrum should be considered. The ratios of the experimental to the calculated energy lifetimes are incorporated into the fitting function to remove the arbitrariness during fitting and other parameters. Employing this method obviates measurement of the absolute emission spectrum intensity. It also eliminates dependence upon the number of emission transition peaks. Every experiment point in emission spectra, which usually have at least hundreds of data points, is the function with variables and other parameters, so it is usually viable to determine and other parameters using a large number of experimental values. We applied this method to determine twenty-five of Yb3+ in GdTaO4. The calculated and experiment energy lifetimes, experimental and calculated emission spectrum are very consistent, indicating that it is viable to obtain the transition intensity parameters of rare-earth ions in solids by a full profile fitting to the ions’ emission spectrum. The calculated emission cross sections of Yb3+:GdTaO4 also indicate that the F-L formula gives larger values in the wavelength range with reabsorption. Project supported by the National Natural Science Foundation of China (Grant Nos. 51172236, 51502292, 51272254, 51102239, 61205173, and 61405206).
A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Z.; Aylor, K.; Benson, B. A.
We study the consistency of 150 GHz data from the South Pole Telescope (SPT) and 143 GHz data from the \\textit{Planck} satellite over the 2540more » $$\\text{deg}^2$$ patch of sky covered by the SPT-SZ survey. We first visually compare the maps and find that the map residuals appear consistent with noise after we account for differences in angular resolution and filtering. To make a more quantitative comparison, we calculate (1) the cross-spectrum between two independent halves of SPT 150 GHz data, (2) the cross-spectrum between two independent halves of \\textit{Planck} 143 GHz data, and (3) the cross-spectrum between SPT 150 GHz and \\textit{Planck} 143 GHz data. We find the three cross-spectra are well-fit (PTE = 0.30) by the null hypothesis in which both experiments have measured the same sky map up to a single free parameter characterizing the relative calibration between the two. As a by-product of this analysis, we improve the calibration of SPT data by nearly an order of magnitude, from 2.6\\% to 0.3\\% in power; the best-fit power calibration factor relative to the most recent published SPT calibration is $$1.0174 \\pm 0.0033$$. Finally, we compare all three cross-spectra to the full-sky \\textit{Planck} $$143 \\times 143$$ power spectrum and find a hint ($$\\sim$$1.5$$\\sigma$$) for differences in the power spectrum of the SPT-SZ footprint and the full-sky power spectrum, which we model and fit as a power law in the spectrum. The best-fit value of this tilt is consistent between the three cross-spectra in the SPT-SZ footprint, implying that the source of this tilt---assuming it is real---is a sample variance fluctuation in the SPT-SZ region relative to the full sky. Despite the precision of our tests, we find no evidence for systematic errors in either data set. The consistency of cosmological parameters derived from these datasets is discussed in a companion paper.« less
A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data
Hou, Z.; Aylor, K.; Benson, B. A.; ...
2018-01-17
We study the consistency of 150 GHz data from the South Pole Telescope (SPT) and 143 GHz data from the \\textit{Planck} satellite over the 2540more » $$\\text{deg}^2$$ patch of sky covered by the SPT-SZ survey. We first visually compare the maps and find that the map residuals appear consistent with noise after we account for differences in angular resolution and filtering. To make a more quantitative comparison, we calculate (1) the cross-spectrum between two independent halves of SPT 150 GHz data, (2) the cross-spectrum between two independent halves of \\textit{Planck} 143 GHz data, and (3) the cross-spectrum between SPT 150 GHz and \\textit{Planck} 143 GHz data. We find the three cross-spectra are well-fit (PTE = 0.30) by the null hypothesis in which both experiments have measured the same sky map up to a single free parameter characterizing the relative calibration between the two. As a by-product of this analysis, we improve the calibration of SPT data by nearly an order of magnitude, from 2.6\\% to 0.3\\% in power; the best-fit power calibration factor relative to the most recent published SPT calibration is $$1.0174 \\pm 0.0033$$. Finally, we compare all three cross-spectra to the full-sky \\textit{Planck} $$143 \\times 143$$ power spectrum and find a hint ($$\\sim$$1.5$$\\sigma$$) for differences in the power spectrum of the SPT-SZ footprint and the full-sky power spectrum, which we model and fit as a power law in the spectrum. The best-fit value of this tilt is consistent between the three cross-spectra in the SPT-SZ footprint, implying that the source of this tilt---assuming it is real---is a sample variance fluctuation in the SPT-SZ region relative to the full sky. Despite the precision of our tests, we find no evidence for systematic errors in either data set. The consistency of cosmological parameters derived from these datasets is discussed in a companion paper.« less
Soft X-ray spectral features in the Seyfert 1 Galaxy NGC4051
NASA Technical Reports Server (NTRS)
Mihara, Tatehiro; Matsuoka, Masaru; Mushotzky, Richard F.; Kunieda, Hideyo; Otani, Chiko; Miyamoto, Sigenori; Yamauchi, Makoto
1994-01-01
We report ASCA observations of NGC 4051 during the PV phase. The time averaged X-ray spectrum is not well fit by a simple power law with an iron K-emission line and shows significant absorption-edge features most probably due to O VII and O VIII and a strong soft excess. This is the first direct measurement of edges in the spectrum of this object and confirms that the X-ray spectrum of NGC 4051 is modified by a 'warm' absorbing gas. The best fit underlying power law index in the 0.4-10 keV band is 1.88. A power law modified by a warm absorber model can partly explain the apparent soft excess and qualitatively fit the SIS spectrum. However, the addition of a black body of kT approx. = 0.1 keV improves the fit considerably. The 90% upper limit on the width of the iron line is 460 eV full width at half maximum (FWHM). Applying the fluorescent iron line model from an accretion disk gives an upper limit of 20 deg for the inclination of the disk.
Atmospheric and Fundamental Parameters of Stars in Hubble's Next Generation Spectral Library
NASA Technical Reports Server (NTRS)
Heap, Sally
2010-01-01
Hubble's Next Generation Spectral Library (NGSL) consists of R approximately 1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. We are presently working to determine the atmospheric and fundamental parameters of the stars from the NGSL spectra themselves via full-spectrum fitting of model spectra to the observed (extinction-corrected) spectrum over the full wavelength range, 0.2-1.0 micron. We use two grids of model spectra for this purpose: the very low-resolution spectral grid from Castelli-Kurucz (2004), and the grid from MARCS (2008). Both the observed spectrum and the MARCS spectra are first degraded in resolution to match the very low resolution of the Castelli-Kurucz models, so that our fitting technique is the same for both model grids. We will present our preliminary results with a comparison with those from the Sloan/Segue Stellar Parameter Pipeline, ELODIE, and MILES, etc.
NASA Astrophysics Data System (ADS)
Qu, Chen; Bowman, Joel M.
2018-06-01
We present high-level, coupled-mode calculations of the infrared spectrum of the cyclic formic acid dimer. The calculations make use of full-dimensional, ab initio potential energy and dipole moment surfaces. The potential is a linear least-squares fit to 13 475 CCSD(T)-F12a/haTZ (haTZ means aug-cc-pVTZ basis set for O and C, and cc-pVTZ for H) energies, and the dipole moment surface is a fit to the dipole components, calculated at the MP2/haTZ level of theory. The variables of both fits are all (45) internuclear distances (actually Morse variables). The potential, which is fully permutationally invariant, is the one published recently and the dipole moment surface is newly reported here. Details of the fits, especially the dipole moment, and the database of configurations are given. The infrared spectrum of the dimer is calculated by solving the nuclear Schrödinger equation using a vibrational self-consistent field and virtual-state configuration interaction method, with subsets of the 24 normal modes, up to 15 modes. The calculations indicate strong mode-coupling in the C—H and O—H stretching region of the spectrum. Comparisons are made with experiments and the complexity of the experimental spectrum in the C—H and O—H stretching region is successfully reproduced.
Full-spectrum multiwavelength pyrometry for nongray surfaces
NASA Technical Reports Server (NTRS)
Ng, Daniel; Williams, W. D.
1992-01-01
A full-spectrum (encompassing radiation on both sides of the Wien displacement peak) multiwavelength pyrometer was developed. It measures the surface temperature of arbitrary nongray ceramics by curve fitting a spectrum in this spectral region to a Planck function of temperature T. This function of T is modified by the surface spectral emissivity. The emissivity function was derived experimentally from additional spectra that were obtained by using an auxiliary radiation source and from application of Kirchhoff's law. This emissivity was verified by results that were obtained independently by using electromagnetic and solid-state theories. In the presence of interfering reflected radiation this general pyrometry improves the accuracy of the measured temperature by measuring an additional spectrum that characterizes the interfering radiation source.
Franck-Condon fingerprinting of vibration-tunneling spectra.
Berrios, Eduardo; Sundaradevan, Praveen; Gruebele, Martin
2013-08-15
We introduce Franck-Condon fingerprinting as a method for assigning complex vibration-tunneling spectra. The B̃ state of thiophosgene (SCCl2) serves as our prototype. Despite several attempts, assignment of its excitation spectrum has proved difficult because of near-degenerate vibrational frequencies, Fermi resonance between the C-Cl stretching mode and the Cl-C-Cl bending mode, and large tunneling splittings due to the out-of-plane umbrella mode. Hence, the spectrum has never been fitted to an effective Hamiltonian. Our assignment approach replaces precise frequency information with intensity information, eliminating the need for double resonance spectroscopy or combination differences, neither of which have yielded a full assignment thus far. The dispersed fluorescence spectrum of each unknown vibration-tunneling state images its character onto known vibrational progressions in the ground state. By using this Franck-Condon fingerprint, we were able to determine the predominant character of several vibration-tunneling states and assign them; in other cases, the fingerprinting revealed that the states are strongly mixed and cannot be characterized with a simple normal mode assignment. The assigned transitions from vibration-tunneling wave functions that were not too strongly mixed could be fitted within measurement uncertainty by an effective vibration-tunneling Hamiltonian. A fit of all observed vibration-tunneling states will require a full resonance-tunneling Hamiltonian.
Primordial power spectrum: a complete analysis with the WMAP nine-year data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun, E-mail: dhiraj@apctp.org, E-mail: arman@apctp.org, E-mail: tarun@iucaa.ernet.in
2013-07-01
We have improved further the error sensitive Richardson-Lucy deconvolution algorithm making it applicable directly on the un-binned measured angular power spectrum of Cosmic Microwave Background observations to reconstruct the form of the primordial power spectrum. This improvement makes the application of the method significantly more straight forward by removing some intermediate stages of analysis allowing a reconstruction of the primordial spectrum with higher efficiency and precision and with lower computational expenses. Applying the modified algorithm we fit the WMAP 9 year data using the optimized reconstructed form of the primordial spectrum with more than 300 improvement in χ{sup 2}{sub eff}more » with respect to the best fit power-law. This is clearly beyond the reach of other alternative approaches and reflects the efficiency of the proposed method in the reconstruction process and allow us to look for any possible feature in the primordial spectrum projected in the CMB data. Though the proposed method allow us to look at various possibilities for the form of the primordial spectrum, all having good fit to the data, proper error-analysis is needed to test for consistency of theoretical models since, along with possible physical artefacts, most of the features in the reconstructed spectrum might be arising from fitting noises in the CMB data. Reconstructed error-band for the form of the primordial spectrum using many realizations of the data, all bootstrapped and based on WMAP 9 year data, shows proper consistency of power-law form of the primordial spectrum with the WMAP 9 data at all wave numbers. Including WMAP polarization data in to the analysis have not improved much our results due to its low quality but we expect Planck data will allow us to make a full analysis on CMB observations on both temperature and polarization separately and in combination.« less
VizieR Online Data Catalog: GTC spectra of z~2.3 quasars (Sulentic+, 2014)
NASA Astrophysics Data System (ADS)
Sulentic, J. W.; Marziani, P.; Del Olmo, A.; Dultzin, D.; Perea, J.; Negrete, C. A.
2014-09-01
Spectroscopic data for 22 intermediate redshift quasars are identified in Table 1. Actual data files are in FITS format in the spectra sub-directory. Each individual spectrum cover the spectral range 360-770 nm. Units are in wavelength in Angstrom, and specific flux in erg/s/cm2/Angstrom (pW/m3) in the observed frame (i.e., before redshift correction). Full object name (OBJECT), total exposure time (EXPTIME), number of coadded individual spectra (NUM_IMAG), and observation date (DATE-OBS) are reported as records in the FITS header of each spectrum (as in Table 2 of the paper). (2 data files).
NASA Astrophysics Data System (ADS)
Gan, Ruting; Guo, Zhenning; Lin, Jieben
2015-09-01
To decrease the risk of bilirubin encephalopathy and minimize the need for exchange transfusions, we report a novel design for light source of light-emitting diode (LED)-based neonatal jaundice therapeutic device (NJTD). The bilirubin absorption spectrum in vivo was regarded as target. Based on spectral constructing theory, we used commercially available LEDs with different peak wavelengths and full width at half maximum as matching light sources. Simple genetic algorithm was first proposed as the spectral matching method. The required LEDs number at each peak wavelength was calculated, and then, the commercial light source sample model of the device was fabricated to confirm the spectral matching technology. In addition, the corresponding spectrum was measured and the effect was analyzed finally. The results showed that fitted spectrum was very similar to the target spectrum with 98.86 % matching degree, and the actual device model has a spectrum close to the target with 96.02 % matching degree. With higher fitting degree and efficiency, this matching algorithm is very suitable for light source matching technology of LED-based spectral distribution, and bilirubin absorption spectrum in vivo will be auspicious candidate for the target spectrum of new LED-based NJTD light source.
NASA Astrophysics Data System (ADS)
Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Challinor, A.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Dusini, S.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fantaye, Y.; Finelli, F.; Forastieri, F.; Frailis, M.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gruppuso, A.; Gudmundsson, J. E.; Herranz, D.; Hivon, E.; Huang, Z.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Lilley, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Meinhold, P. R.; Mennella, A.; Migliaccio, M.; Millea, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Narimani, A.; Natoli, P.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Partridge, B.; Patanchon, G.; Patrizii, L.; Pettorino, V.; Piacentini, F.; Polastri, L.; Polenta, G.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirignano, C.; Sirri, G.; Stanco, L.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Wehus, I. K.; White, M.; Zacchei, A.; Zonca, A.
2017-11-01
The six parameters of the standard ΛCDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium τ, the baryon density ωb, the matter density ωm, the angular size of the sound horizon θ∗, the spectral index of the primordial power spectrum, ns, and Ase- 2τ (where As is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment ℓ < 800 in the Planck temperature power spectrum) and an all angular-scale data set (ℓ < 2500Planck temperature power spectrum), each with a prior on τ of 0.07 ± 0.02. We find that the shifts, in units of the 1σ expected dispersion for each parameter, are { Δτ,ΔAse- 2τ,Δns,Δωm,Δωb,Δθ∗ } = { -1.7,-2.2,1.2,-2.0,1.1,0.9 }, with a χ2 value of 8.0. We find that this χ2 value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2σ in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing ℓ < 800 instead to ℓ> 800, or splitting at a different multipole, yields similar results. We examined the ℓ < 800 model residuals in the ℓ> 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in ΛCDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is τ, which, at fixed Ase- 2τ, affects the ℓ> 800 temperature power spectrum solely through the associated change in As and the impact of that on the lensing potential power spectrum. We also ask, "what is it about the power spectrum at ℓ < 800 that leads to somewhat different best-fit parameters than come from the full ℓ range?" We find that if we discard the data at ℓ < 30, where there is a roughly 2σ downward fluctuation in power relative to the model that best fits the full ℓ range, the ℓ < 800 best-fit parameters shift significantly towards the ℓ < 2500 best-fit parameters. In contrast, including ℓ < 30, this previously noted "low-ℓ deficit" drives ns up and impacts parameters correlated with ns, such as ωm and H0. As expected, the ℓ < 30 data have a much greater impact on the ℓ < 800 best fit than on the ℓ < 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatory-like set of high-ℓ residuals and the deficit in low-ℓ power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between PlanckTT data and two other CMB data sets, namely the Planck lensing reconstruction and the TT power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the ΛCDM model.
Atmospheric Properties Of T Dwarfs Inferred From Model Fits At Low Spectral Resolution
NASA Astrophysics Data System (ADS)
Giorla Godfrey, Paige A.; Rice, Emily L.; Filippazzo, Joseph C.; Douglas, Stephanie E.
2016-09-01
Brown dwarf spectral types (M, L, T, Y) correlate with spectral morphology, and generally appear to correspond with decreasing mass and effective temperature (Teff). Model fits to observed spectra suggest, however, that spectral subclasses do not share this monotonic temperature correlation, indicating that secondary parameters (gravity, metallicity, dust) significantly influence spectral morphology. We seekto disentangle the fundamental parameters that underlie the spectral type sequence of the coolest fully populated spectral class of brown dwarfs using atmosphere models. We investigate the relationship between spectral type and best fit model parameters for a sample of over 150 T dwarfs with low resolution (R 75-100) near-infrared ( 0.8-2.5 micron) SpeX Prism spectra. We use synthetic spectra from four model grids (Saumon & Marley 2008, Morley+ 2012, Saumon+ 2012, BT Settl 2013) and a Markov-Chain Monte Carlo (MCMC) analysis to determine robust best fit parameters and their uncertainties. We compare the consistency of each model grid by performing our analysis on the full spectrum and also on individual wavelength bands (Y,J,H,K). We find more consistent results between the J band and full spectrum fits and that our best fit spectral type-Teff results agree with the polynomial relationships of Stephens+2009 and Filippazzo+ 2015 using bolometric luminosities. Our analysis consists of the most extensive low resolution T dwarf model comparison to date, and lays the foundation for interpretation of cool brown dwarf and exoplanet spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghamousa, Amir; Shafieloo, Arman; Arjunwadkar, Mihir
2015-02-01
Estimation of the angular power spectrum is one of the important steps in Cosmic Microwave Background (CMB) data analysis. Here, we present a nonparametric estimate of the temperature angular power spectrum for the Planck 2013 CMB data. The method implemented in this work is model-independent, and allows the data, rather than the model, to dictate the fit. Since one of the main targets of our analysis is to test the consistency of the ΛCDM model with Planck 2013 data, we use the nuisance parameters associated with the best-fit ΛCDM angular power spectrum to remove foreground contributions from the data atmore » multipoles ℓ ≥50. We thus obtain a combined angular power spectrum data set together with the full covariance matrix, appropriately weighted over frequency channels. Our subsequent nonparametric analysis resolves six peaks (and five dips) up to ℓ ∼1850 in the temperature angular power spectrum. We present uncertainties in the peak/dip locations and heights at the 95% confidence level. We further show how these reflect the harmonicity of acoustic peaks, and can be used for acoustic scale estimation. Based on this nonparametric formalism, we found the best-fit ΛCDM model to be at 36% confidence distance from the center of the nonparametric confidence set—this is considerably larger than the confidence distance (9%) derived earlier from a similar analysis of the WMAP 7-year data. Another interesting result of our analysis is that at low multipoles, the Planck data do not suggest any upturn, contrary to the expectation based on the integrated Sachs-Wolfe contribution in the best-fit ΛCDM cosmology.« less
NASA Astrophysics Data System (ADS)
Ge, Junqiang; Yan, Renbin; Cappellari, Michele; Mao, Shude; Li, Hongyu; Lu, Youjun
2018-05-01
Using mock spectra based on Vazdekis/MILES library fitted within the wavelength region 3600-7350Å, we analyze the bias and scatter on the resulting physical parameters induced by the choice of fitting algorithms and observational uncertainties, but avoid effects of those model uncertainties. We consider two full-spectrum fitting codes: pPXF and STARLIGHT, in fitting for stellar population age, metallicity, mass-to-light ratio, and dust extinction. With pPXF we find that both the bias μ in the population parameters and the scatter σ in the recovered logarithmic values follows the expected trend μ ∝ σ ∝ 1/(S/N). The bias increases for younger ages and systematically makes recovered ages older, M*/Lr larger and metallicities lower than the true values. For reference, at S/N=30, and for the worst case (t = 108yr), the bias is 0.06 dex in M/Lr, 0.03 dex in both age and [M/H]. There is no significant dependence on either E(B-V) or the shape of the error spectrum. Moreover, the results are consistent for both our 1-SSP and 2-SSP tests. With the STARLIGHT algorithm, we find trends similar to pPXF, when the input E(B-V)<0.2 mag. However, with larger input E(B-V), the biases of the output parameter do not converge to zero even at the highest S/N and are strongly affected by the shape of the error spectra. This effect is particularly dramatic for youngest age (t = 108yr), for which all population parameters can be strongly different from the input values, with significantly underestimated dust extinction and [M/H], and larger ages and M*/Lr. Results degrade when moving from our 1-SSP to the 2-SSP tests. The STARLIGHT convergence to the true values can be improved by increasing Markov Chains and annealing loops to the "slow mode". For the same input spectrum, pPXF is about two order of magnitudes faster than STARLIGHT's "default mode" and about three order of magnitude faster than STARLIGHT's "slow mode".
A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Z.; Aylor, K.; Benson, B. A.
We study the consistency of 150 GHz data from the South Pole Telescope (SPT) and 143 GHz data from the Planck satellite over the patch of sky covered by the SPT-SZ survey. Here, we first visually compare the maps and find that the residuals appear consistent with noise after accounting for differences in angular resolution and filtering. We then calculate (1) the cross-spectrum between two independent halves of SPT data, (2) the cross-spectrum between two independent halves of Planck data, and (3) the cross-spectrum between SPT and Planck data. We find that the three cross-spectra are well fit (PTE =more » 0.30) by the null hypothesis in which both experiments have measured the same sky map up to a single free calibration parameter—i.e., we find no evidence for systematic errors in either data set. As a by-product, we improve the precision of the SPT calibration by nearly an order of magnitude, from 2.6% to 0.3% in power. Finally, we compare all three cross-spectra to the full-sky Planck power spectrum and find marginal evidence for differences between the power spectra from the SPT-SZ footprint and the full sky. We model these differences as a power law in spherical harmonic multipole number. The best-fit value of this tilt is consistent among the three cross-spectra in the SPT-SZ footprint, implying that the source of this tilt is a sample variance fluctuation in the SPT-SZ region relative to the full sky. Lastly, the consistency of cosmological parameters derived from these data sets is discussed in a companion paper.« less
NASA Astrophysics Data System (ADS)
Metzger, Robert; Riper, Kenneth Van; Lasche, George
2017-09-01
A new method for analysis of uranium and radium in soils by gamma spectroscopy has been developed using VRF ("Visual RobFit") which, unlike traditional peak-search techniques, fits full-spectrum nuclide shapes with non-linear least-squares minimization of the chi-squared statistic. Gamma efficiency curves were developed for a 500 mL Marinelli beaker geometry as a function of soil density using MCNP. Collected spectra were then analyzed using the MCNP-generated efficiency curves and VRF to deconvolute the 90 keV peak complex of uranium and obtain 238U and 235U activities. 226Ra activity was determined either from the radon daughters if the equilibrium status is known, or directly from the deconvoluted 186 keV line. 228Ra values were determined from the 228Ac daughter activity. The method was validated by analysis of radium, thorium and uranium soil standards and by inter-comparison with other methods for radium in soils. The method allows for a rapid determination of whether a sample has been impacted by a man-made activity by comparison of the uranium and radium concentrations to those that would be expected from a natural equilibrium state.
Full-Spectrum-Analysis Isotope ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G.
2017-06-28
FSAIsotopeID analyzes gamma ray spectra to identify radioactive isotopes (radionuclides). The algorithm fits the entire spectrum with combinations of pre-computed templates for a comprehensive set of radionuclides with varying thicknesses and compositions of shielding materials. The isotope identification algorithm is suitable for the analysis of spectra collected by gamma-ray sensors ranging from medium-resolution detectors, such a NaI, to high-resolution detectors, such as HPGe. In addition to analyzing static measurements, the isotope identification algorithm is applied for the radiation search applications. The search subroutine maintains a running background spectrum that is passed to the isotope identification algorithm, and it also selectsmore » temporal integration periods that optimize the responsiveness and sensitivity. Gain stabilization is supported for both types of applications.« less
Estimation of primordial spectrum with post-WMAP 3-year data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafieloo, Arman; Souradeep, Tarun
2008-07-15
In this paper we implement an improved (error-sensitive) Richardson-Lucy deconvolution algorithm on the measured angular power spectrum from the Wilkinson Microwave Anisotropy Probe (WMAP) 3 year data to determine the primordial power spectrum assuming different points in the cosmological parameter space for a flat {lambda}CDM cosmological model. We also present the preliminary results of the cosmological parameter estimation by assuming a free form of the primordial spectrum, for a reasonably large volume of the parameter space. The recovered spectrum for a considerably large number of the points in the cosmological parameter space has a likelihood far better than a 'bestmore » fit' power law spectrum up to {delta}{chi}{sub eff}{sup 2}{approx_equal}-30. We use discrete wavelet transform (DWT) for smoothing the raw recovered spectrum from the binned data. The results obtained here reconfirm and sharpen the conclusion drawn from our previous analysis of the WMAP 1st year data. A sharp cut off around the horizon scale and a bump after the horizon scale seem to be a common feature for all of these reconstructed primordial spectra. We have shown that although the WMAP 3 year data prefers a lower value of matter density for a power law form of the primordial spectrum, for a free form of the spectrum, we can get a very good likelihood to the data for higher values of matter density. We have also shown that even a flat cold dark matter model, allowing a free form of the primordial spectrum, can give a very high likelihood fit to the data. Theoretical interpretation of the results is open to the cosmology community. However, this work provides strong evidence that the data retains discriminatory power in the cosmological parameter space even when there is full freedom in choosing the primordial spectrum.« less
[A correction method of baseline drift of discrete spectrum of NIR].
Hu, Ai-Qin; Yuan, Hong-Fu; Song, Chun-Feng; Li, Xiao-Yu
2014-10-01
In the present paper, a new correction method of baseline drift of discrete spectrum is proposed by combination of cubic spline interpolation and first order derivative. A fitting spectrum is constructed by cubic spline interpolation, using the datum in discrete spectrum as interpolation nodes. The fitting spectrum is differentiable. First order derivative is applied to the fitting spectrum to calculate derivative spectrum. The spectral wavelengths which are the same as the original discrete spectrum were taken out from the derivative spectrum to constitute the first derivative spectra of the discrete spectra, thereby to correct the baseline drift of the discrete spectra. The effects of the new method were demonstrated by comparison of the performances of multivariate models built using original spectra, direct differential spectra and the spectra pretreated by the new method. The results show that negative effects on the performance of multivariate model caused by baseline drift of discrete spectra can be effectively eliminated by the new method.
Homayoon, Zahra
2014-09-28
A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO(+)(H2O) cluster is reported. The PES is based on fitting of roughly 32,000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO(+)(H2O) and NO(+)(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO(+)(H2O) and NO(+)(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO(+)(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.
NASA Astrophysics Data System (ADS)
Homayoon, Zahra
2014-09-01
A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO+(H2O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO+(H2O) and NO+(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO+(H2O) and NO+(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO+(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.
Babaei, Behzad; Abramowitch, Steven D.; Elson, Elliot L.; Thomopoulos, Stavros; Genin, Guy M.
2015-01-01
The viscoelastic behaviour of a biological material is central to its functioning and is an indicator of its health. The Fung quasi-linear viscoelastic (QLV) model, a standard tool for characterizing biological materials, provides excellent fits to most stress–relaxation data by imposing a simple form upon a material's temporal relaxation spectrum. However, model identification is challenging because the Fung QLV model's ‘box’-shaped relaxation spectrum, predominant in biomechanics applications, can provide an excellent fit even when it is not a reasonable representation of a material's relaxation spectrum. Here, we present a robust and simple discrete approach for identifying a material's temporal relaxation spectrum from stress–relaxation data in an unbiased way. Our ‘discrete QLV’ (DQLV) approach identifies ranges of time constants over which the Fung QLV model's typical box spectrum provides an accurate representation of a particular material's temporal relaxation spectrum, and is effective at providing a fit to this model. The DQLV spectrum also reveals when other forms or discrete time constants are more suitable than a box spectrum. After validating the approach against idealized and noisy data, we applied the methods to analyse medial collateral ligament stress–relaxation data and identify the strengths and weaknesses of an optimal Fung QLV fit. PMID:26609064
Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel
Shanhua, Xu; Songbo, Ren; Youde, Wang
2015-01-01
To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel. PMID:26121468
Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel.
Shanhua, Xu; Songbo, Ren; Youde, Wang
2015-01-01
To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel.
ERIC Educational Resources Information Center
Pan, Chien-Yu
2014-01-01
This study compared components of motor proficiency and physical fitness in adolescents with and without autism spectrum disorders, and assessed the associations between the two measures within each group. A total of 62 adolescent males with ("n" = 31) and without ("n" = 31) autism spectrum disorders aged 10-17 years completed…
Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aab, A.; Abreu, P.; Andringa, S.
2017-04-01
We present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above 5 ⋅ 10{sup 18} eV, i.e. the region of the all-particle spectrum above the so-called 'ankle' feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated through a rigidity-dependent mechanism. The fit results suggest sources characterized by relatively low maximum injection energies, hard spectra and heavy chemical composition. We also show that uncertainties aboutmore » physical quantities relevant to UHECR propagation and shower development have a non-negligible impact on the fit results.« less
Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröoder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zong, Z.
2017-04-01
We present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above 5 ṡ 1018 eV, i.e. the region of the all-particle spectrum above the so-called "ankle" feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated through a rigidity-dependent mechanism. The fit results suggest sources characterized by relatively low maximum injection energies, hard spectra and heavy chemical composition. We also show that uncertainties about physical quantities relevant to UHECR propagation and shower development have a non-negligible impact on the fit results.
Blueprint XAS: a Matlab-based toolbox for the fitting and analysis of XAS spectra.
Delgado-Jaime, Mario Ulises; Mewis, Craig Philip; Kennepohl, Pierre
2010-01-01
Blueprint XAS is a new Matlab-based program developed to fit and analyse X-ray absorption spectroscopy (XAS) data, most specifically in the near-edge region of the spectrum. The program is based on a methodology that introduces a novel background model into the complete fit model and that is capable of generating any number of independent fits with minimal introduction of user bias [Delgado-Jaime & Kennepohl (2010), J. Synchrotron Rad. 17, 119-128]. The functions and settings on the five panels of its graphical user interface are designed to suit the needs of near-edge XAS data analyzers. A batch function allows for the setting of multiple jobs to be run with Matlab in the background. A unique statistics panel allows the user to analyse a family of independent fits, to evaluate fit models and to draw statistically supported conclusions. The version introduced here (v0.2) is currently a toolbox for Matlab. Future stand-alone versions of the program will also incorporate several other new features to create a full package of tools for XAS data processing.
MatLab program for precision calibration of optical tweezers
NASA Astrophysics Data System (ADS)
Tolić-Nørrelykke, Iva Marija; Berg-Sørensen, Kirstine; Flyvbjerg, Henrik
2004-06-01
Optical tweezers are used as force transducers in many types of experiments. The force they exert in a given experiment is known only after a calibration. Computer codes that calibrate optical tweezers with high precision and reliability in the ( x, y)-plane orthogonal to the laser beam axis were written in MatLab (MathWorks Inc.) and are presented here. The calibration is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved by accounting for a number of factors that affect this power spectrum. First, cross-talk between channels in 2D position measurements is tested for, and eliminated if detected. Then, the Lorentzian power spectrum that results from the Einstein-Ornstein-Uhlenbeck theory, is fitted to the low-frequency part of the experimental spectrum in order to obtain an initial guess for parameters to be fitted. Finally, a more complete theory is fitted, a theory that optionally accounts for the frequency dependence of the hydrodynamic drag force and hydrodynamic interaction with a nearby cover slip, for effects of finite sampling frequency (aliasing), for effects of anti-aliasing filters in the data acquisition electronics, and for unintended "virtual" filtering caused by the position detection system. Each of these effects can be left out or included as the user prefers, with user-defined parameters. Several tests are applied to the experimental data during calibration to ensure that the data comply with the theory used for their interpretation: Independence of x- and y-coordinates, Hooke's law, exponential distribution of power spectral values, uncorrelated Gaussian scatter of residual values. Results are given with statistical errors and covariance matrix. Program summaryTitle of program: tweezercalib Catalogue identifier: ADTV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland. Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV Computer for which the program is designed and others on which it has been tested: General computer running MatLab (MathWorks Inc.). Programming language used: MatLab (MathWorks Inc.). Uses "Optimization Toolbox" and "Statistics Toolbox". Memory required to execute with typical data: Of order 4 times the size of the data file. High speed storage required: None No. of lines in distributed program, including test data, etc.: 133 183 No. of bytes in distributed program, including test data, etc.: 1 043 674 Distribution format: tar gzip file Nature of physical problem: Calibrate optical tweezers with precision by fitting theory to experimental power spectrum of position of bead doing Brownian motion in incompressible fluid, possibly near microscope cover slip, while trapped in optical tweezers. Thereby determine spring constant of optical trap and conversion factor for arbitrary-units-to-nanometers for detection system. Method of solution: Elimination of cross-talk between quadrant photo-diode's output channels for positions (optional). Check that distribution of recorded positions agrees with Boltzmann distribution of bead in harmonic trap. Data compression and noise reduction by blocking method applied to power spectrum. Full accounting for hydrodynamic effects: Frequency-dependent drag force and interaction with nearby cover slip (optional). Full accounting for electronic filters (optional), for "virtual filtering" caused by detection system (optional). Full accounting for aliasing caused by finite sampling rate (optional). Standard non-linear least-squares fitting. Statistical support for fit is given, with several plots suitable for inspection of consistency and quality of data and fit. Restrictions on the complexity of the problem: Data should be positions of bead doing Brownian motion while held by optical tweezers. For high precision in final results, data should be time series measured over a long time, with sufficiently high experimental sampling rate: The sampling rate should be well above the characteristic frequency of the trap, the so-called corner frequency. Thus, the sampling frequency should typically be larger than 10 kHz. The Fast Fourier Transform applied requires the time series to contain 2 n data points, and long measurement time is obtained with n>12-15. Finally, the optics should be set to ensure a harmonic trapping potential in the range of positions visited by the bead. The fitting procedure checks for harmonic potential. Typical running time: (Tens of) minutes Unusual features of the program: None References: The theoretical underpinnings for the procedure are found in [K. Berg-Sørensen, H. Flyvbjerg, Rev. Sci. Instrum. 75 (3) (2004) 594].
Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei
2017-09-01
The laser induced breakdown spectroscopy (LIBS) technique is an effective method to detect material composition by obtaining the plasma emission spectrum. The overlapping peaks in the spectrum are a fundamental problem in the qualitative and quantitative analysis of LIBS. Based on a curve fitting method, this paper studies an error compensation method to achieve the decomposition and correction of overlapping peaks. The vital step is that the fitting residual is fed back to the overlapping peaks and performs multiple curve fitting processes to obtain a lower residual result. For the quantitative experiments of Cu, the Cu-Fe overlapping peaks in the range of 321-327 nm obtained from the LIBS spectrum of five different concentrations of CuSO 4 ·5H 2 O solution were decomposed and corrected using curve fitting and error compensation methods. Compared with the curve fitting method, the error compensation reduced the fitting residual about 18.12-32.64% and improved the correlation about 0.86-1.82%. Then, the calibration curve between the intensity and concentration of the Cu was established. It can be seen that the error compensation method exhibits a higher linear correlation between the intensity and concentration of Cu, which can be applied to the decomposition and correction of overlapping peaks in the LIBS spectrum.
Shot model parameters for Cygnus X-1 through phase portrait fitting
NASA Technical Reports Server (NTRS)
Lochner, James C.; Swank, J. H.; Szymkowiak, A. E.
1991-01-01
Shot models for systems having about 1/f power density spectrum are developed by utilizing a distribution of shot durations. Parameters of the distribution are determined by fitting the power spectrum either with analytic forms for the spectrum of a shot model with a given shot profile, or with the spectrum derived from numerical realizations of trial shot models. The shot fraction is specified by fitting the phase portrait, which is a plot of intensity at a given time versus intensity at a delayed time and in principle is sensitive to different shot profiles. These techniques have been extensively applied to the X-ray variability of Cygnus X-1, using HEAO 1 A-2 and an Exosat ME observation. The power spectra suggest models having characteristic shot durations lasting from milliseconds to a few seconds, while the phase portrait fits give shot fractions of about 50 percent. Best fits to the portraits are obtained if the amplitude of the shot is a power-law function of the duration of the shot. These fits prefer shots having a symmetric exponential rise and decay. Results are interpreted in terms of a distribution of magnetic flares in the accretion disk.
Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory
Aab, A.; Abreu, P.; Aglietta, M.; ...
2017-04-20
In this paper, we present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above 5 • 10 18 eV, i.e. the region of the all-particle spectrum above the so-called 'ankle' feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated through a rigidity-dependent mechanism. The fit results suggest sources characterized by relatively low maximum injection energies, hard spectra and heavy chemical composition. We also show thatmore » uncertainties about physical quantities relevant to UHECR propagation and shower development have a non-negligible impact on the fit results.« less
Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aab, A.; Abreu, P.; Aglietta, M.
In this paper, we present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above 5 • 10 18 eV, i.e. the region of the all-particle spectrum above the so-called 'ankle' feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated through a rigidity-dependent mechanism. The fit results suggest sources characterized by relatively low maximum injection energies, hard spectra and heavy chemical composition. We also show thatmore » uncertainties about physical quantities relevant to UHECR propagation and shower development have a non-negligible impact on the fit results.« less
tweezercalib 2.1: Faster version of MatLab package for precise calibration of optical tweezers
NASA Astrophysics Data System (ADS)
Hansen, Poul Martin; Tolic-Nørrelykke, Iva Marija; Flyvbjerg, Henrik; Berg-Sørensen, Kirstine
2006-10-01
New version program summaryTitle of program: tweezercalib Catalogue identifier:ADTV_v2_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV_v2_1 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:no No. of lines in distributed program, including test data, etc.: 134 188 No. of bytes in distributed program, including test data, etc.: 1 050 368 Distribution format: tar.gz Programming language: MatLab (Mathworks Inc.), standard license Computer:General computer running MatLab (Mathworks Inc.) Operating system:Windows2000, Windows-XP, Linux RAM:Of order four times the size of the data file Classification:3, 4.14, 18, 23 Catalogue identifier of previous version: ADTV_v2_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 518 Does the new version supersede the previous version?: yes Nature of problem:Calibrate optical tweezers with precision by fitting theory to experimental power spectrum of position of bead doing Brownian motion in incompressible fluid, possibly near microscope cover slip, while trapped in optical tweezers. Thereby determine spring constant of optical trap and conversion factor for arbitrary-units-to-nanometers for detection system. The theoretical underpinnings of the procedure may be found in Ref. [3]. Solution method:Elimination of cross-talk between quadrant photo-diodes, output channels for positions (optional). Check that distribution of recorded positions agrees with Boltzmann distribution of bead in harmonic trap. Data compression and noise reduction by blocking method applied to power spectrum. Full accounting for hydrodynamic effects; Frequency-dependent drag force and interaction with nearby cover slip (optional). Full accounting for electronic filters (optional), for "virtual filtering" caused by detection system (optional). Full accounting for aliasing caused by finite sampling rate (optional). Standard non-linear least-squares fitting with custom written routines based on Refs. [1,2]. Statistical support for fit is given, with several plots facilitating inspection of consistency and quality of data and fit. Reasons for the new version:Recent progress in the field has demonstrated a better approximation of the formula for the theoretical power spectrum with corrections due to frequency dependence of motion and distance to a surface nearby. Summary of revisions:The expression for the theoretical power spectrum when accounting for corrections to Stokes law, P(f), has been updated to agree with a better approximation of the theoretical spectrum, as discussed in Ref. [4] The units of the kinematic viscosity applied in the program is now stated in the input window. Greek letters and exponents are inserted in the input window. The graphical output has improved: The figures now bear a meaningful title and four figures that test the quality of the fit are now combined in one figure with four parts. Restrictions: Data should be positions of bead doing Brownian motion while held by optical tweezers. For high precision in final results, data should be time series measured over a long time, with sufficiently high experimental sampling rate; The sampling rate should be well above the characteristic frequency of the trap, the so-called corner frequency. Thus, the sampling frequency should typically be larger than 10 kHz. The Fast Fourier Transform used works optimally when the time series contain 2 data points, and long measurement time is obtained with n>12-15. Finally, the optics should be set to ensure a harmonic trapping potential in the range of positions visited by the bead. The fitting procedure checks for harmonic potential. Running time:seconds ReferencesJ. Nocedal, Y.x. Yuan, Combining trust region and line search techniques, Technical Report OTC 98/04, Optimization Technology Center, 1998. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes. The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986. (The theoretical underpinnings for the procedure) K. Berg-Sørensen and Henrik Flyvbjerg, Power spectrum analysis for optical tweezers, Rev. Sci. Ins. 75 (2004) 594-612. S.F. Tolic-Nørrelykke, et al., Calibration of optical tweezers with positions detection in the back-focal-plane, arXiv:physics/0603037 v2, 2006.
Study of the gamma-ray spectrum from the Galactic Center in view of multi-TeV dark matter candidates
NASA Astrophysics Data System (ADS)
Belikov, Alexander V.; Zaharijas, Gabrijela; Silk, Joseph
2012-10-01
Motivated by the complex gamma-ray spectrum of the Galactic Center source now measured over five decades in energy, we revisit the issue of the role of dark matter (DM) annihilations in this interesting region. We reassess whether the emission measured by the HESS collaboration could be a signature of dark matter annihilation, and we use the Fermi LAT spectrum to model the emission from SgrA*, using power-law spectral fits. We find that good fits are achieved by a power law with an index ˜2.5-2.6, in combination with a spectrum similar to the one observed from pulsar population and with a spectrum from a ≳10TeV DM annihilating to a mixture of bb¯ and harder τ+τ- channels and with boost factors of the order of a hundred. Alternatively, we also consider the combination of a log-parabola fit with the DM contribution. Finally, as both the spectrum of gamma rays from the Galactic Center and the spectrum of cosmic ray electrons exhibit a cutoff at TeV energies, we study the dark matter fits to both data sets. Constraining the spectral shape of the purported dark matter signal provides a robust way of comparing data. We find a marginal overlap only between the 99.999% C.L. regions in parameter space.
Radial measurements of IMF-sensitive absorption features in two massive ETGs
NASA Astrophysics Data System (ADS)
Vaughan, Sam P.; Davies, Roger L.; Zieleniewski, Simon; Houghton, Ryan C. W.
2018-03-01
We make radial measurements of stellar initial mass function (IMF) sensitive absorption features in the two massive early-type galaxies NGC 1277 and IC 843. Using the Oxford Short Wavelength Integral Field specTrogaph (SWIFT), we obtain resolved measurements of the Na I 0.82 and FeH 0.99 indices, amongst others, finding both galaxies show strong gradients in Na I absorption combined with flat FeH profiles at ˜0.4 Å. We find these measurements may be explained by radial gradients in the IMF, appropriate abundance gradients in [Na/Fe] and [Fe/H], or a combination of the two, and our data are unable to break this degeneracy. We also use full spectral fitting to infer global properties from an integrated spectrum of each object, deriving a unimodal IMF slope consistent with Salpeter in IC 843 (x = 2.27 ± 0.17) but steeper than Salpeter in NGC 1277 (x = 2.69 ± 0.11), despite their similar FeH equivalent widths. Independently, we fit the strength of the FeH feature and compare to the E-MILES and CvD12 stellar population libraries, finding agreement between the models. The IMF values derived in this way are in close agreement with those from spectral fitting in NGC 1277 (x_{CvD}=2.59^{+0.25}_{-0.48}, x_{E-MILES}=2.77± 0.31), but are less consistent in IC 843, with the IMF derived from FeH alone leading to steeper slopes than when fitting the full spectrum (x_{CvD}=2.57^{+0.30}_{-0.41}, x_{E-MILES}=2.72± 0.25). This work highlights the importance of a large wavelength coverage for breaking the degeneracy between abundance and IMF variations, and may bring into doubt the use of the Wing-Ford band as an IMF index if used without other spectral information.
Ages of LMC star clusters using ASAD2
NASA Astrophysics Data System (ADS)
Asa'd, Randa S.; Vazdekis, Alexandre; Zeinelabdin, Sami
2016-04-01
We use ASAD2, the new version of ASAD (Analyzer of Spectra for Age Determination), to obtain the age and reddening of 27 Large Magellanic Cloud (LMC) clusters from full fitting of integrated spectra using different statistical methods [χ2 and Kolmogorov-Smirnov (KS) test] and a set of stellar population models including GALAXEV and MILES. We show that our results are in good agreement with the colour-magnitude diagram (CMD) ages for both models, and that metallicity does not affect the age determination for the full spectrum fitting method regardless of the model used for ages with log (age/year) < 9. We discuss the results obtained by the two statistical results for both GALAXEV and MILES versus three factors: age, signal-to-noise ratio and resolution (full width at half maximum). The predicted reddening values when using the χ2 minimization method are within the range found in the literature for resolved clusters (I.e. <0.35); however the KS test can predict E(B - V) higher values. The sharp spectrum transition originated at ages around the supergiants contribution, at either side of the AGB peak around log (age/year) 9.0 and log (age/year) 7.8 are limiting our ability to provide values in agreement with the CMD estimates and as a result the reddening determination is not accurate. We provide the detailed results of four clusters spanning a wide range of ages. ASAD2 is a user-friendly program available for download on the Web and can be immediately used at http://randaasad.wordpress.com/asad-package/.
Li, Jun; Carter, Stuart; Bowman, Joel M; Dawes, Richard; Xie, Daiqian; Guo, Hua
2014-07-03
The ro-vibrational spectrum of the simplest Criegee intermediate (CH2OO) has been determined quantum mechanically based on nine-dimensional potential energy and dipole surfaces for its ground electronic state. The potential energy surface is fitted to more than 50 000 high-level ab initio points with a root-mean-square error of 25 cm(-1), using a recently proposed permutation invariant polynomial neural network method. The calculated rotational constants, vibrational frequencies, and spectral intensities of CH2OO are in excellent agreement with experiment. The potential energy surface provides a valuable platform for studying highly excited vibrational and unimolecular reaction dynamics of this important molecule.
NASA Astrophysics Data System (ADS)
Wilkins, Ashlee N.; Deming, Drake; Madhusudhan, Nikku; Burrows, Adam; Knutson, Heather; McCullough, Peter; Ranjan, Sukrit
2014-03-01
We have used Hubble/WFC3 and the G141 grism to measure the secondary eclipse of the transiting, very hot Jupiter CoRoT-2b in the 1.1-1.7 μm spectral region. We find an eclipse depth averaged over this band equal to 395^{+69}_{-45} parts per million, equivalent to a blackbody temperature of 1788 ± 18 K. We study and characterize several WFC3 instrumental effects, especially the "hook" phenomenon described by Deming et al. We use data from several transiting exoplanet systems to find a quantitative relation between the amplitude of the hook and the exposure level of a given pixel. Although the uncertainties in this relation are too large to allow us to develop an empirical correction for our data, our study provides a useful guide for optimizing exposure levels in future WFC3 observations. We derive the planet's spectrum using a differential method. The planet-to-star contrast increases to longer wavelength within the WFC3 bandpass, but without water absorption or emission to a 3σ limit of 85 ppm. The slope of the WFC3 spectrum is significantly less than the slope of the best-fit blackbody. We compare all existing eclipse data for this planet to a blackbody spectrum, and to spectra from both solar abundance and carbon-rich (C/O = 1) models. A blackbody spectrum is an acceptable fit to the full data set. Extra continuous opacity due to clouds or haze, and flattened temperature profiles, are strong candidates to produce quasi-blackbody spectra, and to account for the amplitude of the optical eclipses. Our results show ambiguous evidence for a temperature inversion in this planet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, Ashlee N.; Deming, Drake; Madhusudhan, Nikku
2014-03-10
We have used Hubble/WFC3 and the G141 grism to measure the secondary eclipse of the transiting, very hot Jupiter CoRoT-2b in the 1.1-1.7 μm spectral region. We find an eclipse depth averaged over this band equal to 395{sub −45}{sup +69} parts per million, equivalent to a blackbody temperature of 1788 ± 18 K. We study and characterize several WFC3 instrumental effects, especially the 'hook' phenomenon described by Deming et al. We use data from several transiting exoplanet systems to find a quantitative relation between the amplitude of the hook and the exposure level of a given pixel. Although the uncertaintiesmore » in this relation are too large to allow us to develop an empirical correction for our data, our study provides a useful guide for optimizing exposure levels in future WFC3 observations. We derive the planet's spectrum using a differential method. The planet-to-star contrast increases to longer wavelength within the WFC3 bandpass, but without water absorption or emission to a 3σ limit of 85 ppm. The slope of the WFC3 spectrum is significantly less than the slope of the best-fit blackbody. We compare all existing eclipse data for this planet to a blackbody spectrum, and to spectra from both solar abundance and carbon-rich (C/O = 1) models. A blackbody spectrum is an acceptable fit to the full data set. Extra continuous opacity due to clouds or haze, and flattened temperature profiles, are strong candidates to produce quasi-blackbody spectra, and to account for the amplitude of the optical eclipses. Our results show ambiguous evidence for a temperature inversion in this planet.« less
Mandy, William; Charman, Tony; Puura, Kaija; Skuse, David
2014-01-01
The recent Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) reformulation of autism spectrum disorder has received empirical support from North American and UK samples. Autism spectrum disorder is an increasingly global diagnosis, and research is needed to discover how well it generalises beyond North America and the United Kingdom. We tested the applicability of the DSM-5 model to a sample of Finnish young people with autism spectrum disorder (n = 130) or the broader autism phenotype (n = 110). Confirmatory factor analysis tested the DSM-5 model in Finland and compared the fit of this model between Finnish and UK participants (autism spectrum disorder, n = 488; broader autism phenotype, n = 220). In both countries, autistic symptoms were measured using the Developmental, Diagnostic and Dimensional Interview. Replicating findings from English-speaking samples, the DSM-5 model fitted well in Finnish autism spectrum disorder participants, outperforming a Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition (DSM-IV) model. The DSM-5 model fitted equally well in Finnish and UK autism spectrum disorder samples. Among broader autism phenotype participants, this model fitted well in the United Kingdom but poorly in Finland, suggesting that cross-cultural variability may be greatest for milder autistic characteristics. We encourage researchers with data from other cultures to emulate our methodological approach, to map any cultural variability in the manifestation of autism spectrum disorder and the broader autism phenotype. This would be especially valuable given the ongoing revision of the International Classification of Diseases-11th Edition, the most global of the diagnostic manuals.
Ab initio potential energy and dipole moment surfaces of the F(-)(H2O) complex.
Kamarchik, Eugene; Toffoli, Daniele; Christiansen, Ove; Bowman, Joel M
2014-02-05
We present full-dimensional, ab initio potential energy and dipole moment surfaces for the F(-)(H2O) complex. The potential surface is a permutationally invariant fit to 16,114 coupled-cluster single double (triple)/aVTZ energies, while the dipole surface is a covariant fit to 11,395 CCSD(T)/aVTZ dipole moments. Vibrational self-consistent field/vibrational configuration interaction (VSCF/VCI) calculations of energies and the IR-spectrum are presented both for F(-)(H2O) and for the deuterated analog, F(-)(D2O). A one-dimensional calculation of the splitting of the ground state, due to equivalent double-well global minima, is also reported. Copyright © 2013 Elsevier B.V. All rights reserved.
Foreground Bias from Parametric Models of Far-IR Dust Emission
NASA Technical Reports Server (NTRS)
Kogut, A.; Fixsen, D. J.
2016-01-01
We use simple toy models of far-IR dust emission to estimate the accuracy to which the polarization of the cosmic microwave background can be recovered using multi-frequency fits, if the parametric form chosen for the fitted dust model differs from the actual dust emission. Commonly used approximations to the far-IR dust spectrum yield CMB residuals comparable to or larger than the sensitivities expected for the next generation of CMB missions, despite fitting the combined CMB plus foreground emission to precision 0.1 percent or better. The Rayleigh-Jeans approximation to the dust spectrum biases the fitted dust spectral index by (Delta)(Beta)(sub d) = 0.2 and the inflationary B-mode amplitude by (Delta)(r) = 0.03. Fitting the dust to a modified blackbody at a single temperature biases the best-fit CMB by (Delta)(r) greater than 0.003 if the true dust spectrum contains multiple temperature components. A 13-parameter model fitting two temperature components reduces this bias by an order of magnitude if the true dust spectrum is in fact a simple superposition of emission at different temperatures, but fails at the level (Delta)(r) = 0.006 for dust whose spectral index varies with frequency. Restricting the observing frequencies to a narrow region near the foreground minimum reduces these biases for some dust spectra but can increase the bias for others. Data at THz frequencies surrounding the peak of the dust emission can mitigate these biases while providing a direct determination of the dust temperature profile.
NASA Astrophysics Data System (ADS)
Kamath, Aditya; Vargas-Hernández, Rodrigo A.; Krems, Roman V.; Carrington, Tucker; Manzhos, Sergei
2018-06-01
For molecules with more than three atoms, it is difficult to fit or interpolate a potential energy surface (PES) from a small number of (usually ab initio) energies at points. Many methods have been proposed in recent decades, each claiming a set of advantages. Unfortunately, there are few comparative studies. In this paper, we compare neural networks (NNs) with Gaussian process (GP) regression. We re-fit an accurate PES of formaldehyde and compare PES errors on the entire point set used to solve the vibrational Schrödinger equation, i.e., the only error that matters in quantum dynamics calculations. We also compare the vibrational spectra computed on the underlying reference PES and the NN and GP potential surfaces. The NN and GP surfaces are constructed with exactly the same points, and the corresponding spectra are computed with the same points and the same basis. The GP fitting error is lower, and the GP spectrum is more accurate. The best NN fits to 625/1250/2500 symmetry unique potential energy points have global PES root mean square errors (RMSEs) of 6.53/2.54/0.86 cm-1, whereas the best GP surfaces have RMSE values of 3.87/1.13/0.62 cm-1, respectively. When fitting 625 symmetry unique points, the error in the first 100 vibrational levels is only 0.06 cm-1 with the best GP fit, whereas the spectrum on the best NN PES has an error of 0.22 cm-1, with respect to the spectrum computed on the reference PES. This error is reduced to about 0.01 cm-1 when fitting 2500 points with either the NN or GP. We also find that the GP surface produces a relatively accurate spectrum when obtained based on as few as 313 points.
Unstable matter and the 1-0 MeV gamma-ray background
NASA Technical Reports Server (NTRS)
Daly, Ruth A.
1988-01-01
The spectrum of photons produced by an unstable particle which decayed while the universe was young is calculated. This spectrum is compared to that of the 1-10 MeV shoulder, a feature of the high-energy, extragalactic gamma-ray background, whose origin has not yet been determined. The calculated spectrum contains two parameters which are adjusted to obtain a maximal fit to the observed spectrum; the fit thus obtained is accurate to the 99 percent confidence level. The implications for the mass, lifetime, initial abundance, and branching ratio of the unstable particle are discussed.
Do We Need Norms of Fitness for Children with Autistic Spectrum Condition?
ERIC Educational Resources Information Center
Place, Maurice; Dickinson, Kathleen; Reynolds, Joanna
2015-01-01
The increasingly sedentary habits of children, and rising obesity levels, are prompting concern for children's future health. Children with autistic spectrum condition (ASC) show a clear trend in this regard. Within school, an understanding of how an individual's fitness compares to age norms is important in order to design appropriate exercise…
Two-Season Atacama Cosmology Telescope Polarimeter Lensing Power Spectrum
NASA Technical Reports Server (NTRS)
Shewin, Blake D.; van Engelen, Alexander; Sehgal, Neelima; Madhavacheril, Mathew; Addison, Graeme E.; Aiola, Simone; Allison, Rupert; Battaglia, Nicholas; Becker, Daniel T.; Beall, James A.;
2017-01-01
We report a measurement of the power spectrum of cosmic microwave background (CMB) lensing from two seasons of Atacama Cosmology Telescope polarimeter (ACTPol) CMB data. The CMB lensing power spectrum is extracted from both temperature and polarization data using quadratic estimators. We obtain results that are consistent with the expectation from the best-fit Planck CDM model over a range of multipoles L 80-2100, with an amplitude of lensing A(sub lens) = 1.06 +/- 0.15 stat +/- 0.06 sys relative to Planck. Our measurement of the CMB lensing power spectrum gives sigma 8 omega m(sup 0.25) = 0.643 +/- 0.054; including baryon acoustic oscillation scale data, we constrain the amplitude of density fluctuations to be sigma 8 = 0.831 +/- 0.053. We also update constraints on the neutrino mass sum. We verify our lensing measurement with a number of null tests and systematic checks, finding no evidence of significant systematic errors. This measurement relies on a small fraction of the ACTPol data already taken; more precise lensing results can therefore be expected from the full ACTPol data set.
Two-season Atacama Cosmology Telescope polarimeter lensing power spectrum
NASA Astrophysics Data System (ADS)
Sherwin, Blake D.; van Engelen, Alexander; Sehgal, Neelima; Madhavacheril, Mathew; Addison, Graeme E.; Aiola, Simone; Allison, Rupert; Battaglia, Nicholas; Becker, Daniel T.; Beall, James A.; Bond, J. Richard; Calabrese, Erminia; Datta, Rahul; Devlin, Mark J.; Dünner, Rolando; Dunkley, Joanna; Fox, Anna E.; Gallardo, Patricio; Halpern, Mark; Hasselfield, Matthew; Henderson, Shawn; Hill, J. Colin; Hilton, Gene C.; Hubmayr, Johannes; Hughes, John P.; Hincks, Adam D.; Hlozek, Renée; Huffenberger, Kevin M.; Koopman, Brian; Kosowsky, Arthur; Louis, Thibaut; Maurin, Loïc; McMahon, Jeff; Moodley, Kavilan; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Niemack, Michael D.; Page, Lyman A.; Sievers, Jonathan; Spergel, David N.; Staggs, Suzanne T.; Thornton, Robert J.; Van Lanen, Jeff; Vavagiakis, Eve; Wollack, Edward J.
2017-06-01
We report a measurement of the power spectrum of cosmic microwave background (CMB) lensing from two seasons of Atacama Cosmology Telescope polarimeter (ACTPol) CMB data. The CMB lensing power spectrum is extracted from both temperature and polarization data using quadratic estimators. We obtain results that are consistent with the expectation from the best-fit Planck Λ CDM model over a range of multipoles L =80 - 2100 , with an amplitude of lensing Alens=1.06 ±0.15 (stat )±0.06 (sys ) relative to Planck. Our measurement of the CMB lensing power spectrum gives σ8Ωm0.25=0.643 ±0.054 ; including baryon acoustic oscillation scale data, we constrain the amplitude of density fluctuations to be σ8=0.831 ±0.053 . We also update constraints on the neutrino mass sum. We verify our lensing measurement with a number of null tests and systematic checks, finding no evidence of significant systematic errors. This measurement relies on a small fraction of the ACTPol data already taken; more precise lensing results can therefore be expected from the full ACTPol data set.
Discovery and characterization of 3000+ main-sequence binaries from APOGEE spectra
NASA Astrophysics Data System (ADS)
El-Badry, Kareem; Ting, Yuan-Sen; Rix, Hans-Walter; Quataert, Eliot; Weisz, Daniel R.; Cargile, Phillip; Conroy, Charlie; Hogg, David W.; Bergemann, Maria; Liu, Chao
2018-05-01
We develop a data-driven spectral model for identifying and characterizing spatially unresolved multiple-star systems and apply it to APOGEE DR13 spectra of main-sequence stars. Binaries and triples are identified as targets whose spectra can be significantly better fit by a superposition of two or three model spectra, drawn from the same isochrone, than any single-star model. From an initial sample of ˜20 000 main-sequence targets, we identify ˜2500 binaries in which both the primary and secondary stars contribute detectably to the spectrum, simultaneously fitting for the velocities and stellar parameters of both components. We additionally identify and fit ˜200 triple systems, as well as ˜700 velocity-variable systems in which the secondary does not contribute detectably to the spectrum. Our model simplifies the process of simultaneously fitting single- or multi-epoch spectra with composite models and does not depend on a velocity offset between the two components of a binary, making it sensitive to traditionally undetectable systems with periods of hundreds or thousands of years. In agreement with conventional expectations, almost all the spectrally identified binaries with measured parallaxes fall above the main sequence in the colour-magnitude diagram. We find excellent agreement between spectrally and dynamically inferred mass ratios for the ˜600 binaries in which a dynamical mass ratio can be measured from multi-epoch radial velocities. We obtain full orbital solutions for 64 systems, including 14 close binaries within hierarchical triples. We make available catalogues of stellar parameters, abundances, mass ratios, and orbital parameters.
An Overview of the XGAM Code and Related Software for Gamma-ray Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, W.
2014-11-13
The XGAM spectrum-fitting code and associated software were developed specifically to analyze the complex gamma-ray spectra that can result from neutron-induced reactions. The XGAM code is designed to fit a spectrum over the entire available gamma-ray energy range as a single entity, in contrast to the more traditional piecewise approaches. This global-fit philosophy enforces background continuity as well as consistency between local and global behavior throughout the spectrum, and in a natural way. This report presents XGAM and the suite of programs built around it with an emphasis on how they fit into an overall analysis methodology for complex gamma-raymore » data. An application to the analysis of time-dependent delayed gamma-ray yields from 235U fission is shown in order to showcase the codes and how they interact.« less
Particle precipitation: How the spectrum fit impacts atmospheric chemistry
NASA Astrophysics Data System (ADS)
Wissing, J. M.; Nieder, H.; Yakovchouk, O. S.; Sinnhuber, M.
2016-11-01
Particle precipitation causes atmospheric ionization. Modeled ionization rates are widely used in atmospheric chemistry/climate simulations of the upper atmosphere. As ionization rates are based on particle measurements some assumptions concerning the energy spectrum are required. While detectors measure particles binned into certain energy ranges only, the calculation of a ionization profile needs a fit for the whole energy spectrum. Therefore the following assumptions are needed: (a) fit function (e.g. power-law or Maxwellian), (b) energy range, (c) amount of segments in the spectral fit, (d) fixed or variable positions of intersections between these segments. The aim of this paper is to quantify the impact of different assumptions on ionization rates as well as their consequences for atmospheric chemistry modeling. As the assumptions about the particle spectrum are independent from the ionization model itself the results of this paper are not restricted to a single ionization model, even though the Atmospheric Ionization Module OSnabrück (AIMOS, Wissing and Kallenrode, 2009) is used here. We include protons only as this allows us to trace changes in the chemistry model directly back to the different assumptions without the need to interpret superposed ionization profiles. However, since every particle species requires a particle spectrum fit with the mentioned assumptions the results are generally applicable to all precipitating particles. The reader may argue that the selection of assumptions of the particle fit is of minor interest, but we would like to emphasize on this topic as it is a major, if not the main, source of discrepancies between different ionization models (and reality). Depending on the assumptions single ionization profiles may vary by a factor of 5, long-term calculations may show systematic over- or underestimation in specific altitudes and even for ideal setups the definition of the energy-range involves an intrinsic 25% uncertainty for the ionization rates. The effects on atmospheric chemistry (HOx, NOx and Ozone) have been calculated by 3dCTM, showing that the spectrum fit is responsible for a 8% variation in Ozone between setups, and even up to 50% for extreme setups.
UV Timing and Spectroscopy of the Crab Nebula Pulsar
NASA Technical Reports Server (NTRS)
Gull, Theodore R.; Lunqvist, Peter; Sollerman, Jesper; Lindler, Don; Fisher, Richard R. (Technical Monitor)
2001-01-01
We have used the Hubble Space Telescope and Space Telescope Imaging Spectrograph to obtain Near Ultraviolet (NUV) (1600-3200 Angstroms) and Far Ultraviolet (FUV) (1140-1720 Angstroms) spectra and pulse profiles of the Crab Nebula's pulsar. The pulse period agrees well with the radio predictions. The NUV and FUV pulse profiles are little changed from the visible wavelength profile. Spectra obtained with the Nordic Optical Telescope were combined with the UV spectra for full coverage from 1140-9250Angstoms. Dereddening the spectrum with a standard extinction curve achieves a flat spectrum for E(B-V)=0.52, R=3.1. Lyman alpha absorption indicates a column density of 3.0=/-0.5 x 10(exp 21) cm -2, consistent with the E(B-V) of 0.52. The dereddened spectrum can be fitted by a power law with spectral index alpha=0.11+/-0.04. A broad, blueshifted absorption is seen in CIV (1550Angstroms), reaching a velocity of about 2500 kilometer per second.
A Battery Test to Evaluate Life-Time Physical Fitness With Same Test Items.
ERIC Educational Resources Information Center
Meshizuka, Tetsuo
A combination of physical fitness tests designed to be administered to a wide spectrum of the population, male and female, children and adults, is described. Three tests are included in this battery--motor fitness, physical fitness, and sports fitness. The philosophy behind this test structure is that motor fitness tests only measure and indicate…
Iterative fitting method for the evaluation and quantification of PAES spectra
NASA Astrophysics Data System (ADS)
Zimnik, Samantha; Hackenberg, Mathias; Hugenschmidt, Christoph
2017-01-01
The elemental composition of surfaces is of great importance for the understanding of many surface processes such as catalysis. For a reliable analysis and a comparison of results, the quantification of the measured data is indispensable. Positron annihilation induced Auger Electron Spectroscopy (PAES) is a spectroscopic technique that measures the elemental composition with outstanding surface sensitivity, but up to now, no standardized evaluation procedure for PAES spectra is available. In this paper we present a new approach for the evaluation of PAES spectra of compounds, using the spectra obtained for the pure elements as reference. The measured spectrum is then fitted by a linear combination of the reference spectra by varying their intensities. The comparison of the results of the fitting routine with a calculation of the full parameter range shows an excellent agreement. We present the results of the new analysis method to evaluate the PAES spectra of sub-monolayers of Ni on a Pd substrate.
VACTIV: A graphical dialog based program for an automatic processing of line and band spectra
NASA Astrophysics Data System (ADS)
Zlokazov, V. B.
2013-05-01
The program VACTIV-Visual ACTIV-has been developed for an automatic analysis of spectrum-like distributions, in particular gamma-ray spectra or alpha-spectra and is a standard graphical dialog based Windows XX application, driven by a menu, mouse and keyboard. On the one hand, it was a conversion of an existing Fortran program ACTIV [1] to the DELPHI language; on the other hand, it is a transformation of the sequential syntax of Fortran programming to a new object-oriented style, based on the organization of event interactions. New features implemented in the algorithms of both the versions consisted in the following as peak model both an analytical function and a graphical curve could be used; the peak search algorithm was able to recognize not only Gauss peaks but also peaks with an irregular form; both narrow peaks (2-4 channels) and broad ones (50-100 channels); the regularization technique in the fitting guaranteed a stable solution in the most complicated cases of strongly overlapping or weak peaks. The graphical dialog interface of VACTIV is much more convenient than the batch mode of ACTIV. [1] V.B. Zlokazov, Computer Physics Communications, 28 (1982) 27-37. NEW VERSION PROGRAM SUMMARYProgram Title: VACTIV Catalogue identifier: ABAC_v2_0 Licensing provisions: no Programming language: DELPHI 5-7 Pascal. Computer: IBM PC series. Operating system: Windows XX. RAM: 1 MB Keywords: Nuclear physics, spectrum decomposition, least squares analysis, graphical dialog, object-oriented programming. Classification: 17.6. Catalogue identifier of previous version: ABAC_v1_0 Journal reference of previous version: Comput. Phys. Commun. 28 (1982) 27 Does the new version supersede the previous version?: Yes. Nature of problem: Program VACTIV is intended for precise analysis of arbitrary spectrum-like distributions, e.g. gamma-ray and X-ray spectra and allows the user to carry out the full cycle of automatic processing of such spectra, i.e. calibration, automatic peak search and estimation of parameters of interest. VACTIV can run on any standard modern laptop. Reasons for the new version: At the time of its creation (1999) VACTIV was seemingly the first attempt to apply the newest programming languages and styles to systems of spectrum analysis. Its goal was to both get a convenient and efficient technique for data processing, and to elaborate the formalism of spectrum analysis in terms of classes, their properties, their methods and events of an object-oriented programming language. Summary of revisions: Compared with ACTIV, VACTIV preserves all the mathematical algorithms, but provides the user with all the benefits of an interface, based on a graphical dialog. It allows him to make a quick intervention in the work of the program; in particular, to carry out the on-line control of the fitting process: depending on the intermediate results and using the visual form of data representation, to change the conditions for the fitting and so achieve the optimum performance, selecting the optimum strategy. To find the best conditions for the fitting one can compress the spectrum, delete the blunders from it, smooth it using a high-frequency spline filter and build the background using a low-frequency spline filter; use not only automatic methods for the blunder deletion, the peak search, the peak model forming and the calibration, but also use manual mouse clicking on the spectrum graph. Restrictions: To enhance the reliability and portability of the program the majority of the most important arrays have a static allocation; all the arrays are allocated with a surplus, and the total pool of the program is restricted only by the size of the computer virtual memory. A spectrum has the static size of 32 K real words. The maximum size of the least-square matrix is 314 (the maximum number of fitted parameters per one analyzed spectrum interval, not for the whole spectrum), from which it follows that the maximum number of peaks in one spectrum interval is 154. The maximum total number of peaks in the spectrum is not restricted. Running time: The calculation time is negligibly small compared with the time for the dialog; using ini-files the program can be partly used in a semi-dialog mode.
NASA Astrophysics Data System (ADS)
Idehara, H.; Carbon, D. F.
2004-12-01
We present two new, publicly available tools to support the examination and interpretation of spectra. SCAMP is a specialized graphical user interface for MATLAB. It allows researchers to rapidly intercompare sets of observational, theoretical, and/or laboratory spectra. Users have extensive control over the colors and placement of individual spectra, and over spectrum normalization from one spectral region to another. Spectra can be interactively assigned to user-defined groups and the groupings recalled at a later time. The user can measure/record positions and intensities of spectral features, interactively spline-fit spectra, and normalize spectra by fitted splines. User-defined wavelengths can be automatically highlighted in SCAMP plots. The user can save/print annotated graphical output suitable for a scientific notebook depicting the work at any point. The ASP is a WWW portal that provides interactive access to two spectrum data sets: a library of synthetic stellar spectra and a library of laboratory PAH spectra. The synthetic stellar spectra in the ASP are appropriate to the giant branch with an assortment of compositions. Each spectrum spans the full range from 2 to 600 microns at a variety of resolutions. The ASP is designed to allow users to quickly identify individual features at any resolution that arise from any of the included isotopic species. The user may also retrieve the depth of formation of individual features at any resolution. PAH spectra accessible through the ASP are drawn from the extensive library of spectra measured by the NASA Ames Astrochemistry Laboratory. The user may interactively choose any subset of PAHs in the data set, combine them with user-defined weights and temperatures, and view/download the resultant spectrum at any user-defined resolution. This work was funded by the NASA Advanced Supercomputing Division, NASA Ames Research Center.
A 100-3000 GHz model of thermal dust emission observed by Planck, DIRBE and IRAS
NASA Astrophysics Data System (ADS)
Meisner, Aaron M.; Finkbeiner, Douglas P.
2015-01-01
We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anistropy on small angular scales. We have recently released maps and associated software utilities for obtaining thermal dust emission and reddening predictions using our Planck-based two-component model.
New estimates of the CMB angular power spectra from the WMAP 5 year low-resolution data
NASA Astrophysics Data System (ADS)
Gruppuso, A.; de Rosa, A.; Cabella, P.; Paci, F.; Finelli, F.; Natoli, P.; de Gasperis, G.; Mandolesi, N.
2009-11-01
A quadratic maximum likelihood (QML) estimator is applied to the Wilkinson Microwave Anisotropy Probe (WMAP) 5 year low-resolution maps to compute the cosmic microwave background angular power spectra (APS) at large scales for both temperature and polarization. Estimates and error bars for the six APS are provided up to l = 32 and compared, when possible, to those obtained by the WMAP team, without finding any inconsistency. The conditional likelihood slices are also computed for the Cl of all the six power spectra from l = 2 to 10 through a pixel-based likelihood code. Both the codes treat the covariance for (T, Q, U) in a single matrix without employing any approximation. The inputs of both the codes (foreground-reduced maps, related covariances and masks) are provided by the WMAP team. The peaks of the likelihood slices are always consistent with the QML estimates within the error bars; however, an excellent agreement occurs when the QML estimates are used as a fiducial power spectrum instead of the best-fitting theoretical power spectrum. By the full computation of the conditional likelihood on the estimated spectra, the value of the temperature quadrupole CTTl=2 is found to be less than 2σ away from the WMAP 5 year Λ cold dark matter best-fitting value. The BB spectrum is found to be well consistent with zero, and upper limits on the B modes are provided. The parity odd signals TB and EB are found to be consistent with zero.
Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor
NASA Technical Reports Server (NTRS)
Brainard, G. C.; Hanifin, J. P.; Greeson, J. M.; Byrne, B.; Glickman, G.; Gerner, E.; Rollag, M. D.
2001-01-01
The photopigment in the human eye that transduces light for circadian and neuroendocrine regulation, is unknown. The aim of this study was to establish an action spectrum for light-induced melatonin suppression that could help elucidate the ocular photoreceptor system for regulating the human pineal gland. Subjects (37 females, 35 males, mean age of 24.5 +/- 0.3 years) were healthy and had normal color vision. Full-field, monochromatic light exposures took place between 2:00 and 3:30 A.M. while subjects' pupils were dilated. Blood samples collected before and after light exposures were quantified for melatonin. Each subject was tested with at least seven different irradiances of one wavelength with a minimum of 1 week between each nighttime exposure. Nighttime melatonin suppression tests (n = 627) were completed with wavelengths from 420 to 600 nm. The data were fit to eight univariant, sigmoidal fluence-response curves (R(2) = 0.81-0.95). The action spectrum constructed from these data fit an opsin template (R(2) = 0.91), which identifies 446-477 nm as the most potent wavelength region providing circadian input for regulating melatonin secretion. The results suggest that, in humans, a single photopigment may be primarily responsible for melatonin suppression, and its peak absorbance appears to be distinct from that of rod and cone cell photopigments for vision. The data also suggest that this new photopigment is retinaldehyde based. These findings suggest that there is a novel opsin photopigment in the human eye that mediates circadian photoreception.
Primordial power spectrum from Planck
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun, E-mail: dhiraj@apctp.org, E-mail: arman@apctp.org, E-mail: tarun@iucaa.ernet.in
2014-11-01
Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near ℓ ∼ 750–850 represents the most prominent feature in the data. Feature near ℓ ∼ 1800–2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters andmore » the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ∼ 2.5%. In this context low-ℓ and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.« less
NASA Technical Reports Server (NTRS)
Fowler, J. W.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Bassistelli, E. S.; Bond, J. R.; Brown, B.;
2010-01-01
We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1.4' angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 deg(sup 2) of the southern sky, in a 4 deg. 2-wide strip centered on declination 53 deg. South. The CMB at arc minute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel'dovich (SZ) effect from galaxy dusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 less than l less than 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power spectrum from 250 less than l less than 1150. The power beyond the Silk damping tail of the CMB (l approximately 5000) is consistent with models of the emission from point sources. We quantify the contribution of SZ clusters to the power spectrum by fitting to a model normalized to sigma 8 = 0.8. We constrain the model's amplitude A(sub sz) less than 1.63 (95% CL). If interpreted as a measurement of as, this implies sigma (sup SZ) (sub 8) less than 0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly to a 6-parameter ACDM model plus point sources and the SZ effect is consistent with these results.
Coorssen, Jens R; Yergey, Alfred L
2015-12-03
Molecular mechanisms underlying health and disease function at least in part based on the flexibility and fine-tuning afforded by protein isoforms and post-translational modifications. The ability to effectively and consistently resolve these protein species or proteoforms, as well as assess quantitative changes is therefore central to proteomic analyses. Here we discuss the pros and cons of currently available and developing analytical techniques from the perspective of the full spectrum of available tools and their current applications, emphasizing the concept of fitness-for-purpose in experimental design based on consideration of sample size and complexity; this necessarily also addresses analytical reproducibility and its variance. Data quality is considered the primary criterion, and we thus emphasize that the standards of Analytical Chemistry must apply throughout any proteomic analysis.
Distance and spectrum of the Apollo gamma-ray burst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilman, D.; Metzger, A.E.; Parker, R.H.
1980-03-15
The ..gamma..-ray spectrometer on Apollo 16 obtained spectral information with good energy resolution from more than 2500 burst photons in the energy range 0.06--5.16 MeV. The spectrum from 2 keV to 2 MeV, observed at X-ray energies by the Apollo X-ray spectrometer, is fitted by a thermal bremsstrahlung spectrum with kT=500 keV. The success of the fit implies that the source is optically thin, and it follows that it must be closer than 50 pc. Absence of spectral variability suggests that the burst results from isothermal changes in emission measure.
tweezercalib 2.0: Faster version of MatLab package for precise calibration of optical tweezers
NASA Astrophysics Data System (ADS)
Hansen, Poul Martin; Tolić-Nørrelykke, Iva Marija; Flyvbjerg, Henrik; Berg-Sørensen, Kirstine
2006-03-01
We present a vectorized version of the MatLab (MathWorks Inc.) package tweezercalib for calibration of optical tweezers with precision. The calibration is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved by accounting for a number of factors that affect this power spectrum, as described in vs. 1 of the package [I.M. Tolić-Nørrelykke, K. Berg-Sørensen, H. Flyvbjerg, Matlab program for precision calibration of optical tweezers, Comput. Phys. Comm. 159 (2004) 225-240]. The graphical user interface allows the user to include or leave out each of these factors. Several "health tests" are applied to the experimental data during calibration, and test results are displayed graphically. Thus, the user can easily see whether the data comply with the theory used for their interpretation. Final calibration results are given with statistical errors and covariance matrix. New version program summaryTitle of program: tweezercalib Catalogue identifier: ADTV_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV_v2_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Reference in CPC to previous version: I.M. Tolić-Nørrelykke, K. Berg-Sørensen, H. Flyvbjerg, Comput. Phys. Comm. 159 (2004) 225 Catalogue identifier of previous version: ADTV Does the new version supersede the original program: Yes Computer for which the program is designed and others on which it has been tested: General computer running MatLab (Mathworks Inc.) Operating systems under with the program has been tested: Windows2000, Windows-XP, Linux Programming language used: MatLab (Mathworks Inc.), standard license Memory required to execute with typical data: Of order four times the size of the data file High speed storage required: none No. of lines in distributed program, including test data, etc.: 135 989 No. of bytes in distributed program, including test data, etc.: 1 527 611 Distribution format: tar. gz Nature of physical problem: Calibrate optical tweezers with precision by fitting theory to experimental power spectrum of position of bead doing Brownian motion in incompressible fluid, possibly near microscope cover slip, while trapped in optical tweezers. Thereby determine spring constant of optical trap and conversion factor for arbitrary-units-to-nanometers for detection system. Method of solution: Elimination of cross-talk between quadrant photo-diode's output channels for positions (optional). Check that distribution of recorded positions agrees with Boltzmann distribution of bead in harmonic trap. Data compression and noise reduction by blocking method applied to power spectrum. Full accounting for hydrodynamic effects: Frequency-dependent drag force and interaction with nearby cover slip (optional). Full accounting for electronic filters (optional), for "virtual filtering" caused by detection system (optional). Full accounting for aliasing caused by finite sampling rate (optional). Standard non-linear least-squares fitting. Statistical support for fit is given, with several plots facilitating inspection of consistency and quality of data and fit. Summary of revisions: A faster fitting routine, adapted from [J. Nocedal, Y.x. Yuan, Combining trust region and line search techniques, Technical Report OTC 98/04, Optimization Technology Center, 1998; W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes. The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986], is applied. It uses fewer function evaluations, and the remaining function evaluations have been vectorized. Calls to routines in Toolboxes not included with a standard MatLab license have been replaced by calls to routines that are included in the present package. Fitting parameters are rescaled to ensure that they are all of roughly the same size (of order 1) while being fitted. Generally, the program package has been updated to comply with MatLab, vs. 7.0, and optimized for speed. Restrictions on the complexity of the problem: Data should be positions of bead doing Brownian motion while held by optical tweezers. For high precision in final results, data should be time series measured over a long time, with sufficiently high experimental sampling rate: The sampling rate should be well above the characteristic frequency of the trap, the so-called corner frequency. Thus, the sampling frequency should typically be larger than 10 kHz. The Fast Fourier Transform used works optimally when the time series contain 2 data points, and long measurement time is obtained with n>12-15. Finally, the optics should be set to ensure a harmonic trapping potential in the range of positions visited by the bead. The fitting procedure checks for harmonic potential. Typical running time: Seconds Unusual features of the program: None References: The theoretical underpinnings for the procedure are found in [K. Berg-Sørensen, H. Flyvbjerg, Power spectrum analysis for optical tweezers, Rev. Sci. Ins. 75 (2004) 594-612].
Field, Timothy R; Bain, Alex D
2014-01-01
Even for large quadrupolar interactions, the powder spectrum of the central transition for a half-integral spin is relatively narrow, because it is unperturbed to first order. However, the second-order perturbation is still orientation dependent, so it generates a characteristic lineshape. This lineshape has both finite step discontinuities and singularities where the spectrum is infinite, in theory. The relative positions of these features are well-known and they play an important role in fitting experimental data. However, there has been relatively little discussion of how high the steps are, so we present explicit formulae for these heights. This gives a full characterization of the features in this lineshape which can lead to an analysis of the spectrum without the usual laborious powder average. The transition frequency, as a function of the orientation angles, shows critical points: maxima, minima and saddle points. The maxima and minima correspond to the step discontinuities and the saddle points generate the singularities. Near a maximum, the contours are ellipses, whose dimensions are determined by the second derivatives of the frequency with respect to the polar and azimuthal angles. The density of points is smooth as the contour levels move up and down, but then drops to zero when a maximum is passed, giving a step. The height of the step is determined by the Hessian matrix-the matrix of all partial second derivatives. The points near the poles and the saddle points require a more detailed analysis, but this can still be done analytically. The resulting formulae are then compared to numerical simulations of the lineshape. We expand this calculation to include a relatively simple case where there is chemical shielding anisotropy and use this to fit experimental (139)La spectra of La2O3. Copyright © 2014 Elsevier Inc. All rights reserved.
Evolution of Cellular Automata toward a LIFE-Like Rule Guided by 1/ƒ Noise
NASA Astrophysics Data System (ADS)
Ninagawa, Shigeru
There is evidence in favor of a relationship between the presence of 1/ƒ noise and computational universality in cellular automata. To confirm the relationship, we search for two-dimensional cellular automata with a 1/ƒ power spectrum by means of genetic algorithms. The power spectrum is calculated from the evolution of the state of the cell, starting from a random initial configuration. The fitness is estimated by the power spectrum with consideration of the spectral similarity to the 1/ƒ spectrum. The result shows that the rule with the highest fitness over the most runs exhibits a 1/ƒ type spectrum and its transition function and behavior are quite similar to those of the Game of Life, which is known to be a computationally universal cellular automaton. These results support the relationship between the presence of 1/ƒ noise and computational universality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirotani, Kouichi; Hanawa, Tomoyuki; Kawai, Nobuyuki
1990-06-01
A new model is proposed for the spectrum of a type II burst from the 'rapid burster'. The spectrum of a type II burst has been considered to be well fitted with a blackbody spectrum with temperature T about 1.5 keV. Recent observations with Tenma and Exosat, however, have found an excess from the blackbody spectrum in the high-energy range (E greater than 10 keV). The high-energy component is approximated to be a power-law spectrum of f(E) proportional to E exp -4, where E and f(E) are the X-ray energy and observed counts per unit energy, respectively. The model explainsmore » this high-energy component gives a method to evaluate the velocity and the optical depth of the accretion flow from observations of the high-energy component. It is shown that the spectrum observed with Tenma can be fitted with the model. 33 refs.« less
Soft X-ray spectral fits of Geminga with model neutron star atmospheres
NASA Technical Reports Server (NTRS)
Meyer, R. D.; Pavlov, G. G.; Meszaros, P.
1994-01-01
The spectrum of the soft X-ray pulsar Geminga consists of two components, a softer one which can be interpreted as thermal-like radiation from the surface of the neutron star, and a harder one interpreted as radiation from a polar cap heated by relativistic particles. We have fitted the soft spectrum using a detailed magnetized hydrogen atmosphere model. The fitting parameters are the hydrogen column density, the effective temperature T(sub eff), the gravitational redshift z, and the distance to radius ratio, for different values of the magnetic field B. The best fits for this model are obtained when B less than or approximately 1 x 10(exp 12) G and z lies on the upper boundary of the explored range (z = 0.45). The values of T(sub eff) approximately = (2-3) x 10(exp 5) K are a factor of 2-3 times lower than the value of T(sub eff) obtained for blackbody fits with the same z. The lower T(sub eff) increases the compatibility with some proposed schemes for fast neutrino cooling of neutron stars (NSs) by the direct Urca process or by exotic matter, but conventional cooling cannot be excluded. The hydrogen atmosphere fits also imply a smaller distance to Geminga than that inferred from a blackbody fit. An accurate evaluation of the distance would require a better knowledge of the ROSAT Position Sensitive Proportional Counter (PSPC) response to the low-energy region of the incident spectrum. Our modeling of the soft component with a cooler magnetized atmosphere also implies that the hard-component fit requires a characteristic temperature which is higher (by a factor of approximately 2-3) and a surface area which is smaller (by a factor of 10(exp 3), compared to previous blackbody fits.
ERIC Educational Resources Information Center
Pan, Chien-Yu
2011-01-01
This study evaluated the efficacy of a 14-week aquatic program on physical fitness and aquatic skills for children with autism spectrum disorders (ASD) and their siblings without a disability. Children with ASD (n = 15) and their siblings (n = 15), between 7 and 12 years (8.55 [plus or minus] 2.19 years) participated. In the first 14-week phase,…
NASA Astrophysics Data System (ADS)
Yadav, Dharmendra Singh; Babu, Sarath; Manoj, B. S.
2018-03-01
Spectrum conflict during primary and backup routes assignment in elastic optical networks results in increased resource consumption as well as high Bandwidth Blocking Probability. In order to avoid such conflicts, we propose a new scheme, Quasi Path Restoration (QPR), where we divide the available spectrum into two: (1) primary spectrum (for primary routes allocation) and (2) backup spectrum (for rerouting the data on link failures). QPR exhibits three advantages over existing survivable strategies such as Shared Path Protection (SPP), Primary First Fit Backup Last Fit (PFFBLF), Jointly Releasing and re-establishment Defragmentation SPP (JRDSSPP), and Path Restoration (PR): (1) the conflict between primary and backup spectrum during route assignment is completely eliminated, (2) upon a link failure, connection recovery requires less backup resources compared to SPP, PFFBLF, and PR, and (3) availability of the same backup spectrum on each link improves the recovery guarantee. The performance of our scheme is analyzed with different primary backup spectrum partitions on varying connection-request demands and number of frequency slots. Our results show that QPR provides better connection recovery guarantee and Backup Resources Utilization (BRU) compared to bandwidth recovery of PR strategy. In addition, we compare QPR with Shared Path Protection and Primary First-Fit Backup Last Fit strategies in terms of Bandwidth Blocking Probability (BBP) and average frequency slots per connection request. Simulation results show that BBP of SPP, PFFBLF, and JRDSPP varies between 18.59% and 14.42%, while in QPR, BBP ranges from 2.55% to 17.76% for Cost239, NSFNET, and ARPANET topologies. Also, QPR provides bandwidth recovery between 93.61% and 100%, while in PR, the recovery ranges from 86.81% to 98.99%. It is evident from our analysis that QPR provides a reasonable trade-off between bandwidth blocking probability and connection recoverability.
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
2004-01-01
A computer implemented physical signal analysis method includes four basic steps and the associated presentation techniques of the results. The first step is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform which produces a Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum. The third step filters the physical signal by combining a subset of the IMFs. In the fourth step, a curve may be fitted to the filtered signal which may not have been possible with the original, unfiltered signal.
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
2002-01-01
A computer implemented physical signal analysis method includes four basic steps and the associated presentation techniques of the results. The first step is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform which produces a Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum. The third step filters the physical signal by combining a subset of the IMFs. In the fourth step, a curve may be fitted to the filtered signal which may not have been possible with the original, unfiltered signal.
Simard, G.; et al.
2018-06-20
We report constraints on cosmological parameters from the angular power spectrum of a cosmic microwave background (CMB) gravitational lensing potential map created using temperature data from 2500 degmore » $^2$ of South Pole Telescope (SPT) data supplemented with data from Planck in the same sky region, with the statistical power in the combined map primarily from the SPT data. We fit the corresponding lensing angular power spectrum to a model including cold dark matter and a cosmological constant ($$\\Lambda$$CDM), and to models with single-parameter extensions to $$\\Lambda$$CDM. We find constraints that are comparable to and consistent with constraints found using the full-sky Planck CMB lensing data. Specifically, we find $$\\sigma_8 \\Omega_{\\rm m}^{0.25}=0.598 \\pm 0.024$$ from the lensing data alone with relatively weak priors placed on the other $$\\Lambda$$CDM parameters. In combination with primary CMB data from Planck, we explore single-parameter extensions to the $$\\Lambda$$CDM model. We find $$\\Omega_k = -0.012^{+0.021}_{-0.023}$$ or $$M_{\
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simard, G.; et al.
We report constraints on cosmological parameters from the angular power spectrum of a cosmic microwave background (CMB) gravitational lensing potential map created using temperature data from 2500 degmore » $^2$ of South Pole Telescope (SPT) data supplemented with data from Planck in the same sky region, with the statistical power in the combined map primarily from the SPT data. We fit the corresponding lensing angular power spectrum to a model including cold dark matter and a cosmological constant ($$\\Lambda$$CDM), and to models with single-parameter extensions to $$\\Lambda$$CDM. We find constraints that are comparable to and consistent with constraints found using the full-sky Planck CMB lensing data. Specifically, we find $$\\sigma_8 \\Omega_{\\rm m}^{0.25}=0.598 \\pm 0.024$$ from the lensing data alone with relatively weak priors placed on the other $$\\Lambda$$CDM parameters. In combination with primary CMB data from Planck, we explore single-parameter extensions to the $$\\Lambda$$CDM model. We find $$\\Omega_k = -0.012^{+0.021}_{-0.023}$$ or $$M_{\
Babin, Volodymyr; Leforestier, Claude; Paesani, Francesco
2013-12-10
The development of a "first principles" water potential with flexible monomers (MB-pol) for molecular simulations of water systems from gas to condensed phases is described. MB-pol is built upon the many-body expansion of the intermolecular interactions, and the specific focus of this study is on the two-body term (V2B) representing the full-dimensional intermolecular part of the water dimer potential energy surface. V2B is constructed by fitting 40,000 dimer energies calculated at the CCSD(T)/CBS level of theory and imposing the correct asymptotic behavior at long-range as predicted from "first principles". The comparison of the calculated vibration-rotation tunneling (VRT) spectrum and second virial coefficient with the corresponding experimental results demonstrates the accuracy of the MB-pol dimer potential energy surface.
Autism Spectrum Disorders: A Natural Fit with DDD.
ERIC Educational Resources Information Center
Myles, Brenda Smith; Simpson, Richard L.; Babkie, Andrea M.
2003-01-01
This position statement from the Critical Issues Committee of the Developmental Disabilities Division of the Council for Exceptional Children focuses on clarifying the place of autism spectrum disorders within the field of developmental disabilities. The representation of concerns relating to autism spectrum disorders by the Developmental…
Metal-rich, Metal-poor: Updated Stellar Population Models for Old Stellar Systems
NASA Astrophysics Data System (ADS)
Conroy, Charlie; Villaume, Alexa; van Dokkum, Pieter G.; Lind, Karin
2018-02-01
We present updated stellar population models appropriate for old ages (>1 Gyr) and covering a wide range in metallicities (‑1.5 ≲ [Fe/H] ≲ 0.3). These models predict the full spectral variation associated with individual element abundance variation as a function of metallicity and age. The models span the optical–NIR wavelength range (0.37–2.4 μm), include a range of initial mass functions, and contain the flexibility to vary 18 individual elements including C, N, O, Mg, Si, Ca, Ti, and Fe. To test the fidelity of the models, we fit them to integrated light optical spectra of 41 Galactic globular clusters (GCs). The value of testing models against GCs is that their ages, metallicities, and detailed abundance patterns have been derived from the Hertzsprung–Russell diagram in combination with high-resolution spectroscopy of individual stars. We determine stellar population parameters from fits to all wavelengths simultaneously (“full spectrum fitting”), and demonstrate explicitly with mock tests that this approach produces smaller uncertainties at fixed signal-to-noise ratio than fitting a standard set of 14 line indices. Comparison of our integrated-light results to literature values reveals good agreement in metallicity, [Fe/H]. When restricting to GCs without prominent blue horizontal branch populations, we also find good agreement with literature values for ages, [Mg/Fe], [Si/Fe], and [Ti/Fe].
Zhang, J.-H.; Zhou, Z.-M.; Wang, P.-J.; Yao, F.-M.; Yang, L.
2011-01-01
The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area. The result showed that for a pure snow spectrum, the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1030 nm wavelength. Compared with fresh snow, the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300~1300, 1700~1800 and 2200~2300 nm, the lowest was from the compacted snow and frozen ice. For the vegetation and snow mixed spectral characteristics, it was indicated that the spectral reflectance increased for the snow-covered land types(including pine leaf with snow and pine leaf on snow background), due to the influence of snow background in the range of 350~1300 nm. However, the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic. In the end, based on the spectrum analysis of snow, vegetation, and mixed snow/vegetation pixels, the mixed spectral fitting equations were established, and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones(correlation coefficient R2=0.9509).
NASA Astrophysics Data System (ADS)
Gu, Junhua; Xu, Haiguang; Wang, Jingying; An, Tao; Chen, Wen
2013-08-01
We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time.
NASA Astrophysics Data System (ADS)
Moruzzi, G.; Murphy, R. J.; Lees, R. M.; Predoi-Cross, A.; Billinghurst, B. E.
2010-09-01
The Fourier transform spectrum of the ? isotopologue of methanol has been recorded in the 120-350 cm-1 far-infrared region at a resolution of 0.00096 cm-1 using synchrotron source radiation at the Canadian Light Source. The study, motivated by astrophysical applications, is aimed at generating a sufficiently accurate set of energy level term values for the ground vibrational state to allow prediction of the centres of the quadrupole hyperfine multiplets for astronomically observable sub-millimetre transitions to within an uncertainty of a few MHz. To expedite transition identification, a new function was added to the Ritz program in which predicted spectral line positions were generated by an adjustable interpolation between the known assignments for the ? and ? isotopologues. By displaying the predictions along with the experimental spectrum on the computer monitor and adjusting the predictions to match observed features, rapid assignment of numerous ? sub-bands was possible. The least squares function of the Ritz program was then used to generate term values for the identified levels. For each torsion-K-rotation substate, the term values were fitted to a Taylor-series expansion in powers of J(J + 1) to determine the substate origin energy and effective B-value. In this first phase of the study we did not attempt a full global fit to the assigned transitions, but instead fitted the sub-band J-independent origins to a restricted Hamiltonian containing the principal torsional and K-dependent terms. These included structural and torsional potential parameters plus quartic distortional and torsion-rotation interaction terms.
A resonant absorption line in the ASCA spectrum of NGC 985?
NASA Astrophysics Data System (ADS)
Nicastro, F.; Fiore, F.; Brandt, N.; Reynolds, C. S.
1999-01-01
We present timing and spectral analyses of the ASCA observation of the Seyfert 1 galaxy NGC 985. The 0.6-10keV spectrum of this source is complex: large residuals are evident below 1keV when fitting the spectrum with a power-law model. Fitting a warm absorber model to the 0.6-2.5keV spectrum gives α=1.12+/-0.04, LogNWAH=21.97+/-0.08 and LogU=0.06+/-0.09, but the residuals continue to show a deficit of counts between 0.9 and 1keV. Adding an absorption line improves the fit, and the energy of the line is consistent with that of Kα NeIX-X resonant absorption lines. Hence, we confirm the presence of an ionized absorber along the line of sight to this source and interpret the further 1keV spectral feature as the first detection of a strong resonant absorption line associated with this system. The extrapolation of this model above 2.5keV produces large positive residuals above 3-4keV. Fitting the data with a broken power law plus warm absorber model gives an acceptable χ2 and Δα~0.5. A narrow iron line at 6.4keV (quasar frame) of equivalent width 138+64-110eV is also present in the ASCA data.
Unimodular sequence design under frequency hopping communication compatibility requirements
NASA Astrophysics Data System (ADS)
Ge, Peng; Cui, Guolong; Kong, Lingjiang; Yang, Jianyu
2016-12-01
The integrated design for both radar and anonymous communication has drawn more attention recently since wireless communication system appeals to enhance security and reliability. Given the frequency hopping (FH) communication system, an effective way to realize integrated design is to meet the spectrum compatibility between these two systems. The paper deals with a unimodular sequence design technique which considers optimizing both the spectrum compatibility and peak sidelobes levels (PSL) of auto-correlation function (ACF). The spectrum compatibility requirement realizes anonymous communication for the FH system and provides this system lower probability of intercept (LPI) since the spectrum of the FH system is hidden in that of the radar system. The proposed algorithm, named generalized fitting template (GFT) technique, converts the sequence optimization design problem to a iterative fitting process. In this process, the power spectrum density (PSD) and PSL behaviors of the generated sequences fit both PSD and PSL templates progressively. Two templates are established based on the spectrum compatibility requirement and the expected PSL. As noted, in order to ensure the communication security and reliability, spectrum compatibility requirement is given a higher priority to achieve in the GFT algorithm. This algorithm realizes this point by adjusting the weight adaptively between these two terms during the iteration process. The simulation results are analyzed in terms of bit error rate (BER), PSD, PSL, and signal-interference rate (SIR) for both the radar and FH systems. The performance of GFT is compared with SCAN, CAN, FRE, CYC, and MAT algorithms in the above aspects, which shows its good effectiveness.
Kinematics of Globular Cluster: new Perspectives of Energy Equipartition from N-body Simulations
NASA Astrophysics Data System (ADS)
Kim, Hyunwoo; Pasquato, Mario; Yoon, Suk-jin
2018-01-01
Globular clusters (GCs) evolve dynamically through gravitational two-body interactions between stars. We investigated the evolution towards energy equipartition in GCs using direct n-body simulations in NBODY6. If a GC reaches full energy equipartition, the velocity dispersion as a function of stars’ mass becomes a power law with exponent -1/2. However, our n-body simulations never reach full equipartition, which is similar to Trenti & van de Marel (2013) results. Instead we found that in simulations with a shallow mass spectrum the best fit exponent becomes positive slightly before core collapse time. This inversion is a new result, which can be used as a kinematic predictor of core collapse. We are currently exploring applications of this inversion indicator to the detection of intermediate mass black holes.
ACCELERATED FITTING OF STELLAR SPECTRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting, Yuan-Sen; Conroy, Charlie; Rix, Hans-Walter
2016-07-20
Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating amore » sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15–30 labels simultaneously.« less
Probing primordial features with future galaxy surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballardini, M.; Fedeli, C.; Moscardini, L.
2016-10-01
We study the capability of future measurements of the galaxy clustering power spectrum to probe departures from a power-law spectrum for primordial fluctuations. On considering the information from the galaxy clustering power spectrum up to quasi-linear scales, i.e. k < 0.1 h Mpc{sup −1}, we present forecasts for DESI, Euclid and SPHEREx in combination with CMB measurements. As examples of departures in the primordial power spectrum from a simple power-law, we consider four Planck 2015 best-fits motivated by inflationary models with different breaking of the slow-roll approximation. At present, these four representative models provide an improved fit to CMB temperaturemore » anisotropies, although not at statistical significant level. As for other extensions in the matter content of the simplest ΛCDM model, the complementarity of the information in the resulting matter power spectrum expected from these galaxy surveys and in the primordial power spectrum from CMB anisotropies can be effective in constraining cosmological models. We find that the three galaxy surveys can add significant information to CMB to better constrain the extra parameters of the four models considered.« less
Spectrum interrogation of fiber acoustic sensor based on self-fitting and differential method.
Fu, Xin; Lu, Ping; Ni, Wenjun; Liao, Hao; Wang, Shun; Liu, Deming; Zhang, Jiangshan
2017-02-20
In this article, we propose an interrogation method of fiber acoustic sensor to recover the time-domain signal from the sensor spectrum. The optical spectrum of the sensor will show a ripple waveform when responding to acoustic signal due to the scanning process in a certain wavelength range. The reason behind this phenomenon is the dynamic variation of the sensor spectrum while the intensity of different wavelength is acquired at different time in a scanning period. The frequency components can be extracted from the ripple spectrum assisted by the wavelength scanning speed. The signal is able to be recovered by differential between the ripple spectrum and its self-fitted curve. The differential process can eliminate the interference caused by environmental perturbations such as temperature or refractive index (RI), etc. The proposed method is appropriate for fiber acoustic sensors based on gratings or interferometers. A long period grating (LPG) is adopted as an acoustic sensor head to prove the feasibility of the interrogation method in experiment. The ability to compensate the environmental fluctuations is also demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, Gavin; Contaldi, Carlo R., E-mail: gavin.nicholson05@imperial.ac.uk, E-mail: c.contaldi@imperial.ac.uk
2009-07-01
We develop a method to reconstruct the primordial power spectrum, P(k), using both temperature and polarisation data from the joint analysis of a number of Cosmic Microwave Background (CMB) observations. The method is an extension of the Richardson-Lucy algorithm, first applied in this context by Shafieloo and Souradeep [1]. We show how the inclusion of polarisation measurements can decrease the uncertainty in the reconstructed power spectrum. In particular, the polarisation data can constrain oscillations in the spectrum more effectively than total intensity only measurements. We apply the estimator to a compilation of current CMB results. The reconstructed spectrum is consistentmore » with the best-fit power spectrum although we find evidence for a 'dip' in the power on scales k ≈ 0.002 Mpc{sup −1}. This feature appears to be associated with the WMAP power in the region 18 ≤ l ≤ 26 which is consistently below best-fit models. We also forecast the reconstruction for a simulated, Planck-like [2] survey including sample variance limited polarisation data.« less
Thickness of the Magnetic Crust of Mars from Magneto-Spectral Analysis
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
2006-01-01
Previous analysis of the magnetic spectrum of Mars showed only a crustal source field. The observational spectrum was fairly well fitted by the spectrum expected from random dipolar sources scattered on a spherical shell about 46 plus or minus 10 km below Mars' 3389.5 km mean radius. This de-correlation depth overestimates the typical depth of extended magnetized structures, and so was judged closer to mean source layer thickness than twice its value. To better estimate the thickness of the magnetic crust of Mars, six different magnetic spectra were fitted with the theoretical spectrum expected from a novel, bimodal distribution of magnetic sources. This theoretical spectrum represents both compact and extended, laterally correlated sources, so source shell depth is doubled to obtain layer thickness. The typical magnetic crustal thickness is put at 47.8 plus or minus 8.2 km. The extended sources are enormous, typically 650 km across, and account for over half the magnetic energy at low degrees. How did such vast regions form?
Testing BR photocycle kinetics.
Nagle, J F; Zimanyi, L; Lanyi, J K
1995-01-01
An improved K absorption spectrum in the visible is obtained from previous photocycle data for the D96N mutant of bacteriorhodopsin, and the previously obtained M absorption spectrum in the visible and the fraction cycling are confirmed at 25 degrees C. Data at lower temperatures are consistent with negligible temperature dependence in the spectra from 5 degrees C to 25 degrees C. Detailed analysis strongly indicates that there are two intermediates in addition to the first intermediate K and the last intermediate M. Assuming two of the intermediates have the same spectrum and using the L spectrum obtained previously, the best kinetic model with four intermediates that fits the time course of the intermediates is rather unusual, with two L's on a cul-de-sac. However, a previously proposed, more conventional model with five intermediates, including two L's with the same spectra and two M's with the same spectra, also fits the time course of the intermediates nearly as well. A new criterion that tests an individual proposed spectrum against data is also proposed. PMID:7787034
Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katahara, John K.; Hillhouse, Hugh W., E-mail: h2@uw.edu
A unified model for the direct gap absorption coefficient (band-edge and sub-bandgap) is developed that encompasses the functional forms of the Urbach, Thomas-Fermi, screened Thomas-Fermi, and Franz-Keldysh models of sub-bandgap absorption as specific cases. We combine this model of absorption with an occupation-corrected non-equilibrium Planck law for the spontaneous emission of photons to yield a model of photoluminescence (PL) with broad applicability to band-band photoluminescence from intrinsic, heavily doped, and strongly compensated semiconductors. The utility of the model is that it is amenable to full-spectrum fitting of absolute intensity PL data and yields: (1) the quasi-Fermi level splitting, (2) themore » local lattice temperature, (3) the direct bandgap, (4) the functional form of the sub-bandgap absorption, and (5) the energy broadening parameter (Urbach energy, magnitude of potential fluctuations, etc.). The accuracy of the model is demonstrated by fitting the room temperature PL spectrum of GaAs. It is then applied to Cu(In,Ga)(S,Se){sub 2} (CIGSSe) and Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) to reveal the nature of their tail states. For GaAs, the model fit is excellent, and fitted parameters match literature values for the bandgap (1.42 eV), functional form of the sub-bandgap states (purely Urbach in nature), and energy broadening parameter (Urbach energy of 9.4 meV). For CIGSSe and CZTSSe, the model fits yield quasi-Fermi leveling splittings that match well with the open circuit voltages measured on devices made from the same materials and bandgaps that match well with those extracted from EQE measurements on the devices. The power of the exponential decay of the absorption coefficient into the bandgap is found to be in the range of 1.2 to 1.6, suggesting that tunneling in the presence of local electrostatic potential fluctuations is a dominant factor contributing to the sub-bandgap absorption by either purely electrostatic (screened Thomas-Fermi) or a photon-assisted tunneling mechanism (Franz-Keldysh). A Gaussian distribution of bandgaps (local E{sub g} fluctuation) is found to be inconsistent with the data. The sub-bandgap absorption of the CZTSSe absorber is found to be larger than that for CIGSSe for materials that yield roughly equivalent photovoltaic devices (8% efficient). Further, it is shown that fitting only portions of the PL spectrum (e.g., low energy for energy broadening parameter and high energy for quasi-Fermi level splitting) may lead to significant errors for materials with substantial sub-bandgap absorption and emission.« less
A Detection of the Baryon Acoustic Oscillation Features in the SDSS BOSS DR12 Galaxy Bispectrum
NASA Astrophysics Data System (ADS)
Pearson, David W.; Samushia, Lado
2018-05-01
We present the first high significance detection (4.1σ) of the Baryon Acoustic Oscillations (BAO) feature in the galaxy bispectrum of the twelfth data release (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample (0.43 ≤ z ≤ 0.7). We measured the scale dilation parameter, α, using the power spectrum, bispectrum, and both simultaneously for DR12, plus 2048 MultiDark-PATCHY mocks in the North and South Galactic Caps (NGC and SGC, respectively), and the volume weighted averages of those two samples (N+SGC). The fitting to the mocks validated our analysis pipeline, yielding values consistent with the mock cosmology. By fitting to the power spectrum and bispectrum separately, we tested the robustness of our results, finding consistent values from the NGC, SGC and N+SGC in all cases. We found DV = 2032 ± 24(stat.) ± 15(sys.) Mpc, DV = 2038 ± 55(stat.) ± 15(sys.) Mpc, and DV = 2031 ± 22(stat.) ± 10(sys.) Mpc from the N+SGC power spectrum, bispectrum and simultaneous fitting, respectively. Our bispectrum measurement precision was mainly limited by the size of the covariance matrix. Based on the fits to the mocks, we showed that if a less noisy estimator of the covariance were available, from either a theoretical computation or a larger suite of mocks, the constraints from the bispectrum and simultaneous fits would improve to 1.1 per cent (1.3 per cent with systematics) and 0.7 per cent (0.9 per cent with systematics), respectively, with the latter being slightly more precise than the power spectrum only constraints from the reconstructed field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Gong-Bo, E-mail: gongbo@icosmology.info; Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX
2014-04-01
Based on a suite of N-body simulations of the Hu-Sawicki model of f(R) gravity with different sets of model and cosmological parameters, we develop a new fitting formula with a numeric code, MGHalofit, to calculate the nonlinear matter power spectrum P(k) for the Hu-Sawicki model. We compare the MGHalofit predictions at various redshifts (z ≤ 1) to the f(R) simulations and find that the relative error of the MGHalofit fitting formula of P(k) is no larger than 6% at k ≤ 1 h Mpc{sup –1} and 12% at k in (1, 10] h Mpc{sup –1}, respectively. Based on a sensitivitymore » study of an ongoing and a future spectroscopic survey, we estimate the detectability of a signal of modified gravity described by the Hu-Sawicki model using the power spectrum up to quasi-nonlinear scales.« less
NASA Astrophysics Data System (ADS)
Liu, X.; Kowalewski, M. G.; Janz, S. J.; Bhartia, P. K.; Chance, K.; Krotkov, N. A.; Pickering, K. E.; Crawford, J. H.
2011-12-01
The DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) mission has just finished its first flight campaign in the Baltimore-Washington D.C. area in July 2011. The ACAM, flown on board the NASA UC-12 aircraft, includes two spectrographs covering the spectral region 304-900 nm and a high-definition video camera, and is expected to provide column measurements of several important air quality trace gases and aerosols for the DISCOVER-AQ mission. The quick look results for NO2 have been shown to very useful in capturing the strong spatiotemporal variability of NO2. Preliminary fitting of UV/Visible spectra has shown that ACAM measurements have adequate signal to noise ratio to measure the trace gases O2, NO2, HCHO, and maybe SO2 and CHOCHO, at individual pixel resolution, although a great deal of effort is needed to improve the instrument calibration and derive proper reference spectrum for retrieving absolute trace gas column densities. In this study, we present analysis of ACAM instrument calibration including slit function, wavelength registration, and radiometric calibration for both nadir-viewing and zenith-sky measurements. Based on this analysis, an irradiance reference spectrum at ACAM resolution will be derived from a high-resolution reference spectrum with additional correction to account for instrument calibration. Using the derived reference spectrum and/or the measured zenith sky measurements, we will perform non-linear least squares fitting to investigate the retrievals of slant column densities of these trace gases from ACAM measurements, and also use an optimal estimation based algorithm including full radiative transfer calculations to derive the vertical column densities of these trace gases. The initial results will be compared with available in-situ and ground-based measurements taken during the DISCOVER-AQ campaign.
Peng, Shu-Chen; Lu, Nelson; Chatterjee, Monita
2009-01-01
Cochlear implant (CI) recipients have only limited access to fundamental frequency (F0) information, and thus exhibit deficits in speech intonation recognition. For speech intonation, F0 serves as the primary cue, and other potential acoustic cues (e.g. intensity properties) may also contribute. This study examined the effects of cooperating or conflicting acoustic cues on speech intonation recognition by adult CI and normal hearing (NH) listeners with full-spectrum and spectrally degraded speech stimuli. Identification of speech intonation that signifies question and statement contrasts was measured in 13 CI recipients and 4 NH listeners, using resynthesized bi-syllabic words, where F0 and intensity properties were systematically manipulated. The stimulus set was comprised of tokens whose acoustic cues (i.e. F0 contour and intensity patterns) were either cooperating or conflicting. Subjects identified if each stimulus is a 'statement' or a 'question' in a single-interval, 2-alternative forced-choice (2AFC) paradigm. Logistic models were fitted to the data, and estimated coefficients were compared under cooperating and conflicting conditions, between the subject groups (CI vs. NH), and under full-spectrum and spectrally degraded conditions for NH listeners. The results indicated that CI listeners' intonation recognition was enhanced by cooperating F0 contour and intensity cues, but was adversely affected by these cues being conflicting. On the other hand, with full-spectrum stimuli, NH listeners' intonation recognition was not affected by cues being cooperating or conflicting. The effects of cues being cooperating or conflicting were comparable between the CI group and NH listeners with spectrally degraded stimuli. These findings suggest the importance of taking multiple acoustic sources for speech recognition into consideration in aural rehabilitation for CI recipients. Copyright (C) 2009 S. Karger AG, Basel.
Peng, Shu-Chen; Lu, Nelson; Chatterjee, Monita
2009-01-01
Cochlear implant (CI) recipients have only limited access to fundamental frequency (F0) information, and thus exhibit deficits in speech intonation recognition. For speech intonation, F0 serves as the primary cue, and other potential acoustic cues (e.g., intensity properties) may also contribute. This study examined the effects of acoustic cues being cooperating or conflicting on speech intonation recognition by adult cochlear implant (CI), and normal-hearing (NH) listeners with full-spectrum and spectrally degraded speech stimuli. Identification of speech intonation that signifies question and statement contrasts was measured in 13 CI recipients and 4 NH listeners, using resynthesized bi-syllabic words, where F0 and intensity properties were systematically manipulated. The stimulus set was comprised of tokens whose acoustic cues, i.e., F0 contour and intensity patterns, were either cooperating or conflicting. Subjects identified if each stimulus is a “statement” or a “question” in a single-interval, two-alternative forced-choice (2AFC) paradigm. Logistic models were fitted to the data, and estimated coefficients were compared under cooperating and conflicting conditions, between the subject groups (CI vs. NH), and under full-spectrum and spectrally degraded conditions for NH listeners. The results indicated that CI listeners’ intonation recognition was enhanced by F0 contour and intensity cues being cooperating, but was adversely affected by these cues being conflicting. On the other hand, with full-spectrum stimuli, NH listeners’ intonation recognition was not affected by cues being cooperating or conflicting. The effects of cues being cooperating or conflicting were comparable between the CI group and NH listeners with spectrally-degraded stimuli. These findings suggest the importance of taking multiple acoustic sources for speech recognition into consideration in aural rehabilitation for CI recipients. PMID:19372651
Methyl Group Internal Rotation in the Pure Rotational Spectrum of 1,1-DIFLUOROACETONE
NASA Astrophysics Data System (ADS)
Grubbs, G. S. Grubbs, II; Cooke, S. A.; Groner, P.
2011-06-01
We have used chirped pulse Fourier transform microwave spectroscopy to record the pure rotational spectrum of the title molecule. The spectrum was doubled owing to the internal rotation of the methyl group. The spectrum has been assigned and two approaches to the spectral analysis have been performed. In the first case, the A and E components were fit separately using a principal axis method with the SPFIT code of Pickett. In the second case, the A and E states were fit simultaneously using the ERHAM code. For a satisfactory analysis of the spectral data it has been found that the choice of Hamiltonian reduction, i.e. Watson A or S, is very important. The barrier to the internal rotation has been determined to be 261.1(8) Cm-1 and it will be compared to that of acetone and other halogenated acetone species recently studied in our laboratory.
PROSPECT - A Precision Oscillation and Spectrum Experiment
NASA Astrophysics Data System (ADS)
Zhang, Xianyi; Prospect Collaboration
2017-01-01
PROSPECT, the PRecision Oscillation and SPECTrum Experiment, is a multi-phased short baseline reactor antineutrino experiment that aims to precisely measure the U-235 antineutrino spectrum and prob for oscillation effects involving a possible Δm2 1 eV2 scale sterile neutrino. In PROSPECT Phase-I, an optically segmented Li-6 loaded liquid scintillator detector will be deployed at at the baseline of 7-12m from the High Flux Isotope Reactor at the Oak Ridge National Laboratory. PROSPECT will measure the spectrum of U-235 to aid in resolving the unexplained inconsistency between predictive spectral models and recent experimental measurements using LEU cores, while the oscillation measurement will probe the best fit region suggested by global fitting studies within 1-year data taking. This talk will introduce the design of PROSPECT Phase-I, the discovery potential of the experiment, and the progress the collaboration has made toward realizing PROSPECT Phase-I. Department of Energy
VizieR Online Data Catalog: EBHIS spectra and HI column density maps (Winkel+, 2016)
NASA Astrophysics Data System (ADS)
Winkel, B.; Kerp, J.; Floeer, L.; Kalberla, P. M. W.; Ben Bekhti, N.; Keller, R.; Lenz, D.
2015-11-01
The EBHIS 1st data release comprises 21-cm neutral atomic hydrogen data of the Milky Way (-600km/s
NASA Astrophysics Data System (ADS)
Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei
2017-12-01
Laser-induced breakdown spectroscopy (LIBS) is an analytical technique that has gained increasing attention because of many applications. The production of continuous background in LIBS is inevitable because of factors associated with laser energy, gate width, time delay, and experimental environment. The continuous background significantly influences the analysis of the spectrum. Researchers have proposed several background correction methods, such as polynomial fitting, Lorenz fitting and model-free methods. However, less of them apply these methods in the field of LIBS Technology, particularly in qualitative and quantitative analyses. This study proposes a method based on spline interpolation for detecting and estimating the continuous background spectrum according to its smooth property characteristic. Experiment on the background correction simulation indicated that, the spline interpolation method acquired the largest signal-to-background ratio (SBR) over polynomial fitting, Lorenz fitting and model-free method after background correction. These background correction methods all acquire larger SBR values than that acquired before background correction (The SBR value before background correction is 10.0992, whereas the SBR values after background correction by spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 26.9576, 24.6828, 18.9770, and 25.6273 respectively). After adding random noise with different kinds of signal-to-noise ratio to the spectrum, spline interpolation method acquires large SBR value, whereas polynomial fitting and model-free method obtain low SBR values. All of the background correction methods exhibit improved quantitative results of Cu than those acquired before background correction (The linear correlation coefficient value before background correction is 0.9776. Moreover, the linear correlation coefficient values after background correction using spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 0.9998, 0.9915, 0.9895, and 0.9940 respectively). The proposed spline interpolation method exhibits better linear correlation and smaller error in the results of the quantitative analysis of Cu compared with polynomial fitting, Lorentz fitting and model-free methods, The simulation and quantitative experimental results show that the spline interpolation method can effectively detect and correct the continuous background.
Functional pitch of a liver: fatty liver disease diagnosis with photoacoustic spectrum analysis
NASA Astrophysics Data System (ADS)
Xu, Guan; Meng, Zhuoxian; Lin, Jiandie; Carson, Paul; Wang, Xueding
2014-03-01
To provide more information for classification and assessment of biological tissues, photoacoustic spectrum analysis (PASA) moves beyond the quantification of the intensities of the photoacoustic (PA) signals by the use of the frequency-domain power distribution, namely power spectrum, of broadband PA signals. The method of PASA quantifies the linear-fit to the power spectrum of the PA signals from a biological tissue with 3 parameters, including intercept, midband-fit and slope. Intercept and midband-fit reflect the total optical absorption of the tissues whereas slope reflects the heterogeneity of the tissue structure. Taking advantage of the optical absorption contrasts contributed by lipid and blood at 1200 and 532 nm, respectively and the heterogeneous tissue microstructure in fatty liver due to the lipid infiltration, we investigate the capability of PASA in identifying histological changes of fatty livers in mouse model. 6 and 9 pairs of normal and fatty liver tissues from rat models were examined by ex vivo experiment with a conventional rotational PA measurement system. One pair of rat models with normal and fatty livers was examined non-invasively and in situ with our recently developed ultrasound and PA parallel imaging system. The results support our hypotheses that the spectrum analysis of PA signals can provide quantitative measures of the differences between the normal and fatty liver tissues and that part of the PA power spectrum can suffice for characterization of microstructures in biological tissues. Experimental results also indicate that the vibrational absorption peak of lipid at 1200nm could facilitate fatty liver diagnosis.
The Zodiacal Emission Spectrum as Determined by COBE and its Implications
NASA Technical Reports Server (NTRS)
Fixsen, D. J.; Dwek, Eli; Oliversen, R. (Technical Monitor)
2002-01-01
We combine observations from the DIRBE and FIRAS instruments on the COBE satellite to derive an annually-averaged spectrum of the zodiacal cloud in the 10 to 1000 micron wavelength region. The spectrum exhibits a break at approx. 150 microns which indicates a sharp break in the dust size distribution at a radius of about 30 microns The spectrum can be fit with a single blackbody with a lambda(exp -2) emissivity law beyond 150 microns and a temperature of 240 K. We also used a more realistic characterization of the cloud to fit the spectrum, including a distribution of dust temperatures, representing different dust compositions and distances from the sun, as well as a realistic representation of the spatial distribution of the dust. We show that amorphous carbon and silicate dust with respective temperatures of 280 and 274 K at 1 AU, and size distributions with a break at grain radii of 14 and 32 microns, can provide a good fit to the average zodiacal dust spectrum. The total mass of the zodiacal cloud is 2 to 11 Eg (Eg=10(exp 18) g), depending on the grain composition. The lifetime of the cloud, against particle loss by Poynting- Robertson drag and the effects of solar wind, is about 10(exp 5) yr. The required replenishment rate is approx. 10(exp 14) g/yr. If this is provided by asteroid belt alone, the asteroids lifetime would be approx. 3 x 10(exp 10) yr. But comets and Kuiper belt objects may also contribute to the zodiacal cloud.
Spin noise spectroscopy of rubidium atomic gas under resonant and non-resonant conditions
NASA Astrophysics Data System (ADS)
Ma, Jian; Shi, Ping; Qian, Xuan; Li, Wei; Ji, Yang
2016-11-01
The spin fluctuation in rubidium atom gas is studied via all-optical spin noise spectroscopy (SNS). Experimental results show that the integrated SNS signal and its full width at half maximum (FWHM) strongly depend on the frequency detuning of the probe light under resonant and non-resonant conditions. The total integrated SNS signal can be well fitted with a single squared Faraday rotation spectrum and the FWHM dependence may be related to the absorption profile of the sample. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310 and 11404325) and the National Basic Research Program of China (Grant No. 2013CB922304).
Analysis and fit of stellar spectra using a mega-database of CMFGEN models
NASA Astrophysics Data System (ADS)
Fierro-Santillán, Celia; Zsargó, Janos; Klapp, Jaime; Díaz-Azuara, Santiago Alfredo; Arrieta, Anabel; Arias, Lorena
2017-11-01
We present a tool for analysis and fit of stellar spectra using a mega database of 15,000 atmosphere models for OB stars. We have developed software tools, which allow us to find the model that best fits to an observed spectrum, comparing equivalent widths and line ratios in the observed spectrum with all models of the database. We use the Hα, Hβ, Hγ, and Hδ lines as criterion of stellar gravity and ratios of He II λ4541/He I λ4471, He II λ4200/(He I+He II λ4026), He II λ4541/He I λ4387, and He II λ4200/He I λ4144 as criterion of T eff.
NASA Astrophysics Data System (ADS)
Zechmeister, M.; Reiners, A.; Amado, P. J.; Azzaro, M.; Bauer, F. F.; Béjar, V. J. S.; Caballero, J. A.; Guenther, E. W.; Hagen, H.-J.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Launhardt, R.; Montes, D.; Morales, J. C.; Quirrenbach, A.; Reffert, S.; Ribas, I.; Seifert, W.; Tal-Or, L.; Wolthoff, V.
2018-01-01
Context. The CARMENES survey is a high-precision radial velocity (RV) programme that aims to detect Earth-like planets orbiting low-mass stars. Aims: We develop least-squares fitting algorithms to derive the RVs and additional spectral diagnostics implemented in the SpEctrum Radial Velocity AnaLyser (SERVAL), a publicly available python code. Methods: We measured the RVs using high signal-to-noise templates created by coadding all available spectra of each star. We define the chromatic index as the RV gradient as a function of wavelength with the RVs measured in the echelle orders. Additionally, we computed the differential line width by correlating the fit residuals with the second derivative of the template to track variations in the stellar line width. Results: Using HARPS data, our SERVAL code achieves a RV precision at the level of 1 m/s. Applying the chromatic index to CARMENES data of the active star YZ CMi, we identify apparent RV variations induced by stellar activity. The differential line width is found to be an alternative indicator to the commonly used full width half maximum. Conclusions: We find that at the red optical wavelengths (700-900 nm) obtained by the visual channel of CARMENES, the chromatic index is an excellent tool to investigate stellar active regions and to identify and perhaps even correct for activity-induced RV variations.
GPI Spectroscopy of the Mass, Age, and Metallicity Benchmark Brown Dwarf HD 4747 B
NASA Astrophysics Data System (ADS)
Crepp, Justin R.; Principe, David A.; Wolff, Schuyler; Giorla Godfrey, Paige A.; Rice, Emily L.; Cieza, Lucas; Pueyo, Laurent; Bechter, Eric B.; Gonzales, Erica J.
2018-02-01
The physical properties of brown dwarf companions found to orbit nearby, solar-type stars can be benchmarked against independent measures of their mass, age, chemical composition, and other parameters, offering insights into the evolution of substellar objects. The TRENDS high-contrast imaging survey has recently discovered a (mass/age/metallicity) benchmark brown dwarf orbiting the nearby (d = 18.69 ± 0.19 pc), G8V/K0V star HD 4747. We have acquired follow-up spectroscopic measurements of HD 4747 B using the Gemini Planet Imager to study its spectral type, effective temperature, surface gravity, and cloud properties. Observations obtained in the H-band and K 1-band recover the companion and reveal that it is near the L/T transition (T1 ± 2). Fitting atmospheric models to the companion spectrum, we find strong evidence for the presence of clouds. However, spectral models cannot satisfactorily fit the complete data set: while the shape of the spectrum can be well-matched in individual filters, a joint fit across the full passband results in discrepancies that are a consequence of the inherent color of the brown dwarf. We also find a 2σ tension in the companion mass, age, and surface gravity when comparing to evolutionary models. These results highlight the importance of using benchmark objects to study “secondary effects” such as metallicity, non-equilibrium chemistry, cloud parameters, electron conduction, non-adiabatic cooling, and other subtleties affecting emergent spectra. As a new L/T transition benchmark, HD 4747 B warrants further investigation into the modeling of cloud physics using higher resolution spectroscopy across a broader range of wavelengths, polarimetric observations, and continued Doppler radial velocity and astrometric monitoring.
Improvements in Spectrum's fit to program data tool.
Mahiane, Severin G; Marsh, Kimberly; Grantham, Kelsey; Crichlow, Shawna; Caceres, Karen; Stover, John
2017-04-01
The Joint United Nations Program on HIV/AIDS-supported Spectrum software package (Glastonbury, Connecticut, USA) is used by most countries worldwide to monitor the HIV epidemic. In Spectrum, HIV incidence trends among adults (aged 15-49 years) are derived by either fitting to seroprevalence surveillance and survey data or generating curves consistent with program and vital registration data, such as historical trends in the number of newly diagnosed infections or people living with HIV and AIDS related deaths. This article describes development and application of the fit to program data (FPD) tool in Joint United Nations Program on HIV/AIDS' 2016 estimates round. In the FPD tool, HIV incidence trends are described as a simple or double logistic function. Function parameters are estimated from historical program data on newly reported HIV cases, people living with HIV or AIDS-related deaths. Inputs can be adjusted for proportions undiagnosed or misclassified deaths. Maximum likelihood estimation or minimum chi-squared distance methods are used to identify the best fitting curve. Asymptotic properties of the estimators from these fits are used to estimate uncertainty. The FPD tool was used to fit incidence for 62 countries in 2016. Maximum likelihood and minimum chi-squared distance methods gave similar results. A double logistic curve adequately described observed trends in all but four countries where a simple logistic curve performed better. Robust HIV-related program and vital registration data are routinely available in many middle-income and high-income countries, whereas HIV seroprevalence surveillance and survey data may be scarce. In these countries, the FPD tool offers a simpler, improved approach to estimating HIV incidence trends.
X-ray-binary spectra in the lamp post model
NASA Astrophysics Data System (ADS)
Vincent, F. H.; Różańska, A.; Zdziarski, A. A.; Madej, J.
2016-05-01
Context. The high-energy radiation from black-hole binaries may be due to the reprocessing of a lamp located on the black hole rotation axis and emitting X-rays. The observed spectrum is made of three major components: the direct spectrum traveling from the lamp directly to the observer; the thermal bump at the equilibrium temperature of the accretion disk heated by the lamp; and the reflected spectrum essentially made of the Compton hump and the iron-line complex. Aims: We aim to accurately compute the complete reprocessed spectrum (thermal bump + reflected) of black-hole binaries over the entire X-ray band. We also determine the strength of the direct component. Our choice of parameters is adapted to a source showing an important thermal component. We are particularly interested in investigating the possibility to use the iron-line complex as a probe to constrain the black hole spin. Methods: We computed in full general relativity the illumination of a thin accretion disk by a fixed X-ray lamp along the rotation axis. We used the ATM21 radiative transfer code to compute the local, energy-dependent spectrum emitted along the disk as a function of radius, emission angle and black hole spin. We then ray traced this local spectrum to determine the final reprocessed spectrum as received by a distant observer. We consider two extreme values of the black hole spin (a = 0 and a = 0.98) and discuss the dependence of the local and ray-traced spectra on the emission angle and black hole spin. Results: We show the importance of the angle dependence of the total disk specific intensity spectrum emitted by the illuminated atmosphere when the thermal disk emission is fully taken into account. The disk flux, together with the X-ray flux from the lamp, determines the temperature and ionization structure of the atmosphere. High black hole spin implies high temperature in the inner disk regions, therefore, the emitted thermal disk spectrum fully covers the iron-line complex. As a result, instead of fluorescent iron emission line, we locally observe absorption lines produced in the hot disk atmosphere. Absorption lines are narrow and disappear after ray tracing the local spectrum. Conclusions: Our results mainly highlight the importance of considering the angle dependence of the local spectrum when computing reprocessed spectra, as was already found in a recent study. The main new result of our work is to show the importance of computing the thermal bump of the spectrum, as this feature can change considerably the observed iron-line complex. Thus, in particular for fitting black hole spins, the full spectrum, rather than only the reflected part, should be computed self-consistently.
NASA Astrophysics Data System (ADS)
Dixon, William V.; Chayer, Pierre
2013-08-01
The far-ultraviolet spectrum of the Bright Star (B8 III) in 47 Tuc (NGC 104) shows a remarkable pattern: it is well fit by local thermodynamic equilibrium models at wavelengths longer than Lyβ, but at shorter wavelengths it is fainter than the models by a factor of two. A spectrum of this star obtained with the Far Ultraviolet Spectroscopic Explorer shows broad absorption troughs with sharp edges at 995 and 1010 Å and a deep absorption feature at 1072 Å none of which are predicted by the models. We find that these features are caused by resonances in the photoionization cross sections of the first and second excited states of atomic nitrogen (2s 2 2p 3 2 D 0 and 2 P 0). Using cross sections from the Opacity Project, we can reproduce these features, but only if we use the cross sections at their full resolution, rather than the resonance-averaged cross sections usually employed to model stellar atmospheres. These resonances are strongest in stellar atmospheres with enhanced nitrogen and depleted carbon abundances, a pattern typical of post-asymptotic giant branch stars.
Exploring the spectral variability of the Seyfert 1.5 galaxy Markarian 530 with Suzaku
NASA Astrophysics Data System (ADS)
Ehler, H. J. S.; Gonzalez, A. G.; Gallo, L. C.
2018-05-01
A 2012 Suzaku observation of the Seyfert 1.5 galaxy Markarian 530 was analysed and found to exhibit two distinct modes of variability, which were found to be independent from one another. Firstly, the spectrum undergoes a smooth transition from a soft to a hard spectrum. Secondly, the spectrum displays more rapid variability seemingly confined to a very narrow energy band (˜1 - 3 keV). Three physical models (blurred reflection, partial covering, and soft Comptonisation) were explored to characterise the average spectrum of the observation as well as the spectral state change. All three models were found to fit the average spectrum and the spectral changes equally well. The more rapid variability appears as two cycles of a sinusoidal function, but we cannot attribute this to periodic variability. The Fe Kα band exhibits a narrow 6.4 keV emission line consistent with an origin from the distant torus. In addition, features blueward of the neutral iron line are consistent with emission from He-like and H-like iron that could be originating from the highly ionised layer of the torus, but a broad Gaussian profile at ˜6.7 keV also fits the spectrum well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friesen, Brian; Baron, E.; Parrent, Jerod T.
This paper presents optical spectra of the nearby Type Ia supernova SN 2011fe at 100, 205, 311, 349 and 578 d post-maximum light, as well as an ultraviolet (UV) spectrum obtained with the Hubble Space Telescope at 360 d post-maximum light. We compare these observations with synthetic spectra produced with the radiative transfer code PHOENIX. The day +100 spectrum can be well fitted with models that neglect collisional and radiative data for forbidden lines. Curiously, including these data and recomputing the fit yields a quite similar spectrum, but with different combinations of lines forming some of the stronger features. Atmore » day +205 and later epochs, forbidden lines dominate much of the optical spectrum formation; however, our results indicate that recombination, not collisional excitation, is the most influential physical process driving spectrum formation at these late times. Consequently, our synthetic optical and UV spectra at all epochs presented here are formed almost exclusively through recombinationdriven fluorescence. Furthermore, our models suggest that the UV spectrum even as late as day +360 is optically thick and consists of permitted lines from several iron-peak species. These results indicate that the transition to the 'nebular' phase in Type Ia supernovae is complex and highly wavelength dependent.« less
NASA Astrophysics Data System (ADS)
Tomaschitz, Roman
2013-10-01
A statistical description of the all-particle cosmic-ray spectrum is given in the 10^{14}\\ \\text{eV} to 10^{20}\\ \\text{eV} interval. The high-energy cosmic-ray flux is modeled as an ultra-relativistic multi-component plasma, whose components constitute a mixture of nearly ideal but nonthermal gases of low density and high temperature. Each plasma component is described by an ultra-relativistic power-law density manifested as spectral peak in the wideband fit. The “knee” and “ankle” features of the high- and ultra-high-energy spectrum turn out to be the global and local extrema of the double-logarithmic E3-scaled flux representation in which the spectral fit is performed. The all-particle spectrum is covered by recent data sets from several air shower arrays, and can be modeled as three-component plasma in the indicated energy range extending over six decades. The temperature, specific number density, internal energy and entropy of each plasma component are extracted from the partial fluxes in the broadband fit. The grand partition function and the extensive entropy functional of a non-equilibrated gas mixture with power-law components are derived in phase space by ensemble averaging.
A synthetic method of solar spectrum based on LED
NASA Astrophysics Data System (ADS)
Wang, Ji-qiang; Su, Shi; Zhang, Guo-yu; Zhang, Jian
2017-10-01
A synthetic method of solar spectrum which based on the spectral characteristics of the solar spectrum and LED, and the principle of arbitrary spectral synthesis was studied by using 14 kinds of LED with different central wavelengths.The LED and solar spectrum data were selected by Origin Software firstly, then calculated the total number of LED for each center band by the transformation relation between brightness and illumination and Least Squares Curve Fit in Matlab.Finally, the spectrum curve of AM1.5 standard solar spectrum was obtained. The results met the technical indexes of the solar spectrum matching with ±20% and the solar constant with >0.5.
Modeling the reflectance spectrum of Callisto 0.25 to 4.1μm
Calvin, Wendy M.; Clark, Roger N.
1991-01-01
The reflectance spectrum of Callisto from 0.2 to 4.1 μm is modeled using a simultaneous intimate plus areal mixture solution of ice and dark material which satisfies absorption band depths and reflectance levels. The model uses the radiative transfer theory based on Hapke's (1981, J. Geophys. Res. 86, 3039–3054) work, optical constants of materials and includes effects of grain size and abundance of each material. The best-fitting models contain 20–45 wt% ice in the optical surface. The models indicate that the ice component of the surface is fairly large gained and that the ice cannot account for major spectral features beyond approximately 2.5 μm. In this spectral region other hydrated minerals must dominate. A variety of reasonably well-fitting models were found and the amount of ice determined for these best fits was mathematically removed from the original Callisto spectrum. All of the spectra determined for the non-material were quite similar to each other and have absorption features that resemble hydrated silicates bearing both oxidation states of iron. Certain features in the Callisto non-ice spectrum can be duplicated by mixtures of Fe- and Mg-end member serpentines. Discrepancies indicate that other phases, possibly opaque minerals, are also required to match the entire spectrum. The unusual Fe-serpentines are commonly found in the matrices of primitive cabodnaceous chondrites, suggesting that other matrix phases may also be likely candidates for the Callisto non-ice material.
Broadband Spectral Modeling of the Extreme Gigahertz-peaked Spectrum Radio Source PKS B0008-421
NASA Astrophysics Data System (ADS)
Callingham, J. R.; Gaensler, B. M.; Ekers, R. D.; Tingay, S. J.; Wayth, R. B.; Morgan, J.; Bernardi, G.; Bell, M. E.; Bhat, R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Ewall-Wice, A.; Feng, L.; Greenhill, L. J.; Hazelton, B. J.; Hindson, L.; Hurley-Walker, N.; Jacobs, D. C.; Johnston-Hollitt, M.; Kaplan, D. L.; Kudrayvtseva, N.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Srivani, K. S.; Subrahmanyan, R.; Udaya Shankar, N.; Webster, R. L.; Williams, A.; Williams, C. L.
2015-08-01
We present broadband observations and spectral modeling of PKS B0008-421 and identify it as an extreme gigahertz-peaked spectrum (GPS) source. PKS B0008-421 is characterized by the steepest known spectral slope below the turnover, close to the theoretical limit of synchrotron self-absorption, and the smallest known spectral width of any GPS source. Spectral coverage of the source spans from 0.118 to 22 GHz, which includes data from the Murchison Widefield Array and the wide bandpass receivers on the Australia Telescope Compact Array. We have implemented a Bayesian inference model fitting routine to fit the data with internal free-free absorption (FFA), single- and double-component FFA in an external homogeneous medium, FFA in an external inhomogeneous medium, or single- and double-component synchrotron self-absorption models, all with and without a high-frequency exponential break. We find that without the inclusion of a high-frequency break these models cannot accurately fit the data, with significant deviations above and below the peak in the radio spectrum. The addition of a high-frequency break provides acceptable spectral fits for the inhomogeneous FFA and double-component synchrotron self-absorption models, with the inhomogeneous FFA model statistically favored. The requirement of a high-frequency spectral break implies that the source has ceased injecting fresh particles. Additional support for the inhomogeneous FFA model as being responsible for the turnover in the spectrum is given by the consistency between the physical parameters derived from the model fit and the implications of the exponential spectral break, such as the necessity of the source being surrounded by a dense ambient medium to maintain the peak frequency near the gigahertz region. This implies that PKS B0008-421 should display an internal H i column density greater than 1020 cm-2. The discovery of PKS B0008-421 suggests that the next generation of low radio frequency surveys could reveal a large population of GPS sources that have ceased activity, and that a portion of the ultra-steep-spectrum source population could be composed of these GPS sources in a relic phase.
An optical to IR sky brightness model for the LSST
NASA Astrophysics Data System (ADS)
Yoachim, Peter; Coughlin, Michael; Angeli, George Z.; Claver, Charles F.; Connolly, Andrew J.; Cook, Kem; Daniel, Scott; Ivezić, Željko; Jones, R. Lynne; Petry, Catherine; Reuter, Michael; Stubbs, Christopher; Xin, Bo
2016-07-01
To optimize the observing strategy of a large survey such as the LSST, one needs an accurate model of the night sky emission spectrum across a range of atmospheric conditions and from the near-UV to the near-IR. We have used the ESO SkyCalc Sky Model Calculator1, 2 to construct a library of template spectra for the Chilean night sky. The ESO model includes emission from the upper and lower atmosphere, scattered starlight, scattered moonlight, and zodiacal light. We have then extended the ESO templates with an empirical fit to the twilight sky emission as measured by a Canon all-sky camera installed at the LSST site. With the ESO templates and our twilight model we can quickly interpolate to any arbitrary sky position and date and return the full sky spectrum or surface brightness magnitudes in the LSST filter system. Comparing our model to all-sky observations, we find typical residual RMS values of +/-0.2-0.3 magnitudes per square arcsecond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simard, G.; et al.
We report constraints on cosmological parameters from the angular power spectrum of a cosmic microwave background (CMB) gravitational lensing potential map created using temperature data from 2500 degmore » $^2$ of South Pole Telescope (SPT) data supplemented with data from Planck in the same sky region, with the statistical power in the combined map primarily from the SPT data. We fit the corresponding lensing angular power spectrum to a model including cold dark matter and a cosmological constant ($$\\Lambda$$CDM), and to models with single-parameter extensions to $$\\Lambda$$CDM. We find constraints that are comparable to and consistent with constraints found using the full-sky Planck CMB lensing data. Specifically, we find $$\\sigma_8 \\Omega_{\\rm m}^{0.25}=0.598 \\pm 0.024$$ from the lensing data alone with relatively weak priors placed on the other $$\\Lambda$$CDM parameters. In combination with primary CMB data from Planck, we explore single-parameter extensions to the $$\\Lambda$$CDM model. We find $$\\Omega_k = -0.012^{+0.021}_{-0.023}$$ or $$M_{\
Can a Linear Sigma Model Describe Walking Gauge Theories at Low Energies?
NASA Astrophysics Data System (ADS)
Gasbarro, Andrew
2018-03-01
In recent years, many investigations of confining Yang Mills gauge theories near the edge of the conformal window have been carried out using lattice techniques. These studies have revealed that the spectrum of hadrons in nearly conformal ("walking") gauge theories differs significantly from the QCD spectrum. In particular, a light singlet scalar appears in the spectrum which is nearly degenerate with the PNGBs at the lightest currently accessible quark masses. This state is a viable candidate for a composite Higgs boson. Presently, an acceptable effective field theory (EFT) description of the light states in walking theories has not been established. Such an EFT would be useful for performing chiral extrapolations of lattice data and for serving as a bridge between lattice calculations and phenomenology. It has been shown that the chiral Lagrangian fails to describe the IR dynamics of a theory near the edge of the conformal window. Here we assess a linear sigma model as an alternate EFT description by performing explicit chiral fits to lattice data. In a combined fit to the Goldstone (pion) mass and decay constant, a tree level linear sigma model has a Χ2/d.o.f. = 0.5 compared to Χ2/d.o.f. = 29.6 from fitting nextto-leading order chiral perturbation theory. When the 0++ (σ) mass is included in the fit, Χ2/d.o.f. = 4.9. We remark on future directions for providing better fits to the σ mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odegard, N.; Kogut, A.; Miller, N. J.
2016-09-01
Accurate modeling of the spectrum of thermal dust emission at millimeter wavelengths is important for improving the accuracy of foreground subtraction for cosmic microwave background (CMB) measurements, for improving the accuracy with which the contributions of different foreground emission components can be determined, and for improving our understanding of dust composition and dust physics. We fit four models of dust emission to high Galactic latitude COBE /FIRAS and COBE /DIRBE observations from 3 mm to 100 μ m and compare the quality of the fits. We consider the two-level systems (TLS) model because it provides a physically motivated explanation formore » the observed long wavelength flattening of the dust spectrum and the anti-correlation between emissivity index and dust temperature. We consider the model of Finkbeiner et al. because it has been widely used for CMB studies, and the generalized version of this model that was recently applied to Planck data by Meisner and Finkbeiner. For comparison we have also fit a phenomenological model consisting of the sum of two graybody components. We find that the two-graybody model gives the best fit and the FDS model gives a significantly poorer fit than the other models. The Meisner and Finkbeiner model and the TLS model remain viable for use in Galactic foreground subtraction, but the FIRAS data do not have a sufficient signal-to-noise ratio to provide a strong test of the predicted spectrum at millimeter wavelengths.« less
Assessment of Models of Galactic Thermal Dust Emission Using COBE/FIRAS and COBE/DIRBE Observations
NASA Technical Reports Server (NTRS)
Odegard, N.; Kogut, A.; Chuss, D. T.; Miller, N. J.
2016-01-01
Accurate modeling of the spectrum of thermal dust emission at millimeter wavelengths is important for improving the accuracy of foreground subtraction for cosmic microwave background (CMB) measurements, for improving the accuracy with which the contributions of different foreground emission components can be determined, and for improving our understanding of dust composition and dust physics. We fit four models of dust emission to high Galactic latitude COBE/FIRAS and COBE/DIRBE observations from 3 mm to 100m and compare the quality of the fits. We consider the two-level systems (TLS) model because it provides a physically motivated explanation for the observed long wavelength flattening of the dust spectrum and the anti-correlation between emissivity index and dust temperature. We consider the model of Finkbeiner et al. because it has been widely used for CMB studies, and the generalized version of this model that was recently applied to Planck data by Meisner and Finkbeiner. For comparison we have also fit a phenomenological model consisting of the sum of two-graybody components. We find that the two-graybody model gives the best fit and the FDS model gives a significantly poorer fit than the othermodels. The Meisner and Finkbeiner model and the TLS model remain viable for use in Galactic foreground subtraction, but the FIRAS data do not have a sufficient signal-to-noise ratio to provide a strong test of the predicted spectrum at millimeter wavelengths.
Fitting and forecasting coupled dark energy in the non-linear regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casas, Santiago; Amendola, Luca; Pettorino, Valeria
2016-01-01
We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used tomore » test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.« less
Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument
NASA Technical Reports Server (NTRS)
Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Isaacman, R. B.; Mather, J. C.; Meyer, S. S.; Noerdlinger, P. D.; Shafer, R. A.; Weiss, R.
1994-01-01
The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) has determined the dipole spectrum of the cosmic microwave background radiation (CMBR) from 2 to 20/cm. For each frequency the signal is decomposed by fitting to a monopole, a dipole, and a Galactic template for approximately 60% of the sky. The overall dipole spectrum fits the derivative of a Planck function with an amplitude of 3.343 +/- 0.016 mK (95% confidence level), a temperature of 2.714 +/- 0.022 K (95% confidence level), and an rms deviation of 6 x 10(exp -9) ergs/sq cm/s/sr cm limited by a detector and cosmic-ray noise. The monopole temperature is consistent with that determined by direct measurement in the accompanying article by Mather et al.
Mini-TES Observations of Comanche Carbonate and Its Distribution
NASA Technical Reports Server (NTRS)
Ruff, Steven W.; Morris, Richard V.
2010-01-01
The discovery by the Spirit rover of outcrops rich in Mg-Fe carbonate [Morris et al., 2010] represents another manifestation of a diverse aqueous history in Gusev crater. In 2005, observations by the Moessbauer spectrometer (MB) on outcrops dubbed Comanche provided initial indication of Fe-Mg carbonate that was subsequently supported by analysis of elemental data from the Alpha Particle X-ray Spectrometer (APXS). The recognition of a carbonate component in thermal infrared spectra measured by the Miniature Thermal Emission Spectrometer (Mini-TES) was significantly delayed due to dust contamination of the instrument's optics. With the implementation of a viable dust correction, the Comanche spectra were revisited and presented clear and compelling evidence for a Mg-Fe carbonate component that could be as much as a third of the total mineral abundance. The data from all three instruments in combination are best matched by Mg-Fe carbonate with an abundance of 16-34 wt%. Mini-TES spectra were acquired for 12 targets at various locations on the Comanche (4-5 m long) and Comanche Spur (1-2 m long) outcrops, the latter being the location of the MB and APXS measurements. The two outcrops are spectrally comparable and share similar morphology and texture based on color images from the Panoramic Camera (Pancam). The highest quality Mini-TES spectrum comes from the larger Comanche outcrop on a target named Saupitty. Linear least squares modeling of the Saupitty spectrum employed a library of laboratory spectra tailored for consistency with the APXS and MB data and included spectra representing Martian dust, a slope spectrum to account for any temperature determination errors, and a blackbody spectrum to account for differences in spectral contrast between the laboratory and Mini-TES spectrum. Successful modeling of the Comanche Saupitty spectrum required one or more carbonate phases to obtain a good fit. Excluding all carbonates from the full starting library more than doubled the root-mean-squared error of the model fit (0.147% vs. 0.299%). Because Mg-Fe carbonate and Ca-Mg carbonate (dolomite) are so spectrally similar over the range used for modeling, both provide a comparable fit. However, Carich carbonates like dolomite are precluded based on APXS data and are inconsistent with MB results. The Comanche carbonate rocks are stratigraphically above a set of olivine-rich volcaniclastic rocks known as Algonquin class that mantle the Haskin Ridge feature of the Columbia Hills. Based on 50 Mini-TES observations, the Comanche outcrops are the only rocks that host abundant carbonate. However, a target at the base of the larger Comanche outcrop appears spectrally transitional between the carbonate and olivine units. This transitional spectral character applies to additional outcrops a few 10s of meters away from Comanche that also appear stratigraphically transitional. Additional work will attempt to establish whether we are seeing an alteration horizon or depositional unit associated with the emplacement Comanche carbonate.
Detection of GeV Gamma-Ray Emission in the Direction of HESS J1731-347 with Fermi-LAT
NASA Astrophysics Data System (ADS)
Guo, Xiao-Lei; Xin, Yu-Liang; Liao, Neng-Hui; Yuan, Qiang; Gao, Wei-Hong; Fan, Yi-Zhong
2018-01-01
We report the detection of GeV γ-ray emission from supernova remnant HESS J1731-347 using 9 yr of Fermi Large Area Telescope data. We find a slightly extended GeV source in the direction of HESS J1731-347. The spectrum above 1 GeV can be fitted by a power law with an index of Γ = 1.77 ± 0.14, and the GeV spectrum connects smoothly with the TeV spectrum of HESS J1731-347. Either a hadronic–leptonic or a pure leptonic model can fit the multiwavelength spectral energy distribution of the source. However, the hard GeV γ-ray spectrum is more naturally produced in a leptonic (inverse Compton scattering) scenario, under the framework of diffusive shock acceleration. We also searched for the GeV γ-ray emission from the nearby TeV source HESS J1729-345. No significant GeV γ-ray emission is found, and upper limits are derived.
Automatic energy calibration algorithm for an RBS setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Tiago F.; Moro, Marcos V.; Added, Nemitala
2013-05-06
This work describes a computer algorithm for automatic extraction of the energy calibration parameters from a Rutherford Back-Scattering Spectroscopy (RBS) spectrum. Parameters like the electronic gain, electronic offset and detection resolution (FWHM) of a RBS setup are usually determined using a standard sample. In our case, the standard sample comprises of a multi-elemental thin film made of a mixture of Ti-Al-Ta that is analyzed at the beginning of each run at defined beam energy. A computer program has been developed to extract automatically the calibration parameters from the spectrum of the standard sample. The code evaluates the first derivative ofmore » the energy spectrum, locates the trailing edges of the Al, Ti and Ta peaks and fits a first order polynomial for the energy-channel relation. The detection resolution is determined fitting the convolution of a pre-calculated theoretical spectrum. To test the code, data of two years have been analyzed and the results compared with the manual calculations done previously, obtaining good agreement.« less
Spectrum of Very High Energy Gamma-Rays from the blazar 1ES 1959+650 during Flaring Activity in 2002
NASA Astrophysics Data System (ADS)
Daniel, M. K.; Badran, H. M.; Bond, I. H.; Boyle, P. J.; Bradbury, S. M.; Buckley, J. H.; Carter-Lewis, D. A.; Catanese, M.; Celik, O.; Cogan, P.; Cui, W.; D'Vali, M.; de la Calle Perez, I.; Duke, C.; Falcone, A.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.; Fortson, L. F.; Gaidos, J. A.; Gammell, S.; Gibbs, K.; Gillanders, G. H.; Grube, J.; Hall, J.; Hall, T. A.; Hanna, D.; Hillas, A. M.; Holder, J.; Horan, D.; Humensky, T. B.; Jarvis, A.; Jordan, M.; Kenny, G. E.; Kertzman, M.; Kieda, D.; Kildea, J.; Knapp, J.; Kosack, K.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Le Bohec, S.; Linton, E.; Lloyd-Evans, J.; Milovanovic, A.; Moriarty, P.; Müller, D.; Nagai, T.; Nolan, S.; Ong, R. A.; Pallassini, R.; Petry, D.; Power-Mooney, B.; Quinn, J.; Quinn, M.; Ragan, K.; Rebillot, P.; Reynolds, P. T.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Swordy, S. P.; Syson, A.; Vassiliev, V. V.; Wakely, S. P.; Walker, G.; Weekes, T. C.; Zweerink, J.
2005-03-01
The blazar 1ES 1959+650 was observed in a flaring state with the Whipple 10 m Imaging Atmospheric Cerenkov Telescope in 2002 May. A spectral analysis has been carried out on the data from that time period, and the resulting very high energy gamma-ray spectrum (E>=316 GeV) can be well fitted by a power law of differential spectral index α=2.78+/-0.12stat+/-0.21sys. On 2002 June 4, the source flared dramatically in the gamma-ray range without any coincident increase in the X-ray emission, providing the first unambiguous example of an ``orphan'' gamma-ray flare from a blazar. The gamma-ray spectrum for these data can also be described by a simple power-law fit with α=2.82+/-0.15stat+/-0.30sys. There is no compelling evidence for spectral variability or for any cutoff to the spectrum.
Information content of IRIS spectra. [from Nimbus 4 satellite
NASA Technical Reports Server (NTRS)
Price, J. C.
1974-01-01
Spectra from the satellite instrument IRIS (infra red interferometer spectrometer) were examined to find the number of independent variables needed to describe these broadband high spectral resolution data. The radiated power in the atmospheric window from 771 to 981/cm was the first parameter chosen for fitting observed spectra. At succeeding levels of analysis the residual variability (observed spectrum - best fit spectrum) in an ensemble of observations was partioned into spectral eigenvectors. The eigenvector describing the largest fraction of this variability was examined for a strong spectral signature; the power in the corresponding spectral band was then used as the next fitting parameter. The measured power in nine spectral intervals, when inserted in the spectral fitting functions, was adequate to describe most spectra to within the noise level of IRIS. Considerations of relative signal strength and scales of atmospheric variability suggest a combination sounder (multichannel-broad field of view) scanner (window channel-small field of view) as an efficient observing instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durcan, Chris A.; Balsano, Robert; LaBella, Vincent P., E-mail: vlabella@albany.edu
2015-06-28
The W/Si(001) Schottky barrier height is mapped to nanoscale dimensions using ballistic electron emission microscopy (BEEM) over a period of 21 days to observe changes in the interface electrostatics. Initially, the average spectrum is fit to a Schottky barrier height of 0.71 eV, and the map is uniform with 98% of the spectra able to be fit. After 21 days, the average spectrum is fit to a Schottky barrier height of 0.62 eV, and the spatial map changes dramatically with only 27% of the spectra able to be fit. Transmission electron microscopy shows the formation of an ultra-thin tungsten silicide at themore » interface, which increases in thickness over the 21 days. This increase is attributed to an increase in electron scattering and the changes are observed in the BEEM measurements. Interestingly, little to no change is observed in the I-V measurements throughout the 21 day period.« less
NASA Technical Reports Server (NTRS)
Parker, M. L.; Tomsick, J. A.; Kennea, J. A.; Miller, J. M.; Harrison, F. A.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.;
2016-01-01
We present results from spectral fitting of the very high state of GX339-4 with Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift. We use relativistic reflection modeling to measure the spin of the black hole and inclination of the inner disk and find a spin of a = 0.95+0.08/-0.02 and inclination of 30deg +/- 1deg (statistical errors). These values agree well with previous results from reflection modeling. With the exceptional sensitivity of NuSTAR at the high-energy side of the disk spectrum, we are able to constrain multiple physical parameters simultaneously using continuum fitting. By using the constraints from reflection as input for the continuum fitting method, we invert the conventional fitting procedure to estimate the mass and distance of GX 339-4 using just the X-ray spectrum, finding a mass of 9.0+1.6/-1.2 Stellar Mass and distance of 8.4 +/- 0.9 kpc (statistical errors).
Information content in Iris spectra. [Infrared Interferometer Spectrometer of Nimbus 4 satellite
NASA Technical Reports Server (NTRS)
Price, J. C.
1975-01-01
Spectra from the satellite instrument Iris (infrared interferometer spectrometer) were examined to find the number of independent variables needed to describe the broad-band high-resolution spectral data. The radiated power in the atmospheric window from 771 to 981 per cm was the first parameter chosen for fitting observed spectra. At succeeding levels of analysis, the residual variability (observed spectrum minus best-fit spectrum) in an ensemble of observations was partitioned into spectral eigenvectors. The eigenvector describing the largest fraction of this variability was examined for a strong spectral signature; the power in the corresponding spectral band was then used as the next fitting parameter. The measured power in nine spectral intervals, when it was inserted in the spectral-fitting functions, was adequate to describe most spectra to within the noise level of Iris. Considerations of relative signal strength and scales of atmospheric variability suggest a combination sounder (multichannel, broad field of view) scanner (window channel, small field of view) as an efficient observing instrument.
NASA Astrophysics Data System (ADS)
Simard, G.; Omori, Y.; Aylor, K.; Baxter, E. J.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H.-M.; Chown, R.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W. B.; George, E. M.; Halverson, N. W.; Harrington, N. L.; Henning, J. W.; Holder, G. P.; Hou, Z.; Holzapfel, W. L.; Hrubes, J. D.; Knox, L.; Lee, A. T.; Leitch, E. M.; Luong-Van, D.; Manzotti, A.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.; Wu, W. L. K.
2018-06-01
We report constraints on cosmological parameters from the angular power spectrum of a cosmic microwave background (CMB) gravitational lensing potential map created using temperature data from 2500 deg2 of South Pole Telescope (SPT) data supplemented with data from Planck in the same sky region, with the statistical power in the combined map primarily from the SPT data. We fit the lensing power spectrum to a model including cold dark matter and a cosmological constant ({{Λ }}{CDM}), and to models with single-parameter extensions to {{Λ }}{CDM}. We find constraints that are comparable to and consistent with those found using the full-sky Planck CMB lensing data, e.g., {σ }8{{{Ω }}}{{m}}0.25 = 0.598 ± 0.024 from the lensing data alone with weak priors placed on other parameters. Combining with primary CMB data, we explore single-parameter extensions to {{Λ }}{CDM}. We find {{{Ω }}}k =-{0.012}-0.023+0.021 or {M}ν < 0.70 eV at 95% confidence, in good agreement with results including the lensing potential as measured by Planck. We include two parameters that scale the effect of lensing on the CMB: {A}L, which scales the lensing power spectrum in both the lens reconstruction power and in the smearing of the acoustic peaks, and {A}φ φ , which scales only the amplitude of the lensing reconstruction power spectrum. We find {A}φ φ × {A}L = 1.01 ± 0.08 for the lensing map made from combined SPT and Planck data, indicating that the amount of lensing is in excellent agreement with expectations from the observed CMB angular power spectrum when not including the information from smearing of the acoustic peaks.
Calculating the electron temperature in the lightning channel by continuous spectrum
NASA Astrophysics Data System (ADS)
Xiangcheng, DONG; Jianhong, CHEN; Xiufang, WEI; Ping, YUAN
2017-12-01
Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.
Optical and ultraviolet spectroscopic analysis of SN 2011fe at late times
NASA Astrophysics Data System (ADS)
Friesen, Brian; Baron, E.; Parrent, Jerod T.; Thomas, R. C.; Branch, David; Nugent, Peter E.; Hauschildt, Peter H.; Foley, Ryan J.; Wright, Darryl E.; Pan, Yen-Chen; Filippenko, Alexei V.; Clubb, Kelsey I.; Silverman, Jeffrey M.; Maeda, Keiichi; Shivvers, Isaac; Kelly, Patrick L.; Cohen, Daniel P.; Rest, Armin; Kasen, Daniel
2017-05-01
We present optical spectra of the nearby Type Ia supernova SN 2011fe at 100, 205, 311, 349 and 578 d post-maximum light, as well as an ultraviolet (UV) spectrum obtained with the Hubble Space Telescope at 360 d post-maximum light. We compare these observations with synthetic spectra produced with the radiative transfer code phoenix. The day +100 spectrum can be well fitted with models that neglect collisional and radiative data for forbidden lines. Curiously, including these data and recomputing the fit yields a quite similar spectrum, but with different combinations of lines forming some of the stronger features. At day +205 and later epochs, forbidden lines dominate much of the optical spectrum formation; however, our results indicate that recombination, not collisional excitation, is the most influential physical process driving spectrum formation at these late times. Consequently, our synthetic optical and UV spectra at all epochs presented here are formed almost exclusively through recombination-driven fluorescence. Furthermore, our models suggest that the UV spectrum even as late as day +360 is optically thick and consists of permitted lines from several iron-peak species. These results indicate that the transition to the 'nebular' phase in Type Ia supernovae is complex and highly wavelength dependent.
Optical and ultraviolet spectroscopic analysis of SN 2011fe at late times
Friesen, Brian; Baron, E.; Parrent, Jerod T.; ...
2017-02-27
This paper presents optical spectra of the nearby Type Ia supernova SN 2011fe at 100, 205, 311, 349 and 578 d post-maximum light, as well as an ultraviolet (UV) spectrum obtained with the Hubble Space Telescope at 360 d post-maximum light. We compare these observations with synthetic spectra produced with the radiative transfer code PHOENIX. The day +100 spectrum can be well fitted with models that neglect collisional and radiative data for forbidden lines. Curiously, including these data and recomputing the fit yields a quite similar spectrum, but with different combinations of lines forming some of the stronger features. Atmore » day +205 and later epochs, forbidden lines dominate much of the optical spectrum formation; however, our results indicate that recombination, not collisional excitation, is the most influential physical process driving spectrum formation at these late times. Consequently, our synthetic optical and UV spectra at all epochs presented here are formed almost exclusively through recombinationdriven fluorescence. Furthermore, our models suggest that the UV spectrum even as late as day +360 is optically thick and consists of permitted lines from several iron-peak species. These results indicate that the transition to the 'nebular' phase in Type Ia supernovae is complex and highly wavelength dependent.« less
Multicasting based optical inverse multiplexing in elastic optical network.
Guo, Bingli; Xu, Yingying; Zhu, Paikun; Zhong, Yucheng; Chen, Yuanxiang; Li, Juhao; Chen, Zhangyuan; He, Yongqi
2014-06-16
Optical multicasting based inverse multiplexing (IM) is introduced in spectrum allocation of elastic optical network to resolve the spectrum fragmentation problem, where superchannels could be split and fit into several discrete spectrum blocks in the intermediate node. We experimentally demonstrate it with a 1-to-7 optical superchannel multicasting module and selecting/coupling components. Also, simulation results show that, comparing with several emerging spectrum defragmentation solutions (e.g., spectrum conversion, split spectrum), IM could reduce blocking performance significantly but without adding too much system complexity as split spectrum. On the other hand, service fairness for traffic with different granularity of these schemes is investigated for the first time and it shows that IM performs better than spectrum conversion and almost as well as split spectrum, especially for smaller size traffic under light traffic intensity.
Broadband distortion modeling in Lyman-α forest BAO fitting
Blomqvist, Michael; Kirkby, David; Bautista, Julian E.; ...
2015-11-23
Recently, the Lyman-α absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-α forest auto-correlation function at redshift z≃ 2.3, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. Here, we describe a k-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of amore » Lyman-α forest spectrum. In implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-α forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter b F and the redshift-space distortion parameter β F for mock data sets with a systematic error of less than 0.5%. Applied to the auto-correlation measured for BOSS Data Release 11, our method improves on the previous treatment of broadband distortions in BAO fitting by providing a better fit to the data using fewer parameters and reducing the statistical errors on βF and the combination b F(1+β F) by more than a factor of seven. The measured values at redshift z=2.3 are βF=1.39 +0.11 +0.24 +0.38 -0.10 -0.19 -0.28 and bF(1+βF)=-0.374 +0.007 +0.013 +0.020 -0.007 -0.014 -0.022 (1σ, 2σ and 3σ statistical errors). Our fitting software and the input files needed to reproduce our main results are publicly available.« less
Multimodal determination of Rayleigh dispersion and attenuation curves using the circle fit method
NASA Astrophysics Data System (ADS)
Verachtert, R.; Lombaert, G.; Degrande, G.
2018-03-01
This paper introduces the circle fit method for the determination of multi-modal Rayleigh dispersion and attenuation curves as part of a Multichannel Analysis of Surface Waves (MASW) experiment. The wave field is transformed to the frequency-wavenumber (fk) domain using a discretized Hankel transform. In a Nyquist plot of the fk-spectrum, displaying the imaginary part against the real part, the Rayleigh wave modes correspond to circles. The experimental Rayleigh dispersion and attenuation curves are derived from the angular sweep of the central angle of these circles. The method can also be applied to the analytical fk-spectrum of the Green's function of a layered half-space in order to compute dispersion and attenuation curves, as an alternative to solving an eigenvalue problem. A MASW experiment is subsequently simulated for a site with a regular velocity profile and a site with a soft layer trapped between two stiffer layers. The performance of the circle fit method to determine the dispersion and attenuation curves is compared with the peak picking method and the half-power bandwidth method. The circle fit method is found to be the most accurate and robust method for the determination of the dispersion curves. When determining attenuation curves, the circle fit method and half-power bandwidth method are accurate if the mode exhibits a sharp peak in the fk-spectrum. Furthermore, simulated and theoretical attenuation curves determined with the circle fit method agree very well. A similar correspondence is not obtained when using the half-power bandwidth method. Finally, the circle fit method is applied to measurement data obtained for a MASW experiment at a site in Heverlee, Belgium. In order to validate the soil profile obtained from the inversion procedure, force-velocity transfer functions were computed and found in good correspondence with the experimental transfer functions, especially in the frequency range between 5 and 80 Hz.
Broadband distortion modeling in Lyman-α forest BAO fitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blomqvist, Michael; Kirkby, David; Margala, Daniel, E-mail: cblomqvi@uci.edu, E-mail: dkirkby@uci.edu, E-mail: dmargala@uci.edu
2015-11-01
In recent years, the Lyman-α absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-α forest auto-correlation function at redshift z≅ 2.3, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. We describe a k-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of amore » Lyman-α forest spectrum. Implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-α forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter b{sub F} and the redshift-space distortion parameter β{sub F} for mock data sets with a systematic error of less than 0.5%. Applied to the auto-correlation measured for BOSS Data Release 11, our method improves on the previous treatment of broadband distortions in BAO fitting by providing a better fit to the data using fewer parameters and reducing the statistical errors on β{sub F} and the combination b{sub F}(1+β{sub F}) by more than a factor of seven. The measured values at redshift z=2.3 are β{sub F}=1.39{sup +0.11 +0.24 +0.38}{sub −0.10 −0.19 −0.28} and b{sub F}(1+β{sub F})=−0.374{sup +0.007 +0.013 +0.020}{sub −0.007 −0.014 −0.022} (1σ, 2σ and 3σ statistical errors). Our fitting software and the input files needed to reproduce our main results are publicly available.« less
Systematic wavelength selection for improved multivariate spectral analysis
Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.
1995-01-01
Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.
WMAP7 constraints on oscillations in the primordial power spectrum
NASA Astrophysics Data System (ADS)
Meerburg, P. Daniel; Wijers, Ralph A. M. J.; van der Schaar, Jan Pieter
2012-03-01
We use the 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) data to place constraints on oscillations supplementing an almost scale-invariant primordial power spectrum. Such oscillations are predicted by a variety of models, some of which amount to assuming that there is some non-trivial choice of the vacuum state at the onset of inflation. In this paper, we will explore data-driven constraints on two distinct models of initial state modifications. In both models, the frequency, phase and amplitude are degrees of freedom of the theory for which the theoretical bounds are rather weak: both the amplitude and frequency have allowed values ranging over several orders of magnitude. This requires many computationally expensive evaluations of the model cosmic microwave background (CMB) spectra and their goodness of fit, even in a Markov chain Monte Carlo (MCMC), normally the most efficient fitting method for such a problem. To search more efficiently, we first run a densely-spaced grid, with only three varying parameters: the frequency, the amplitude and the baryon density. We obtain the optimal frequency and run an MCMC at the best-fitting frequency, randomly varying all other relevant parameters. To reduce the computational time of each power spectrum computation, we adjust both comoving momentum integration and spline interpolation (in l) as a function of frequency and amplitude of the primordial power spectrum. Applying this to the WMAP7 data allows us to improve existing constraints on the presence of oscillations. We confirm earlier findings that certain frequencies can improve the fitting over a model without oscillations. For those frequencies we compute the posterior probability, allowing us to put some constraints on the primordial parameter space of both models.
INFOS: spectrum fitting software for NMR analysis.
Smith, Albert A
2017-02-01
Software for fitting of NMR spectra in MATLAB is presented. Spectra are fitted in the frequency domain, using Fourier transformed lineshapes, which are derived using the experimental acquisition and processing parameters. This yields more accurate fits compared to common fitting methods that use Lorentzian or Gaussian functions. Furthermore, a very time-efficient algorithm for calculating and fitting spectra has been developed. The software also performs initial peak picking, followed by subsequent fitting and refinement of the peak list, by iteratively adding and removing peaks to improve the overall fit. Estimation of error on fitting parameters is performed using a Monte-Carlo approach. Many fitting options allow the software to be flexible enough for a wide array of applications, while still being straightforward to set up with minimal user input.
Spatial Contrast Sensitivity in Adolescents with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Koh, Hwan Cui; Milne, Elizabeth; Dobkins, Karen
2010-01-01
Adolescents with autism spectrum disorders (ASD) and typically developing (TD) controls underwent a rigorous psychophysical assessment that measured contrast sensitivity to seven spatial frequencies (0.5-20 cycles/degree). A contrast sensitivity function (CSF) was then fitted for each participant, from which four measures were obtained: visual…
NASA Astrophysics Data System (ADS)
Tsumaki, Masanao; Ito, Tsuyohito
2016-09-01
We study plasma processing with water/solution microdroplets for a new nanoparticle synthesis method. In the process, it is important to know gas temperature (Tg) for understanding the mechanism of the particle growth and controlling its properties. Since OH emissions are naturally observed in such plasma, the rotational temperature (Tr) of OH (A-X) is estimated and compared with Tr from N2 (C-B). The plasma is generated by dielectric barrier discharges in He with N2 (2.6%) gas flow, and microdroplets are generated by an ultrasonic atomizer and carried into He/N2 plasma. Optical emission spectroscopy revealed that with the increase of voltage and frequency of plasma generation, the Tr of N2 increases. While the good theoretical spectrum fit on N2 experimental spectrum could be achieved, it was hard to obtain a reasonable fit for the OH spectrum with a single rotational energy distribution. On the other hand, two rotational distribution analysis could reproduce the experimental spectrum of OH and the lower Tr agrees to Tr by N2. The results suggest that the lower Tr obtained with the two rotational temperature analysis of OH spectrum represents Tg of the environment.
Probing Gamma-ray Emission of Geminga and Vela with Non-stationary Models
NASA Astrophysics Data System (ADS)
Chai, Yating; Cheng, Kwong-Sang; Takata, Jumpei
2016-06-01
It is generally believed that the high energy emissions from isolated pulsars are emitted from relativistic electrons/positrons accelerated in outer magnetospheric accelerators (outergaps) via a curvature radiation mechanism, which has a simple exponential cut-off spectrum. However, many gamma-ray pulsars detected by the Fermi LAT (Large Area Telescope) cannot be fitted by simple exponential cut-off spectrum, and instead a sub-exponential is more appropriate. It is proposed that the realistic outergaps are non-stationary, and that the observed spectrum is a superposition of different stationary states that are controlled by the currents injected from the inner and outer boundaries. The Vela and Geminga pulsars have the largest fluxes among all targets observed, which allows us to carry out very detailed phase-resolved spectral analysis. We have divided the Vela and Geminga pulsars into 19 (the off pulse of Vela was not included) and 33 phase bins, respectively. We find that most phase resolved spectra still cannot be fitted by a simple exponential spectrum: in fact, a sub-exponential spectrum is necessary. We conclude that non-stationary states exist even down to the very fine phase bins.
Status of the neutrino decay solution to the solar neutrino problem
NASA Astrophysics Data System (ADS)
Choubey, S.; Goswami, S.; Majumdar, D.
2000-06-01
We re-examine the neutrino decay solution to the solar neutrino problem in the light of the SuperKamiokande (SK) data. For the decay solution the SK spectrum data by its own can provide a fit comparable to the fit obtained from the MSW solution. However when one combines the results from the total rates of the 37Cl and 71Ga experiments the fit becomes much poorer.
VizieR Online Data Catalog: HI4PI spectra and column density maps (HI4PI team+, 2016)
NASA Astrophysics Data System (ADS)
Hi4PI Collaboration; Ben Bekhti, N.; Floeer, L.; Keller, R.; Kerp, J.; Lenz, D.; Winkel, B.; Bailin, J.; Calabretta, M. R.; Dedes, L.; Ford, H. A.; Gibson, B. K.; Haud, U.; Janowiecki, S.; Kalberla, P. M. W.; Lockman, F. J.; McClure-Griffiths, N. M.; Murphy, T.; Nakanishi, H.; Pisano, D. J.; Staveley-Smith, L.
2016-09-01
The HI4PI data release comprises 21-cm neutral atomic hydrogen data of the Milky Way (-600km/s
Modeling dust emission in the Magellanic Clouds with Spitzer and Herschel
NASA Astrophysics Data System (ADS)
Chastenet, Jérémy; Bot, Caroline; Gordon, Karl D.; Bocchio, Marco; Roman-Duval, Julia; Jones, Anthony P.; Ysard, Nathalie
2017-05-01
Context. Dust modeling is crucial to infer dust properties and budget for galaxy studies. However, there are systematic disparities between dust grain models that result in corresponding systematic differences in the inferred dust properties of galaxies. Quantifying these systematics requires a consistent fitting analysis. Aims: We compare the output dust parameters and assess the differences between two dust grain models, the DustEM model and THEMIS. In this study, we use a single fitting method applied to all the models to extract a coherent and unique statistical analysis. Methods: We fit the models to the dust emission seen by Spitzer and Herschel in the Small and Large Magellanic Clouds (SMC and LMC). The observations cover the infrared (IR) spectrum from a few microns to the sub-millimeter range. For each fitted pixel, we calculate the full n-D likelihood based on a previously described method. The free parameters are both environmental (U, the interstellar radiation field strength; αISRF, power-law coefficient for a multi-U environment; Ω∗, the starlight strength) and intrinsic to the model (YI: abundances of the grain species I; αsCM20, coefficient in the small carbon grain size distribution). Results: Fractional residuals of five different sets of parameters show that fitting THEMIS brings a more accurate reproduction of the observations than the DustEM model. However, independent variations of the dust species show strong model-dependencies. We find that the abundance of silicates can only be constrained to an upper-limit and that the silicate/carbon ratio is different than that seen in our Galaxy. In the LMC, our fits result in dust masses slightly lower than those found in the literature, by a factor lower than 2. In the SMC, we find dust masses in agreement with previous studies.
NASA Astrophysics Data System (ADS)
Cudalbu, C.; Mlynárik, V.; Xin, L.; Gruetter, Rolf
2009-10-01
Reliable quantification of the macromolecule signals in short echo-time 1H MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased spectral resolution of the macromolecule components. The purpose of the present study was to assess two approaches of quantification, which take the contribution of macromolecules into account in the quantification step. 1H spectra were acquired on a 14.1 T/26 cm horizontal scanner on five rats using the ultra-short echo-time SPECIAL (spin echo full intensity acquired localization) spectroscopy sequence. Metabolite concentrations were estimated using LCModel, combined with a simulated basis set of metabolites using published spectral parameters and either the spectrum of macromolecules measured in vivo, using an inversion recovery technique, or baseline simulated by the built-in spline function. The fitted spline function resulted in a smooth approximation of the in vivo macromolecules, but in accordance with previous studies using Subtract-QUEST could not reproduce completely all features of the in vivo spectrum of macromolecules at 14.1 T. As a consequence, the measured macromolecular 'baseline' led to a more accurate and reliable quantification at higher field strengths.
THE IMPACT OF ACCURATE EXTINCTION MEASUREMENTS FOR X-RAY SPECTRAL MODELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Randall K.; Valencic, Lynne A.; Corrales, Lia, E-mail: lynne.a.valencic@nasa.gov
Interstellar extinction includes both absorption and scattering of photons from interstellar gas and dust grains, and it has the effect of altering a source's spectrum and its total observed intensity. However, while multiple absorption models exist, there are no useful scattering models in standard X-ray spectrum fitting tools, such as XSPEC. Nonetheless, X-ray halos, created by scattering from dust grains, are detected around even moderately absorbed sources, and the impact on an observed source spectrum can be significant, if modest, compared to direct absorption. By convolving the scattering cross section with dust models, we have created a spectral model asmore » a function of energy, type of dust, and extraction region that can be used with models of direct absorption. This will ensure that the extinction model is consistent and enable direct connections to be made between a source's X-ray spectral fits and its UV/optical extinction.« less
Jet cooled cavity ringdown spectroscopy of the A ˜ 2 E ″ ← X ˜ 2 A2 ' transition of the NO3 radical
NASA Astrophysics Data System (ADS)
Codd, Terrance; Chen, Ming-Wei; Roudjane, Mourad; Stanton, John F.; Miller, Terry A.
2015-05-01
The A ˜ 2 E ″ ← X ˜ 2 A2 ' spectrum of NO3 radical from 7550 cm-1 to 9750 cm-1 has been recorded and analyzed. Our spectrum differs from previously recorded spectra of this transition due to jet-cooling, which narrows the rotational contours and eliminates spectral interference from hot bands. Assignments of numerous vibronic features can be made based on both band contour and position including the previously unassigned 30 1 band and several associated combination bands. We have analyzed our spectrum first with an independent anharmonic oscillator model and then by a quadratic Jahn-Teller vibronic coupling model. The fit achieved with the quadratic Jahn-Teller model is excellent, but the potential energy surface obtained with the fitted parameters is in only qualitative agreement with one obtained from ab initio calculations.
Angular power spectrum of galaxies in the 2MASS Redshift Survey
NASA Astrophysics Data System (ADS)
Ando, Shin'ichiro; Benoit-Lévy, Aurélien; Komatsu, Eiichiro
2018-02-01
We present the measurement and interpretation of the angular power spectrum of nearby galaxies in the 2MASS Redshift Survey catalogue with spectroscopic redshifts up to z ≈ 0.1. We detect the angular power spectrum up to a multipole of ℓ ≈ 1000. We find that the measured power spectrum is dominated by galaxies living inside nearby galaxy clusters and groups. We use the halo occupation distribution (HOD) formalism to model the power spectrum, obtaining a fit with reasonable parameters. These HOD parameters are in agreement with the 2MASS galaxy distribution we measure towards the known nearby galaxy clusters, confirming validity of our analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlgren, Björn; Larsson, Josefin; Nymark, Tanja
The origin of the prompt emission in gamma-ray bursts (GRBs) is still an unsolved problem and several different mechanisms have been suggested. We fit Fermi GRB data with a photospheric emission model which includes dissipation of the jet kinetic energy below the photosphere. The resulting spectra are dominated by Comptonization and contain no significant contribution from synchrotron radiation. In order to fit to the data, we span a physically motivated part of the model's parameter space and create DREAM (Dissipation with Radiative Emission as A table Model), a table model for XSPEC. Here, we show that this model can describemore » different kinds of GRB spectra, including GRB 090618, representing a typical Band function spectrum, and GRB 100724B, illustrating a double peaked spectrum, previously fitted with a Band+blackbody model, suggesting they originate from a similar scenario. We also suggest that the main difference between these two types of bursts is the optical depth at the dissipation site.« less
On the Full-range β Dependence of Ion-scale Spectral Break in the Solar Wind Turbulence
NASA Astrophysics Data System (ADS)
Wang, Xin; Tu, Chuanyi; He, Jiansen; Wang, Linghua
2018-04-01
The power spectrum of magnetic fluctuations has a break at the high-frequency end of the inertial range. Beyond this break, the spectrum becomes steeper than the Kolmogorov law f ‑5/3. The break frequency was found to be associated with plasma beta (β). However, the full-range β dependence of the ion-scale spectral break has not been presented before in observational studies. Here we show the continuous variation of the break frequency on full-range β in the solar wind turbulence. By using measurements from the WIND and Ulysses spacecraft, we show the break frequency (f b ) normalized, respectively, by the frequencies corresponding to ion inertial length (f di ), ion gyroradius ({f}ρ i), and cyclotron resonance scale (f ri ) as a function of β for 1306 intervals. Their β values spread from 0.005 to 20, which nearly covers the full β range of the observed solar wind turbulence. It is found that {f}b/{f}{di} ({f}b/{f}ρ i) generally decreases (increases) with β, while {f}b/{f}{ri} is nearly a constant. We perform a linear fit on the statistical result, and obtain the empirical formulas {f}b/{f}{di}∼ {β }-1/4, {f}b/{f}ρ i∼ {β }1/4, and {f}b/{f}{ri}∼ 0.90 to describe the relation between f b and β. We also compare our observations with a numerical simulation and the prediction by ion cyclotron resonance theory. Our result favors the idea that the cyclotron resonance is an important mechanism for energy dissipation at the spectral break. When β ≪ 1 and β ≫ 1, the break at f di and {f}ρ i may also be associated with other processes.
NASA Astrophysics Data System (ADS)
Franzetti, Paolo; Scodeggio, Marco
2012-10-01
GOSSIP fits the electro-magnetic emission of an object (the SED, Spectral Energy Distribution) against synthetic models to find the simulated one that best reproduces the observed data. It builds-up the observed SED of an object (or a large sample of objects) combining magnitudes in different bands and eventually a spectrum; then it performs a chi-square minimization fitting procedure versus a set of synthetic models. The fitting results are used to estimate a number of physical parameters like the Star Formation History, absolute magnitudes, stellar mass and their Probability Distribution Functions.
ERIC Educational Resources Information Center
Frankel, Fred; Wood, Jeffrey J.
2011-01-01
Two nationally known experts in friendship formation and anxiety management address the social challenges faced by adolescents with autism spectrum disorders (ASD). The book helps educators instruct youth on conversing with others, displaying appropriate body language, managing anxiety, initiating and participating in get-togethers, and more. The…
Factor Analysis of the Aberrant Behavior Checklist in Individuals with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Brinkley, Jason; Nations, Laura; Abramson, Ruth K.; Hall, Alicia; Wright, Harry H.; Gabriels, Robin; Gilbert, John R.; Pericak-Vance, Margaret A. O.; Cuccaro, Michael L.
2007-01-01
Exploratory factor analysis (varimax and promax rotations) of the aberrant behavior checklist-community version (ABC) in 275 individuals with Autism spectrum disorder (ASD) identified four- and five-factor solutions which accounted for greater than 70% of the variance. Confirmatory factor analysis (Lisrel 8.7) revealed indices of moderate fit for…
Fermi observations of the very hard gamma-ray blazar PG 1553+113
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2009-12-22
Here, we report the observations of PG 1553+113 during the first ~ 200 days of Fermi Gamma-ray Space Telescope science operations, from 2008 August 4 to 2009 February 22 (MJD 54682.7-54884.2). This is the first detailed study of PG 1553+113 in the GeV gamma-ray regime and it allows us to fill a gap of three decades in energy in its spectral energy distribution (SED). We find PG 1553+113 to be a steady source with a hard spectrum that is best fit by a simple power law in the Fermi energy band. We combine the Fermi data with archival radio, optical,more » X-ray, and very high energy (VHE) gamma-ray data to model its broadband SED and find that a simple, one-zone synchrotron self-Compton model provides a reasonable fit. PG 1553+113 has the softest VHE spectrum of all sources detected in that regime and, out of those with significant detections across the Fermi energy bandpass so far, the hardest spectrum in that energy regime. Thus, it has the largest spectral break of any gamma-ray source studied to date, which could be due to the absorption of the intrinsic gamma-ray spectrum by the extragalactic background light (EBL). Assuming this to be the case, we selected a model with a low level of EBL and used it to absorb the power-law spectrum from PG 1553+113 measured with Fermi (200 MeV-157 GeV) to find the redshift, which gave the best fit to the measured VHE data (90 GeV-1.1 TeV) for this parameterization of the EBL. We show that this redshift can be considered an upper limit on the distance to PG 1553+113.« less
NASA Technical Reports Server (NTRS)
Strong, Andrew W.; Moskalenko, Igor V.; Reimer, Olaf
2004-01-01
We present a study of the compatibility of some current models of the diffuse Galactic continuum gamma-rays with EGRET data. A set of regions sampling the whole sky is chosen to provide a comprehensive range of tests. The range of EGRET data used is extended to 100 GeV. The models are computed with our GALPROP cosmic-ray propagation and gamma-ray production code. We confirm that the "conventional model" based on the locally observed electron and nucleon spectra is inadequate, for all sky regions. A conventional model plus hard sources in the inner Galaxy is also inadequate, since this cannot explain the GeV excess away from the Galactic plane. Models with a hard electron injection spectrum are inconsistent with the local spectrum even considering the expected fluctuations; they are also inconsistent with the EGRET data above 10 GeV. We present a new model which fits the spectrum in all sky regions adequately. Secondary antiproton data were used to fix the Galactic average proton spectrum, while the electron spectrum is adjusted using the spectrum of diffuse emission it- self. The derived electron and proton spectra are compatible with those measured locally considering fluctuations due to energy losses, propagation, or possibly de- tails of Galactic structure. This model requires a much less dramatic variation in the electron spectrum than models with a hard electron injection spectrum, and moreover it fits the y-ray spectrum better and to the highest EGRET energies. It gives a good representation of the latitude distribution of the y-ray emission from the plane to the poles, and of the longitude distribution. We show that secondary positrons and electrons make an essential contribution to Galactic diffuse y-ray emission.
Horton, Leslie E; Tarbox, Sarah I; Olino, Thomas M; Haas, Gretchen L
2015-06-30
Evidence of social and behavioral problems preceding the onset of schizophrenia-spectrum psychoses is consistent with a neurodevelopmental model of these disorders. Here we predict that individuals with a first episode of schizophrenia-spectrum psychoses will evidence one of three patterns of premorbid adjustment: an early deficit, a deteriorating pattern, or adequate or good social adjustment. Participants were 164 (38% female; 31% black) individuals ages 15-50 with a first episode of schizophrenia-spectrum psychoses. Premorbid adjustment was assessed using the Cannon-Spoor Premorbid Adjustment Scale. We compared the fit of a series of growth mixture models to examine premorbid adjustment trajectories, and found the following 3-class model provided the best fit with: a "stable-poor" adjustment class (54%), a "stable-good" adjustment class (39%), and a "deteriorating" adjustment class (7%). Relative to the "stable-good" class, the "stable-poor" class experienced worse negative symptoms at 1-year follow-up, particularly in the social amotivation domain. This represents the first known growth mixture modeling study to examine premorbid functioning patterns in first-episode schizophrenia-spectrum psychoses. Given that the stable-poor adjustment pattern was most prevalent, detection of social and academic maladjustment as early as childhood may help identify people at increased risk for schizophrenia-spectrum psychoses, potentially increasing feasibility of early interventions. Published by Elsevier Ireland Ltd.
Six Steps for Planning a Fitness Circuit for Individuals with Autism
ERIC Educational Resources Information Center
Hovey, Kate
2011-01-01
When teaching individuals with autism it is important to pay particular attention to fitness and movement as these individuals are less likely than typical children to achieve the recommended level physical activity. Common characteristics of autism spectrum disorder can include deficits in communication and social behavior, which may limit…
AN EMPIRICAL METHOD FOR IMPROVING THE QUALITY OF RXTE HEXTE SPECTRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Javier A.; Steiner, James F.; McClintock, Jeffrey E.
2016-03-01
We have developed a correction tool to improve the quality of Rossi X-ray Timing Explorer (RXTE) High Energy X-ray Timing Experiment (HEXTE) spectra by employing the same method we used earlier to improve the quality of RXTE Proportional Counter Array (PCA) spectra. We fit all of the hundreds of HEXTE spectra of the Crab individually to a simple power-law model, some 37 million counts in total for Cluster A and 39 million counts for Cluster B, and we create for each cluster a combined spectrum of residuals. We find that the residual spectrum of Cluster A is free of instrumental artifacts while that of Clustermore » B contains significant features with amplitudes ∼1%; the most prominent is in the energy range 30–50 keV, which coincides with the iodine K edge. Starting with the residual spectrum for Cluster B, via an iterative procedure we created the calibration tool hexBcorr for correcting any Cluster B spectrum of interest. We demonstrate the efficacy of the tool by applying it to Cluster B spectra of two bright black holes, which contain several million counts apiece. For these spectra, application of the tool significantly improves the goodness of fit, while affecting only slightly the broadband fit parameters. The tool may be important for the study of spectral features, such as cyclotron lines, a topic that is beyond the scope of this paper.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Half-mask facepieces, full facepieces, hoods....175 Half-mask facepieces, full facepieces, hoods, helmets, and mouthpieces; fit; minimum requirements. (a) Half-mask facepieces and full facepieces shall be designed and constructed to fit persons with...
Nonlinear Peculiar-Velocity Analysis and PCA
NASA Astrophysics Data System (ADS)
Dekel, Avishai; Eldar, Amiram; Silberman, Lior; Zehavi, Idit
We allow for nonlinear effects in the likelihood analysis of peculiar velocities, and obtain ˜35%-lower values for the cosmological density parameter and for the amplitude of mass-density fluctuations. The power spectrum in the linear regime is assumed to be of the flat ΛCDM model (h = 0.65, n = 1) with only Ω_m free. Since the likelihood is driven by the nonlinear regime, we "break" the power spectrum at k_b˜ 0.2 (h^{-1}Mpc)^{-1} and fit a two-parameter power-law at k > k b . This allows for an unbiased fit in the linear regime. Tests using improved mock catalogs demonstrate a reduced bias and a better fit. We find for the Mark III and SFI data Ω_m = 0.35± 0.09 with σ_8Ω_m^{0.6} = 0.55± 0.10 (90% errors). When allowing deviations from ΛCDM, we find an indication for a wiggle in the power spectrum in the form of an excess near k ˜ 0.05 and a deficiency at k ˜ 0.1 (h^{-1}Mpc)^{-1} - a "cold flow" which may be related to a feature indicated from redshift surveys and the second peak in the CMB anisotropy. A χ^2 test applied to principal modes demonstrates that the nonlinear procedure improves the goodness of fit. The Principal Component Analysis (PCA) helps identifying spatial features of the data and fine-tuning the theoretical and error models. We address the potential for optimal data compression using PCA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, William V.; Chayer, Pierre, E-mail: dixon@stsci.edu, E-mail: chayer@stsci.edu
The far-ultraviolet spectrum of the Bright Star (B8 III) in 47 Tuc (NGC 104) shows a remarkable pattern: it is well fit by local thermodynamic equilibrium models at wavelengths longer than Ly{beta}, but at shorter wavelengths it is fainter than the models by a factor of two. A spectrum of this star obtained with the Far Ultraviolet Spectroscopic Explorer shows broad absorption troughs with sharp edges at 995 and 1010 A and a deep absorption feature at 1072 A; none of which are predicted by the models. We find that these features are caused by resonances in the photoionization crossmore » sections of the first and second excited states of atomic nitrogen (2s {sup 2} 2p {sup 3} {sup 2} D {sup 0} and {sup 2} P {sup 0}). Using cross sections from the Opacity Project, we can reproduce these features, but only if we use the cross sections at their full resolution, rather than the resonance-averaged cross sections usually employed to model stellar atmospheres. These resonances are strongest in stellar atmospheres with enhanced nitrogen and depleted carbon abundances, a pattern typical of post-asymptotic giant branch stars.« less
Measuring Quasar Spin via X-ray Continuum Fitting
NASA Astrophysics Data System (ADS)
Jenkins, Matthew; Pooley, David; Rappaport, Saul; Steiner, Jack
2018-01-01
We have identified several quasars whose X-ray spectra appear very soft. When fit with power-law models, the best-fit indices are greater than 3. This is very suggestive of thermal disk emission, indicating that the X-ray spectrum is dominated by the disk component. Galactic black hole binaries in such states have been successfully fit with disk-blackbody models to constrain the inner radius, which also constrains the spin of the black hole. We have fit those models to XMM-Newton spectra of several of our identified soft X-ray quasars to place constraints on the spins of the supermassive black holes.
Cosmic microwave background reconstruction from WMAP and Planck PR2 data
NASA Astrophysics Data System (ADS)
Bobin, J.; Sureau, F.; Starck, J.-L.
2016-06-01
We describe a new estimate of the cosmic microwave background (CMB) intensity map reconstructed by a joint analysis of the full Planck 2015 data (PR2) and nine years of WMAP data. The proposed map provides more than a mere update of the CMB map introduced in a previous paper since it benefits from an improvement of the component separation method L-GMCA (Local-Generalized Morphological Component Analysis), which facilitates efficient separation of correlated components. Based on the most recent CMB data, we further confirm previous results showing that the proposed CMB map estimate exhibits appealing characteristics for astrophysical and cosmological applications: I) it is a full-sky map as it did not require any inpainting or interpolation postprocessing; II) foreground contamination is very low even on the galactic center; and III) the map does not exhibit any detectable trace of thermal Sunyaev-Zel'dovich contamination. We show that its power spectrum is in good agreement with the Planck PR2 official theoretical best-fit power spectrum. Finally, following the principle of reproducible research, we provide the codes to reproduce the L-GMCA, which makes it the only reproducible CMB map. The reconstructed CMB map and the code are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A50
NASA Technical Reports Server (NTRS)
Holman, gordon; Dennis Brian R.; Tolbert, Anne K.; Schwartz, Richard
2010-01-01
Solar nonthermal hard X-ray (HXR) flare spectra often cannot be fitted by a single power law, but rather require a downward break in the photon spectrum. A possible explanation for this spectral break is nonuniform ionization in the emission region. We have developed a computer code to calculate the photon spectrum from electrons with a power-law distribution injected into a thick-target in which the ionization decreases linearly from 100% to zero. We use the bremsstrahlung cross-section from Haug (1997), which closely approximates the full relativistic Bethe-Heitler cross-section, and compare photon spectra computed from this model with those obtained by Kontar, Brown and McArthur (2002), who used a step-function ionization model and the Kramers approximation to the cross-section. We find that for HXR spectra from a target with nonuniform ionization, the difference (Delta-gamma) between the power-law indexes above and below the break has an upper limit between approx.0.2 and 0.7 that depends on the power-law index delta of the injected electron distribution. A broken power-law spectrum with a. higher value of Delta-gamma cannot result from nonuniform ionization alone. The model is applied to spectra obtained around the peak times of 20 flares observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI from 2002 to 2004 to determine whether thick-target nonuniform ionization can explain the measured spectral breaks. A Monte Carlo method is used to determine the uncertainties of the best-fit parameters, especially on Delta-gamma. We find that 15 of the 20 flare spectra require a downward spectral break and that at least 6 of these could not be explained by nonuniform ionization alone because they had values of Delta-gamma with less than a 2.5% probability of being consistent with the computed upper limits from the model. The remaining 9 flare spectra, based on this criterion, are consistent with the nonuniform ionization model.
Current Results of NEUTRINO-4 Experiment
NASA Astrophysics Data System (ADS)
Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.
2017-12-01
The main goal of experiment “Neutrino-4” is to search for the oscillation of reactor antineutrino to a sterile state. Experiment is conducted on SM-3 research reactor (Dimitrovgrad, Russia). Data collection with full-scale detector with liquid scintillator volume of 3m3 was started in June 2016. We present the results of measurements of reactor antineutrino flux dependence on the distance in range 6- 12 meters from the center of the reactor. At that distance range, the fit of experimental dependence has good agreement with the law 1/L2. Which means, at achieved during the data collecting accuracy level oscillations to sterile state are not observed. In addition, the spectrum of prompt signals of neutrino-like events at different distances have been presented.
A low volume 3D-printed temperature-controllable cuvette for UV visible spectroscopy.
Pisaruka, Jelena; Dymond, Marcus K
2016-10-01
We report the fabrication of a 3D-printed water-heated cuvette that fits into a standard UV visible spectrophotometer. Full 3D-printable designs are provided and 3D-printing conditions have been optimised to provide options to print the cuvette in either acrylonitrile butadiene styrene or polylactic acid polymers, extending the range of solvents that are compatible with the design. We demonstrate the efficacy of the cuvette by determining the critical micelle concentration of sodium dodecyl sulphate at 40 °C, the molar extinction coefficients of cobalt nitrate and dsDNA and by reproducing the thermochromic UV visible spectrum of a mixture of cobalt chloride, water and propan-2-ol. Copyright © 2016 Elsevier Inc. All rights reserved.
Improvements in prevalence trend fitting and incidence estimation in EPP 2013
Brown, Tim; Bao, Le; Eaton, Jeffrey W.; Hogan, Daniel R.; Mahy, Mary; Marsh, Kimberly; Mathers, Bradley M.; Puckett, Robert
2014-01-01
Objective: Describe modifications to the latest version of the Joint United Nations Programme on AIDS (UNAIDS) Estimation and Projection Package component of Spectrum (EPP 2013) to improve prevalence fitting and incidence trend estimation in national epidemics and global estimates of HIV burden. Methods: Key changes made under the guidance of the UNAIDS Reference Group on Estimates, Modelling and Projections include: availability of a range of incidence calculation models and guidance for selecting a model; a shift to reporting the Bayesian median instead of the maximum likelihood estimate; procedures for comparison and validation against reported HIV and AIDS data; incorporation of national surveys as an integral part of the fitting and calibration procedure, allowing survey trends to inform the fit; improved antenatal clinic calibration procedures in countries without surveys; adjustment of national antiretroviral therapy reports used in the fitting to include only those aged 15–49 years; better estimates of mortality among people who inject drugs; and enhancements to speed fitting. Results: The revised models in EPP 2013 allow closer fits to observed prevalence trend data and reflect improving understanding of HIV epidemics and associated data. Conclusion: Spectrum and EPP continue to adapt to make better use of the existing data sources, incorporate new sources of information in their fitting and validation procedures, and correct for quantifiable biases in inputs as they are identified and understood. These adaptations provide countries with better calibrated estimates of incidence and prevalence, which increase epidemic understanding and provide a solid base for program and policy planning. PMID:25406747
Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory
NASA Astrophysics Data System (ADS)
Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Ayala Solares, H. A.; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Berley, D.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; de la Fuente, E.; De León, C.; DeYoung, T.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Gerhardt, M.; González Munöz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hinton, J.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yapici, T.; Yodh, G. B.; Younk, P. W.; Zepeda, A.; Zhou, H.
2017-07-01
The Crab Nebula is the brightest TeV gamma-ray source in the sky and has been used for the past 25 years as a reference source in TeV astronomy, for calibration and verification of new TeV instruments. The High Altitude Water Cherenkov Observatory (HAWC), completed in early 2015, has been used to observe the Crab Nebula at high significance across nearly the full spectrum of energies to which HAWC is sensitive. HAWC is unique for its wide field of view, nearly 2 sr at any instant, and its high-energy reach, up to 100 TeV. HAWC’s sensitivity improves with the gamma-ray energy. Above ˜1 TeV the sensitivity is driven by the best background rejection and angular resolution ever achieved for a wide-field ground array. We present a time-integrated analysis of the Crab using 507 live days of HAWC data from 2014 November to 2016 June. The spectrum of the Crab is fit to a function of the form φ {(E)={φ }0(E/{E}0)}-α -β \\cdot {ln(E/{E}0)}. The data is well fitted with values of α = 2.63 ± 0.03, β = 0.15 ± 0.03, and {{log}}10({φ }0 {{cm}}2 {{s}} {TeV})=-12.60+/- 0.02 when E 0 is fixed at 7 TeV and the fit applies between 1 and 37 TeV. Study of the systematic errors in this HAWC measurement is discussed and estimated to be ±50% in the photon flux between 1 and 37 TeV. Confirmation of the Crab flux serves to establish the HAWC instrument’s sensitivity for surveys of the sky. The HAWC all-sky survey will be the deepest survey of the northern sky ever conducted in the multi-TeV band.
Optimal Pulse Processing, Pile-Up Decomposition, and Applications of Silicon Drift Detectors at LCLS
Blaj, G.; Kenney, C. J.; Dragone, A.; ...
2017-10-11
Silicon drift detectors (SDDs) revolutionized spectroscopy in fields as diverse as geology and dentistry. For a subset of experiments at ultrafast, X-ray free-electron lasers (FELs), SDDs can make substantial contributions. Often the unknown spectrum is interesting, carrying science data, or the background measurement is useful to identify unexpected signals. Many measurements involve only several discrete photon energies known a priori, allowing single-event decomposition of pile-up and spectroscopic photon counting. We designed a pulse function and demonstrated that the signal amplitude (i.e., proportional to the detected energy and obtained from fitting with the pulse function), rise time, and pulse height aremore » interrelated, and at short peaking times, the pulse height and pulse area are not optimal estimators for detected energy; instead, the signal amplitude and rise time are obtained for each pulse by fitting, thus removing the need for pulse shaping. By avoiding pulse shaping, rise times of tens of nanoseconds resulted in reduced pulse pile-up and allowed decomposition of remaining pulse pile-up at photon separation times down to hundreds of nanoseconds while yielding time-of-arrival information with the precision of 10 ns. Waveform fitting yields simultaneously high energy resolution and high counting rates (two orders of magnitude higher than current digital pulse processors). At pulsed sources or high photon rates, photon pile-up still occurs. We showed that pile-up spectrum fitting is relatively simple and preferable to pile-up spectrum deconvolution. We then developed a photon pile-up statistical model for constant intensity sources, extended it to variable intensity sources (typical for FELs), and used it to fit a complex pileup spectrum. We subsequently developed a Bayesian pile-up decomposition method that allows decomposing pile-up of single events with up to six photons from six monochromatic lines with 99% accuracy. The usefulness of SDDs will continue into the X-ray FEL era of science. Their successors, the ePixS hybrid pixel detectors, already offer hundreds of pixels, each with a similar performance to an SDD, in a compact, robust and affordable package.« less
Optimal Pulse Processing, Pile-Up Decomposition, and Applications of Silicon Drift Detectors at LCLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaj, G.; Kenney, C. J.; Dragone, A.
Silicon drift detectors (SDDs) revolutionized spectroscopy in fields as diverse as geology and dentistry. For a subset of experiments at ultrafast, X-ray free-electron lasers (FELs), SDDs can make substantial contributions. Often the unknown spectrum is interesting, carrying science data, or the background measurement is useful to identify unexpected signals. Many measurements involve only several discrete photon energies known a priori, allowing single-event decomposition of pile-up and spectroscopic photon counting. We designed a pulse function and demonstrated that the signal amplitude (i.e., proportional to the detected energy and obtained from fitting with the pulse function), rise time, and pulse height aremore » interrelated, and at short peaking times, the pulse height and pulse area are not optimal estimators for detected energy; instead, the signal amplitude and rise time are obtained for each pulse by fitting, thus removing the need for pulse shaping. By avoiding pulse shaping, rise times of tens of nanoseconds resulted in reduced pulse pile-up and allowed decomposition of remaining pulse pile-up at photon separation times down to hundreds of nanoseconds while yielding time-of-arrival information with the precision of 10 ns. Waveform fitting yields simultaneously high energy resolution and high counting rates (two orders of magnitude higher than current digital pulse processors). At pulsed sources or high photon rates, photon pile-up still occurs. We showed that pile-up spectrum fitting is relatively simple and preferable to pile-up spectrum deconvolution. We then developed a photon pile-up statistical model for constant intensity sources, extended it to variable intensity sources (typical for FELs), and used it to fit a complex pileup spectrum. We subsequently developed a Bayesian pile-up decomposition method that allows decomposing pile-up of single events with up to six photons from six monochromatic lines with 99% accuracy. The usefulness of SDDs will continue into the X-ray FEL era of science. Their successors, the ePixS hybrid pixel detectors, already offer hundreds of pixels, each with a similar performance to an SDD, in a compact, robust and affordable package.« less
NEBULAR: Spectrum synthesis for mixed hydrogen-helium gas in ionization equilibrium
NASA Astrophysics Data System (ADS)
Schirmer, Mischa
2016-08-01
NEBULAR synthesizes the spectrum of a mixed hydrogen helium gas in collisional ionization equilibrium. It is not a spectral fitting code, but it can be used to resample a model spectrum onto the wavelength grid of a real observation. It supports a wide range of temperatures and densities. NEBULAR includes free-free, free-bound, two-photon and line emission from HI, HeI and HeII. The code will either return the composite model spectrum, or, if desired, the unrescaled atomic emission coefficients. It is written in C++ and depends on the GNU Scientific Library (GSL).
Observation of the ankle and evidence for a high-energy break in the cosmic ray spectrum
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abuzayyad, T.; Amman, J.; Archbold, G.; Atkins, R.; Bellido, J.; Belov, K.; Belz, J.; Benzvi, S.; Bergman, D.
2005-07-01
We have measured the cosmic ray spectrum at energies above $10^{17}$ eV using the two air fluorescence detectors of the High Resolution Fly's Eye experiment operating in monocular mode. We describe the detector, PMT and atmospheric calibrations, and the analysis techniques for the two detectors. We fit the spectrum to models describing galactic and extragalactic sources. Our measured spectrum gives an observation of a feature known as the ``ankle'' near $3\\times 10^{18}$ eV, and strong evidence for a suppression near $6\\times 10^{19}$ eV.
A method for atomic-level noncontact thermometry with electron energy distribution
NASA Astrophysics Data System (ADS)
Kinoshita, Ikuo; Tsukada, Chiharu; Ouchi, Kohei; Kobayashi, Eiichi; Ishii, Juntaro
2017-04-01
We devised a new method of determining the temperatures of materials with their electron-energy distributions. The Fermi-Dirac distribution convoluted with a linear combination of Gaussian and Lorentzian distributions was fitted to the photoelectron spectrum measured for the Au(110) single-crystal surface at liquid N2-cooled temperature. The fitting successfully determined the surface-local thermodynamic temperature and the energy resolution simultaneously from the photoelectron spectrum, without any preliminary results of other measurements. The determined thermodynamic temperature was 99 ± 2.1 K, which was in good agreement with the reference temperature of 98.5 ± 0.5 K measured using a silicon diode sensor attached to the sample holder.
Method for Making Measurements of the Post-Combustion Residence Time in a Gas Turbine Engine
NASA Technical Reports Server (NTRS)
Miles, Jeffrey H (Inventor)
2015-01-01
A system and method of measuring a residence time in a gas-turbine engine is provided, whereby the method includes placing pressure sensors at a combustor entrance and at a turbine exit of the gas-turbine engine and measuring a combustor pressure at the combustor entrance and a turbine exit pressure at the turbine exit. The method further includes computing cross-spectrum functions between a combustor pressure sensor signal from the measured combustor pressure and a turbine exit pressure sensor signal from the measured turbine exit pressure, applying a linear curve fit to the cross-spectrum functions, and computing a post-combustion residence time from the linear curve fit.
Interacting dark sector and precision cosmology
NASA Astrophysics Data System (ADS)
Buen-Abad, Manuel A.; Schmaltz, Martin; Lesgourgues, Julien; Brinckmann, Thejs
2018-01-01
We consider a recently proposed model in which dark matter interacts with a thermal background of dark radiation. Dark radiation consists of relativistic degrees of freedom which allow larger values of the expansion rate of the universe today to be consistent with CMB data (H0-problem). Scattering between dark matter and radiation suppresses the matter power spectrum at small scales and can explain the apparent discrepancies between ΛCDM predictions of the matter power spectrum and direct measurements of Large Scale Structure LSS (σ8-problem). We go beyond previous work in two ways: 1. we enlarge the parameter space of our previous model and allow for an arbitrary fraction of the dark matter to be interacting and 2. we update the data sets used in our fits, most importantly we include LSS data with full k-dependence to explore the sensitivity of current data to the shape of the matter power spectrum. We find that LSS data prefer models with overall suppressed matter clustering due to dark matter - dark radiation interactions over ΛCDM at 3–4 σ. However recent weak lensing measurements of the power spectrum are not yet precise enough to clearly distinguish two limits of the model with different predicted shapes for the linear matter power spectrum. In two appendices we give a derivation of the coupled dark matter and dark radiation perturbation equations from the Boltzmann equation in order to clarify a confusion in the recent literature, and we derive analytic approximations to the solutions of the perturbation equations in the two physically interesting limits of all dark matter weakly interacting or a small fraction of dark matter strongly interacting.
Nano-Optoelectronic Integration on Silicon
2012-12-14
hole recombination, a material gain spectrum can be derived as dE EE ffM mcn e g ing in vcr r 22 0 2 2 00 2... ffM mhc en r ing in vcr r sp (4.3) 48 Figure 4.12 Fitting spontaneous emission spectrum. The experimental
NASA Astrophysics Data System (ADS)
Kalosakas, G.; Aubry, S.; Tsironis, G. P.
1998-10-01
We use a stationary and normal mode analysis of the semiclassical Holstein model in order to connect the low-frequency linear polaron modes to low-lying far-infrared lines of the acetanilide spectrum and through parameter fitting we comment on the validity of the polaron results in this system.
Enhancing the Motor Skills of Children with Autism Spectrum Disorders: A Pool-Based Approach
ERIC Educational Resources Information Center
Lee, Jihyun; Porretta, David L.
2013-01-01
Children with autism spectrum disorders (ASDs) often experience difficulties with motor skill learning and performance. The pool is a unique learning environment that can help children with ASDs learn or improve aquatic skills, fitness, and social skills. A pool-based approach is also aligned with the elements of dynamic systems theory, which…
Universal fitting formulae for baryon oscillation surveys
NASA Astrophysics Data System (ADS)
Blake, Chris; Parkinson, David; Bassett, Bruce; Glazebrook, Karl; Kunz, Martin; Nichol, Robert C.
2006-01-01
The next generation of galaxy surveys will attempt to measure the baryon oscillations in the clustering power spectrum with high accuracy. These oscillations encode a preferred scale which may be used as a standard ruler to constrain cosmological parameters and dark energy models. In this paper we present simple analytical fitting formulae for the accuracy with which the preferred scale may be determined in the tangential and radial directions by future spectroscopic and photometric galaxy redshift surveys. We express these accuracies as a function of survey parameters such as the central redshift, volume, galaxy number density and (where applicable) photometric redshift error. These fitting formulae should greatly increase the efficiency of optimizing future surveys, which requires analysis of a potentially vast number of survey configurations and cosmological models. The formulae are calibrated using a grid of Monte Carlo simulations, which are analysed by dividing out the overall shape of the power spectrum before fitting a simple decaying sinusoid to the oscillations. The fitting formulae reproduce the simulation results with a fractional scatter of 7 per cent (10 per cent) in the tangential (radial) directions over a wide range of input parameters. We also indicate how sparse-sampling strategies may enhance the effective survey area if the sampling scale is much smaller than the projected baryon oscillation scale.
High-precision measurement of the X-ray Cu Kα spectrum
Mendenhall, Marcus H.; Henins, Albert; Hudson, Lawrence T.; Szabo, Csilla I.; Windover, Donald; Cline, James P.
2017-01-01
The structure of the X-ray emission lines of the Cu Kα complex has been remeasured on a newly commissioned instrument, in a manner directly traceable to the Système Internationale definition of the meter. In this measurement, the region from 8000 eV to 8100 eV has been covered with a highly precise angular scale, and well-defined system efficiency, providing accurate wavelengths and relative intensities. This measurement updates the standard multi-Lorentzian-fit parameters from Härtwig, Hölzer, et al., and is in modest disagreement with their results for the wavelength of the Kα1 line when compared via quadratic fitting of the peak top; the intensity ratio of Kα1 to Kα2 agrees within the combined error bounds. However, the position of the fitted top of Kα1 is very sensitive to the fit parameters, so it is not believed to be a robust value to quote without further qualification. We also provide accurate intensity and wavelength information for the so-called Kα3,4 “satellite” complex. Supplementary data is provided which gives the entire shape of the spectrum in this region, allowing it to be used directly in cases where simplified, multi-Lorentzian fits to it are not sufficiently accurate. PMID:28757682
Pérez-Pérez, Beatriz; Cristóbal-Narváez, Paula; Sheinbaum, Tamara; Kwapil, Thomas R; Ballespí, Sergi; Peña, Elionora; de Castro-Catala, Marta; Riba, Maria Dolors; Rosa, Araceli; Barrantes-Vidal, Neus
2018-01-01
Gene-environment interaction (GxE) research has highlighted the importance of investigating the FK506 binding protein 51 (FKBP5) gene as a sensitivity gene. However, previous GxE studies with FKBP5 have not measured the full environmental spectrum or applied statistical tests to discern whether the GxE interaction fits better with the differential-susceptibility or diathesis-stress hypotheses. This study examined whether single nucleotide polymorphisms (SNPs) on FKBP5 gene moderate the association of positive and negative recent life events (LEs) with depressive symptoms, state-anxiety, neuroticism, and social anxiety traits. A total of 86 nonclinical young adults were administered psychological measures and were genotyped for five FKBP5 SNPs (rs3800373, rs9296158, rs1360780, rs9470080 and rs4713916). Regression analyses indicated significant GxE interactions for social anxiety and neuroticism. The interactions predicting neuroticism fit different models for different SNPs, although the overall effect indicated by the haplotype was consistent with the differential-susceptibility hypothesis: the risk-haplotype group presented higher neuroticism in the presence of more negative LEs and lower neuroticism in the presence of more positive LEs. The GxE interactions for social anxiety were consistent with the diathesis-stress model. The lack of significance in the for-better side for social anxiety might be related to the fact that it mapped onto low extraversion, which is associated with a lower permeability to positive experiences. Findings underscore the importance of testing the differential-susceptibility model in relation to FKBP5 to adequately characterize its role in healthy and pathological developmental processes.
Neutrinos as a diagnostic of cosmic ray galactic-extragalactic transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlers, Markus; Ringwald, Andreas; Anchordoqui, Luis A.
2005-07-15
Motivated by a recent change in viewing the onset of the extragalactic component in the cosmic ray spectrum, we have fitted the observed data down to 10{sup 8.6} GeV and have obtained the corresponding power emissivity. This transition energy is well below the threshold for resonant p{gamma} absorption on the cosmic microwave background, and thus source evolution is an essential ingredient in the fitting procedure. Two-parameter fits in the spectral and redshift evolution indices show that a standard Fermi E{sub i}{sup -2} source spectrum is excluded at larger than 95% confidence level (CL). Armed with the primordial emissivity, we followmore » Waxman and Bahcall to derive the associated neutrino flux on the basis of optically thin sources. For pp interactions as the generating mechanism, the neutrino flux exceeds the AMANDA-B10 90% CL upper limits. In the case of p{gamma} dominance, the flux is consistent with AMANDA-B10 data. In the new scenario the source neutrino flux is considerably enhanced, especially below 10{sup 9} GeV. Should data from AMANDA-II prove consistent with the model, we show that IceCube can measure the characteristic power law of the neutrino spectrum, and thus provide a window on the source dynamics.« less
Full Spectrum Conversion Using Traveling Pulse Wave Quantization
2017-03-01
Full Spectrum Conversion Using Traveling Pulse Wave Quantization Michael S. Kappes Mikko E. Waltari IQ-Analog Corporation San Diego, California...temporal-domain quantization technique called Traveling Pulse Wave Quantization (TPWQ). Full spectrum conversion is defined as the complete...pulse width measurements that are continuously generated hence the name “traveling” pulse wave quantization. Our TPWQ-based ADC is composed of a
Biological Effects Of Full-Spectrum Lighting
NASA Astrophysics Data System (ADS)
Bickford, Elwood D.
1980-10-01
Humans and other living organisms have evolved various known and unknown photoreceptors and responses under full-spectrum optical radiation of sun and sky at the earth's surface. The trend to indoor living over the past 100 years has produced a self-exile from this radiation environment resulting in the disease conditions of rickets and erythema. Concerns for these diseases have pointed attention to the delicate balance between the beneficial and detrimental effects of full-spectrum optical radiation and has confounded the concepts of illumination and radiation safety criteria. Further knowledge has to be obtained to better evaluate the known and unknown effects of full-spectrum optical radiation in a modern society.
NASA Astrophysics Data System (ADS)
Timmons, Nicholas; Cooray, Asantha; Feng, Chang; Keating, Brian
2017-11-01
We measure the cosmic microwave background (CMB) skewness power spectrum in Planck, using frequency maps of the HFI instrument and the Sunyaev-Zel’dovich (SZ) component map. The two-to-one skewness power spectrum measures the cross-correlation between CMB lensing and the thermal SZ effect. We also directly measure the same cross-correlation using the Planck CMB lensing map and the SZ map and compare it to the cross-correlation derived from the skewness power spectrum. We model fit the SZ power spectrum and CMB lensing-SZ cross-power spectrum via the skewness power spectrum to constrain the gas pressure profile of dark matter halos. The gas pressure profile is compared to existing measurements in the literature including a direct estimate based on the stacking of SZ clusters in Planck.
Theoretical Interpretation of Pass 8 Fermi -LAT e + + e - Data
Di Mauro, M.; Manconi, S.; Vittino, A.; ...
2017-08-17
The flux of positrons and electrons (e + + e -) has been measured by the Fermi Large Area Telescope (LAT) in the energy range between 7 GeV and 2 TeV. Here, we discuss a number of interpretations of Pass 8 Fermi-LAT e + + e - spectrum, combining electron and positron emission from supernova remnants (SNRs) and pulsar wind nebulae (PWNe), or produced by the collision of cosmic rays (CRs) with the interstellar medium. We also found that the Fermi-LAT spectrum is compatible with the sum of electrons from a smooth SNR population, positrons from cataloged PWNe, and amore » secondary component. If we include in our analysis constraints from the AMS-02 positron spectrum, we obtain a slightly worse fit to the e + + e - Fermi-LAT spectrum, depending on the propagation model. As an additional scenario, we replace the smooth SNR component within 0.7 kpc with the individual sources found in Green's catalog of Galactic SNRs. We find that separate consideration of far and near sources helps to reproduce the e + + e - Fermi-LAT spectrum. However, we show that the fit degrades when the radio constraints on the positron emission from Vela SNR (which is the main contributor at high energies) are taken into account. We find that a break in the power-law injection spectrum at about 100 GeV can also reproduce the measured e + + e -spectrum and, among the CR propagation models that we consider, no reasonable break of the power-law dependence of the diffusion coefficient can modify the electron flux enough to reproduce the observed shape.« less
Theoretical Interpretation of Pass 8 Fermi -LAT e + + e - Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Mauro, M.; Manconi, S.; Vittino, A.
The flux of positrons and electrons (e + + e -) has been measured by the Fermi Large Area Telescope (LAT) in the energy range between 7 GeV and 2 TeV. Here, we discuss a number of interpretations of Pass 8 Fermi-LAT e + + e - spectrum, combining electron and positron emission from supernova remnants (SNRs) and pulsar wind nebulae (PWNe), or produced by the collision of cosmic rays (CRs) with the interstellar medium. We also found that the Fermi-LAT spectrum is compatible with the sum of electrons from a smooth SNR population, positrons from cataloged PWNe, and amore » secondary component. If we include in our analysis constraints from the AMS-02 positron spectrum, we obtain a slightly worse fit to the e + + e - Fermi-LAT spectrum, depending on the propagation model. As an additional scenario, we replace the smooth SNR component within 0.7 kpc with the individual sources found in Green's catalog of Galactic SNRs. We find that separate consideration of far and near sources helps to reproduce the e + + e - Fermi-LAT spectrum. However, we show that the fit degrades when the radio constraints on the positron emission from Vela SNR (which is the main contributor at high energies) are taken into account. We find that a break in the power-law injection spectrum at about 100 GeV can also reproduce the measured e + + e -spectrum and, among the CR propagation models that we consider, no reasonable break of the power-law dependence of the diffusion coefficient can modify the electron flux enough to reproduce the observed shape.« less
Modelling redshift space distortion in the post-reionization H I 21-cm power spectrum
NASA Astrophysics Data System (ADS)
Sarkar, Debanjan; Bharadwaj, Somnath
2018-05-01
The post-reionization H I 21-cm signal is an excellent candidate for precision cosmology, this however requires accurate modelling of the expected signal. Sarkar et al. have simulated the real space H I 21-cm signal and have modelled the H I power spectrum as P_{{H I}}(k)=b^2 P(k), where P(k) is the dark matter power spectrum and b(k) is a (possibly complex) scale-dependent bias for which fitting formulas have been provided. This paper extends these simulations to incorporate redshift space distortion and predicts the expected redshift space H I 21-cm power spectrum P^s_{{H I}}(k_{\\perp },k_{allel }) using two different prescriptions for the H I distributions and peculiar velocities. We model P^s_{{H I}}(k_{\\perp },k_{allel }), assuming that it is the product of P_{{H I}}(k)=b^2 P(k) with a Kaiser enhancement term and a Finger of God (FoG) damping which has σp the pair velocity dispersion as a free parameter. Considering several possibilities for the bias and the damping profile, we find that the models with a scale-dependent bias and a Lorentzian damping profile best fit the simulated P^s_{{H I}}(k_{\\perp },k_{allel }) over the entire range 1 ≤ z ≤ 6. The best-fitting value of σp falls approximately as (1 + z)-m with m = 2 and 1.2, respectively, for the two different prescriptions. The model predictions are consistent with the simulations for k < 0.3 Mpc-1 over the entire z range for the monopole P^s_0(k), and at z ≤ 3 for the quadrupole P^s_2(k). At z ≥ 4 the models underpredict P^s_2(k) at large k, and the fit is restricted to k < 0.15 Mpc-1.
2MTF - VI. Measuring the velocity power spectrum
NASA Astrophysics Data System (ADS)
Howlett, Cullan; Staveley-Smith, Lister; Elahi, Pascal J.; Hong, Tao; Jarrett, Tom H.; Jones, D. Heath; Koribalski, Bärbel S.; Macri, Lucas M.; Masters, Karen L.; Springob, Christopher M.
2017-11-01
We present measurements of the velocity power spectrum and constraints on the growth rate of structure fσ8, at redshift zero, using the peculiar motions of 2062 galaxies in the completed 2MASS Tully-Fisher survey (2MTF). To accomplish this we introduce a model for fitting the velocity power spectrum including the effects of non-linear redshift space distortions (RSD), allowing us to recover unbiased fits down to scales k = 0.2 h Mpc-1 without the need to smooth or grid the data. Our fitting methods are validated using a set of simulated 2MTF surveys. Using these simulations we also identify that the Gaussian distributed estimator for peculiar velocities of Watkins & Feldman is suitable for measuring the velocity power spectrum, but sub-optimal for the 2MTF data compared to using magnitude fluctuations δm, and that, whilst our fits are robust to a change in fiducial cosmology, future peculiar velocity surveys with more constraining power may have to marginalize over this. We obtain scale-dependent constraints on the growth rate of structure in two bins, finding fσ 8 = [0.55^{+0.16}_{-0.13},0.40^{+0.16}_{-0.17}] in the ranges k = [0.007-0.055, 0.55-0.150] h Mpc-1. We also find consistent results using four bins. Assuming scale-independence we find a value fσ 8 = 0.51^{+0.09}_{-0.08}, a ˜16 per cent measurement of the growth rate. Performing a consistency check of general relativity (GR) and combining our results with cosmic microwave background data only we find γ = 0.45^{+0.10}_{-0.11}, a remarkable constraint considering the small number of galaxies. All of our results are completely independent of the effects of galaxy bias, and fully consistent with the predictions of GR (scale-independent fσ8 and γ ≈ 0.55).
NASA Technical Reports Server (NTRS)
Bennett, C. L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Page, L.; Spergel, D. N.; Tucker, G. S.
2003-01-01
We present full sky microwave maps in five frequency bands (23 to 94 GHz) from the WMAP first year sky survey. Calibration errors are less than 0.5% and the low systematic error level is well specified. The cosmic microwave background (CMB) is separated from the foregrounds using multifrequency data. The sky maps are consistent with the 7 in. full-width at half-maximum (FWHM) Cosmic Background Explorer (COBE) maps. We report more precise, but consistent, dipole and quadrupole values. The CMB anisotropy obeys Gaussian statistics with -58 less than f(sub NL) less than 134 (95% CL). The 2 less than or = l less than or = 900 anisotropy power spectrum is cosmic variance limited for l less than 354 with a signal-to-noise ratio greater than 1 per mode to l = 658. The temperature-polarization cross-power spectrum reveals both acoustic features and a large angle correlation from reionization. The optical depth of reionization is tau = 0.17 +/- 0.04, which implies a reionization epoch of t(sub r) = 180(sup +220, sub -80) Myr (95% CL) after the Big Bang at a redshift of z(sub r) = 20(sup +10, sub -9) (95% CL) for a range of ionization scenarios. This early reionization is incompatible with the presence of a significant warm dark matter density. A best-fit cosmological model to the CMB and other measures of large scale structure works remarkably well with only a few parameters. The age of the best-fit universe is t(sub 0) = 13.7 +/- 0.2 Gyr old. Decoupling was t(sub dec) = 379(sup +8, sub -7)kyr after the Big Bang at a redshift of z(sub dec) = 1089 +/- 1. The thickness of the decoupling surface was Delta(sub z(sub dec)) = 195 +/- 2. The matter density of the universe is Omega(sub m)h(sup 2) = 0.135(sup +0.008, sub -0.009) the baryon density is Omega(sub b)h(sup 2) = 0.0224 +/- 0.0009, and the total mass-energy of the universe is Omega(sub tot) = 1.02 +/- 0.02. There is progressively less fluctuation power on smaller scales, from WMAP to fine scale CMB measurements to galaxies and finally to the Ly-alpha forest. This is accounted for with a running spectral index, significant at the approx. 2(sigma) level. The spectral index of scalar fluctuations is fit as n(sub s) = 0.93 +/-0.03 at wavenumber k(sub o) = 0.05/Mpc ((sub eff) approx. = 700), with a slope of dn(sub s)/d I(sub nk) = -0.031(sup + 0.016, sub -0.018) in the best-fit model.
Wilkinson Microwave Anisotropy Probe (WMAP) First Year Observations: TE Polarization
NASA Technical Reports Server (NTRS)
Kogut, A.; Spergel, D. N.; Barnes, C.; Bennett, C. L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Limon, M.; Meyer, S. S.; Page, L.;
2001-01-01
The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies 23, 33, 41, 61, and 94 GHz. We detect correlations between the temperature and polarization maps significant at more than 10 standard deviations. The correlations are inconsistent with instrument noise and are significantly larger than the upper limits established for potential systematic errors. The correlations are present in all WAMP frequency bands with similar amplitude from 23 to 94 GHz, and are consistent with a superposition of a CMB signal with a weak foreground. The fitted CMB component is robust against different data combinations and fitting techniques. On small angular scales (theta less than 5 deg), the WMAP data show the temperature-polarization correlation expected from adiabatic perturbations in the temperature power spectrum. The data for l greater than 20 agree well with the signal predicted solely from the temperature power spectra, with no additional free parameters. We detect excess power on large angular scales (theta greater than 10 deg) compared to predictions based on the temperature power spectra alone. The excess power is well described by reionization at redshift 11 is less than z(sub r) is less than 30 at 95% confidence, depending on the ionization history. A model-independent fit to reionization optical depth yields results consistent with the best-fit ACDM model, with best fit value t = 0.17 +/- 0.04 at 68% confidence, including systematic and foreground uncertainties. This value is larger than expected given the detection of a Gunn-Peterson trough in the absorption spectra of distant quasars, and implies that the universe has a complex ionization history: WMAP has detected the signal from an early epoch of reionization.
SDSS-IV MaNGA: bulge-disc decomposition of IFU data cubes (BUDDI)
NASA Astrophysics Data System (ADS)
Johnston, Evelyn J.; Häußler, Boris; Aragón-Salamanca, Alfonso; Merrifield, Michael R.; Bamford, Steven; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Fu, Hai; Law, David; Nitschelm, Christian; Thomas, Daniel; Roman Lopes, Alexandre; Wake, David; Yan, Renbin
2017-02-01
With the availability of large integral field unit (IFU) spectral surveys of nearby galaxies, there is now the potential to extract spectral information from across the bulges and discs of galaxies in a systematic way. This information can address questions such as how these components built up with time, how galaxies evolve and whether their evolution depends on other properties of the galaxy such as its mass or environment. We present bulge-disc decomposition of IFU data cubes (BUDDI), a new approach to fit the two-dimensional light profiles of galaxies as a function of wavelength to extract the spectral properties of these galaxies' discs and bulges. The fitting is carried out using GALFITM, a modified form of GALFIT which can fit multiwaveband images simultaneously. The benefit of this technique over traditional multiwaveband fits is that the stellar populations of each component can be constrained using knowledge over the whole image and spectrum available. The decomposition has been developed using commissioning data from the Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at APO (MaNGA) survey with redshifts z < 0.14 and coverage of at least 1.5 effective radii for a spatial resolution of 2.5 arcsec full width at half-maximum and field of view of > 22 arcsec, but can be applied to any IFU data of a nearby galaxy with similar or better spatial resolution and coverage. We present an overview of the fitting process, the results from our tests, and we finish with example stellar population analyses of early-type galaxies from the MaNGA survey to give an indication of the scientific potential of applying bulge-disc decomposition to IFU data.
Attenuation analysis of real GPR wavelets: The equivalent amplitude spectrum (EAS)
NASA Astrophysics Data System (ADS)
Economou, Nikos; Kritikakis, George
2016-03-01
Absorption of a Ground Penetrating Radar (GPR) pulse is a frequency dependent attenuation mechanism which causes a spectral shift on the dominant frequency of GPR data. Both energy variation of GPR amplitude spectrum and spectral shift were used for the estimation of Quality Factor (Q*) and subsequently the characterization of the subsurface material properties. The variation of the amplitude spectrum energy has been studied by Spectral Ratio (SR) method and the frequency shift by the estimation of the Frequency Centroid Shift (FCS) or the Frequency Peak Shift (FPS) methods. The FPS method is more automatic, less robust. This work aims to increase the robustness of the FPS method by fitting a part of the amplitude spectrum of GPR data with Ricker, Gaussian, Sigmoid-Gaussian or Ricker-Gaussian functions. These functions fit different parts of the spectrum of a GPR reference wavelet and the Equivalent Amplitude Spectrum (EAS) is selected, reproducing Q* values used in forward Q* modeling analysis. Then, only the peak frequencies and the time differences between the reference wavelet and the subsequent reflected wavelets are used to estimate Q*. As long as the EAS is estimated, it is used for Q* evaluation in all the GPR section, under the assumption that the selected reference wavelet is representative. De-phasing and constant phase shift, for obtaining symmetrical wavelets, proved useful in the sufficiency of the horizons picking. Synthetic, experimental and real GPR data were examined in order to demonstrate the effectiveness of the proposed methodology.
NASA Technical Reports Server (NTRS)
Rose, L. A.
1979-01-01
Laboratory infrared emission and absorption spectra have been taken of terrestrial silicates, meteorites, and lunar soils in the form of micrometer and submicrometer grains. The emission spectra were taken in a way that imitates telescopic observations. The purpose was to see which materials best simulate the 10-micron astrophysical feature. The emission spectra of dunite, fayalite, and Allende give a good fit to the 10-micron broadband emission feature of comets Bennett and Kohoutek. A study of the effect of grain size on the presence of the 10-micron emission feature of dunite shows that for particles larger than 37 microns no feature is seen. The emission spectrum of the Murray meteorite, a Type 2 carbonaceous chrondrite, is quite similar to the intermediate-resolution spectrum of comet Kohoutek in the 10-micron region. Hydrous silicates or amorphous magnesium silicates in combination with high-temperature condensates, such as olivine or anorthite, would yield spectra that match the intermediate-resolution spectrum of comet Kohoutek in the 10-micron region. Glassy olivine and glassy anorthite in approximately equal proportions would also give a spectrum that is a good fit to the cometary 10-micron feature.
Use of a priori spectral information in the measurement of x-ray flux with filtered diode arrays
Marrs, R. E.; Widmann, K.; Brown, G. V.; ...
2015-10-29
Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums.more » If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Here, examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics.« less
NASA Astrophysics Data System (ADS)
Fraschetti, F.; Pohl, M.
2017-10-01
We develop a model of the steady-state spectrum of the Crab nebula encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting photon differential energy spectrum. We find an impressive agreement with the observations in the synchrotron region. The predicted synchrotron self-Compton accommodates the previously unsolved origin of the broad 200 GeV peak that matches the Fermi/LAT data beyond 1 GeV with the MAGIC data. A natural interpretation of the deviation from power-law of the photon spectrum customarily fit with empirical broken power-laws is provided. This model can be applied to the radio-to- multi-TeV spectra of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants. We also show that MeV-range energetic particle distribution at interplanetary shocks typically fit with broken-power laws or Band function can be accurately reproduced by log-parabolas.
VizieR Online Data Catalog: Sgr B2(N) and Sgr B2(M) IRAM 30m line survey (Belloche+, 2013)
NASA Astrophysics Data System (ADS)
Belloche, A.; Mueller, H. S. P.; Menten, K. M.; Schilke, P.; Comito, C.
2013-08-01
The list of line identifications corresponding to the blue labels in Figs. 2 to 7 where the labels are often too crowded to be easily readable are available in ASCII format. The lists are split into six files, three for Sgr B2(N) and three for Sgr B2(M). For each source, there is one file per atmospheric window (3, 2, and 1mm). Each file is ordered by increasing frequency. The observed and synthetic spectra of Sgr B2(N) and Sgr B2(M) between 80 and 116GHz are available both in ASCII and FITS formats. The synthetic spectra were resampled to the same frequency channels as the observed spectra. The blanking value is -1000K for the ASCII files. There is one ASCII file per source. There are two FITS files per source, one for the observed spectrum and one for the synthetic spectrum. The intensities are in main-beam temperature scale in K. The blanking value is 42.75234K for the observed spectrum of SgrB2(N) and 53.96533K for the observed spectrum of SgrB2(M). (9 data files).
The intrinsic far-UV spectrum of the high-redshift quasar B1422+231
NASA Astrophysics Data System (ADS)
O'Dowd, M.; Bate, N. F.; Webster, R. L.; Labrie, K.; King, A. L.; Yong, S.-. Y.
2018-02-01
We present new spectroscopy of the z = 3.62 gravitationally lensed quasar B1422+117 from the Gemini North GMOS integral field spectrograph. We observe significant differential magnifications between the broad emission lines and the continuum, as well as across the velocity structure of the Lyman-α line. We take advantage of this differential microlensing to algebraically decompose the quasar spectrum into the absorbed broad emission line and absorbed continuum components. We use the latter to derive the intrinsic Ly α forest absorption spectrum. The proximity effect is clearly detected, with a proximity zone edge of 8.6-17.3 Mpc from the quasar, implying (perhaps intermittent) activity over at least 28 Myr. The Ly α line profile exhibits a blue excess that is inconsistent with a symmetric fit to the unabsorbed red side. This has important implications for the use of this fitting technique in estimating the absorbed blue Ly α wings of Gunn-Peterson trough quasars.
THE NuSTAR X-RAY SPECTRUM OF HERCULES X-1: A RADIATION-DOMINATED RADIATIVE SHOCK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, Michael T.; Wood, Kent S.; Becker, Peter A.
2016-11-10
We report on new spectral modeling of the accreting X-ray pulsar Hercules X-1. Our radiation-dominated radiative shock model is an implementation of the analytic work of Becker and Wolff on Comptonized accretion flows onto magnetic neutron stars. We obtain a good fit to the spin-phase-averaged 4–78 keV X-ray spectrum observed by the Nuclear Spectroscopic Telescope Array during a main-on phase of the Her X-1 35 day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters inmore » the accretion column. This is in contrast to previous phenomenological models that characterized the shape of the X-ray spectrum, but could not determine the physical parameters of the accretion flow. We describe the spectral fitting details and discuss the interpretation of the accretion flow physical parameters.« less
The background in the experiment Gerda
NASA Astrophysics Data System (ADS)
Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barnabé Heider, M.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Cossavella, F.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Ferella, A.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Guthikonda, K. K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Liu, X.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Machado, A. A.; Majorovits, B.; Maneschg, W.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Palioselitis, D.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Tarka, M.; Ur, C. A.; Vasenko, A. A.; Volynets, O.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.
2014-04-01
The GERmanium Detector Array ( Gerda) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double beta () decay of Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the value of the decay. To avoid bias in the signal search, the present analysis does not consider all those events, that fall in a 40 keV wide region centered around . The main parameters needed for the analysis are described. A background model was developed to describe the observed energy spectrum. The model contains several contributions, that are expected on the basis of material screening or that are established by the observation of characteristic structures in the energy spectrum. The model predicts a flat energy spectrum for the blinding window around with a background index ranging from 17.6 to 23.8 cts/(keV kg yr). A part of the data not considered before has been used to test if the predictions of the background model are consistent. The observed number of events in this energy region is consistent with the background model. The background at is dominated by close sources, mainly due to K, Bi, Th, Co and emitting isotopes from the Ra decay chain. The individual fractions depend on the assumed locations of the contaminants. It is shown, that after removal of the known peaks, the energy spectrum can be fitted in an energy range of 200 keV around with a constant background. This gives a background index consistent with the full model and uncertainties of the same size.
Supervised machine learning for analysing spectra of exoplanetary atmospheres
NASA Astrophysics Data System (ADS)
Márquez-Neila, Pablo; Fisher, Chloe; Sznitman, Raphael; Heng, Kevin
2018-06-01
The use of machine learning is becoming ubiquitous in astronomy1-3, but remains rare in the study of the atmospheres of exoplanets. Given the spectrum of an exoplanetary atmosphere, a multi-parameter space is swept through in real time to find the best-fit model4-6. Known as atmospheric retrieval, this technique originates in the Earth and planetary sciences7. Such methods are very time-consuming, and by necessity there is a compromise between physical and chemical realism and computational feasibility. Machine learning has previously been used to determine which molecules to include in the model, but the retrieval itself was still performed using standard methods8. Here, we report an adaptation of the `random forest' method of supervised machine learning9,10, trained on a precomputed grid of atmospheric models, which retrieves full posterior distributions of the abundances of molecules and the cloud opacity. The use of a precomputed grid allows a large part of the computational burden to be shifted offline. We demonstrate our technique on a transmission spectrum of the hot gas-giant exoplanet WASP-12b using a five-parameter model (temperature, a constant cloud opacity and the volume mixing ratios or relative abundances of molecules of water, ammonia and hydrogen cyanide)11. We obtain results consistent with the standard nested-sampling retrieval method. We also estimate the sensitivity of the measured spectrum to the model parameters, and we are able to quantify the information content of the spectrum. Our method can be straightforwardly applied using more sophisticated atmospheric models to interpret an ensemble of spectra without having to retrain the random forest.
On the interpretation of the geomagnetic energy spectrum
Benton, E.R.; Alldredge, L.R.
1987-01-01
Two recent high-degree magnetic energy spectra, based mostly on MAGSAT data, are compared and found to agree very well out to order and degree n = 15, but the spectrum remains somewhat uncertain for higher degrees. The hypothesis that a primary break in the slope of the spectrum, plotted semi-logarithmically, is due to a transition from dominance by core sources to dominance by crustal magnetization is tested. Simple arrays of dipoles and current loops are found whose combined fields fit the spectrum. Two distinctly different ranges of source depth are found to be adequate. Because one range is shallow and the other deep, the hypothesis is supported. ?? 1987.
Caregivers' management of schooling for their children with fetal alcohol spectrum disorder.
Swart, Suretha; Hall, Wendy A; McKee, William T; Ford, Laurie
2014-11-01
In this article we describe a grounded theory study of how caregivers of school-aged children with fetal alcohol spectrum disorder (FASD) managed their children's schooling. We completed 30 interviews with 17 caregivers residing in a western Canadian province, as well as document analysis and 25 hours of participant observation. We used constant comparative analysis to construct our substantive theory: intertwining to fit in. The core variable is an iterative cycle caregivers used to resolve their main concerns: preventing their children from failing academically and in social interactions and preventing themselves from being regarded as unacceptable parents. To intertwine to fit in, caregivers used two strategies: orchestrating schooling and keeping up appearances. They also regulated their relationships with their children. "Intertwining to fit in" contributes to the literature on attachment and parenting and extends explanations about caregivers' advocacy for their children with FASD. The theory has implications for school personnel and practitioners, as well as researchers. © The Author(s) 2014.
Confronting GRB prompt emission with a model for subphotospheric dissipation
Ahlgren, Björn; Larsson, Josefin; Nymark, Tanja; ...
2015-09-16
The origin of the prompt emission in gamma-ray bursts (GRBs) is still an unsolved problem and several different mechanisms have been suggested. We fit Fermi GRB data with a photospheric emission model which includes dissipation of the jet kinetic energy below the photosphere. The resulting spectra are dominated by Comptonization and contain no significant contribution from synchrotron radiation. In order to fit to the data, we span a physically motivated part of the model's parameter space and create DREAM (Dissipation with Radiative Emission as A table Model), a table model for XSPEC. Here, we show that this model can describemore » different kinds of GRB spectra, including GRB 090618, representing a typical Band function spectrum, and GRB 100724B, illustrating a double peaked spectrum, previously fitted with a Band+blackbody model, suggesting they originate from a similar scenario. We also suggest that the main difference between these two types of bursts is the optical depth at the dissipation site.« less
Reconciling the local void with the CMB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadathur, Seshadri; Sarkar, Subir
2011-03-15
In the standard cosmological model, the dimming of distant Type Ia supernovae is explained by invoking the existence of repulsive ''dark energy'' which is causing the Hubble expansion to accelerate. However, this may be an artifact of interpreting the data in an (oversimplified) homogeneous model universe. In the simplest inhomogeneous model which fits the SNe Ia Hubble diagram without dark energy, we are located close to the center of a void modeled by a Lemaitre-Tolman-Bondi metric. It has been claimed that such models cannot fit the cosmic microwave background (CMB) and other cosmological data. This is, however, based on themore » assumption of a scale-free spectrum for the primordial density perturbation. An alternative physically motivated form for the spectrum enables a good fit to both SNe Ia (Constitution/Union2) and CMB (WMAP 7-yr) data, and to the locally measured Hubble parameter. Constraints from baryon acoustic oscillations and primordial nucleosynthesis are also satisfied.« less
ERIC Educational Resources Information Center
Naemi, Bobby; Seybert, Jacob; Robbins, Steven; Kyllonen, Patrick
2014-01-01
This report introduces the "WorkFORCE"™ Assessment for Job Fit, a personality assessment utilizing the "FACETS"™ core capability, which is based on innovations in forced-choice assessment and computer adaptive testing. The instrument is derived from the fivefactor model (FFM) of personality and encompasses a broad spectrum of…
High-J rotational spectrum of toluene in |m| ⩽ 3 torsional states
NASA Astrophysics Data System (ADS)
Ilyushin, Vadim V.; Alekseev, Eugene A.; Kisiel, Zbigniew; Pszczółkowski, Lech
2017-09-01
The study of the rotational spectrum of toluene (C6H5CH3) is considerably extended to include transitions in |m| ⩽ 3 torsional states up to the onset of the submillimeter wave region. New data involving torsion-rotation transitions up to 336 GHz were combined with previously published measurements and fitted using the rho-axis-method torsion-rotation Hamiltonian. The final fit used 50 parameters to give an overall weighted root-mean-square deviation of 0.69 for a dataset consisting of 8924 transitions with J up to 94 and Ka up to 50. The new analysis allowed us to resolve all problems encountered previously for m = 0 transitions beyond a certain combination of quantum numbers J and Ka when many lines of appreciable intensity and unambiguous assignment deviated from the distorted asymmetric rotor treatment. Those discrepancies are now identified to result from m = 0 ↔ m = 3 and m = 0 ↔ m = -3 resonances, which have been successfully encompassed by the current fit. At the same time an analogous problem was discovered and fitted for m = 2 transitions, which were found to be affected by many m = 1 ↔ m = 2 resonances.
The High-Resolution, Jet-cooled Infrared Spectrum of Pentafluoroethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goss, Lisa M.; Hess, Whitney R.; Blake, Thomas A.
The jet-cooled spectrum of pentafluoroethane (C2HF5) has been recorded between 1100 and 1325 cm-1 at a resolution of 0.0022 cm-1. A rotational temperature of approximately 10 K was achieved by expanding 50 Torr of C2HF5 in 500 Torr of helium. Transitions belonging to five different fundamental vibrations have been assigned and fit to a Watson Hamiltonian: the m3 band at 1309.880494(189) cm-1, m4 at 1200.734645(67) cm-1, m5 at 1142.78147(33) cm-1, m13 at 1223.334098(115) cm-1, and m14 at 1147.394185(163) cm-1. The fit of the m4 band has an rms deviation of 0.000436 cm-1 compared to the uncertainty in the experimental linemore » position of 0.0002 cm-1. Satisfactory fits were achieved for the other four bands (m3, m5, m13, m14) at this cold temperature, with most of the centrifugal distortion constants fixed at the ground state values. Joint fits with previous work were attempted for the m4 and m13, successfully in the former case and unsuccessfully in the latter.« less
HIGH-RESOLUTION FOURIER TRANSFORM INFRARED SPECTRUM OF THE ν2 + ν12 BAND OF ETHYLENE (12C2H4)
NASA Astrophysics Data System (ADS)
Lebron, G. B.; Tan, T. L.
2013-09-01
The high-resolution Fourier transform infrared absorption spectrum of the ν2 + ν12 combination band of normal ethylene (12C2H4) in the 3050-3105 cm-1 region was recorded at a resolution of 0.0063 cm-1 and at an ambient temperature of 296 K. Upper state rovibrational analysis was carried out using a standard Watson's Hamiltonian in asymmetric reduction in Ir representation. The band center, rotational constants and centrifugal distortion constants up to quartic terms of the upper ν2 + ν12 = 1 state were determined from the final fit that included 102 infrared transitions. The root-mean-square deviation of the fit was 0.000729 cm-1.
Effect of PbO on optical properties of tellurite glass
NASA Astrophysics Data System (ADS)
Elazoumi, S. H.; Sidek, H. A. A.; Rammah, Y. S.; El-Mallawany, R.; Halimah, M. K.; Matori, K. A.; Zaid, M. H. M.
2018-03-01
Binary (1 - x)(TeO2) - x(PbO), x = 0, 0.10, 0.15, 0.20, 0.25, 0.30 mol% glass system was fabricated using melt quenching method. X-ray diffraction (XRD) technique was employed to confirm the amorphous nature. The microanalysis of the major components was performed using energy dispersive EDX and X-ray spectrometry. Both the molar volume and the density were measured. FTIR and UV spectra were recorded at 400-4000 cm-1 and 220-800 nm, respectively. The optical band gap (Eopt), Urbach's energy (Eu), index of refraction (n) were calculated using absorption spectrum fitting (ASF) and derivation of absorption spectrum fitting (DASF) methods. Molar refraction Rm and molecular polarizability αm have been calculated according to (ASF) method.
Study on peak shape fitting method in radon progeny measurement.
Yang, Jinmin; Zhang, Lei; Abdumomin, Kadir; Tang, Yushi; Guo, Qiuju
2015-11-01
Alpha spectrum measurement is one of the most important methods to measure radon progeny concentration in environment. However, the accuracy of this method is affected by the peak tailing due to the energy losses of alpha particles. This article presents a peak shape fitting method that can overcome the peak tailing problem in most situations. On a typical measured alpha spectrum curve, consecutive peaks overlap even their energies are not close to each other, and it is difficult to calculate the exact count of each peak. The peak shape fitting method uses combination of Gaussian and exponential functions, which can depict features of those peaks, to fit the measured curve. It can provide net counts of each peak explicitly, which was used in the Kerr method of calculation procedure for radon progeny concentration measurement. The results show that the fitting curve fits well with the measured curve, and the influence of the peak tailing is reduced. The method was further validated by the agreement between radon equilibrium equivalent concentration based on this method and the measured values of some commercial radon monitors, such as EQF3220 and WLx. In addition, this method improves the accuracy of individual radon progeny concentration measurement. Especially for the (218)Po peak, after eliminating the peak tailing influence, the calculated result of (218)Po concentration has been reduced by 21 %. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
[Study on phase correction method of spatial heterodyne spectrometer].
Wang, Xin-Qiang; Ye, Song; Zhang, Li-Juan; Xiong, Wei
2013-05-01
Phase distortion exists in collected interferogram because of a variety of measure reasons when spatial heterodyne spectrometers are used in practice. So an improved phase correction method is presented. The phase curve of interferogram was obtained through Fourier inverse transform to extract single side transform spectrum, based on which, the phase distortions were attained by fitting phase slope, so were the phase correction functions, and the convolution was processed between transform spectrum and phase correction function to implement spectrum phase correction. The method was applied to phase correction of actually measured monochromatic spectrum and emulational water vapor spectrum. Experimental results show that the low-frequency false signals in monochromatic spectrum fringe would be eliminated effectively to increase the periodicity and the symmetry of interferogram, in addition when the continuous spectrum imposed phase error was corrected, the standard deviation between it and the original spectrum would be reduced form 0.47 to 0.20, and thus the accuracy of spectrum could be improved.
Development and use of Fourier self deconvolution and curve-fitting in the study of coal oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, J.A.
1986-01-01
Techniques have been developed for modeling highly overlapped band multiplets. The method is based on a least-squares fit of spectra by a series of bands of known shape. Using synthetic spectra, it was shown that when bands are separated by less than their full width at half height (FWHH), valid analytical data can only be obtained after the width of each component band is narrowed by Fourier self deconvolution (FSD). The optimum method of spectral fitting determined from the study of synthetic spectra was then applied to the characterization of oxidized coals. A medium volatile bituminous coal which was airmore » oxidized at 200/sup 0/C for different lengths of time, was extracted with chloroform. A comparison of the infrared spectra of the whole coal and the extract indicated that the extracted material contains a smaller amount of carbonyl, ether, and ester groups, while the aromatic content is much higher. Oxidation does not significantly affect the aromatic content of the whole cola. Most of the aromatic groups in the CHCl/sub 3/ extract show evidence of reaction, however. The production of relatively large amounts of intramolecular aromatic anhydrides is seen in the spectrum of the extract of coals which have undergone extensive oxidation,while there is only a slight indication of this anhydride in the whole coal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timmons, Nicholas; Cooray, Asantha; Feng, Chang
2017-11-01
We measure the cosmic microwave background (CMB) skewness power spectrum in Planck , using frequency maps of the HFI instrument and the Sunyaev–Zel’dovich (SZ) component map. The two-to-one skewness power spectrum measures the cross-correlation between CMB lensing and the thermal SZ effect. We also directly measure the same cross-correlation using the Planck CMB lensing map and the SZ map and compare it to the cross-correlation derived from the skewness power spectrum. We model fit the SZ power spectrum and CMB lensing–SZ cross-power spectrum via the skewness power spectrum to constrain the gas pressure profile of dark matter halos. The gasmore » pressure profile is compared to existing measurements in the literature including a direct estimate based on the stacking of SZ clusters in Planck .« less
Acute chest pain after bench press exercise in a healthy young adult.
Smereck, Janet A; Papafilippaki, Argyro; Sudarshan, Sawali
2016-01-01
Bench press exercise, which involves repetitive lifting of weights to full arm extension while lying supine on a narrow bench, has been associated with complications ranging in acuity from simple pectoral muscle strain, to aortic and coronary artery dissection. A 39-year-old man, physically fit and previously asymptomatic, presented with acute chest pain following bench press exercise. Diagnostic evaluation led to the discovery of critical multivessel coronary occlusive disease, and subsequently, highly elevated levels of lipoprotein (a). Judicious use of ancillary testing may identify the presence of "high-risk" conditions in a seemingly "low-risk" patient. Emergency department evaluation of the young adult with acute chest pain must take into consideration an extended spectrum of potential etiologies, so as to best guide appropriate management.
Magnetically tunable graphene-based reflector under linear polarized incidence at room temperature
NASA Astrophysics Data System (ADS)
Yang, Liang; Tian, Jing; Giddens, Henry; Poumirol, Jean-Marie; Wu, JingBo; Kuzmenko, Alexey B.; Hao, Yang
2018-04-01
At the terahertz spectrum, the 2D material graphene has diagonal and Hall conductivities in the presence of a magnetic field. These peculiar properties provide graphene-based structures with a magnetically tunable response to electromagnetic waves. In this work, the absolute reflection intensity was measured for a graphene-based reflector illuminated by linearly polarized incident waves at room temperature, which demonstrated the intensity modulation depth (IMD) under different magnetostatic biases by up to 15%. Experimental data were fitted and analyzed by a modified equivalent circuit model. In addition, as an important phenomenon of the graphene gyrotropic response, Kerr rotation is discussed according to results achieved from full-wave simulations. It is concluded that the IMD is reduced for the best Kerr rotation in the proposed graphene-based reflector.
Full-sky, High-resolution Maps of Interstellar Dust
NASA Astrophysics Data System (ADS)
Meisner, Aaron Michael
We present full-sky, high-resolution maps of interstellar dust based on data from the Wide-field Infrared Survey Explorer (WISE) and Planck missions. We describe our custom processing of the entire WISE 12 micron All-Sky imaging data set, and present the resulting 15 arcsecond resolution, full-sky map of diffuse Galactic dust emission, free of compact sources and other contaminating artifacts. Our derived 12 micron dust map offers angular resolution far superior to that of all other existing full-sky, infrared dust emission maps, revealing a wealth of small-scale filamentary structure. We also apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. We derive full-sky 6.1 arcminute resolution maps of dust optical depth and temperature by fitting this two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. In doing so, we obtain the first ever full-sky 100-3000 GHz Planck-based thermal dust emission model, as well as a dust temperature correction with ~10 times enhanced angular resolution relative to DIRBE-based temperature maps. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales. Future work will focus on combining our WISE 12 micron dust map and Planck dust model to create a next-generation, full-sky dust extinction map with angular resolution several times better than Schlegel et al. (1998).
ERIC Educational Resources Information Center
VanBergeijk, Ernst
2010-01-01
Deciding what to do after high school is a daunting task for any young person, but for students on the autism spectrum, the thought can be paralyzing. Additional questions need to be asked and answered to insure a goodness of fit between the student's strengths, goals, and weaknesses and a post secondary educational program's strengths, goals, and…
NASA Astrophysics Data System (ADS)
Li, Jingnan; Wang, Shangxu; Yang, Dengfeng; Tang, Genyang; Chen, Yangkang
2018-02-01
Seismic waves propagating in the subsurface suffer from attenuation, which can be represented by the quality factor Q. Knowledge of Q plays a vital role in hydrocarbon exploration. Many methods to measure Q have been proposed, among which the central frequency shift (CFS) and the peak frequency shift (PFS) are commonly used. However, both methods are under the assumption of a particular shape for amplitude spectra, which will cause systematic error in Q estimation. Recently a new method to estimate Q has been proposed to overcome this disadvantage by using frequency weighted exponential (FWE) function to fit amplitude spectra of different shapes. In the FWE method, a key procedure is to calculate the central frequency and variance of the amplitude spectrum. However, the amplitude spectrum is susceptible to noise, whereas the power spectrum is less sensitive to random noise and has better anti-noise performance. To enhance the robustness of the FWE method, we propose a novel hybrid method by combining the advantage of the FWE method and the power spectrum, which is called the improved FWE method (IFWE). The basic idea is to consider the attenuation of the power spectrum instead of the amplitude spectrum and to use a modified FWE function to fit power spectra, according to which we derive a new Q estimation formula. Tests of noisy synthetic data show that the IFWE are more robust than the FWE. Moreover, the frequency bandwidth selection in the IFWE can be more flexible than that in the FWE. The application to field vertical seismic profile data and surface seismic data further demonstrates its validity.
Theoretical Interpretation of Pass 8 Fermi -LAT e {sup +} + e {sup −} Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Mauro, M.; Manconi, S.; Donato, F.
The flux of positrons and electrons ( e {sup +} + e {sup −}) has been measured by the Fermi Large Area Telescope (LAT) in the energy range between 7 GeV and 2 TeV. We discuss a number of interpretations of Pass 8 Fermi -LAT e {sup +} + e {sup −} spectrum, combining electron and positron emission from supernova remnants (SNRs) and pulsar wind nebulae (PWNe), or produced by the collision of cosmic rays (CRs) with the interstellar medium. We find that the Fermi -LAT spectrum is compatible with the sum of electrons from a smooth SNR population, positronsmore » from cataloged PWNe, and a secondary component. If we include in our analysis constraints from the AMS-02 positron spectrum, we obtain a slightly worse fit to the e {sup +} + e {sup −} Fermi -LAT spectrum, depending on the propagation model. As an additional scenario, we replace the smooth SNR component within 0.7 kpc with the individual sources found in Green’s catalog of Galactic SNRs. We find that separate consideration of far and near sources helps to reproduce the e {sup +} + e {sup −} Fermi -LAT spectrum. However, we show that the fit degrades when the radio constraints on the positron emission from Vela SNR (which is the main contributor at high energies) are taken into account. We find that a break in the power-law injection spectrum at about 100 GeV can also reproduce the measured e {sup +} + e {sup −} spectrum and, among the CR propagation models that we consider, no reasonable break of the power-law dependence of the diffusion coefficient can modify the electron flux enough to reproduce the observed shape.« less
Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada
NASA Technical Reports Server (NTRS)
Swayze, Gregg; Clark, Roger N.; Kruse, Fred; Sutley, Steve; Gallagher, Andrea
1992-01-01
Mineral abundance maps of 18 minerals were made of the Cuprite Mining District using 1990 AVIRIS data and the Multiple Spectral Feature Mapping Algorithm (MSFMA) as discussed in Clark et al. This technique uses least-squares fitting between a scaled laboratory reference spectrum and ground calibrated AVIRIS data for each pixel. Multiple spectral features can be fitted for each mineral and an unlimited number of minerals can be mapped simultaneously. Quality of fit and depth from continuum numbers for each mineral are calculated for each pixel and the results displayed as a multicolor image.
Probabilistic Models for Solar Particle Events
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Dietrich, W. F.; Xapsos, M. A.; Welton, A. M.
2009-01-01
Probabilistic Models of Solar Particle Events (SPEs) are used in space mission design studies to provide a description of the worst-case radiation environment that the mission must be designed to tolerate.The models determine the worst-case environment using a description of the mission and a user-specified confidence level that the provided environment will not be exceeded. This poster will focus on completing the existing suite of models by developing models for peak flux and event-integrated fluence elemental spectra for the Z>2 elements. It will also discuss methods to take into account uncertainties in the data base and the uncertainties resulting from the limited number of solar particle events in the database. These new probabilistic models are based on an extensive survey of SPE measurements of peak and event-integrated elemental differential energy spectra. Attempts are made to fit the measured spectra with eight different published models. The model giving the best fit to each spectrum is chosen and used to represent that spectrum for any energy in the energy range covered by the measurements. The set of all such spectral representations for each element is then used to determine the worst case spectrum as a function of confidence level. The spectral representation that best fits these worst case spectra is found and its dependence on confidence level is parameterized. This procedure creates probabilistic models for the peak and event-integrated spectra.
Analysis of the 3C 445 soft X-ray spectrum as observed by Chandra high-energy gratings
NASA Astrophysics Data System (ADS)
Dong, Fu-Tong; Shao, Shu-Hua; Cheng, Yan; Zeng, Jiao-Long
2018-05-01
We present a detailed analysis of the soft X-ray emission of 3C 445 using an archival Chandra High Energy Transmission Grating (HETG) spectrum. Highly-ionized H- and He-like Mg, Si and S lines, as well as a resolved low-ionized Si Kα line, are detected in the high resolution spectrum. The He-like triplets of Mg and Si are resolved into individual lines, and the calculated R ratios indicate a high density for the emitter. The low values of G ratios indicate the lines originate from collisionally ionized plasmas. However, the detection of a resolved narrow Ne X radiative recombination continua (RRC) feature in the spectrum seems to prefer a photoionized environment. The spectrum is subsequently modeled with a photoionization model, and the results are compared with those of a collisional model. Through a detailed analysis of the spectrum, we exclude a collisional origin for these emission lines. A one-component photoionization model provides a great fit to the emission features. The best-fit parameters are {log} ξ ={3.3}-0.3+0.4 erg cm s‑1, {n}{{H}}={5}-4.5+15× {10}10 cm‑3 and {N}{{H}}={2.5}-1.7+3.8× {10}20 cm‑2. According to the calculated high density for the emitter, the measured velocity widths of the emission lines and the inferred radial distance (6 × 1014 – 8 × 1015 cm), we suggest the emission lines originating from matter are located in the broad line region (BLR).
Mini-TES Observations of Comanche Carbonate and its Distribution
NASA Astrophysics Data System (ADS)
Ruff, S. W.; Morris, R. V.
2010-12-01
The discovery by the Spirit rover of outcrops rich in Mg-Fe carbonate [Morris et al., 2010] represents another manifestation of a diverse aqueous history in Gusev crater. In 2005, observations by the Mössbauer spectrometer (MB) on outcrops dubbed Comanche provided initial indication of Fe-Mg carbonate that was subsequently supported by analysis of elemental data from the Alpha Particle X-ray Spectrometer (APXS). The recognition of a carbonate component in thermal infrared spectra measured by the Miniature Thermal Emission Spectrometer (Mini-TES) was significantly delayed due to dust contamination of the instrument’s optics. With the implementation of a viable dust correction, the Comanche spectra were revisited and presented clear and compelling evidence for a Mg-Fe carbonate component that could be as much as a third of the total mineral abundance. The data from all three instruments in combination are best matched by Mg-Fe carbonate with an abundance of 16-34 wt%. Mini-TES spectra were acquired for 12 targets at various locations on the Comanche (4-5 m long) and Comanche Spur (1-2 m long) outcrops, the latter being the location of the MB and APXS measurements. The two outcrops are spectrally comparable and share similar morphology and texture based on color images from the Panoramic Camera (Pancam). The highest quality Mini-TES spectrum comes from the larger Comanche outcrop on a target named Saupitty. Linear least squares modeling of the Saupitty spectrum employed a library of laboratory spectra tailored for consistency with the APXS and MB data and included spectra representing Martian dust, a “slope” spectrum to account for any temperature determination errors, and a blackbody spectrum to account for differences in spectral contrast between the laboratory and Mini-TES spectra. Successful modeling of the Comanche Saupitty spectrum required one or more carbonate phases to obtain a good fit. Excluding all carbonates from the full starting library more than doubled the root-mean-squared error of the model fit (0.147% vs. 0.299%). Because Mg-Fe carbonate and Ca-Mg carbonate (dolomite) are so spectrally similar over the range used for modeling, both provide a comparable fit. However, Ca-rich carbonates like dolomite are precluded based on APXS data and are inconsistent with MB results. The Comanche carbonate rocks are stratigraphically above a set of olivine-rich volcaniclastic rocks known as Algonquin class that mantle the Haskin Ridge feature of the Columbia Hills. Based on ~50 Mini-TES observations, the Comanche outcrops are the only rocks that host abundant carbonate. However, a target at the base of the larger Comanche outcrop appears spectrally transitional between the carbonate and olivine units. This transitional spectral character applies to additional outcrops a few 10s of meters away from Comanche that also appear stratigraphically transitional. Additional work will attempt to establish whether we are seeing an alteration horizon or depositional unit associated with the emplacement Comanche carbonate. Morris, R. V., et al. (2010), Identification of carbonate-rich outcrops on Mars by the Spirit rover, Science, 329(5990), 421-424.
Project 1640 Observations of Brown Dwarf GJ 758 B: Near-infrared Spectrum and Atmospheric Modeling
NASA Astrophysics Data System (ADS)
Nilsson, R.; Veicht, A.; Giorla Godfrey, P. A.; Rice, E. L.; Aguilar, J.; Pueyo, L.; Roberts, L. C., Jr.; Oppenheimer, R.; Brenner, D.; Luszcz-Cook, S. H.; Bacchus, E.; Beichman, C.; Burruss, R.; Cady, E.; Dekany, R.; Fergus, R.; Hillenbrand, L.; Hinkley, S.; King, D.; Lockhart, T.; Parry, I. R.; Sivaramakrishnan, A.; Soummer, R.; Vasisht, G.; Zhai, C.; Zimmerman, N. T.
2017-03-01
The nearby Sun-like star GJ 758 hosts a cold substellar companion, GJ 758 B, at a projected separation of ≲30 au, previously detected in high-contrast multi-band photometric observations. In order to better constrain the companion’s physical characteristics, we acquired the first low-resolution (R ˜ 50) near-infrared spectrum of it using the high-contrast hyperspectral imaging instrument Project 1640 on Palomar Observatory’s 5 m Hale telescope. We obtained simultaneous images in 32 wavelength channels covering the Y, J, and H bands (˜952-1770 nm), and used data processing techniques based on principal component analysis to efficiently subtract chromatic background speckle-noise. GJ 758 B was detected in four epochs during 2013 and 2014. Basic astrometric measurements confirm its apparent northwest trajectory relative to the primary star, with no clear signs of orbital curvature. Spectra of SpeX/IRTF observed T dwarfs were compared to the combined spectrum of GJ 758 B, with χ 2 minimization suggesting a best fit for spectral type T7.0 ± 1.0, but with a shallow minimum over T5-T8. Fitting of synthetic spectra from the BT-Settl13 model atmospheres gives an effective temperature T eff = 741 ± 25 K and surface gravity {log}g=4.3+/- 0.5 dex (cgs). Our derived best-fit spectral type and effective temperature from modeling of the low-resolution spectrum suggest a slightly earlier and hotter companion than previous findings from photometric data, but do not rule out current results, and confirm GJ 758 B as one of the coolest sub-stellar companions to a Sun-like star to date.
Power spectrum for the small-scale Universe
NASA Astrophysics Data System (ADS)
Widrow, Lawrence M.; Elahi, Pascal J.; Thacker, Robert J.; Richardson, Mark; Scannapieco, Evan
2009-08-01
The first objects to arise in a cold dark matter (CDM) universe present a daunting challenge for models of structure formation. In the ultra small-scale limit, CDM structures form nearly simultaneously across a wide range of scales. Hierarchical clustering no longer provides a guiding principle for theoretical analyses and the computation time required to carry out credible simulations becomes prohibitively high. To gain insight into this problem, we perform high-resolution (N = 7203-15843) simulations of an Einstein-de Sitter cosmology where the initial power spectrum is P(k) ~ kn, with -2.5 <= n <= - 1. Self-similar scaling is established for n = -1 and -2 more convincingly than in previous, lower resolution simulations and for the first time, self-similar scaling is established for an n = -2.25 simulation. However, finite box-size effects induce departures from self-similar scaling in our n = -2.5 simulation. We compare our results with the predictions for the power spectrum from (one-loop) perturbation theory and demonstrate that the renormalization group approach suggested by McDonald improves perturbation theory's ability to predict the power spectrum in the quasi-linear regime. In the non-linear regime, our power spectra differ significantly from the widely used fitting formulae of Peacock & Dodds and Smith et al. and a new fitting formula is presented. Implications of our results for the stable clustering hypothesis versus halo model debate are discussed. Our power spectra are inconsistent with predictions of the stable clustering hypothesis in the high-k limit and lend credence to the halo model. Nevertheless, the fitting formula advocated in this paper is purely empirical and not derived from a specific formulation of the halo model.
Cosmic-ray electron-positron spectrum from 7 GeV to 2 TeV with the Fermi Large Area Telescope
Abdollahi, S.; Ackermann, M.; Ajello, M.; ...
2017-04-15
Here, we present a measurement of the cosmic-ray electron+positron spectrum between 7 GeV and 2 TeV performed with almost seven years of data collected with the Fermi Large Area Telescope. We find that the spectrum is well fit by a broken power law with a break energy at about 50 GeV. Above 50 GeV, the spectrum is well described by a single power law with a spectral index of 3.07 ± 0.02(stat + syst) ± 0.04(energy measurement). An exponential cutoff lower than 1.8 TeV is excluded at 95% CL.
Cosmic-ray electron-positron spectrum from 7 GeV to 2 TeV with the Fermi Large Area Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdollahi, S.; Ackermann, M.; Ajello, M.
Here, we present a measurement of the cosmic-ray electron+positron spectrum between 7 GeV and 2 TeV performed with almost seven years of data collected with the Fermi Large Area Telescope. We find that the spectrum is well fit by a broken power law with a break energy at about 50 GeV. Above 50 GeV, the spectrum is well described by a single power law with a spectral index of 3.07 ± 0.02(stat + syst) ± 0.04(energy measurement). An exponential cutoff lower than 1.8 TeV is excluded at 95% CL.
AVIRIS study of Death Valley evaporite deposits using least-squares band-fitting methods
NASA Technical Reports Server (NTRS)
Crowley, J. K.; Clark, R. N.
1992-01-01
Minerals found in playa evaporite deposits reflect the chemically diverse origins of ground waters in arid regions. Recently, it was discovered that many playa minerals exhibit diagnostic visible and near-infrared (0.4-2.5 micron) absorption bands that provide a remote sensing basis for observing important compositional details of desert ground water systems. The study of such systems is relevant to understanding solute acquisition, transport, and fractionation processes that are active in the subsurface. Observations of playa evaporites may also be useful for monitoring the hydrologic response of desert basins to changing climatic conditions on regional and global scales. Ongoing work using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to map evaporite minerals in the Death Valley salt pan is described. The AVIRIS data point to differences in inflow water chemistry in different parts of the Death Valley playa system and have led to the discovery of at least two new North American mineral occurrences. Seven segments of AVIRIS data were acquired over Death Valley on 31 July 1990, and were calibrated to reflectance by using the spectrum of a uniform area of alluvium near the salt pan. The calibrated data were subsequently analyzed by using least-squares spectral band-fitting methods, first described by Clark and others. In the band-fitting procedure, AVIRIS spectra are fit compared over selected wavelength intervals to a series of library reference spectra. Output images showing the degree of fit, band depth, and fit times the band depth are generated for each reference spectrum. The reference spectra used in the study included laboratory data for 35 pure evaporite spectra extracted from the AVIRIS image cube. Additional details of the band-fitting technique are provided by Clark and others elsewhere in this volume.
ZnS Buffer Layers Grown by Modified Chemical Bath Deposition for CIGS Solar Cells
NASA Astrophysics Data System (ADS)
Lee, Dongchan; Ahn, Heejin; Shin, Hyundo; Um, Youngho
2018-03-01
ZnS thin films were prepared by the chemical bath deposition method using disodium ethylene-diaminetetraacetic acid and hexamethylenetetramine as complexing agents in acidic conditions. The film prepared using a preheated S-ion source showed full surface coverage, but some clusters were found that were generated by the cluster-by-cluster reaction mechanism. On the other hand, the film prepared without this source had a uniform, dense, and smooth surface and showed fewer clusters than the film prepared using a preheated S-ion source. The x-ray photoelectron spectroscopy spectra showed the energy core levels of Zn, O, and S components, and Zn-OH bonding decreased on the film using the preheated S-ion source. Especially, various binding energy peaks were found in the Zn 2p 3/2 spectrum by Gaussian function fitting, and no peak corresponding to Zn-OH bonding was found for the film prepared using a preheated S-ion source. Moreover, the x-ray diffraction spectrum of the ZnS thin film using a non-preheated S-ion source showed amorphous or nanoscale crystallinity, but the emission peaks indicated that the structure of the film using preheated S-ion source was zincblende.
ZnS Buffer Layers Grown by Modified Chemical Bath Deposition for CIGS Solar Cells
NASA Astrophysics Data System (ADS)
Lee, Dongchan; Ahn, Heejin; Shin, Hyundo; Um, Youngho
2018-07-01
ZnS thin films were prepared by the chemical bath deposition method using disodium ethylene-diaminetetraacetic acid and hexamethylenetetramine as complexing agents in acidic conditions. The film prepared using a preheated S-ion source showed full surface coverage, but some clusters were found that were generated by the cluster-by-cluster reaction mechanism. On the other hand, the film prepared without this source had a uniform, dense, and smooth surface and showed fewer clusters than the film prepared using a preheated S-ion source. The x-ray photoelectron spectroscopy spectra showed the energy core levels of Zn, O, and S components, and Zn-OH bonding decreased on the film using the preheated S-ion source. Especially, various binding energy peaks were found in the Zn 2 p 3/2 spectrum by Gaussian function fitting, and no peak corresponding to Zn-OH bonding was found for the film prepared using a preheated S-ion source. Moreover, the x-ray diffraction spectrum of the ZnS thin film using a non-preheated S-ion source showed amorphous or nanoscale crystallinity, but the emission peaks indicated that the structure of the film using preheated S-ion source was zincblende.
Multifractal model of magnetic susceptibility distributions in some igneous rocks
Gettings, Mark E.
2012-01-01
Measurements of in-situ magnetic susceptibility were compiled from mainly Precambrian crystalline basement rocks beneath the Colorado Plateau and ranges in Arizona, Colorado, and New Mexico. The susceptibility meter used measures about 30 cm3 of rock and measures variations in the modal distribution of magnetic minerals that form a minor component volumetrically in these coarsely crystalline granitic to granodioritic rocks. Recent measurements include 50–150 measurements on each outcrop, and show that the distribution of magnetic susceptibilities is highly variable, multimodal and strongly non-Gaussian. Although the distribution of magnetic susceptibility is well known to be multifractal, the small number of data points at an outcrop precludes calculation of the multifractal spectrum by conventional methods. Instead, a brute force approach was adopted using multiplicative cascade models to fit the outcrop scale variability of magnetic minerals. Model segment proportion and length parameters resulted in 26 676 models to span parameter space. Distributions at each outcrop were normalized to unity magnetic susceptibility and added to compare all data for a rock body accounting for variations in petrology and alteration. Once the best-fitting model was found, the equation relating the segment proportion and length parameters was solved numerically to yield the multifractal spectrum estimate. For the best fits, the relative density (the proportion divided by the segment length) of one segment tends to be dominant and the other two densities are smaller and nearly equal. No other consistent relationships between the best fit parameters were identified. The multifractal spectrum estimates appear to distinguish between metamorphic gneiss sites and sites on plutons, even if the plutons have been metamorphosed. In particular, rocks that have undergone multiple tectonic events tend to have a larger range of scaling exponents.
An absorption profile centred at 78 megahertz in the sky-averaged spectrum.
Bowman, Judd D; Rogers, Alan E E; Monsalve, Raul A; Mozdzen, Thomas J; Mahesh, Nivedita
2018-02-28
After stars formed in the early Universe, their ultraviolet light is expected, eventually, to have penetrated the primordial hydrogen gas and altered the excitation state of its 21-centimetre hyperfine line. This alteration would cause the gas to absorb photons from the cosmic microwave background, producing a spectral distortion that should be observable today at radio frequencies of less than 200 megahertz. Here we report the detection of a flattened absorption profile in the sky-averaged radio spectrum, which is centred at a frequency of 78 megahertz and has a best-fitting full-width at half-maximum of 19 megahertz and an amplitude of 0.5 kelvin. The profile is largely consistent with expectations for the 21-centimetre signal induced by early stars; however, the best-fitting amplitude of the profile is more than a factor of two greater than the largest predictions. This discrepancy suggests that either the primordial gas was much colder than expected or the background radiation temperature was hotter than expected. Astrophysical phenomena (such as radiation from stars and stellar remnants) are unlikely to account for this discrepancy; of the proposed extensions to the standard model of cosmology and particle physics, only cooling of the gas as a result of interactions between dark matter and baryons seems to explain the observed amplitude. The low-frequency edge of the observed profile indicates that stars existed and had produced a background of Lyman-α photons by 180 million years after the Big Bang. The high-frequency edge indicates that the gas was heated to above the radiation temperature less than 100 million years later.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEwen, Malcolm; Roy, Timothy; Tessier, Frederic
Purpose: To develop the techniques required to experimentally determine electron stopping powers for application in primary standards and dosimetry protocols. Method and Materials: A large-volume HPGe detector system (>80% efficiency) was commissioned for the measurement of high energy (5–35 MeV) electron beams. As a proof of principle the system was used with a Y-90/Sr-90 radioactive source. Thin plates of absorbing material (< 0.1 gcm-2) were then placed between the source and detector and the emerging electron spectrum was acquired. The full experimental geometry was modelled using the EGSnrc package to validate the detector design, optimize the experimental setup and comparemore » measured and calculated spectra. Results: The biggest challenge using a beta source was to identify a robust spectral parameter to determine for each measurement. An end-point-fitting routine was used to determine the maximum energy, Emax, of the beta spectrum for each absorber thickness t. The parameter dEmax/dt is related to the electron stopping power and the same routine was applied to both measured and simulated spectra. Although the standard uncertainty in dEmax/dt was of the order of 5 %, by taking the ratio of measured and Monte Carlo values for dEmax/dt the uncertainty of the fitting routine was eliminated and the uncertainty was reduced to less than 2 %. The agreement between measurement and simulation was within this uncertainty estimate. Conclusion: The investigation confirmed the experimental approach and demonstrated that EGSnrc could accurately determine correction factors that will be required for the final measurement setup in a linac beam.« less
An absorption profile centred at 78 megahertz in the sky-averaged spectrum
NASA Astrophysics Data System (ADS)
Bowman, Judd D.; Rogers, Alan E. E.; Monsalve, Raul A.; Mozdzen, Thomas J.; Mahesh, Nivedita
2018-03-01
After stars formed in the early Universe, their ultraviolet light is expected, eventually, to have penetrated the primordial hydrogen gas and altered the excitation state of its 21-centimetre hyperfine line. This alteration would cause the gas to absorb photons from the cosmic microwave background, producing a spectral distortion that should be observable today at radio frequencies of less than 200 megahertz. Here we report the detection of a flattened absorption profile in the sky-averaged radio spectrum, which is centred at a frequency of 78 megahertz and has a best-fitting full-width at half-maximum of 19 megahertz and an amplitude of 0.5 kelvin. The profile is largely consistent with expectations for the 21-centimetre signal induced by early stars; however, the best-fitting amplitude of the profile is more than a factor of two greater than the largest predictions. This discrepancy suggests that either the primordial gas was much colder than expected or the background radiation temperature was hotter than expected. Astrophysical phenomena (such as radiation from stars and stellar remnants) are unlikely to account for this discrepancy; of the proposed extensions to the standard model of cosmology and particle physics, only cooling of the gas as a result of interactions between dark matter and baryons seems to explain the observed amplitude. The low-frequency edge of the observed profile indicates that stars existed and had produced a background of Lyman-α photons by 180 million years after the Big Bang. The high-frequency edge indicates that the gas was heated to above the radiation temperature less than 100 million years later.
Sheinbaum, Tamara; Kwapil, Thomas R.; Ballespí, Sergi; Peña, Elionora; de Castro-Catala, Marta; Riba, Maria Dolors; Rosa, Araceli
2018-01-01
Background Gene-environment interaction (GxE) research has highlighted the importance of investigating the FK506 binding protein 51 (FKBP5) gene as a sensitivity gene. However, previous GxE studies with FKBP5 have not measured the full environmental spectrum or applied statistical tests to discern whether the GxE interaction fits better with the differential-susceptibility or diathesis-stress hypotheses. This study examined whether single nucleotide polymorphisms (SNPs) on FKBP5 gene moderate the association of positive and negative recent life events (LEs) with depressive symptoms, state-anxiety, neuroticism, and social anxiety traits. Methods A total of 86 nonclinical young adults were administered psychological measures and were genotyped for five FKBP5 SNPs (rs3800373, rs9296158, rs1360780, rs9470080 and rs4713916). Results Regression analyses indicated significant GxE interactions for social anxiety and neuroticism. The interactions predicting neuroticism fit different models for different SNPs, although the overall effect indicated by the haplotype was consistent with the differential-susceptibility hypothesis: the risk-haplotype group presented higher neuroticism in the presence of more negative LEs and lower neuroticism in the presence of more positive LEs. The GxE interactions for social anxiety were consistent with the diathesis-stress model. The lack of significance in the for-better side for social anxiety might be related to the fact that it mapped onto low extraversion, which is associated with a lower permeability to positive experiences. Discussion Findings underscore the importance of testing the differential-susceptibility model in relation to FKBP5 to adequately characterize its role in healthy and pathological developmental processes. PMID:29466454
EPR hyperfine structure of the Mo-related defect in CdWO4
NASA Astrophysics Data System (ADS)
Elsts, E.; Rogulis, U.
2005-01-01
The hyperfine structure (hf) of the electron paramagnetic resonance (EPR) spectrum of Mo-related impurity defects in CdWO4 crystals observed previously (U. Rogulis, Radiat. Meas. 29, 287 (1998) [1]) is reconsidered taking into account interactions with two different groups of neighbouring Cd nuclei. The best fit calculated EPR spectrum to the experimental is obtained considering 2 groups of 3 and 2 equivalent Cd nuclei, respectively.
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Bellido, J. A.; Belov, K.; Belz, J. W.; Bergman, D. R.; Cao, Z.; Clay, R. W.; Cooper, M. D.; Dai, H.; Dawson, B. R.; Everett, A. A.; Fedorova, Yu. A.; Girard, J. H.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hüntemeyer, P.; Jones, B. F.; Jui, C. C.; Kieda, D. B.; Kim, K.; Kirn, M. A.; Loh, E. C.; Manago, N.; Marek, L. J.; Martens, K.; Martin, G.; Matthews, J. A.; Matthews, J. N.; Meyer, J. R.; Moore, S. A.; Morrison, P.; Moosman, A. N.; Mumford, J. R.; Munro, M. W.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M.; Sarracino, J. S.; Sasaki, M.; Schnetzer, S. R.; Shen, P.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Taylor, S. F.; Thomas, S. B.; Thompson, T. N.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Vanderveen, T. D.; Zech, A.; Zhang, X.
2004-04-01
We have measured the cosmic ray spectrum above 1017.2 eV using the two air-fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, phototube, and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extragalactic sources.
The high-energy pulsed X-ray spectrum of Hercules X-1 as observed with OSO 8
NASA Technical Reports Server (NTRS)
Maurer, G. S.; Dennis, B. R.; Coe, M. J.; Crannell, C. J.; Dolan, J. F.; Frost, K. J.; Orwig, L. E.; Cutler, E. P.
1979-01-01
Hercules X-1 was observed from August 30 to September 10, 1977, by using the high-energy X-ray scintillation spectrometer on board the OSO 8 satellite. The observation, during which the source was monitored continually for nearly an entire ON-state, covered the energy range from 16 to 280 keV. Pulsed-flux measurements as a function of binary orbit and binary phase are presented for energies between 16 and 98 keV. The pulsed flux between 16 and 33 keV exhibited a sharp decrease following the fourth binary orbit and was consistent with zero pulsed flux thereafter. Only weak evidence was found for temporal variation in the pulsed flux between 33 and 98 keV. The pulsed spectrum has been fitted with a power law, a thermal spectrum without features, and a thermal spectrum with a superposed Gaussian centered at 55 keV. The latter fit has the smallest value of chi-square per degree of freedom, and the resulting integrated line intensity is approximately 0.0015 photon/sec per sq cm for a width of 3.1 (+9.1, -2.6) keV. This result, while of low statistical significance, agrees with the value observed by Truemper (1978) during the same ON-state.
NASA Technical Reports Server (NTRS)
Maurer, G. S.; Dennis, B. R.; Coe, M. J.; Crannell, C. J.; Cutler, E. P.; Dolan, J. F.; Frost, K. J.; Orwig, L. E.
1978-01-01
Her X-1 was observed from 1977 August 30 to September 10 using the High-Energy X-Ray Scintillation Spectrometer on board the OSO-8 satellite. The observation, during which the source was monitored continually for nearly an entire ON-state, covered the energy range from 16 to 280 keV. Pulsed flux measurements as a function of binary orbit and binary phase are presented for energies between 16 and 98 keV. The pulsed flux between 16 and 33 keV exhibited a sharp decrease following the fourth binary orbit and was consistent with zero pulsed flux thereafter. The pulsed spectrum was fitted with a power law, a thermal spectrum without features, and a thermal spectrum with a superposed gaussian centered at 55 keV. The latter fit has the smallest value of chi - squared per degree of freedom, and the resulting integrated line intensity is 1.5 superscript + 4.1 subscript - 1.4 x .001 photons s superscript-1 cm superscript-2 for a width of 3.1 superscript + 9.1 subscript -2.6 keV. This result, while of low statistical significance, agrees with the value observed by Trumper (1978) during the same On-state.
NASA Astrophysics Data System (ADS)
Tomsick, John A.; Parker, Michael L.; García, Javier A.; Yamaoka, Kazutaka; Barret, Didier; Chiu, Jeng-Lun; Clavel, Maïca; Fabian, Andrew; Fürst, Felix; Gandhi, Poshak; Grinberg, Victoria; Miller, Jon M.; Pottschmidt, Katja; Walton, Dominic J.
2018-03-01
Here we study a 1–200 keV energy spectrum of the black hole binary Cygnus X-1 taken with NuSTAR and Suzaku. This is the first report of a NuSTAR observation of Cyg X-1 in the intermediate state, and the observation was taken during the part of the binary orbit where absorption due to the companion’s stellar wind is minimal. The spectrum includes a multi-temperature thermal disk component, a cutoff power-law component, and relativistic and nonrelativistic reflection components. Our initial fits with publicly available constant density reflection models (relxill and reflionx) lead to extremely high iron abundances (>9.96 and {10.6}-0.9+1.6 times solar, respectively). Although supersolar iron abundances have been reported previously for Cyg X-1, our measurements are much higher and such variability is almost certainly unphysical. Using a new version of reflionx that we modified to make the electron density a free parameter, we obtain better fits to the spectrum even with solar iron abundances. We report on how the higher density ({n}e=({3.98}-0.25+0.12)× {10}20 cm‑3) impacts other parameters such as the inner radius and inclination of the disk.
Using Firefly Tools to Enhance Archive Web Pages
NASA Astrophysics Data System (ADS)
Roby, W.; Wu, X.; Ly, L.; Goldina, T.
2013-10-01
Astronomy web developers are looking for fast and powerful HTML 5/AJAX tools to enhance their web archives. We are exploring ways to make this easier for the developer. How could you have a full FITS visualizer or a Web 2.0 table that supports paging, sorting, and filtering in your web page in 10 minutes? Can it be done without even installing any software or maintaining a server? Firefly is a powerful, configurable system for building web-based user interfaces to access astronomy science archives. It has been in production for the past three years. Recently, we have made some of the advanced components available through very simple JavaScript calls. This allows a web developer, without any significant knowledge of Firefly, to have FITS visualizers, advanced table display, and spectrum plots on their web pages with minimal learning curve. Because we use cross-site JSONP, installing a server is not necessary. Web sites that use these tools can be created in minutes. Firefly was created in IRSA, the NASA/IPAC Infrared Science Archive (http://irsa.ipac.caltech.edu). We are using Firefly to serve many projects including Spitzer, Planck, WISE, PTF, LSST and others.
VizieR Online Data Catalog: Copernicus 0.2-A Resolution Far-UV Stellar Spectra (Snow+ 1977)
NASA Astrophysics Data System (ADS)
Snow, T. P., Jr.; Jenkins, E. B.
1997-08-01
The catalog is a subset comprising data for 60 O- and B-type stars observed by the Copernicus satellite. For each star a FITS file was created of the observed spectrum. Each spectrum has 2250 photometric data points. The wavelength range is from 1000 to 1450 Angstroems in 0.2-Angstrom steps. The data were acquired with photomultiplier U2, which had a nominal bandpass of 0.2 Angstrom (A) and scanned the spectrum with a 0.2 A step length, integrating for 13.6 sec at each wavelength position. (61 data files).
2060 Chiron - Colorimetry and cometary behavior
NASA Technical Reports Server (NTRS)
Hartmann, William K.; Tholen, David J.; Meech, Karen J.; Cruikshank, Dale P.
1990-01-01
Ambiguities concerning the fit of the 2060 Chiron's visible spectrum to its IR spectrum have been resolved by resort to VRIJHK colorimetry obtained in 1988, which also confirms the neutrality of Chiron's taxonomic class C spectrum and indicates that Chiron has anomalously brightened since 1980-1983. This brightening, and one reported in 1978, are consistent with the hypothesis that Chiron sporadically undergoes weak cometary outbursts similar to those of comet P/Schwassmann-Wachmann 1; Chiron is further speculated to be an ice-rich object darkened by C-class carbonaceous soil, and may have been scattered from the Oort cloud in recent solar system history.
A search for the 10-micron silicate feature in periodic Comet Grigg-Skjellerup
NASA Technical Reports Server (NTRS)
Hanner, M.; Aitken, D.; Roche, P.; Whitmore, B.
1984-01-01
A 10-micron spectrum of periodic Comet Grigg-Skjellerup was obtained on 22 June 1982 with the UCL array spectrometer at the United Kingdom Infrared Telescope, Mauna Kea. No emission feature is obvious in the spectrum. The observed spectrum can be fit equally well by a model of small hot absorbing grains or by a composite model with less than or equal to 30 percent (3sigma) warm, 'dirty' silicate grains. The latter model is consistent with the silicate abundance in Comet Kohoutek, which did display an emission feature at 10 microns.
Tromberg, B.J.; Tsay, T.T.; Berns, M.W.; Svaasand, L.O.; Haskell, R.C.
1995-06-13
Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid. 14 figs.
Tromberg, Bruce J.; Tsay, Tsong T.; Berns, Michael W.; Svaasand, Lara O.; Haskell, Richard C.
1995-01-01
Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid.
On the intrinsic shape of the gamma-ray spectrum for Fermi blazars
NASA Astrophysics Data System (ADS)
Kang, Shi-Ju; Wu, Qingwen; Zheng, Yong-Gang; Yin, Yue; Song, Jia-Li; Zou, Hang; Feng, Jian-Chao; Dong, Ai-Jun; Wu, Zhong-Zu; Zhang, Zhi-Bin; Wu, Lin-Hui
2018-05-01
The curvature of the γ-ray spectrumin blazarsmay reflect the intrinsic distribution of emitting electrons, which will further give some information on the possible acceleration and cooling processes in the emitting region. The γ-ray spectra of Fermi blazars are normally fitted either by a single power-law (PL) or a log-normal (call Logarithmic Parabola, LP) form. The possible reason for this difference is not clear. We statistically explore this issue based on the different observational properties of 1419 Fermi blazars in the 3LAC Clean Sample.We find that the γ-ray flux (100MeV–100GeV) and variability index follow bimodal distributions for PL and LP blazars, where the γ-ray flux and variability index show a positive correlation. However, the distributions of γ-ray luminosity and redshift follow a unimodal distribution. Our results suggest that the bimodal distribution of γ-ray fluxes for LP and PL blazars may not be intrinsic and all blazars may have an intrinsically curved γ-ray spectrum, and the PL spectrum is just caused by the fitting effect due to less photons.
Heavy quarkonium hybrids: Spectrum, decay, and mixing
NASA Astrophysics Data System (ADS)
Oncala, Ruben; Soto, Joan
2017-07-01
We present a largely model-independent analysis of the lighter heavy quarkonium hybrids based on the strong coupling regime of potential nonrelativistic QCD. We calculate the spectrum at leading order, including the mixing of static hybrid states. We use potentials that fulfill the required short and long distance theoretical constraints and fit well the available lattice data. We argue that the decay width to the lower lying heavy quarkonia can be reliably estimated in some cases and provide results for a selected set of decays. We also consider the mixing with heavy quarkonium states. We establish the form of the mixing potential at O (1 /mQ) , mQ being the mass of the heavy quarks, and work out its short and long distance constraints. The weak coupling regime of potential nonrelativistic QCD and the effective string theory of QCD are used for that goal. We show that the mixing effects may indeed be important and produce large spin symmetry violations. Most of the isospin zero XYZ states fit well in our spectrum, either as a hybrid or standard quarkonium candidate.
Agostini, M.; Allardt, M.; Andreotti, E.; ...
2014-04-04
The GERmanium Detector Array (Gerda) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double beta (0νββ) decay of 76 Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the Q ββ value of the decay. To avoid bias in the signal search, the present analysis does not consider all those events, that fall in a 40 keV wide region centered around Q ββ. The main parameters needed for the 0νββ analysis are described. A background model was developed to describe the observed energy spectrum. The model contains severalmore » contributions, that are expected on the basis of material screening or that are established by the observation of characteristic structures in the energy spectrum. The model predicts a flat energy spectrum for the blinding window around Qββ with a background index ranging from 17.6 to 23.8 × 10 -3 cts/(keV kg yr). A part of the data not considered before has been used to test if the predictions of the background model are consistent. The observed number of events in this energy region is consistent with the background model. The background at Q ββ is dominated by close sources, mainly due to 42 K, 214 Bi, 228 60 Co and α emitting isotopes from the 226 Ra decay chain. The individual fractions depend on the assumed locations of the contaminants. It is shown, that after removal of the known γ peaks, the energy spectrum can be fitted in an energy range of 200 keV around Q ββ with a constant background. This gives a background index consistent with the full model and uncertainties of the same size.« less
Rotational spectroscopy of methylamine up to 2.6 THz
NASA Astrophysics Data System (ADS)
Motiyenko, R. A.; Ilyushin, V. V.; Drouin, B. J.; Yu, S.; Margulès, L.
2014-03-01
Context. Methylamine (CH3NH2) is the simplest primary alkylamine that has been detected in the interstellar medium. The molecule is relatively light, with the 50 K Boltzmann peak appearing near 800 GHz. However, reliable predictions for its rotational spectrum are available only up to 500 GHz. Spectroscopic analyses have been complicated by the two large-amplitude motions: internal rotation of the methyl top and inversion of the amino group. Aims: To provide reliable predictions of the methylamine ground state rotational spectrum above 500 GHz, we studied its rotational spectrum in the frequency range from 500 to 2650 GHz. Methods: The spectra of methylamine were recorded using the spectrometers based on Schottky diode frequency multiplication chains in the Lille laboratory (500-945 GHz) and in JPL (1060-2660 GHz). The analysis of the rotational spectrum of methylamine in the ground vibrational state was performed on the basis of the group-theoretical high barrier tunneling Hamiltonian developed for methylamine by Ohashi and Hougen. Results: In the recorded spectra, we have assigned 1849 new rotational transitions of methylamine. They were fitted together with previously published data, to a Hamiltonian model that uses 76 parameters with an overall weighted rms deviation of 0.87. On the basis of the new spectroscopic results, predictions of transition frequencies in the frequency range up to 3 THz with J ≤ 50 and Ka ≤ 20 are presented. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.frftp://130.79.128.5 or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A137
No signatures of black hole spin in the X-ray spectrum of the Seyfert 1 galaxy Fairall 9
NASA Astrophysics Data System (ADS)
Yaqoob, T.; Turner, T. J.; Tatum, M. M.; Trevor, M.; Scholtes, A.
2016-11-01
Fairall 9 is one of several type 1 active galactic nuclei for which it has been claimed that the angular momentum (or spin) of the supermassive black hole can be robustly measured, using the Fe Kα emission line and Compton-reflection continuum in the X-ray spectrum. The method rests upon the interpretation of the Fe Kα line profile and associated Compton-reflection continuum in terms of relativistic broadening in the strong gravity regime in the innermost regions of an accretion disc, within a few gravitational radii of the black hole. Here, we re-examine a Suzaku X-ray spectrum of Fairall 9 and show that a face-on toroidal X-ray reprocessor model involving only non-relativistic and mundane physics provides an excellent fit to the data. The Fe Kα line emission and Compton-reflection continuum are calculated self-consistently, the iron abundance is solar, and an equatorial column density of ˜ 1024 cm- 2 is inferred. In this scenario, neither the Fe Kα line nor the Compton-reflection continuum provides any information on the black hole spin. Whereas previous analyses have assumed an infinite column density for the distant-matter reprocessor, the shape of the reflection spectrum from matter with a finite column density eliminates the need for a relativistically broadened Fe Kα line. We find a 90 per cent confidence range in the Fe Kα line full width at half-maximum of 1895-6205 km s- 1, corresponding to a distance of ˜3100 to 33 380 gravitational radii from the black hole, or 0.015-0.49 pc for a black hole mass of ˜1-3 × 108 M⊙.
DOT National Transportation Integrated Search
2016-05-01
Full-scale rollover crash tests were performed on three non-pressure tank carbodies to validate previous analytical work and : determine the effectiveness of two different types of protective structures in protecting the top fittings. The tests were ...
The Topology of Large-Scale Structure in the 1.2 Jy IRAS Redshift Survey
NASA Astrophysics Data System (ADS)
Protogeros, Zacharias A. M.; Weinberg, David H.
1997-11-01
We measure the topology (genus) of isodensity contour surfaces in volume-limited subsets of the 1.2 Jy IRAS redshift survey, for smoothing scales λ = 4, 7, and 12 h-1 Mpc. At 12 h-1 Mpc, the observed genus curve has a symmetric form similar to that predicted for a Gaussian random field. At the shorter smoothing lengths, the observed genus curve shows a modest shift in the direction of an isolated cluster or ``meatball'' topology. We use mock catalogs drawn from cosmological N-body simulations to investigate the systematic biases that affect topology measurements in samples of this size and to determine the full covariance matrix of the expected random errors. We incorporate the error correlations into our evaluations of theoretical models, obtaining both frequentist assessments of absolute goodness of fit and Bayesian assessments of models' relative likelihoods. We compare the observed topology of the 1.2 Jy survey to the predictions of dynamically evolved, unbiased, gravitational instability models that have Gaussian initial conditions. The model with an n = -1 power-law initial power spectrum achieves the best overall agreement with the data, though models with a low-density cold dark matter power spectrum and an n = 0 power-law spectrum are also consistent. The observed topology is inconsistent with an initially Gaussian model that has n = -2, and it is strongly inconsistent with a Voronoi foam model, which has a non-Gaussian, bubble topology.
NASA Astrophysics Data System (ADS)
Tran, Henry K.; Stanton, John F.; Miller, Terry A.
2018-01-01
The limitations associated with the common practice of fitting a quadratic Hamiltonian to vibronic levels of a Jahn-Teller system have been explored quantitatively. Satisfactory results for the prototypical X∼2E‧ state of Li3 are obtained from fits to both experimental spectral data and to an "artificial" spectrum calculated by a quartic Hamiltonian which accurately reproduces the adiabatic potential obtained from state-of-the-art quantum chemistry calculations. However the values of the Jahn-Teller parameters, stabilization energy, and pseudo-rotation barrier obtained from the quadratic fit differ markedly from those associated with the ab initio potential. Nonetheless the RMS deviations of the fits are not strikingly different. Guidelines are suggested for comparing parameters obtained from fits to experiment to those obtained by direct calculation, but a principal conclusion of this work is that such comparisons must be done with a high degree of caution.
Low resolution spectroscopic investigation of Am stars using Automated method
NASA Astrophysics Data System (ADS)
Sharma, Kaushal; Joshi, Santosh; Singh, Harinder P.
2018-04-01
The automated method of full spectrum fitting gives reliable estimates of stellar atmospheric parameters (Teff, log g and [Fe/H]) for late A, F, G, and early K type stars. Recently, the technique was further improved in the cooler regime and the validity range was extended up to a spectral type of M6 - M7 (Teff˜ 2900 K). The present study aims to explore the application of this method on the low-resolution spectra of Am stars, a class of chemically peculiar stars, to examine its robustness for these objects. We use ULySS with the Medium-resolution INT Library of Empirical Spectra (MILES) V2 spectral interpolator for parameter determination. The determined Teff and log g values are found to be in good agreement with those obtained from high-resolution spectroscopy.
Running of featureful primordial power spectra
NASA Astrophysics Data System (ADS)
Gariazzo, Stefano; Mena, Olga; Miralles, Victor; Ramírez, Héctor; Boubekeur, Lotfi
2017-06-01
Current measurements of the temperature and polarization anisotropy power spectra of the cosmic microwave background (CMB) seem to indicate that the naive expectation for the slow-roll hierarchy within the most simple inflationary paradigm may not be respected in nature. We show that a primordial power spectrum with localized features could in principle give rise to the observed slow-roll anarchy when fitted to a featureless power spectrum. From a model comparison perspective, and assuming that nature has chosen a featureless primordial power spectrum, we find that, while with mock Planck data there is only weak evidence against a model with localized features, upcoming CMB missions may provide compelling evidence against such a nonstandard primordial power spectrum. This evidence could be reinforced if a featureless primordial power spectrum is independently confirmed from bispectrum and/or galaxy clustering measurements.
A spectroscopic study of the chromatic properties of GafChromicEBT3 films.
Callens, M; Crijns, W; Simons, V; De Wolf, I; Depuydt, T; Maes, F; Haustermans, K; D'hooge, J; D'Agostino, E; Wevers, M; Pfeiffer, H; Van Den Abeele, K
2016-03-01
This work provides an interpretation of the chromatic properties of GafChromicEBT3 films based on the chemical nature of the polydiacetylene (PDA) molecules formed upon interaction with ionizing radiation. The EBT3 films become optically less transparent with increasing radiation dose as a result of the radiation-induced polymerization of diacetylene monomers. In contrast to empirical quantification of the chromatic properties, less attention has been given to the underlying molecular mechanism that induces the strong decrease in transparency. Unlaminated GafChromicEBT3 films were irradiated with a 6 MV photon beam to dose levels up to 20 Gy. The optical absorption properties of the films were investigated using visible (vis) spectroscopy. The presence of PDA molecules in the active layer of the EBT3 films was investigated using Raman spectroscopy, which probes the vibrational modes of the molecules in the layer. The vibrational modes assigned to PDA's were used in a theoretical vis-absorption model to fit our experimental vis-absorption spectra. From the fit parameters, one can assess the relative contribution of different PDA conformations and the length distribution of PDA's in the film. Vis-spectroscopy shows that the optical density increases with dose in the full region of the visible spectrum. The Raman spectrum is dominated by two vibrational modes, most notably by the ν(C≡C) and the ν(C=C) stretching modes of the PDA backbone. By fitting the vis-absorption model to experimental spectra, it is found that the active layer contains two distinct PDA conformations with different absorption properties and reaction kinetics. Furthermore, the mean PDA conjugation length is found to be 2-3 orders of magnitude smaller than the crystals PDA's are embedded in. Vis- and Raman spectroscopy provided more insight into the molecular nature of the radiochromic properties of EBT3 films through the identification of the excited states of PDA and the presence of two PDA conformations. The improved knowledge on the molecular composition of EBT3's active layer provides a framework for future fundamental modeling of the dose-response.
Abbasi, R U; Abu-Zayyad, T; Amann, J F; Archbold, G; Bellido, J A; Belov, K; Belz, J W; Bergman, D R; Cao, Z; Clay, R W; Cooper, M D; Dai, H; Dawson, B R; Everett, A A; Fedorova, Yu A; Girard, J H V; Gray, R C; Hanlon, W F; Hoffman, C M; Holzscheiter, M H; Hüntemeyer, P; Jones, B F; Jui, C C H; Kieda, D B; Kim, K; Kirn, M A; Loh, E C; Manago, N; Marek, L J; Martens, K; Martin, G; Matthews, J A J; Matthews, J N; Meyer, J R; Moore, S A; Morrison, P; Moosman, A N; Mumford, J R; Munro, M W; Painter, C A; Perera, L; Reil, K; Riehle, R; Roberts, M; Sarracino, J S; Sasaki, M; Schnetzer, S R; Shen, P; Simpson, K M; Sinnis, G; Smith, J D; Sokolsky, P; Song, C; Springer, R W; Stokes, B T; Taylor, S F; Thomas, S B; Thompson, T N; Thomson, G B; Tupa, D; Westerhoff, S; Wiencke, L R; VanderVeen, T D; Zech, A; Zhang, X
2004-04-16
We have measured the cosmic ray spectrum above 10(17.2) eV using the two air-fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, phototube, and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extragalactic sources.
Optical spectrophotometry of oscillations and flickering in AE Aquarii
NASA Technical Reports Server (NTRS)
Welsh, William F.; Horne, Keith; Oke, J. B.
1993-01-01
We observed rapid variations in the nova-like cataclysmic variable AE Aquarii for 1.7 hr with 4.3 s time resolution using the 30-channel (3227-10494 A) spectrophotometer on the Hale 5 m telescope. The 16.5 and 33.0 s oscillations show a featureless blue spectrum that can be represented by a blackbody with temperature and area much smaller than the accretion disk. Models consisting of the sum of a K star spectrum and a hydrogen slab in LTE at T = 6000-10,000 K can fit the spectrum of AE Aquarii reasonably well. The spectrum of a flare indicates optically thin gas with T = 8000-12,000 K. The energy released by the flare is large compared to typical stellar flares.
Imprints of spherical nontrivial topologies on the cosmic microwave background.
Niarchou, Anastasia; Jaffe, Andrew
2007-08-24
The apparent low power in the cosmic microwave background (CMB) temperature anisotropy power spectrum derived from the Wilkinson Microwave Anisotropy Probe motivated us to consider the possibility of a nontrivial topology. We focus on simple spherical multiconnected manifolds and discuss their implications for the CMB in terms of the power spectrum, maps, and the correlation matrix. We perform a Bayesian model comparison against the fiducial best-fit cold dark matter model with a cosmological constant based both on the power spectrum and the correlation matrix to assess their statistical significance. We find that the first-year power spectrum shows a slight preference for the truncated cube space, but the three-year data show no evidence for any of these spaces.
The Metal Content of Dwarf Starburst Winds: Results from Chandra Observations of NGC 1569
NASA Astrophysics Data System (ADS)
Martin, Crystal L.; Kobulnicky, Henry A.; Heckman, Timothy M.
2002-08-01
We present deep Chandra spectral imaging of the dwarf starburst galaxy NGC 1569. The unprecedented spatial resolution allows us to spatially identify the components of the integrated X-ray spectrum. Fitted spectral models require an intrinsic absorption component and higher metal abundances than previous studies indicated. Our results provide the first direct evidence for metal-enriched winds from dwarf starburst galaxies. We identify 14 X-ray point sources in NGC 1569. Most have properties consistent with those of high-mass X-ray binaries, but one is a steep-spectrum radio source that is probably a supernova remnant. The X-ray luminosity of NGC 1569 is dominated by diffuse, thermal emission from the disk (0.7 keV) and bipolar halo (0.3 keV). Photoelectric absorption from the inclined H I disk hardens the X-ray spectrum on the northern side of the disk relative to the southern side. Requiring the fitted absorption column to match the H I column measured at 21 cm implies that the metallicity of the H I disk is significantly less than solar but greater than 0.1 Zsolar. Hence, much of the H I is enriched to levels comparable to the metallicity of the H II regions [O/H=0.2(O/H)solar]. The X-ray color variations in the halo are inconsistent with a free-streaming wind and probably reveal the location of shocks created by the interaction of the wind with a gaseous halo. The X-ray spectrum of the diffuse gas presents strong emission lines from α-process elements. Fitted models require α-element abundances greater than 0.25 Zα,solar and ratios of α-elements to iron 2-4 times higher than the solar ratio. The best fit to the spectrum is obtained with solar mass fractions for the α-elements, 1.0 Zα,solar, but a degeneracy between the metallicity and the spectral normalization prevents us from deriving an upper limit on the wind metallicity from the X-ray spectrum alone. We argue, however, that abundances larger than 2.0 Zα,solar pose awkward implications for the dynamical evolution of the wind based on our knowledge of the starburst properties. For consistency with our best-fitting abundances, the mass of interstellar gas entrained in the wind must be about 9 times the mass of stellar ejecta in the wind. Most of the oxygen carried by the wind comes from the stellar ejecta rather than entrained interstellar gas. The estimated mass of oxygen in the hot wind, 34,000 Msolar, is similar to the oxygen yield of the current starburst. Apparently the wind carries nearly all the metals ejected by the starburst. These metals appear destined to contribute to the enrichment of the intergalactic medium. Much of the nucleosynthesis in NGC 1569 must have occurred during less violent periods of star formation, however, because our measurements imply that the neutral gas disk holds at least 5 times more oxygen than wind. Based on observations obtained with the Chandra X-Ray Observatory.
The non-linear power spectrum of the Lyman alpha forest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo
2015-12-01
The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z∼ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate themore » comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula.« less
Power spectrum precision for redshift space distortions
NASA Astrophysics Data System (ADS)
Linder, Eric V.; Samsing, Johan
2013-02-01
Redshift space distortions in galaxy clustering offer a promising technique for probing the growth rate of structure and testing dark energy properties and gravity. We consider the issue of to what accuracy they need to be modeled in order not to unduly bias cosmological conclusions. Fitting for nonlinear and redshift space corrections to the linear theory real space density power spectrum in bins in wavemode, we analyze both the effect of marginalizing over these corrections and of the bias due to not correcting them fully. While naively subpercent accuracy is required to avoid bias in the unmarginalized case, in the fitting approach the Kwan-Lewis-Linder reconstruction function for redshift space distortions is found to be accurately selfcalibrated with little degradation in dark energy and gravity parameter estimation for a next generation galaxy redshift survey such as BigBOSS.
The Sixth Spectrum of Iridium (Ir VI): Determination of the 5d4, 5d36s and 5d36p Configurations
NASA Astrophysics Data System (ADS)
Azarov, V. I.; Gayasov, R. R.; Gayasov, R. R.; Joshi, Y. N.; Churilov, S. S.
The spectrum of five times ionized iridium, Ir VI, was investigated in the 420-1520 Å wavelength region. The analysis has led to the determination of the 5d4, 5d36s and 5d36p configurations. Thirty of thirty four theoretically possible 5d4 levels, 27 of 38 possible 5d36s levels and 96 of 110 possible 5d36p levels have been established. The levels are based on 711 classified spectral lines. The level structure of the configurations has been theoretically interpreted using the orthogonal operators technique. The energy parameters have been determined by a least squares fit to the observed levels. Calculated energy values and LS-compositions, obtained from the fitted parameter values are given.
Observation of the Y (4140) structure in the J/ψϕ mass spectrum in B±→ J/ψϕK± decays
NASA Astrophysics Data System (ADS)
Aaltonen, T.; González, B. Álvarez; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bauer, G.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Brigliadori, L.; Brisuda, A.; Bromberg, C.; Brucken, E.; Buccianton, M.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; D'Ascenzo, N.; Datta, M.; de Barbaro, P.; de Cecco, S.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Devoto, F.; D'Errico, M.; di Canto, A.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; da Costa, J. Guimaraes; Gunay-Unalan, Z.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Hewamanage, S.; Hidas, D.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirby, M.; Klimenko, S.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lin, C.-J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N. S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Martínez-Ballarín, R.; Mastrandrea, P.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Fernandez, P. Movilla; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Griso, S. Pagan; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Plager, C.; Pondrom, L.; Potamianos, K.; Poukhov, O.; Prokoshin, F.; Pronko, A.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rubbo, F.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sartori, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shreyber, I.; Simonenko, A.; Sinervo, P.; Sissakian, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Soha, A.; Somalwar, S.; Sorin, V.; Squillacioti, P.; Stancari, M.; Stanitzki, M.; Denis, R. St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Ttito-Guzmán, P.; Tkaczyk, S.; Tokar, S.; Tollefson, K.; Tomura, T.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tu, Y.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Whitehouse, B.; Whiteson, D.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamaoka, J.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zucchelli, S.
2017-08-01
The observation of the Y (4140) structure in B±→ J/ψϕK± decays produced in p¯p collisions at s = 1.96 TeV is reported with a statistical significance greater than 5 standard deviations. A fit to the J/ψϕ mass spectrum is performed assuming the presence of a Breit-Wigner resonance. The fit yields a signal of 19 ± 6(stat) ± 3(syst) resonance events, and resonance mass and width of 4143.4-3.0+2.9(stat) ± 0.6(syst)MeV/c2 and 15.3-6.1+10.4(stat) ± 2.5(syst)MeV/c2, respectively. The parameters of this resonance-like structure are consistent with values reported from an earlier CDF analysis.
Multi-time-scale X-ray reverberation mapping of accreting black holes
NASA Astrophysics Data System (ADS)
Mastroserio, Guglielmo; Ingram, Adam; van der Klis, Michiel
2018-04-01
Accreting black holes show characteristic reflection features in their X-ray spectrum, including an iron Kα line, resulting from hard X-ray continuum photons illuminating the accretion disc. The reverberation lag resulting from the path-length difference between direct and reflected emission provides a powerful tool to probe the innermost regions around both stellar-mass and supermassive black holes. Here, we present for the first time a reverberation mapping formalism that enables modelling of energy-dependent time lags and variability amplitude for a wide range of variability time-scales, taking the complete information of the cross-spectrum into account. We use a pivoting power-law model to account for the spectral variability of the continuum that dominates over the reverberation lags for longer time-scale variability. We use an analytic approximation to self-consistently account for the non-linear effects caused by this continuum spectral variability, which have been ignored by all previous reverberation studies. We find that ignoring these non-linear effects can bias measurements of the reverberation lags, particularly at low frequencies. Since our model is analytic, we are able to fit simultaneously for a wide range of Fourier frequencies without prohibitive computational expense. We also introduce a formalism of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally avoids some mistakes/inaccuracies previously common in the literature. We perform proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.
Route towards cylindrical cloaking at visible frequencies using an optimization algorithm
NASA Astrophysics Data System (ADS)
Rottler, Andreas; Krüger, Benjamin; Heitmann, Detlef; Pfannkuche, Daniela; Mendach, Stefan
2012-12-01
We derive a model based on the Maxwell-Garnett effective-medium theory that describes a cylindrical cloaking shell composed of metal rods which are radially aligned in a dielectric host medium. We propose and demonstrate a minimization algorithm that calculates for given material parameters the optimal geometrical parameters of the cloaking shell such that its effective optical parameters fit the best to the required permittivity distribution for cylindrical cloaking. By means of sophisticated full-wave simulations we find that a cylindrical cloak with good performance using silver as the metal can be designed with our algorithm for wavelengths in the red part of the visible spectrum (623nm <λ<773nm). We also present a full-wave simulation of such a cloak at an exemplary wavelength of λ=729nm (ℏω=1.7eV) which indicates that our model is useful to find design rules of cloaks with good cloaking performance. Our calculations investigate a structure that is easy to fabricate using standard preparation techniques and therefore pave the way to a realization of guiding light around an object at visible frequencies, thus rendering it invisible.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Half-mask facepieces, full facepieces, hoods, and... OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.135 Half-mask facepieces, full facepieces, hoods, and helmets; fit; minimum requirements. (a) Half-mask facepieces and full facepieces shall...
Crash Testing of Helicopter Airframe Fittings
NASA Technical Reports Server (NTRS)
Clarke, Charles W.; Townsend, William; Boitnott, Richard
2004-01-01
As part of the Rotary Wing Structures Technology Demonstration (RWSTD) program, a surrogate RAH-66 seat attachment fitting was dynamically tested to assess its response to transient, crash impact loads. The dynamic response of this composite material fitting was compared to the performance of an identical fitting subjected to quasi-static loads of similar magnitude. Static and dynamic tests were conducted of both smaller bench level and larger full-scale test articles. At the bench level, the seat fitting was supported in a steel fixture, and in the full-scale tests, the fitting was integrated into a surrogate RAH-66 forward fuselage. Based upon the lessons learned, an improved method to design, analyze, and test similar composite material fittings is proposed.
40 CFR 721.10607 - Aliphatic diisocyanate, homopolymer, alkanol-blocked (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
...-purifying, tight-fitting half-face respirator equipped with N100 (if oil aerosols absent), R100, or P100 filters. (B) NIOSH-certified air-purifying, tight-fitting full-face respirator equipped with N100 (if oil...-certified powered air-purifying respirator equipped with a tight-fitting facepiece (either half-face or full...
40 CFR 721.9719 - Tris carbamoyl triazine (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... the requirements for § 721.63(a)(4): (A) Air purifying, tight-fitting half-face respirator equipped... filter (N100 if oil aerosols are absent, R100, or P100); (B) Air purifying, tight-fitting full-face...) filter; powered air-purifying respirator equipped with tight-fitting facepiece (either half-face or full...
Large-area measurements of CIB power spectra with Planck HFI maps
NASA Astrophysics Data System (ADS)
Mak, D. S. Y.; Challinor, A.; Efstathiou, G.; Lagache, G.
We present new measurements of the power spectra of the cosmic infrared background (CIB) anisotropies using the Planck 2015 full-mission HFI data at 353, 545, and 857 GHz over 20 000 square degrees. Unlike previous Planck measurements of the CIB power spectra, we do not rely on external HI data to remove Galactic dust emission from the Planck maps. Instead, we model the Galactic emission at the level of the power spectra, using templates constructed directly from the Planck data by exploiting the statistical isotropy of all extragalactic emission components. This allows us to work at the full resolution of Planck over large sky areas. We construct a likelihood based on the measured spectra (for multipoles 50 <= l <= 2500) using analytic covariance matrices that account for masking and the realistic instrumental noise properties. The results of an MCMC exploration of this likelihood are presented, based on simple parameterised models of the CIB power that arises from clustering of infrared galaxies. We explore simultaneously the parameters describing the clustered power, the Poisson power levels, and the amplitudes of the Galactic power spectrum templates across the six frequency (cross-)spectra. The best-fit model provides a good fit to all spectra. As an example, Fig. 1 compares the measured auto spectra at 353, 545, and 857 GHz over 40% of the sky to the power in the best-fit model. We find that the power in the CIB anisotropies from galaxy clustering is roughly equal to the Poisson power at multipoles l =2000 (the clustered power dominates on larger scales), and that our dust-cleaned CIB spectra are in good agreement with previous Planck and Herschel measurements. A key feature of our analysis is that it allows one to make many internal consistency tests. We show that our results are stable to data selection and choice of survey area, demonstrating both our ability to remove Galactic dust power to high accuracy and the statistical isotropy of the CIB signal.
The making of a modern female body: beauty, health and fitness in interwar Britain.
Zweiniger-Bargielowska, Ina
2011-01-01
In interwar Britain female athleticism, keep-fit classes and physical culture were celebrated as emblems of modernity, and women who cultivated their bodies in the pursuit of beauty, health and fitness represented civic virtue. This article argues that a modern, actively managed female body was part of women's liberation during this period. A modern female body required sex reform and birth control. Fitness culture was circumscribed by traditional notions of femininity. Women's competitive sport remained controversial and slimming in pursuit of fashion was widely condemned. Women from across the social spectrum embraced sport and joined fitness organizations. The rise of a modern female body contributed towards greater equality between the sexes. However, the gender order did not change fundamentally and the ideal woman of the interwar years was represented as a modern, emancipated race mother.
The Chandra Source Catalog 2.0: Spectral Properties
NASA Astrophysics Data System (ADS)
McCollough, Michael L.; Siemiginowska, Aneta; Burke, Douglas; Nowak, Michael A.; Primini, Francis Anthony; Laurino, Omar; Nguyen, Dan T.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Paxson, Charles; Plummer, David A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula; Chandra Source Catalog Team
2018-01-01
The second release of the Chandra Source Catalog (CSC) contains all sources identified from sixteen years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package) using wstat as a fit statistic and Bayesian draws method to determine errors. Three models were fit to each source: an absorbed power-law, blackbody, and Bremsstrahlung emission. The fitted parameter values for the power-law, blackbody, and Bremsstrahlung models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy fluxes computed from the normalizations of predefined absorbed power-law, black-body, Bremsstrahlung, and APEC models needed to match the observed net X-ray counts. For sources that have been observed multiple times we performed a Bayesian Blocks analysis will have been performed (see the Primini et al. poster) and the most significant block will have a joint fit performed for the mentioned spectral models. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard). This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.
NASA Astrophysics Data System (ADS)
Silberman, L.; Dekel, A.; Eldar, A.; Zehavi, I.
2001-08-01
We allow for nonlinear effects in the likelihood analysis of galaxy peculiar velocities and obtain ~35% lower values for the cosmological density parameter Ωm and for the amplitude of mass density fluctuations σ8Ω0.6m. This result is obtained under the assumption that the power spectrum in the linear regime is of the flat ΛCDM model (h=0.65, n=1, COBE normalized) with only Ωm as a free parameter. Since the likelihood is driven by the nonlinear regime, we ``break'' the power spectrum at kb~0.2 (h-1 Mpc)-1 and fit a power law at k>kb. This allows for independent matching of the nonlinear behavior and an unbiased fit in the linear regime. The analysis assumes Gaussian fluctuations and errors and a linear relation between velocity and density. Tests using mock catalogs that properly simulate nonlinear effects demonstrate that this procedure results in a reduced bias and a better fit. We find for the Mark III and SFI data Ωm=0.32+/-0.06 and 0.37+/-0.09, respectively, with σ8Ω0.6m=0.49+/-0.06 and 0.63+/-0.08, in agreement with constraints from other data. The quoted 90% errors include distance errors and cosmic variance, for fixed values of the other parameters. The improvement in the likelihood due to the nonlinear correction is very significant for Mark III and moderately significant for SFI. When allowing deviations from ΛCDM, we find an indication for a wiggle in the power spectrum: an excess near k~0.05 (h-1 Mpc)-1 and a deficiency at k~0.1 (h-1 Mpc)-1, or a ``cold flow.'' This may be related to the wiggle seen in the power spectrum from redshift surveys and the second peak in the cosmic microwave background (CMB) anisotropy. A χ2 test applied to modes of a principal component analysis (PCA) shows that the nonlinear procedure improves the goodness of fit and reduces a spatial gradient that was of concern in the purely linear analysis. The PCA allows us to address spatial features of the data and to evaluate and fine-tune the theoretical and error models. It demonstrates in particular that the models used are appropriate for the cosmological parameter estimation performed. We address the potential for optimal data compression using PCA.
Taylor, Mark J.; Charman, Tony; Robinson, Elise B.; Hayiou-Thomas, Marianna E.; Happé, Francesca; Dale, Philip S.; Ronald, Angelica
2015-01-01
Language difficulties have historically been viewed as integral to autism spectrum conditions (ASC), leading molecular genetic studies to consider whether ASC and language difficulties have overlapping genetic bases. The extent of genetic, and also environmental, overlap between ASC and language is, however, unclear. We hence conducted a twin study of the concurrent association between autistic traits and receptive language abilities. Internet-based language tests were completed by ~3,000 pairs of twins, while autistic traits were assessed via parent ratings. Twin model fitting explored the association between these measures in the full sample, while DeFries-Fulker analysis tested these associations at the extremes of the sample. Phenotypic associations between language ability and autistic traits were modest and negative. The degree of genetic overlap was also negative, indicating that genetic influences on autistic traits lowered language scores in the full sample (mean genetic correlation = −0.13). Genetic overlap was also low at the extremes of the sample (mean genetic correlation = 0.14), indicating that genetic influences on quantitatively defined language difficulties were largely distinct from those on extreme autistic traits. Variation in language ability and autistic traits were also associated with largely different nonshared environmental influences. Language and autistic traits are influenced by largely distinct etiological factors. This has implications for molecular genetic studies of ASC and understanding the etiology of ASC. Additionally, these findings lend support to forthcoming DSM-5 changes to ASC diagnostic criteria that will see language difficulties separated from the core ASC communication symptoms, and instead listed as a clinical specifier. PMID:25088445
Acoustic cue integration in speech intonation recognition with cochlear implants.
Peng, Shu-Chen; Chatterjee, Monita; Lu, Nelson
2012-06-01
The present article reports on the perceptual weighting of prosodic cues in question-statement identification by adult cochlear implant (CI) listeners. Acoustic analyses of normal-hearing (NH) listeners' production of sentences spoken as questions or statements confirmed that in English the last bisyllabic word in a sentence carries the dominant cues (F0, duration, and intensity patterns) for the contrast. Furthermore, these analyses showed that the F0 contour is the primary cue for the question-statement contrast, with intensity and duration changes conveying important but less reliable information. On the basis of these acoustic findings, the authors examined adult CI listeners' performance in two question-statement identification tasks. In Task 1, 13 CI listeners' question-statement identification accuracy was measured using naturally uttered sentences matched for their syntactic structures. In Task 2, the same listeners' perceptual cue weighting in question-statement identification was assessed using resynthesized single-word stimuli, within which fundamental frequency (F0), intensity, and duration properties were systematically manipulated. Both tasks were also conducted with four NH listeners with full-spectrum and noise-band-vocoded stimuli. Perceptual cue weighting was assessed by comparing the estimated coefficients in logistic models fitted to the data. Of the 13 CI listeners, 7 achieved high performance levels in Task 1. The results of Task 2 indicated that multiple sources of acoustic cues for question-statement identification were utilized to different extents depending on the listening conditions (e.g., full spectrum vs. spectrally degraded) or the listeners' hearing and amplification status (e.g., CI vs. NH).
Taylor, Mark J; Charman, Tony; Robinson, Elise B; Hayiou-Thomas, Marianna E; Happé, Francesca; Dale, Philip S; Ronald, Angelica
2014-10-01
Language difficulties have historically been viewed as integral to autism spectrum conditions (ASC), leading molecular genetic studies to consider whether ASC and language difficulties have overlapping genetic bases. The extent of genetic, and also environmental, overlap between ASC and language is, however, unclear. We hence conducted a twin study of the concurrent association between autistic traits and receptive language abilities. Internet-based language tests were completed by ~3,000 pairs of twins, while autistic traits were assessed via parent ratings. Twin model fitting explored the association between these measures in the full sample, while DeFries-Fulker analysis tested these associations at the extremes of the sample. Phenotypic associations between language ability and autistic traits were modest and negative. The degree of genetic overlap was also negative, indicating that genetic influences on autistic traits lowered language scores in the full sample (mean genetic correlation = -0.13). Genetic overlap was also low at the extremes of the sample (mean genetic correlation = 0.14), indicating that genetic influences on quantitatively defined language difficulties were largely distinct from those on extreme autistic traits. Variation in language ability and autistic traits were also associated with largely different nonshared environmental influences. Language and autistic traits are influenced by largely distinct etiological factors. This has implications for molecular genetic studies of ASC and understanding the etiology of ASC. Additionally, these findings lend support to forthcoming DSM-5 changes to ASC diagnostic criteria that will see language difficulties separated from the core ASC communication symptoms, and instead listed as a clinical specifier. © 2014 Wiley Periodicals, Inc.
PINS chemical identification software
Caffrey, Augustine J.; Krebs, Kennth M.
2004-09-14
An apparatus and method for identifying a chemical compound. A neutron source delivers neutrons into the chemical compound. The nuclei of chemical elements constituting the chemical compound emit gamma rays upon interaction with the neutrons. The gamma rays are characteristic of the chemical elements constituting the chemical compound. A spectrum of the gamma rays is generated having a detection count and an energy scale. The energy scale is calibrated by comparing peaks in the spectrum to energies of pre-selected chemical elements in the spectrum. A least-squares fit completes the calibration. The chemical elements constituting the chemical compound can be readily determined, which then allows for identification of the chemical compound.
The principles of quantification applied to in vivo proton MR spectroscopy.
Helms, Gunther
2008-08-01
Following the identification of metabolite signals in the in vivo MR spectrum, quantification is the procedure to estimate numerical values of their concentrations. The two essential steps are discussed in detail: analysis by fitting a model of prior knowledge, that is, the decomposition of the spectrum into the signals of singular metabolites; then, normalization of these signals to yield concentration estimates. Special attention is given to using the in vivo water signal as internal reference.
The role of antimatter in big-bang cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1973-01-01
Big bang cosmology is discussed with reference to both its strong points and gaps. Characteristics of a spectral component of red shifted gamma-radiation from cosmological matter-antimatter annihilation show a flattening of the gamma-ray spectrum in the vicinity of 1 MeV, an increased gamma-ray flux between 1 and 100 MeV, and a very steep spectrum between 50 and 135 MeV. This data fits well with the theoretical predictions in energy and intensity.
The proton and helium rigidity spectra from 10 to 50 GV
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Cleghorn, T.; Lacy, J. L.; Zipse, J. E.; Daniel, R. R.; Golden, R. L.; Stephens, S. A.
1978-01-01
A magnet spectrometer flown from Palestine, Texas, (September 15, 1976) has produced measurements on 150,000 protons and 20,000 helium nuclei covering the rigidity range 10-50 GV. In this interval, the proton spectrum has been fitted to a power law with a spectral index of 2.51 + or - 0.03. Similarly, the helium-nuclei rigidity spectrum can be represented as a power law with an index of 2.61 + or - 0.03.
X-Ray Spectro-Polarimetry with Photoelectric Polarimeters
NASA Technical Reports Server (NTRS)
Strohmayer, T. E.
2017-01-01
We derive a generalization of forward fitting for X-ray spectroscopy to include linear polarization of X-ray sources, appropriate for the anticipated next generation of space-based photoelectric polarimeters. We show that the inclusion of polarization sensitivity requires joint fitting to three observed spectra, one for each of the Stokes parameters, I(E), U(E), and Q(E). The equations for StokesI (E) (the total intensity spectrum) are identical to the familiar case with no polarization sensitivity, and for which the model-predicted spectrum is obtained by a convolution of the source spectrum, F (E), with the familiar energy response function,(E) R(E,E), where (E) and R(E,E) are the effective area and energy redistribution matrix, respectively. In addition to the energy spectrum, the two new relations for U(E) and Q(E) include the source polarization fraction and position angle versus energy, a(E), and 0(E), respectively, and the model-predicted spectra for these relations are obtained by a convolution with the modulated energy response function, (E)(E) R(E,E), where(E) is the energy-dependent modulation fraction that quantifies a polarimeters angular response to 100 polarized radiation. We present results of simulations with response parameters appropriate for the proposed PRAXyS Small Explorer observatory to illustrate the procedures and methods, and we discuss some aspects of photoelectric polarimeters with relevance to understanding their calibration and operation.
Spectrum and Energy Levels of Five-Times Ionized Zirconium (Zr VI)
Lindsay, Mark D.
2016-01-01
We carried out a new analysis of the spectrum of five-times-ionized zirconium Zr VI. For this we used sliding-spark discharges together with normal- and grazing-incidence spectrographs to observe the spectrum from 160 to 2000 Å. These observations showed that the analysis of this spectrum by Khan Z. A. et al. 1985 Phys. Scr. 31 837 contained a significant number of incorrect energy levels. We have now classified ∼420 lines as transitions between 23 even-parity levels 73 odd-parity levels. The 4s24p5, 4s4p6, 4s24p44d, 5s, 5d, 6s configurations are now complete, although a few levels of 4s24p45d are tentative. We determined Ritz-type wavelengths for ∼135 lines from the optimized energy levels. The uncertainties range from 0.0003 to 0.0020 Å. Hartree-Fock calculations and least-squares fits of the energy parameters to the observed levels were used to interpret the observed configurations. Oscillator strengths for all classified lines were calculated with the fitted parameters. The results are compared with values for the level energies, percentage compositions, and transition probabilities from recent ab initio theoretical calculations. The ionization energy was revised to 777380±300 cm-1 (96.38±0.04 eV). PMID:27325903
Spectrum and Energy Levels of Five-Times Ionized Zirconium (Zr VI).
Reader, Joseph; Lindsay, Mark D
2016-02-01
We carried out a new analysis of the spectrum of five-times-ionized zirconium Zr VI. For this we used sliding-spark discharges together with normal- and grazing-incidence spectrographs to observe the spectrum from 160 to 2000 Å. These observations showed that the analysis of this spectrum by Khan Z. A. et al. 1985 Phys. Scr. 31 837 contained a significant number of incorrect energy levels. We have now classified ∼420 lines as transitions between 23 even-parity levels 73 odd-parity levels. The 4s 2 4p 5 , 4s4p 6 , 4s 2 4p 4 4d, 5s, 5d, 6s configurations are now complete, although a few levels of 4s 2 4p 4 5d are tentative. We determined Ritz-type wavelengths for ∼135 lines from the optimized energy levels. The uncertainties range from 0.0003 to 0.0020 Å. Hartree-Fock calculations and least-squares fits of the energy parameters to the observed levels were used to interpret the observed configurations. Oscillator strengths for all classified lines were calculated with the fitted parameters. The results are compared with values for the level energies, percentage compositions, and transition probabilities from recent ab initio theoretical calculations. The ionization energy was revised to 777380±300 cm -1 (96.38±0.04 eV).
Mobasheri, Saeedeh; Behnam, Hamid; Rangraz, Parisa; Tavakkoli, Jahan
2016-01-01
High-intensity focused ultrasound (HIFU) is a novel treatment modality used by scientists and clinicians in the recent decades. This modality has had a great and significant success as a noninvasive surgery technique applicable in tissue ablation therapy and cancer treatment. In this study, radio frequency (RF) ultrasound signals were acquired and registered in three stages of before, during, and after HIFU exposures. Different features of RF time series signals including the sum of amplitude spectrum in the four quarters of the frequency range, the slope, and intercept of the best-fit line to the entire power spectrum and the Shannon entropy were utilized to distinguish between the HIFU-induced thermal lesion and the normal tissue. We also examined the RF data, frame by frame to identify exposure effects on the formation and characteristics of a HIFU thermal lesion at different time steps throughout the treatment. The results obtained showed that the spectrum frequency quarters and the slope and intercept of the best fit line to the entire power spectrum both increased two times during the HIFU exposures. The Shannon entropy, however, decreased after the exposures. In conclusion, different characteristics of RF time series signal possess promising features that can be used to characterize ablated and nonablated tissues and to distinguish them from each other in a quasi-quantitative fashion.
Spectrum and energy levels of five-times ionized zirconium (Zr VI)
NASA Astrophysics Data System (ADS)
Reader, Joseph; Lindsay, Mark D.
2016-02-01
We carried out a new analysis of the spectrum of five-times-ionized zirconium Zr VI. For this we used sliding-spark discharges together with normal- and grazing-incidence spectrographs to observe the spectrum from 160 to 2000 Å. These observations showed that the analysis of this spectrum by Khan et al (1985 Phys. Scr. 31 837) contained a significant number of incorrect energy levels. We have now classified ˜420 lines as transitions between 23 even-parity levels 73 odd-parity levels. The 4s24p5, 4s4p6, 4s24p44d, 5s, 5d, 6s configurations are now complete, although a few levels of 4s24p45d are tentative. We determined Ritz-type wavelengths for ˜135 lines from the optimized energy levels. The uncertainties range from 0.0003 to 0.0020 Å. Hartree-Fock calculations and least-squares fits of the energy parameters to the observed levels were used to interpret the observed configurations. Oscillator strengths for all classified lines were calculated with the fitted parameters. The results are compared with values for the level energies, percentage compositions, and transition probabilities from recent ab initio theoretical calculations. The ionization energy was revised to 777 380 ± 300 cm-1 (96.38 ± 0.04 eV).
NASA Astrophysics Data System (ADS)
Avakyan, L. A.; Heinz, M.; Skidanenko, A. V.; Yablunovski, K. A.; Ihlemann, J.; Meinertz, J.; Patzig, C.; Dubiel, M.; Bugaev, L. A.
2018-01-01
The formation of a localized surface plasmon resonance (SPR) spectrum of randomly distributed gold nanoparticles in the surface layer of silicate float glass, generated and implanted by UV ArF-excimer laser irradiation of a thin gold layer sputter-coated on the glass surface, was studied by the T-matrix method, which enables particle agglomeration to be taken into account. The experimental technique used is promising for the production of submicron patterns of plasmonic nanoparticles (given by laser masks or gratings) without damage to the glass surface. Analysis of the applicability of the multi-spheres T-matrix (MSTM) method to the studied material was performed through calculations of SPR characteristics for differently arranged and structured gold nanoparticles (gold nanoparticles in solution, particles pairs, and core-shell silver-gold nanoparticles) for which either experimental data or results of the modeling by other methods are available. For the studied gold nanoparticles in glass, it was revealed that the theoretical description of their SPR spectrum requires consideration of the plasmon coupling between particles, which can be done effectively by MSTM calculations. The obtained statistical distributions over particle sizes and over interparticle distances demonstrated the saturation behavior with respect to the number of particles under consideration, which enabled us to determine the effective aggregate of particles, sufficient to form the SPR spectrum. The suggested technique for the fitting of an experimental SPR spectrum of gold nanoparticles in glass by varying the geometrical parameters of the particles aggregate in the recurring calculations of spectrum by MSTM method enabled us to determine statistical characteristics of the aggregate: the average distance between particles, average size, and size distribution of the particles. The fitting strategy of the SPR spectrum presented here can be applied to nanoparticles of any nature and in various substances, and, in principle, can be extended for particles with non-spherical shapes, like ellipsoids, rod-like and other T-matrix-solvable shapes.
Spectral matching technology for light-emitting diode-based jaundice photodynamic therapy device
NASA Astrophysics Data System (ADS)
Gan, Ru-ting; Guo, Zhen-ning; Lin, Jie-ben
2015-02-01
The objective of this paper is to obtain the spectrum of light-emitting diode (LED)-based jaundice photodynamic therapy device (JPTD), the bilirubin absorption spectrum in vivo was regarded as target spectrum. According to the spectral constructing theory, a simple genetic algorithm as the spectral matching algorithm was first proposed in this study. The optimal combination ratios of LEDs were obtained, and the required LEDs number was then calculated. Meanwhile, the algorithm was compared with the existing spectral matching algorithms. The results show that this algorithm runs faster with higher efficiency, the switching time consumed is 2.06 s, and the fitting spectrum is very similar to the target spectrum with 98.15% matching degree. Thus, blue LED-based JPTD can replace traditional blue fluorescent tube, the spectral matching technology that has been put forward can be applied to the light source spectral matching for jaundice photodynamic therapy and other medical phototherapy.
Spectral mismatch and solar simulator quality factor in advanced LED solar simulators
NASA Astrophysics Data System (ADS)
Scherff, Maximilian L. D.; Nutter, Jason; Fuss-Kailuweit, Peter; Suthues, Jörn; Brammer, Torsten
2017-08-01
Solar cell simulators based on light emitting diodes (LED) have the potential to achieve a large potential market share in the next years. As advantages they can provide a short and long time stable spectrum, which fits very well to the global AM1.5g reference spectrum. This guarantees correct measurements during the flashes and throughout the light engines’ life span, respectively. Furthermore, a calibration with a solar cell type of different spectral response (SR) as well as the production of solar cells with varying SR in between two calibrations does not affect the correctness of the measurement result. A high quality 21 channel LED solar cell spectrum is compared to former study comprising a standard modified xenon spectrum light source. It is shown, that the spectrum of the 21-channel-LED light source performs best for all examined cases.
Optimal spatial filtering and transfer function for SAR ocean wave spectra
NASA Technical Reports Server (NTRS)
Beal, R. C.; Tilley, D. G.
1981-01-01
The impulse response of the SAR system is not a delta function and the spectra represent the product of the underlying image spectrum with the transform of the impulse response which must be removed. A digitally computed spectrum of SEASAT imagery of the Atlantic Ocean east of Cape Hatteras was smoothed with a 5 x 5 convolution filter and the trend was sampled in a direction normal to the predominant wave direction. This yielded a transform of a noise-like process. The smoothed value of this trend is the transform of the impulse response. This trend is fit with either a second- or fourth-order polynomial which is then used to correct the entire spectrum. A 16 x 16 smoothing of the spectrum shows the presence of two distinct swells. Correction of the effects of speckle is effected by the subtraction of a bias from the spectrum.
NASA Astrophysics Data System (ADS)
Mott, A.; Steffen, M.; Caffau, E.; Spada, F.; Strassmeier, K. G.
2017-08-01
Context. Current three-dimensional (3D) hydrodynamical model atmospheres together with detailed spectrum synthesis, accounting for departures from local thermodynamic equilibrium (LTE), permit to derive reliable atomic and isotopic chemical abundances from high-resolution stellar spectra. Not much is known about the presence of the fragile 6Li isotope in evolved solar-metallicity red giant branch (RGB) stars, not to mention its production in magnetically active targets like HD 123351. Aims: A detailed spectroscopic investigation of the lithium resonance doublet in HD 123351 in terms of both abundance and isotopic ratio is presented. From fits of the observed spectrum, taken at the Canada-France-Hawaii telescope, with synthetic line profiles based on 1D and 3D model atmospheres, we seek to estimate the abundance of the 6Li isotope and to place constraints on its origin. Methods: We derive the lithium abundance A(Li) and the 6Li/7Li isotopic ratio by fitting different synthetic spectra to the Li-line region of a high-resolution CFHT spectrum (R = 120 000, S/N = 400). The synthetic spectra are computed with four different line lists, using in parallel 3D hydrodynamical CO5BOLD and 1D LHD model atmospheres and treating the line formation of the lithium components in non-LTE (NLTE). The fitting procedure is repeated with different assumptions and wavelength ranges to obtain a reasonable estimate of the involved uncertainties. Results: We find A(Li) = 1.69 ± 0.11 dex and 6Li/7Li = 8.0 ± 4.4% in 3D-NLTE, using the line list of Meléndez et al. (2012, A&A, 543, A29), updated with new atomic data for V I, which results in the best fit of the lithium line profile of HD 123351. Two other line lists lead to similar results but with inferior fit qualities. Conclusions: Our 2σ detection of the 6Li isotope is the result of a careful statistical analysis and the visual inspection of each achieved fit. Since the presence of a significant amount of 6Li in the atmosphere of a cool evolved star is not expected in the framework of standard stellar evolution theory, non-standard, external lithium production mechanisms, possibly related to stellar activity or a recent accretion of rocky material, need to be invoked to explain the detection of 6Li in HD 123351.
GAO, L.; HAGEN, N.; TKACZYK, T.S.
2012-01-01
Summary We implement a filterless illumination scheme on a hyperspectral fluorescence microscope to achieve full-range spectral imaging. The microscope employs polarisation filtering, spatial filtering and spectral unmixing filtering to replace the role of traditional filters. Quantitative comparisons between full-spectrum and filter-based microscopy are provided in the context of signal dynamic range and accuracy of measured fluorophores’ emission spectra. To show potential applications, a five-colour cell immunofluorescence imaging experiment is theoretically simulated. Simulation results indicate that the use of proposed full-spectrum imaging technique may result in three times improvement in signal dynamic range compared to that can be achieved in the filter-based imaging. PMID:22356127
40 CFR 721.10572 - Benzamide, N-[[4- [(cyclopropylamino)carbonyl] phenyl]sulfonyl]-2-methoxy-.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-fitting half-face respirator equipped with N100 (if oil aerosols absent), R100, or P100 filters. (B) NIOSH-certified air-purifying, tight-fitting full-face respirator equipped with N100 (if oil aerosols absent...-purifying respirator equipped with a tight-fitting facepiece (either half-face or full-face) and HEPA...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., tight-fitting half-face respirator equipped with N100 (if oil aerosols absent), R100, or P100 filters. (B) NIOSH-certified air-purifying, tight-fitting full-face respirator equipped with N100 (if oil...-certified powered air-purifying respirator equipped with a tight-fitting facepiece (either half-face or full...
Application of the Hartmann-Tran profile to analysis of H2O spectra
NASA Astrophysics Data System (ADS)
Lisak, D.; Cygan, A.; Bermejo, D.; Domenech, J. L.; Hodges, J. T.; Tran, H.
2015-10-01
The Hartmann-Tran profile (HTP), which has been recently recommended as a new standard in spectroscopic databases, is used to analyze spectra of several lines of H2O diluted in N2, SF6, and in pure H2O. This profile accounts for various mechanisms affecting the line-shape and can be easily computed in terms of combinations of the complex Voigt profile. A multi-spectrum fitting procedure is implemented to simultaneously analyze spectra of H2O transitions acquired at different pressures. Multi-spectrum fitting of the HTP to a theoretical model confirms that this profile provides an accurate description of H2O line-shapes in terms of residuals and accuracy of fitted parameters. This profile and its limiting cases are also fit to measured spectra for three H2O lines in different vibrational bands. The results show that it is possible to obtain accurate HTP line-shape parameters when measured spectra have a sufficiently high signal-to-noise ratio and span a broad range of collisional-to-Doppler line widths. Systematic errors in the line area and differences in retrieved line-shape parameters caused by the overly simplistic line-shape models are quantified. Also limitations of the quadratic speed-dependence model used in the HTP are demonstrated in the case of an SF6 broadened H2O line, which leads to a strongly asymmetric line-shape.
Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.
Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian
2016-11-10
An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Patrick J.
2016-10-05
The code is used to provide an unfolded/adjusted energy-dependent fission reactor neutron spectrum based upon an input trial spectrum and a set of measured activities. This is part of a neutron environment characterization that supports doing testing in a given reactor environment. An iterative perturbation method is used to obtain a "best fit" neutron flux spectrum for a given input set of infinitely dilute foil activities. The calculational procedure consists of the selection of a trial flux spectrum to serve as the initial approximation to the solution, and subsequent iteration to a form acceptable as an appropriate solution. The solutionmore » is specified either as time-integrated flux (fluence) for a pulsed environment or as a flux for a steady-state neutron environment.« less
Analysis of the M-shell spectra emitted by a short-pulse laser-created tantalum plasma
Busquet; Jiang; Coinsertion Markte CY; Kieffer; Klapisch; Bar-Shalom; Bauche-Arnoult; Bachelier
2000-01-01
The spectrum of tantalum emitted by a subpicosecond laser-created plasma, was recorded in the regions of the 3d-5f, 3d-4f, and 3d-4p transitions. The main difference with a nanosecond laser-created plasma spectrum is a broad understructure appearing under the 3d-5f transitions. An interpretation of this feature as a density effect is proposed. The supertransition array model is used for interpreting the spectrum, assuming local thermodynamic equilibrium (LTE) at some effective temperature. An interpretation of the 3d-4f spectrum using the more detailed unresolved transition array formalism, which does not assume LTE, is also proposed. Fitted contributions of the different ionic species differ slightly from the LTE-predicted values.
NASA Technical Reports Server (NTRS)
Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Bennett, C. L.; Boggess, N. W.; Dwek, E.; Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.
1990-01-01
A preliminary spectrum is presented of the background radiation between 1 and 20/cm from regions near the north Galactic pole, as observed by the FIRAS instrument on the COBE satellite. The spectral resolution is 1/cm. The spectrum is well fitted by a blackbody with a temperature of 2.735 + or - 0.06 K, and the deviation from a blackbody is less than 1 percent of the peak intensity over the range 1-20/cm. These new data show no evidence for the submillimeter excess previously reported by Matsumoto et al. (1988) in the cosmic microwave background. Further analysis and additional data are expected to improve the sensitivity to deviations from a blackbody spectrum by an order of magnitude.
Lathdavong, Lemthong; Shao, Jie; Kluczynski, Pawel; Lundqvist, Stefan; Axner, Ove
2011-06-10
Detection of carbon monoxide (CO) in combustion gases by tunable diode laser spectrometry is often hampered by spectral interferences from H2O and CO2. A methodology for assessment of CO in hot, humid media using telecommunication distributed feedback lasers is presented. By addressing the R14 line at 6395.4 cm(-1), and by using a dual-species-fitting technique that incorporates the fitting of both a previously measured water background reference spectrum and a 2f-wavelength modulation lineshape function, percent-level concentrations of CO can be detected in media with tens of percent of water (c(H2O)≤40%) at T≤1000 °C with an accuracy of a few percent by the use of a single reference water spectrum for background correction.
Chatrchyan, Serguei
2014-05-22
A peaking structure in the J/psi phi mass spectrum near threshold is observed in B(+/-) to J/psi phi K(+/-) decays, produced in pp collisions at sqrt(s) = 7 TeV collected with the CMS detector at the LHC. The data sample, selected on the basis of the dimuon decay mode of the J/psi, corresponds to an integrated luminosity of 5.2 inverse femtobarns. Fitting the structure to an S-wave relativistic Breit-Wigner lineshape above a three-body phase-space nonresonant component gives a signal statistical significance exceeding five standard deviations. The fitted mass and width values are m = 4148.0 +- 2.4 (stat.) +- 6.3more » (syst.) MeV and Gamma = 28 +15 -11 (stat.) +- 19 (syst.) MeV, respectively. Evidence for an additional peaking structure at higher J/psi phi mass is also reported.« less
NASA Astrophysics Data System (ADS)
Tan, T. L.; Lau, S. Y.; Ong, P. P.; Goh, K. L.; Teo, H. H.
2000-10-01
The infrared spectrum of the ν12 fundamental band of ethylene (C2H4) has been measured with an unapodized resolution of 0.004 cm-1 in the frequency range of 1380-1500 cm-1 using the Fourier transform technique. By assigning and fitting a total of 1387 infrared transitions using a Watson's A-reduced Hamiltonian in the Ir representation, rovibrational constants for the upper state (v12 = 1) up to five quartic and three sextic centrifugal distortions terms were derived. They represent the most accurate constants for the band so far. The rms deviation of the fit was 0.00033 cm-1. The A-type ν12 band with a band center at 1442.44299 ± 0.00003 cm-1 was found to be relatively free from local frequency perturbations. The inertial defect Δ12 was found to be 0.24201 ± 0.00002 u Å2.
Understanding the features in the ultrafast transient absorption spectra of CdSe quantum dots
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Do, Thanh Nhut; Ong, Xuanwei; Chan, Yinthai; Tan, Howe-Siang
2016-12-01
We describe a model to explain the features of the ultrafast transient absorption (TA) spectra of CdSe core type quantum dots (QDs). The measured TA spectrum consists of contributions by the ground state bleach (GSB), stimulated emission (SE) and excited state absorption (ESA) processes associated with the three lowest energy transition of the QDs. We model the shapes of the GSB, SE and ESA spectral components after fits to the linear absorption. The spectral positions of the ESA components take into account the biexcitonic binding energy. In order to obtain the correct weightage of the GSB, SE and ESA components to the TA spectrum, we enumerate the set of coherence transfer pathways associated with these processes. From our fits of the experimental TA spectra of 65 Å diameter QDs, biexcitonic binding energies for the three lowest energy transitions are obtained.
FTIR Spectrum of the ν 4Band of DCOOD
NASA Astrophysics Data System (ADS)
Tan, T. L.; Goh, K. L.; Ong, P. P.; Teo, H. H.
1999-06-01
The FTIR spectrum of the ν4band of deuterated formic acid (DCOOD) has been measured with a resolution of 0.004 cm-1in the frequency range of 1120 to 1220 cm-1. A total of 1866 assigned transitions have been analyzed and fitted using a Watson'sA-reduced Hamiltonian in theIrrepresentation to derive rovibrational constants for the upper state (v4= 1) with a standard deviation of 0.00036 cm-1. In the course of the analysis, the constants for the ground state were improved by a simultaneous fit of microwave frequencies and combination differences from the infrared measurements. Due to the relatively unperturbed nature of the band, the constants can be used to accurately calculate the infrared line positions for the whole band. Although the band is a hybrid typeAandB, onlya-type transitions were strong enough to be observed. The band center is at 1170.79980 ± 0.00002 cm-1.
High resolution FTIR spectrum of the ν 6 band of deuterated formic acid (DCOOH)
NASA Astrophysics Data System (ADS)
Goh, K. L.; Ong, P. P.; Tan, T. L.; Teo, H. H.
1999-07-01
The high resolution FTIR spectrum of the ν 6 band of DCOOH has been measured with a resolution of 0.004 cm -1 in the spectral range of 920-1020 cm -1. The ν 6 band was found to be perturbed by the neighbouring ν 8 band situated at about 100 cm -1 lower. Using a Watson's A-reduced Hamiltonian in the Ir representation, and with the inclusion of a-, and b-Coriolis coupling constants, a simultaneous fit of ν 6 and ν 8 was performed, fitting a total of 1656 infrared transitions of ν 6 with an rms uncertainty of 0.00038 cm -1. A set of accurate rovibrational constants for ν 6 were obtained. The ν 6 band was analysed to be primarily A-typed with a band centre at 970.88931±0.00003 cm -1.
Observation of the Y (4140) structure in the J/ψΦ mass spectrum in B±→ J/ψΦK ± decays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaltonen, T.; González, B. Álvarez; Amerio, S.
Here, the observation of themore » $Y(4140)$ structure in $$B^\\pm\\rightarrow J/\\psi\\,\\phi K^\\pm$$ decays produced in $$\\bar{p} p $$ collisions at $$\\sqrt{s}=1.96~TeV$$ is reported with a statistical significance greater than 5 standard deviations. A fit to the $$J/\\psi\\,\\phi$$ mass spectrum is performed assuming the presence of a Breit-Wigner resonance. The fit yields a signal of $$19^{+6}_{-5}$$ resonance events, and resonance mass and width of $$4143.4^{+2.9}_{-3.0}(\\mathrm{stat})\\pm0.6(\\mathrm{syst}) ~MeVcc$$ and $$15.3^{+10.4}_{-6.1}(\\mathrm{stat})\\pm2.5(\\mathrm{syst})~MeVcc$$ respectively. The parameters of this resonance-like structure are consistent with values reported from an earlier CDF analysis.« less
Spectrum and energy levels of six-times ionized yttrium (Y VII)
NASA Astrophysics Data System (ADS)
Reader, Joseph
2018-03-01
The spectrum of six-times ionized yttrium, Y VII, was photographed with a sliding-spark discharge on 10.7 m normal- and grazing-incidence spectrographs. The region of observation was 157-824 Å. The observations extend the known configurations 4s24p3, 4s4p4, 4p5, 4s24p25s, 4s24p26s to the nearly complete 4s24p24d configuration. Our results for 4s24p24d significantly revise results of Rahimullah et al (1978 Phys. Scr. 18 96); Ateqad et al (1984 J. Phys. B: At. Mol. Phys. 17 4617). A total of 168 lines and 56 energy levels are now known for this ion. The observed configurations were interpreted with Hartree-Fock calculations and least-squares fits of the energy parameters to the observed levels. Transition probabilities for all classified lines were calculated with the fitted parameters.
Model of Energy Spectrum Parameters of Ground Level Enhancement Events in Solar Cycle 23
NASA Astrophysics Data System (ADS)
Wu, S.-S.; Qin, G.
2018-01-01
Mewaldt et al. (2012) fitted the observations of the ground level enhancement (GLE) events during solar cycle 23 to the double power law equation to obtain the four spectral parameters, the normalization constant C, low-energy power law slope γ1, high-energy power law slope γ2, and break energy E0. There are 16 GLEs from which we select 13 for study by excluding some events with complicated situation. We analyze the four parameters with conditions of the corresponding solar events. According to solar event conditions, we divide the GLEs into two groups, one with strong acceleration by interplanetary shocks and another one without strong acceleration. By fitting the four parameters with solar event conditions we obtain models of the parameters for the two groups of GLEs separately. Therefore, we establish a model of energy spectrum of solar cycle 23 GLEs, which may be used in prediction in the future.
Evidence for variability of the hard X-ray feature in the Hercules X-1 energy spectrum
NASA Technical Reports Server (NTRS)
Tueller, J.; Cline, T. L.; Teegarden, B. J.; Paciesas, W. S.; Boclet, D.; Durochoux, P.; Hameury, J. M.; Prantzos, N.; Haymes, R. C.
1983-01-01
The hard X-ray spectrum of HER X-1 was measured for the first time with a high resolution (1.4 keV FWHM) germanium spectrometer. The observation was performed near the peak of the on-state in the 35 day cycle and the 1.24 pulsations were observed between the energies of 20 keV and 70 keV. The feature corresponds to an excess of 7.5 sigma over the low energy continuum. Smooth continuum models are poor fits to the entire energy range (chance probabilities of 2 percent or less). The best fit energies are 35 keV for an absorption line and 39 keV for an emission line. These are significantly lower energies than those derived from previous experiments. A direct comparison of our data with the results of the MPI/AIT group shows statistically significant variations which strongly suggest variability in the source.
Observation of the Y (4140) structure in the J/ψΦ mass spectrum in B±→ J/ψΦK ± decays
Aaltonen, T.; González, B. Álvarez; Amerio, S.; ...
2017-07-27
Here, the observation of themore » $Y(4140)$ structure in $$B^\\pm\\rightarrow J/\\psi\\,\\phi K^\\pm$$ decays produced in $$\\bar{p} p $$ collisions at $$\\sqrt{s}=1.96~TeV$$ is reported with a statistical significance greater than 5 standard deviations. A fit to the $$J/\\psi\\,\\phi$$ mass spectrum is performed assuming the presence of a Breit-Wigner resonance. The fit yields a signal of $$19^{+6}_{-5}$$ resonance events, and resonance mass and width of $$4143.4^{+2.9}_{-3.0}(\\mathrm{stat})\\pm0.6(\\mathrm{syst}) ~MeVcc$$ and $$15.3^{+10.4}_{-6.1}(\\mathrm{stat})\\pm2.5(\\mathrm{syst})~MeVcc$$ respectively. The parameters of this resonance-like structure are consistent with values reported from an earlier CDF analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verschuur, G. L.; Schmelz, J. T., E-mail: gverschu@naic.edu
Small-scale features observed by Wilkinson Microwave Anisotropy Probe ( WMAP ) and PLANCK in the frequency range of 22–90 GHz show a nearly flat spectrum, which meets with expectations that they originate in the early universe. However, free–free emission from electrons in small angular scale galactic sources that suffer beam dilution very closely mimic the observed spectrum in this frequency range. Fitting such a model to the PLANCK and WMAP data shows that the angular size required to fit the data is comparable to the angular width of associated H i filaments found in the Galactic Arecibo L-Band Feed Array-Hmore » isurvey data. Also, the temperature of the electrons is found to be in the range of 100–300 K. The phenomenon revealed by these data may contribute to a more precise characterization of the foreground masks required to interpret the cosmological aspect of PLANCK and WMAP data.« less
Universally Sloppy Parameter Sensitivities in Systems Biology Models
Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P
2007-01-01
Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a “sloppy” spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters. PMID:17922568
Universally sloppy parameter sensitivities in systems biology models.
Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P
2007-10-01
Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.
The spectra and light curves of two gamma-ray bursts
NASA Technical Reports Server (NTRS)
Knight, F. K.; Matteson, J. L.; Peterson, L. E.
1981-01-01
Observations made by the Hard X-ray and Low Energy Gamma-Ray Experiment on board HEAO-1 of the spectra and light curves of two gamma-ray bursts for which localized arrival directions will become available are presented. The burst of October 20, 1977 is found to exhibit a fluence of 0.000031 + or - 0.000005 erg/sq cm over the energy range 0.135-2.05 MeV and a duration of 38.7 sec, while that of November 10, 1977 is found to have a fluence of 0.000021 + or - 0.000008 erg/sq cm between 0.125 and 3 MeV over 2.8 sec. The light curves of both bursts exhibit time fluctuations down to the limiting time resolution of the detectors. The spectrum of the October burst can be fit by a power law of index -1.93 + or -0.16, which is harder than any other gamma-burst spectrum yet reported. The spectrum of the second burst is softer (index -2.4 + or - 0.7), and is consistent with the upper index in the double power law fit to the burst of April 27, 1972.
Measurement of the Atmospheric νe Spectrum with IceCube
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fuchs, T.; Glagla, M.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration
2015-06-01
We present a measurement of the atmospheric νe spectrum at energies between 0.1 and 100 TeV using data from the first year of the complete IceCube detector. Atmospheric νe originate mainly from the decays of kaons produced in cosmic-ray air showers. This analysis selects 1078 fully contained events in 332 days of live time, and then identifies those consistent with particle showers. A likelihood analysis with improved event selection extends our previous measurement of the conventional νe fluxes to higher energies. The data constrain the conventional νe flux to be 1. 3-0.3+0.4 times a baseline prediction from a Honda's calculation, including the knee of the cosmic-ray spectrum. A fit to the kaon contribution (ξ ) to the neutrino flux finds a kaon component that is ξ =1. 3-0.4+0.5 times the baseline value. The fitted/measured prompt neutrino flux from charmed hadron decays strongly depends on the assumed astrophysical flux and shape. If the astrophysical component follows a power law, the result for the prompt flux is 0. 0-0.0+3.0 times a calculated flux based on the work by Enberg, Reno, and Sarcevic.
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
2015-01-01
A cross-power spectrum phase based adaptive technique is discussed which iteratively determines the time delay between two digitized signals that are coherent. The adaptive delay algorithm belongs to a class of algorithms that identifies a minimum of a pattern matching function. The algorithm uses a gradient technique to find the value of the adaptive delay that minimizes a cost function based in part on the slope of a linear function that fits the measured cross power spectrum phase and in part on the standard error of the curve fit. This procedure is applied to data from a Honeywell TECH977 static-engine test. Data was obtained using a combustor probe, two turbine exit probes, and far-field microphones. Signals from this instrumentation are used estimate the post-combustion residence time in the combustor. Comparison with previous studies of the post-combustion residence time validates this approach. In addition, the procedure removes the bias due to misalignment of signals in the calculation of coherence which is a first step in applying array processing methods to the magnitude squared coherence data. The procedure also provides an estimate of the cross-spectrum phase-offset.
Laser ablation molecular isotopic spectrometry of carbon isotopes
NASA Astrophysics Data System (ADS)
Bol‧shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.
2015-11-01
Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.
Bayesian data analysis tools for atomic physics
NASA Astrophysics Data System (ADS)
Trassinelli, Martino
2017-10-01
We present an introduction to some concepts of Bayesian data analysis in the context of atomic physics. Starting from basic rules of probability, we present the Bayes' theorem and its applications. In particular we discuss about how to calculate simple and joint probability distributions and the Bayesian evidence, a model dependent quantity that allows to assign probabilities to different hypotheses from the analysis of a same data set. To give some practical examples, these methods are applied to two concrete cases. In the first example, the presence or not of a satellite line in an atomic spectrum is investigated. In the second example, we determine the most probable model among a set of possible profiles from the analysis of a statistically poor spectrum. We show also how to calculate the probability distribution of the main spectral component without having to determine uniquely the spectrum modeling. For these two studies, we implement the program Nested_fit to calculate the different probability distributions and other related quantities. Nested_fit is a Fortran90/Python code developed during the last years for analysis of atomic spectra. As indicated by the name, it is based on the nested algorithm, which is presented in details together with the program itself.
Consistency of the Planck CMB data and ΛCDM cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafieloo, Arman; Hazra, Dhiraj Kumar, E-mail: shafieloo@kasi.re.kr, E-mail: dhiraj.kumar.hazra@apc.univ-paris7.fr
We test the consistency between Planck temperature and polarization power spectra and the concordance model of Λ Cold Dark Matter cosmology (ΛCDM) within the framework of Crossing statistics. We find that Planck TT best fit ΛCDM power spectrum is completely consistent with EE power spectrum data while EE best fit ΛCDM power spectrum is not consistent with TT data. However, this does not point to any systematic or model-data discrepancy since in the Planck EE data, uncertainties are much larger compared to the TT data. We also investigate the possibility of any deviation from ΛCDM model analyzing the Planck 2015more » data. Results from TT, TE and EE data analysis indicate that no deviation is required beyond the flexibility of the concordance ΛCDM model. Our analysis thus rules out any strong evidence for beyond the concordance model in the Planck spectra data. We also report a mild amplitude difference comparing temperature and polarization data, where temperature data seems to have slightly lower amplitude than expected (consistently at all multiples), as we assume both temperature and polarization data are realizations of the same underlying cosmology.« less
PKS 2155-304 relativistically beamed synchrotron radiation from BL LAC object
NASA Technical Reports Server (NTRS)
Urry, C. M.; Mushotzky, R. F.
1981-01-01
The newly discovered BL Lacertae object, PKS 2155-304, was observed with the medium and high intensity energy detectors of the HEAO-1 A2 experiment. The variability by a factor of two in less than a day reported by Snyder, et al (1979) is confirmed. Two spectra, obtained a year apart, while the satellite was in scanning mode, are well fit by simple power laws with energy spectral index alpha sub 1 equals approximately 1.4. A third spectrum, of higher statistical quality, obtained while the satellite was pointed at its source, has has two components. An acceptable fit was obtained using a two power law model, with indices alpha sub 1 equals 2.0 (+1.2, -0.6) and alpha sub 2 equals -1.5 (+1.5, -2.3). An interpretation of the overall spectrum from radio through X-rays in terms of a synchrotron self-Compton model gives a good description of the data if allowance is made for relativistic beaming. Thus, from a consideration of the spectrum, combined with an estimate of the size of the source, the presence of jets is inferred without their observation.
Airborne 20-65 micron spectrophotometry of Comet Halley
NASA Technical Reports Server (NTRS)
Glaccum, William; Moseley, S. H.; Campins, Humberto C.; Loewenstein, R. F.
1988-01-01
Observations of Comet Halley with a grating spectrometer on board the Kuiper Airborne Observatory on four nights in Dec. 1985 to Apr. 1986 are reported. Low resolution 20 to 65 micrometer spectra of the nucleus with a 40 arcsec FWHM beam was obtained on 17 Dec. 1985, and on 15 and 17 Apr. 1986. On 20 Dec. 1985, only a 20 to 35 micrometer spectrum was obtained. Most of the data have been discussed in a paper where the continuum was dealt with. In that paper, models were fit to the continuum that showed that more micron sized particles of grain similar to amorphous carbon were needed to fit the spectrum than were allowed by the Vega SP-2 mass distribution, or that a fraction of the grains had to be made out of a material whose absorption efficiency fell steeper than lambda sup -1 for lambda greater than 20 micrometers. Spectra was also presented taken at several points on the coma on 15 Apr. which showed that the overall shape to the spectrum is the same in the coma. Tabulated values of the data and calibration curves are available. The spectral features are discussed.
Gamma-Ray Observations of the Supernova Remnant RX J0852.0-4622 with the Fermi Large Area Telescope
NASA Technical Reports Server (NTRS)
Tanaka, T.; Allafort, A.; Ballet, J.; Funk, S.; Giordano, F.; Hewitt, J.; Lemoine-Goumard, M.; Tajima, H.; Tibolla, O.; Uchiyama, Y.
2011-01-01
We report on gamma-ray observations of the supernova remnant (SNR) RX J0852.04622 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. In the Fermi-LAT data, we find a spatially extended source at the location of the SNR. The extension is consistent with the SNR size seen in other wavelengths such as X-rays and TeV gamma rays, leading to the identification of the gamma-ray source with the SNR. The spectrum is well described as a power law with a photon index of = 1.85 0.06 (stat)+0.18 0.19 (sys), which smoothly connects to the H.E.S.S. spectrum in the TeV energy band. We discuss the gamma-ray emission mechanism based on multiwavelength data. The broadband data can be fit well by a model in which the gamma rays are of hadronic origin. We also consider a scenario with inverse Compton scattering of electrons as the emission mechanism of the gamma rays. Although the leptonic model predicts a harder spectrum in the Fermi-LAT energy range, the model can fit the data considering the statistical and systematic errors.
NASA Astrophysics Data System (ADS)
Berrington, Robert C.; Brotherton, Michael S.; Gallagher, Sarah C.; Ganguly, Rajib; Shang, Zhaohui; DiPompeo, Michael; Chatterjee, Ritaban; Lacy, Mark; Gregg, Michael D.; Hall, Patrick B.; Laurent-Muehleisen, S. A.
2013-12-01
We report the results of a new 60 ks Chandra X-ray Observatory Advanced CCD Imaging Spectrometer S-array (ACIS-S) observation of the reddened, radio-selected, highly polarized `FeLoBAL' quasar FIRST J1556+3517. We investigated a number of models of varied sophistication to fit the 531-photon spectrum. These models ranged from simple power laws to power laws absorbed by hydrogen gas in differing ionization states and degrees of partial covering. Preferred fits indicate that the intrinsic X-ray flux is consistent with that expected for quasars of similarly high luminosity, i.e. an intrinsic, dereddened and unabsorbed optical to X-ray spectral index of -1.7. We cannot tightly constrain the intrinsic X-ray power-law slope, but find indications that it is flat (photon index Γ = 1.7 or flatter at a >99 per cent confidence for a neutral hydrogen absorber model). Absorption is present, with a column density a few times 1023 cm-2, with both partially ionized models and partially covering neutral hydrogen models providing good fits. We present several lines of argument that suggest the fraction of X-ray emissions associated with the radio jet is not large. We combine our Chandra data with observations from the literature to construct the spectral energy distribution of FIRST J1556+3517 from radio to X-ray energies. We make corrections for Doppler beaming for the pole-on radio jet, optical dust reddening and X-ray absorption, in order to recover a probable intrinsic spectrum. The quasar FIRST J1556+3517 seems to be an intrinsically normal radio-quiet quasar with a reddened optical/UV spectrum, a Doppler-boosted but intrinsically weak radio jet and an X-ray absorber not dissimilar from that of other broad absorption line quasars.
Multitaper Spectral Analysis and Wavelet Denoising Applied to Helioseismic Data
NASA Technical Reports Server (NTRS)
Komm, R. W.; Gu, Y.; Hill, F.; Stark, P. B.; Fodor, I. K.
1999-01-01
Estimates of solar normal mode frequencies from helioseismic observations can be improved by using Multitaper Spectral Analysis (MTSA) to estimate spectra from the time series, then using wavelet denoising of the log spectra. MTSA leads to a power spectrum estimate with reduced variance and better leakage properties than the conventional periodogram. Under the assumption of stationarity and mild regularity conditions, the log multitaper spectrum has a statistical distribution that is approximately Gaussian, so wavelet denoising is asymptotically an optimal method to reduce the noise in the estimated spectra. We find that a single m-upsilon spectrum benefits greatly from MTSA followed by wavelet denoising, and that wavelet denoising by itself can be used to improve m-averaged spectra. We compare estimates using two different 5-taper estimates (Stepian and sine tapers) and the periodogram estimate, for GONG time series at selected angular degrees l. We compare those three spectra with and without wavelet-denoising, both visually, and in terms of the mode parameters estimated from the pre-processed spectra using the GONG peak-fitting algorithm. The two multitaper estimates give equivalent results. The number of modes fitted well by the GONG algorithm is 20% to 60% larger (depending on l and the temporal frequency) when applied to the multitaper estimates than when applied to the periodogram. The estimated mode parameters (frequency, amplitude and width) are comparable for the three power spectrum estimates, except for modes with very small mode widths (a few frequency bins), where the multitaper spectra broadened the modest compared with the periodogram. We tested the influence of the number of tapers used and found that narrow modes at low n values are broadened to the extent that they can no longer be fit if the number of tapers is too large. For helioseismic time series of this length and temporal resolution, the optimal number of tapers is less than 10.
Simultaneous ASCA and EUVE Observations of Capella
NASA Astrophysics Data System (ADS)
Brickhouse, N. S.; Dupree, A. K.; Edgar, R. J.; Drake, S. A.; White, N. E.; Liedahl, D. A.; Singh, K. P.
1997-05-01
We present simultaneous observations taken in Mar 1996 of the bright stellar coronal source Capella (HD 34029) with the ASCA and EUVE satellites. Previous EUVE observations of Fe emission lines (Fe VIII --- XXIV, excluding XVII) revealed a narrow emission measure feature at 6 x 10(6) K, which has proven to be remarkably stable over several years (flux from Fe XVIII and XIX has not varied by more than 30%), while lines formed at higher temperatures have shown intensity variations up to factors of 4. Furthermore, extremely high signal-to-noise spectra obtained by summing all EUVE measurements show that the Fe/H abundance ratio is consistent with solar photospheric. (See Dupree et al. 1993, ApJ, 418, L41; Brickhouse, Raymond, & Smith 1995, ApJSupp, 97, 551; Brickhouse 1996, IAU Coll. 152, Astrophysics in the Extreme Ultraviolet, Bowyer & Malina, eds (Kluwer), 141.) Meanwhile, the ASCA data of Capella have proven notoriously difficult to analyze. The performance verification (PV) phase data suggested a somewhat subsolar Fe abundance, but models were in poor agreement with the data (chi (2red) ~ 6). (See Drake 1996, Conf. on Cosmic Abundances, U. Maryland). Since the emission lines observed by EUVE are formed at the same emitting temperatures as the X-ray spectrum (Capella is ``soft'' such that very little flux is observed above 2 keV), the emission measure distribution derived from EUVE lines should provide a direct prediction of the X-ray spectrum, with only the relative abundances of species other than Fe as free parameters. Like the PV data, the new ASCA spectrum is not well fit by any of the standard models. Applying the constraints imposed by EUVE does not make a major improvement in the fit --- multi-thermal, variable abundance models such as Raymond-Smith and MEKAL do not provide any acceptable fit (chi (2red) > 5). We discuss our efforts to understand the X-ray spectrum, including studies of the uncertainties in the atomic data and of the underlying assumptions of the source models.
Optimizing Methods of Obtaining Stellar Parameters for the H3 Survey
NASA Astrophysics Data System (ADS)
Ivory, KeShawn; Conroy, Charlie; Cargile, Phillip
2018-01-01
The Stellar Halo at High Resolution with Hectochelle Survey (H3) is in the process of observing and collecting stellar parameters for stars in the Milky Way's halo. With a goal of measuring radial velocities for fainter stars, it is crucial that we have optimal methods of obtaining this and other parameters from the data from these stars.The method currently developed is The Payne, named after Cecilia Payne-Gaposchkin, a code that uses neural networks and Markov Chain Monte Carlo methods to utilize both spectra and photometry to obtain values for stellar parameters. This project was to investigate the benefit of fitting both spectra and spectral energy distributions (SED). Mock spectra using the parameters of the Sun were created and noise was inserted at various signal to noise values. The Payne then fit each mock spectrum with and without a mock SED also generated from solar parameters. The result was that at high signal to noise, the spectrum dominated and the effect of fitting the SED was minimal. But at low signal to noise, the addition of the SED greatly decreased the standard deviation of the data and resulted in more accurate values for temperature and metallicity.
The privileged spectrum of cnoidal ion holes and its extension by imperfect ion trapping
NASA Astrophysics Data System (ADS)
Schamel, Hans; Das, Nilakshi; Borah, Prathana
2018-01-01
The fundamental properties of nonlinear ion hole modes propagating in current-driven collisionless plasmas are derived. Making use of Schamel's alternative method their spatial structure ϕ (x) and phase velocities u0 are analyzed and found to depend crucially on the used trapped ion distribution fit. A regular fit represents a continuous spectrum, which is called privileged or perfect since it yields a definite u0 and appears most realistic. A singular fit, on the other hand, involving jumps and moderate slope singularities at the separatrix, does reveal further classes of hole equilibria at the cost, however, of a well-defined u0. This explains why Bernstein, Greene, Kruskal (BGK)-solutions of the Vlasov-Poisson system, exhibiting a strong slope singularity of their derived trapped particle distribution, can principally not provide definite u0 s. The nonlinear dispersion relation (or u0) of privileged ion holes, on the other hand, is equivalent with that of cnoidal electron holes, i.e. in addition to the ordinary ion acoustic branch there exists a correspondence to the "Langmuir" branch and to the multiple "slow electron acoustic" branches, reflecting different trapping scenarios.
Component separation for cosmic microwave background radiation
NASA Astrophysics Data System (ADS)
Fernández-Cobos, R.; Vielva, P.; Barreiro, R. B.; Martínez-González, E.
2011-11-01
Cosmic microwave background (CMB) radiation data obtained by different experiments contains, besides the desired signal, a superposition of microwave sky contributions mainly due to, on the one hand, synchrotron radiation, free-free emission and re-emission of dust clouds in our galaxy; and, on the other hand, extragalactic sources. We present an analytical method, using a wavelet decomposition on the sphere, to recover the CMB signal from microwave maps. Being applied to both temperature and polarization data, it is shown as a significant powerful tool when it is used in particularly polluted regions of the sky. The applied wavelet has the advantages of requiring little computering time in its calculations being adapted to the HEALPix pixelization scheme (which is the format that the community uses to report the CMB data) and offering the possibility of multi-resolution analysis. The decomposition is implemented as part of a template fitting method, minimizing the variance of the resulting map. The method was tested with simulations of WMAP data and results have been positive, with improvements up to 12% in the variance of the resulting full sky map and about 3% in low contaminate regions. Finally, we also present some preliminary results with WMAP data in the form of an angular cross power spectrum C_ℓ^{TE}, consistent with the spectrum offered by WMAP team.
Gerber, Jeffrey S; Ross, Rachael K; Bryan, Matthew; Localio, A Russell; Szymczak, Julia E; Wasserman, Richard; Barkman, Darlene; Odeniyi, Folasade; Conaboy, Kathryn; Bell, Louis; Zaoutis, Theoklis E; Fiks, Alexander G
2017-12-19
Acute respiratory tract infections account for the majority of antibiotic exposure in children, and broad-spectrum antibiotic prescribing for acute respiratory tract infections is increasing. It is not clear whether broad-spectrum treatment is associated with improved outcomes compared with narrow-spectrum treatment. To compare the effectiveness of broad-spectrum and narrow-spectrum antibiotic treatment for acute respiratory tract infections in children. A retrospective cohort study assessing clinical outcomes and a prospective cohort study assessing patient-centered outcomes of children between the ages of 6 months and 12 years diagnosed with an acute respiratory tract infection and prescribed an oral antibiotic between January 2015 and April 2016 in a network of 31 pediatric primary care practices in Pennsylvania and New Jersey. Stratified and propensity score-matched analyses to account for confounding by clinician and by patient-level characteristics, respectively, were implemented for both cohorts. Broad-spectrum antibiotics vs narrow-spectrum antibiotics. In the retrospective cohort, the primary outcomes were treatment failure and adverse events 14 days after diagnosis. In the prospective cohort, the primary outcomes were quality of life, other patient-centered outcomes, and patient-reported adverse events. Of 30 159 children in the retrospective cohort (19 179 with acute otitis media; 6746, group A streptococcal pharyngitis; and 4234, acute sinusitis), 4307 (14%) were prescribed broad-spectrum antibiotics including amoxicillin-clavulanate, cephalosporins, and macrolides. Broad-spectrum treatment was not associated with a lower rate of treatment failure (3.4% for broad-spectrum antibiotics vs 3.1% for narrow-spectrum antibiotics; risk difference for full matched analysis, 0.3% [95% CI, -0.4% to 0.9%]). Of 2472 children enrolled in the prospective cohort (1100 with acute otitis media; 705, group A streptococcal pharyngitis; and 667, acute sinusitis), 868 (35%) were prescribed broad-spectrum antibiotics. Broad-spectrum antibiotics were associated with a slightly worse child quality of life (score of 90.2 for broad-spectrum antibiotics vs 91.5 for narrow-spectrum antibiotics; score difference for full matched analysis, -1.4% [95% CI, -2.4% to -0.4%]) but not with other patient-centered outcomes. Broad-spectrum treatment was associated with a higher risk of adverse events documented by the clinician (3.7% for broad-spectrum antibiotics vs 2.7% for narrow-spectrum antibiotics; risk difference for full matched analysis, 1.1% [95% CI, 0.4% to 1.8%]) and reported by the patient (35.6% for broad-spectrum antibiotics vs 25.1% for narrow-spectrum antibiotics; risk difference for full matched analysis, 12.2% [95% CI, 7.3% to 17.2%]). Among children with acute respiratory tract infections, broad-spectrum antibiotics were not associated with better clinical or patient-centered outcomes compared with narrow-spectrum antibiotics, and were associated with higher rates of adverse events. These data support the use of narrow-spectrum antibiotics for most children with acute respiratory tract infections.
Referee Networks and Their Spectral Properties
NASA Astrophysics Data System (ADS)
Slanina, F.; Zhang, Y.-Ch.
2005-09-01
The bipartite graph connecting products and reviewers of that product is studied empirically in the case of amazon.com. We find that the network has power-law degree distribution on the side of reviewers, while on the side of products the distribution is better fitted by stretched exponential. The spectrum of normalised adjacency matrix shows power-law tail in the density of states. Establishing the community structures by finding localised eigenstates is not straightforward as the localised and delocalised states are mixed throughout the whole support of the spectrum.
MULTIMAGNON ABSORPTION IN MNF2-OPTICAL ABSORPTION SPECTRUM.
The absorption spectrum of MnF2 at 4.2K in the 3900A region was measured in zero external fields and in high fields. Exciton lines with magnon ...sidebands are observed, accompanied by a large number of weak satellite lines. Results on the exciton and magnon absorptions are similar to those of...McClure et al. The satellite lines are interpreted as being multi- magnon absorptions, and it is possible to fit the energy of all the absorptions with
Carbon and oxygen X-ray line emission from the interstellar medium
NASA Technical Reports Server (NTRS)
Schnopper, H. W.; Delvaille, J. P.; Rocchia, R.; Blondel, C.; Cheron, C.; Christy, J. C.; Ducros, R.; Koch, L.; Rothenflug, R.
1982-01-01
A soft X-ray, 0.3-1.0 keV spectrum from a 1 sr region which includes a portion of the North Polar Spur, obtained by three rocketborne lithium-drifted silicon detectors, shows the C V, C VI, O VII and O VIII emission lines. The spectrum is well fitted by a two-component, modified Kato (1976) model, where the coronal emission is in collisional equilibrium, with interstellar medium and North Polar Spur temperatures of 1.1 and 3.8 million K, respectively.
NASA Astrophysics Data System (ADS)
Kaczmarek, J. F.; Purcell, C. R.; Gaensler, B. M.; Sun, X.; O'Sullivan, S. P.; McClure-Griffiths, N. M.
2018-05-01
We present full-polarization, broad-band observations of the radio galaxy NGC 612 (PKS B0131-637) from 1.3 to 3.1 GHz using the Australia Telescope Compact Array. The relatively large angular scale of the radio galaxy makes it a good candidate with which to investigate the polarization mechanisms responsible for the observed Faraday depth structure. By fitting complex polarization models to the polarized spectrum of each pixel, we find that a single polarization component can adequately describe the observed signal for the majority of the radio galaxy. While we cannot definitively rule out internal Faraday rotation, we argue that the bulk of the Faraday rotation is taking place in a thin skin that girts the polarized emission. Using minimum energy estimates, we find an implied total magnetic field strength of 4.2 μG.
Radiation detector device for rejecting and excluding incomplete charge collection events
Bolotnikov, Aleksey E.; De Geronimo, Gianluigi; Vernon, Emerson; Yang, Ge; Camarda, Giuseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B.
2016-05-10
A radiation detector device is provided that is capable of distinguishing between full charge collection (FCC) events and incomplete charge collection (ICC) events based upon a correlation value comparison algorithm that compares correlation values calculated for individually sensed radiation detection events with a calibrated FCC event correlation function. The calibrated FCC event correlation function serves as a reference curve utilized by a correlation value comparison algorithm to determine whether a sensed radiation detection event fits the profile of the FCC event correlation function within the noise tolerances of the radiation detector device. If the radiation detection event is determined to be an ICC event, then the spectrum for the ICC event is rejected and excluded from inclusion in the radiation detector device spectral analyses. The radiation detector device also can calculate a performance factor to determine the efficacy of distinguishing between FCC and ICC events.
Large-scale structure non-Gaussianities with modal methods
NASA Astrophysics Data System (ADS)
Schmittfull, Marcel
2016-10-01
Relying on a separable modal expansion of the bispectrum, the implementation of a fast estimator for the full bispectrum of a 3d particle distribution is presented. The computational cost of accurate bispectrum estimation is negligible relative to simulation evolution, so the bispectrum can be used as a standard diagnostic whenever the power spectrum is evaluated. As an application, the time evolution of gravitational and primordial dark matter bispectra was measured in a large suite of N-body simulations. The bispectrum shape changes characteristically when the cosmic web becomes dominated by filaments and halos, therefore providing a quantitative probe of 3d structure formation. Our measured bispectra are determined by ~ 50 coefficients, which can be used as fitting formulae in the nonlinear regime and for non-Gaussian initial conditions. We also compare the measured bispectra with predictions from the Effective Field Theory of Large Scale Structures (EFTofLSS).
Features in the primordial spectrum from WMAP: A wavelet analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafieloo, Arman; Souradeep, Tarun; Manimaran, P.
2007-06-15
Precise measurements of the anisotropies in the cosmic microwave background enable us to do an accurate study on the form of the primordial power spectrum for a given set of cosmological parameters. In a previous paper [A. Shafieloo and T. Souradeep, Phys. Rev. D 70, 043523 (2004).], we implemented an improved (error sensitive) Richardson-Lucy deconvolution algorithm on the measured angular power spectrum from the first year of WMAP data to determine the primordial power spectrum assuming a concordance cosmological model. This recovered spectrum has a likelihood far better than a scale invariant, or, 'best fit' scale free spectra ({delta}lnL{approx_equal}25 withmore » respect to the Harrison-Zeldovich spectrum, and, {delta}lnL{approx_equal}11 with respect to the power law spectrum with n{sub s}=0.95). In this paper we use the discrete wavelet transform (DWT) to decompose the local features of the recovered spectrum individually to study their effect and significance on the recovered angular power spectrum and hence the likelihood. We show that besides the infrared cutoff at the horizon scale, the associated features of the primordial power spectrum around the horizon have a significant effect on improving the likelihood. The strong features are localized at the horizon scale.« less
Theory of the fundamental vibration-rotation-translation spectrum of H2 in a C60 lattice
NASA Astrophysics Data System (ADS)
Herman, Roger M.; Lewis, John Courtenay
2006-04-01
Calculations are presented for the fundamental vibration-rotation spectrum of H2 in fcc C60 (fullerite) lattices. The principal features are identified as lattice-shifted “vibration-rotation-translation” state absorption transitions. The level spacings of the H2 modes are calculated numerically for the potential function resulting from the summation of the individual C-H2 potentials for all C atoms in the six nearest neighbor C60 molecules. The potential is approximately separable in Cartesian coordinates, giving a very good approximation to exactly calculated translational energies for the lower levels. The positions and relative strengths of the individual transitions are calculated from the eigenfunctions for this separable potential. The line shapes are assumed to be Lorentzian, and the widths are chosen so as to give good fits to the DRIFT spectrum of FitzGerald [Phys. Rev. B 65, 140302(R) (2002)]. A theory of the C-H2 induced dipole moment is developed with which to calculate intensities. In order to fit the observed DRIFTS transition frequencies it is found necessary to take the overlap part of the C-H2 potential to be about 13% longer in range than the C-H2 potential in graphene. Furthermore, differences in the theoretical spectra obtained with a near-optimal exp-6 potential and near-optimal Lennard-Jones 12-6 potential are clearly evident, with the exp-6 potential giving a better fit to observation than the Lennard-Jones potential. Similarly, Lorentzian line shapes assumed for the individual transitions yield better agreement with observation than Gaussian line shapes.
Korenromp, Eline; Hamilton, Matthew; Sanders, Rachel; Mahiané, Guy; Briët, Olivier J T; Smith, Thomas; Winfrey, William; Walker, Neff; Stover, John
2017-11-07
In malaria-endemic countries, malaria prevention and treatment are critical for child health. In the context of intervention scale-up and rapid changes in endemicity, projections of intervention impact and optimized program scale-up strategies need to take into account the consequent dynamics of transmission and immunity. The new Spectrum-Malaria program planning tool was used to project health impacts of Insecticide-Treated mosquito Nets (ITNs) and effective management of uncomplicated malaria cases (CMU), among other interventions, on malaria infection prevalence, case incidence and mortality in children 0-4 years, 5-14 years of age and adults. Spectrum-Malaria uses statistical models fitted to simulations of the dynamic effects of increasing intervention coverage on these burdens as a function of baseline malaria endemicity, seasonality in transmission and malaria intervention coverage levels (estimated for years 2000 to 2015 by the World Health Organization and Malaria Atlas Project). Spectrum-Malaria projections of proportional reductions in under-five malaria mortality were compared with those of the Lives Saved Tool (LiST) for the Democratic Republic of the Congo and Zambia, for given (standardized) scenarios of ITN and/or CMU scale-up over 2016-2030. Proportional mortality reductions over the first two years following scale-up of ITNs from near-zero baselines to moderately higher coverages align well between LiST and Spectrum-Malaria -as expected since both models were fitted to cluster-randomized ITN trials in moderate-to-high-endemic settings with 2-year durations. For further scale-up from moderately high ITN coverage to near-universal coverage (as currently relevant for strategic planning for many countries), Spectrum-Malaria predicts smaller additional ITN impacts than LiST, reflecting progressive saturation. For CMU, especially in the longer term (over 2022-2030) and for lower-endemic settings (like Zambia), Spectrum-Malaria projects larger proportional impacts, reflecting onward dynamic effects not fully captured by LiST. Spectrum-Malaria complements LiST by extending the scope of malaria interventions, program packages and health outcomes that can be evaluated for policy making and strategic planning within and beyond the perspective of child survival.
Dias, Luciana P; Araújo, Claudinéia A S; Pupin, Breno; Ferreira, Paulo C; Braga, Gilberto Ú L; Rangel, Drauzio E N
2018-06-01
The low survival of insect-pathogenic fungi when used for insect control in agriculture is mainly due to the deleterious effects of ultraviolet radiation and heat from solar irradiation. In this study, conidia of 15 species of entomopathogenic fungi were exposed to simulated full-spectrum solar radiation emitted by a Xenon Test Chamber Q-SUN XE-3-HC 340S (Q-LAB ® Corporation, Westlake, OH, USA), which very closely simulates full-spectrum solar radiation. A dendrogram obtained from cluster analyses, based on lethal time 50 % and 90 % calculated by Probit analyses, separated the fungi into three clusters: cluster 3 contains species with highest tolerance to simulated full-spectrum solar radiation, included Metarhizium acridum, Cladosporium herbarum, and Trichothecium roseum with LT 50 > 200 min irradiation. Cluster 2 contains eight species with moderate UV tolerance: Aschersonia aleyrodis, Isaria fumosorosea, Mariannaea pruinosa, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, and Torrubiella homopterorum with LT 50 between 120 and 150 min irradiation. The four species in cluster 1 had the lowest UV tolerance: Lecanicillium aphanocladii, Beauveria bassiana, Tolypocladium cylindrosporum, and Tolypocladium inflatum with LT 50 < 120 min irradiation. The QSUN Xenon Test Chamber XE3 is often used by the pharmaceutical and automotive industry to test light stability and weathering, respectively, but it was never used to evaluate fungal tolerance to full-spectrum solar radiation before. We conclude that the equipment provided an excellent tool for testing realistic tolerances of fungi to full-spectrum solar radiation of microbial agents for insect biological control in agriculture. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Peters, Jan H; de Groot, Bert L
2012-01-01
Protein-protein interactions play an important role in all biological processes. However, the principles underlying these interactions are only beginning to be understood. Ubiquitin is a small signalling protein that is covalently attached to different proteins to mark them for degradation, regulate transport and other functions. As such, it interacts with and is recognised by a multitude of other proteins. We have conducted molecular dynamics simulations of ubiquitin in complex with 11 different binding partners on a microsecond timescale and compared them with ensembles of unbound ubiquitin to investigate the principles of their interaction and determine the influence of complex formation on the dynamic properties of this protein. Along the main mode of fluctuation of ubiquitin, binding in most cases reduces the conformational space available to ubiquitin to a subspace of that covered by unbound ubiquitin. This behaviour can be well explained using the model of conformational selection. For lower amplitude collective modes, a spectrum of zero to almost complete coverage of bound by unbound ensembles was observed. The significant differences between bound and unbound structures are exclusively situated at the binding interface. Overall, the findings correspond neither to a complete conformational selection nor induced fit scenario. Instead, we introduce a model of conformational restriction, extension and shift, which describes the full range of observed effects.
Definition of the Flexible Image Transport System (FITS), Version 3.0
NASA Technical Reports Server (NTRS)
Pence, W. D.; Chiapetti, L.; Page, C. G.; Shaw, R. A.; Stobie, E.
2010-01-01
The Flexible Image Transport System (FITS) has been used by astronomers for over 30 years as a data interchange and archiving format; FITS files are now handled by a wide range of astronomical software packages. Since the FITS format definition document (the "standard") was last printed in this journal in 2001, several new features have been developed and standardized, notably support for 64-bit integers in images and tables, variable-length arrays in tables, and new world coordinate system conventions which provide a mapping from an element in a data array to a physical coordinate on the sky or within a spectrum. The FITS Working Group of the International Astronomical Union has therefore produced this new Version 3.0 of the FITS standard, which is provided here in its entirety. In addition to describing the new features in FITS, numerous editorial changes were made to the previous version to clarify and reorganize many of the sections. Also included are some appendices which are not formally part of the standard. The FITS standard is likely to undergo further evolution, in which case the latest version may be found on the FITS Support Office Web site at http://fits.gsfc.nasa.gov/, which also provides many links to FITS-related resources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Half-mask facepieces, full facepieces, mouthpieces... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.198 Half-mask facepieces, full facepieces, mouthpieces, hoods, and helmets; fit; minimum requirements. (a) Half-mask facepieces...
Modelling the energy dependence of black hole binary flows
NASA Astrophysics Data System (ADS)
Mahmoud, Ra'ad D.; Done, Chris
2018-01-01
We build a full spectral-timing model for the low/hard state of black hole binaries assuming that the spectrum of the X-ray hot flow can be produced by two Comptonization zones. Slow fluctuations generated at the largest radii/softest spectral region of the flow propagate down to modulate the faster fluctuations produced in the spectrally harder region close to the black hole. The observed spectrum and variability are produced by summing over all regions in the flow, including its emission reflected from the truncated disc. This produces energy-dependent Fourier lags qualitatively similar to those in the data. Given a viscous frequency prescription, the model predicts Fourier power spectral densities and lags for any energy bands. We apply this model to archival Rossi X-ray Timing Explorer data from Cyg X-1, using the time-averaged energy spectrum together with an assumed emissivity to set the radial bounds of the soft and hard Comptonization regions. We find that the power spectra cannot be described by any smooth model of generating fluctuations, instead requiring that there are specific radii in the flow where noise is preferentially produced. We also find fluctuation damping between spectrally distinct regions is required to prevent all the variability power generated at large radii being propagated into the inner regions. Even with these additions, we can fit either the power spectra at each energy or the lags between energy bands, but not both. We conclude that either the spectra are more complex than two zone models, or that other processes are important in forming the variability.
Swineford, Lauren B; Guthrie, Whitney; Thurm, Audrey
2015-12-01
The purpose of this study was to report on the construct, convergent, and divergent validity of the Mullen Scales of Early Learning (MSEL), a widely used test of development for young children. The sample consisted of 399 children with a mean age of 3.38 years (SD = 1.14) divided into a group of children with autism spectrum disorder (ASD) and a group of children not on the autism spectrum, with and without developmental delays. The study used the MSEL and several other measures assessing constructs relevant to the age range--including developmental skills, autism symptoms, and psychopathology symptoms--across multiple methods of assessment. Multiple-group confirmatory factor analyses revealed good overall fit and equal form of the MSEL 1-factor model across the ASD and nonspectrum groups, supporting the construct validity of the MSEL. However, neither full nor partial invariance of factor loadings was established because of the lower loadings in the ASD group compared with the nonspectrum group. Exploratory structural equation modeling revealed that other measures of developmental skills loaded together with the MSEL domain scores on a Developmental Functioning factor, supporting convergent validity of the MSEL. Divergent validity was supported by the lack of loading of MSEL domain scores on Autism Symptoms or Emotion/Behavior Problems factors. Although factor structure and loadings varied across groups, convergent and divergent validity findings were similar in the ASD and nonspectrum samples. Together, these results demonstrate evidence for the construct, convergent, and divergent validity of the MSEL using powerful data-analytic techniques. (c) 2015 APA, all rights reserved).
Materials and Modulators for 3D Displays
2002-08-01
1243 nm. 0, 180 and 360 deg. in this plot correspond to parallel polarization. The dashed curve is a cos2(θ) fit to the data with a constant value...dwell time (solid bold curve ), 10 µs dwell time (dashed bold curve ) and static case (thin dashed curve ). 26 Figure. 20. Schematics of free-space...photon. The two peaks in the two photon spectrum can be fit by two Lorentzian curves . These spectra indicate that in the rhodamine B molecule the
Analysis of BaBar data for three meson tau decay modes using the Tauola generator
Shekhovtsova, Olga
2014-11-24
The hadronic current for the τ⁻ → π⁻π⁺π⁻ν τ decay calculated in the framework of the Resonance Chiral Theory with an additional modification to include the σ meson is described. In addition, implementation into the Monte Carlo generator Tauola and fitting strategy to get the model parameters using the one-dimensional distributions are discussed. The results of the fit to one-dimensional mass invariant spectrum of the BaBar data are presented.
A spectrum of an extrasolar planet.
Richardson, L Jeremy; Deming, Drake; Horning, Karen; Seager, Sara; Harrington, Joseph
2007-02-22
Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5-13.2 microm) of the transiting extrasolar planet HD 209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with an approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centred near 9.65 microm that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 microm. Models of these 'hot Jupiter' planets predict a flux peak near 10 microm, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly.
A near infrared line list for NH3: Analysis of a Kitt Peak spectrum after 35 years
NASA Astrophysics Data System (ADS)
Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan; Béguier, Serge; Campargue, Alain
2016-07-01
A Fourier Transform (FT) absorption spectrum of room temperature NH3 in the region 7400-8640 cm-1 is analysed using a variational line list and ground state energies determined using the MARVEL procedure. The spectrum was measured by Dr. Catherine de Bergh in 1980 and is available from the Kitt Peak data center. The centers and intensities of 8468 ammonia lines were retrieved using a multiline fitting procedure. 2474 lines are assigned to 21 bands providing 1692 experimental energies in the range 7500-9200 cm-1. The spectrum was assigned by the joint use of the BYTe variational line list and combination differences. The assignments and experimental energies presented in this work are the first for ammonia in the region 7400-8640 cm-1, considerably extending the range of known vibrational-excited states.
NASA Astrophysics Data System (ADS)
Benetti, Micol; Pandolfi, Stefania; Lattanzi, Massimiliano; Martinelli, Matteo; Melchiorri, Alessandro
2013-01-01
Using the most recent data from the WMAP, ACT and SPT experiments, we update the constraints on models with oscillatory features in the primordial power spectrum of scalar perturbations. This kind of features can appear in models of inflation where slow-roll is interrupted, like multifield models. We also derive constraints for the case in which, in addition to cosmic microwave observations, we also consider the data on the spectrum of luminous red galaxies from the 7th SDSS catalog, and the SNIa Union Compilation 2 data. We have found that: (i) considering a model with features in the primordial power spectrum increases the agreement with data compared to the featureless “vanilla” ΛCDM model by Δχ2=6.7, representing an improvement with respect to the expected value Δχ2=3 for an equivalent model with three additional parameters; (ii) the uncertainty on the determination of the standard parameters is not degraded when features are included; (iii) the best fit for the features model locates the step in the primordial spectrum at a scale k≃0.005Mpc-1, corresponding to the scale where the outliers in the WMAP7 data at ℓ=22 and ℓ=40 are located.; (iv) a distinct, albeit less statistically significant peak is present in the likelihood at smaller scales, whose presence might be related to the WMAP7 preference for a negative value of the running of the scalar spectral index parameter; (v) the inclusion of the LRG-7 data does not change significantly the best fit model, but allows to better constrain the amplitude of the oscillations.
Probing features in inflaton potential and reionization history with future CMB space observations
NASA Astrophysics Data System (ADS)
Hazra, Dhiraj Kumar; Paoletti, Daniela; Ballardini, Mario; Finelli, Fabio; Shafieloo, Arman; Smoot, George F.; Starobinsky, Alexei A.
2018-02-01
We consider the prospects of probing features in the primordial power spectrum with future Cosmic Microwave Background (CMB) polarization measurements. In the scope of the inflationary scenario, such features in the spectrum can be produced by local non-smooth pieces in an inflaton potential (smooth and quasi-flat in general) which in turn may originate from fast phase transitions during inflation in other quantum fields interacting with the inflaton. They can fit some outliers in the CMB temperature power spectrum which are unaddressed within the standard inflationary ΛCDM model. We consider Wiggly Whipped Inflation (WWI) as a theoretical framework leading to improvements in the fit to the Planck 2015 temperature and polarization data in comparison with the standard inflationary models, although not at a statistically significant level. We show that some type of features in the potential within the WWI models, leading to oscillations in the primordial power spectrum that extend to intermediate and small scales can be constrained with high confidence (at 3σ or higher confidence level) by an instrument as the Cosmic ORigins Explorer (CORE). In order to investigate the possible confusion between inflationary features and footprints from the reionization era, we consider an extended reionization history with monotonic increase of free electrons with decrease in redshift. We discuss the present constraints on this model of extended reionization and future predictions with CORE. We also project, to what extent, this extended reionization can create confusion in identifying inflationary features in the data.
CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czekala, Ian; Andrews, Sean M.; Mandel, Kaisey S.
2015-10-20
We present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high signal-to-noise data with large spectral range that is commonly employed in stellar astrophysics, that covariant structure can lead to dramatically underestimated parameter uncertainties (and, in some cases, biases). We construct a likelihood function that accounts for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. This framework specifically addresses the common problem of mismatches in model spectralmore » line strengths (with respect to data) due to intrinsic model imperfections (e.g., in the atomic/molecular databases or opacity prescriptions) by developing a novel local covariance kernel formalism that identifies and self-consistently downweights pathological spectral line “outliers.” By fitting many spectra in a hierarchical manner, these local kernels provide a mechanism to learn about and build data-driven corrections to synthetic spectral libraries. An open-source software implementation of this approach is available at http://iancze.github.io/Starfish, including a sophisticated probabilistic scheme for spectral interpolation when using model libraries that are sparsely sampled in the stellar parameters. We demonstrate some salient features of the framework by fitting the high-resolution V-band spectrum of WASP-14, an F5 dwarf with a transiting exoplanet, and the moderate-resolution K-band spectrum of Gliese 51, an M5 field dwarf.« less
The Rotational Spectrum of Acrylonitrile to 1.67 THz
NASA Astrophysics Data System (ADS)
Kisiel, Zbigniew; Pszczółkowski, Lech; Drouin, Brian J.; Brauer, Carolyn S.; Yu, Shanshan; Pearson, John C.
2009-06-01
Acrylonitrile (vinyl cyanide) is an astrophysical molecule of sufficient abundance for detection of its ^{13}C isotopologues. In fact this molecule has been identified as one of the 'weed' species, that will contribute a plethora of lines in broadband submillimetre spectra from the new tools of radioastronomy, such as the Herschel Space Observatory or ALMA. We presently report the first stage in extending the knowledge of the rotational spectrum of acrylonitrile well into the THz region. The spectrum was recorded with the jpl cascaded harmonic multiplication instrument in the form of several broadband segments covering 390-540, 818-930, 967-1160, and 1576-1669 GHz. The analysis of the ground state spectrum has been extended up to J=128, K_a=29, and a combined data set of over 3000 fitted lines. It is found that transitions in all measurable vibrational states, inclusive of the ground state, show evidence of perturbations with other states. Several different perturbations between the ground state and v_{11}=1 at 228 cm^{-1} were identified and have been successfully fitted, resulting in E_{11}=228.29994(3) cm^{-1}, to compare with a direct far-infrared value of 228.83(18) cm^{-1}. H.S.P.Müller et al., J. Mol. Spectrosc., 251, 319-325 (2008). B.J.Drouin, F.W.Maiwald, J.C.Pearson, Rev. Sci. Instrum., 76, 093113-1-10 (2005). A.R.H.Cole, A.A.Green, J. Mol. Spectrosc., 48, 246-253 (1973).
NASA Technical Reports Server (NTRS)
Stern, Robert A.; Lemen, James R.; Schmitt, Jurgen H. M. M.; Pye, John P.
1995-01-01
We report results from the first extreme ultraviolet spectrum of the prototypical eclipsing binary Algol (beta Per), obtained with the spectrometers on the Extreme Ultraviolet Explorer (EUVE). The Algol spectrum in the 80-350 A range is dominated by emission lines of Fe XVI-XXIV, and the He II 304 A line. The Fe emission is characteristic of high-temperature plasma at temperatures up to at least log T approximately 7.3 K. We have successfully modeled the observed quiescent spectrum using a continuous emission measure distribution with the bulk of the emitting material at log T greater than 6.5. We are able to adequately fit both the coronal lines and continuum data with a cosmic abundance plasma, but only if Algol's quiescent corona is dominated by material at log T greater than 7.5, which is physically ruled out by prior X-ray observations of the quiescent Algol spectrum. Since the coronal (Fe/H) abundance is the principal determinant of the line-to-continuum ratio in the EUV, allowing the abundance to be a free parameter results in models with a range of best-fit abundances approximately = 15%-40% of solar photospheric (Fe/H). Since Algol's photospheric (Fe/H) appears to be near-solar, the anomalous EUV line-to-continuum ratio could either be the result of element segregation in the coronal formation process, or other, less likely mechanisms that may enhance the continuum with respect to the lines.
Hull, Laura; Mandy, William; Petrides, K V
2017-08-01
Studies assessing sex/gender differences in autism spectrum conditions often fail to include typically developing control groups. It is, therefore, unclear whether observed sex/gender differences reflect those found in the general population or are particular to autism spectrum conditions. A systematic search identified articles comparing behavioural and cognitive characteristics in males and females with and without an autism spectrum condition diagnosis. A total of 13 studies were included in meta-analyses of sex/gender differences in core autism spectrum condition symptoms (social/communication impairments and restricted/repetitive behaviours and interests) and intelligence quotient. A total of 20 studies were included in a qualitative review of sex/gender differences in additional autism spectrum condition symptoms. For core traits and intelligence quotient, sex/gender differences were comparable in autism spectrum conditions and typical samples. Some additional autism spectrum condition symptoms displayed different patterns of sex/gender differences in autism spectrum conditions and typically developing groups, including measures of executive function, empathising and systemising traits, internalising and externalising problems and play behaviours. Individuals with autism spectrum conditions display typical sex/gender differences in core autism spectrum condition traits, suggesting that diagnostic criteria based on these symptoms should take into account typical sex/gender differences. However, awareness of associated autism spectrum condition symptoms should include the possibility of different male and female phenotypes, to ensure those who do not fit the 'typical' autism spectrum condition presentation are not missed.
Sky-radiance gradient measurements at narrow bands in the visible.
Winter, E M; Metcalf, T W; Stotts, L B
1995-07-01
Accurate calibrated measurements of the radiance of the daytime sky were made in narrow bands in the visible portion of the spectrum. These measurements were made over several months and were tabulated in a sun-referenced coordinate system. The radiance as a function of wavelength at angles ranging from 5 to 90 deg was plotted. A best-fit inverse power-law fit shows inversely linear behavior of the radiance versus wavelength near the Sun (5 deg) and a slope approaching inverse fourth power far from the Sun (60 deg). This behavior fits a Mie-scattering interpretation near the Sun and a Rayleigh-scattering interpretation away from the Sun. The results are also compared with LOWTRAN models.
Definition of the Flexible Image Transport System (FITS), version 3.0
NASA Astrophysics Data System (ADS)
Pence, W. D.; Chiappetti, L.; Page, C. G.; Shaw, R. A.; Stobie, E.
2010-12-01
The Flexible Image Transport System (FITS) has been used by astronomers for over 30 years as a data interchange and archiving format; FITS files are now handled by a wide range of astronomical software packages. Since the FITS format definition document (the “standard”) was last printed in this journal in 2001, several new features have been developed and standardized, notably support for 64-bit integers in images and tables, variable-length arrays in tables, and new world coordinate system conventions which provide a mapping from an element in a data array to a physical coordinate on the sky or within a spectrum. The FITS Working Group of the International Astronomical Union has therefore produced this new version 3.0 of the FITS standard, which is provided here in its entirety. In addition to describing the new features in FITS, numerous editorial changes were made to the previous version to clarify and reorganize many of the sections. Also included are some appendices which are not formally part of the standard. The FITS standard is likely to undergo further evolution, in which case the latest version may be found on the FITS Support Office Web site at
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bethermin, M.; Bielewicz, P.; Blagrave, K.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Kalberla, P.; Keihänen, E.; Kerp, J.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Serra, P.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Welikala, N.; White, M.; White, S. D. M.; Winkel, B.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
We present new measurements of cosmic infrared background (CIB) anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross-frequency power spectrum is measured from 143 to 3000 GHz, and the auto-bispectrum from 217 to 545 GHz. The total areas used to compute the CIB power spectrum and bispectrum are about 2240 and 4400 deg2, respectively. After careful removal of the contaminants (cosmic microwave background anisotropies, Galactic dust, and Sunyaev-Zeldovich emission), and a complete study of systematics, the CIB power spectrum is measured with unprecedented signal to noise ratio from angular multipoles ℓ ~ 150 to 2500. The bispectrum due to the clustering of dusty, star-forming galaxies is measured from ℓ ~ 130 to 1100, with a total signal to noise ratio of around 6, 19, and 29 at 217, 353, and 545 GHz, respectively. Two approaches are developed for modelling CIB power spectrum anisotropies. The first approach takes advantage of the unique measurements by Planck at large angular scales, and models only the linear part of the power spectrum, with a mean bias of dark matter haloes hosting dusty galaxies at a given redshift weighted by their contribution to the emissivities. The second approach is based on a model that associates star-forming galaxies with dark matter haloes and their subhaloes, using a parametrized relation between the dust-processed infrared luminosity and (sub-)halo mass. The two approaches simultaneously fit all auto- and cross-power spectra very well. We find that the star formation history is well constrained up to redshifts around 2, and agrees with recent estimates of the obscured star-formation density using Spitzer and Herschel. However, at higher redshift, the accuracy of the star formation history measurement is strongly degraded by the uncertainty in the spectral energy distribution of CIB galaxies. We also find that the mean halo mass which is most efficient at hosting star formation is log (Meff/M⊙) = 12.6 and that CIB galaxies have warmer temperatures as redshift increases. The CIB bispectrum is steeper than that expected from the power spectrum, although well fitted by a power law; this gives some information about the contribution of massive haloes to the CIB bispectrum. Finally, we show that the same halo occupation distribution can fit all power spectra simultaneously. The precise measurements enabled by Planck pose new challenges for the modelling of CIB anisotropies, indicating the power of using CIB anisotropies to understand the process of galaxy formation.
Training Effectiveness Evaluation of the Full Spectrum Command Game
2004-01-01
Fifty-four officers in the Infantry Captains Career Course at Fort Benning, Georgia, participated in a training effectiveness evaluation of a video ... game named Full Spectrum Command (FSC). Half were assigned to play FSC and participate in normal course work for commanding a light Infantry company in
Adaptive, full-spectrum solar energy system
Muhs, Jeffrey D.; Earl, Dennis D.
2003-08-05
An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.
The Chandra Source Catalog: Spectral Properties
NASA Astrophysics Data System (ADS)
Doe, Stephen; Siemiginowska, Aneta L.; Refsdal, Brian L.; Evans, Ian N.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Glotfelty, Kenny J.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Primini, Francis A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula
2009-09-01
The first release of the Chandra Source Catalog (CSC) contains all sources identified from eight years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard) using the Bayesian algorithm (BEHR, Park et al. 2006). The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package, developed by the Chandra X-ray Center; see Freeman et al. 2001). Two models were fit to each source: an absorbed power law and a blackbody emission. The fitted parameter values for the power-law and blackbody models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy flux computed from the normalizations of predefined power-law and black-body models needed to match the observed net X-ray counts. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. This work is supported by NASA contract NAS8-03060 (CXC).
ACCURATE CHARACTERIZATION OF HIGH-DEGREE MODES USING MDI OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korzennik, S. G.; Rabello-Soares, M. C.; Schou, J.
2013-08-01
We present the first accurate characterization of high-degree modes, derived using the best Michelson Doppler Imager (MDI) full-disk full-resolution data set available. A 90 day long time series of full-disk 2 arcsec pixel{sup -1} resolution Dopplergrams was acquired in 2001, thanks to the high rate telemetry provided by the Deep Space Network. These Dopplergrams were spatially decomposed using our best estimate of the image scale and the known components of MDI's image distortion. A multi-taper power spectrum estimator was used to generate power spectra for all degrees and all azimuthal orders, up to l = 1000. We used a largemore » number of tapers to reduce the realization noise, since at high degrees the individual modes blend into ridges and thus there is no reason to preserve a high spectral resolution. These power spectra were fitted for all degrees and all azimuthal orders, between l = 100 and l = 1000, and for all the orders with substantial amplitude. This fitting generated in excess of 5.2 Multiplication-Sign 10{sup 6} individual estimates of ridge frequencies, line widths, amplitudes, and asymmetries (singlets), corresponding to some 5700 multiplets (l, n). Fitting at high degrees generates ridge characteristics, characteristics that do not correspond to the underlying mode characteristics. We used a sophisticated forward modeling to recover the best possible estimate of the underlying mode characteristics (mode frequencies, as well as line widths, amplitudes, and asymmetries). We describe in detail this modeling and its validation. The modeling has been extensively reviewed and refined, by including an iterative process to improve its input parameters to better match the observations. Also, the contribution of the leakage matrix on the accuracy of the procedure has been carefully assessed. We present the derived set of corrected mode characteristics, which includes not only frequencies, but line widths, asymmetries, and amplitudes. We present and discuss their uncertainties and the precision of the ridge-to-mode correction schemes, through a detailed assessment of the sensitivity of the model to its input set. The precision of the ridge-to-mode correction is indicative of any possible residual systematic biases in the inferred mode characteristics. In our conclusions, we address how to further improve these estimates, and the implications for other data sets, like GONG+ and HMI.« less
Koch, A.
1973-01-01
“Fitness” is a word wellknown in the countries of the English language, especially in U.S.A. In Europe we used and use more for the same conception, words like “die Kondition, die Eignung, die Tauglichkeit, die Form” (Germany) or “la condition, la performance, le rendement” (France) or “la forma” (Italy, Spain). Problems of the performance or fitness belong to the sport science as long as we have the modern Olympic Games. Here will be used the word “fitness”. What are we imagining if we are talking about fitness? The definition of “fitness” is very different, there are many. For example: “Fitness is a state which characterizes the degree to which the organism is able to function” (LARSON). Which are the components of the fitness? Fitness has many spectrums. It means aptitude for a certain task, for a job, for a game, for a profession? What does physical fitness mean? How can we measure fitness? Which are the factors that impair, which are the factors which improve fitness? These are the questions discussed in which are included as well the basic idea of the special point of view in relation to flying personnel.
2010-09-01
Address a Full Spectrum of Possible Operational Needs David R. Graham, Project Leader Robert B. Magruder, Project Leader John R. Brinkerhoff James L...R. Graham, Project Leader Robert B. Magruder, Project Leader John R. Brinkerhoff James L. Adams Richard P. Diehl Colin M. Doyle Anthony C. Hermes...operations in rapid succession or even at the same time. The vertical Spectrum is characterized by Lieutenant General James M. Dubik as follows: Army units
Optimizing the Combination of Acoustic and Electric Hearing in the Implanted Ear
Karsten, Sue A.; Turner, Christopher W.; Brown, Carolyn J.; Jeon, Eun Kyung; Abbas, Paul J.; Gantz, Bruce J.
2016-01-01
Objectives The aim of this study was to determine an optimal approach to program combined acoustic plus electric (A+E) hearing devices in the same ear to maximize speech-recognition performance. Design Ten participants with at least 1 year of experience using Nucleus Hybrid (short electrode) A+E devices were evaluated across three different fitting conditions that varied in the frequency ranges assigned to the acoustically and electrically presented portions of the spectrum. Real-ear measurements were used to optimize the acoustic component for each participant, and the acoustic stimulation was then held constant across conditions. The lower boundary of the electric frequency range was systematically varied to create three conditions with respect to the upper boundary of the acoustic spectrum: Meet, Overlap, and Gap programming. Consonant recognition in quiet and speech recognition in competing-talker babble were evaluated after participants were given the opportunity to adapt by using the experimental programs in their typical everyday listening situations. Participants provided subjective ratings and evaluations for each fitting condition. Results There were no significant differences in performance between conditions (Meet, Overlap, Gap) for consonant recognition in quiet. A significant decrement in performance was measured for the Overlap fitting condition for speech recognition in babble. Subjective ratings indicated a significant preference for the Meet fitting regimen. Conclusions Participants using the Hybrid ipsilateral A+E device generally performed better when the acoustic and electric spectra were programmed to meet at a single frequency region, as opposed to a gap or overlap. Although there is no particular advantage for the Meet fitting strategy for recognition of consonants in quiet, the advantage becomes evident for speech recognition in competing-talker babble and in patient preferences. PMID:23059851
Retrieval of methanol absorption parameters at terahertz frequencies using multispectral fitting
NASA Astrophysics Data System (ADS)
Slocum, David M.; Xu, Li-Hong; Giles, Robert H.; Goyette, Thomas M.
2015-12-01
A high-resolution broadband study of the methanol absorption spectrum was performed at 1.480-1.495 THz. The transmittance was recorded under both self- and air-broadening conditions for multiple pressures at a resolution of 500 kHz. A multispectral fitting analysis was then performed. The transition frequency, absolute intensity, self- and air-broadening coefficients, and self- and air-induced pressure shifts were retrieved for 221 absorption lines using the multispectral fitting routine. Observed in the data were two different series of transitions, both a b-type Q-branch with K = - 7 ← - 6 and an a-type R-branch with J = 31 ← 30 . The retrieved frequency position values were compared with values from spectral databases and trends within the different series were identified. An analysis of the precision of the fitting routine was also performed.
A reinterpretation of the electronic spectrum of pyrrole: A quantum dynamics study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neville, S. P.; Worth, G. A., E-mail: g.a.worth@bham.ac.uk
The first band in the electronic spectrum of pyrrole is calculated from wavepacket propagations performed using the MCTDH method. To do so, two model Hamiltonians are constructed to describe seven low-lying excited electronic states of pyrrole. These Hamiltonians are based on the vibronic coupling model, and are parameterised via fitting to extensive CASPT2 and EOM-CCSD calculations. A detailed analysis of the structure of pyrrole's electronic spectrum in the range 5.5 to 6.5 eV is made. The role of intensity borrowing from transitions to ππ{sup *} states by lower-lying 3s and 3p Rydberg states is assessed, and reassignments of much ofmore » the spectrum are subsequently made which indicate that most of the states in the spectrum are predominantly Rydberg in character. The resulting conclusions drawn serve to highlight the limitations of assignments based on the matching of calculated vertical excitation energies and the positions of peak maxima observed in electronic spectra.« less
Random variations in the ultraviolet spectrum of Beta Lyrae
NASA Technical Reports Server (NTRS)
Bless, R. C.; Eaton, J. A.; Meade, M. R.
1977-01-01
Spectrophotometric scans of Beta Lyrae over the wavelength range from 1100 to 3700 A are analyzed which were obtained at different times with different resolutions by the OAO 2 satellite and from the ground. A model atmosphere with normal H and He abundances, an electron temperature of 11,000 K, and log g of 3.0 is found to fit the visual region of the spectrum well but to be a poor representation in the Balmer continuum. It is shown that a large complex emission feature dominates the spectrum from about 1700 to 2200 A, that there is a very pronounced strengthening of the spectrum just shortward of the 1550-A C IV feature at phase 0.69, and that the overall level of the spectrum shortward of 1400 A is quite high in comparison with the broad emission feature. A model is discussed in which the light from a disk-shaped secondary is highly concentrated toward the polar regions.
Microwave Spectrum and Structure of the Methane-Propane Complex
NASA Astrophysics Data System (ADS)
Peterson, Karen I.; Lin, Wei; Arsenault, Eric A.; Choi, Yoon Jeong; Novick, Stewart E.
2017-06-01
Methane is exceptional in its solid-phase orientational disorder that persists down to 24 K. Only below that temperature does the structure become partially ordered, and full crystallinity requires even lower temperatures and high pressures. Not surprisingly, methane appears to freely rotate in most van der Waals complexes, although two notable exceptions are CH_4-HF and CH_4-C_5H_5N. Of interest to us is how alkane interactions affect the methane rotation. Except for CH_4-CH_4, rotationally-resolved spectra of alkane-alkane complexes have not been studied. To fill this void, we present the microwave spectrum of CH_4-C_3H_8 which is the smallest alkane complex with a practical dipole moment. The microwave spectrum of CH_4-C_3H_8 was measured using the Fourier Transform microwave spectrometer at Wesleyan University. In the region between 7100 and 25300 MHz, we observed approximately 70 transitions that could plausibly be attributed to the CH_4-C_3H_8 complex (requiring high power and the proper mixture of gases). Of these, 16 were assigned to the A-state (lowest internal rotor state of methane) and four to the F-state. The A-state transitions were fitted with a Watson Hamiltonian using nine spectroscopic constants of which A = 7553.8144(97) MHz, B = 2483.9183(35) MHz, and C = 2041.8630(21) MHz. The A rotational constant is only 1.5 MHz higher than that of Ar-C_3H_8 and, since the a-axis of the complex passes approximately through the centers of mass of the subunits, this indicates a similar relative orientation. Thus, we find that the CH_4 is located above the plane of the propane. The center-of-mass separation of the subunits in CH_4-C_3H_8 is calculated to be 3.993 Å, 0.16 Å longer than the Ar-C_3H_8 distance of 3.825 Å, a reasonable difference considering the larger van der Waals radius of CH_4. The four F-state lines, which were about twice as strong as the A-state lines, could be fitted to A, B, and C rotational constants, and further analysis is in progress.
Laboratory microwave, millimeter wave and far-infrared spectra of dimethyl sulfide
NASA Astrophysics Data System (ADS)
Jabri, A.; Van, V.; Nguyen, H. V. L.; Mouhib, H.; Kwabia Tchana, F.; Manceron, L.; Stahl, W.; Kleiner, I.
2016-05-01
Context. Dimethyl sulfide, CH3SCH3 (DMS), is a nonrigid, sulfur-containing molecule whose astronomical detection is considered to be possible in the interstellar medium. Very accurate spectroscopic constants were obtained by a laboratory analysis of rotational microwave and millimeter wave spectra, as well as rotation-torsional far-infrared (FIR) spectra, which can be used to predict transition frequencies for a detection in interstellar sources. Aims: This work aims at the experimental study and theoretical analysis of the ground torsional state and ground torsional band ν15 of DMS in a large spectral range for astrophysical use. Methods: The microwave spectrum was measured in the frequency range 2-40 GHz using two Molecular Beam Fourier Transform MicroWave (MB-FTMW) spectrometers in Aachen, Germany. The millimeter spectrum was recorded in the 50-110 GHz range. The FIR spectrum was measured for the first time at high resolution using the FT spectrometer and the newly built cryogenic cell at the French synchrotron SOLEIL. Results: DMS has two equivalent methyl internal rotors with a barrier height of about 730 cm-1. We performed a fit, using the XIAM and BELGI-Cs-2Tops codes, that contained the new measurements and previous transitions reported in the literature for the ground torsional state νt = 0 (including the four torsional species AA, AE, EA and EE) and for the ground torsional band ν15 = 1 ← 0 (including only the AA species). In the microwave region, we analyzed 584 transitions with J ≤ 30 of the ground torsional state νt = 0 and 18 transitions with J ≤ 5 of the first excited torsional state νt = 1. In the FIR range, 578 transitions belonging to the torsional band ν15 = 1 ← 0 with J ≤ 27 were assigned. Totally, 1180 transitions were included in a global fit with 21 accurately determined parameters. These parameters can be used to produce a reliable line-list for an astrophysical detection of DMS. Full Tables B.1 and C.1, and Table E.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A127
Modelling Schumann resonances from ELF measurements using non-linear optimization methods
NASA Astrophysics Data System (ADS)
Castro, Francisco; Toledo-Redondo, Sergio; Fornieles, Jesús; Salinas, Alfonso; Portí, Jorge; Navarro, Enrique; Sierra, Pablo
2017-04-01
Schumann resonances (SR) can be found in planetary atmospheres, inside the cavity formed by the conducting surface of the planet and the lower ionosphere. They are a powerful tool to investigate both the electric processes that occur in the atmosphere and the characteristics of the surface and the lower ionosphere. In this study, the measurements are obtained in the ELF (Extremely Low Frequency) Juan Antonio Morente station located in the national park of Sierra Nevada. The three first modes, contained in the frequency band between 6 to 25 Hz, will be considered. For each time series recorded by the station, the amplitude spectrum was estimated by using Bartlett averaging. Then, the central frequencies and amplitudes of the SRs were obtained by fitting the spectrum with non-linear functions. In the poster, a study of nonlinear unconstrained optimization methods applied to the estimation of the Schumann Resonances will be presented. Non-linear fit, also known as optimization process, is the procedure followed in obtaining Schumann Resonances from the natural electromagnetic noise. The optimization methods that have been analysed are: Levenberg-Marquardt, Conjugate Gradient, Gradient, Newton and Quasi-Newton. The functions that the different methods fit to data are three lorentzian curves plus a straight line. Gaussian curves have also been considered. The conclusions of this study are outlined in the following paragraphs: i) Natural electromagnetic noise is better fitted using Lorentzian functions; ii) the measurement bandwidth can accelerate the convergence of the optimization method; iii) Gradient method has less convergence and has a highest mean squared error (MSE) between measurement and the fitted function, whereas Levenberg-Marquad, Gradient conjugate method and Cuasi-Newton method give similar results (Newton method presents higher MSE); v) There are differences in the MSE between the parameters that define the fit function, and an interval from 1% to 5% has been found.
Reinterpreting Comorbidity: A Model-Based Approach to Understanding and Classifying Psychopathology
Krueger, Robert F.; Markon, Kristian E.
2008-01-01
Comorbidity has presented a persistent puzzle for psychopathology research. We review recent literature indicating that the puzzle of comorbidity is being solved by research fitting explicit quantitative models to data on comorbidity. We present a meta-analysis of a liability spectrum model of comorbidity, in which specific mental disorders are understood as manifestations of latent liability factors that explain comorbidity by virtue of their impact on multiple disorders. Nosological, structural, etiological, and psychological aspects of this liability spectrum approach to understanding comorbidity are discussed. PMID:17716066
Updating constraints on inflationary features in the primordial power spectrum with the Planck data
NASA Astrophysics Data System (ADS)
Benetti, Micol
2013-10-01
We present new constraints on possible features in the primordial inflationary density perturbation power spectrum in light of the recent cosmic microwave background anisotropy measurements from the Planck satellite. We found that the Planck data hints for the presence of features in two different ranges of angular scales, corresponding to multipoles 10<ℓ<60 and 150<ℓ<300, with a decrease in the best-fit χ2 value with respect to the featureless “vanilla” ΛCDM model of Δχ2≃9 in both cases.
Constraining primordial vector mode from B-mode polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saga, Shohei; Ichiki, Kiyotomo; Shiraishi, Maresuke, E-mail: saga.shohei@nagoya-u.jp, E-mail: maresuke.shiraishi@pd.infn.it, E-mail: ichiki@a.phys.nagoya-u.ac.jp
The B-mode polarization spectrum of the Cosmic Microwave Background (CMB) may be the smoking gun of not only the primordial tensor mode but also of the primordial vector mode. If there exist nonzero vector-mode metric perturbations in the early Universe, they are known to be supported by anisotropic stress fluctuations of free-streaming particles such as neutrinos, and to create characteristic signatures on both the CMB temperature, E-mode, and B-mode polarization anisotropies. We place constraints on the properties of the primordial vector mode characterized by the vector-to-scalar ratio r{sub v} and the spectral index n{sub v} of the vector-shear power spectrum,more » from the Planck and BICEP2 B-mode data. We find that, for scale-invariant initial spectra, the ΛCDM model including the vector mode fits the data better than the model including the tensor mode. The difference in χ{sup 2} between the vector and tensor models is Δχ{sup 2} = 3.294, because, on large scales the vector mode generates smaller temperature fluctuations than the tensor mode, which is preferred for the data. In contrast, the tensor mode can fit the data set equally well if we allow a significantly blue-tilted spectrum. We find that the best-fitting tensor mode has a large blue tilt and leads to an indistinct reionization bump on larger angular scales. The slightly red-tilted vector mode supported by the current data set can also create O(10{sup -22})-Gauss magnetic fields at cosmological recombination. Our constraints should motivate research that considers models of the early Universe that involve the vector mode.« less
Primordial features and Planck polarization
NASA Astrophysics Data System (ADS)
Hazra, Dhiraj Kumar; Shafieloo, Arman; Smoot, George F.; Starobinsky, Alexei A.
2016-09-01
With the Planck 2015 Cosmic Microwave Background (CMB) temperature and polarization data, we search for possible features in the primordial power spectrum (PPS). We revisit the Wiggly Whipped Inflation (WWI) framework and demonstrate how generation of some particular primordial features can improve the fit to Planck data. WWI potential allows the scalar field to transit from a steeper potential to a nearly flat potential through a discontinuity either in potential or in its derivatives. WWI offers the inflaton potential parametrizations that generate a wide variety of features in the primordial power spectra incorporating most of the localized and non-local inflationary features that are obtained upon reconstruction from temperature and polarization angular power spectrum. At the same time, in a single framework it allows us to have a background parameter estimation with a nearly free-form primordial spectrum. Using Planck 2015 data, we constrain the primordial features in the context of Wiggly Whipped Inflation and present the features that are supported both by temperature and polarization. WWI model provides more than 13 improvement in χ2 fit to the data with respect to the best fit power law model considering combined temperature and polarization data from Planck and B-mode polarization data from BICEP and Planck dust map. We use 2-4 extra parameters in the WWI model compared to the featureless strict slow roll inflaton potential. We find that the differences between the temperature and polarization data in constraining background cosmological parameters such as baryon density, cold dark matter density are reduced to a good extent if we use primordial power spectra from WWI. We also discuss the extent of bispectra obtained from the best potentials in arbitrary triangular configurations using the BI-spectra and Non-Gaussianity Operator (BINGO).
Primordial features and Planck polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, Dhiraj Kumar; Smoot, George F.; Shafieloo, Arman
2016-09-01
With the Planck 2015 Cosmic Microwave Background (CMB) temperature and polarization data, we search for possible features in the primordial power spectrum (PPS). We revisit the Wiggly Whipped Inflation (WWI) framework and demonstrate how generation of some particular primordial features can improve the fit to Planck data. WWI potential allows the scalar field to transit from a steeper potential to a nearly flat potential through a discontinuity either in potential or in its derivatives. WWI offers the inflaton potential parametrizations that generate a wide variety of features in the primordial power spectra incorporating most of the localized and non-local inflationarymore » features that are obtained upon reconstruction from temperature and polarization angular power spectrum. At the same time, in a single framework it allows us to have a background parameter estimation with a nearly free-form primordial spectrum. Using Planck 2015 data, we constrain the primordial features in the context of Wiggly Whipped Inflation and present the features that are supported both by temperature and polarization. WWI model provides more than 13 improvement in χ{sup 2} fit to the data with respect to the best fit power law model considering combined temperature and polarization data from Planck and B-mode polarization data from BICEP and Planck dust map. We use 2-4 extra parameters in the WWI model compared to the featureless strict slow roll inflaton potential. We find that the differences between the temperature and polarization data in constraining background cosmological parameters such as baryon density, cold dark matter density are reduced to a good extent if we use primordial power spectra from WWI. We also discuss the extent of bispectra obtained from the best potentials in arbitrary triangular configurations using the BI-spectra and Non-Gaussianity Operator (BINGO).« less
Aleksi , J.; Ansoldi, S.; Antonelli, L. A.; ...
2015-05-13
PG 1553+113 is a very high energy (VHE, E > 100 GeV) γ-ray emitter classified as a BL Lac object. Its redshift is constrained by intergalactic absorption lines in the range 0.4 < z < 0.58. The MAGIC telescopes have monitored the source's activity since 2005. In early 2012, PG 1553+113 was found in a high state, and later, in April of the same year, the source reached its highest VHE flux state detected so far. Simultaneous observations carried out in X-rays during 2012 April show similar flaring behaviour. In contrast, the γ-ray flux at E < 100 GeV observedmore » by Fermi-LAT is compatible with steady emission. Here, in this paper, a detailed study of the flaring state is presented. The VHE spectrum shows clear curvature, being well fitted either by a power law with an exponential cut-off or by a log-parabola. A simple power-law fit hypothesis for the observed shape of the PG 1553+113 VHE γ-ray spectrum is rejected with a high significance (fit probability P = 2.6 × 10 -6). The observed curvature is compatible with the extragalactic background light (EBL) imprint predicted by current generation EBL models assuming a redshift z ~ 0.4. New constraints on the redshift are derived from the VHE spectrum. These constraints are compatible with previous limits and suggest that the source is most likely located around the optical lower limit, z = 0.4, based on the detection of Lyα absorption. Lastly, we find that the synchrotron self-Compton model gives a satisfactory description of the observed multiwavelength spectral energy distribution during the flare.« less
NASA Astrophysics Data System (ADS)
Wang, Qian; Gao, Jinghuai
2018-02-01
As a powerful tool for hydrocarbon detection and reservoir characterization, the quality factor, Q, provides useful information in seismic data processing and interpretation. In this paper, we propose a novel method for Q estimation. The generalized seismic wavelet (GSW) function was introduced to fit the amplitude spectrum of seismic waveforms with two parameters: fractional value and reference frequency. Then we derive an analytical relation between the GSW function and the Q factor of the medium. When a seismic wave propagates through a viscoelastic medium, the GSW function can be employed to fit the amplitude spectrum of the source and attenuated wavelets, then the fractional values and reference frequencies can be evaluated numerically from the discrete Fourier spectrum. After calculating the peak frequency based on the obtained fractional value and reference frequency, the relationship between the GSW function and the Q factor can be built by the conventional peak frequency shift method. Synthetic tests indicate that our method can achieve higher accuracy and be more robust to random noise compared with existing methods. Furthermore, the proposed method is applicable to different types of source wavelet. Field data application also demonstrates the effectiveness of our method in seismic attenuation and the potential in the reservoir characteristic.
Spatially Resolving the Very High Energy Emission from MGRO J2019+37 with VERITAS
NASA Astrophysics Data System (ADS)
Aliu, E.; Aune, T.; Behera, B.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dumm, J.; Dwarkadas, V. V.; Errando, M.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gillanders, G. H.; Gotthelf, E. V.; Griffin, S.; Griffiths, S. T.; Grube, J.; Gyuk, G.; Hanna, D.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kargaltsev, O.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krennrich, F.; Lang, M. J.; Madhavan, A. S.; Maier, G.; McArthur, S.; McCann, A.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nieto, D.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Otte, A. N.; Pandel, D.; Park, N.; Pohl, M.; Popkow, A.; Prokoph, H.; Quinn, J.; Ragan, K.; Rajotte, J.; Reyes, L. C.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Roberts, M.; Sembroski, G. H.; Shahinyan, K.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Vincent, S.; Wakely, S. P.; Weinstein, A.; Welsing, R.; Wilhelm, A.; Williams, D. A.; Zitzer, B.
2014-06-01
We present very high energy (VHE) imaging of MGRO J2019+37 obtained with the VERITAS observatory. The bright extended (~2°) unidentified Milagro source is located toward the rich star formation region Cygnus-X. MGRO J2019+37 is resolved into two VERITAS sources. The faint, point-like source VER J2016+371 overlaps CTB 87, a filled-center remnant (SNR) with no evidence of a supernova remnant shell at the present time. Its spectrum is well fit in the 0.65-10 TeV energy range by a power-law model with photon index 2.3 ± 0.4. VER J2019+378 is a bright extended (~1°) source that likely accounts for the bulk of the Milagro emission and is notably coincident with PSR J2021+3651 and the star formation region Sh 2-104. Its spectrum in the range 1-30 TeV is well fit with a power-law model of photon index 1.75 ± 0.3, among the hardest values measured in the VHE band, comparable to that observed near Vela-X. We explore the unusual spectrum and morphology in the radio and X-ray bands to constrain possible emission mechanisms for this source.
NASA Astrophysics Data System (ADS)
Margules, L.; Motiyenko, R. A.; Groner, P.; De Chirico, F.; Turk, A.; Cooke, S. A.
2013-06-01
Measurements on the rotational spectrum of 1,1-difluoroacetone have been extended from the cm-wave region into the mm-wave region. Measurements between 150 GHz and 600 GHz were performed a t Lille at room temperature. About 2000 transitions have been added to the known line listing for the ground state. The range of J and K_{-1} values, for both the A and E torsional substates, now span 1 - 60 and 0 - 30, respectively. Analysis of the cm-wave spectrum was only possible using the Watson S-reduced Hamiltonian, with the A-reduction producing a poor spectral fit. For that analysis only quartic centrifugal distortion terms were required. With the newly recorded higher J and K_{-1} measurements it is necessary to expand the Hamiltonian to now include sextic and octic centrifugal distortion terms. This should allow us to extend the assignment to even higher J and K_{-1} and perhaps to shed more light into failure of the A-reduction Hamiltonian to achieve a satisfactory fit for the cm-wave transitions. The effective barrier to methyl group internal rotation has been determined more accurately. G. S. Grubbs II, P. Groner, S. E. Novick and S. A. Cooke J. Mol. Spectrosc. {280} 21-26, 2012.
Qian, Wen; Zhang, Weibin; Zong, Hehou; Gao, Guofang; Zhou, Yang; Zhang, Chaoyang
2016-01-01
The vibrational spectrum, phonon dispersion curve, and phonon density of states (DOS) of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX) crystal were obtained by molecular simulation and calculations. As results, it was found that the peaks at low frequency (0-2.5 THz) are comparable with the experimental Terahertz absorption and the molecular vibrational modes are in agreement with previous reports. Thermodynamic properties including Gibbs free energy, enthalpy, and heat capacity as functions of temperature were obtained based on the calculated phonon spectrum. The heat capacity at normal temperature was calculated using linear fitting method, with a result consistent with experiments. Graphical Abstract Phonon spectrum and heat capacity of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine from DFT calculation.
The thermal emission spectrum of Io and a determination of the heat flux from its hot spots
NASA Technical Reports Server (NTRS)
Sinton, W. M.
1981-01-01
Observations of thermal emission from Io in the near infrared made during an eclipse were combined with unpublished 8- to 13-micron intermediate band photometry and a 16- to 22-micron spectrum to specify Io's emission spectrum from 2.2 to 22 microns. Models were calculated having 'hot spots' at several different temperatures superposed on a surface, the major part of which is assumed to be at the solar equilibrium temperature. It was possible to fit the entire composite spectrum with this model. It is argued that the total emission from the hot spots can be equated to the nonsolar energy input into Io. The disk-averaged heat radiated by the hot spots is found to be 180 + or 60 microwatts/sq cm = 43 + or - 14 microcalories/sq cm-sec. A possible bimodal temperature distribution of the hot spots is discussed.
NASA Astrophysics Data System (ADS)
Bowler, Brendan P.; Liu, Michael C.; Cushing, Michael C.
2009-12-01
We present a near-infrared spectroscopic study of HD 114762B, the latest-type metal-poor companion discovered to date and the only ultracool subdwarf with a known metallicity, inferred from the primary star to be [Fe/H] = -0.7. We obtained a medium-resolution (R ~ 3800) Keck/OSIRIS 1.18-1.40 μm spectrum and a low-resolution (R ~ 150) Infrared Telescope Facility/SpeX 0.8-2.4 μm spectrum of HD 114762B to test atmospheric and evolutionary models for the first time in this mass-metallicity regime. HD 114762B exhibits spectral features common to both late-type dwarfs and subdwarfs, and we assign it a spectral type of d/sdM9 ± 1. We use a Monte Carlo technique to fit PHOENIX/GAIA synthetic spectra to the observations, accounting for the coarsely gridded nature of the models. Fits to the entire OSIRIS J-band and to the metal-sensitive J-band atomic absorption features (Fe I, K I, and Al I lines) yield model parameters that are most consistent with the metallicity of the primary star and the high surface gravity expected of old late-type objects. The effective temperatures and radii inferred from the model atmosphere fitting broadly agree with those predicted by the evolutionary models of Chabrier & Baraffe, and the model color-absolute magnitude relations accurately predict the metallicity of HD 114762B. We conclude that current low-mass, mildly metal-poor atmospheric and evolutionary models are mutually consistent for spectral fits to medium-resolution J-band spectra of HD 114762B, but are inconsistent for fits to low-resolution near-infrared spectra of mild subdwarfs. Finally, we develop a technique for estimating distances to ultracool subdwarfs based on a single near-infrared spectrum. We show that this "spectroscopic parallax" method enables distance estimates accurate to lsim10% of parallactic distances for ultracool subdwarfs near the hydrogen burning minimum mass. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Phonon Spectrum in Hydroxyapatite: Calculations and EPR Study at Low Temperatures
NASA Astrophysics Data System (ADS)
Biktagirov, Timur; Gafurov, Marat; Iskhakova, Kamila; Mamin, Georgy; Orlinskii, Sergei
2016-12-01
Density functional theory-based calculations within the framework of the plane-wave pseudopotential approach are carried out to define the phonon spectrum of hydroxyapatite Ca_{10}(PO4)6(OH)2 (HAp). It allows to describe the temperature dependence of the electronic spin-lattice relaxation time T_{1e} of the radiation-induced stable radical NO3^{2-} in HAp, which was measured in X-band (9 GHz, magnetic field strength of 0.34 T) in the temperature range T = (10-300) K. It is shown that the temperature behavior of T_{1e} at T> 20 K can be fitted via two-phonon Raman type processes with the Debye temperature Θ D ≈ 280 {K} evaluated from the phonon spectrum.
Hyperfine Structure in the Pure Rotational Spectrum of 208Pb35Cl
NASA Astrophysics Data System (ADS)
Dewberry, Christopher T.; Grubbs, Garry S., II; Etchison, Kerry C.; Cooke, Stephen A.
2010-06-01
Initially in our laboratory the pure rotational spectrum of the title molecule was studied using a Balle-Flygare Fourier transform microwave spectrometer. Analysis was troublesome and so the spectrum was remeasured using a chirped pulse Fourier transform microwave (CP-FTMW) spectrometer. The correct intensity aspect of the CP-FTMW experiment allowed successful quantum number assignments for the hyperfine structure for the correct isotopologue. Spectroscopic constants have been obtained from a fit to a data set consisting of our measurements combined with those of a prior study on the X_2^2Π3/2 → X_1^2Π_{1/2 fine structure transitions. K. Ziebarth, K. D. Setzer, O. Shestakov and E. H. Fink J. Mol. Spectrosc., 191 108, 1998.
Detection of a new extended soft X-ray source H1538-32 - A possible old supernova remnant
NASA Technical Reports Server (NTRS)
Riegler, G. R.; Agrawal, P. C.; Gull, S. F.
1980-01-01
The discovery in the Lupus region of a new, extended soft X-ray source, H1538-32, is reported, having a distance of approximately 340 pc, and a luminosity of 1 to 2 x 10 to the 34th ergs/sec. The observed energy spectrum of the source is well fitted either by a thermal bremsstrahlung spectrum with Gaunt factor but without line emission, or by a coronal plasma model which includes the X-ray emission lines of various elements and the continuum as outlined by Raymond and Smith (1977). On the basis of the extended nature of the source and its thermal spectrum, it is suggested that H1538-32 may be an old supernova remnant.
Measurement of the inclusive electron spectrum from B meson decays and determination of | V u b |
Lees, J. P.; Poireau, V.; Tisserand, V.; ...
2017-04-01
Based on the full BABAR data sample of 466.5 millionmore » $$B\\bar{B}$$ pairs, we present measurements of the electron spectrum from semileptonic B meson decays. We fit the inclusive electron spectrum to distinguish Cabibbo-Kobayashi-Maskawa (CKM) suppressed B → X ueν decays from the CKM-favored B → X ceν decays, and from various other backgrounds, and determine the total semileptonic branching fraction B (B → Xeν) = ( 10.34 ± 0.04 stat ± 0.2 6 syst)%, averaged over B ± and B 0 mesons. We determine the spectrum and branching fraction for charmless B → X ueν decays and extract the CKM element | V ub| , by relying on four different QCD calculations based on the heavy quark expansion. While experimentally, the electron momentum region above 2.1 GeV / c is favored, because the background is relatively low, the uncertainties for the theoretical predictions are largest in the region near the kinematic endpoint. Detailed studies to assess the impact of these four predictions on the measurements of the electron spectrum, the branching fraction, and the extraction of the CKM matrix element |V ub| are presented, with the lower limit on the electron momentum varied from 0.8 GeV / c to the kinematic endpoint. We determine |V ub| using each of these different calculations and find, |V ub| = ( 3.794 ± 0.107 exp $$+ 0.292\\atop{ - 0.219 SF}$$ $$+ 0.078 \\atop{- 0.068 theory}$$ ) × 10 - 3 (De Fazio and Neubert), (4.563 ± 0.126 exp $$+ 0.230\\atop {- 0.208 SF}$$ $$+ 0.162\\atop{- 0.163 theory}$$ ) ×10 -3 (Bosch, Lange, Neubert, and Paz), (3.959 ± 0.104 exp $$+ 0.164\\atop{- 0.154 SF}$$ $$+ 0.042\\atop{ - 0.079 theory}$$ ) × 10 -3 (Gambino, Giordano, Ossola, and Uraltsev), (3.848 ± 0.108 exp $$+ 0.084\\atop{ - 0.070 theory}$$) × 10 -3 (dressed gluon exponentiation), where the stated uncertainties refer to the experimental uncertainties of the partial branching fraction measurement, the shape function parameters, and the theoretical calculations.« less
The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068
NASA Technical Reports Server (NTRS)
Spinoglio, Luigi; Smith, Howard A.; Gonzalez-Alfonso, Eduardo; Fisher, Jacqueline
2005-01-01
We report on the analysis of the first complete far-infrared spectrum (43-197 microns) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO). In addition to the 7 expected ionic fine structure emission lines, the OH rotational lines at 79, 119 and 163 microns were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 micron line, where detected, is always in absorption. The observed line intensities were modelled together with IS0 Short Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the AGN component and the starburst component in the circumnuclear ring of approximately 3kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a big blue bump is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Br gamma equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low ionization parameter (U=10(exp -3.5)) and low densities (n=100 cm (exp -3)) are derived. Combining the AGN and starburst components, we succeed in modeling the overall UV to far-IR atomic spectrum of SGC 1068, reproducing the line fluxes to within a factor 2.0 on average with a standard deviation of 1.4. The OH 119 micron emission indicates that the line is collisionally excited, and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, non-local, non-LTE radiative transfer models. The models indicate that the bulk of the emission arises from the nuclear region, although some extended contribution from the starburst is not ruled out. The OH abundance in the nuclear region is expected to be approximately 10(exp -5), characteristic of X-ray dominated regions.
More on Magnetic Spectra from Correlated Crustal Sources on Mars
NASA Technical Reports Server (NTRS)
Voorhies, C. V.
2005-01-01
The spectral method for distinguishing crustal from core-source magnetic fields has been re-examined, modified and applied to both a comprehensive geomagnetic field model and an altitude normalized magnetic map of Mars. These observational spectra are fairly fitted by theoretical forms expected from certain elementary classes of magnetic sources. For Earth we found fields from a core of radius 3512 plus or minus 64 km, in accord with the 3480 km seismologic radius, and a crust represented by a shell of random dipolar sources at radius 6367 plus or minus 14 km, just beneath the 6371.0 km mean radius. For Mars we found only a field from a crust represented in same way, but 46 plus or minus 10 km below the planetary mean radius of 3389.5 km, and with sources about 9.6 plus or minus 3.2 times stronger than Earth's. It is remarkable that the same simple theoretical form should fairly fit crustal magnetic spectra for both worlds and return crustal-source depth estimates of plausible magnitude. Evidently, the idea of an ensemble of compact, quasi-independent, magnetized regions within these planetary crusts has some merit. Yet such estimates, at best a kind of average, depend upon both the observational spectrum fitted and the physical basis of the theoretical spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwanda, C.; Mandl, F.; Mitaroff, W.
2008-08-01
Using the previous Belle measurement of the inclusive photon energy in B{yields}X{sub s}{gamma} decays, we determine the first and second moments of this spectrum for minimum photon energies in the B meson rest frame ranging from 1.8 to 2.3 GeV. Combining these measurements with recent Belle data on the lepton energy and hadronic mass moments in B{yields}X{sub c}l{nu} decays, we perform fits to theoretical expressions derived in the 1S and kinetic mass schemes and extract the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element V{sub cb}, the b-quark mass, and other nonperturbative parameters. In the 1S scheme analysis we find |V{sub cb}|=(41.56{+-}0.68(fit){+-}0.08({tau}{submore » B}))x10{sup -3} and m{sub b}{sup 1S}=(4.723{+-}0.055) GeV. In the kinetic scheme, we obtain |V{sub cb}|=(41.58{+-}0.69(fit){+-}0.08({tau}{sub B}){+-}0.58(th))x10{sup -3} and m{sub b}{sup kin}=(4.543{+-}0.075) GeV.« less
Accretion tori and cones of ionizing radiation in Seyfert galaxies
NASA Technical Reports Server (NTRS)
Acosta-Pulido, Jose A.; Perez-Fournon, Ismael; Calvani, Massimo; Wilson, Andrew S.
1990-01-01
The photoionization of extended narrow-line regions in Seyfert galaxies by the radiation produced in a thick accretion disk is studied. The emission-line spectrum is calculated for a range of black hole masses, varying the values of the ionization parameter and the disk size. It is found that models with a million solar masses fit observations of very large accretion disk sizes, while models with 10 million solar masses fit them better with smaller disks. The latter models are preferable since they have lower super-Eddington accretion rates.
VizieR Online Data Catalog: C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy) spectra (Biver+, 2014)
NASA Astrophysics Data System (ADS)
Biver, N.; Bockelee-Morvan, D.; Debout, V.; Crovisier, J.; Boissier, J.; Lis, D. C.; Dello Russo, N.; Moreno, R.; Colom, P.; Paubert, G.; Vervack, R.; Weaver, H. A.
2014-06-01
Sum spectra of the lines of formamide and ethylene-glycol which intensities are listed in Tables 4 and 5. One fits file per spectrum, fits output from class (http://www.iram.fr/IRAMFR/GILDAS/). object.dat : -------------------------------------------------------------------------------- Code Name Elem q e i H1 d AU deg mag -------------------------------------------------------------------------------- C/2012 F6 Lemmon 2456375.5 0.7312461 0.9985125 82.607966 7.96 C/2013 R1 Lovejoy 2456651.5 0.8118182 0.9983297 64.040457 11.66 (2 data files).
MASS/RADIUS CONSTRAINTS ON THE QUIESCENT NEUTRON STAR IN M13 USING HYDROGEN AND HELIUM ATMOSPHERES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catuneanu, A.; Heinke, C. O.; Sivakoff, G. R.
The mass and radius of the neutron star (NS) in low-mass X-ray binaries can be obtained by fitting the X-ray spectrum of the NS in quiescence, and the mass and radius constrains the properties of dense matter in NS cores. A critical ingredient for spectral fits is the composition of the NS atmosphere: hydrogen atmospheres are assumed in most prior work, but helium atmospheres are possible if the donor star is a helium white dwarf. Here we perform spectral fits to XMM-Newton, Chandra, and ROSAT data of a quiescent NS in the globular cluster M13. This NS has the smallestmore » inferred radius from previous spectral fitting. Assuming an atmosphere composed of hydrogen, we find a significantly larger radius, more consistent with those from other quiescent NSs. With a helium atmosphere (an equally acceptable fit), we find even larger values for the radius.« less
Calibrating White Dwarf Asteroseismic Fitting Techniques
NASA Astrophysics Data System (ADS)
Castanheira, B. G.; Romero, A. D.; Bischoff-Kim, A.
2017-03-01
The main goal of looking for intrinsic variability in stars is the unique opportunity to study their internal structure. Once we have extracted independent modes from the data, it appears to be a simple matter of comparing the period spectrum with those from theoretical model grids to learn the inner structure of that star. However, asteroseismology is much more complicated than this simple description. We must account not only for observational uncertainties in period determination, but most importantly for the limitations of the model grids, coming from the uncertainties in the constitutive physics, and of the fitting techniques. In this work, we will discuss results of numerical experiments where we used different independently calculated model grids (white dwarf cooling models WDEC and fully evolutionary LPCODE-PUL) and fitting techniques to fit synthetic stars. The advantage of using synthetic stars is that we know the details of their interior structure so we can assess how well our models and fitting techniques are able to the recover the interior structure, as well as the stellar parameters.
An Analysis of Recent Measurements of the Temperature of the Cosmic Microwave Background Radiation
DOE R&D Accomplishments Database
Smoot, G.; Levin, S. M.; Witebsky, C.; De Amici, G.; Rephaeli, Y.
1987-07-01
This paper presents an analysis of the results of recent temperature measurements of the cosmic microwave background radiation (CMBR). The observations for wavelengths longer than 0.1 cum are well fit by a blackbody spectrum at 2.74{+ or -}0.0w K; however, including the new data of Matsumoto et al. (1987) the result is no longer consistent with a Planckian spectrum. The data are described by a Thomson-distortion parameter u=0.021{+ or -}0.002 and temperature 2.823{+ or -}0.010 K at the 68% confidence level. Fitting the low-frequency data to a Bose-Einstein spectral distortion yields a 95% confidence level upper limit of 1.4 x 10{sup -2} on the chemical potential mu{sub 0}. These limits on spectral distortions place restrictions on a number of potentially interesting sources of energy release to the CMBR, including the hot intergalactic medium proposed as the source of the X-ray background.
VizieR Online Data Catalog: GRAMS carbon-star model grid (Srinivasan+, 2011)
NASA Astrophysics Data System (ADS)
Srinivasan, S.; Sargent, B. A.; Meixner, M.
2011-07-01
Synthetic spectra and photometry for the GRAMS carbon-star set of radiative transfer models is provided in FITS form. Also included are various stellar and dust shell parameters related to the models. For each model, a 130-wavelength spectrum for the bare photosphere and one for the star+dust spectrum are available. The fluxes are in F_nu (Jansky) and are computed at the LMC distance (distance modulus = 18.5mag). Synthetic photometry is computed for 34 narrow- and broad-band filters which, in order, are: U, B, V, I, J, H, Ks, IRAC36, IRAC45, IRAC5_8, IRAC8_0, MIPS24, MIPS70, MIPS160, AKARIN2, AKARIN3, AKARIN4, AKARIS7, AKARIS9W, AKARIS11, AKARIL15, AKARIL18W, AKARIL24, WISEW1, WISEW2, WISEW3 and WISEW4 (see the footnotes in the article for more about these filters). Please read the FITS header for more information on the data. (2 data files).
4U 1909+07: A Well-Hidden Pearl
NASA Technical Reports Server (NTRS)
Fuerst, F.; Kreykenbohm, I.; Barragan, L.; Wilms, J.; Rothschild, R. E.; Suchy, S.; Pottschmidt, K.
2009-01-01
We present the first detailed spectral and timing analysis of the High Mass X-ray Binary (HMXB) 4U 1909+07 with INTEGRAL and RXTE. 4U 1909+07 is detected with an average of 2.4 cps in ISGRI. but shows flares up to approx.50 cps. The system shows a pulse period of 605 s, but we found that the period changes erratically around this value. The pulse profile is extremely energy dependent: while it shows a double peaked structure at low energies, the secondary pulse decreases rapidly with increasing energy and above 20 ke V only the primary pulse is visible. This evolution is consistent between peA, HEXTE and ISGRI. We find that the phase averaged spectrum can be well fitted with a photo-absorbed power law with a cutoff at high energies and a blackbody component. To investigate the peculiar pulse profile, we performed phase resolved spectral analysis. We find that a change in the cutoff energy is required to fit the changing spectrum of the different pulse phases
Year-round measurements of ozone at 66 deg S with a visible spectrometer
NASA Technical Reports Server (NTRS)
Roscoe, Howard K.; Oldham, Derek J.; Squires, James A. C.; Pommereau, Jean-Pierre; Goutail, Florence; Sarkissian, Alain
1994-01-01
In March 1990, a zenith-sky UV-visible spectrometer of the design 'Systeme Automatique d'Obervation Zenithal' (SAOZ) was installed at Faraday in Antarctica (66.3 deg S, 64.3 deg W). SAOZ records spectra between 290 and 600 nm during daylight. Its analysis program fits laboratory spectra of constituents, at various wavelengths, to the differential of the ratio of the observed spectrum and a reference spectrum. The least-squares fitting procedure minimizes the sum-of-squares of residuals. Ozone is deduced from absorption in its visible bands between 500 and 560 nm. The fortunate colocation of this SAOZ with the well-calibrated Dobson at Faraday has allowed us to examine the calibration of the zero of the SAOZ, difficult at visible wavelengths because of the small depth of absorption. Here we describe recent improvements and limitations to this calibration, and discuss SAOZ measurements of ozone during winter in this important location at the edge of the Antarctic vortex.
High Excitation Rydberg Levels of Fe I from the ATMOS Solar Spectrum at 2.5 and 7 microns
NASA Technical Reports Server (NTRS)
Schoenfeld, W. G.; Chang, E. S.; Geller, M.; Johansson, S.; Nave, G.; Sauval, A. J.; Grevesse, N.
1995-01-01
The quadrupole-polarization theory has been applied to the 3d(sup 6)4S(D-6)4f and 5g subconfigurations of Fe I by a parametric fit, and the fitted parameters are used to predict levels in the 6g and 6h subconfigurations. Using the predicted values, we have computed the 4f-6g and 5g-6h transition arrays and made identifications in the ATMOS infrared solar spectrum. The newly identified 6g and 6h levels, based on ATMOS wavenumbers, are combined with the 5g levels and found to agree with the theoretical values with a root mean-squared-deviation of 0.042/ cm. Our approach yields a polarizability of 28.07 a(sub o, sup 2) and a quadrupole moment of 0.4360 +/- 0.0010 ea(sup 2, sub o) for Fe II, as well as an improved ionization potential of 63737.700 +/- 0.010/ cm for Fe I.
ISAP: ISO Spectral Analysis Package
NASA Astrophysics Data System (ADS)
Ali, Babar; Bauer, Otto; Brauher, Jim; Buckley, Mark; Harwood, Andrew; Hur, Min; Khan, Iffat; Li, Jing; Lord, Steve; Lutz, Dieter; Mazzarella, Joe; Molinari, Sergio; Morris, Pat; Narron, Bob; Seidenschwang, Karla; Sidher, Sunil; Sturm, Eckhard; Swinyard, Bruce; Unger, Sarah; Verstraete, Laurent; Vivares, Florence; Wieprecht, Ecki
2014-03-01
ISAP, written in IDL, simplifies the process of visualizing, subsetting, shifting, rebinning, masking, combining scans with weighted means or medians, filtering, and smoothing Auto Analysis Results (AARs) from post-pipeline processing of the Infrared Space Observatory's (ISO) Short Wavelength Spectrometer (SWS) and Long Wavelength Spectrometer (LWS) data. It can also be applied to PHOT-S and CAM-CVF data, and data from practically any spectrometer. The result of a typical ISAP session is expected to be a "simple spectrum" (single-valued spectrum which may be resampled to a uniform wavelength separation if desired) that can be further analyzed and measured either with other ISAP functions, native IDL functions, or exported to other analysis package (e.g., IRAF, MIDAS) if desired. ISAP provides many tools for further analysis, line-fitting, and continuum measurements, such as routines for unit conversions, conversions from wavelength space to frequency space, line and continuum fitting, flux measurement, synthetic photometry and models such as a zodiacal light model to predict and subtract the dominant foreground at some wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Fei; Tao, Ye; Zhao, Haifeng
Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions.R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure changemore » in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3spin crossover complex and yielded reliable distance change and excitation population.« less
Zhan, Fei; Tao, Ye; Zhao, Haifeng
2017-07-01
Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.
Does sex influence the diagnostic evaluation of autism spectrum disorder in adults?
Wilson, C Ellie; Murphy, Clodagh M; McAlonan, Grainne; Robertson, Dene M; Spain, Debbie; Hayward, Hannah; Woodhouse, Emma; Deeley, P Quinton; Gillan, Nicola; Ohlsen, J Chris; Zinkstok, Janneke; Stoencheva, Vladimira; Faulkner, Jessica; Yildiran, Hatice; Bell, Vaughan; Hammond, Neil; Craig, Michael C; Murphy, Declan Gm
2016-10-01
It is unknown whether sex influences the diagnostic evaluation of autism spectrum disorder, or whether male and female adults within the spectrum have different symptom profiles. This study reports sex differences in clinical outcomes for 1244 adults (935 males and 309 females) referred for autism spectrum disorder assessment. Significantly, more males (72%) than females (66%) were diagnosed with an autism spectrum disorder of any subtype (x(2) = 4.09; p = 0.04). In high-functioning autism spectrum disorder adults (IQ > 70; N = 827), there were no significant sex differences in severity of socio-communicative domain symptoms. Males had significantly more repetitive behaviours/restricted interests than females (p = 0.001, d = 0.3). A multivariate analysis of variance indicated a significant interaction between autism spectrum disorder subtype (full-autism spectrum disorder/partial-autism spectrum disorder) and sex: in full-autism spectrum disorder, males had more severe socio-communicative symptoms than females; for partial-autism spectrum disorder, the reverse was true. There were no sex differences in prevalence of co-morbid psychopathologies. Sex influenced diagnostic evaluation in a clinical sample of adults with suspected autism spectrum disorder. The sexes may present with different manifestations of the autism spectrum disorder phenotype and differences vary by diagnostic subtype. Understanding and awareness of adult female repetitive behaviours/restricted interests warrant attention and sex-specific diagnostic assessment tools may need to be considered. © The Author(s) 2016.
Does sex influence the diagnostic evaluation of autism spectrum disorder in adults?
Wilson, C Ellie; Murphy, Clodagh M; McAlonan, Grainne; Robertson, Dene M; Spain, Debbie; Hayward, Hannah; Woodhouse, Emma; Deeley, P Quinton; Gillan, Nicola; Ohlsen, J Chris; Zinkstok, Janneke; Stoencheva, Vladimira; Faulkner, Jessica; Yildiran, Hatice; Bell, Vaughan; Hammond, Neil; Craig, Michael C; Murphy, Declan GM
2016-01-01
It is unknown whether sex influences the diagnostic evaluation of autism spectrum disorder, or whether male and female adults within the spectrum have different symptom profiles. This study reports sex differences in clinical outcomes for 1244 adults (935 males and 309 females) referred for autism spectrum disorder assessment. Significantly, more males (72%) than females (66%) were diagnosed with an autism spectrum disorder of any subtype (x2 = 4.09; p = 0.04). In high-functioning autism spectrum disorder adults (IQ > 70; N = 827), there were no significant sex differences in severity of socio-communicative domain symptoms. Males had significantly more repetitive behaviours/restricted interests than females (p = 0.001, d = 0.3). A multivariate analysis of variance indicated a significant interaction between autism spectrum disorder subtype (full-autism spectrum disorder/partial-autism spectrum disorder) and sex: in full-autism spectrum disorder, males had more severe socio-communicative symptoms than females; for partial-autism spectrum disorder, the reverse was true. There were no sex differences in prevalence of co-morbid psychopathologies. Sex influenced diagnostic evaluation in a clinical sample of adults with suspected autism spectrum disorder. The sexes may present with different manifestations of the autism spectrum disorder phenotype and differences vary by diagnostic subtype. Understanding and awareness of adult female repetitive behaviours/restricted interests warrant attention and sex-specific diagnostic assessment tools may need to be considered. PMID:26802113
On the dielectric conductivity of molecular ionic liquids.
Schröder, Christian; Steinhauser, Othmar
2009-09-21
The contribution of the conductivity to the spectrum of the generalized dielectric constant or susceptibility of molecular ionic liquids is analyzed, both in theoretical terms and computationally by means of molecular dynamics simulation of the concrete system 1-ethyl-3-methyl-imidazolium dicyanoamide at 300 K. As a central quantity the simulated current autocorrelation function is modeled by a carefully designed fit function. This not only gives a satisfactory numerical representation but yields the correct conductivity upon integration. In addition the fit function can be Fourier-Laplace transformed analytically. Both, the real and imaginary parts of the transform show expected behavior, in particular, the right limits for zero frequency. This altogether demonstrates that the components of the fit function are of physical relevance.
On the Specification of Upward-Propagating Tides for ICON Science Investigations
NASA Astrophysics Data System (ADS)
Forbes, Jeffrey M.; Zhang, Xiaoli; Hagan, Maura E.; England, Scott L.; Liu, Guiping; Gasperini, Federico
2017-10-01
The National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) will provide a physics-based context for the interpretation of ICON measurements. To optimize the realism of the model simulations, ICON wind and temperature measurements near the ˜97 km lower boundary of the TIEGCM will be used to specify the upward-propagating tidal spectrum at this altitude. This will be done by fitting a set of basis functions called Hough Mode Extensions (HMEs) to 27-day mean tidal winds and temperatures between 90 and 105 km altitude and between 12 °S and 42 °N latitude on a day-by-day basis. The current paper assesses the veracity of the HME fitting methodology given the restricted latitude sampling and the UT-longitude sampling afforded by the MIGHTI instrument viewing from the ICON satellite, which will be in a circular 27° inclination orbit. These issues are investigated using the output from a reanalysis-driven global circulation model, which contains realistic variability of the important tidal components, as a mock data set. ICON sampling of the model reveals that the 27-day mean diurnal and semidiurnal tidal components replicate well the 27-day mean tidal components obtained from full synoptic sampling of the model, but the terdiurnal tidal components are not faithfully reproduced. It is also demonstrated that reconstructed tidal components based on HME fitting to the model tides between 12 °S and 42 °N latitude provide good approximations to the major tidal components expected to be encountered during the ICON mission. This is because the constraints provided by fitting both winds and temperatures over the 90-105 km height range are adequate to offset the restricted sampling in latitude. The boundary conditions provided by the methodology described herein will greatly enhance the ability of the TIEGCM to provide a physical framework for interpreting atmosphere-ionosphere coupling in ICON observations due to atmospheric tides.
X-ray spectroscopy of the super soft source RXJ0925.7-475
NASA Technical Reports Server (NTRS)
Ebisawa, Ken; Asai, Kazumi; Dotani, Tadayasu; Mukai, Koji; Smale, Alan
1996-01-01
The super soft source (SSS) RXJ 0925.7-475 was observed with the Advanced Satellite for Cosmology and Astrophysics (ASCA) solid state spectrometer and its energy spectrum was analyzed. A simple black body model does not fit the data, and several absorption edges of ionized heavy elements are required. Without the addition of absorption edges, the best-fit black body radius and the estimated bolometric luminosity are 6800 (d/1 kpc) km and 1.2 x 10(exp 37) (d/1 kps)(exp 2) erg/s, respectively. The introduction of absorption edges significantly reduces the best-fit radius and luminosity to 140 (d/1 KPS) km and 6 x 10(exp 34) (d/1 kpc)(exp 2) erg/s, respectively. This suggests that the estimation of the emission region size and luminosity of SSS based on the black body model fit to the observed data is not reliable.
Two-dimensional wavefront reconstruction based on double-shearing and least squares fitting
NASA Astrophysics Data System (ADS)
Liang, Peiying; Ding, Jianping; Zhu, Yangqing; Dong, Qian; Huang, Yuhua; Zhu, Zhen
2017-06-01
The two-dimensional wavefront reconstruction method based on double-shearing and least squares fitting is proposed in this paper. Four one-dimensional phase estimates of the measured wavefront, which correspond to the two shears and the two orthogonal directions, could be calculated from the differential phase, which solves the problem of the missing spectrum, and then by using the least squares method the two-dimensional wavefront reconstruction could be done. The numerical simulations of the proposed algorithm are carried out to verify the feasibility of this method. The influence of noise generated from different shear amount and different intensity on the accuracy of the reconstruction is studied and compared with the results from the algorithm based on single-shearing and least squares fitting. Finally, a two-grating lateral shearing interference experiment is carried out to verify the wavefront reconstruction algorithm based on doubleshearing and least squares fitting.
What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?
Kim, Kyuho; Chang, C. S.; Seo, Janghoon; ...
2017-01-24
Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less
What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyuho; Chang, C. S.; Seo, Janghoon
Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less
THE IMPACT OF SURFACE TEMPERATURE INHOMOGENEITIES ON QUIESCENT NEUTRON STAR RADIUS MEASUREMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elshamouty, K. G.; Heinke, C. O.; Morsink, S. M.
Fitting the thermal X-ray spectra of neutron stars (NSs) in quiescent X-ray binaries can constrain the masses and radii of NSs. The effect of undetected hot spots on the spectrum, and thus on the inferred NS mass and radius, has not yet been explored for appropriate atmospheres and spectra. A hot spot would harden the observed spectrum, so that spectral modeling tends to infer radii that are too small. However, a hot spot may also produce detectable pulsations. We simulated the effects of a hot spot on the pulsed fraction and spectrum of the quiescent NSs X5 and X7 inmore » the globular cluster 47 Tucanae, using appropriate spectra and beaming for hydrogen atmosphere models, incorporating special and general relativistic effects, and sampling a range of system angles. We searched for pulsations in archival Chandra HRC-S observations of X5 and X7, placing 90% confidence upper limits on their pulsed fractions below 16%. We use these pulsation limits to constrain the temperature differential of any hot spots, and to then constrain the effects of possible hot spots on the X-ray spectrum and the inferred radius from spectral fitting. We find that hot spots below our pulsation limit could bias the spectroscopically inferred radius downward by up to 28%. For Cen X-4 (which has deeper published pulsation searches), an undetected hot spot could bias its inferred radius downward by up to 10%. Improving constraints on pulsations from quiescent LMXBs may be essential for progress in constraining their radii.« less
NASA Astrophysics Data System (ADS)
Souri, Dariush; Tahan, Zahra Esmaeili
2015-05-01
A new method (named as DASF: Derivation of absorption spectrum fitting) is proposed for the determination of optical band gap and the nature of optical transitions in semiconductors; this method only requires the measurement of the absorbance spectrum of the sample, avoiding any needs to film thickness or any other parameters. In this approach, starting from absorption spectrum fitting (ASF) procedure and by the first derivation of the absorbance spectrum, the optical band gap and then the type of optical transition can be determined without any presumption about the nature of transition. DASF method was employed on (60-x)V2O5-40TeO2-xAg2O glassy systems (hereafter named as TVAgx), in order to confirm the validity of this new method. For the present glasses, the DASF results were compared with the results of ASF procedure for, confirming a very good agreement between these approaches. These glasses were prepared by using the melt quenching and blowing methods to obtain bulk and film samples, respectively. Results show that the optical band gap variation for TVAgx glasses can be divided into two regions, 0 ≤ x ≤ 20 and 20 ≤ x ≤ 40 mol%. The optical band gap has a maximum value equal to 2.72 eV for x = 40 and the minimum value equal to 2.19 eV for x = 40. Also, some physical quantities such as the width of the band tails (Urbach energy), glass density, molar volume, and optical basicity were reported for the under studied glasses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yun, E-mail: genliyun@126.com, E-mail: cuiwanzhao@126.com; Cui, Wan-Zhao, E-mail: genliyun@126.com, E-mail: cuiwanzhao@126.com; Wang, Hong-Guang
2015-05-15
Effects of the secondary electron emission (SEE) phenomenon of metal surface on the multipactor analysis of microwave components are investigated numerically and experimentally in this paper. Both the secondary electron yield (SEY) and the emitted energy spectrum measurements are performed on silver plated samples for accurate description of the SEE phenomenon. A phenomenological probabilistic model based on SEE physics is utilized and fitted accurately to the measured SEY and emitted energy spectrum of the conditioned surface material of microwave components. Specially, the phenomenological probabilistic model is extended to the low primary energy end lower than 20 eV mathematically, since no accuratemore » measurement data can be obtained. Embedding the phenomenological probabilistic model into the Electromagnetic Particle-In-Cell (EM-PIC) method, the electronic resonant multipacting in microwave components can be tracked and hence the multipactor threshold can be predicted. The threshold prediction error of the transformer and the coaxial filter is 0.12 dB and 1.5 dB, respectively. Simulation results demonstrate that the discharge threshold is strongly dependent on the SEYs and its energy spectrum in the low energy end (lower than 50 eV). Multipacting simulation results agree quite well with experiments in practical components, while the phenomenological probabilistic model fit both the SEY and the emission energy spectrum better than the traditionally used model and distribution. The EM-PIC simulation method with the phenomenological probabilistic model for the surface collision simulation has been demonstrated for predicting the multipactor threshold in metal components for space application.« less
An analysis of the role of drift waves in equatorial spread F
NASA Technical Reports Server (NTRS)
Labelle, J.; Kelley, M. C.; Seyler, C. E.
1986-01-01
An account is given of results of rocket measurements of the wave number spectrum of equatorial spread F irregularities, with emphasis on wavelengths less than 100 m. The measurements were made from two sounding rockets launched from Peru as part of Project Condor. The Condor density fluctuation spectra display a break at a wavelength near 100 m, identical to that found in the PLUMEX experiment (Kelley et al., 1982). The Condor data also confirm a subrange in which the density and the wave potential obey the Boltzmann relation - a strong indication of the presence of low-frequency electrostatic waves with finite wavelength parallel to the magnetic field, perhaps low-frequency drift waves as proposed by Kelley et al. The Condor data are also consistent with the previous conjecture that drift waves only exist above 300 km altitude. To investigate the difference in spectra observed over two altitude ranges, the data must be fitted to a form for the power spectrum taken from Keskinen and Ossakow (1981). The fitted spectrum, along with empirically determined growth and dissipation rates, is used to calculate the energy pumped into the spectrum at long wavelengths as well as the energy dissipated at shorter wavelengths. It is found that the energy is balanced by classical collisional effects in the low-altitude case, but energy balance in the high-altitude case requires an enhanced dissipation of about 500 times that due to classical diffusion. The model is consistent with, but does not uniquely imply, an inverse cascade of drift wave turbulence in equatorial spread F.
A Study into the Effects of Light on Children of Elementary School-Age--A Case of Daylight Robbery.
ERIC Educational Resources Information Center
Hathaway, Warren E.; And Others
This report describes a 2-year study of the effects of various lighting systems on elementary school students' dental health, attendance, growth and development, vision, and academic achievement. The four light types used were: (1) full spectrum fluorescent; (2) full spectrum fluorescent with ultraviolet light supplements; (3) cool white…
Properties of Martian Hematite at Meridiani Planum by Simultaneous Fitting of Mars Mossbauer Spectra
NASA Technical Reports Server (NTRS)
Agresti, D. G.; Fleischer, I.; Klingelhoefer, G.; Morris, R. V.
2010-01-01
Mossbauer spectrometers [1] on the two Mars Exploration Rovers (MERs) have been making measurements of surface rocks and soils since January 2004, recording spectra in 10-K-wide temperature bins ranging from 180 K to 290 K. Initial analyses focused on modeling individual spectra directly as acquired or, to increase statistical quality, as sums of single-rock or soil spectra over temperature or as sums over similar rock or soil type [2, 3]. Recently, we have begun to apply simultaneous fitting procedures [4] to Mars Mossbauer data [5-7]. During simultaneous fitting (simfitting), many spectra are modeled similarly and fit together to a single convergence criterion. A satisfactory simfit with parameter values consistent among all spectra is more likely than many single-spectrum fits of the same data because fitting parameters are shared among multiple spectra in the simfit. Consequently, the number of variable parameters, as well as the correlations among them, is greatly reduced. Here we focus on applications of simfitting to interpret the hematite signature in Moessbauer spectra acquired at Meridiani Planum, results of which were reported in [7]. The Spectra. We simfit two sets of spectra with large hematite content [7]: 1) 60 rock outcrop spectra from Eagle Crater; and 2) 46 spectra of spherule-rich lag deposits (Table 1). Spectra of 10 different targets acquired at several distinct temperatures are included in each simfit set. In the table, each Sol (martian day) represents a different target, NS is the number of spectra for a given sol, and NT is the number of spectra for a given temperature. The spectra are indexed to facilitate definition of parameter relations and constraints. An example spectrum is shown in Figure 1, together with a typical fitting model. Results. We have shown that simultaneous fitting is effective in analyzing a large set of related MER Mossbauer spectra. By using appropriate constraints, we derive target-specific quantities and the temperature dependence of certain parameters. By examining different fitting models, we demonstrate an improved fit for martian hematite modeled with two sextets rather than as a single sextet, and show that outcrop and spherule hematite are distinct. For outcrop, the weaker sextet indicates a Morin transition typical of well-crystallized and chemically pure hematite, while most of the outcrop hematite remains in a weakly ferromagnetic state at all temperatures. For spherule spectra, both sextets are consistent with weakly ferromagnetic hematite with no Morin transition. For both hematites, there is evidence for a range of particle sizes.
Advances in Mössbauer data analysis
NASA Astrophysics Data System (ADS)
de Souza, Paulo A.
1998-08-01
The whole Mössbauer community generates a huge amount of data in several fields of human knowledge since the first publication of Rudolf Mössbauer. Interlaboratory measurements of the same substance may result in minor differences in the Mössbauer Parameters (MP) of isomer shift, quadrupole splitting and internal magnetic field. Therefore, a conventional data bank of published MP will be of limited help in identification of substances. Data bank search for exact information became incapable to differentiate the values of Mössbauer parameters within the experimental errors (e.g., IS = 0.22 mm/s from IS = 0.23 mm/s), but physically both values may be considered the same. An artificial neural network (ANN) is able to identify a substance and its crystalline structure from measured MP, and its slight variations do not represent an obstacle for the ANN identification. A barrier to the popularization of Mössbauer spectroscopy as an analytical technique is the absence of a full automated equipment, since the analysis of a Mössbauer spectrum normally is time-consuming and requires a specialist. In this work, the fitting process of a Mössbauer spectrum was completely automated through the use of genetic algorithms and fuzzy logic. Both software and hardware systems were implemented turning out to be a fully automated Mössbauer data analysis system. The developed system will be presented.
NASA Technical Reports Server (NTRS)
Nowak, Michael A.; Wilms, Joern; Vaughan, Brian A.; Dove, James B.; Begelman, Mitchell C.
1999-01-01
We have recently shown that a 'sphere + disk' geometry Compton corona model provides a good description of Rossi X-ray Timing Explorer (RXTE) observations of the hard/low state of Cygnus X-1. Separately, we have analyzed the temporal data provided by RXTE. In this paper we consider the implications of this timing analysis for our best-fit 'sphere + disk' Comptonization models. We focus our attention on the observed Fourier frequency-dependent time delays between hard and soft photons. We consider whether the observed time delays are: created in the disk but are merely reprocessed by the corona; created by differences between the hard and soft photon diffusion times in coronae with extremely large radii; or are due to 'propagation' of disturbances through the corona. We find that the time delays are most likely created directly within the corona; however, it is currently uncertain which specific model is the most likely explanation. Models that posit a large coronal radius [or equivalently, a large Advection Dominated Accretion Flow (ADAF) region] do not fully address all the details of the observed spectrum. The Compton corona models that do address the full spectrum do not contain dynamical information. We show, however, that simple phenomenological propagation models for the observed time delays for these latter models imply extremely slow characteristic propagation speeds within the coronal region.
Wu, Jie; Liu, Baibai; Ren, Zhenxing; Ni, Mengying; Li, Can; Gong, Yinyan; Qin, Wei; Huang, Yongli; Sun, Chang Q; Liu, Xinjuan
2018-05-01
To make full use of the solar energy, it remains a great challenge for semiconductor photocatalysts to harvest the full solar light spectrum from ultraviolet (UV) to visible even the near infrared (NIR) wavelength. Here we show firstly the CuS/RGO (reduced graphene oxide) hybrid photocatalyst synthesized via a microwave assisted method with full solar light (UV-Vis-NIR) active for efficient Cr(VI) reduction. The CuS/RGO displays high absorption and catalytic activity in the UV, visible and even the NIR light regions. As co-catalyst, RGO can separate and inhibit the recombination of charge carriers, consequently improving the catalytic activity. Only 1wt% RGO emersions can reduce 90% of Cr(VI) under the radiation of light over the full spectrum. Findings may provide a new strategy and substance to expand the utilization range of solar light from UV to visible even the NIR energy. Copyright © 2017. Published by Elsevier Inc.
Eisenstein, E. M.; Eisenstein, D. L.; Sarma, J. S. M.
2016-01-01
ABSTRACT There are probably few terms in evolutionary studies regarding neuroscience issues that are used more frequently than ‘behavior', ‘learning', ‘memory', and ‘mind'. Yet there are probably as many different meanings of these terms as there are users of them. Further, investigators in such studies, while recognizing the full phylogenetic spectrum of life and the evolution of these phenomena, rarely go beyond mammals and other vertebrates in their investigations; invertebrates are sometimes included. What is rarely taken into consideration, though, is that to fully understand the evolution and significance for survival of these phenomena across phylogeny, it is essential that they be measured and compared in the same units of measurement across the full phylogenetic spectrum from aneural bacteria and protozoa to humans. This paper explores how these terms are generally used as well as how they might be operationally defined and measured to facilitate uniform examination and comparisons across the full phylogenetic spectrum of life. This paper has 2 goals: (1) to provide models for measuring the evolution of ‘behavior' and its changes across the full phylogenetic spectrum, and (2) to explain why ‘mind phenomena' cannot be measured scientifically at the present time. PMID:27489578
NASA Astrophysics Data System (ADS)
Baines, Kevin; Sromovsky, Lawrence A.; Fry, Patrick M.; Carlson, Robert W.; Momary, Thomas W.
2016-10-01
We report results incorporating the red-tinted photochemically-generated aerosols of Carlson et al (2016, Icarus 274, 106-115) in spectral models of Jupiter's Great Red Spot (GRS). Spectral models of the 0.35-1.0-micron spectrum show good agreement with Cassini/VIMS near-center-meridian and near-limb GRS spectra for model morphologies incorporating an optically-thin layer of Carlson (2016) aerosols at high altitudes, either at the top of the tropospheric GRS cloud, or in a distinct stratospheric haze layer. Specifically, a two-layer "crème brûlée" structure of the Mie-scattering Carlson et al (2016) chromophore attached to the top of a conservatively scattering (hereafter, "white") optically-thick cloud fits the spectra well. Currently, best agreement (reduced χ2 of 0.89 for the central-meridian spectrum) is found for a 0.195-0.217-bar, 0.19 ± 0.02 opacity layer of chromophores with mean particle radius of 0.14 ± 0.01 micron. As well, a structure with a detached stratospheric chromophore layer ~0.25 bar above a white tropospheric GRS cloud provides a good spectral match (reduced χ2 of 1.16). Alternatively, a cloud morphology with the chromophore coating white particles in a single optically- and physically-thick cloud (the "coated-shell model", initially explored by Carlson et al 2016) was found to give significantly inferior fits (best reduced χ2 of 2.9). Overall, we find that models accurately fit the GRS spectrum if (1) most of the optical depth of the chromophore is in a layer near the top of the main cloud or in a distinct separated layer above it, but is not uniformly distributed within the main cloud, (2) the chromophore consists of relatively small, 0.1-0.2-micron-radius particles, and (3) the chromophore layer optical depth is small, ~ 0.1-0.2. Thus, our analysis supports the exogenic origin of the red chromophore consistent with the Carlson et al (2016) photolytic production mechanism rather than an endogenic origin, such as upwelling of material from the depths of Jupiter.
FERMI LARGE AREA TELESCOPE VIEW OF THE CORE OF THE RADIO GALAXY CENTAURUS A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, A. A.; Ackermann, M.; Ajello, M.
2010-08-20
We present {gamma}-ray observations with the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope of the nearby radio galaxy Centaurus A (Cen A). The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the {gamma}-ray core of Cen A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum ({Gamma} = 2.67 {+-}more » 0.10{sub stat} {+-} 0.08{sub sys} where the photon flux is {Phi} {proportional_to} E {sup -{Gamma}}). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). We fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004 to 2008. The fit requires a low Doppler factor, in contrast to BL Lac objects which generally require larger values to fit their broadband SEDs. This indicates that the {gamma}-ray emission originates from a slower region than that from BL Lac objects, consistent with previous modeling results from Cen A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow. The fit parameters are also consistent with Cen A being able to accelerate ultra-high energy cosmic-rays, as hinted at by results from the Auger observatory.« less
Fermi Large Area Telescope View of the Core of the Radio Galaxy Centaurus A
NASA Astrophysics Data System (ADS)
Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Colafrancesco, S.; Cominsky, L. R.; Conrad, J.; Costamante, L.; Davis, D. S.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Falcone, A.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Georganopoulos, M.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grandi, P.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hase, Hayo; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Itoh, R.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kadler, M.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kishishita, T.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Müller, C.; Nakamori, T.; Naumann-Godo, M.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Ojha, R.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Pagani, C.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Plötz, C.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ripken, J.; Ritz, S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Scargle, J. D.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Starck, J.-L.; Stawarz, L.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ylinen, T.; Ziegler, M.
2010-08-01
We present γ-ray observations with the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope of the nearby radio galaxy Centaurus A (Cen A). The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the γ-ray core of Cen A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum (Γ = 2.67 ± 0.10stat ± 0.08sys where the photon flux is Φ vprop E -Γ). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). We fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004 to 2008. The fit requires a low Doppler factor, in contrast to BL Lac objects which generally require larger values to fit their broadband SEDs. This indicates that the γ-ray emission originates from a slower region than that from BL Lac objects, consistent with previous modeling results from Cen A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow. The fit parameters are also consistent with Cen A being able to accelerate ultra-high energy cosmic-rays, as hinted at by results from the Auger observatory.
FERMI Large Area Telescope View of the 1 Core of the Radio Galaxy Centaurus A
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2010-07-29
We present γ-ray observations with the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope of the nearby radio galaxy Centaurus A (Cen A). The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the γ-ray core of Cen A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum (Γ = 2.67 ±more » 0.10 stat ± 0.08 sys where the photon flux is Φ ∝ E –Γ). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). Here, we fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004 to 2008. The fit requires a low Doppler factor, in contrast to BL Lac objects which generally require larger values to fit their broadband SEDs. This indicates that the γ-ray emission originates from a slower region than that from BL Lac objects, consistent with previous modeling results from Cen A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow. The fit parameters are also consistent with Cen A being able to accelerate ultra-high energy cosmic-rays, as hinted at by results from the Auger observatory.« less
NASA Astrophysics Data System (ADS)
Silveira, Landulfo; Leite, Kátia Ramos M.; Srougi, Miguel; Silveira, Fabrício L.; Pacheco, Marcos Tadeu T.; Zângaro, Renato A.; Pasqualucci, Carlos A.
2013-03-01
It has been proposed a spectral model to evaluate the biochemical differences between prostate carcinoma and benign fragments using dispersive Raman spectroscopy. We have examined 51 prostate fragments from surgically removed PrCa; each fragment was snap-frozen and stored (-80°C) prior spectral analysis. Raman spectrum was measured using a Raman spectrometer (830 nm excitation) coupled to a fiber-optic probe. Integration time and laser power were set to 50 s and 300 mW, respectively. It has been collected triplicate spectra from each fragment (total 153 spectra). Some samples exhibited a strong fluorescence, which was removed by a 7th order polynomial fitting. It has been developed a spectral model based on the least-squares fitting of the spectra of pure biochemicals (actin, collagen, elastin, carotene, glycogen, phosphatidylcholine, hemoglobin, and water) with the spectra of tissues, where the fitting parameters are the relative contribution of the compounds to the tissue spectrum. The spectra (600-1800 cm-1 range) are dominated by bands of proteins; it has been found a small difference in the mean spectra of PrCa compared to the benign tissue, mainly in the 1000-1400 cm-1 region, indicating similar biochemical constitution. The spectral fitting model revealed that elastin and phosphatidylcholine were increased in PrCa, whereas blood and water were reduced in malignant lesions (p < 0.05). A discrimination of PrCa from benign tissue using Mahalanobis distance applied to the contribution of elastin, hemoglobin and phosphatidylcholine resulted in sensitivity of 72% and specificity of 70%.
Probing the dynamics of dark energy with divergence-free parametrizations: A global fit study
NASA Astrophysics Data System (ADS)
Li, Hong; Zhang, Xin
2011-09-01
The CPL parametrization is very important for investigating the property of dark energy with observational data. However, the CPL parametrization only respects the past evolution of dark energy but does not care about the future evolution of dark energy, since w ( z ) diverges in the distant future. In a recent paper [J.Z. Ma, X. Zhang, Phys. Lett. B 699 (2011) 233], a robust, novel parametrization for dark energy, w ( z ) = w + w ( l n ( 2 + z ) 1 + z - l n 2 ) , has been proposed, successfully avoiding the future divergence problem in the CPL parametrization. On the other hand, an oscillating parametrization (motivated by an oscillating quintom model) can also avoid the future divergence problem. In this Letter, we use the two divergence-free parametrizations to probe the dynamics of dark energy in the whole evolutionary history. In light of the data from 7-year WMAP temperature and polarization power spectra, matter power spectrum of SDSS DR7, and SN Ia Union2 sample, we perform a full Markov Chain Monte Carlo exploration for the two dynamical dark energy models. We find that the best-fit dark energy model is a quintom model with the EOS across -1 during the evolution. However, though the quintom model is more favored, we find that the cosmological constant still cannot be excluded.
Li, Su-Yi; Ji, Yan-Ju; Liu, Wei-Yu; Wang, Zhi-Hong
2013-04-01
In the present study, an innovative method is proposed, employing both wavelet transform and neural network, to analyze the near-infrared spectrum data in oil shale survey. The method entails using db8 wavelet at 3 levels decomposition to process raw data, using the transformed data as the input matrix, and creating the model through neural network. To verify the validity of the method, this study analyzes 30 synthesized oil shale samples, in which 20 samples are randomly selected for network training, the other 10 for model prediction, and uses the full spectrum and the wavelet transformed spectrum to carry out 10 network models, respectively. Results show that the mean speed of the full spectrum neural network modeling is 570.33 seconds, and the predicted residual sum of squares (PRESS) and correlation coefficient of prediction are 0.006 012 and 0.843 75, respectively. In contrast, the mean speed of the wavelet network modeling method is 3.15 seconds, and the mean PRESS and correlation coefficient of prediction are 0.002 048 and 0.953 19, respectively. These results demonstrate that the wavelet neural network modeling method is significantly superior to the full spectrum neural network modeling method. This study not only provides a new method for more efficient and accurate detection of the oil content of oil shale, but also indicates the potential for applying wavelet transform and neutral network in broad near-infrared spectrum analysis.
NASA Astrophysics Data System (ADS)
Orton, Glenn S.; Fletcher, Leigh N.; Moses, Julianne I.; Mainzer, Amy K.; Hines, Dean; Hammel, Heidi B.; Martin-Torres, F. Javier; Burgdorf, Martin; Merlet, Cecile; Line, Michael R.
2014-11-01
On 2007 December 16-17, spectra were acquired of the disk of Uranus by the Spitzer Infrared Spectrometer (IRS), ten days after the planet's equinox, when its equator was close to the sub-Earth point. This spectrum provides the highest-resolution broad-band spectrum ever obtained for Uranus from space, allowing a determination of the disk-averaged temperature and molecule composition to a greater degree of accuracy than ever before. The temperature profiles derived from the Voyager radio occultation experiment by Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92, 14987-15001) and revisions suggested by Sromovsky et al. (Sromovsky, L.A., Fry, P.A., Kim, J.H. [2011]. Icarus 215, 292-312) that match these data best are those that assume a high abundance of methane in the deep atmosphere. However, none of these model profiles provides a satisfactory fit over the full spectral range sampled. This result could be the result of spatial differences between global and low-latitudinal regions, changes in time, missing continuum opacity sources such as stratospheric hazes or unknown tropospheric constituents, or undiagnosed systematic problems with either the Voyager radio-occultation or the Spitzer IRS data sets. The spectrum is compatible with the stratospheric temperatures derived from the Voyager ultraviolet occultations measurements by Herbert et al. (Herbert, F. et al. [1987]. J. Geophys. Res. 92, 15093-15109), but it is incompatible with the hot stratospheric temperatures derived from the same data by Stevens et al. (Stevens, M.H., Strobel, D.F., Herbert, F.H. [1993]. Icarus 101, 45-63). Thermospheric temperatures determined from the analysis of the observed H2 quadrupole emission features are colder than those derived by Herbert et al. at pressures less than ∼1 μbar. Extrapolation of the nominal model spectrum to far-infrared through millimeter wavelengths shows that the spectrum arising solely from H2 collision-induced absorption is too warm to reproduce observations between wavelengths of 0.8 and 3.3 mm. Adding an additional absorber such as H2S provides a reasonable match to the spectrum, although a unique identification of the responsible absorber is not yet possible with available data. An immediate practical use for the spectrum resulting from this model is to establish a high-precision continuum flux model for use as an absolute radiometric standard for future astronomical observations.
Stratta, Paolo; Sanità, Patrizia; Bonanni, Roberto L; de Cataldo, Stefano; Angelucci, Adriano; Rossi, Rodolfo; Origlia, Nicola; Domenici, Luciano; Carmassi, Claudia; Piccinni, Armando; Dell'Osso, Liliana; Rossi, Alessandro
2016-10-30
Clinical correlates of plasma Brain-Derived Neurotrophic Factor (BDNF) have been investigated in a clinical population with Post Traumatic Stress Disorder (PTSD) symptoms and healthy control subjects who survived to the L'Aquila 2009 earthquake. Twenty-six outpatients and 14 control subjects were recruited. Assessments included: Structured Clinical Interview for DSM-IV Axis-I disorders Patient Version, Trauma and Loss Spectrum-Self Report (TALS-SR) for post-traumatic spectrum symptoms. Thirteen patients were diagnosed as Full PTSD and 13 as Partial PTSD. The subjects with full-blown PTSD showed lower BDNF level than subjects with partial PTSD and controls. Different relationship patterns of BDNF with post-traumatic stress spectrum symptoms have been reported in the three samples. Our findings add more insight on the mechanisms regulating BDNF levels in response to stress and further proofs of the utility of the distinction of PTSD into full and partial categories. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zirconium Evaluations for ENDF/B-VII.2 for the Fast Region
NASA Astrophysics Data System (ADS)
Brown, D. A.; Arcilla, R.; Capote, R.; Mughabghab, S. F.; Herman, M. W.; Trkov, A.; Kim, H. I.
2014-04-01
We have performed a new combined set of evaluations for 90-96Zr, including new resolved resonance parameterizations from Said Mughabghab for 90,91,92,94,96Zr and fast region calculations made with EMPIRE-3.1. Because 90Zr is a magic nucleus, stable Zr isotopes are nearly spherical. A new soft-rotor optical model potential is used allowing calculations of the inelastic scattering on low-lying coupled levels of vibrational nature. A soft rotor model describes dynamical deformations of the nucleus around the spherical shape and is implemented in EMPIRE/OPTMAN code. The same potential is used with rigid rotor couplings for odd-A nuclei. This then led to improved elastic angular distributions, helping to resolve improper leakage in the older ENDF/B-VII.1β evaluation in KAPL proprietary, ZPR and TRIGA benchmarks. Another consequence of 90Zr being a magic nucleus is that the level densities in both 90Zr and 91Zr are unusually low causing the (n,el) and (n,tot) cross sections to exhibit large fluctuations above the resolved resonance region. To accommodate these fluctuations, we performed a simultaneous constrained generalized least-square fit to (n,tot) for all isotopic and elemental Zr data in EXFOR, using EMPIRE's TOTRED scaling factor. TOTRED rescales total cross sections so that the optical model calculations are unaltered by the rescaling and the correct competition between channels is maintained. In this fit, all (n,tot) data in EXFOR was used for Ein>100 keV, provided the target isotopic makeup could be correctly understood, including spectrum averaged data and data with broad energy resolution. As a result of our fitting procedure, we will have full cross material and cross reaction covariance for all Zr isotopes and reactions.
Discovery of a Probable BH-HMXB and Cyg X-1 Progenitor System
NASA Astrophysics Data System (ADS)
Grindlay, Jonathan E.; Gomez, Sebastian; Hong, Jaesub; Zhang, Shuo; Hailey, Charles; Mori, Kaya; Tomsick, John
2017-08-01
We report the discovery of a probable black hole High Mass X-ray Binary (BH-HMXB), a 5.3d single line spectroscopic binary (SB1) HD96670 in the Carina OB association. We initiated a search for such systems for which the O star primary was still on the main sequence, in stark contrast to Cyg X-1 with its evolved supergiant O star companion, since such systems must be ~10-30 times more numerous given their longer lifetimes. HD96670 had been found to be a SB1 with binary period ~5.5d and mass function ~0.125Msun. With a ~150ksec NuSTAR observation of HD96670 over 3 segments, we found a significant detection of a variable source best fit with a PL spectrum with photon index between 2.4 and 2.6 for the brightest vs. faintest observations. Weak 6.4 - 6.7 keV emission was also detected. We conducted extensive optical photometry and spectroscopy to better measure the binary system parameters and have fit the the combined data with an ellipsoidal modulation code (Wilson and Devinney) to find that the binary companion is best fit by a ~4.5 Msun BH accreting from the weak wind primary O star with luminosity Lx ~3 x 10^32 erg/s, which cannot be due to a colliding wind or intrinsic Ostar emission. . A B4V or B5V main sequence star companion can be ruled out by the very low accretion luminosity and lack of colliding wind expected. Full details, including the direct measurement of a triple companion B1V star previously reported (Sanna et al 2014) for HD96670, will appear in two forthcoming papers to be summarized in this talk.
A sudden increase in the X-ray flux from Centaurus A
NASA Technical Reports Server (NTRS)
Winkler, P. F., Jr.; White, A. E.
1975-01-01
Observations from OSO-7 show that the X-ray flux from Cen A increased by a factor of at least 1.6 over a six-day period in April 1973. Long-term observations indicate greater increases and a hardening of the spectrum. The maximum flux exceeded that measured by Tucker et al. and Lampton et al. in 1970 and 1971 by factors of 6.7 in the 2- to 10-keV range and 14 in the 10- to 50-keV range. Both rapid variability and a harder spectrum are consistent with a model proposed by Grindlay (1975). At maximum brightness, the best-fit spectrum leads to a luminosity of 1.1 x 10 to the 43rd power ergs/s in the 2- to 10-kev range.
Constraining the CO intensity mapping power spectrum at intermediate redshifts
NASA Astrophysics Data System (ADS)
Padmanabhan, Hamsa
2018-04-01
We compile available constraints on the carbon monoxide (CO) 1-0 luminosity functions and abundances at redshifts 0-3. This is used to develop a data driven halo model for the evolution of the CO galaxy abundances and clustering across intermediate redshifts. It is found that the recent constraints from the CO Power Spectrum Survey (z ˜ 3; Keating et al. 2016), when combined with existing observations of local galaxies (z ˜ 0; Keres, Yun & Young 2003), lead to predictions that are consistent with the results of smaller surveys at intermediate redshifts (z ˜ 1-2). We provide convenient fitting forms for the evolution of the CO luminosity-halo mass relation, and estimates of the mean and uncertainties in the CO power spectrum in the context of future intensity mapping experiments.
Separability of spatiotemporal spectra of image sequences. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Eckert, Michael P.; Buchsbaum, Gershon; Watson, Andrew B.
1992-01-01
The spatiotemporal power spectrum was calculated of 14 image sequences in order to determine the degree to which the spectra are separable in space and time, and to assess the validity of the commonly used exponential correlation model found in the literature. The spectrum was expanded by a Singular Value Decomposition into a sum of separable terms and an index was defined of spatiotemporal separability as the fraction of the signal energy that can be represented by the first (largest) separable term. All spectra were found to be highly separable with an index of separability above 0.98. The power spectra of the sequences were well fit by a separable model. The power spectrum model corresponds to a product of exponential autocorrelation functions separable in space and time.
Spectroscopic measurements of hydrogen ion temperature during divertor recombination
NASA Astrophysics Data System (ADS)
Stotler, D. P.; Skinner, C. H.; Karney, C. F. F.
1999-01-01
We explore the possibility of using the neutral Hα spectral line profile to measure the ion temperature, Ti, in a recombining plasma. Since the Hα emissions due to recombination are larger than those due to other mechanisms, interference from nonrecombining regions contributing to the chord integrated data is insignificant. A Doppler and Stark broadened Hα spectrum is simulated by the DEGAS 2 neutral transport code using assumed plasma conditions. The application of a simple fitting procedure to this spectrum yields an electron density, ne, and Ti consistent with the assumed plasma parameters if the spectrum is dominated by recombination from a region of modest ne variation. General measurements of the ion temperature by Hα spectroscopy appear feasible within the context of a model for the entire divertor plasma.
Particle acceleration model for the broad-band baseline spectrum of the Crab nebula
NASA Astrophysics Data System (ADS)
Fraschetti, F.; Pohl, M.
2017-11-01
We develop a simple one-zone model of the steady-state Crab nebula spectrum encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for GeV-TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting differential energy spectrum of photons. We find an impressive agreement with the observed spectrum of synchrotron emission, and the synchrotron self-Compton component reproduces the previously unexplained broad 200-GeV peak that matches the Fermi/Large Area Telescope (LAT) data beyond 1 GeV with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) data. We determine the parameters of the single log-parabola electron injection distribution, in contrast with multiple broken power-law electron spectra proposed in the literature. The resulting photon differential spectrum provides a natural interpretation of the deviation from power law customarily fitted with empirical multiple broken power laws. Our model can be applied to the radio-to-multi-TeV spectrum of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants, as well as to interplanetary shocks.
NASA Astrophysics Data System (ADS)
Anusha, L. S.; Nagendra, K. N.; Stenflo, J. O.; Bianda, M.; Sampoorna, M.; Frisch, H.; Holzreuter, R.; Ramelli, R.
2010-08-01
To model the second solar spectrum (the linearly polarized spectrum of the Sun that is due to coherent scattering processes), one needs to solve the polarized radiative transfer (RT) equation. For strong resonance lines, partial frequency redistribution (PRD) effects must be accounted for, which make the problem computationally demanding. The "last scattering approximation" (LSA) is a concept that has been introduced to make this highly complex problem more tractable. An earlier application of a simple LSA version could successfully model the wings of the strong Ca I 4227 Å resonance line in Stokes Q/I (fractional linear polarization), but completely failed to reproduce the observed Q/I peak in the line core. Since the magnetic field signatures from the Hanle effect only occur in the line core, we need to generalize the existing LSA approach if it is to be useful for the diagnostics of chromospheric and turbulent magnetic fields. In this paper, we explore three different approximation levels for LSA and compare each of them with the benchmark represented by the solution of the full polarized RT, including PRD effects. The simplest approximation level is LSA-1, which uses the observed center-to-limb variation of the intensity profile to obtain the anisotropy of the radiation field at the surface, without solving any transfer equation. In contrast, the next two approximation levels use the solution of the unpolarized transfer equation to derive the anisotropy of the incident radiation field and use it as an input. In the case of LSA-2, the anisotropy at level τλ = μ, the atmospheric level from which an observed photon is most likely to originate, is used. LSA-3, on the other hand, makes use of the full depth dependence of the radiation anisotropy. The Q/I formula for LSA-3 is obtained by keeping the first term in a series expansion of the Q-source function in powers of the mean number of scattering events. Computationally, LSA-1 is 21 times faster than LSA-2, which is 5 times faster than the more general LSA-3, which itself is 8 times faster than the polarized RT approach. A comparison of the calculated Q/I spectra with the RT benchmark shows excellent agreement for LSA-3, including good modeling of the Q/I core region with its PRD effects. In contrast, both LSA-1 and LSA-2 fail to model the core region. The RT and LSA-3 approaches are then applied to model the recently observed Q/I profile of the Ca I 4227 Å line in quiet regions of the Sun. Apart from a global scale factor both give a very good fit to the Q/I spectra for all the wavelengths, including the core peak and blend line depolarizations. We conclude that LSA-3 is an excellent substitute for the full polarized RT and can be used to interpret the second solar spectrum, including the Hanle effect with PRD. It also allows the techniques developed for unpolarized three-dimensional RT to be applied to the modeling of the second solar spectrum.
Professionalization and Exclusion in ESL Teaching
ERIC Educational Resources Information Center
Breshears, Sherry
2004-01-01
As ESL/EFL teachers, how do we fit into the spectrum between unskilled workers and highly trained professionals? This article examines three features of the traditional professions and applies them to the ESL/EFL context. It considers problems with the lack of mandatory standardized certification, critically assesses attachment to the university,…
VizieR Online Data Catalog: 15NH2 amidogen radical rotational spectrum (M
NASA Astrophysics Data System (ADS)
Margules, L.; Martin-Drumel, M. A.; Pirali, O.; Bailleux, S.; Wlodarczak, G.; Roy, P.; Roueff, E.; Gerin, M.
2016-04-01
Measured frequencies and residuals from the global fit of the Infrared, and submillimeter-wave data for 15NH2 and files used for SPFIT. Detailled explanations on SPFIT could be found at https://www.astro.uni-koeln.de/cdms/pickett (4 data files).
Rethinking Gender and Sexuality in Education
ERIC Educational Resources Information Center
Beigi Ghajarieh, Amir Biglar; Mozaheb, Mohammad Amin
2012-01-01
In this short article, the authors argues that gender and sexuality, considered different concepts in gender studies, are so intertwined that differentiating between the two may cause the exclusion of many gender identities in education regardless of being fit into the male or female spectrum. LGBT(Lesbian, Gay, Bisexual and Transgender) people…
Teaching Wellness Concepts Using Mosston's Spectrum of Teaching Styles
ERIC Educational Resources Information Center
Wilkinson, Carol; Pennington, Todd; Zanandrea, Maria
2011-01-01
Teaching wellness principles in secondary physical education classes has become an important aspect of physical education as teachers work to help their students develop lifelong healthy lifestyle habits. Many schools now have a required wellness/fitness component as part of their state core requirements. Having developed their teaching skills by…
Galactic cosmic ray antiprotons and supersymmetry
NASA Technical Reports Server (NTRS)
Stecker, F. W.; Walsh, T.; Rudaz, S.
1985-01-01
The physics of the annihilation of photinos is considered as a function of mass in detail, in order to obtain the energy spectra of the cosmic ray antiprotons produced under the assumption that photinos make up the missing mass in the galactic halo. The modulated spectrum is at 1 a.w. with the cosmic ray antiprotons data. A very intriguing fit is obtained to all of the present antiprotons up to 13.4 GeV data for similar to 15 GeV. A cutoff is predicted in the antiprotons spectrum at E = photino mass above which only a small flux from secondary production should remain.
2016-01-01
ABSTRACT: Despite the progress made in understanding the biology of autism spectrum disorder (ASD), effective biological interventions for the core symptoms remain elusive. Because of the etiological heterogeneity of ASD, identification of a “one-size-fits-all” treatment approach will likely continue to be challenging. A meeting was convened at the University of Missouri and the Thompson Center to discuss strategies for stratifying patients with ASD for the purpose of moving toward precision medicine. The “white paper” presented here articulates the challenges involved and provides suggestions for future solutions. PMID:27676697
Time-dependent Models for Blazar Emission with the Second-order Fermi Acceleration
NASA Astrophysics Data System (ADS)
Asano, Katsuaki; Takahara, Fumio; Kusunose, Masaaki; Toma, Kenji; Kakuwa, Jun
2014-01-01
The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations. The hard electron spectrum predicted by the Fermi-II process agrees with the hard photon spectrum of 1ES 1101-232. For other blazars that show softer spectra, the Fermi-II model requires radial evolution of the electron injection rate and/or diffusion coefficient in the outflow. Such evolutions can yield a curved electron spectrum, which can reproduce the synchrotron spectrum of Mrk 421 from the radio to the X-ray regime. The photon spectrum in the GeV energy range of Mrk 421 is hard to fit with a synchrotron self-Compton model. However, if we introduce an external radio photon field with a luminosity of 4.9 × 1038 erg s-1, GeV photons are successfully produced via inverse Compton scattering. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.
Intensity of primary cosmic-ray electrons of energy exceeding 8 GeV
NASA Technical Reports Server (NTRS)
Freier, P.; Gilman, C.; Waddington, C. J.
1977-01-01
Results are reported for measurement of the intensity and energy spectrum of primary cosmic-ray electrons with a spark-chamber-counter-emulsion detector flown at a mean altitude of 3 g/sq cm residual atmosphere. A least-squares fit to the flight data yields an electron spectrum from 8 to 80 GeV of approximately 93E to the -2.91 power electrons/sq m/sec per sr/GeV. The results are compared with those of previous experiments as well as with the spectrum obtained for galactic nonthermal radiation. It is concluded that a 'clumpy' magnetic field proportional to the square root of matter density is consistent with measurements of high-energy electrons and synchrotron radiation toward the center of the Galaxy, that a gradual steepening of the electron spectrum relative to the proton spectrum is consistent with an electron lifetime of 1 million years, and that the density of cosmic-ray nucleons and electrons should be essentially uniform throughout the Galaxy if the nucleons have the same lifetime as the electrons and if they traversed 4 to 5 g/sq cm in that lifetime.
The solar gamma ray spectrum between 4 and 8 MeV
NASA Technical Reports Server (NTRS)
Ramaty, R.; Kozlovsky, B.; Suri, A. N.
1976-01-01
The properties of nuclear gamma ray emission in the 4 to 8 MeV range were evaluated. This emission consists of broad and narrow lines resulting from nuclear reactions of energetic H, He, C and O nuclei with ambient matter. Calculations were compared with observations of the 1972, August 4 flare and show that: (1) essentially all the observed radiation in the 4 to 8 MeV region is to the superposition of broad and narrow lines of nuclear origin with almost no contribution from other mechanisms; (2) the accelerated particles in the energy region from about 10 to 100 MeV/amu have a relatively flat Energy spectrum; (3) the calculated gamma ray spectrum, obtained from an isotropic distribution of accelerated particles, fits the observed spectrum better than the spectrum derived from an anisotropic distribution for which the particles' velocity vectors point towards the photosphere; and (4) it is possible to set a stringent upper limit on the ratio of relativistic electrons to protons in flares, consistent with the small, but finite, electron-to-proton ratio in galactic cosmic rays.
Pure rotation spectrum of CF4 in the v3 = 1 state using THz synchrotron radiation
NASA Astrophysics Data System (ADS)
Boudon, V.; Carlos, M.; Richard, C.; Pirali, O.
2018-06-01
Spherical-top tetrahedral species like CH4, SiH4, CF4, …possess no permanent dipole moment. Therefore, probing their pure rotation spectrum is very challenging since only a very weak dipole moment can be induced by centrifugal distortion and/or rovibrational interaction. If some Q branch lines have been recorded thanks to microwave techniques, R branch lines in the THz region have been poorly explored until recently. In previous studies, we have reported the pure rotation THz spectrum of cold and hot band lines of methane recorded at the SOLEIL Synchrotron facility. Here, we present the first recorded THz spectrum of the R branch of CF4, a powerful greenhouse gas, in its v3 = 1 state. This Fourier transform spectrum covers the R (20) to R (37) line clusters, in the 20-37 cm-1 spectral range. It was recorded thanks to a 150 m multiple path cell at room temperature. We could estimate the vibration-induced dipole moment value and also include the recorded line positions in a global fit of many CF4 transitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Half-mask facepieces, full facepieces, hoods, helmets, and mouthpieces; fit; minimum requirements. 84.1135 Section 84.1135 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Half-mask facepieces, full facepieces, hoods, helmets, and mouthpieces; fit; minimum requirements. 84.1135 Section 84.1135 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 1 2013-10-01 2013-10-01 false Half-mask facepieces, full facepieces, hoods, helmets, and mouthpieces; fit; minimum requirements. 84.1135 Section 84.1135 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 1 2014-10-01 2014-10-01 false Half-mask facepieces, full facepieces, hoods, helmets, and mouthpieces; fit; minimum requirements. 84.1135 Section 84.1135 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false Half-mask facepieces, full facepieces, hoods, helmets, and mouthpieces; fit; minimum requirements. 84.1135 Section 84.1135 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED...
Analysis of positron lifetime spectra in polymers
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Mall, Gerald H.; Sprinkle, Danny R.
1988-01-01
A new procedure for analyzing multicomponent positron lifetime spectra in polymers was developed. It requires initial estimates of the lifetimes and the intensities of various components, which are readily obtainable by a standard spectrum stripping process. These initial estimates, after convolution with the timing system resolution function, are then used as the inputs for a nonlinear least squares analysis to compute the estimates that conform to a global error minimization criterion. The convolution integral uses the full experimental resolution function, in contrast to the previous studies where analytical approximations of it were utilized. These concepts were incorporated into a generalized Computer Program for Analyzing Positron Lifetime Spectra (PAPLS) in polymers. Its validity was tested using several artificially generated data sets. These data sets were also analyzed using the widely used POSITRONFIT program. In almost all cases, the PAPLS program gives closer fit to the input values. The new procedure was applied to the analysis of several lifetime spectra measured in metal ion containing Epon-828 samples. The results are described.
Diffuse X-ray emission from the Dumbbell Nebula?
NASA Technical Reports Server (NTRS)
Chu, You-Hua; Kwitter, Karen B.; Kaler, James B.
1993-01-01
We have analyzed ROSAT Position Sensitive Proportional Counter pointed observations of the Dumbbell Nebula and find that the previously reported 'extended' X-ray emission is an instrumental electronic ghost image at the softest energy band. At slightly higher energy bands, the image of the Dumbbell is not very different from that of the white dwarf HZ43. We conclude that the X-ray emission of the Dumbbell Nebula comes from its central star. A blackbody model is fitted to the spectrum and the best-fit temperature of not greater than 136,000 +/- 10,000 K is in excellent agreement with the Zanstra temperatures.
On the Two Components of Turbulent Mixing Noise from Supersonic Jets
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Golebiowski, Michel; Seiner, J. M.
1996-01-01
It is argued that because of the lack of intrinsic length and time scales in the core part of the jet flow, the radiated noise spectrum of a high-speed jet should exhibit similarity. A careful analysis of all the axisymmetric supersonic jet noise spectra in the data-bank of the Jet Noise Laboratory of the NASA Langley Research Center has been carried out. Two similarity spectra, one for the noise from the large turbulence structures/instability waves of the jet flow, the other for the noise from the fine-scale turbulence, are identified. The two similarity spectra appear to be universal spectra for axisymmetric jets. They fit all the measured data including those from subsonic jets. Experimental evidence are presented showing that regardless of whether a jet is supersonic or subsonic the noise characteristics and generation mechanisms are the same. There is large turbulence structures/instability waves noise from subsonic jets. This noise component can be seen prominently inside the cone of silence of the fine-scale turbulence noise near the jet axis. For imperfectly expanded supersonic jets, a shock cell structure is formed inside the jet plume. Measured spectra are provided to demonstrate that the presence of a shock cell structure has little effect on the radiated turbulent mixing noise. The shape of the noise spectrum as well as the noise intensity remain practically the same as those of a fully expanded jet. However, for jets undergoing strong screeching, there is broadband noise amplification for both turbulent mixing noise components. It is discovered through a pilot study of the noise spectrum of rectangular and elliptic supersonic jets that the turbulent mixing noise of these jets is also made up of the same two noise components found in axisymmetric jets. The spectrum of each individual noise component also fits the corresponding similarity spectrum of axisymmetric jets.
NASA Astrophysics Data System (ADS)
Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid
2018-02-01
We study surface brightness fluctuations of the cosmic X-ray background (CXB) using Chandra data of XBOOTES. After masking out resolved sources we compute the power spectrum of fluctuations of the unresolved CXB for angular scales from {≈ } 2 arcsec to ≈3°. The non-trivial large-scale structure (LSS) signal dominates over the shot noise of unresolved point sources on angular scales above {˜ } 1 arcmin and is produced mainly by the intracluster medium (ICM) of unresolved clusters and groups of galaxies, as shown in our previous publication. The shot-noise-subtracted power spectrum of CXB fluctuations has a power-law shape with the slope of Γ = 0.96 ± 0.06. Their energy spectrum is well described by the redshifted emission spectrum of optically thin plasma with the best-fitting temperature of T ≈ 1.3 keV and the best-fitting redshift of z ≈ 0.40. These numbers are in good agreement with theoretical expectations based on the X-ray luminosity function and scaling relations of clusters. From these values we estimate the typical mass and luminosity of the objects responsible for CXB fluctuations, M500 ∼ 1013.6 M⊙ h-1 and L0.5-2.0 keV ∼ 1042.5 erg s-1. On the other hand, the flux-weighted mean temperature and redshift of resolved clusters are T ≈ 2.4 keV and z ≈ 0.23 confirming that fluctuations of unresolved CXB are caused by cooler (i.e. less massive) and more distant clusters, as expected. We show that the power spectrum shape is sensitive to the ICM structure all the way to the outskirts, out to ∼few × R500. We also searched for possible contribution of the warm-hot intergalactic medium (WHIM) to the observed CXB fluctuations. Our results underline the significant diagnostic potential of the CXB fluctuation analysis in studying the ICM structure in clusters.
Searching for oscillations in the primordial power spectrum. II. Constraints from Planck data
NASA Astrophysics Data System (ADS)
Meerburg, P. Daniel; Spergel, David N.; Wandelt, Benjamin D.
2014-03-01
In this second of two papers we apply our recently developed code to search for resonance features in the Planck CMB temperature data. We search both for log-spaced oscillations or linear-spaced oscillations and compare our findings with results of our WMAP9 analysis and the Planck team analysis [P. A. R. Ade et al. (Planck Collaboration>), arXiv:1303.5082]. While there are hints of log-spaced resonant features present in the WMAP9 data, the significance of these features weaken with more data. With more accurate small scale measurements, we also find that the best-fit frequency has shifted and the amplitude has been reduced. We confirm the presence of a several low frequency peaks, earlier identified by the Planck team, but with a better improvement of fit (Δχeff2˜12). We further investigate this improvement by allowing the lensing potential to vary as well, showing mild correlation between the amplitude of the oscillations and the lensing amplitude. We find that the improvement of the fit increases even more (Δχeff2˜14) for the low frequencies that modify the spectrum in a way that mimics the lensing effect. Since these features were not present in the WMAP data, they are primarily due to better measurements of Planck at small angular scales. For linear-spaced oscillations we find a maximum Δχeff2˜13 scanning two orders of magnitude in frequency space, and the biggest improvements are at extremely high frequencies. Again, we recover a best-fit frequency very close to the one found in WMAP9, which confirms that the fit improvement is driven by low ℓ. Further comparisons with WMAP9 show Planck contains many more features, both for linear- and log-spaced oscillations, but with a smaller improvement of fit. We discuss the improvement as a function of the number of modes and study the effect of the 217 GHz map, which appears to drive most of the improvement for log-spaced oscillations. Two points strongly suggest that the detected features are fitting a combination of the noise and the dip at ℓ˜1800 in the 217 GHz map: the fit improvement mostly comes from a small range of ℓ, and comparison with simulations shows that the fit improvement is consistent with a statistical fluctuation. We conclude that none of the detected features are statistically significant.
Identifying Broadband Rotational Spectra with Neural Networks
NASA Astrophysics Data System (ADS)
Zaleski, Daniel P.; Prozument, Kirill
2017-06-01
A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.
NASA Astrophysics Data System (ADS)
Lilichenko, Mark; Kelley, Anne Myers
2001-04-01
A novel approach is presented for finding the vibrational frequencies, Franck-Condon factors, and vibronic linewidths that best reproduce typical, poorly resolved electronic absorption (or fluorescence) spectra of molecules in condensed phases. While calculation of the theoretical spectrum from the molecular parameters is straightforward within the harmonic oscillator approximation for the vibrations, "inversion" of an experimental spectrum to deduce these parameters is not. Standard nonlinear least-squares fitting methods such as Levenberg-Marquardt are highly susceptible to becoming trapped in local minima in the error function unless very good initial guesses for the molecular parameters are made. Here we employ a genetic algorithm to force a broad search through parameter space and couple it with the Levenberg-Marquardt method to speed convergence to each local minimum. In addition, a neural network trained on a large set of synthetic spectra is used to provide an initial guess for the fitting parameters and to narrow the range searched by the genetic algorithm. The combined algorithm provides excellent fits to a variety of single-mode absorption spectra with experimentally negligible errors in the parameters. It converges more rapidly than the genetic algorithm alone and more reliably than the Levenberg-Marquardt method alone, and is robust in the presence of spectral noise. Extensions to multimode systems, and/or to include other spectroscopic data such as resonance Raman intensities, are straightforward.
NASA Astrophysics Data System (ADS)
Suleiman, R. M.; Chance, K.; Liu, X.; Kurosu, T. P.; Gonzalez Abad, G.
2014-12-01
We present and discuss a detailed description of the retrieval algorithms for the OMI BrO product. The BrO algorithms are based on direct fitting of radiances from 319.0-347.5 nm. Radiances are modeled from the solar irradiance, attenuated and adjusted by contributions from the target gas and interfering gases, rotational Raman scattering, undersampling, additive and multiplicative closure polynomials and a common mode spectrum. The version of the algorithm used for both BrO includes relevant changes with respect to the operational code, including the fit of the O2-O2 collisional complex, updates in the high resolution solar reference spectrum, updates in spectroscopy, an updated Air Mass Factor (AMF) calculation scheme, and the inclusion of scattering weights and vertical profiles in the level 2 products. Updates to the algorithms include accurate scattering weights and air mass factor calculations, scattering weights and profiles in outputs and available cross sections. We include retrieval parameter and window optimization to reduce the interference from O3, HCHO, O2-O2, SO2, improve fitting accuracy and uncertainty, reduce striping, and improve the long-term stability. We validate OMI BrO with ground-based measurements from Harestua and with chemical transport model simulations. We analyze the global distribution and seasonal variation of BrO and investigate BrO emissions from volcanoes and salt lakes.
XMM-Newton Archival Study of the ULX Population in Nearby Galaxies
NASA Technical Reports Server (NTRS)
Winter, Lisa M.; Mushotzky, Richard; Reynolds, Christopher S.
2005-01-01
We have conducted an archival XMM-Newton study of the bright X-ray point sources in 32 nearby galaxies. From our list of approximately 100 point sources, we attempt to determine if there is a low-state counterpart to the Ultraluminous X-ray (ULX) population. Indeed, 16 sources in our sample match the criteria we set for a low-state ULX, namely, L(sub X) greater than 10(exp 38 ergs per second) and a spectrum best fit with an absorbed power law. Further, we find evidence for 26 high-state ULXs which are best fit by a combined blackbody and a power law. As in Galactic black hole systems, the spectral indices, GAMMA, of the low-state objects, as well a s the luminosities, tend to be lower than those of the high-state objects. The observed range of blackbody temperatures is 0.1-1 keV with the most luminous systems tending toward the lowest temperatures. We also find a class of object whose properties (luminosity, blackbody temperature, and power law slopes) are very similar to those of galactic stellar mass black holes. In addition, we find a subset of these objects that can be best fit by a Comptonized spectrum similar to that used for Galactic black holes in the very high state, when they are radiating near the Eddington limit.
Waveform fitting and geometry analysis for full-waveform lidar feature extraction
NASA Astrophysics Data System (ADS)
Tsai, Fuan; Lai, Jhe-Syuan; Cheng, Yi-Hsiu
2016-10-01
This paper presents a systematic approach that integrates spline curve fitting and geometry analysis to extract full-waveform LiDAR features for land-cover classification. The cubic smoothing spline algorithm is used to fit the waveform curve of the received LiDAR signals. After that, the local peak locations of the waveform curve are detected using a second derivative method. According to the detected local peak locations, commonly used full-waveform features such as full width at half maximum (FWHM) and amplitude can then be obtained. In addition, the number of peaks, time difference between the first and last peaks, and the average amplitude are also considered as features of LiDAR waveforms with multiple returns. Based on the waveform geometry, dynamic time-warping (DTW) is applied to measure the waveform similarity. The sum of the absolute amplitude differences that remain after time-warping can be used as a similarity feature in a classification procedure. An airborne full-waveform LiDAR data set was used to test the performance of the developed feature extraction method for land-cover classification. Experimental results indicate that the developed spline curve- fitting algorithm and geometry analysis can extract helpful full-waveform LiDAR features to produce better land-cover classification than conventional LiDAR data and feature extraction methods. In particular, the multiple-return features and the dynamic time-warping index can improve the classification results significantly.
SWIFT Observations of a Far UV Luminosity Component in SS433
NASA Technical Reports Server (NTRS)
Cannizzo, J. K.; Boyd, P. T.; Dolan, J. F.
2007-01-01
SS433 is a binary system showing relativistic Doppler shifts in its two sets of emission lines. The origin of its UV continuum is not well established. We observed SS433 to determine the emission mechanism responsible for its far UV spectrum. The source was observed at several different phases of both its 13 d orbital period and 162.5 d precession period using the UVOT and XRT detector systems on Swift. The far UV spectrum down to 1880 Angstrom lies significantly above the spectral flux distribution predicted by extrapolating the reddened blackbody continuum that fits the spectrum above 3500 Angstroms. The intensity of the far UV flux varies over a period of days and the variability is correlated with the variability of the soft X-ray flux from the source. An emission mechanism in addition to those previously detected in the optical and X-ray regions must exist in the far UV spectrum of SS433.
Inferred Cosmic-Ray Spectrum from Fermi Large Area Telescope γ -Ray Observations of Earth’s Limb
Ackermann, M.; Ajello, M.; Albert, A.; ...
2014-04-17
Accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA recently reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly discovered features may offer a clue to the origin of high-energy CRs. Here, we use the Fermi Large Area Telescope observations of the γ -ray emission from Earth’s limb for an indirect measurement of the local spectrum of CR protons in the energy range ~ 90 GeV –more » 6 TeV (derived from a photon energy range 15 GeV–1 TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index 2.68 ± 0.04 and 2.61 ± 0.08 above ~ 200 GeV , respectively.« less
Inferred cosmic-ray spectrum from Fermi large area telescope γ-ray observations of Earth's limb.
Ackermann, M; Ajello, M; Albert, A; Allafort, A; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Blandford, R D; Bloom, E D; Bonamente, E; Bottacini, E; Bouvier, A; Brandt, T J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cecchi, C; Charles, E; Chaves, R C G; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dalton, M; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; Di Venere, L; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Grove, J E; Guiriec, S; Gustafsson, M; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hewitt, J W; Horan, D; Hou, X; Hughes, R E; Inoue, Y; Jackson, M S; Jogler, T; Jóhannesson, G; Johnson, A S; Kamae, T; Kawano, T; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nemmen, R; Nuss, E; Ohsugi, T; Okumura, A; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Ritz, S; Roth, M; Schaal, M; Schulz, A; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strong, A W; Takahashi, H; Takeuchi, Y; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Tronconi, V; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Werner, M; Winer, B L; Wood, K S; Wood, M; Yang, Z
2014-04-18
Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly discovered features may offer a clue to the origin of high-energy CRs. We use the Fermi Large Area Telescope observations of the γ-ray emission from Earth's limb for an indirect measurement of the local spectrum of CR protons in the energy range ∼90 GeV-6 TeV (derived from a photon energy range 15 GeV-1 TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index 2.68±0.04 and 2.61±0.08 above ∼200 GeV, respectively.
NASA Astrophysics Data System (ADS)
Cervellati, R.; Degli Esposti, A.; Lister, D. G.; Lopez, J. C.; Alonso, J. L.
1986-10-01
The microwave spectrum of 2,3-dihydrofuran has been reinvestigated and measurements for the ground and first five excited states of the ring puckering vibration have been extended to higher frequencies and rotational quantum numbers in order to study the vibrational dependence of the rotational and centrifugal distortion constants. The ring puckering potential function derived by Green from the far infrared spectrum does not reproduce the vibrational dependence of the rotational constants well. A slightly different potential function is derived which gives a reasonable fit both to the far infrared spectrum and the rotational constants. This changes the barrier to ring inversion from 1.00 kJ mol -1 to 1.12 kJ mol -1. The vibrational dependence of the centrifugal distortion constants is accounted for satisfactorily by the theory developed by Creswell and Mills. An attempt to reproduce the vibrational dependence of the rotational and centrifugal distortion constants using the ring puckering potential function and a simple model for this vibration has very limited success.
Inferred Cosmic-Ray Spectrum from Fermi-LAT Gamma-Ray Observations of the Earths Limb
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.;
2014-01-01
Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly-discovered features may offer a clue to the origin of high-energy CRs. We use the Fermi Large Area Telescope observations of the -ray emission from the Earth's limb for an indirect measurement of the local spectrum of CR protons in the energy range approx. 90 GeV-6 TeV (derived from a photon energy range 15 GeV-1 TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index 2.68 +/- 0.04 and 2.61 +/- 0.08 above approx. 200 GeV, respectively.
Modeling the X-Ray Timing Properties of Cygnus X-1 Caused by Waves Propagating in a Transition Disk
NASA Astrophysics Data System (ADS)
Misra, R.
2000-02-01
We show that waves propagating in a transition disk can explain the short-term temporal behavior of Cygnus X-1. In the transition-disk model, the spectrum is produced by saturated Comptonization within the inner region of the accretion disk where the temperature varies rapidly with radius. Recently, the spectrum from such a disk has been shown to fit the average broadband spectrum of this source better than that predicted by the soft-photon Comptonization model. Here we consider a simple model in which waves are propagating cylindrically symmetrically in the transition disk with a uniform propagation speed (cp). We show that this model can qualitatively explain (1) the variation of the power spectral density with energy, (2) the hard lags as a function of frequency, and (3) the hard lags as a function of energy for various frequencies. Thus, the transition-disk model can explain the average spectrum and the short-term temporal behavior of Cyg X-1.
Experimental determination of energy spectrum of atmospheric gamma rays. [0. 9 to 18. 0 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, I.M.; Dutra, S.L.G.; Palmeira, R.A.R.
The energy spectrum of atmospheric gamma rays from 0.9 to 18.0 MeV was measured as a function of altitude in a series of two balloon flights from Sao Jose dos Campos, Sao Paulo, Brasil (12 GV cut-off rigidity). The detector used was a NaI(T1) crystal with a 1-cm-thick plastic scintillator anti-coincidence shield, connected to a 128-channel pulse height analyzer. Above 20 g/cm/sup 2/ the energy spectrum could be fitted to a power law with exponent 1.0 + or - 0.1 independent of the altitude. From 20 to 760 g/cm/sup 2/ the spectrum was found to be somewhat steeper, with themore » exponential index being 1.3 + or - 0.1. At 3.5 g/cm/sup 2/ the gamma ray flux was 0.30 photons/cm/sup 2/ -s at 1 MeV. These measurements are discussed and compared with calculated results. (auth)« less
A Fast Radio Burst Search Method for VLBI Observation
NASA Astrophysics Data System (ADS)
Liu, Lei; Tong, Fengxian; Zheng, Weimin; Zhang, Juan; Tong, Li
2018-02-01
We introduce the cross-spectrum-based fast radio burst (FRB) search method for Very Long Baseline Interferometer (VLBI) observation. This method optimizes the fringe fitting scheme in geodetic VLBI data post-processing, which fully utilizes the cross-spectrum fringe phase information and therefore maximizes the power of single-pulse signals. Working with cross-spectrum greatly reduces the effect of radio frequency interference compared with using auto-power spectrum. Single-pulse detection confidence increases by cross-identifying detections from multiple baselines. By combining the power of multiple baselines, we may improve the detection sensitivity. Our method is similar to that of coherent beam forming, but without the computational expense to form a great number of beams to cover the whole field of view of our telescopes. The data processing pipeline designed for this method is easy to implement and parallelize, which can be deployed in various kinds of VLBI observations. In particular, we point out that VGOS observations are very suitable for FRB search.
NASA Technical Reports Server (NTRS)
Hallidy, William H. (Inventor); Chin, Robert C. (Inventor)
1999-01-01
The present invention is a system for chemometric analysis for the extraction of the individual component fluorescence spectra and fluorescence lifetimes from a target mixture. The present invention combines a processor with an apparatus for generating an excitation signal to transmit at a target mixture and an apparatus for detecting the emitted signal from the target mixture. The present invention extracts the individual fluorescence spectrum and fluorescence lifetime measurements from the frequency and wavelength data acquired from the emitted signal. The present invention uses an iterative solution that first requires the initialization of several decision variables and the initial approximation determinations of intermediate matrices. The iterative solution compares the decision variables for convergence to see if further approximation determinations are necessary. If the solution converges, the present invention then determines the reduced best fit error for the analysis of the individual fluorescence lifetime and the fluorescence spectrum before extracting the individual fluorescence lifetime and fluorescence spectrum from the emitted signal of the target mixture.
Liao, Pei-An; Chang, Hung-Hao; Wang, Jiun-Hao; Wu, Min-Chen
2013-06-01
This study examined the relationship between the changes of physical fitness across the 3-year spectrum of senior high school study and academic performance measured by standardized tests in Taiwan. A unique dataset of 149 240 university-bound senior high school students from 2009 to 2011 was constructed by merging two nationwide administrative datasets of physical fitness test performance and the university entrance exam scores. Hierarchical linear regression models were used. All regressions included controls for students' baseline physical fitness status, changes of physical fitness performance over time, age and family economic status. Some notable findings were revealed. An increase of 1 SD on students' overall physical fitness from the first to third school year is associated with an increase in the university entrance exam scores by 0.007 and 0.010 SD for male and female students, respectively. An increase of 1 SD on anaerobic power (flexibility) from the first to third school year is positively associated with an increase in the university entrance exam scores by 0.018 (0.010) SD among female students. We suggest that education and school health policymakers should consider and design policies to improve physical fitness as part of their overall strategy of improving academic performance.
Lu, Yuzhen; Du, Changwen; Yu, Changbing; Zhou, Jianmin
2014-08-01
Fast and non-destructive determination of rapeseed protein content carries significant implications in rapeseed production. This study presented the first attempt of using Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) to quantify protein content of rapeseed. The full-spectrum model was first built using partial least squares (PLS). Interval selection methods including interval partial least squares (iPLS), synergy interval partial least squares (siPLS), backward elimination interval partial least squares (biPLS) and dynamic backward elimination interval partial least squares (dyn-biPLS) were then employed to select the relevant band or band combination for PLS modeling. The full-spectrum PLS model achieved an ratio of prediction to deviation (RPD) of 2.047. In comparison, all interval selection methods produced better results than full-spectrum modeling. siPLS achieved the best predictive accuracy with an RPD of 3.215 when the spectrum was sectioned into 25 intervals, and two intervals (1198-1335 and 1614-1753 cm(-1) ) were selected. iPLS excelled biPLS and dyn-biPLS, and dyn-biPLS performed slightly better than biPLS. FTIR-PAS was verified as a promising analytical tool to quantify rapeseed protein content. Interval selection could extract the relevant individual band or synergy band associated with the sample constituent of interest, and then improve the prediction accuracy of the full-spectrum model. © 2013 Society of Chemical Industry.
40 CFR 721.10077 - 3H-1,2,4-Triazol-3-one, 1,2-dihydro-.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-fitting respirator equipped with N100 (if aerosols absent), R100, or P100 filters (either half- or full... Efficiency Particulate Air (HEPA) filters; powered air-purifying respirator equipped with a tight-fitting facepiece (either half- or full-face) and HEPA filters; and supplied-air respirator operated in pressure...
40 CFR 721.10077 - 3H-1,2,4-Triazol-3-one, 1,2-dihydro-.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-fitting respirator equipped with N100 (if aerosols absent), R100, or P100 filters (either half- or full... Efficiency Particulate Air (HEPA) filters; powered air-purifying respirator equipped with a tight-fitting facepiece (either half- or full-face) and HEPA filters; and supplied-air respirator operated in pressure...
40 CFR 721.10077 - 3H-1,2,4-Triazol-3-one, 1,2-dihydro-.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-fitting respirator equipped with N100 (if aerosols absent), R100, or P100 filters (either half- or full... Efficiency Particulate Air (HEPA) filters; powered air-purifying respirator equipped with a tight-fitting facepiece (either half- or full-face) and HEPA filters; and supplied-air respirator operated in pressure...
40 CFR 721.10077 - 3H-1,2,4-Triazol-3-one, 1,2-dihydro-.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-fitting respirator equipped with N100 (if aerosols absent), R100, or P100 filters (either half- or full... Efficiency Particulate Air (HEPA) filters; powered air-purifying respirator equipped with a tight-fitting facepiece (either half- or full-face) and HEPA filters; and supplied-air respirator operated in pressure...
NASA Astrophysics Data System (ADS)
Roucou, Anthony; Dhont, Guillaume; Cuisset, Arnaud; Martin-Drumel, Marie-Aline; Thorwirth, Sven; Fontanari, Daniele; Meerts, W. Leo
2017-08-01
The ν2 and ν5 fundamental bands of thionyl chloride (SOCl2) were measured in the 420 cm-1-550 cm-1 region using the FT-far-IR spectrometer exploiting synchrotron radiation on the AILES beamline at SOLEIL. A straightforward line-by-line analysis is complicated by the high congestion of the spectrum due to both the high density of SOCl2 rovibrational bands and the presence of the ν2 fundamental band of sulfur dioxide produced by hydrolysis of SOCl2 with residual water. To overcome this difficulty, our assignment procedure for the main isotopologues 32S16O35Cl2 and 32S16O35Cl37Cl alternates between a direct fit of the spectrum, via a global optimization technique, and a traditional line-by-line analysis. The global optimization, based on an evolutionary algorithm, produces rotational constants and band centers that serve as useful starting values for the subsequent spectroscopic analysis. This work helped to identify the pure rotational submillimeter spectrum of 32S16O35Cl2 in the v2=1 and v5=1 vibrational states of Martin-Drumel et al. [J. Chem. Phys. 144, 084305 (2016)]. As a by-product, the rotational transitions of the v4=1 far-IR inactive state were identified in the submillimeter spectrum. A global fit gathering all the microwave, submillimeter, and far-IR data of thionyl chloride has been performed, showing that no major perturbation of rovibrational energy levels occurs for the main isotopologue of the molecule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Jessica Sarah
2011-01-01
The MINOS Experiment consists of two steel-scintillator calorimeters, sampling the long baseline NuMI muon neutrino beam. It was designed to make a precise measurement of the ‘atmospheric’ neutrino mixing parameters, Δm 2 atm. and sin 2 (2 atm.). The Near Detector measures the initial spectrum of the neutrino beam 1km from the production target, and the Far Detector, at a distance of 735 km, measures the impact of oscillations in the neutrino energy spectrum. Work performed to validate the quality of the data collected by the Near Detector is presented as part of this thesis. This thesis primarily details themore » results of a v μ disappearance analysis, and presents a new sophisticated fitting software framework, which employs a maximum likelihood method to extract the best fit oscillation parameters. The software is entirely decoupled from the extrapolation procedure between the detectors, and is capable of fitting multiple event samples (defined by the selections applied) in parallel, and any combination of energy dependent and independent sources of systematic error. Two techniques to improve the sensitivity of the oscillation measurement were also developed. The inclusion of information on the energy resolution of the neutrino events results in a significant improvement in the allowed region for the oscillation parameters. The degree to which sin 2 (2θ )= 1.0 could be disfavoured with the exposure of the current dataset if the true mixing angle was non-maximal, was also investigated, with an improved neutrino energy reconstruction for very low energy events. The best fit oscillation parameters, obtained by the fitting software and incorporating resolution information were: | Δm 2| = 2.32 +0.12 -0.08×10 -3 eV 2 and sin 2 (2θ ) > 0.90(90% C.L.). The analysis provides the current world best measurement of the atmospheric neutrino mass splitting Δm 2. The alternative models of neutrino decay and decoherence are disfavoured by 7.8σ and 9.7σ respectively.« less
A Guide to Making the Autism Puzzle Fit
ERIC Educational Resources Information Center
Wagner, Sheila
2011-01-01
This fall in schools across the nation, students with autism spectrum disorder (ASD) will experience educational opportunities that, until recently, were denied to them. Because the No Child Left Behind Act and the Individuals with Disabilities Education Act ensure that students with ASD are included in the student body, principals must make…
Numerical details and SAS programs for parameter recovery of the SB distribution
Bernard R. Parresol; Teresa Fidalgo Fonseca; Carlos Pacheco Marques
2010-01-01
The four-parameter SB distribution has seen widespread use in growth-and-yield modeling because it covers a broad spectrum of shapes, fitting both positively and negatively skewed data and bimodal configurations. Two recent parameter recovery schemes, an approach whereby characteristics of a statistical distribution are equated with attributes of...
Model Selection in the Analysis of Photoproduction Data
NASA Astrophysics Data System (ADS)
Landay, Justin
2017-01-01
Scattering experiments provide one of the most powerful and useful tools for probing matter to better understand its fundamental properties governed by the strong interaction. As the spectroscopy of the excited states of nucleons enters a new era of precision ushered in by improved experiments at Jefferson Lab and other facilities around the world, traditional partial-wave analysis methods must be adjusted accordingly. In this poster, we present a rigorous set of statistical tools and techniques that we implemented; most notably, the LASSO method, which serves for the selection of the simplest model, allowing us to avoid over fitting. In the case of establishing the spectrum of exited baryons, it avoids overpopulation of the spectrum and thus the occurrence of false-positives. This is a prerequisite to reliably compare theories like lattice QCD or quark models to experiments. Here, we demonstrate the principle by simultaneously fitting three observables in neutral pion photo-production, such as the differential cross section, beam asymmetry and target polarization across thousands of data points. Other authors include Michael Doring, Bin Hu, and Raquel Molina.
NASA Astrophysics Data System (ADS)
Nagarajan, Satyakumar; McMillan, James P.; Burkhardt, Andrew M.; Neese, Christopher F.; De Lucia, Frank C.; Remijan, Anthony
2016-06-01
Individual spectral lines in astrophysical data are ordinarily assigned by comparison with line frequency and intensities predicted by catalogs. Here we seek to fit the spectra of specific sources within Orion KL that are first selected by ALMA's angular resolution and then by Doppler velocity class. For each molecule in this study, astrophysical reference lines are selected. Subsequent analyses of individual velocity components provide the astrophysical column density and temperature for these velocity regimes. These column densities and temperatures are then combined with results from the complete experimental spectra obtained from our laboratory spectra to model the molecule's contribution to the entire astrophysical spectrum [1]. Effects due to optical thickness and spectral overlap are included in the analyses. Examples for ethyl cyanide in the hot core and methanol in the compact ridge will be presented. [1] J. P. McMillan, S. M. Fortman, C. F. Neese, and F. C. De Lucia, "The Complete, Temperature Resolved Experi- mental Spectrum of Methanol (CH3OH) between 214.6 and 265.4 GHz," Astrophys. J., vol. 795, pp. 56(1-9), 2014.
Srinivasan, Sudha M.; Pescatello, Linda S.
2014-01-01
Recent evidence suggests that childhood obesity is increasing in children who are developing typically as well as in children with developmental disabilities such as autism spectrum disorders (ASDs). Impairments specific to autism as well as general environmental factors could lead to an imbalance between the intake and expenditure of energy, leading to obesity. In this article, we describe the mechanisms by which autism-specific impairments contribute to obesity. The evidence on exercise interventions to improve physical fitness, address obesity, and reduce autism-specific impairments in children and adolescents with ASDs is discussed. Limited evidence is currently available for exercise interventions in individuals with ASDs. Therefore, literature on other pediatric developmental disabilities and children who are developing typically was reviewed to provide recommendations for clinicians to assess physical activity levels, to promote physical fitness, and to reduce obesity in children and adolescents with ASDs. There is a clear need for further systematic research to develop sensitive assessment tools and holistic multisystem and multifactorial obesity interventions that accommodate the social communication, motor, and behavioral impairments of individuals with ASDs. PMID:24525861
High-Resolution FTIR Spectrum of the ν 9 Band of Ethylene- D4 (C 2D 4)
NASA Astrophysics Data System (ADS)
Tan, T. L.; Goh, K. L.; Ong, P. P.; Teo, H. H.
2000-08-01
The spectrum of the ν9 fundamental band of ethylene-d4 (C2D4) has been measured with an unapodized resolution of 0.004 cm-1 in the frequency range of 2300-2400 cm-1 using a Fourier transform infrared spectrometer. A total of 549 transitions have been assigned and fitted using a Watson's A-reduced Hamiltonian in the Ir representation to derive rovibrational constants for the upper state (v9 = 1) up to five quartic terms with a standard deviation of 0.00087 cm-1. They represent the most accurate rovibrational constants for the ν9 band so far. About 30 transitions of Ka‧ = 0, one transition of ν9 which were identified to be perturbed possibly by the nearby ν11 and ν2 + ν12 transitions, were not included in the final fit. The ν9 band of C2D4 was found to be basically B-type with an unperturbed band center at 2341.836 94 ± 0.000 13 cm-1.
NASA Astrophysics Data System (ADS)
Azarov, Vladimir I.; Gayasov, Robert R.
2018-05-01
The spectrum of rhenium was observed in the (1017-2074) Å wavelength region. The (5d5 + 5d46s)-(5d46p + 5d36s6p) transition array of two times ionized rhenium, Re III, has been investigated and 1305 spectral lines have been classified in the region. The analysis has led to the determination of the 5d5, 5d46s, 5d46p and 5d36s6p configurations. Seventy levels of the 5d5 and 5d46s configurations in the even system and 161 levels of the 5d46p and 5d36s6p configurations in the odd system have been established. The orthogonal operators technique was used to calculate the level structure and transition probabilities. The energy parameters have been determined by the least squares fit to the observed levels. Calculated transition probability and energy values, as well as LS-compositions obtained from the fitted parameters are presented.
NASA Technical Reports Server (NTRS)
Davila, Joseph M.; Geginald, Nelson L.; Gashut, Hadi; Guhathakurta, Madhulika; Hassler, Donald M.
2008-01-01
An experiment to measure the electron temperature and flow speed in the solar corona by observing the visible K-coronal spectrum was conducted during the total solar eclipse on 29 March 2006 in Libya. New corona1 models accounting for the effect of electron temperature and flow on the resulting K-corona spectrum were used to interpret the observations. Results show electron temperatures of 1.10 +/- 0.05, 0.98 +/- 0.12, and 0.70 +/- 0.08 MK, at l.l{\\it R)$-{\\odot)$ in the solar north, east and west, respectively, and 0.93 +/- 0.12 MK, at 1.2 R(sub sun) in the solar east. The corresponding outflow speeds obtained from the spectral fit are 103 +/- 92, 0 + 10, 0 + 10, and 0 + 10 km/s. Since the observations are taken only at 1.1 and 1.2 R(sub sun) these velocities , consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working.
NASA Technical Reports Server (NTRS)
Snow, J. B.; Murphy, D. V.; Chang, R. K.
1983-01-01
Coherent anti-Stokes Raman scattering (CARS) from the pure rotational Raman lines of N2 is employed to measure the instantaneous (approximately 10 ns) rotational temperature of N2 gas at room temperature and below with good spatial resolution (0.2 x 0.2 x 3.0 cu mm). A broad bandwidth dye laser is used to obtain the entire rotational spectrum from a single laser pulse; the CARS signal is then dispersed by a spectrograph and recorded on an optical multichannel analyzer. A best fit temperature is found in several seconds with the aid of a computer for each experimental spectrum by a least squares comparison with calculated spectra. The model used to calculate the theoretical spectra incorporates the temperature and pressure dependence of the pressure-broadened rotational Raman lines, includes the nonresonant background susceptibility, and assumes that the pump laser has a finite linewidth. Temperatures are fit to experimental spectra recorded over the temperature range of 135 to 296 K, and over the pressure range of .13 to 15.3 atm.
Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results
NASA Technical Reports Server (NTRS)
Bennett, C. L.; Larson, D.; Weiland, J. L.; Jaorsik, N.; Hinshaw, G.; Odegard, N.; Smith, K. M.; Hill, R. S.; Gold, B.; Halpern, M;
2013-01-01
We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail.We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground reduced are presented.We nowimplement an optimal C(exp -1)1 weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained Lambda-CDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N(sub eff) = 3.84 +/- 0.40). The model fit also implies that the age of the universe is (sub 0) = 13.772 +/- 0.059 Gyr, and the fit Hubble constant is H(sub 0) = 69.32 +/- 0.80 km/s/ Mpc. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n(sub s) = 0.9608+/-0.0080); and the universe is close to flat/Euclidean (Omega = -0.0027+0.0039/-0.0038). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six-parameter ?Lambda-CDM model, based on CMB data alone. For a model including tensors, the allowed seven-parameter volume has been reduced by a factor 117,000. Other cosmological observations are in accord with the CMB predictions, and the combined data reduces the cosmological parameter volume even further.With no significant anomalies and an adequate goodness of fit, the inflationary flat Lambda-CDM model and its precise and accurate parameters rooted in WMAP data stands as the standard model of cosmology.
Random-subset fitting of digital holograms for fast three-dimensional particle tracking [invited].
Dimiduk, Thomas G; Perry, Rebecca W; Fung, Jerome; Manoharan, Vinothan N
2014-09-20
Fitting scattering solutions to time series of digital holograms is a precise way to measure three-dimensional dynamics of microscale objects such as colloidal particles. However, this inverse-problem approach is computationally expensive. We show that the computational time can be reduced by an order of magnitude or more by fitting to a random subset of the pixels in a hologram. We demonstrate our algorithm on experimentally measured holograms of micrometer-scale colloidal particles, and we show that 20-fold increases in speed, relative to fitting full frames, can be attained while introducing errors in the particle positions of 10 nm or less. The method is straightforward to implement and works for any scattering model. It also enables a parallelization strategy wherein random-subset fitting is used to quickly determine initial guesses that are subsequently used to fit full frames in parallel. This approach may prove particularly useful for studying rare events, such as nucleation, that can only be captured with high frame rates over long times.
A 0.4 to 10 GHz airborne electromagnetic environment survey of USA urban areas
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Hill, J. S.
1976-01-01
An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35 mm continuous film camera, and a magnetic tape recorder. Most of the flights were made at a nominal altitude of 10,000 feet, and Washington, D. C., Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450 to 470 MHz land-mobile UHF band is especially crowded, and the 400 to 406 MHz space bands are less active. This paper discusses test measurements obtained up to 10 GHz. Sample spectrum analyzer photograhs were selected from a total of 5,750 frames representing 38 hours of data.
NASA Technical Reports Server (NTRS)
Brown, J. M.; Curl, R. F.; Evenson, K. M.
1984-01-01
The far-infrared laser magnetic resonance spectrum of the SiH radical in the v = O level of its X2Pi state has been recorded. The signals are rather weak. The molecules were generated in the reaction between fluorine atoms and SiH4. Rotational transitions have been detected in both 2Pi1/2 and 2Pi3/2 spin components but no fine structure transitions between the spin components were observed. Proton hyperfine splittings were resolved on some lines. The measurements have been analyzed, subjected to a least-squares fit using an effective Hamiltonian, and the appropriate molecular parameters determined. The weakness of the spectrum and the failure of attempts to power saturate favorable lines are both consistent with a small value for the electric dipole moment for SiH.
STS study on single crystal of noncentrosymmetric superconductor PbTaSe2
NASA Astrophysics Data System (ADS)
Ye, Zhiyang; Wu, Rui; Wang, Jihui; Liang, Xuejin; Mao, Hanqing; Zhao, Lingxiao; Chen, Genfu; Pan, Shuheng
2015-03-01
We report our low temperature scanning tunneling spectroscopic study on single crystals of noncentrosymmetric superconductor PbTaSe2. On the background of the normal state tunneling spectrum, a superconducting energy gap opens at a temperature below the bulk Tc = 3.7K. At t = 1.4K, the gap magnitude is estimated to be about 1meV. This energy gap is particle-hole symmetry and is homogeneous in space. Extrapolating the low energy part of the spectrum, we find that the low energy part of the gap spectrum is linear like ``V'' shape. We will present the results of the numerical fit with various gap functions of proposed possible pairing symmetry. We will also present our preliminary results of the magnetic field dependence measurement and discuss the implications of these observations.
R-matrix description of particle energy spectra produced by low-energy 3H + 3H reactions
Brune, C. R.; Caggiano, J. A.; Sayre, D. B.; ...
2015-07-20
An R-matrix model for three-body final states is presented and applied to a recent measurement of the neutron energy spectrum from the 3H + 3H→ 2n + α reaction. The calculation includes the n alpha and n n interactions in the final state, angular momentum conservation, antisymmetrization, and the interference between different channels. A good fit to the measured spectrum is obtained, where clear evidence for the 5He ground state is observed. The model is also used to predict the alpha-particle spectrum from 3H + 3H as well as particle spectra from 3He + 3He. The R-matrix approach presented heremore » is very general, and can be adapted to a wide variety of problems with three-body final states.« less
0.4- to 10-GHz airborne electromagnetic-environment survey of United States urban areas
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Hill, J. S.
1976-01-01
An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad-frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35-mm continuous-film camera, and a magnetic-tape recorder. Most of the flights were made at a nominal altitude of 10,000 ft, and Washington, Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450- to 470-MHz land-mobile UHF band is especially crowded, and the 400- to 406-MHz space bands are less active. Test measurements obtained up to 10 GHz are discussed. Sample spectrum-analyzer photographs were selected from a total of 5750 frames representing 38 hours of data.