Sample records for full speed operation

  1. Electro-optical full-adder/full-subtractor based on graphene-silicon switches

    NASA Astrophysics Data System (ADS)

    Zivarian, Hossein; Zarifkar, Abbas; Miri, Mehdi

    2018-01-01

    A compact footprint, low-power consumption, and high-speed operation electro-optical full-adder/full-subtractor based on graphene-silicon electro-optical switches is demonstrated. Each switch consists of a Mach-Zehnder interferometer in which few-layer graphene is embedded in a silicon slot waveguide to construct phase shifters. The presented structure can be used as full-adder and full-subtractor simultaneously. The analysis of various factors such as extinction ratio, power consumption, and operation speed has been presented. As will be shown, the proposed electro-optical switch has a minimum extinction ratio of 36.21 dB, maximum insertion loss about 0.18 dB, high operation speed of 180 GHz, and is able to work with a low applied voltage about 1.4 V. Also, the extinction ratio and insertion loss of the full-adder/full-subtractor are about 30 and 1.5 dB, respectively, for transfer electric modes at telecommunication wavelength of 1.55 μm.

  2. System efficiency of a tap transformer based grid connection topology applied on a direct driven generator for wind power.

    PubMed

    Apelfröjd, Senad; Eriksson, Sandra

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed.

  3. System Efficiency of a Tap Transformer Based Grid Connection Topology Applied on a Direct Driven Generator for Wind Power

    PubMed Central

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed. PMID:25258733

  4. Compression Ratio Adjuster

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W.

    1982-01-01

    New mechanism alters compression ratio of internal-combustion engine according to load so that engine operates at top fuel efficiency. Ordinary gasoline, diesel and gas engines with their fixed compression ratios are inefficient at partial load and at low-speed full load. Mechanism ensures engines operate as efficiently under these conditions as they do at highload and high speed.

  5. Full-order Luenberger observer based on fuzzy-logic control for sensorless field-oriented control of a single-sided linear induction motor.

    PubMed

    Holakooie, Mohammad Hosein; Ojaghi, Mansour; Taheri, Asghar

    2016-01-01

    This paper investigates sensorless indirect field oriented control (IFOC) of SLIM with full-order Luenberger observer. The dynamic equations of SLIM are first elaborated to draw full-order Luenberger observer with some simplifying assumption. The observer gain matrix is derived from conventional procedure so that observer poles are proportional to SLIM poles to ensure the stability of system for wide range of linear speed. The operation of observer is significantly impressed by adaptive scheme. A fuzzy logic control (FLC) is proposed as adaptive scheme to estimate linear speed using speed tuning signal. The parameters of FLC are tuned using an off-line method through chaotic optimization algorithm (COA). The performance of the proposed observer is verified by both numerical simulation and real-time hardware-in-the-loop (HIL) implementation. Moreover, a detailed comparative study among proposed and other speed observers is obtained under different operation conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Fixed-speed and Variable-speed Pumped Storage Dispatch Model in Power Systems with High Renewable Penetration

    NASA Astrophysics Data System (ADS)

    Yuan, Bo; Zong, Jin; Xu, Zhicheng

    2018-06-01

    According to different operating characteristics of pumped storage fixed speed unit and variable speed unit, a joint dispatching model of pumped storage unit and other types of units based on mixed integer linear optimization is constructed. The model takes into account the operating conditions, reservoir capacity, cycle type and other pumped storage unit constraints, but also consider the frequent start and stop and the stability of the operation of the unit caused by the loss. Using the Cplex solver to solve the model, the empirical example of the provincial power grid shows that the model can effectively arrange the pumping storage speed and the dispatching operation of the variable speed unit under the precondition of economic life of the unit, and give full play to the function of peak shaving and accommodating new energy. Because of its more flexible regulation characteristics of power generation and pumping conditions, the variable speed unit can better improve the operating conditions of other units in the system and promote the new energy dissipation.

  7. 14 CFR 25.1583 - Operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... any regime of flight (climb, cruise, or descent) unless a higher speed is authorized for flight test... applicable to the particular design, explaining that: (i) Full application of pitch, roll, or yaw controls should be confined to speeds below the maneuvering speed; and (ii) Rapid and large alternating control...

  8. 14 CFR 25.1583 - Operating limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... any regime of flight (climb, cruise, or descent) unless a higher speed is authorized for flight test... applicable to the particular design, explaining that: (i) Full application of pitch, roll, or yaw controls should be confined to speeds below the maneuvering speed; and (ii) Rapid and large alternating control...

  9. 14 CFR 25.1583 - Operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... any regime of flight (climb, cruise, or descent) unless a higher speed is authorized for flight test... applicable to the particular design, explaining that: (i) Full application of pitch, roll, or yaw controls should be confined to speeds below the maneuvering speed; and (ii) Rapid and large alternating control...

  10. 14 CFR 25.1583 - Operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... any regime of flight (climb, cruise, or descent) unless a higher speed is authorized for flight test... applicable to the particular design, explaining that: (i) Full application of pitch, roll, or yaw controls should be confined to speeds below the maneuvering speed; and (ii) Rapid and large alternating control...

  11. Performance of Blowdown Turbine driven by Exhaust Gas of Nine-Cylinder Radial Engine

    DTIC Science & Technology

    1944-12-01

    blade speed to mean jet speed FIQUBE 6.—Variation of mean turbine efficiency with ratio of blade speed to moan Jot speed. Engine speed, 2000 rpm; full...conventional turbo - supercharger axe used in series, the blowdown turbine may be geared to the engine . Aircraft engines are operated at high speed for...guide vanes in blowdown-turblno noule box. PERFORMANCE OF BLOWDOWN TURBINE DRIVEN BT EXHAUST GAS OF RADIAL ENGINE 245 (6) Diaphragm

  12. Flexible rotor balancing by the influence coefficient method: Multiple critical speeds with rigid or flexible supports

    NASA Technical Reports Server (NTRS)

    Tessarzik, J. M.

    1975-01-01

    Experimental tests were conducted to demonstrate the ability of the influence coefficient method to achieve precise balance of flexible rotors of virtually any design for operation through virtually any speed range. Various practical aspects of flexible-rotor balancing were investigated. Tests were made on a laboratory quality machine having a 122 cm (48 in.) long rotor weighing 50 kg (110 lb) and covering a speed range up to 18000 rpm. The balancing method was in every instance effective, practical, and economical and permitted safe rotor operation over the full speed range covering four rotor bending critical speeds. Improved correction weight removal methods for rotor balancing were investigated. Material removal from a rotating disk was demonstrated through application of a commercially available laser.

  13. Design and evaluation of a 3 million DN series-hybrid thrust bearing. [stability tests and fatigue tests

    NASA Technical Reports Server (NTRS)

    Scibbe, H. W.; Winn, L. W.; Eusepi, M.

    1976-01-01

    The bearing, consisting of a 150-mm ball bearing and a centrifugally actuated, conical, fluid-film bearing, was fatigue tested. Test conditions were representative of a mainshaft ball bearing in a gas turbine engine operating at maximum thrust load to simulate aircraft takeoff conditions. Tests were conducted up to 16000 rpm and at this speed an axial load of 15568 newtons (3500 lb) was safely supported by the hybrid bearing system. Through the series-hybrid bearing principle, the effective ball bearing speed was reduced to approximately one-half of the shaft speed. It was concluded that a speed reduction of this magnitude results in a ten-fold increase in the ball bearing fatigue life. A successful evaluation of fluid-film bearing lubricant supply failure was performed repeatedly at an operating speed of 10,000 rpm. A complete and smooth changeover to full-scale ball bearing operation was effected when the oil supply to the fluid-film bearing was cut off. Reactivation of the fluid-film oil supply system resulted in a flawless return to the original mode of hybrid operation.

  14. Validation of Computer Aided Operations Research Facility (CAORF).

    DTIC Science & Technology

    1979-01-01

    favorable comparison is that of the slow- down effect in performing a turn. From Figure 2.4 it is estimated that ship’s speed was reduced from an...initial speed of 17 knots to 6.6 knots. The data shown in Figure 2.3 for the CAORF ship indicate a reduction from an initial speed of 15 knots to 5.1 knots...follows: The ship is on a steady course at full sea speed . (Exact sea speed is optional.) At time zero, the rudder is put over 20 0 right. This is

  15. In situ health monitoring for bogie systems of CRH380 train on Beijing-Shanghai high-speed railway

    NASA Astrophysics Data System (ADS)

    Hong, Ming; Wang, Qiang; Su, Zhongqing; Cheng, Li

    2014-04-01

    Based on the authors' research efforts over the years, an in situ structural health monitoring (SHM) technique taking advantage of guided elastic waves has been developed and deployed via an online diagnosis system. The technique and the system were recently implemented on China's latest high-speed train (CRH380CL) operated on Beijing-Shanghai High-Speed Railway. The system incorporated modularized components including active sensor network, active wave generation, multi-channel data acquisition, signal processing, data fusion, and results presentation. The sensor network, inspired by a new concept—"decentralized standard sensing", was integrated into the bogie frames during the final assembly of CRH380CL, to generate and acquire bogie-guided ultrasonic waves, from which a wide array of signal features were extracted. Fusion of signal features through a diagnostic imaging algorithm led to a graphic illustration of the overall health state of the bogie in a real-time and intuitive manner. The in situ experimentation covered a variety of high-speed train operation events including startup, acceleration/deceleration, full-speed operation (300 km/h), emergency braking, track change, as well as full stop. Mock-up damage affixed to the bogie was identified quantitatively and visualized in images. This in situ testing has demonstrated the feasibility, effectiveness, sensitivity, and reliability of the developed SHM technique and the system towards real-world applications.

  16. Design and evaluation of a 3 million DN series-hybrid thrust bearing

    NASA Technical Reports Server (NTRS)

    Scibbe, H. W.; Winn, L. W.; Eusepi, M.

    1976-01-01

    The design and experimental evaluation of a series-hybrid thrust bearing, consisting of a 150-mm ball bearing and a centrifugally actuated, conical, fluid-film bearing, is presented. Tests were conducted up to 16,000 rpm and at this speed an axial load of 15,600 N (3500 lb) was safely supported by the hybrid bearing system. Through the series-hybrid bearing principle, the effective ball bearing speed was reduced to approximately one-half of the shaft speed. A speed reduction of this magnitude would result in a tenfold increase in the ball bearing fatigue life. A successful evaluation of fluid-film bearing lubricant supply failure was performed repeatedly at an operating speed of 10,000 rpm. A complete and smooth changeover to full-scale ball bearing operation was effected when the oil supply to the fluid-film bearing was cut off. Reactivation of the fluid-film oil supply system produced a flawless return to the original mode of hybrid operation.

  17. Optimal Operation of Variable Speed Pumping System in China's Eastern Route Project of S-to-N Water Diversion Project

    NASA Astrophysics Data System (ADS)

    Cheng, Jilin; Zhang, Lihua; Zhang, Rentian; Gong, Yi; Zhu, Honggeng; Deng, Dongsheng; Feng, Xuesong; Qiu, Jinxian

    2010-06-01

    A dynamic planning model for optimizing operation of variable speed pumping system, aiming at minimum power consumption, was proposed to achieve economic operation. The No. 4 Jiangdu Pumping Station, a source pumping station in China's Eastern Route of South-to-North Water Diversion Project, is taken as a study case. Since the sump water level of Jiangdu Pumping Station is affected by the tide of Yangtze River, the daily-average heads of the pumping system varies yearly from 3.8m to 7.8m and the tide level difference in one day up to 1.2m. Comparisons of operation electricity cost between optimized variable speed and fixed speed operations of pumping system were made. When the full load operation mode is adopted, whether or not electricity prices in peak-valley periods are considered, the benefits of variable speed operation cannot compensate the energy consumption of the VFD. And when the pumping system operates in part load and the peak-valley electricity prices are considered, the pumping system should cease operation or lower its rotational speed in peak load hours since the electricity price are much higher, and to the contrary the pumping system should raise its rotational speed in valley load hours to pump more water. The computed results show that if the pumping system operates in 80% or 60% loads, the energy consumption cost of specified volume of water will save 14.01% and 26.69% averagely by means of optimal variable speed operation, and the investment on VFD will be paid back in 2 or 3 years. However, if the pumping system operates in 80% or 60% loads and the energy cost is calculated in non peak-valley electricity price, the repayment will be lengthened up to 18 years. In China's S-to-N Water Diversion Project, when the market operation and peak-valley electricity prices are taken into effect to supply water and regulate water levels in regulation reservoirs as Hongzehu Lake, Luomahu Lake, etc. the economic operation of water-diversion pumping stations will be vital, and the adoption of VFDs to achieve optimal operation may be a good choice.

  18. NREL: News - Prototype Low-Emissions Natural Gas Engine Saves Fuel

    Science.gov Websites

    /heavy_vehicle/natgas_pub.html#engine for a copy of the full NREL report, "Development of a Throttleless engines. In testing, the prototype engine operated over the full speed and load range, delivering 250

  19. Mach 4 Test Results of a Dual-Flowpath, Turbine Based Combined Cycle Inlet

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy w.; Emami, Saied; Trexler, Carl A.

    2006-01-01

    An experimental study was conducted to evaluate the performance of a turbine based combined cycle (TBCC) inlet concept, consisting of a low speed turbojet inlet and high speed dual-mode scramjet inlet. The main objectives of the study were (1) to identify any interactions between the low and the high speed inlets during the mode transition phase in which both inlets are operating simultaneously and (2) to determine the effect of the low speed inlet operation on the performance of the high speed inlet. Tests were conducted at a nominal freestream Mach number of 4 using an 8 percent scale model representing a single module of a TBCC inlet. A flat plate was installed upstream of the model to produce a turbulent boundary layer which simulated the full-scale vehicle forebody boundary layer. A flowmeter/back pressure device, with remote actuation, was attached aft of the high speed inlet isolator to simulate the back pressure resulting from dual-mode scramjet combustion. Results indicate that the inlets did not interact with each other sufficiently to affect inlet operability. Flow spillage resulting from a high speed inlet unstart did not propagate far enough upstream to affect the low speed inlet. Also, a low speed inlet unstart did not cause the high speed inlet to unstart. The low speed inlet improved the performance of the high speed inlet at certain conditions by diverting a portion of the boundary layer generated on the forebody plate.

  20. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  1. Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate

    NASA Astrophysics Data System (ADS)

    Mishra, C.; Samantaray, A. K.; Chakraborty, G.

    2016-05-01

    Rolling element bearings are widely used in rotating machines and their faults can lead to excessive vibration levels and/or complete seizure of the machine. Under special operating conditions such as non-uniform or low speed shaft rotation, the available fault diagnosis methods cannot be applied for bearing fault diagnosis with full confidence. Fault symptoms in such operating conditions cannot be easily extracted through usual measurement and signal processing techniques. A typical example is a bearing in heavy rolling mill with variable load and disturbance from other sources. In extremely slow speed operation, variation in speed due to speed controller transients or external disturbances (e.g., varying load) can be relatively high. To account for speed variation, instantaneous angular position instead of time is used as the base variable of signals for signal processing purposes. Even with time synchronous averaging (TSA) and well-established methods like envelope order analysis, rolling element faults in rolling element bearings cannot be easily identified during such operating conditions. In this article we propose to use order tracking on the envelope of the wavelet de-noised estimate of the short-duration angle synchronous averaged signal to diagnose faults in rolling element bearing operating under the stated special conditions. The proposed four-stage sequential signal processing method eliminates uncorrelated content, avoids signal smearing and exposes only the fault frequencies and its harmonics in the spectrum. We use experimental data1

  2. Description of the 3 MW SWT-3 wind turbine at San Gorgonio Pass, California

    NASA Technical Reports Server (NTRS)

    Rybak, S. C.

    1982-01-01

    The SWT-3 wind turbine, a microprocessor controlled three bladed variable speed upwind machine with a 3MW rating that is presently operational and undergoing system testing, is discussed. The tower, a rigid triangular truss configuration, is rotated about its vertical axis to position the wind turbine into the prevailing wind. The blades rotate at variable speed in order to maintain an optimum 6 to 1 tip speed ratio between cut in and fated wind velocity, thereby maximizing power extraction from the wind. Rotor variable speed is implemented by the use of a hydrostatic transmission consisting of fourteen fixed displacement pumps operating in conjunction with eighteen variable displacement motors. Full blade pitch with on-off hydraulic actuation is used to maintain 3MW of output power.

  3. Variable speed induction motor operation from a 20-kHz power bus

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Induction motors are recognized for their simple rugged construction. To date, however, their application to variable speed or servo drives was hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation of frequency and voltage allows independent control of rotor and stator flux, full four quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  4. Variable speed induction motor operation from a 20-kHz power bus

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Induction motors are recognized for their simple rugged construction to date, however, their application to variable speed or servo drives has been hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation offrequency and voltage allows independent control of rotor and stator flux, full four-quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  5. Advances in CCD detector technology for x-ray diffraction applications

    NASA Astrophysics Data System (ADS)

    Thorson, Timothy A.; Durst, Roger D.; Frankel, Dan; Bordwell, Rex L.; Camara, Jose R.; Leon-Guerrero, Edward; Onishi, Steven K.; Pang, Francis; Vu, Paul; Westbrook, Edwin M.

    2004-01-01

    Phosphor-coupled CCDs are established as one of the most successful technologies for x-ray diffraction. This application demands that the CCD simultaneously achieve both the highest possible sensitivity and high readout speeds. Recently, wafer-scale, back illuminated devices have become available which offer significantly higher quantum efficiency than conventional devices (the Fairchild Imaging CCD 486 BI). However, since back thinning significantly changes the electrical properties of the CCD the high speed operation of wafer-scale, back-illuminated devices is not well understood. Here we describe the operating characteristics (including noise, linearity, full well capacity and CTE) of the back-illuminated CCD 486 at readout speeds up to 4 MHz.

  6. Helicopter far-field acoustic levels as a function of reduced main-rotor advancing blade-tip Mach number

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Smith, Charles D.; Lemasurier, Philip

    1990-01-01

    During the design of a helicopter, the weight, engine, rotor speed, and rotor geometry are given significant attention when considering the specific operations for which the helicopter will be used. However, the noise radiated from the helicopter and its relationship to the design variables is currently not well modeled with only a limited set of full-scale field test data to study. In general, limited field data have shown that reduced main-rotor advancing blade-tip Mach numbers result in reduced far-field noise levels. The status of a recent helicopter noise research project is reviewed. It is designed to provide flight experimental data which may be used to further understand helicopter main-rotor advancing blade-tip Mach number effects on far-field acoustic levels. Preliminary results are presented relative to tests conducted with a Sikorsky S-76A helicopter operating with both the rotor speed and the flight speed as the control variable. The rotor speed was operated within the range of 107 to 90 percent NR at nominal forward speeds of 35, 100, and 155 knots.

  7. Control Performance of General Electric Fuel and Torque Regulator Operating on T31-3 Turbine-Propeller Engine in Sea-Level Test Stand

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L.; Lazar, James

    1951-01-01

    A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.

  8. Cryogenic, high speed, turbopump bearing cooling requirements

    NASA Technical Reports Server (NTRS)

    Dolan, Fred J.; Gibson, Howard G.; Cannon, James L.; Cody, Joe C.

    1988-01-01

    Although the Space Shuttle Main Engine (SSME) has repeatedly demonstrated the capability to perform during launch, the High Pressure Oxidizer Turbopump (HPOTP) main shaft bearings have not met their 7.5 hour life requirement. A tester is being employed to provide the capability of subjecting full scale bearings and seals to speeds, loads, propellants, temperatures, and pressures which simulate engine operating conditions. The tester design permits much more elaborate instrumentation and diagnostics than could be accommodated in an SSME turbopump. Tests were made to demonstrate the facilities; and the devices' capabilities, to verify the instruments in its operating environment and to establish a performance baseline for the flight type SSME HPOTP Turbine Bearing design. Bearing performance data from tests are being utilized to generate: (1) a high speed, cryogenic turbopump bearing computer mechanical model, and (2) a much improved, very detailed thermal model to better understand bearing internal operating conditions. Parametric tests were also made to determine the effects of speed, axial loads, coolant flow rate, and surface finish degradation on bearing performance.

  9. A computer simulation of the transient response of a 4 cylinder Stirling engine with burner and air preheater in a vehicle

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1981-01-01

    A series of computer programs are presented with full documentation which simulate the transient behavior of a modern 4 cylinder Siemens arrangement Stirling engine with burner and air preheater. Cold start, cranking, idling, acceleration through 3 gear changes and steady speed operation are simulated. Sample results and complete operating instructions are given. A full source code listing of all programs are included.

  10. Helicopter main-rotor speed effects on far-field acoustic levels

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Childress, Otis S.; Hardesty, Mark

    1987-01-01

    The design of a helicopter is based on an understanding of many parameters and their interactions. For example, in the design stage of a helicopter, the weight, engine, and rotor speed must be considered along with the rotor geometry when considering helicopter operations. However, the relationship between the noise radiated from the helicopter and these parameters is not well understood, with only limited model and full-scale test data to study. In general, these data have shown that reduced rotor speeds result in reduced far-field noise levels. This paper reviews the status of a recent helicopter noise research project designed to provide experimental flight data to be used to better understand helicopter rotor-speed effects on far-field acoustic levels. Preliminary results are presented relative to tests conducted with a McDonnell Douglas model 500E helicopter operating with the rotor speed as the control variable over the range of 103% of the main-rotor speed (NR) to 75% NR, and with the forward speed maintained at a constant value of 80 knots.

  11. Small, high-speed bearing technology for cryogenic turbo-pumps

    NASA Technical Reports Server (NTRS)

    Winn, L. W.; Eusepi, M. W.; Smalley, A. J.

    1974-01-01

    The design of 20-mm bore ball bearings is described for cryogenic turbo-machinery applications, operating up to speeds of 120,000 rpm. A special section is included on the design of hybrid bearings. Each hybrid bearing is composed of a ball bearing in series with a conventional pressurized fluid-film journal bearing. Full details are presented on the design of a test vehicle which possesses the capability of testing the above named bearings within the given speed range under externally applied radial and axial loads.

  12. An Investigation of the Effects of the Time Lag due to Long Transmission Distances Upon Remote Control. Phase 1; Tracking Experiments

    NASA Technical Reports Server (NTRS)

    Adams, James L.

    1961-01-01

    A series of pursuit tracking tasks were performed incorporating a transport lag in the control loop. The target was a mixture of four sine waves, the fastest having a frequency of 16 cycles per minute at full speed. An attempt was made to design the experiments so that they would provide data applicable to remote control of a ground vehicle over long transmission distances. Three programs were run. In each the time lag was placed between the control and the display. In the first program a velocity control was used and the operator was told that his knob controlled a vehicle, the problem represented a road 9 and he was to drive his vehicle along the road 9 using the delayed vehicle position as feedback for whatever means he desired. The objective was not to match the display traces. In the second program a velocity control was used, and the operator was told that the problem trace represented a road and the delayed trace represented a vehicle and he was to keep them together. The objective was to match display traces. The third program was identical with the first, except that an acceleration control was used rather than a velocity control. Target speeds used were full speed, 1/2 speed, 1/4 speed, 1/8 speed, and 1/16 speed. Time lags were 1/4 second, l/2 second, 1 second, 1-1/2 second, 2 second, 3 second, and 6 seconds. The experimental results are presented in the last section of this report.

  13. A solid-state controller for a wind-driven slip-ring induction generator

    NASA Astrophysics Data System (ADS)

    Velayudhan, C.; Bundell, J. H.; Leary, B. G.

    1984-08-01

    The three-phase induction generator appears to become the preferred choice for wind-powered systems operated in parallel with existing power systems. A problem arises in connection with the useful operating speed range of the squirrel-cage machine, which is relatively narrow, as, for instance, in the range from 1 to 1.15. Efficient extraction of energy from a wind turbine, on the other hand, requires a speed range, perhaps as large as 1 to 3. One approach for 'matching' the generator to the turbine for the extraction of maximum power at any usable wind speed involves the use of a slip-ring induction machine. The power demand of the slip-ring machine can be matched to the available output from the wind turbine by modifying the speed-torque characteristics of the generator. A description is presented of a simple electronic rotor resistance controller which can optimize the power taken from a wind turbine over the full speed range.

  14. Some Numerical Simulations and an Experimental Investigation of Finger Seals

    NASA Technical Reports Server (NTRS)

    Braun, Minel J.; Smith, Ian; Marie, Hazel

    2007-01-01

    All seal types have been shown to lift effectively, and experience only minor wear during startup. .. The double pad design outperforms previous seals, providing lower operating temperatures, and less leakage at higher pressures. .. Future experimentation at higher pressures, temperatures, and operating speeds will show the full potential of finger sealing technology.

  15. Fuel System Durability--U.S. Coast Guard

    DTIC Science & Technology

    2008-05-01

    bypass rates at the rated operating condition to finalize the test loop design. Preliminary calculations suggest that because of the anticipated low...The other option was to allow greater speed variability and operate as close to full-rack as possible. 24 Wear Scar Approx. Activated Area...Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302

  16. Preliminary Comparison of 17- and 75-millimeter-bore Cageless Cylindrical Roller Bearings with Conventional Cylindrical Roller Bearings at High Speeds

    NASA Technical Reports Server (NTRS)

    Macks, E Fred; Anderson, W J; Nemeth, Zolton N

    1953-01-01

    Preliminary results at high speeds indicate lower bearing temperatures, less internal bearing wear, and greater reliability of the conventional, cage-type cylindrical roller bearings than of either full-complement or special cageless roller bearings of the types investigated, although the latter bearing types have been operated successfully to DN values of 1.0 X 10 superscript 6.

  17. A novel dual motor drive system for three wheel electric vehicles

    NASA Astrophysics Data System (ADS)

    Panmuang, Piyapat; Thongsan, Taweesak; Suwapaet, Nuchida; Laohavanich, Juckamass; Photong, Chonlatee

    2018-03-01

    This paper presents a novel dual motor drive system used for three wheel electric vehicles that have one free wheel at the front and two wheels with a drive system at the end of the vehicles. A novel dual motor drive system consists of two identical DC motors that are independently controlled by its speed-torque controller. Under light load conditions, only one of the DC motors will operate around it rated whilst under hard load conditions both of the DC motors will operate. With this drive system, the motors will operate only at its high performance at rated or else no operate to retain longer lifetime. The simulated results for the Skylab three wheel electric vehicle prototype with 8kW at full load (high torque, low speed) and around 4kW at light/normal operating loads (regular speed-torque) showed that the proposed system provides better dynamic responses with faster overshoot current/voltage recovery time, has lower investment costs, has longer lifetime of the motors and allows the motors to always operate at their high performance and thus achieve more cost effective system compared to a single motor drive system with 8kW DC motors.

  18. 40 CFR 1039.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... You may extend the sampling time to improve measurement accuracy of PM emissions, using good...-speed engines whose design prevents full-load operation for extended periods, you may ask for approval... designed to operate for extended periods. (e) See 40 CFR part 1065 for detailed specifications of...

  19. Mine Hoist Operator Training System. Phase I Report.

    DTIC Science & Technology

    1978-11-01

    Bodies of Knowledge Function Control speed of conveyances Hold conveyances in position Structural Components Types of brakes : * Disc * Drum - Jaw...Parallel motion Components of each type * Disc / drum * Pads/shoes * Operating mechanisms Operating mediums for braking * Hydraulic/pneumatic * Manual...SHAFT GUIDES Wood El BRAKES Steel Rails El Drum : Wire Rope: Jaw El Full Lock El Parallel Motion El Half Lock El Disc El LEVELS DRIVE MOTORS Single El

  20. Long life, high speed, thrust-load ball bearings

    NASA Technical Reports Server (NTRS)

    Signer, H.; Bamberger, E. N.; Zaretsky, E. V.

    1975-01-01

    Long-term bearing operation at three million DN can be achieved with high degree of reliability using full combination of sophisticated but currently available state-of-the-art bearing materials and designs, lubricants, and lubricating techniques.

  1. The cryogenic wind tunnel for high Reynolds number testing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1974-01-01

    Experiments performed at the NASA Langley Research Center in a cryogenic low-speed continuous-flow tunnel and in a cryogenic transonic continuous-flow pressure tunnel have demonstrated the predicted changes in Reynolds number, drive power, and fan speed with temperature, while operating with nitrogen as the test gas. The experiments have also demonstrated that cooling to cryogenic temperatures by spraying liquid nitrogen directly into the tunnel circuit is practical and that tunnel temperature can be controlled within very close limits. Whereas most types of wind tunnel could operate with advantage at cryogenic temperatures, the continuous-flow fan-driven tunnel is particularly well suited to take full advantage of operating at these temperatures. A continuous-flow fan-driven cryogenic tunnel to satisfy current requirements for test Reynolds number can be constructed and operated using existing techniques. Both capital and operating costs appear acceptable.

  2. Altitude-Wind-Tunnel Investigation of a 4000-Pound-Thrust Axial-Flow Turbojet Engine. II - Operational Characteristics. II; Operational Characteristics

    NASA Technical Reports Server (NTRS)

    Fleming, William A.

    1948-01-01

    An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow compressor, and bearing cooling was even poorer with a high-flow compressor.

  3. Hover test of a full-scale hingeless helicopter rotor: Aeroelastic stability, performance and loads data. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.; Warmbrodt, W.

    1984-01-01

    A hover test of a full-scale, hingeless rotor system was conducted in the NASA Ames 40- by 80-foot wind tunnel. The rotor was tested on the Ames rotor test apparatus. Rotor aeroelastic stability, performance, and loads at various rotational speeds and thrust coefficients were investigated. The primary objective was to determine the inplane stability characteristics of the rotor system. Rotor inplane damping data were obtained for operation between 350 and 425 rpm (design speed), and for thurst coefficients between 0.0 and 0.12. The rotor was stable for all conditions tested. At constant rotor rotational speed, a minimum inplane dampling level was obtained at a thrust coefficient approximately = 0.02. At constant rotor lift, a minimum in rotor inplane damping was measured at 400 rpm.

  4. An experimental investigation of free-tip response to a jet

    NASA Technical Reports Server (NTRS)

    Young, L. A.

    1986-01-01

    The aerodynamic response of passively oscillating tips appended to a model helicopter rotor was investigated during a whirl test. Tip responsiveness was found to meet free-tip rotor requirements. Experimental and analytical estimates of the free-tip aerodynamic spring, mechanical spring, and aerodynamic damping were calculated and compared. The free tips were analytically demonstrated to be operating outside the tip resonant response region at full-scale tip speeds. Further, tip resonance was shown to be independent of tip speed, given the assumption that the tip forcing frequency is linearly dependent upon the rotor rotational speed.

  5. Evaluation of a series hybrid thrust bearing at DN values to three million. 2: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Eusepi, M.; Winn, L. W.

    1975-01-01

    Results of tests made to determine the experimental performance of a series hybrid bearing are reported. The bearing consists of a 150 mm ball bearing and a centrifugally actuated, conical, fluid film bearing fitting an envelope with an outer radius of 86.4 mm (3.4 in.) and inner radius of 71 mm (2.8 in.). Tests were conducted up to 16,500 rpm, at which speed an axial load of 15,568 N (3500 lb) was safely supported by the hybrid bearing system. Through the employment of the series hybrid bearing principle, it was possible to reduce the effective ball bearing speed to approximately one-half of the shaft speed. A reduction of this magnitude should result in a tenfold increase in the ball bearing fatigue life. A successful simulation of fluid film bearing lubricant supply failure, performed repeatedly at an operating speed of 10,000 rpm, resulted in complete and smooth change over to full scale ball bearing operation when the oil supply to the fluid film bearing was discontinued. Reactivation of the fluid film supply system produced a flawless return to the original mode of hybrid operation.

  6. NASA Soil Moisture Mission Produces First Global Radar Map

    NASA Image and Video Library

    2015-04-21

    With its antenna now spinning at full speed, NASA new Soil Moisture Active Passive SMAP observatory has successfully re-tested its science instruments and generated its first global maps, a key step to beginning routine science operations in May, 2015

  7. NASA Soil Moisture Mission Produces First Global Radiometer Map

    NASA Image and Video Library

    2015-04-21

    With its antenna now spinning at full speed, NASA new Soil Moisture Active Passive SMAP observatory has successfully re-tested its science instruments and generated its first global maps, a key step to beginning routine science operations in May, 2015

  8. Thermal Behavior of Aerospace Spur Gears in Normal and Loss-of-Lubrication Conditions

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2015-01-01

    Testing of instrumented spur gears operating at aerospace rotorcraft conditions was conducted. The instrumented gears were operated in a normal and in a loss-of-lubrication environment. Thermocouples were utilized to measure the temperature at various locations on the test gears and a test utilized a full-field, high-speed infrared thermal imaging system. Data from thermocouples was recorded during all testing at 1 hertz. One test had the gears shrouded and a second test was run without the shrouds to permit the infrared thermal imaging system to take data during loss-of-lubrication operation. Both tests using instrumented spur gears were run in normal and loss-of-lubrication conditions. Also the result from four other loss-of-lubrication tests will be presented. In these tests two different torque levels were used while operating at the same rotational speed (10000 revolutions per minute).

  9. Thermal Behavior of Aerospace Spur Gears in Normal and Loss-of-Lubrication Conditions

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2015-01-01

    Testing of instrumented spur gears operating at aerospace rotorcraft conditions was conducted. The instrumented gears were operated in a normal and in a loss-of-lubrication environment. Thermocouples were utilized to measure the temperature at various locations on the test gears and a test utilized a full-field, high-speed infrared thermal imaging system. Data from thermocouples was recorded during all testing at 1 Hz. One test had the gears shrouded and a second test was run without the shrouds to permit the infrared thermal imaging system to take date during loss-of-lubrication operation. Both tests using instrumented spur gears were run in normal and loss-of-lubrication conditions. Also the result from four other loss-of-lubrication tests will be presented. In these tests two different torque levels were used while operating at the same rotational speed (10000 rpm).

  10. Design of a dataway processor for a parallel image signal processing system

    NASA Astrophysics Data System (ADS)

    Nomura, Mitsuru; Fujii, Tetsuro; Ono, Sadayasu

    1995-04-01

    Recently, demands for high-speed signal processing have been increasing especially in the field of image data compression, computer graphics, and medical imaging. To achieve sufficient power for real-time image processing, we have been developing parallel signal-processing systems. This paper describes a communication processor called 'dataway processor' designed for a new scalable parallel signal-processing system. The processor has six high-speed communication links (Dataways), a data-packet routing controller, a RISC CORE, and a DMA controller. Each communication link operates at 8-bit parallel in a full duplex mode at 50 MHz. Moreover, data routing, DMA, and CORE operations are processed in parallel. Therefore, sufficient throughput is available for high-speed digital video signals. The processor is designed in a top- down fashion using a CAD system called 'PARTHENON.' The hardware is fabricated using 0.5-micrometers CMOS technology, and its hardware is about 200 K gates.

  11. Introduction to Voigt's wind power plant. [energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Tompkin, J.

    1973-01-01

    The design and operation of a 100 kilowatt wind driven generator are reported. Its high speed three-bladed turbine operates at a height of 50 meters. Blades are rigidly connected to the hub and turbine revolutions change linearly with wind velocity, maintaining a constant speed ratio of blade tip velocity to wind velocity over the full predetermined wind range. Three generators installed in the gondola generate either dc or ac current. Based on local wind conditions, the device has a maximum output of 720 kilowatts at a wind velocity of 16 meters per second. Total electrical capacity is 750 kilowatts, and power output per year is 2,135,000 kilowatt/hours.

  12. Analysis of dynamic accumulative damage about the lining structure of high speed railway’s tunnel based on ultrasonic testing technology

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-qiu; Zhang, Huojun; Xie, Wen-xi

    2017-08-01

    Based on the similar material model test of full tunnel, the theory of elastic wave propagation and the testing technology of intelligent ultrasonic wave had been used to research the dynamic accumulative damage characteristics of tunnel’s lining structure under the dynamic loads of high speed train. For the more, the dynamic damage variable of lining structure of high speed railway’s tunnel was obtained. The results shown that the dynamic cumulative damage of lining structure increases nonlinearly with the times of cumulative vibration, the weakest part of dynamic cumulative damage is the arch foot of tunnel. Much more attention should be paid to the design and operation management of high speed railway’s tunnel.

  13. Special-purpose computing for dense stellar systems

    NASA Astrophysics Data System (ADS)

    Makino, Junichiro

    2007-08-01

    I'll describe the current status of the GRAPE-DR project. The GRAPE-DR is the next-generation hardware for N-body simulation. Unlike the previous GRAPE hardwares, it is programmable SIMD machine with a large number of simple processors integrated into a single chip. The GRAPE-DR chip consists of 512 simple processors and operates at the clock speed of 500 MHz, delivering the theoretical peak speed of 512/226 Gflops (single/double precision). As of August 2006, the first prototype board with the sample chip successfully passed the test we prepared. The full GRAPE-DR system will consist of 4096 chips, reaching the theoretical peak speed of 2 Pflops.

  14. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staunton, R. H.; Ayers, C. W.; Marlino, L. D.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200–1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economymore » compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) – Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available. This report summarizes vehicle-level and subsystem-level test results obtained for the 2004 Prius and various electrical and mechanical subassemblies of its hybrid electric drive system. The primary objective of these tests was to (1) characterize the electrical and mechanical performance of the 2004 Prius, and (2) map the performance of the inverter/motor system over the full design speed and load ranges.« less

  15. Advanced performance of small diaphragm vacuum pumps through the use of mechatronics

    NASA Astrophysics Data System (ADS)

    Lachenmann, R.; Dirscherl, J.

    Oil-free diaphragm vacuum pumps have proven to be the best way in vacuum generation for the chemical laboratory and they also find increasing use as backing pumps for modern wide-range turbo molecular pumps. The majority of vacuum pumps in practical use pump only a rather small percentage of their lifetime at full gas load. A pump backing a turbo molecular pump does not have to pump a significant gas load when the high-vacuum pump is running at ultimate vacuum pressure. Also, for a vacuum distillation the vacuum pump has to operate at full speed only at the beginning to lower the pressure inside the system to a vacuum level where evaporation starts. In a rather leak-tight system the distillation process continues by evaporating from the hot liquid and condensing at the cold condenser without the need of a mechanical vacuum pump. Rotational speed controlled diaphragm pumps are now available through progress in mechatronics and offer high pumping speed capability for fast pump-down cycles and precise pressure control for distillations. At low gas load the rotational speed can be reduced, improving maintenance intervals, power consumption, noise, vibration and - surprisingly - also ultimate pressure. The different behaviour in pumping speed and ultimate pressure of rotational speed controlled diaphragm pumps in comparison to constant-speed pumps is related to the mechanical properties of the valves and gas dynamics .

  16. Development of Neuromorphic Sift Operator with Application to High Speed Image Matching

    NASA Astrophysics Data System (ADS)

    Shankayi, M.; Saadatseresht, M.; Bitetto, M. A. V.

    2015-12-01

    There was always a speed/accuracy challenge in photogrammetric mapping process, including feature detection and matching. Most of the researches have improved algorithm's speed with simplifications or software modifications which increase the accuracy of the image matching process. This research tries to improve speed without enhancing the accuracy of the same algorithm using Neuromorphic techniques. In this research we have developed a general design of a Neuromorphic ASIC to handle algorithms such as SIFT. We also have investigated neural assignment in each step of the SIFT algorithm. With a rough estimation based on delay of the used elements including MAC and comparator, we have estimated the resulting chip's performance for 3 scenarios, Full HD movie (Videogrammetry), 24 MP (UAV photogrammetry), and 88 MP image sequence. Our estimations led to approximate 3000 fps for Full HD movie, 250 fps for 24 MP image sequence and 68 fps for 88MP Ultracam image sequence which can be a huge improvement for current photogrammetric processing systems. We also estimated the power consumption of less than10 watts which is not comparable to current workflows.

  17. Two-bit trinary full adder design based on restricted signed-digit numbers

    NASA Astrophysics Data System (ADS)

    Ahmed, J. U.; Awwal, A. A. S.; Karim, M. A.

    1994-08-01

    A 2-bit trinary full adder using a restricted set of a modified signed-digit trinary numeric system is designed. When cascaded together to design a multi-bit adder machine, the resulting system is able to operate at a speed independent of the size of the operands. An optical non-holographic content addressable memory based on binary coded arithmetic is considered for implementing the proposed adder.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, I.J.; Breuer, T.; Escuret, J.

    As part of a European collaborative project, four high-speed compressors were tested to investigate the generic features of stall inception in aero-engine type compressors. Tests were run over the full speed range to identify the design and operating parameters that influence the stalling process. A study of data analysis techniques was also conducted in the hope of establishing early warning of stall. The work presented here is intended to relate the physical happenings in the compressor to the signals that would be received by an active stall control system. The measurements show a surprising range of stall-related disturbances and suggestmore » that spike-type stall inception is a feature of low-speed operation while modal activity is clearest in the midspeed range. High-frequency disturbances were detected at both ends of the speed range and nonrotating stall, a new phenomenon, was detected in three out of the four compressors. The variety of the stalling patterns, and the ineffectiveness of the stall warning procedures, suggests that the ultimate goal of a flightworthy active control system remains some way off.« less

  19. Integration and test of high-speed transmitter electronics for free-space laser communications

    NASA Technical Reports Server (NTRS)

    Soni, Nitin J.; Lizanich, Paul J.

    1994-01-01

    The NASA Lewis Research Center in Cleveland, Ohio, has developed the electronics for a free-space, direct-detection laser communications system demonstration. Under the High-Speed Laser Integrated Terminal Electronics (Hi-LITE) Project, NASA Lewis has built a prototype full-duplex, dual-channel electronics transmitter and receiver operating at 325 megabit S per second (Mbps) per channel and using quaternary pulse-position modulation (QPPM). This paper describes the integration and testing of the transmitter portion for future application in free-space, direct-detection laser communications. A companion paper reviews the receiver portion of the prototype electronics. Minor modifications to the transmitter were made since the initial report on the entire system, and this paper addresses them. The digital electronics are implemented in gallium arsenide integrated circuits mounted on prototype boards. The fabrication and implementation issues related to these high-speed devices are discussed. The transmitter's test results are documented, and its functionality is verified by exercising all modes of operation. Various testing issues pertaining to high-speed circuits are addressed. A description of the transmitter electronics packaging concludes the paper.

  20. Bomb Strike Experiment for Mine Clearance Operations

    DTIC Science & Technology

    2006-03-01

    avenue of trade is responsible for 25 percent of the U.S. Gross Domestic Product ( GDP ), up from 11 percent in 1970, and experts agree that this figure...of Recent Changes and Developments. Defense Scientific Establishment, Auckland , New Zealand, Report 149. Johnson, S., Damn The Mines --- Full Speed

  1. Analysis of inconsistencies related to design speed, operating speed, and speed limits.

    DOT National Transportation Integrated Search

    2004-02-01

    The objective of this research was to examine the relationship among design speeds, operating speeds and speed limits and address safety and operational concerns regarding the presence of disparities among these speed metrics. Roadway sections were s...

  2. 14 CFR 23.1507 - Operating maneuvering speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Operating maneuvering speed. 23.1507... Limitations and Information § 23.1507 Operating maneuvering speed. The maximum operating maneuvering speed, VO, must be established as an operating limitation. VO is a selected speed that is not greater than VS√n...

  3. 14 CFR 23.1507 - Operating maneuvering speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Operating maneuvering speed. 23.1507... Limitations and Information § 23.1507 Operating maneuvering speed. The maximum operating maneuvering speed, VO, must be established as an operating limitation. VO is a selected speed that is not greater than VS√n...

  4. Development Of A Dynamic Radiographic Capability Using High-Speed Video

    NASA Astrophysics Data System (ADS)

    Bryant, Lawrence E.

    1985-02-01

    High-speed video equipment can be used to optically image up to 2,000 full frames per second or 12,000 partial frames per second. X-ray image intensifiers have historically been used to image radiographic images at 30 frames per second. By combining these two types of equipment, it is possible to perform dynamic x-ray imaging of up to 2,000 full frames per second. The technique has been demonstrated using conventional, industrial x-ray sources such as 150 Kv and 300 Kv constant potential x-ray generators, 2.5 MeV Van de Graaffs, and linear accelerators. A crude form of this high-speed radiographic imaging has been shown to be possible with a cobalt 60 source. Use of a maximum aperture lens makes best use of the available light output from the image intensifier. The x-ray image intensifier input and output fluors decay rapidly enough to allow the high frame rate imaging. Data are presented on the maximum possible video frame rates versus x-ray penetration of various thicknesses of aluminum and steel. Photographs illustrate typical radiographic setups using the high speed imaging method. Video recordings show several demonstrations of this technique with the played-back x-ray images slowed down up to 100 times as compared to the actual event speed. Typical applications include boiling type action of liquids in metal containers, compressor operation with visualization of crankshaft, connecting rod and piston movement and thermal battery operation. An interesting aspect of this technique combines both the optical and x-ray capabilities to observe an object or event with both external and internal details with one camera in a visual mode and the other camera in an x-ray mode. This allows both kinds of video images to appear side by side in a synchronized presentation.

  5. 14 CFR 25.1505 - Maximum operating limit speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum operating limit speed. 25.1505... Operating Limitations § 25.1505 Maximum operating limit speed. The maximum operating limit speed (V MO/M MO airspeed or Mach Number, whichever is critical at a particular altitude) is a speed that may not be...

  6. 14 CFR 25.1505 - Maximum operating limit speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum operating limit speed. 25.1505... Operating Limitations § 25.1505 Maximum operating limit speed. The maximum operating limit speed (V MO/M MO airspeed or Mach Number, whichever is critical at a particular altitude) is a speed that may not be...

  7. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economymore » compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].« less

  8. Status of The General Atomics Low Speed Urban Maglev Technology Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurol, S; Baldi, R; Bever, D

    2004-06-16

    This paper presents the status of General Atomics Urban Maglev Program. The development provides an innovative approach for low speed transportation suitable for very challenging urban environments. Permanent magnets arranged in a 'Halbach' array configuration produce a relatively stiff magnetic suspension operating with an air gap of 25 mm. The project has progressed from design and prototype hardware testing, to the construction of a 120-meter full-scale test track, located in San Diego, California. Dynamic testing of the levitation, propulsion and guidance systems is being performed.

  9. Real-time data reduction capabilities at the Langley 7 by 10 foot high speed tunnel

    NASA Technical Reports Server (NTRS)

    Fox, C. H., Jr.

    1980-01-01

    The 7 by 10 foot high speed tunnel performs a wide range of tests employing a variety of model installation methods. To support the reduction of static data from this facility, a generalized wind tunnel data reduction program had been developed for use on the Langley central computer complex. The capabilities of a version of this generalized program adapted for real time use on a dedicated on-site computer are discussed. The input specifications, instructions for the console operator, and full descriptions of the algorithms are included.

  10. Testing of Two-Speed Transmission Configurations for Use in Rotorcraft

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Stevens, Mark A.

    2015-01-01

    Large civil tiltrotors have been identified to replace regional airliners over medium ranges to alleviate next-generation air traffic. Variable rotor speed for these vehicles is required for efficient high-speed operation. Two-speed drive system research has been performed to support these advanced rotorcraft applications. Experimental tests were performed on two promising two-speed transmission configurations. The offset compound gear (OCG) transmission and the dual star/idler (DSI) planetary transmission were tested in the NASA Glenn Research Center variable-speed transmission test facility. Both configurations were inline devices with concentric input and output shafts and designed to provide 1:1 and 2:1 output speed reduction ratios. Both were designed for 200 hp and 15,000 rpm input speed and had a dry shift clutch configuration. Shift tests were performed on the transmissions at input speeds of 5,000, 8,000, 10,000, 12,500, and 15,000 rpm. Both the OCG and DSI configurations successfully perform speed shifts at full rated 15,000 rpm input speed. The transient shifting behavior of the OCG and DSI configurations were very similar. The shift clutch had more of an effect on shifting dynamics than the reduction gearing configuration itself since the same shift clutch was used in both configurations. For both OCG and DSI configurations, low-to-high speed shifts were limited in applied torque levels in order to prevent overloads on the transmission due to transient torque spikes. It is believed that the relative lack of appreciable slippage of the dry shifting clutch at operating conditions and pressure profiles tested was a major cause of the transient torque spikes. For the low-to-high speed shifts, the output speed ramp-up time slightly decreased and the peak out torque slightly increased as the clutch pressure ramp-down rate increased. This was caused by slightly less clutch slippage as the clutch pressure ramp-down rate increased.

  11. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    NASA Technical Reports Server (NTRS)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  12. Broadband rotary joint for high speed ultrahigh resolution endoscopic OCT imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alemohammad, Milad; Yuan, Wu; Mavadia-Shukla, Jessica; Liang, Wenxuan; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    Endoscopic OCT is a promising technology enabling noninvasive in vivo imaging of internal organs, such as the gastrointestinal tract and airways. The past few years have witnessed continued efforts to achieve ultrahigh resolution and speed. It is well-known that the axial resolution in OCT imaging has a quadratic dependence on the central wavelength. While conventional OCT endoscopes operate in 1300 nm wavelength, the second-generation endoscopes are designed for operation around 800 nm where turn-key, broadband sources are becoming readily available. Traditionally 1300 nm OCT endoscopes are scanned at the proximal end, and a broadband fiber-optic rotary joint as a key component in scanning endoscopic OCT is commercially available. Bandwidths in commercial 800 nm rotary joints are unfortunately compromised due to severe chromatic aberration, which limits the resolution afforded by the broadband light source. In the past we remedied this limitation by using a home-made capillary-tube-based rotary joint where the maximum reliable speed is ~10 revolutions/second. In this submission we report our second-generation, home-built high-speed and broadband rotary joint for 800 nm wavelength, which uses achromatic doublets in order achieve broadband achromatic operation. The measured one-way throughput of the rotary joint is >67 % while the fluctuation of the double-pass coupling efficiency during 360° rotation is less than +/-5 % at a speed of 70 revolutions/second. We demonstrate the operation of this rotary joint in conjunction with our ultrahigh-resolution (2.4 µm in air) diffractive catheter by three-dimensional full-circumferential endoscopic imaging of guinea pig esophagus at 70 frames per second in vivo.

  13. Design and develop speed/pressure regulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanul Basher, A.M.

    1993-09-01

    The Physics Division at Oak Ridge National Laboratory has several recirculating water cooling systems. One of them supplies deionized water at 150 psi, which is mainly used for cooling magnet windings at the Oak Ridge Isochronous Cyclotron (ORIC). The system has three 125-hp water pumps, each of which is capable of supplying water at the rate of 1000 gpm. One of the major requirements of this water supply system is that the supply pressure must be kept constant. An adjustable-frequency speed controller was recently installed to control the speed of one of the pump motors. A servo-system was provided withmore » the adjustable-frequency controller for regulating motor speed and, subsequently, the water pressure. After unsuccessful attempts to operate the servo, it was concluded that the regulator may not work for the existing system. Prior to installation of the variable-frequency controller, pressure regulation was accomplished with a pneumatically controlled load by-pass valve. To maintain constant pressure in the system, it is necessary to run always at full load, even if full load is not on the system. Hence, there is a waste of energy when full load is not connected to the system. So, designing and implementing one regulator that works at any load condition has become necessary. This report discusses the design of such a pressure regulator.« less

  14. Investigation of high-speed shaft bearing loads in wind turbine gearboxes through dynamometer testing

    DOE PAGES

    Guo, Yi; Keller, Jonathan

    2017-11-10

    Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high-speed parallel-stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. Here, this paper examined wind turbine gearbox high-speed shaft bearing loads and stresses throughmore » modeling and full-scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure-torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.« less

  15. Investigation of high-speed shaft bearing loads in wind turbine gearboxes through dynamometer testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yi; Keller, Jonathan

    Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high-speed parallel-stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. Here, this paper examined wind turbine gearbox high-speed shaft bearing loads and stresses throughmore » modeling and full-scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure-torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.« less

  16. Measurement and characterisation of radiated underwater sound from a 3.6 MW monopile wind turbine.

    PubMed

    Pangerc, Tanja; Theobald, Peter D; Wang, Lian S; Robinson, Stephen P; Lepper, Paul A

    2016-10-01

    This paper describes underwater sound pressure measurements obtained in close proximity (∼50 m) to two individual wind turbines, over a 21-day period, capturing the full range of turbine operating conditions. The sound radiated into the water was characterised by a number of tonal components, which are thought to primarily originate from the gearbox for the bandwidth measured. The main signal associated with the turbine operation had a mean-square sound pressure spectral density level which peaked at 126 dB re 1 μPa 2  Hz -1 at 162 Hz. Other tonal components were also present, notably at frequencies between about 20 and 330 Hz, albeit at lower amplitudes. The measured sound characteristics, both in terms of frequency and amplitude, were shown to vary with wind speed. The sound pressure level increased with wind speed up to an average value of 128 dB re 1 μPa at a wind speed of about 10 ms -1 , and then showed a general decrease. Overall, differences in the mean-square sound pressure spectral density level of over 20 dB were observed across the operational envelope of the turbine.

  17. Acoustic measurements of a full-scale coaxial hingeless rotor helicopter

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.; Mosher, M.

    1983-01-01

    Acoustic data were obtained during a full-scale test of the XH-59A Advancing Blade Concept Technology Demonstrator in the 40- by 80-Foot Wind Tunnel. The XH-59A is a research helicopter with two coaxial rotors and hingeless blades. Performance, vibration, and noise at various forward speeds, rotor lift coefficients and rotor shaft angles of attack were investigated. The noise data were acquired over an isolated rotor lift coefficient range of 0.024 to 0.162, an advance ratio range of 0.23 to 0.45 corresponding to tunnel wind speeds of 89 to 160 knots, and angles of attack from 0 deg to 10 deg. Acoustic data are presented for seven microphone locations for all run conditions where the model noise is above the background noise. Model test configuration and performance information are also listed. Acoustic waveforms, dBA, and 1/3-octave spectra as functions of operating condition for selected data points and microphones are presented. In general, the noise level is shown to increase with rotor lift coefficient except under certain operating conditions where significant impulsive blade/vortex interactions increase noise levels.

  18. Flight Deck Surface Trajectory-based Operations (STBO): Results of Piloted Simulations and Implications for Concepts of Operation (ConOps)

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.

    2013-01-01

    The results offour piloted medium-fidelity simulations investigating flight deck surface trajectory-based operations (STBO) will be reviewed. In these flight deck STBO simulations, commercial transport pilots were given taxi clearances with time and/or speed components and required to taxi to the departing runway or an intermediate traffic intersection. Under a variety of concept of operations (ConOps) and flight deck information conditions, pilots' ability to taxi in compliance with the required time of arrival (RTA) at the designated airport location was measured. ConOps and flight deck information conditions explored included: Availability of taxi clearance speed and elapsed time information; Intermediate RTAs at intermediate time constraint points (e.g., intersection traffic flow points); STBO taxi clearances via ATC voice speed commands or datal ink; and, Availability of flight deck display algorithms to reduce STBO RTA error. Flight Deck Implications. Pilot RTA conformance for STBO clearances, in the form of ATC taxi clearances with associated speed requirements, was found to be relatively poor, unless the pilot is required to follow a precise speed and acceleration/deceleration profile. However, following such a precise speed profile results in inordinate head-down tracking of current ground speed, leading to potentially unsafe operations. Mitigating these results, and providing good taxi RTA performance without the associated safety issues, is a flight deck avionics or electronic flight bag (EFB) solution. Such a solution enables pilots to meet the taxi route RTA without moment-by-moment tracking of ground speed. An avionics or EFB "error-nulling" algorithm allows the pilot to view the STBO information when the pilot determines it is necessary and when workload alloys, thus enabling the pilot to spread his/her attention appropriately and strategically on aircraft separation airport navigation, and the many other flight deck tasks concurrently required. Surface Traffic Management (STM) System Implications. The data indicate a number of implications regarding specific parameters for ATC/STM algorithm development. Pilots have a tendency to arrive at RTA points early with slow required speeds, on time for moderate speeds, and late with faster required speeds. This implies that ATC/STM algorithms should operate with middle-range speeds, similar to that of non-STBO taxi performance. Route length has a related effect: Long taxi routes increase the earliness with slow speeds and the lateness with faster speeds. This is likely due to the" open-loop" nature of the task in which the speed error compounds over a longer time with longer routes. Results showed that this may be mitigated by imposing a small number oftime constraint points each with their own RTAs effectively tuming a long route into a series of shorter routes - and thus improving RTA performance. STBO ConOps Implications. Most important is the impact that these data have for NextGen STM system ConOps development. The results of these experiments imply that it is not reasonable to expect pilots to taxi under a "Full STBO" ConOps in which pilots are expected to be at a predictable (x,y) airport location for every time (t). An STBO ConOps with a small number of intermediate time constraint points and the departing runway, however, is feasible, but only with flight deck equipage enabling the use of a display similar to the "error-nulling algorithm/display" tested.

  19. Drive Motor Improved for 8- by 6-Foot Supersonic Wind Tunnel/9- by 15-Foot Low-Speed Wind Tunnel Complex

    NASA Technical Reports Server (NTRS)

    2005-01-01

    An operational change made recently in the drive motor system for the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT)/9- by 15-Foot Low-Speed Wind Tunnel (9x15 LSWT) complex resulted in dramatic power savings and expanded operating range. The 8x6 SWT/9x15 LSWT complex offers a unique combination of wind tunnel conditions for both high- and low-speed testing. Prior to the work discussed in this article, the 8- by 6-ft test section offered airflows ranging from Mach 0.36 to 2.0. Subsonic testing was done in the 9-ft high, 15-ft wide test area in the return leg of the facility. The air speed in this test section can range from 0 to 175 mph (Mach 0.23). In the past, we varied the air speed by using a combination of the compressor speed and the position of the tunnel flow-control doors. When very slow speeds were required in the 9x15 LSWT, these large tunnel flow control doors might be very nearly full open, bleeding off large quantities of air, even with the drive system operating at its previous minimum speed of about 510 rpm. Power drawn during this mode of operation varied between 15 and 18 MW/hr, but clearly much of this power was not being used to provide air that would be used for testing in the test section. The air exiting these large doors represented wasted power. Early this year, the facility's tunnel drive system was run on one motor instead of three to see if lower drive speeds could be achieved that would, in turn, result in large power savings because unnecessary air would not be blown out of the flow-control doors unnecessarily. In addition, if the drive could be run slower, then slower speeds would also be possible in the 8x6 SWT test section as an added benefit. Results of the first tests performed early last year showed that in fact the drive, when operating on only one motor, actually reached a steady-state speed of only 337 rpm and drew an amazingly small 6 MW/hr of electrical power. During daytime operation of the drive, this meant that it would be possible to save as much as 10 MW/hr, or nearly $600 per hour of operation, for many of the 9x15 LSWT's testing regimes. An added benefit of this power-saving venture was that since the 8x6 SWT and 9x15 LSWT are indeed on a common loop, if the compressor is slowed down to benefit the 9x15 LSWT, then the air moving through the 8x6 SWT is also moving slower than ever before. In fact, testing has proven that the 8x6 SWT can now achieve Mach 0.25, whereas its previous lower limit was Mach 0.36. This added benefit has attracted additional customers

  20. Overall impact of speed-related initiatives and factors on crash outcomes.

    PubMed

    D'Elia, A; Newstead, S; Cameron, M

    2007-01-01

    From December 2000 until July 2002 a package of speed-related initiatives and factors took place in Victoria, Australia. The broad aim of this study was to evaluate the overall impact of the package on crash outcomes. Monthly crash counts and injury severity proportions were assessed using Poisson and logistic regression models respectively. The model measured the overall effect of the package after adjusting as far as possible for non-speed road safety initiatives and socio-economic factors. The speed-related package was associated with statistically significant estimated reductions in casualty crashes and suggested reductions in injury severity with trends towards increased reductions over time. From December 2000 until July 2002, three new speed enforcement initiatives were implemented in Victoria, Australia. These initiatives were introduced in stages and involved the following key components: More covert operations of mobile speed cameras, including flash-less operations; 50% increase in speed camera operating hours; and lowering of cameras' speed detection threshold. In addition, during the period 2001 to 2002, the 50 km/h General Urban Speed Limit (GUSL) was introduced (January 2001), there was an increase in speed-related advertising including the "Wipe Off 5" campaign, media announcements were made related to the above enforcement initiatives and there was a speeding penalty restructure. The above elements combine to make up a package of speed-related initiatives and factors. The package represents a broad, long term program by Victorian government agencies to reduce speed based on three linked strategies: more intensive Police enforcement of speed limits to deter potential offenders, i.e. the three new speed enforcement initiatives just described - supported by higher penalties; a reduction in the speed limit on local streets throughout Victoria from 60 km/h to 50 km/h; and provision of information using the mass media (television, radio and billboard) to reinforce the benefits of reducing low level speeding - the central message of "Wipe Off 5". These strategies were implemented across the entire state of Victoria with the intention of covering as many road users as possible. This study aimed to evaluate the overall effectiveness of the speed-related package. The study objectives were: to document the increased speed camera activity in each speed limit zone and in Melbourne compared with the rest of Victoria; to evaluate the overall effect on crash outcomes of the package; to account as far as possible for the effect on crash outcomes of non-speed road safety initiatives and socio-economic factors, which would otherwise influence the speed-related package evaluation; and to examine speed trends in Melbourne and on Victorian rural highways, especially the proportions of vehicles travelling at excessive speeds. This paper presents the results of the evaluation of the overall impact on crash outcomes associated with the speed-related package, after adjusting as far as possible for the effect of non-speed road safety initiatives and socio-economic factors. D'Elia, Newstead and Cameron (2007) document the study results in full.

  1. Method and apparatus for optical encoding with compressible imaging

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2006-01-01

    The present invention presents an optical encoder with increased conversion rates. Improvement in the conversion rate is a result of combining changes in the pattern recognition encoder's scale pattern with an image sensor readout technique which takes full advantage of those changes, and lends itself to operation by modern, high-speed, ultra-compact microprocessors and digital signal processors (DSP) or field programmable gate array (FPGA) logic elements which can process encoder scale images at the highest speeds. Through these improvements, all three components of conversion time (reciprocal conversion rate)--namely exposure time, image readout time, and image processing time--are minimized.

  2. 30 CFR 56.9101 - Operating speeds and control of equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Operating speeds and control of equipment. 56... Loading, Hauling, and Dumping Traffic Safety § 56.9101 Operating speeds and control of equipment.... Operating speeds shall be consistent with conditions of roadways, tracks, grades, clearance, visibility, and...

  3. 14 CFR 27.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Performance at minimum operating speed. 27... minimum operating speed. (a) For helicopters— (1) The hovering ceiling must be determined over the ranges... climb at the minimum operating speed must be determined over the ranges of weight, altitude, and...

  4. 14 CFR 27.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Performance at minimum operating speed. 27... minimum operating speed. (a) For helicopters— (1) The hovering ceiling must be determined over the ranges... climb at the minimum operating speed must be determined over the ranges of weight, altitude, and...

  5. 30 CFR 56.9101 - Operating speeds and control of equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Operating speeds and control of equipment. 56... Loading, Hauling, and Dumping Traffic Safety § 56.9101 Operating speeds and control of equipment.... Operating speeds shall be consistent with conditions of roadways, tracks, grades, clearance, visibility, and...

  6. 14 CFR 29.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Performance at minimum operating speed. 29... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... than helicopters, the steady rate of climb at the minimum operating speed must be determined over the...

  7. 30 CFR 57.9101 - Operating speeds and control of equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Operating speeds and control of equipment. 57... Loading, Hauling, and Dumping Traffic Safety § 57.9101 Operating speeds and control of equipment.... Operating speeds shall be consistent with conditions of roadways, tracks, grades, clearance, visibility, and...

  8. 14 CFR 29.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Performance at minimum operating speed. 29... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... than helicopters, the steady rate of climb at the minimum operating speed must be determined over the...

  9. 30 CFR 57.9101 - Operating speeds and control of equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Operating speeds and control of equipment. 57... Loading, Hauling, and Dumping Traffic Safety § 57.9101 Operating speeds and control of equipment.... Operating speeds shall be consistent with conditions of roadways, tracks, grades, clearance, visibility, and...

  10. The high voltage homopolar generator

    NASA Astrophysics Data System (ADS)

    Price, J. H.; Gully, J. H.; Driga, M. D.

    1986-11-01

    System and component design features of proposed high voltage homopolar generator (HVHPG) are described. The system is to have an open circuit voltage of 500 V, a peak output current of 500 kA, 3.25 MJ of stored inertial energy and possess an average magnetic-flux density of 5 T. Stator assembly components are discussed, including the stator, mount structure, hydrostatic bearings, main and motoring brushgears and rotor. Planned operational procedures such as monitoring the rotor to full speed and operation with a superconducting field coil are delineated.

  11. Modeling Relevant to Safe Operations of U.S. Navy Vessels in Arctic Conditions: Physical Modeling of Ice Loads

    DTIC Science & Technology

    2016-06-01

    zones with ice concentrations up to 40%. To achieve this goal, the Navy must determine safe operational speeds as a function of ice concen- tration...and full-scale experience with ice-capable hull forms that have shallow entry angles to promote flexural ice failure preferentially over crushing...plan view) of the proposed large-scale ice–hull impact experiment to be conducted in CRREL’s refrigerated towing basin. Shown here is a side-panel

  12. Comparison between variable and constant rotor speed operation on WINDMEL-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasamoto, Akira; Matsumiya, Hikaru; Kawamura, Shunji

    1996-10-01

    On a wind turbine control system for rotor revolution speed, it is believed that variable speed operation has the advantages over constant speed from a view point of both aerodynamics and mechanics. However, there is no experimental study which shows the differences. In this report, the authors intend to clarify the differences about shaft torque by using experimental data, from a new wind turbine system which has both variable and constant operation. The result in observation of the experimental data shows that variable speed operational shaft torque is lower than constant speed operational one.

  13. Potential scenarios of concern for high speed rail operations

    DOT National Transportation Integrated Search

    2011-03-16

    Currently, multiple operating authorities are proposing the : introduction of high-speed rail service in the United States. : While high-speed rail service shares a number of basic : principles with conventional-speed rail service, the operational : ...

  14. An examination of loads and responses of a wind turbine undergoing variable-speed operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, A.D.; Buhl, M.L. Jr.; Bir, G.S.

    1996-11-01

    The National Renewable Energy Laboratory has recently developed the ability to predict turbine loads and responses for machines undergoing variable-speed operation. The wind industry has debated the potential benefits of operating wind turbine sat variable speeds for some time. Turbine system dynamic responses (structural response, resonance, and component interactions) are an important consideration for variable-speed operation of wind turbines. The authors have implemented simple, variable-speed control algorithms for both the FAST and ADAMS dynamics codes. The control algorithm is a simple one, allowing the turbine to track the optimum power coefficient (C{sub p}). The objective of this paper is tomore » show turbine loads and responses for a particular two-bladed, teetering-hub, downwind turbine undergoing variable-speed operation. The authors examined the response of the machine to various turbulent wind inflow conditions. In addition, they compare the structural responses under fixed-speed and variable-speed operation. For this paper, they restrict their comparisons to those wind-speed ranges for which limiting power by some additional control strategy (blade pitch or aileron control, for example) is not necessary. The objective here is to develop a basic understanding of the differences in loads and responses between the fixed-speed and variable-speed operation of this wind turbine configuration.« less

  15. 49 CFR 174.86 - Maximum allowable operating speed.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Maximum allowable operating speed. 174.86 Section... operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in § 173.247 of this subchapter, the maximum allowable operating speed may not exceed 24 km/hour (15 mph...

  16. 49 CFR 174.86 - Maximum allowable operating speed.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Maximum allowable operating speed. 174.86 Section... operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in § 173.247 of this subchapter, the maximum allowable operating speed may not exceed 24 km/hour (15 mph...

  17. Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains

    DOE PAGES

    Gu, Zheng; Nowakowski, Mark E.; Carlton, David B.; ...

    2015-03-16

    Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. In the past, signal propagation in nanomagnet chains were characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolvedmore » photoemission electron microscopy after applying nanosecond magnetic field pulses. Moreover, an intrinsic switching time of 100 ps per magnet is observed. In conclusion these experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability.« less

  18. Operating scheme for the light-emitting diode array of a volumetric display that exhibits multiple full-color dynamic images

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Shiraki, Atsushi; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2017-07-01

    We designed and developed a control circuit for a three-dimensional (3-D) light-emitting diode (LED) array to be used in volumetric displays exhibiting full-color dynamic 3-D images. The circuit was implemented on a field-programmable gate array; therefore, pulse-width modulation, which requires high-speed processing, could be operated in real time. We experimentally evaluated the developed system by measuring the luminance of an LED with varying input and confirmed that the system works appropriately. In addition, we demonstrated that the volumetric display exhibits different full-color dynamic two-dimensional images in two orthogonal directions. Each of the exhibited images could be obtained only from the prescribed viewpoint. Such directional characteristics of the system are beneficial for applications, including digital signage, security systems, art, and amusement.

  19. Preliminary results of steady state characterization of near term electric vehicle breadboard propulsion system

    NASA Technical Reports Server (NTRS)

    Sargent, N. B.

    1980-01-01

    The steady state test results on a breadboard version of the General Electric Near Term Electric Vehicle (ETV-1) are discussed. The breadboard was built using exact duplicate vehicle propulsion system components with few exceptions. Full instrumentation was provided to measure individual component efficiencies. Tests were conducted on a 50 hp dynamometer in a road load simulator facility. Characterization of the propulsion system over the lower half of the speed-torque operating range has shown the system efficiency to be composed of a predominant motor loss plus a speed dependent transaxle loss. At the lower speeds with normal road loads the armature chopper loss is also a significant factor. At the conditions corresponding to a cycle for which the vehicle system was specifically designed, the efficiencies are near optimum.

  20. Performance of Simple Gas Foil Thrust Bearings in Air

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In this case, the load capacity is constant and in fact often decreases with speed if other factors such as thermal conditions and runner distortions are permitted to dominate the bearing performance.

  1. Altitude Wind Tunnel Drive Motor Installation

    NASA Image and Video Library

    1943-07-21

    Construction workers install the drive motor for the Altitude Wind Tunnel (AWT) in the Exhauster Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The AWT was capable of operating full-scale engines in air density, speed, and temperature similar to that found at high altitudes. The tunnel could produce wind speeds up to 500 miles per hour through a 20-foot-diameter test section at the standard operating altitude of 30,000 feet. The airflow was created by a large wooden fan near the tunnel’s southeast corner. This photograph shows the installation of the 18,000-horsepower drive motor inside the adjoining Exhauster Building in July 1943. The General Electric motor, whose support frame is seen in this photograph, connected to a drive shaft that extended from the building, through the tunnel shell, and into a 12-bladed, 31-foot-diameter spruce wood fan. Flexible couplings on the shaft allowed for the movement of the shell. The corner of the Exhauster Building was built around the motor after its installation. The General Electric induction motor could produce 10 to 410 revolutions per minute and create wind speeds up to 500 miles per hour, or Mach 0.63, at 30,000 feet. The AWT became operational in January 1944 and tested piston, turbojet and ramjet engines for nearly 20 years.

  2. System frequency support of permanent magnet synchronous generator-based wind power plant

    NASA Astrophysics Data System (ADS)

    Wu, Ziping

    With ever-increasing penetration of wind power into modern electric grids all over the world, a trending replacement of conventional synchronous generators by large wind power plants will likely result in the poor overall frequency regulation performance. On the other hand, permanent magnet synchronous generator wind Turbine System (PMSG-WTG) with full power back to back converters tends to become one of the most promising wind turbine technologies thanks to various advantages. It possesses a significant amount of kinetic energy stored in the rotating mass of turbine blades, which can be utilized to enhance the total inertia of power system. Additionally, the deloaded operation and decoupled control of active and reactive power make it possible for PMSG-WTG to provide a fast frequency regulation through full-power converter. First of all, a comprehensive and in-depth survey is conducted to analyze the motivations for incorporating the inertial response and frequency regulation of VSWT into the system frequency regulation. Besides, control classifications, fundamental control concepts and advanced control schemes implemented for auxiliary frequency support of individual WT or wind power plant are elaborated along with a comparison of the potential frequency regulation capabilities of four major types of WTs. Secondly, a Controls Advanced Research Turbine2-Permanent Magnet Synchronous Generator wind turbine (CART2-PMSG) integrated model representing the typical configuration and operation characteristics of PMSG-WT is established in Matlab/Simulink,. Meanwhile, two different rotor-side converter control schemes, including rotor speed-based control and active power-based control, are integrated into this CART2-PMSG integrated model to perform Maximum Power Point Tracking (MPPT) operation over a wide range of wind speeds, respectively. Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is developed and implemented into the CART2-PMSG model based on rotor speed control. The proposed control scheme is achieved through the coordinated control between rotor speed and modified pitch angle in accordance with different specified wind speed modes. Fourth, an improved inertial control method based on the maximum power point tracking operation curve is introduced to boost the overall frequency support capability of PMSG-WTGs based on rotor speed control. Fifth, a novel control method based on the torque limit (TLC) is proposed for the purpose of maximizing the wind turbine (WT)'s inertial response. To avoid the SFD caused by the deloaded operation of WT, a small-scale battery energy storage system (BESS) model is established and implemented to eliminate this impact and meanwhile assist the restoration of wind turbine to MPPT mode by means of coordinated control strategy between BESS and PMSG-WTG. Last but not the least, all three types of control strategies are implemented in the CART2-PMSG integrated model based on rotor speed control or active power control respectively to evaluate their impacts on the wind turbine's structural loads during the frequency regulation process. Simulation results demonstrate that all the proposed methods can enhance the overall frequency regulation performance while imposing very slight negative impact on the major mechanical components of the wind turbine.

  3. Evaluation of denitrification potential of rotating biological contactors for treatment of municipal wastewater.

    PubMed

    Hanhan, O; Orhon, D; Krauth, Kh; Günder, B

    2005-01-01

    In this study the effect of retention time and rotation speed in the denitrification process in two full-scale rotating biological contactors (RBC) which were operated parallel and fed with municipal wastewater is evaluated. Each rotating biological contactor was covered to prevent oxygen input. The discs were 40% submerged. On the axle of one of the rotating biological contactors lamellas were placed (RBC1). During the experiments the nitrate removal performance of the rotating biological contactor with lamellas was observed to be less than the other (RBC2) since the lamellas caused oxygen diffusion through their movement. The highest nitrate removal observed was 2.06 g/m2.d achieved by a contact time of 28.84 minutes and a recycle flow of 1 l/s. The rotation speed during this set had the constant value of 0.8 min(-1). Nitrate removal efficiency on RBC1 was decreasing with increasing rotation speed. On the rotating biological contactor without lamellas no effect on denitrification could be determined within a speed range from 0.67 to 2.1 min-1. If operated in proper conditions denitrification on RBC is a very suitable alternative for nitrogen removal that can easily fulfil the nutrient limitations in coastal areas due to the rotating biological contactors economical benefits and uncomplicated handling.

  4. Development of a Semi-Span Test Capability at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Gatlin, G. M.; Parker, P. A.; Owens, L. R., Jr.

    2001-01-01

    A need for low-speed, high Reynolds number test capabilities has been identified for the design and development of advanced subsonic transport high-lift systems. In support of this need, multiple investigations have been conducted in the National Transonic Facility (NTF) at the NASA Langley Research Center to develop a semi-span testing capability that will provide the low-speed, flight Reynolds number data currently unattainable using conventional sting-mounted, full-span models. Although a semi-span testing capability will effectively double the Reynolds number capability over full-span models, it does come at the expense of contending with the issue of the interaction of the flow over the model with the windtunnel wall boundary layer. To address this issue the size and shape of the semi-span model mounting geometry have been investigated, and the results are presented herein. The cryogenic operating environment of the NTF produced another semi-span test technique issue in that varying thermal gradients have developed on the large semi-span balance. The suspected cause of these thermal gradients and methods to eliminate them are presented. Data are also presented that demonstrate the successful elimination of these varying thermal gradients during cryogenic operations.

  5. Lockheed design of a wind satellite (WINDSAT) experiment

    NASA Technical Reports Server (NTRS)

    Osmundson, John S.; Martin, Stephen C.

    1985-01-01

    WINDSAT is a proposed space based global wind measuring system. A Shuttleborne experiment is proposed as a proof of principle demonstration before development of a full operational system. WINDSAT goals are to measure wind speed and direction to + or - 1 m/s and 10 deg accuracy over the entire earth from 0 to 20 km altitude with 1 km altitude resolution. The wind measuring instrument is a coherent lidar incorporating a pulsed CO2 TEA laser transmitter and a continuously scanning 1.25 m diameter optical system. The wind speed is measured by heterodyne detecting the backscattered return laser radiation and measuring this frequency shift.

  6. Aerodynamic Characteristics at High Speeds of Full-Scale Propellers having Different Shank Designs

    NASA Technical Reports Server (NTRS)

    Maynard, Julian D.

    1947-01-01

    Tests of two 10-foot-diameter two-blade propellers which differed only in shank design have been made in the Langley 16-foot high-speed tunnel. The propellers are designated by their blade design numbers, NACA 10-(5)(08)-03, which had aerodynamically efficient airfoil shank sections, and NACA l0-(5)(08)-03R which had thick cylindrical shank sections typical of conventiona1 blades, The propellers mere tested on a 2000-horsepower dynamometer through a range of blade-angles from 20deg to 55deg at various rotational speeds and at airspeeds up to 496 miles per hour. The resultant tip speeds obtained simulate actual flight conditions, and the variation of air-stream Mach number with advance ratio is within the range of full-scale constant-speed propeller operation. Both propellers were very efficient, the maximum envelope efficiency being approximately 0,95 for the NACA 10-(5)(08)-03 propeller and about 5 percent less for the NACA 10-(5)(08)-03R propeller. Based on constant power and rotational speed, the efficiency of the NACA 10-(05)(08)-03 propeller was from 2.8 to 12 percent higher than that of the NACA 10-(5)(08)-03R propeller over a range of airspeeds from 225 to 450 miles per hour. The loss in maximum efficiency at the design blade angle for the NACA 10-(5)(08)-03 and 10-(5)(08)-03R propellers vas about 22 and 25 percent, respectively, for an increase in helical tip Mach number from 0.70 to 1.14.

  7. Balloon launched decelerator test program: Post-test test report

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Schlemmer, J.; Hicks, F.; Michel, F.; Moog, R. D.

    1972-01-01

    Balloon Launched Decelerator Test (BLDT) flights were conducted during the summer of 1972 over the White Sands Missile Range. The purpose of these tests was to qualify the Viking disk-gap band parachute system behind a full-scale simulator of the Viking Entry Vehicle over the maximum range of entry conditions anticipated in the Viking '75 soft landing on Mars. Test concerns centered on the ability of a minimum weight parachute system to operate without structural damage in the turbulent wake of the blunt-body entry vehicle (140 deg, 11.5 diameter cone). This is the first known instance of parachute operation at supersonic speeds in the wake of such a large blunt body. The flight tests utilized the largest successful balloon-payload weight combination known to get to high altitude (120kft) where rocket engines were employed to boost the test vehicle to supersonic speeds and dynamic pressures simulating the range of conditions on Mars.

  8. Speed Harmonization--Design Speed vs. Operating Speed.

    DOT National Transportation Integrated Search

    2016-10-01

    When the actual operating speed on the roads exceeds the design speed, which is common on rural highways, the roadway design may become problematic from a safety point of view. This report presents a new methodology that summarizes the relationship b...

  9. F-8 oblique wing structural feasibility study

    NASA Technical Reports Server (NTRS)

    Koltko, E.; Katz, A.; Bell, M. A.; Smith, W. D.; Lauridia, R.; Overstreet, C. T.; Klapprott, C.; Orr, T. F.; Jobe, C. L.; Wyatt, F. G.

    1975-01-01

    The feasibility of fitting a rotating oblique wing on an F-8 aircraft to produce a full scale manned prototype capable of operating in the transonic and supersonic speed range was investigated. The strength, aeroelasticity, and fatigue life of such a prototype are analyzed. Concepts are developed for a new wing, a pivot, a skewing mechanism, control systems that operate through the pivot, and a wing support assembly that attaches in the F-8 wing cavity. The modification of the two-place NTF-8A aircraft to the oblique wing configuration is discussed.

  10. Fast, optically controlled Kerr phase shifter for digital signal processing.

    PubMed

    Li, R B; Deng, L; Hagley, E W; Payne, M G; Bienfang, J C; Levine, Z H

    2013-05-01

    We demonstrate an optically controlled Kerr phase shifter using a room-temperature 85Rb vapor operating in a Raman gain scheme. Phase shifts from zero to π relative to an unshifted reference wave are observed, and gated operations are demonstrated. We further demonstrate the versatile digital manipulation of encoded signal light with an encoded phase-control light field using an unbalanced Mach-Zehnder interferometer. Generalizations of this scheme should be capable of full manipulation of a digitized signal field at high speed, opening the door to future applications.

  11. Emission rates of particulate matter and elemental and organic carbon from in-use diesel engines.

    PubMed

    Shah, Sandip D; Cocker, David R; Miller, J Wayne; Norbeck, Joseph M

    2004-05-01

    Elemental carbon (EC), organic carbon (OC), and particulate matter (PM) emission rates are reported for a number of heavy heavy-duty diesel trucks (HHDDTs) and back-up generators (BUGs) operating under real-world conditions. Emission rates were determined using a unique mobile emissions laboratory (MEL) equipped with a total capture full-scale dilution tunnel connected directly to the diesel engine via a snorkel. This paper shows that PM, EC, and OC emission rates are strongly dependent on the mode of vehicle operation; highway, arterial, congested, and idling conditions were simulated by following the speed trace from the California Air Resources Board HHDDT cycle. Emission rates for BUGs are reported as a function of engine load at constant speed using the ISO 8178B Cycle D2. The EC, OC, and PM emission rates were determined to be highly variable for the HHDDTs. It was determined that the per mile emission rate of OC from a HHDDT in congested traffic is 8.1 times higher than that of an HHDDT in cruise or highway speed conditions and 1.9 times higher for EC. EC/OC ratios for BUGs (which generally operate at steady states) and HHDDTs show marked differences, indicating that the transient nature of engine operation dictates the EC/OC ratio. Overall, this research shows that the EC/OC ratio varies widely for diesel engines in trucks and BUGs and depends strongly on the operating cycle. The findings reported here have significant implications in the application of chemical mass balance modeling, diesel risk assessment, and control strategies such as the Diesel Risk Reduction Program.

  12. Equations of motion of the lunar roving vehicle.

    NASA Technical Reports Server (NTRS)

    Kaufman, S.

    1973-01-01

    Equations of motion have been formulated for a four-wheel vehicle as it traverses a terrain characterized by slopes, craters, bumps, washboards, or a power spectrum. Independent suspension and electric motor propulsion are considered. These equations were programmed on the UNIVAC 1108 digital computer. Results are given for the steerability of the Lunar Roving Vehicle (LRV) which was found to be satisfactory for normal operating speeds and turning radii. The vehicle was also found to be satisfactory against overturning in both the pitch and roll mode, and results are presented for various speeds as the LRV engages a bump on meter in diameter and of varying heights. Speed, power consumption, and load characteristics are presented for the LRV traversing a simulated lunar soil at full throttle. Comparisons are given against data compiled from the Apollo 15 mission.

  13. Escalator design features evaluation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Deshpande, G. K.

    1982-01-01

    Escalators are available with design features such as dual speed (90 and 120 fpm), mat operation and flat steps. These design features were evaluated based on the impact of each on capital and operating costs, traffic flow, and safety. A human factors engineering model was developed to analyze the need for flat steps at various speeds. Mat operation of escalators was found to be cost effective in terms of energy savings. Dual speed operation of escalators with the higher speed used during peak hours allows for efficient operation. A minimum number of flat steps required as a function of escalator speed was developed to ensure safety for the elderly.

  14. Modeling and analysis of a flywheel microvibration isolation system for spacecrafts

    NASA Astrophysics Data System (ADS)

    Wei, Zhanji; Li, Dongxu; Luo, Qing; Jiang, Jianping

    2015-01-01

    The microvibrations generated by flywheels running at full speed onboard high precision spacecrafts will affect stability of the spacecraft bus and further degrade pointing accuracy of the payload. A passive vibration isolation platform comprised of multi-segment zig-zag beams is proposed to isolate disturbances of the flywheel. By considering the flywheel and the platform as an integral system with gyroscopic effects, an equivalent dynamic model is developed and verified through eigenvalue and frequency response analysis. The critical speeds of the system are deduced and expressed as functions of system parameters. The vibration isolation performance of the platform under synchronal and high-order harmonic disturbances caused by the flywheel is investigated. It is found that the speed range within which the passive platform is effective and the disturbance decay rate of the system are greatly influenced by the locations of the critical speeds. Structure optimization of the platform is carried out to enhance its performance. Simulation results show that a properly designed vibration isolation platform can effectively reduce disturbances emitted by the flywheel operating above the critical speeds of the system.

  15. Temperature Prediction in High Speed Bone Grinding using Motor PWM Signal

    PubMed Central

    Tai, Bruce L.; Zhang, Lihui; Wang, Anthony C.; Sullivan, Stephen; Wang, Guangjun; Shih, Albert J.

    2013-01-01

    This research explores the feasibility of using motor electrical feedback to estimate temperature rise during a surgical bone grinding procedure. High-speed bone grinding is often used during skull base neurosurgery to remove cranial bone and approach skull base tumors through the nasal corridor. Grinding-induced heat could propagate and potentially injure surrounding nerves and arteries, and therefore, predicting the temperature in the grinding region would benefit neurosurgeons during the operation. High-speed electric motors are controlled by pulse-width-modulation (PWM) to alter the current input and thus maintain the rotational speed. Assuming full mechanical to thermal power conversion in the grinding process, PWM can be used as feedback for heat generation and temperature prediction. In this study, the conversion model was established from experiments under a variety of grinding conditions and an inverse heat transfer method to determine heat flux. Given a constant rotational speed, the heat conversion was represented by a linear function, and could predict temperature from the experimental data with less than 20% errors. Such results support the advance of this technology for practical application. PMID:23806419

  16. An Experimental Investigation of the Effect of Propellers Used as Aerodynamic Brakes on Stability and Control

    NASA Technical Reports Server (NTRS)

    Hanson, Frederick H

    1945-01-01

    Tests were made of a model representative of a single-engine tractor-type airplane for the purpose of determining the stability and control effects of a propeller used as an aerodynamic brake. The tests were made with single-and dual-rotation propellers to show the effect of type of propeller rotation, and with positive thrust to provide basic data with which to compare the effects of negative thrust. Four configurations of the model were used to give the effects of tilting the propeller thrust axis down 5 deg., raising the horizontal tail, and combining both tilt and raised tail. Results of the tests are reported herein. The effects of negative thrust were found to be significant. The longitudinal stability was increased because of the loss of wing lift and increase of the angle of attack of the tail. Directional stability and both longitudinal and directional control were decreased because of the reduced velocity at the tail. These effects are moderate for moderate braking but become pronounced with full-power braking, particularly at high values of lift coefficient. The effects of model configuration changes were small when compared with the over-all effects of negative-thrust operation; however, improved stability and control characteristics were exhibited by the model with the tilted thrust axis. Raising the horizontal tail improved the longitudinal characteristics, but was detrimental to directional characteristics. The use of dual-rotation propeller reduced the directional trim charges resulting from the braking operation. A prototype airplane was assumed and handling qualities were computed and analyzed for normal (positive thrust) and braking operation with full and partial power. The results of these analyses are presented for the longitudinal characteristics in steady and accelerated flight, and for the directional characteristics in high- and low-speed flight. It was found that by limiting the power output of the engine (assuming the constant-speed propeller will function in the range of blade angles required for negative thrust) the stability and control characteristics may be held within the limits required for safe operation. Braking with full power, particularly at low speeds, is dangerous, but braking with very small power output is satisfactory from the standpoint of control. The amount of braking produced with zero power output is equal to or better than that produced by conventional spoiler-type brakes.

  17. Electric vehicle drive train with direct coupling transmission

    DOEpatents

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  18. Electric vehicle drive train with direct coupling transmission

    DOEpatents

    Tankersley, Jerome B.; Boothe, Richard W.; Konrad, Charles E.

    1995-01-01

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  19. Enhancement of capacitance benefit by drain offset structure in tunnel field-effect transistor circuit speed associated with tunneling probability increase

    NASA Astrophysics Data System (ADS)

    Asai, Hidehiro; Mori, Takahiro; Matsukawa, Takashi; Hattori, Junichi; Endo, Kazuhiko; Fukuda, Koichi

    2018-04-01

    The effect of a drain offset structure on the operation speed of a tunnel field-effect transistor (TFET) ring oscillator is investigated by technology computer-aided design (TCAD) simulation. We demonstrate that the reduction of gate-drain capacitance by the drain offset structure dramatically increases the operation speed of the ring oscillators. Interestingly, we find that this capacitance benefit to operation speed is enhanced by the increase in band-to-band tunneling probability. The “synergistic” speed enhancement by the drain offset structure and the tunneling rate increase will have promising application to the significant improvement of the operation speed of TFET circuits.

  20. Improved Descent-Rate Limiting Mechanism

    NASA Technical Reports Server (NTRS)

    Rivellini, Tommaso P.; Bickler, Donald B.; Swenson, Bradford; Gallon, John; Ingle, Jack

    2008-01-01

    An improved braking cable-payout mechanism has been developed. Whereas other such mechanisms operate at payout speeds that vary with the length of payout, this mechanism operates at approximately constant payout speed, regardless of the length of cord that has already been paid out. The present mechanism includes a spool, a capstan assembly, and centrifugal brakes. The spool is used to store the cord and, unlike in the prior mechanism, is not involved in the primary braking function. That is, the spool operates in such a way that the cord is unwound from the spool at low tension. The spool is connected to the rest of the mechanism through a constant- torque slip clutch. The clutch must slip in order to pay out the cord. As the cord leaves the spool, it passes into the capstan assembly, wherein its direction is changed by use of the first of three idler sheaves and it is then routed into the first of three grooves on a capstan. After completing less than a full circle in the first groove, the cord passes over the second idler sheave, which is positioned to enable the cord to make the transition to the second groove on the capstan. Similarly, a third idler sheave enables the cord to make the transition to the third groove on the capstan. After traveling less than a full circle in the third groove, the cord leaves the capstan along the payout path. The total wrap angle afforded by this capstan-and-idler arrangement is large enough to prevent slippage between the cord and the capstan. The capstan is connected to a shaft that, in turn, is connected to a centrifugal brake. Hence, the effective payout radius, for purposes of braking, is not the varying radius of the remaining cord on the spool but, rather, the constant radius of the grooves in the capstan. The payout speed is determined primarily by this radius and by the characteristics of the centrifugal brake. Therefore, the payout speed is more nearly constant in this mechanism than in the prior mechanism.

  1. Full-Authority Fault-Tolerant Electronic Engine Control System for Variable Cycle Engines.

    DTIC Science & Technology

    1982-04-01

    single internally self-checked VLSI micro - processor . The selected configuration is an externally checked pair of com- mercially available...Electronic Engine Control FPMH Failures per Million Hours FTMP Fault Tolerant Multi- Processor FTSC Fault Tolerant Spaceborn Computer GRAMP Generalized...Removal * MTBR Mean Time Between Repair MTTF Mean Time to Failure xiii List of Abbreviations (continued) - NH High Pressure Rotor Speed O&S Operating

  2. Multiple Detector Optimization for Hidden Radiation Source Detection

    DTIC Science & Technology

    2015-03-26

    important in achieving operationally useful methods for optimizing detector emplacement, the 2-D attenuation model approach promises to speed up the...process of hidden source detection significantly. The model focused on detection of the full energy peak of a radiation source. Methods to optimize... radioisotope identification is possible without using a computationally intensive stochastic model such as the Monte Carlo n-Particle (MCNP) code

  3. 14 CFR Appendix D to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Position/Speed Brake Selection Full range or each discrete position ±2% unless higher accuracy uniquely... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Pt. 135, App...,000 ft to max certificated altitude of aircraft ±100 to ±700 ft (See Table 1, TSO-C51a) 1 5′ to 35′ 1...

  4. 14 CFR Appendix D to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Position/Speed Brake Selection Full range or each discrete position ±2% unless higher accuracy uniquely... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Pt. 135, App...,000 ft to max certificated altitude of aircraft ±100 to ±700 ft (See Table 1, TSO-C51a) 1 5′ to 35′ 1...

  5. 14 CFR Appendix D to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Position/Speed Brake Selection Full range or each discrete position ±2% unless higher accuracy uniquely... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Pt. 135, App...,000 ft to max certificated altitude of aircraft ±100 to ±700 ft (See Table 1, TSO-C51a) 1 5′ to 35′ 1...

  6. 14 CFR Appendix D to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Position/Speed Brake Selection Full range or each discrete position ±2% unless higher accuracy uniquely... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Pt. 135, App...,000 ft to max certificated altitude of aircraft ±100 to ±700 ft (See Table 1, TSO-C51a) 1 5′ to 35′ 1...

  7. PIV investigation of the flow induced by a passive surge control method in a radial compressor

    NASA Astrophysics Data System (ADS)

    Guillou, Erwann; Gancedo, Matthieu; Gutmark, Ephraim; Mohamed, Ashraf

    2012-09-01

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratios. Unfortunately, increasing the impeller rotational speed of turbocharger radial compressors tends to reduce their range of operation, which is limited at low mass flow rate by the occurrence of surge. In order to extend the operability of turbochargers, compressor housings can be equipped with a passive surge control device such as a "ported shroud." This specific casing treatment has been demonstrated to enhance the surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the system remain not well understood. Hence, in order to optimize the design of the ported shroud, it is crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. From the full dynamic survey of the compressor performance characteristics obtained with and without ported shroud, specific points of operation were selected to carry out planar flow visualization. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to evaluate instantaneous and mean velocity flow fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. As a result, satisfying characterization of the compressor instabilities was provided at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanism was achieved.

  8. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  9. 14 CFR 91.117 - Aircraft speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aircraft speed. 91.117 Section 91.117... speed. (a) Unless otherwise authorized by the Administrator, no person may operate an aircraft below 10... than the maximum speed prescribed in this section, the aircraft may be operated at that minimum speed...

  10. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  11. 14 CFR 91.117 - Aircraft speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft speed. 91.117 Section 91.117... speed. (a) Unless otherwise authorized by the Administrator, no person may operate an aircraft below 10... than the maximum speed prescribed in this section, the aircraft may be operated at that minimum speed...

  12. 78 FR 76191 - Operational Tests and Inspections for Compliance With Maximum Authorized Train Speeds and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ... Tests and Inspections for Compliance With Maximum Authorized Train Speeds and Other Speed Restrictions... safety advisory; Operational tests and inspections for compliance with maximum authorized train speeds and other speed restrictions. SUMMARY: FRA is issuing Safety Advisory 2013-08 to stress to railroads...

  13. Wake flow control using a dynamically controlled wind turbine

    NASA Astrophysics Data System (ADS)

    Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team

    2016-11-01

    A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).

  14. Dual Cavitating Hydrofoil Structures for Multi-Speed Applications.

    DTIC Science & Technology

    A hydrofoil structures for efficient operation over a wide speed range from subcavitating to supercavitating operation is provided. The...dualcavitating hydrofoil overcomes cavitation problems associated with high speed operation of prior art subcavitating hydrofoils by providing a supercavitating ...profile shape in the lower surface to achieve a supercavitating condition at high speeds and overcomes performance related problems associated with low

  15. 49 CFR 213.9 - Classes of track: operating speed limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Classes of track: operating speed limits. 213.9... speed limits. (a) Except as provided in paragraph (b) of this section and §§ 213.57(b), 213.59(a), 213.113(a), and 213.137(b) and (c), the following maximum allowable operating speeds apply— [In miles per...

  16. 49 CFR 213.9 - Classes of track: operating speed limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Classes of track: operating speed limits. 213.9... speed limits. (a) Except as provided in paragraph (b) of this section and §§ 213.57(b), 213.59(a), 213.113(a), and 213.137(b) and (c), the following maximum allowable operating speeds apply— [In miles per...

  17. Frequency domain near-infrared multiwavelength imager design using high-speed, direct analog-to-digital conversion

    NASA Astrophysics Data System (ADS)

    Zimmermann, Bernhard B.; Fang, Qianqian; Boas, David A.; Carp, Stefan A.

    2016-01-01

    Frequency domain near-infrared spectroscopy (FD-NIRS) has proven to be a reliable method for quantification of tissue absolute optical properties. We present a full-sampling direct analog-to-digital conversion FD-NIR imager. While we developed this instrument with a focus on high-speed optical breast tomographic imaging, the proposed design is suitable for a wide-range of biophotonic applications where fast, accurate quantification of absolute optical properties is needed. Simultaneous dual wavelength operation at 685 and 830 nm is achieved by concurrent 67.5 and 75 MHz frequency modulation of each laser source, respectively, followed by digitization using a high-speed (180 MS/s) 16-bit A/D converter and hybrid FPGA-assisted demodulation. The instrument supports 25 source locations and features 20 concurrently operating detectors. The noise floor of the instrument was measured at <1.4 pW/√Hz, and a dynamic range of 115+ dB, corresponding to nearly six orders of magnitude, has been demonstrated. Titration experiments consisting of 200 different absorption and scattering values were conducted to demonstrate accurate optical property quantification over the entire range of physiologically expected values.

  18. Frequency domain near-infrared multiwavelength imager design using high-speed, direct analog-to-digital conversion

    PubMed Central

    Zimmermann, Bernhard B.; Fang, Qianqian; Boas, David A.; Carp, Stefan A.

    2016-01-01

    Abstract. Frequency domain near-infrared spectroscopy (FD-NIRS) has proven to be a reliable method for quantification of tissue absolute optical properties. We present a full-sampling direct analog-to-digital conversion FD-NIR imager. While we developed this instrument with a focus on high-speed optical breast tomographic imaging, the proposed design is suitable for a wide-range of biophotonic applications where fast, accurate quantification of absolute optical properties is needed. Simultaneous dual wavelength operation at 685 and 830 nm is achieved by concurrent 67.5 and 75 MHz frequency modulation of each laser source, respectively, followed by digitization using a high-speed (180  MS/s) 16-bit A/D converter and hybrid FPGA-assisted demodulation. The instrument supports 25 source locations and features 20 concurrently operating detectors. The noise floor of the instrument was measured at <1.4  pW/√Hz, and a dynamic range of 115+ dB, corresponding to nearly six orders of magnitude, has been demonstrated. Titration experiments consisting of 200 different absorption and scattering values were conducted to demonstrate accurate optical property quantification over the entire range of physiologically expected values. PMID:26813081

  19. Statistical analysis of low frequency vibrations in variable speed wind turbines

    NASA Astrophysics Data System (ADS)

    Escaler, X.; Mebarki, T.

    2013-12-01

    The spectral content of the low frequency vibrations in the band from 0 to 10 Hz measured in full scale wind turbines has been statistically analyzed as a function of the whole range of steady operating conditions. Attention has been given to the amplitudes of the vibration peaks and their dependency on rotating speed and power output. Two different wind turbine models of 800 and 2000 kW have been compared. For each model, a sample of units located in the same wind farm and operating during a representative period of time have been considered. A condition monitoring system installed in each wind turbine has been used to register the axial acceleration on the gearbox casing between the intermediate and the high speed shafts. The average frequency spectrum has permitted to identify the vibration signature and the position of the first tower natural frequency in both models. The evolution of the vibration amplitudes at the rotor rotating frequency and its multiples has shown that the tower response is amplified by resonance conditions in one of the models. So, it is concluded that a continuous measurement and control of low frequency vibrations is required to protect the turbines against harmful vibrations of this nature.

  20. Speed limit recommendation in vicinity of signalized, high-speed intersection.

    DOT National Transportation Integrated Search

    2012-04-01

    We evaluated the traffic operations and safety effects of 5 mph and 10 mph speed limit reductions in the vicinity of highspeed, : signalized intersections with advance warning flashers (AWF). Traffic operational effects of the reduced speed : limits ...

  1. Generator voltage stabilisation for series-hybrid electric vehicles.

    PubMed

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.

  2. Evaluating the operations capability of Freedom's Data Management System

    NASA Technical Reports Server (NTRS)

    Sowizral, Henry A.

    1990-01-01

    Three areas of Data Management System (DMS) performance are examined: raw processor speed, the subjective speed of the Lynx OS X-Window system, and the operational capacity of the Runtime Object Database (RODB). It is concluded that the proposed processor will operate at its specified rate of speed and that the X-Window system operates within users' subjective needs. It is also concluded that the RODB cannot provide the required level of service, even with a two-order of magnitude (100 fold) improvement in speed.

  3. New geometric design consistency model based on operating speed profiles for road safety evaluation.

    PubMed

    Camacho-Torregrosa, Francisco J; Pérez-Zuriaga, Ana M; Campoy-Ungría, J Manuel; García-García, Alfredo

    2013-12-01

    To assist in the on-going effort to reduce road fatalities as much as possible, this paper presents a new methodology to evaluate road safety in both the design and redesign stages of two-lane rural highways. This methodology is based on the analysis of road geometric design consistency, a value which will be a surrogate measure of the safety level of the two-lane rural road segment. The consistency model presented in this paper is based on the consideration of continuous operating speed profiles. The models used for their construction were obtained by using an innovative GPS-data collection method that is based on continuous operating speed profiles recorded from individual drivers. This new methodology allowed the researchers to observe the actual behavior of drivers and to develop more accurate operating speed models than was previously possible with spot-speed data collection, thereby enabling a more accurate approximation to the real phenomenon and thus a better consistency measurement. Operating speed profiles were built for 33 Spanish two-lane rural road segments, and several consistency measurements based on the global and local operating speed were checked. The final consistency model takes into account not only the global dispersion of the operating speed, but also some indexes that consider both local speed decelerations and speeds over posted speeds as well. For the development of the consistency model, the crash frequency for each study site was considered, which allowed estimating the number of crashes on a road segment by means of the calculation of its geometric design consistency. Consequently, the presented consistency evaluation method is a promising innovative tool that can be used as a surrogate measure to estimate the safety of a road segment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Effect of geometry and operating conditions on spur gear system power loss

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1980-01-01

    The results of an analysis of the effects of spur gear size, pitch, width, and ratio on total mesh power loss for a wide range of speeds, torques, and oil viscosities are presented. The analysis uses simple algebraic expressions to determine gear sliding, rolling, and windage losses and also incorporates an approximate ball bearing power loss expression. The analysis shows good agreement with published data. Large diameter and fine pitched gears had higher peak efficiencies but low part load efficiency. Gear efficiencies were generally greater than 98 percent except at very low torque levels. Tare (no-load) losses are generally a significant percentage of the full load loss except at low speeds.

  5. Effect of geometry and operating conditions on spur gear system power loss

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1980-01-01

    The results of an analysis of the effects of spur gear size, pitch, width and ratio on total mesh power loss for a wide range of speeds, torques and oil viscosities are presented. The analysis uses simple algebraic expressions to determine gear sliding, rolling and windage losses and also incorporates an approximate ball bearing power loss expression. The analysis shows good agreement with published data. Large diameter and fine-pitched gears had higher peak efficiencies but lower part-load efficiency. Gear efficiencies were generally greater than 98 percent except at very low torque levels. Tare (no-load) losses are generally a significant percentage of the full-load loss except at low speeds.

  6. New generation of free-piston shock tunnels

    NASA Technical Reports Server (NTRS)

    Morrison, W. R. B.; Stalker, R. J.; Duffin, J.

    1990-01-01

    Consideration is given to three free-piston driven hypersonic tunnels under construction that will greatly enhance existing test capabilities. The tunnel being built at Caltech will feature energy capabilities about 40 percent higher than those of the world's largest operational free-piston tunnel to date. The second tunnel under construction will allow full-size engine hardware at near-orbital speeds. The third facility is a high-performance expansion tube that will be capable of generating high enthalpy flows at speeds of up to 9 km/sec. It will provide flows with dissociation levels much lower than are attainable with a reflected shock tunnel, approaching actual flight conditions. A table shows the tunnels' characteristics.

  7. Run-Curve Design for Energy Saving Operation in a Modern DC-Electrification

    NASA Astrophysics Data System (ADS)

    Koseki, Takafumi; Noda, Takashi

    Mechanical brakes are often used by electric trains. These brakes have a few problems like response speed, coefficient of friction, maintenance cost and so on. As a result, methods for actively using regenerative brakes are required. In this paper, we propose the useful pure electric braking, which would involve ordinary brakes by only regenerative brakes without any mechanical brakes at high speed. Benefits of our proposal include a DC-electrification system with regenerative substations that can return powers to the commercial power system and a train that can use the full regenerative braking force. We furthermore evaluate the effects on running time and energies saved by regenerative substations in the proposed method.

  8. High speed cylindrical roller bearing analysis, SKF computer program CYBEAN. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Kleckner, R. J.; Pirvics, J.

    1978-01-01

    The CYBEAN (Cylindrical Bearing Analysis) was created to detail radially loaded, aligned and misaligned cylindrical roller bearing performance under a variety of operating conditions. Emphasis was placed on detailing the effects of high speed, preload and system thermal coupling. Roller tilt, skew, radial, circumferential and axial displacement as well as flange contact were considered. Variable housing and flexible out-of-round outer ring geometries, and both steady state and time transient temperature calculations were enabled. The complete range of elastohydrodynamic contact considerations, employing full and partial film conditions were treated in the computation of raceway and flange contacts. Input and output architectures containing guidelines for use and a sample execution are detailed.

  9. Full-scale Wind-tunnel and Flight Tests of a Fairchild 22 Airplane Equipped with External-airfoil Flaps

    NASA Technical Reports Server (NTRS)

    Reed, Warren D; Clay, William C

    1937-01-01

    Wind-tunnel and flight tests have been made of a Fairchild 22 airplane equipped with a wing having external-airfoil flaps that also perform the function of ailerons. Lift, drag, and pitching-moment coefficients of the airplane with several flap settings, and the rolling- and yawing-moment coefficients with the flaps deflected as ailerons were measured in the full-scale tunnel with the horizontal tail surfaces and propeller removed. The effect of the flaps on the low speed and on the take-off and landing characteristics, the effectiveness of flaps when used as ailerons, and the forces required to operate them as ailerons were determined in flight. The wind-tunnel tests showed that the flaps increased the maximum lift coefficient of the airplane from 1.51 with the flap in the minimum drag position to 2.12 with the flap in the minimum drag position to 2.12 with the flap deflected 30 degrees. In the flight tests the minimum speed decreased from 46.8 miles per hour with the flaps up to 41.3 miles per hour with the flaps deflected. The required take-off run to attain a height of 50 feet was reduced from 820 to 750 feet and the landing run from a height of 50 feet was reduced from 930 to 480 feet. The flaps for this installation gave lateral control that was not entirely satisfactory. Their rolling action was good but the adverse yaw resulting from their use was greater than is considerable, and the stick forces required to operate them increased too rapidly with speed.

  10. Performance and component frontal areas of a hypothetical two-spool turbojet engine for three modes of operation

    NASA Technical Reports Server (NTRS)

    Dugan, James F , Jr

    1955-01-01

    Engine performance is better for constant outer-spool mechanical-speed operation than for constant inner-spool mechanical-speed operation over most of the flight range considered. Combustor and afterburner frontal areas are about the same for the two modes. Engine performance for a mode characterized by a constant outer-spool equivalent speed over part of the flight range and a constant outer-spool mechanical speed over the rest of the flight range is better that that for constant outer-spool mechanical speed operation. The former mode requires larger outer-spool centrifugal stresses and larger component frontal areas.

  11. Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems

    NASA Astrophysics Data System (ADS)

    Jiang, Mu-Sheng; Sun, Shi-Hai; Tang, Guang-Zhao; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2013-12-01

    Thanks to the high-speed self-differencing single-photon detector (SD-SPD), the secret key rate of quantum key distribution (QKD), which can, in principle, offer unconditionally secure private communications between two users (Alice and Bob), can exceed 1 Mbit/s. However, the SD-SPD may contain loopholes, which can be exploited by an eavesdropper (Eve) to hack into the unconditional security of the high-speed QKD systems. In this paper, we analyze the fact that the SD-SPD can be remotely controlled by Eve in order to spy on full information without being discovered, then proof-of-principle experiments are demonstrated. Here, we point out that this loophole is introduced directly by the operating principle of the SD-SPD, thus, it cannot be removed, except for the fact that some active countermeasures are applied by the legitimate parties.

  12. The construction, testing, and installation of a 6500 r/min 15 000-hp adjustable-speed electric drive for a centrifugal gas compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, R.G.; Finney, D.; Davidson, D.F.

    1988-07-01

    The construction, testing, and installation of a 6500 r/min 15 000-hp adjustable-speed electric drive for a centrifugal gas compressor is presented. A power electronic converter is applied to control the speed of a 5-kV motor. The motor is directly coupled to a 6500 r/min compressor and replaced a steam turbine. Dual converters are used in a twelve-pulse arrangement at both the utility and the motor. The motor is of solid rotor construction, with dual 30/sup 0/ displaced stator windings. Finite-element analysis is used to optimize the motor designs for use with a variable-frequency static converter. Full-power tests are completed whichmore » confirm theoretical predictions on losses, performance, and operation. The electrical drive takes up considerably less space and is much more efficient than the steam turbine it replaced.« less

  13. Applications of Endothermic Reaction Technology to the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Glickstein, Marvin R.; Spadaccini, Louis J.

    1998-01-01

    The success of strategies for controlling emissions and enhancing performance in High Speed Research applications may be Increased by more effective utilization of the heat sink afforded by the fuel in the vehicle thermal management system. This study quantifies the potential benefits associated with the use of supercritical preheating and endothermic cracking of let fuel prior to combustion to enhance the thermal management capabilities of the propulsion systems in the High Speed Civil Transport (HSCT). A fuel-cooled thermal management system, consisting of plate-fin heat exchangers and a small auxiliary compressor, is defined for the HSCT, Integrated with the engine, and an assessment of the effect on engine performance, weight, and operating cost is performed. The analysis indicates significant savings due a projected improvement in fuel economy, and the potential for additional benefit if the cycle is modified to take full advantage of all the heat sink available in the fuel.

  14. A rough set-based measurement model study on high-speed railway safety operation.

    PubMed

    Hu, Qizhou; Tan, Minjia; Lu, Huapu; Zhu, Yun

    2018-01-01

    Aiming to solve the safety problems of high-speed railway operation and management, one new method is urgently needed to construct on the basis of the rough set theory and the uncertainty measurement theory. The method should carefully consider every factor of high-speed railway operation that realizes the measurement indexes of its safety operation. After analyzing the factors that influence high-speed railway safety operation in detail, a rough measurement model is finally constructed to describe the operation process. Based on the above considerations, this paper redistricts the safety influence factors of high-speed railway operation as 16 measurement indexes which include staff index, vehicle index, equipment index and environment. And the paper also provides another reasonable and effective theoretical method to solve the safety problems of multiple attribute measurement in high-speed railway operation. As while as analyzing the operation data of 10 pivotal railway lines in China, this paper respectively uses the rough set-based measurement model and value function model (one model for calculating the safety value) for calculating the operation safety value. The calculation result shows that the curve of safety value with the proposed method has smaller error and greater stability than the value function method's, which verifies the feasibility and effectiveness.

  15. Altitude Wind Tunnel Control Room at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-07-21

    Operators in the control room for the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory remotely operate a Wright R–3350 engine in the tunnel’s test section. Four of the engines were used to power the B–29 Superfortress, a critical weapon in the Pacific theater during World War II. The wind tunnel, which had been in operation for approximately six months, was the nation’s only wind tunnel capable of testing full-scale engines in simulated altitude conditions. The soundproof control room was used to operate the wind tunnel and control the engine being run in the test section. The operators worked with assistants in the adjacent Exhauster Building and Refrigeration Building to manage the large altitude simulation systems. The operator at the center console controlled the tunnel’s drive fan and operated the engine in the test section. Two sets of pneumatic levers near his right forearm controlled engine fuel flow, speed, and cooling. Panels on the opposite wall, out of view to the left, were used to manage the combustion air, refrigeration, and exhauster systems. The control panel also displayed the master air speed, altitude, and temperature gauges, as well as a plethora of pressure, temperature, and airflow readings from different locations on the engine. The operator to the right monitored the manometer tubes to determine the pressure levels. Despite just being a few feet away from the roaring engine, the control room remained quiet during the tests.

  16. Experience with integrally-cast compressor and turbine components for a small, low-cost, expendable-type turbojet engine

    NASA Technical Reports Server (NTRS)

    Dengler, R. P.

    1975-01-01

    Experiences with integrally-cast compressor and turbine components during fabrication and testing of four engine assemblies of a small (29 cm (11 1/2 in.) maximum diameter) experimental turbojet engine design for an expendable application are discussed. Various operations such as metal removal, welding, and re-shaping of these components were performed in preparation of full-scale engine tests. Engines with these components were operated for a total of 157 hours at engine speeds as high as 38,000 rpm and at turbine inlet temperatures as high as 1256 K (1800 F).

  17. Galaxies and cosmology with ALMA

    NASA Astrophysics Data System (ADS)

    Planesas, P.

    2011-12-01

    Intensive work is being carried out at the Joint ALMA Observatory in order to bring four bands of a 16-antenna mm/submm interferometer into scientific operation. Specific tests of the advertised capabilities for Early Science are being carried out as well as further tests in order to bring ALMA into full operation as planned. Some of the measurements were taken towards extragalactic objects. In fact, the high sensitivity, high angular resolution, high image fidelity, and high mapping speed, together with a large frequency coverage, will make ALMA the right instrument for high redshift studies, and detailed dynamical and chemical studies of nearby galaxies.

  18. Effects of pole flux distribution in a homopolar linear synchronous machine

    NASA Astrophysics Data System (ADS)

    Balchin, M. J.; Eastham, J. F.; Coles, P. C.

    1994-05-01

    Linear forms of synchronous electrical machine are at present being considered as the propulsion means in high-speed, magnetically levitated (Maglev) ground transportation systems. A homopolar form of machine is considered in which the primary member, which carries both ac and dc windings, is supported on the vehicle. Test results and theoretical predictions are presented for a design of machine intended for driving a 100 passenger vehicle at a top speed of 400 km/h. The layout of the dc magnetic circuit is examined to locate the best position for the dc winding from the point of view of minimum core weight. Measurements of flux build-up under the machine at different operating speeds are given for two types of secondary pole: solid and laminated. The solid pole results, which are confirmed theoretically, show that this form of construction is impractical for high-speed drives. Measured motoring characteristics are presented for a short length of machine which simulates conditions at the leading and trailing ends of the full-sized machine. Combination of the results with those from a cylindrical version of the machine make it possible to infer the performance of the full-sized traction machine. This gives 0.8 pf and 0.9 efficiency at 300 km/h, which is much better than the reported performance of a comparable linear induction motor (0.52 pf and 0.82 efficiency). It is therefore concluded that in any projected high-speed Maglev systems, a linear synchronous machine should be the first choice as the propulsion means.

  19. Load cell verification of the uprated high pressure oxygen turbopump for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Beatty, R. F.; Hine, M. J.

    1986-01-01

    The high pressure turbomachinery of the Space Shuttle Main Engine has the highest power-to-weight ratio of any operational machine known. Subsynchronous rotor whirl of the high pressure oxygen turbopump occurred in development testing at full-power level (109 percent thrust). The means by which the turbopump was successfully uprated is presented herein. The subsynchronous motion was determined to be driven by impeller destabilizing forces in combination with low net damping and bearing degradation. The degradation resulted from ball wear due primarily to an excessive loading condition of operating too near the lightly damped rotor second critical speed while under a large static load and, secondarily, from reverse bearing loading or loss of internal clearance and coolant during simulated flight conditions. The rotor response was reduced by stiffening the shaft and supports, optimizing the stiffness and damping of annular seals, and increasing the bearing deadband. The uprated oxygen turbopump configuration was verified by converting the pump and bearing support into a load cell for the purpose of systematically quantifying the load reduction benefits relative to baseline turbopumps. The damped second critical speed margin and the load sharing have been substantially improved which has resulted in reduced bearing loads for improved service life of the machine at full-power level.

  20. THRUST BEARING

    DOEpatents

    Heller, P.R.

    1958-09-16

    A thrust bearing suitable for use with a rotor or blower that is to rotate about a vertical axis is descrihed. A centrifagal jack is provided so thnt the device may opernte on one hearing at starting and lower speeds, and transfer the load to another bearing at higher speeds. A low viscosity fluid is used to lubricate the higher speed operation bearing, in connection with broad hearing -surfaces, the ability to withstand great loads, and a relatively high friction loss, as contraated to the lower speed operatio;n bearing which will withstand only light thrust loads but is sufficiently frictionfree to avoid bearing seizure during slow speed or startup operation. An axially aligned shaft pin provides the bearing surface for low rotational speeds, but at higher speed, weights operating against spring tension withdraw nthe shaft pin into the bearing proper and the rotor shaft comes in contact with the large bearing surfaces.

  1. Aerodynamic Performance Measurements for a Forward Swept Low Noise Fan

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian

    2006-01-01

    One source of noise in high tip speed turbofan engines, caused by shocks, is called multiple pure tone noise (MPT's). A new fan, called the Quiet High Speed Fan (QHSF), showed reduced noise over the part speed operating range, which includes MPT's. The QHSF showed improved performance in most respects relative to a baseline fan; however, a partspeed instability discovered during testing reduced the operating range below acceptable limits. The measured QHSF adiabatic efficiency on the fixed nozzle acoustic operating line was 85.1 percent and the baseline fan 82.9 percent, a 2.2 percent improvement. The operating line pressure rise at design point rotational speed and mass flow was 1.764 and 1.755 for the QHSF and baseline fan, respectively. Weight flow at design point speed was 98.28 lbm/sec for the QHSF and 97.97 lbm/sec for the baseline fan. The operability margin for the QHSF approached 0 percent at the 75 percent speed operating condition. The baseline fan maintained sufficient margin throughout the operating range as expected. Based on the stage aerodynamic measurements, this concept shows promise for improved performance over current technology if the operability limitations can be solved.

  2. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Leftwich, Megan C.

    2016-05-01

    This work visualizes the flow surrounding a scaled model vertical axis wind turbine at realistic operating conditions. The model closely matches geometric and dynamic properties—tip speed ratio and Reynolds number—of a full-size turbine. The flow is visualized using particle imaging velocimetry (PIV) in the midplane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Time-averaged results show an asymmetric wake behind the turbine, regardless of tip speed ratio, with a larger velocity deficit for a higher tip speed ratio. For the higher tip speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04U_∞. Phase-averaged vorticity fields—achieved by syncing the PIV system with the rotation of the turbine—show distinct structures form from each turbine blade. There were distinct differences in results by tip speed ratios of 0.9, 1.3, and 2.2 of when in the cycle structures are shed into the wake—switching from two pairs to a single pair of vortices being shed—and how they convect into the wake—the middle tip speed ratio vortices convect downstream inside the wake, while the high tip speed ratio pair is shed into the shear layer of the wake. Finally, results show that the wake structure is much more sensitive to changes in tip speed ratio than to changes in Reynolds number.

  3. Evaluation of Operational Procedures for Using a Time-Based Airborne Inter-arrival Spacing Tool

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa M.; Lohr, Gary W.; Abbott, Terence S.; Eischeid, Todd M.

    2002-01-01

    An airborne tool has been developed based on the concept of an aircraft maintaining a time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) aircraft state data to compute a speed command for the ATAAS-equipped aircraft to obtain a required time interval behind another aircraft. The tool and candidate operational procedures were tested in a high-fidelity, full mission simulator with active airline subject pilots flying an arrival scenario using three different modes for speed control. The objectives of this study were to validate the results of a prior Monte Carlo analysis of the ATAAS algorithm and to evaluate the concept from the standpoint of pilot acceptability and workload. Results showed that the aircraft was able to consistently achieve the target spacing interval within one second (the equivalent of approximately 220 ft at a final approach speed of 130 kt) when the ATAAS speed guidance was autothrottle-coupled, and a slightly greater (4-5 seconds), but consistent interval with the pilot-controlled speed modes. The subject pilots generally rated the workload level with the ATAAS procedure as similar to that with standard procedures, and also rated most aspects of the procedure high in terms of acceptability. Although pilots indicated that the head-down time was higher with ATAAS, the acceptability of head-down time was rated high. Oculometer data indicated slight changes in instrument scan patterns, but no significant change in the amount of time spent looking out the window between the ATAAS procedure versus standard procedures.

  4. Twin-spool turbopumps for ''low'' net positive suction pressure operations

    NASA Technical Reports Server (NTRS)

    Bair, E. K.; Campbell, W. E.; Ford, O. I.

    1970-01-01

    Modified single-shaft turbopump incorporates inducer and main pump, each separately driven at different speeds through coaxial-shaft arrangement. Inducer operates at low speed for low net positive suction pressure, main pump operates at high speed to generate high pressure. This arrangement requires no external control for the inducer.

  5. G2 Flywheel Module Design

    NASA Technical Reports Server (NTRS)

    Jensen, Ralph H.; Dever, Timothy P.

    2006-01-01

    Design of a flywheel module, designated the G2 module, is described. The G2 flywheel is a 60,000 RPM, 525 W-hr, 1 kW system designed for a laboratory environment; it will be used for component testing and system demonstrations, with the goal of applying flywheels to aerospace energy storage and integrated power and attitude control (IPACS) applications. G2 has a modular design, which allows for new motors, magnetic bearings, touchdown bearings, and rotors to be installed without a complete redesign of the system. This design process involves several engineering disciplines, and requirements are developed for the speed, energy storage, power level, and operating environment. The G2 rotor system consists of a multilayer carbon fiber rim with a titanium hub on which the other components mount, and rotordynamics analysis is conducted to ensure rigid and flexible rotor modes are controllable or outside of the operating speed range. Magnetic bearings are sized using 1-D magnetic circuit analysis and refined using 3-D finite element analysis. The G2 magnetic bearing system was designed by Texas A&M and has redundancy which allows derated operation after the loss of some components, and an existing liquid cooled two pole permanent magnet motor/generator is used. The touchdown bearing system is designed with a squeeze film damper system allowing spin down from full operating speed in case of a magnetic bearing failure. The G2 flywheel will enable module level demonstrations of component technology, and will be a key building block in system level attitude control and IPACS demonstrations.

  6. Langley Full-Scale Tunnel Investigation of a 1/3-Scale Model of the Chance Vought XF5U-1 Airplane

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.; Cocke, Bennie W., Jr.; Proterra, Anthony J.

    1946-01-01

    The results of an investigation of a 1/3-scale model of the Chance Vought XF5U-1 airplane in the Langley full-scale tunnel are presented in this report. The maximum lift and stalling characteristics of several model configurations, the longitudinal stability characteristics of the model, and the effectiveness of the control surfaces were determined with the propellers removed. The propulsive characteristics, the effect of propeller operation on the lift, and the static thrust of the model propellers were determined at several propeller-blade angles. The results with the propellers removed showed that the maximum lift coefficient of the complete model configuration was only 0.97 was compared with the value of 1.31 for the model configuration in which the engine-air ducts and canopy are removed. The model with the propellers removed (normal center-of-gravity position) has a positive static margin, stick fixed, varying from 5 to 13 percent of the mean aerodynamic chord throughout the unstalled range of lift coefficients. The unit horizontal tail is sufficiently powerful to trim the airplane with the propellers removed throughout the unstalled range of lift coefficients. The peak propulsive efficiencies for beta = 20 degrees and beta = 30 degrees were increased 7 percent at C(sub L) congruent to 0.67 and 20 percent at C(sub L) congruent to 0.74, respectively, with the propellers rotating upward in the center than with the propellers rotating downward in the center. Indications are that the minimum forward-flight speed of the airplane for full-power operation at sea level will be about 90 miles per hour. Decreasing the weight and increasing the power reduced this value of minimum speed and there were no indications from the results of a lower limit to the minimum speed.

  7. Concepts for Variable/Multi-Speed Rotorcraft Drive System

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

    2008-01-01

    In several recent studies and on-going developments for advanced rotorcraft, the need for variable or multi-speed capable rotors has been raised. A speed change of up to 50 percent has been proposed for future rotorcraft to improve overall vehicle performance. Accomplishing rotor speed changes during operation requires both a rotor that can perform effectively over the operation speed/load range, and a propulsion system that can enable these speed changes. A study has been completed to investigate possible drive system arrangements that can accommodate up to the 50 percent speed change. Several concepts will be presented and evaluated. The most promising configurations will be identified and developed for future testing in a sub-scaled test facility to validate operational capability.

  8. Aerodynamic design on high-speed trains

    NASA Astrophysics Data System (ADS)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  9. Temperature prediction in high speed bone grinding using motor PWM signal.

    PubMed

    Tai, Bruce L; Zhang, Lihui; Wang, Anthony C; Sullivan, Stephen; Wang, Guangjun; Shih, Albert J

    2013-10-01

    This research explores the feasibility of using motor electrical feedback to estimate temperature rise during a surgical bone grinding procedure. High-speed bone grinding is often used during skull base neurosurgery to remove cranial bone and approach skull base tumors through the nasal corridor. Grinding-induced heat could propagate and potentially injure surrounding nerves and arteries, and therefore, predicting the temperature in the grinding region would benefit neurosurgeons during the operation. High-speed electric motors are controlled by pulse-width-modulation (PWM) to alter the current input and thus maintain the rotational speed. Assuming full mechanical to thermal power conversion in the grinding process, PWM can be used as feedback for heat generation and temperature prediction. In this study, the conversion model was established from experiments under a variety of grinding conditions and an inverse heat transfer method to determine heat flux. Given a constant rotational speed, the heat conversion was represented by a linear function, and could predict temperature from the experimental data with less than 20% errors. Such results support the advance of this technology for practical application. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. High Speed Rail (HSR) in the United States

    DTIC Science & Technology

    2009-12-08

    Magnetic Levitation ( Maglev ) ...............................................................................................5 High Speed Rail In...commonly referred to as “ maglev .” 6 Passenger Rail Working Group of the National Surface... maglev train in 2003. Because of the greater costs, and relatively minor benefits,11 of operating at extremely high speeds, the top operating speed

  11. Basic principles of variable speed drives

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1973-01-01

    An understanding of the principles which govern variable speed drive operation is discussed for successful drive application. The fundamental factors of torque, speed ratio, and power as they relate to drive selection are discussed. The basic types of variable speed drives, their operating characteristics and their applications are also presented.

  12. 36 CFR 13.1176 - Speed restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Speed restrictions. 13.1176... Operating Restrictions § 13.1176 Speed restrictions. (a) From May 15 through September 30, in designated whale waters the following are prohibited: (1) Operating a motor vessel at more than 20 knots speed...

  13. 36 CFR 13.1176 - Speed restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Speed restrictions. 13.1176... Operating Restrictions § 13.1176 Speed restrictions. (a) From May 15 through September 30, in designated whale waters the following are prohibited: (1) Operating a motor vessel at more than 20 knots speed...

  14. Premium quality 5A1-2.5 Sn ELI titanium production

    NASA Technical Reports Server (NTRS)

    Dessau, P. P.; Harris, C. L.

    1972-01-01

    Preliminary design and reliability analysis conducted on the turbopump for the NERVA 75,000 full flow cycle engine, indicated that the turbopump bearings were the most critical turbopump parts in meeting the 10 hour life at the required turbopump reliability of .99978. The analysis revealed that significant reductions (approximately a factor of 3.25) in bearing loads would be achieved by fabricating the rotating parts from titanium in lieu of A286 or 718. This is basically due to the difference in density of the materials and the resulting mass effect on the location of the first and second stick mode critical speeds. For the selected rotor configuration, the lighter material has a first critical speed at approximately 36,000 rpm, while that of the heavier material has a first critical at approximately 27,000 rpm. As the operating range of the turbopump is from 0 to 30,000 rpm, the heavier material would have a stick mode critical in the operating range.

  15. Higher Efficiency HVAC Motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Charles Joseph

    The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design,more » development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all failure prone capacitors from the power stage. Q-Sync’s simpler electronics also result in higher efficiency because it eliminates the power required by the PCB to perform the obviated power conversions and PWM processes after line synchronous operating speed is reached in the first 5 seconds of operation, after which the PWM circuits drop out and a much less energy intensive “pass through” circuit takes over, allowing the grid-supplied AC power to sustain the motor’s ongoing operation.« less

  16. Application and verification of ECMWF seasonal forecast for wind energy

    NASA Astrophysics Data System (ADS)

    Žagar, Mark; Marić, Tomislav; Qvist, Martin; Gulstad, Line

    2015-04-01

    A good understanding of long-term annual energy production (AEP) is crucial when assessing the business case of investing in green energy like wind power. The art of wind-resource assessment has emerged into a scientific discipline on its own, which has advanced at high pace over the last decade. This has resulted in continuous improvement of the AEP accuracy and, therefore, increase in business case certainty. Harvesting the full potential output of a wind farm or a portfolio of wind farms depends heavily on optimizing operation and management strategy. The necessary information for short-term planning (up to 14 days) is provided by standard weather and power forecasting services, and the long-term plans are based on climatology. However, the wind-power industry is lacking quality information on intermediate scales of the expected variability in seasonal and intra-annual variations and their geographical distribution. The seasonal power forecast presented here is designed to bridge this gap. The seasonal power production forecast is based on the ECMWF seasonal weather forecast and the Vestas' high-resolution, mesoscale weather library. The seasonal weather forecast is enriched through a layer of statistical post-processing added to relate large-scale wind speed anomalies to mesoscale climatology. The resulting predicted energy production anomalies, thus, include mesoscale effects not captured by the global forecasting systems. The turbine power output is non-linearly related to the wind speed, which has important implications for the wind power forecast. In theory, the wind power is proportional to the cube of wind speed. However, due to the nature of turbine design, this exponent is close to 3 only at low wind speeds, becomes smaller as the wind speed increases, and above 11-13 m/s the power output remains constant, called the rated power. The non-linear relationship between wind speed and the power output generally increases sensitivity of the forecasted power to the wind speed anomalies. On the other hand, in some cases and areas where turbines operate close to, or above the rated power, the sensitivity of power forecast is reduced. Thus, the seasonal power forecasting system requires good knowledge of the changes in frequency of events with sufficient wind speeds to have acceptable skill. The scientific background for the Vestas seasonal power forecasting system is described and the relationship between predicted monthly wind speed anomalies and observed wind energy production are investigated for a number of operating wind farms in different climate zones. Current challenges will be discussed and some future research and development areas identified.

  17. Effects of an Approach Spacing Flight Deck Tool on Pilot Eyescan

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa M.; Nadler, Eric D.

    2004-01-01

    An airborne tool has been developed based on the concept of an aircraft maintaining a time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) aircraft state data to compute a speed command for the ATAAS-equipped aircraft to obtain a required time interval behind another aircraft. The tool and candidate operational procedures were tested in a high-fidelity, full mission simulator with active airline subject pilots flying an arrival scenario using three different modes for speed control. Eyetracker data showed only slight changes in instrument scan patterns, and no significant change in the amount of time spent looking out the window with ATAAS, versus standard ILS procedures.

  18. Experimental analysis of IMEP in a rotary combustion engine

    NASA Technical Reports Server (NTRS)

    Schock, H. J.; Rice, W. J.; Meng, P. R.

    1981-01-01

    A real time indicated mean effective pressure measurement system is described which is used to judge proposed improvements in cycle efficiency of a rotary combustion engine. This is the first self-contained instrument that is capable of making real time measurements of IMEP in a rotary engine. Previous methods used require data recording and later processing using a digital computer. The unique features of this instrumentation include its ability to measure IMEP on a cycle by cycle, real time basis and the elimination of the need to differentiate volume function in real time. Measurements at two engine speeds (2000 and 3000 rpm) and a full range of loads are presented, although the instrument was designed to operate to speeds of 9000 rpm.

  19. Nanopatterned Quantum Dot Lasers for High Speed, High Efficiency, Operation

    DTIC Science & Technology

    2015-04-27

    significant inhomogeneous broadening of the spectral gain. SK QDs inherently form on top of a two-dimensional “ wetting layer”, leading to weak...QDs inherently form on top of a two-dimensional “ wetting layer”, leading to weak electron and hole confinement to the QD, which results in low gain...exhibit full three- dimensional nano-scale confinement and elimination of the wetting layer states. The objectives of this project were to develop

  20. Dynamics of ions generated by 2.3 kJ UNU/ICTP plasma focus device

    NASA Astrophysics Data System (ADS)

    Tangitsomboon, P.; Ngamrungroj, D.; Chandrema, E.; Mongkolnavin, R.

    2017-09-01

    UNU/ICTP Plasma Focus Device has been used as an ions source in many applications. In this paper, the full dynamic range of argon ions produced by the Plasma Focus Device from its initial phase through to beyond the focussing phase of the plasma is shown experimentally. The average speed of the ions is determined by measuring time taken for ions to reach different positions using magnetic probes and ion probes. Also, by adapting a well-established computational model that represents the dynamics of plasma in such device, it is also possible to determine the speed of these ions up to the point where the movement of the plasma sheath under the Lorentz force is completed. However, it was found that the speed determined by the computational model is higher in comparison with the values obtained experimentally at all different operating pressures. The ions’ speed found for operating pressure of 0.5 mbar, 1.0 mbar, 1.5 mbar and 2.0 mbar were 5.16 ± 0.04 cm/μs, 4.24 ± 0.04 cm/μs, 3.81 ± 0.03cm/μs and 3.16 ± 0.04 cm/μs respectively. These correspond to the ion energy of 551.38 ± 8.55 eV, 372.29 ± 7.02 eV, 300.61 ± 4.73 eV and 206.79 ± 5.24 eV.

  1. Development of a Variable-Speed Residential Air-Source Integrated Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, C Keith; Shen, Bo; Munk, Jeffrey D

    2014-01-01

    A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures andmore » temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.« less

  2. Analysis of regenerated single-shaft ceramic gas-turbine engines and resulting fuel economy in a compact car

    NASA Technical Reports Server (NTRS)

    Klann, J. L.; Tew, R. C., Jr.

    1977-01-01

    Ranges in design and off-design operating conditions of an advanced gas turbine and their effects on fuel economy were analyzed. The assumed engine incorporated a single stage radial flow turbine and compressor with fixed geometry. Fuel economies were calculated over the composite driving cycle with gasoline as the fuel. At a constant turbine-inlet temperature, with a regenerator sized for a full power effectiveness the best fuel economies ranged from 11.1 to 10.2 km/liter (26.2 to 22.5 mpg) for full power turbine tip speeds of 770 to 488m/sec (2530 to 1600ft/sec), respectively.

  3. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    NASA Astrophysics Data System (ADS)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  4. Dualcavitating Hydrofoil Structures.

    DTIC Science & Technology

    The invention is directed to hydrofoil structures for efficient operation over a wide speed range from subcavitating to supercavitating operation. A...structures by providing a supercavitating profile shape in the lower surface to achieve a supercavitating condition at high speeds and that overcomes...problems associated with low speed operation of prior art supercavitating hydrofoil structures by providing an upper surface that combines with the lower

  5. Construction and Operation of a High-Speed, High-Precision Eye Tracker for Tight Stimulus Synchronization and Real-Time Gaze Monitoring in Human and Animal Subjects.

    PubMed

    Farivar, Reza; Michaud-Landry, Danny

    2016-01-01

    Measurements of the fast and precise movements of the eye-critical to many vision, oculomotor, and animal behavior studies-can be made non-invasively by video oculography. The protocol here describes the construction and operation of a research-grade video oculography system with ~0.1° precision over the full typical viewing range at over 450 Hz with tight synchronization with stimulus onset. The protocol consists of three stages: (1) system assembly, (2) calibration for both cooperative, and for minimally cooperative subjects (e.g., animals or infants), and (3) gaze monitoring and recording.

  6. 3D Parallel Multigrid Methods for Real-Time Fluid Simulation

    NASA Astrophysics Data System (ADS)

    Wan, Feifei; Yin, Yong; Zhang, Suiyu

    2018-03-01

    The multigrid method is widely used in fluid simulation because of its strong convergence. In addition to operating accuracy, operational efficiency is also an important factor to consider in order to enable real-time fluid simulation in computer graphics. For this problem, we compared the performance of the Algebraic Multigrid and the Geometric Multigrid in the V-Cycle and Full-Cycle schemes respectively, and analyze the convergence and speed of different methods. All the calculations are done on the parallel computing of GPU in this paper. Finally, we experiment with the 3D-grid for each scale, and give the exact experimental results.

  7. Multiple and variable speed electrical generator systems for large wind turbines

    NASA Technical Reports Server (NTRS)

    Andersen, T. S.; Hughes, P. S.; Kirschbaum, H. S.; Mutone, G. A.

    1982-01-01

    A cost effective method to achieve increased wind turbine generator energy conversion and other operational benefits through variable speed operation is presented. Earlier studies of multiple and variable speed generators in wind turbines were extended for evaluation in the context of a specific large sized conceptual design. System design and simulation have defined the costs and performance benefits which can be expected from both two speed and variable speed configurations.

  8. Evaluating safety and operations of high-speed signalized intersections.

    DOT National Transportation Integrated Search

    2010-03-01

    This Final Report reviews a research effort to evaluate the safety and operations of high-speed intersections in the State of : Oregon. In particular, this research effort focuses on four-leg, signalized intersections with speed limits of 45 mph or :...

  9. Evaluating safety and operation of high-speed intersections.

    DOT National Transportation Integrated Search

    2010-03-01

    This Final Report reviews a research effort to evaluate the safety and operations of high-speed intersections in the State of : Oregon. In particular, this research effort focuses on four-leg, signalized intersections with speed limits of 45 mph or :...

  10. Full load testing in the platform module prior to tow-out: A case history of subsynchronous instability

    NASA Technical Reports Server (NTRS)

    Fulton, J. W.

    1984-01-01

    An electric motor driven centrifugal compressor to supply gas for further compression and reinjection on a petroleum production platform in the North Sea was examined. The compressor design, raised concerns about susceptibility to subsynchronous instability. Log decrement, aerodynamic features, and the experience of other compressors with similar ratios of operating to critical speed ratio versus gas density led to the decision to full load test. Mixed hydrocarbon gas was chosen for the test to meet discharge temperature restrictions. The module was used as the test site. Subsynchronous vibrations made the compressor inoperable above approximately one-half the rated discharge pressure of 14500 kPa. Modifications, which includes shortening the bearing span, change of leakage inlet flow direction on the back to back labyrinth, and removal of the vaned diffusers on all stages were made simultaneously. The compressor is operating with satisfactory vibration levels.

  11. ? stability of wind turbine switching control

    NASA Astrophysics Data System (ADS)

    Palejiya, Dushyant; Shaltout, Mohamed; Yan, Zeyu; Chen, Dongmei

    2015-01-01

    In order to maximise the wind energy capture, wind turbines are operated at variable speeds. Depending on the wind speed, a turbine switches between two operating modes: a low wind speed mode and a high wind speed mode. During the low wind speed mode, the control objective is to maximise wind energy capture by controlling both the blade pitch angle and the electrical generator torque. During the high wind speed mode, the control goal is to maintain the rated power generation by only adjusting the blade pitch angle. This paper establishes the stability criteria for the switching operation of wind turbines using ? gain under the nonlinear control framework. Also, the performance of the wind turbine system is analysed by using the step response, a well-known measure for second-order linear systems.

  12. Evaluation of a Tool for Airborne-Managed In-Trail Approach Spacing

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa M.; Lohr, Gary W.; Abbott, Terence S.; Nadler, Eric D.; Eischeid, Todd

    2005-01-01

    The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast aircraft state data to compute a speed command for an ATAAS-equipped aircraft to follow and obtain a required time interval behind another aircraft. The ATAAS tool and candidate operational procedures were tested in a high-fidelity, full mission simulator with active airline subject pilots flying an arrival scenario to obtain pilot perceptions of acceptability and workload for the concept. The aircraft consistently achieved the target spacing interval within 1 s when the ATAAS speed guidance was autothrottle-coupled and a slightly greater (4 - 5 s) but consistent interval with pilot-controlled speed changes. The subject pilots rated the ATAAS workload as similar to one with standard procedures for a nominal Instrument Landing System (ILS) approach. They also rated highly various procedural aspects (including amount of head-down time required). Eyetracker data showed only slight changes in instrument scan patterns for ATAAS versus standard ILS procedures.

  13. In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Coughlan, Carolyn A.; Chou, Li-Dek; Jing, Joseph C.; Chen, Jason J.; Rangarajan, Swathi; Chang, Theodore H.; Sharma, Giriraj K.; Cho, Kyoungrai; Lee, Donghoon; Goddard, Julie A.; Chen, Zhongping; Wong, Brian J. F.

    2016-03-01

    Diagnosis and treatment of vocal fold lesions has been a long-evolving science for the otolaryngologist. Contemporary practice requires biopsy of a glottal lesion in the operating room under general anesthesia for diagnosis. Current in-office technology is limited to visualizing the surface of the vocal folds with fiber-optic or rigid endoscopy and using stroboscopic or high-speed video to infer information about submucosal processes. Previous efforts using optical coherence tomography (OCT) have been limited by small working distances and imaging ranges. Here we report the first full field, high-speed, and long-range OCT images of awake patients’ vocal folds as well as cross-sectional video and Doppler analysis of their vocal fold motions during phonation. These vertical-cavity surface-emitting laser source (VCSEL) OCT images offer depth resolved, high-resolution, high-speed, and panoramic images of both the true and false vocal folds. This technology has the potential to revolutionize in-office imaging of the larynx.

  14. Evaluating safety and operation of high-speed signalized intersections : final report, March 2010.

    DOT National Transportation Integrated Search

    2010-03-01

    This Final Report reviews a research effort to evaluate the safety and operations of high-speed intersections in the State of : Oregon. In particular, this research effort focuses on four-leg, signalized intersections with speed limits of 45 mph or :...

  15. Flight Studies of Problems Pertinent to High-Speed Operation of Jet Transports

    NASA Technical Reports Server (NTRS)

    Butchart, Stanley P.; Fischel, Jack; Tremant, Robert A.; Robinson, Glenn H.

    1959-01-01

    A flight investigation was made to assess the potential operational problems of jet transports in the transonic cruise range. In this study a large multiengine jet airplane having geometric characteristics fairly representative of the jet transport was used; however, in order to ensure general applicability of the results, the aerodynamic characteristics of the test airplane were varied to simulate a variety of jet- transport airplanes. Some of the specific areas investigated include: (1) an overall evaluation of longitudinal stability and control characteristics at transonic speeds, with an assessment of pitch-up characteristics, (2) the effect of buffeting on airplane operational speeds and maneuvering, (3) the desirable lateral-directional damping characteristics, (4) the desirable lateral-control characteristics, (5) an assessment of over-speed and speed-spread requirements, including the upset maneuver, and (6) an assessment of techniques and airplane characteristics for rapid descent and slow-down. The results presented include pilots' evaluation of the various problem areas and specific recommendations for possible improvement of jet-transport operations in the cruising speed range.

  16. Low-speed wind-tunnel investigation of a large scale advanced arrow-wing supersonic transport configuration with engines mounted above wing for upper-surface blowing

    NASA Technical Reports Server (NTRS)

    Shivers, J. P.; Mclemore, H. C.; Coe, P. L., Jr.

    1976-01-01

    Tests have been conducted in a full scale tunnel to determine the low speed aerodynamic characteristics of a large scale advanced arrow wing supersonic transport configuration with engines mounted above the wing for upper surface blowing. Tests were made over an angle of attack range of -10 deg to 32 deg, sideslip angles of + or - 5 deg, and a Reynolds number range of 3,530,000 to 7,330,000. Configuration variables included trailing edge flap deflection, engine jet nozzle angle, engine thrust coefficient, engine out operation, and asymmetrical trailing edge boundary layer control for providing roll trim. Downwash measurements at the tail were obtained for different thrust coefficients, tail heights, and at two fuselage stations.

  17. The CP-PACS project

    NASA Astrophysics Data System (ADS)

    Iwasaki, Y.; CP-PACS Collaboration

    1998-01-01

    The CP-PACS project is a five year plan, which formally started in April 1992 and has been completed in March 1997, to develop a massively parallel computer for carrying out research in computational physics with primary emphasis on lattice QCD. The initial version of the CP-PACS computer with a theoretical peak speed of 307 GFLOPS with 1024 processors was completed in March 1996. The final version with a peak speed of 614 GFLOPS with 2048 processors was completed in September 1996, and has been in full operation since October 1996. We describe the architecture, the final specification, the hardware implementation, and the software of the CP-PACS computer. The CP-PACS has been used for hadron spectroscopy production runs since July 1996. The performance for lattice QCD applications and the LINPACK benchmark are given.

  18. Effect of In-Vehicle Audio Warning System on Driver’s Speed Control Performance in Transition Zones from Rural Areas to Urban Areas

    PubMed Central

    Yan, Xuedong; Wang, Jiali; Wu, Jiawei

    2016-01-01

    Speeding is a major contributing factor to traffic crashes and frequently happens in areas where there is a mutation in speed limits, such as the transition zones that connect urban areas from rural areas. The purpose of this study is to investigate the effects of an in-vehicle audio warning system and lit speed limit sign on preventing drivers’ speeding behavior in transition zones. A high-fidelity driving simulator was used to establish a roadway network with the transition zone. A total of 41 participants were recruited for this experiment, and the driving speed performance data were collected from the simulator. The experimental results display that the implementation of the audio warning system could significantly reduce drivers’ operating speed before they entered the urban area, while the lit speed limit sign had a minimal effect on improving the drivers’ speed control performance. Without consideration of different types of speed limit signs, it is found that male drivers generally had a higher operating speed both upstream and in the transition zones and have a larger maximum deceleration for speed reduction than female drivers. Moreover, the drivers who had medium-level driving experience had the higher operating speed and were more likely to have speeding behaviors in the transition zones than those who had low-level and high-level driving experience in the transition zones. PMID:27347990

  19. Grey Wolf based control for speed ripple reduction at low speed operation of PMSM drives.

    PubMed

    Djerioui, Ali; Houari, Azeddine; Ait-Ahmed, Mourad; Benkhoris, Mohamed-Fouad; Chouder, Aissa; Machmoum, Mohamed

    2018-03-01

    Speed ripple at low speed-high torque operation of Permanent Magnet Synchronous Machine (PMSM) drives is considered as one of the major issues to be treated. The presented work proposes an efficient PMSM speed controller based on Grey Wolf (GW) algorithm to ensure a high-performance control for speed ripple reduction at low speed operation. The main idea of the proposed control algorithm is to propose a specific objective function in order to incorporate the advantage of fast optimization process of the GW optimizer. The role of GW optimizer is to find the optimal input controls that satisfy the speed tracking requirements. The synthesis methodology of the proposed control algorithm is detailed and the feasibility and performances of the proposed speed controller is confirmed by simulation and experimental results. The GW algorithm is a model-free controller and the parameters of its objective function are easy to be tuned. The GW controller is compared to PI one on real test bench. Then, the superiority of the first algorithm is highlighted. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test...

  1. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test...

  2. 14 CFR 25.1515 - Landing gear speeds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Limitations § 25.1515 Landing gear speeds. (a) The established landing gear operating speed or speeds, V LO... retraction speed, the two speeds must be designated as V LO(EXT) and V LO(RET), respectively. (b) The...

  3. 14 CFR 25.1515 - Landing gear speeds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Limitations § 25.1515 Landing gear speeds. (a) The established landing gear operating speed or speeds, V LO... retraction speed, the two speeds must be designated as V LO(EXT) and V LO(RET), respectively. (b) The...

  4. 14 CFR 25.1515 - Landing gear speeds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Limitations § 25.1515 Landing gear speeds. (a) The established landing gear operating speed or speeds, V LO... retraction speed, the two speeds must be designated as V LO(EXT) and V LO(RET), respectively. (b) The...

  5. 14 CFR 25.1515 - Landing gear speeds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Limitations § 25.1515 Landing gear speeds. (a) The established landing gear operating speed or speeds, V LO... retraction speed, the two speeds must be designated as V LO(EXT) and V LO(RET), respectively. (b) The...

  6. 14 CFR 25.1515 - Landing gear speeds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Limitations § 25.1515 Landing gear speeds. (a) The established landing gear operating speed or speeds, V LO... retraction speed, the two speeds must be designated as V LO(EXT) and V LO(RET), respectively. (b) The...

  7. Double Tunneling Injection Quantum Dot Lasers for High Speed Operation

    DTIC Science & Technology

    2017-10-23

    Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...State University Title: Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation Report Term: 0-Other Email: asryan@vt.edu Distribution

  8. 50 CFR 218.124 - Mitigation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... safe speed. Release of ordinance through cloud cover is prohibited: Aircraft must be able to see... m) or lower, if safe to do so, and at the slowest safe speed. Firing or range clearance aircraft... speed, if operationally feasible and weather conditions permit. In dual aircraft operations, crews are...

  9. 50 CFR 218.124 - Mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... safe speed. Release of ordinance through cloud cover is prohibited: Aircraft must be able to see... m) or lower, if safe to do so, and at the slowest safe speed. Firing or range clearance aircraft... speed, if operationally feasible and weather conditions permit. In dual aircraft operations, crews are...

  10. 50 CFR 218.124 - Mitigation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... safe speed. Release of ordinance through cloud cover is prohibited: Aircraft must be able to see... m) or lower, if safe to do so, and at the slowest safe speed. Firing or range clearance aircraft... speed, if operationally feasible and weather conditions permit. In dual aircraft operations, crews are...

  11. 50 CFR 218.124 - Mitigation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... safe speed. Release of ordinance through cloud cover is prohibited: Aircraft must be able to see... m) or lower, if safe to do so, and at the slowest safe speed. Firing or range clearance aircraft... speed, if operationally feasible and weather conditions permit. In dual aircraft operations, crews are...

  12. Investigating technical challenges and research needs related to shared corridors for high speed passenger and railroad freight operations.

    DOT National Transportation Integrated Search

    2013-05-01

    The development of both incremental and dedicated high-speed rail lines in the United States poses a number of questions. Despite nearly 50 years of international experience in planning, designing, building and operating high-speed passenger infrastr...

  13. Rotor blade boundary layer measurement hardware feasibility demonstration

    NASA Technical Reports Server (NTRS)

    Clark, D. R.; Lawton, T. D.

    1972-01-01

    A traverse mechanism which allows the measurement of the three dimensional boundary layers on a helicopter rotor blade has been built and tested on a full scale rotor to full scale conditions producing centrifugal accelerations in excess of 400 g and Mach numbers of 0.6 and above. Boundary layer velocity profiles have been measured over a range of rotor speeds and blade collective pitch angles. A pressure scanning switch and transducer were also tested on the full scale rotor and found to be insensitive to centrifugal effects within the normal main rotor operating range. The demonstration of the capability to measure boundary layer behavior on helicopter rotor blades represents the first step toward obtaining, in the rotating system, data of a quality comparable to that already existing for flows in the fixed system.

  14. Micro-optical system based 3D imaging for full HD depth image capturing

    NASA Astrophysics Data System (ADS)

    Park, Yong-Hwa; Cho, Yong-Chul; You, Jang-Woo; Park, Chang-Young; Yoon, Heesun; Lee, Sang-Hun; Kwon, Jong-Oh; Lee, Seung-Wan

    2012-03-01

    20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical shutter'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation. The optical shutter device is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image. Suggested novel optical shutter device enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously. The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical shutter design, fabrication, characterization, 3D camera system prototype and image test results.

  15. Assessment of the metrological performance of an in situ storage image sensor ultra-high speed camera for full-field deformation measurements

    NASA Astrophysics Data System (ADS)

    Rossi, Marco; Pierron, Fabrice; Forquin, Pascal

    2014-02-01

    Ultra-high speed (UHS) cameras allow us to acquire images typically up to about 1 million frames s-1 for a full spatial resolution of the order of 1 Mpixel. Different technologies are available nowadays to achieve these performances, an interesting one is the so-called in situ storage image sensor architecture where the image storage is incorporated into the sensor chip. Such an architecture is all solid state and does not contain movable devices as occurs, for instance, in the rotating mirror UHS cameras. One of the disadvantages of this system is the low fill factor (around 76% in the vertical direction and 14% in the horizontal direction) since most of the space in the sensor is occupied by memory. This peculiarity introduces a series of systematic errors when the camera is used to perform full-field strain measurements. The aim of this paper is to develop an experimental procedure to thoroughly characterize the performance of such kinds of cameras in full-field deformation measurement and identify the best operative conditions which minimize the measurement errors. A series of tests was performed on a Shimadzu HPV-1 UHS camera first using uniform scenes and then grids under rigid movements. The grid method was used as full-field measurement optical technique here. From these tests, it has been possible to appropriately identify the camera behaviour and utilize this information to improve actual measurements.

  16. Neutron detection using a current biased kinetic inductance detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishido, Hiroaki, E-mail: shishido@pe.osakafu-u.ac.jp; Miyajima, Shigeyuki; Ishida, Takekazu

    2015-12-07

    We demonstrate neutron detection using a solid state superconducting current biased kinetic inductance detector (CB-KID), which consists of a superconducting Nb meander line of 1 μm width and 40 nm thickness. {sup 10}B-enriched neutron absorber layer of 150 nm thickness is placed on top of the CB-KID. Our neutron detectors are able to operate in a wide superconducting region in the bias current–temperature diagram. This is in sharp contrast with our preceding current-biased transition edge detector, which can operate only in a narrow range just below the superconducting critical temperature. The full width at half maximum of the signals remains of the ordermore » of a few tens of ns, which confirms the high speed operation of our detectors.« less

  17. Experimental quiet engine program

    NASA Technical Reports Server (NTRS)

    Cornell, W. G.

    1975-01-01

    Full-scale low-tip-speed fans, a full-scale high-tip-speed fan, scale model versions of fans, and two full-scale high-bypass-ratio turbofan engines, were designed, fabricated, tested, and evaluated. Turbine noise suppression was investigated. Preliminary design studies of flight propulsion system concepts were used in application studies to determine acoustic-economic tradeoffs. Salient results are as follows: tradeoff evaluation of fan tip speed and blade loading; systematic data on source noise characteristics and suppression effectiveness; documentation of high- and low-fan-speed aerodynamic and acoustic technology; aerodynamic and acoustic evaluation of acoustic treatment configurations, casing tip bleed, serrated and variable pitch rotor blades, leaned outlet guide vanes, slotted tip casings, rotor blade shape modifications, and inlet noise suppression; systematic evaluation of aerodynamic and acoustic effects; flyover noise projections of engine test data; turbine noise suppression technology development; and tradeoff evaluation of preliminary design high-fan-speed and low-fan-speed flight engines.

  18. Investigation of dynamic characteristics of a turbine-propeller engine

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L; Jacques, James R

    1951-01-01

    Time constants that characterize engine speed response of a turbine-propeller engine over the cruising speed range for various values of constant fuel flow and constant blade angle were obtained both from steady-state characteristics and from transient operation. Magnitude of speed response to changes in fuel flow and blade angle was investigated and is presented in the form of gain factors. Results indicate that at any given value of speed in the engine cruising speed range, time constants obtained both from steady-state characteristics and from transient operation agree satisfactorily for any given constant fuel flow, whereas time constants obtained from transient operation exceed time constants obtained from steady-state characteristics by approximately 14 percent for any given blade angle.

  19. Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes.

    PubMed

    Acconcia, G; Labanca, I; Rech, I; Gulinatti, A; Ghioni, M

    2017-02-01

    The minimization of Single Photon Avalanche Diodes (SPADs) dead time is a key factor to speed up photon counting and timing measurements. We present a fully integrated Active Quenching Circuit (AQC) able to provide a count rate as high as 100 MHz with custom technology SPAD detectors. The AQC can also operate the new red enhanced SPAD and provide the timing information with a timing jitter Full Width at Half Maximum (FWHM) as low as 160 ps.

  20. X-33

    NASA Image and Video Library

    2004-04-15

    This is an artist's concept of the completely operational International Space Station being approached by an X-33 Reusable Launch Vehicle (RLV). The X-33 program was designed to pave the way to a full-scale, commercially developed RLV as the flagship technology demonstrator for technologies that would lower the cost of access to space. It is unpiloted, taking off vertically like a rocket, reaching an altitude of up to 60 miles and speeds between Mach 13 and 15, and landing horizontally like an airplane. The X-33 program was cancelled in 2001.

  1. Combat Search and Rescue: Restoring Promise to a Sacred Assurance

    DTIC Science & Technology

    2017-05-01

    portion generally starts at the Syrian-Saudi-Iraq tri-border then runs southeast, passing just west of Rafha, then goes south to pass just west of...chord rotor blades . They should marginally improve lift and speed. Source: HH-60G data drawn from author’s experience flying and operating the aircraft...totaling 18 airframes – will arrive between 2019 and 2021.64 Full rate production (FRP) will run from 2023 through 2029.65 If the HH-60Gs get upgraded

  2. In vivo imaging of the rodent eye with swept source/Fourier domain OCT

    PubMed Central

    Liu, Jonathan J.; Grulkowski, Ireneusz; Kraus, Martin F.; Potsaid, Benjamin; Lu, Chen D.; Baumann, Bernhard; Duker, Jay S.; Hornegger, Joachim; Fujimoto, James G.

    2013-01-01

    Swept source/Fourier domain OCT is demonstrated for in vivo imaging of the rodent eye. Using commercial swept laser technology, we developed a prototype OCT imaging system for small animal ocular imaging operating in the 1050 nm wavelength range at an axial scan rate of 100 kHz with ~6 µm axial resolution. The high imaging speed enables volumetric imaging with high axial scan densities, measuring high flow velocities in vessels, and repeated volumetric imaging over time. The 1050 nm wavelength light provides increased penetration into tissue compared to standard commercial OCT systems at 850 nm. The long imaging range enables multiple operating modes for imaging the retina, posterior eye, as well as anterior eye and full eye length. A registration algorithm using orthogonally scanned OCT volumetric data sets which can correct motion on a per A-scan basis is applied to compensate motion and merge motion corrected volumetric data for enhanced OCT image quality. Ultrahigh speed swept source OCT is a promising technique for imaging the rodent eye, proving comprehensive information on the cornea, anterior segment, lens, vitreous, posterior segment, retina and choroid. PMID:23412778

  3. Finite volume method and multigrid acceleration in modelling of rapid crack propagation in full-scale pipe test

    NASA Astrophysics Data System (ADS)

    Ivankovic, A.; Muzaferija, S.; Demirdzic, I.

    1997-07-01

    Rapid Crack Propagation (RCP) along pressurised plastic pipes is by far the most dangerous pipe failure mode. Despite the economic benefits offered by increasing pipe size and operating pressure, both strategies increase the risk and the potential consequences of RCP. It is therefore extremely important to account for RCP in establishing the safe operational conditions. Combined experimental-numerical study is the only reliable approach of addressing the problem, and extensive research is undertaken by various fracture groups (e.g. Southwest Research Institute - USA, Imperial College - UK). This paper presents numerical results from finite volume modelling of full-scale test on medium density polyethylene gas pressurised pipes. The crack speed and pressure profile are prescribed in the analysis. Both steady-state and transient RCPs are considered, and the comparison between the two shown. The steady-state results are efficiently achieved employing a full multigrid acceleration technique, where sets of progressively finer grids are used in V-cycles. Also, the effect of inelastic behaviour of polyethylene on RCP results is demonstrated.

  4. Engine lubrication circuit including two pumps

    DOEpatents

    Lane, William H.

    2006-10-03

    A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.

  5. Evaluation of Airborne Precision Spacing in a Human-in-the-Loop Experiment

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.

    2005-01-01

    A significant bottleneck in the current air traffic system occurs at the runway. Expanding airports and adding new runways will help solve this problem; however, this comes with significant costs: financially, politically and environmentally. A complementary solution is to safely increase the capacity of current runways. This can be achieved by precisely spacing aircraft at the runway threshold, with a resulting reduction in the spacing bu er required under today s operations. At NASA's Langley Research Center, the Airspace Systems program has been investigating airborne technologies and procedures that will assist the flight crew in achieving precise spacing behind another aircraft. A new spacing clearance allows the pilot to follow speed cues from a new on-board guidance system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). AMSTAR receives Automatic Dependent Surveillance-Broadcast (ADS-B) reports from an assigned, leading aircraft and calculates the appropriate speed for the ownship to fly to achieve the desired spacing interval, time- or distance-based, at the runway threshold. Since the goal is overall system capacity, the speed guidance algorithm is designed to provide system-wide benefits and stability to a string of arriving aircraft. An experiment was recently performed at the NASA Langley Air Traffic Operations Laboratory (ATOL) to test the flexibility of Airborne Precision Spacing operations under a variety of operational conditions. These included several types of merge and approach geometries along with the complementary merging and in-trail operations. Twelve airline pilots and four controllers participated in this simulation. Performance and questionnaire data were collected from a total of eighty-four individual arrivals. The pilots were able to achieve precise spacing with a mean error of 0.5 seconds and a standard deviation of 4.7 seconds. No statistically significant di erences in spacing performance were found between in-trail and merging operations or among the three modeled airspaces. Questionnaire data showed general acceptance for both pilots and controllers. These results reinforce previous findings from full-mission simulation and flight evaluation of the in-trail operations. This paper reviews the results of this simulation in detail.

  6. Assessing the Effectiveness of Ramp-Up During Sonar Operations Using Exposure Models.

    PubMed

    von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A

    2016-01-01

    Ramp-up procedures are used to mitigate the impact of sound on marine mammals. Sound exposure models combined with observations of marine mammals responding to sound can be used to assess the effectiveness of ramp-up procedures. We found that ramp-up procedures before full-level sonar operations can reduce the risk of hearing threshold shifts with marine mammals, but their effectiveness depends strongly on the responsiveness of the animals. In this paper, we investigated the effect of sonar parameters (source level, pulse-repetition time, ship speed) on sound exposure by using a simple analytical model and highlight the mechanisms that limit the effectiveness of ramp-up procedures.

  7. The Rolls Royce Allison RB580 turbofan - Matching the market requirement for regional transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, J.H.R.; Peacock, N.J.; Snyder, L.

    1989-01-01

    The RB580 high bypass turbofan engine has a thrust growth capability to 10,000 lb and has been optimized for efficient operation in regional markets involving 50-70 seat airliners with higher-than-turboprop cruise speeds. The two-spool engine configuration achieves an overall pressure ratio of 24 and features a single-stage wide-chord fan for high efficiency/low noise operation. The highly modular design of the configuration facilitates maintenance and repair; a dual-redundant full-authority digital electronic control system is incorporated. An SFC reduction of the order of 10 percent at cruise thrust is achieved, relative to current engines of comparable thrust class.

  8. The Altitude Wind Tunnel (AWT): A unique facility for propulsion system and adverse weather testing

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.

    1985-01-01

    A need has arisen for a new wind tunnel facility with unique capabilities for testing propulsion systems and for conducting research in adverse weather conditions. New propulsion system concepts, new aircraft configurations with an unprecedented degree of propulsion system/aircraft integration, and requirements for aircraft operation in adverse weather dictate the need for a new test facility. Required capabilities include simulation of both altitude pressure and temperature, large size, full subsonic speed range, propulsion system operation, and weather simulation (i.e., icing, heavy rain). A cost effective rehabilitation of the NASA Lewis Research Center's Altitude Wind Tunnel (AWT) will provide a facility with all these capabilities.

  9. Speed control for a mobile robot

    NASA Astrophysics Data System (ADS)

    Kolli, Kaylan C.; Mallikarjun, Sreeram; Kola, Krishnamohan; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a speed control for a modular autonomous mobile robot controller. The speed control of the traction motor is essential for safe operation of a mobile robot. The challenges of autonomous operation of a vehicle require safe, runaway and collision free operation. A mobile robot test-bed has been constructed using a golf cart base. The computer controlled speed control has been implemented and works with guidance provided by vision system and obstacle avoidance using ultrasonic sensors systems. A 486 computer through a 3- axis motion controller supervises the speed control. The traction motor is controlled via the computer by an EV-1 speed control. Testing of the system was done both in the lab and on an outside course with positive results. This design is a prototype and suggestions for improvements are also given. The autonomous speed controller is applicable for any computer controlled electric drive mobile vehicle.

  10. Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running

    PubMed Central

    Uchida, Thomas K.; Hicks, Jennifer L.; Dembia, Christopher L.; Delp, Scott L.

    2016-01-01

    Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2–5 m/s with tendon force–strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2–3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail. PMID:26930416

  11. Comparison of Expected Crash and Injury Reduction from Production Forward Collision and Lane Departure Warning Systems.

    PubMed

    Kusano, Kristofer D; Gabler, Hampton C

    2015-01-01

    The U.S. New Car Assessment Program (NCAP) now tests for forward collision warning (FCW) and lane departure warning (LDW). The design of these warnings differs greatly between vehicles and can result in different real-world field performance in preventing or mitigating the effects of collisions. The objective of this study was to compare the expected number of crashes and injured drivers that could be prevented if all vehicles in the fleet were equipped with the FCW and LDW systems tested under the U.S. NCAP. To predict the potential crashes and serious injury that could be prevented, our approach was to computationally model the U.S. crash population. The models simulated all rear-end and single-vehicle road departure collisions that occurred in a nationally representative crash database (NASS-CDS). A sample of 478 single-vehicle crashes from NASS-CDS 2012 was the basis for 24,822 simulations for LDW. A sample of 1,042 rear-end collisions from NASS-CDS years 1997-2013 was the basis for 7,616 simulations for FCW. For each crash, 2 simulations were performed: (1) without the system present and (2) with the system present. Models of each production safety system were based on 54 model year 2010-2014 vehicles that were evaluated under the NCAP confirmation procedure for LDW and/or FCW. NCAP performed 40 LDW and 45 FCW tests of these vehicles. The design of the FCW systems had a dramatic impact on their potential to prevent crashes and injuries. Between 0 and 67% of crashes and 2 and 69% of moderately to fatally injured drivers in rear-end impacts could have been prevented if all vehicles were equipped with the FCW systems. Earlier warning times resulted in increased benefits. The largest effect on benefits, however, was the lower operating speed threshold of the systems. Systems that only operated at speeds above 20 mph were less than half as effective as those that operated above 5 mph with similar warning times. The production LDW systems could have prevented between 11 and 23% of drift-out-of-lane crashes and 13 and 22% of seriously to fatally injured drivers. A majority of the tested LDW systems delivered warnings near the point when the vehicle first touched the lane line, leading to similar benefits. Minimum operating speed also greatly affected LDW effectiveness. The results of this study show that the expected field performance of FCW and LDW systems are highly dependent on the design and system limitations. Systems that delivered warnings earlier and operated at lower speeds may prevent far more crashes and injuries than systems that warn late and operate only at high speeds. These results suggest that future FCW and LDW evaluation should prioritize early warnings and full-speed range operation. A limitation of this study is that additional crash avoidance features that may also mitigate collisions-for example, brake assist, automated braking, or lane-keeping assistance-were not evaluated during the NCAP tests or in our benefits models. The potential additional mitigating effects of these systems were not quantified in this study.

  12. Assessment of Aerodynamic Challenges of a Variable-Speed Power Turbine for Large Civil Tilt-Rotor Application

    NASA Technical Reports Server (NTRS)

    Welch, Gerand E.

    2010-01-01

    The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range (100% at take-off to 54% at cruise). The variable-speed power turbine, when coupled to a fixed-gear-ratio transmission, offers one approach to accomplish this speed variation. The key aero-challenges of the variable-speed power turbine are related to high work factors at cruise, where the power turbine operates at 54% of take-off speed, wide incidence variations into the vane, blade, and exit-guide-vane rows associated with the power-turbine speed change, and the impact of low aft-stage Reynolds number (transitional flow) at 28 kft cruise. Meanline and 2-D Reynolds-Averaged Navier- Stokes analyses are used to characterize the variable-speed power-turbine aerodynamic challenges and to outline a conceptual design approach that accounts for multi-point operation. Identified technical challenges associated with the aerodynamics of high work factor, incidence-tolerant blading, and low Reynolds numbers pose research needs outlined in the paper

  13. Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, P.W.

    Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases consideredmore » include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.« less

  14. 32 CFR 935.132 - Speed limits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Speed limits. 935.132 Section 935.132 National... WAKE ISLAND CODE Motor Vehicle Code § 935.132 Speed limits. Each person operating a motor vehicle on Wake Island shall operate it at a speed— (a) That is reasonable, safe, and proper, considering time of...

  15. 32 CFR 935.132 - Speed limits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Speed limits. 935.132 Section 935.132 National... WAKE ISLAND CODE Motor Vehicle Code § 935.132 Speed limits. Each person operating a motor vehicle on Wake Island shall operate it at a speed— (a) That is reasonable, safe, and proper, considering time of...

  16. Joint High Speed Vessel (JHSV) Follow on Operational Test and Evaluation (FOT and E) Report

    DTIC Science & Technology

    2015-09-21

    Speed Vessel (JHSV) ship class. The events covered in this testing were not performed during the Initial Operational Test and Evaluation ( IOT &E...support boats since launch of these type boats was completed in IOT &E. 1 “Initial Operational Test...and Evaluation ( IOT &E) with Live Fire Test and Evaluation (LFT&E) on Joint High Speed Vessel (JHSV),” DOT&E, July 17, 2014. 2 MLP (CCS) is a heavy

  17. Optimization design of submerged propeller in oxidation ditch by computational fluid dynamics and comparison with experiments.

    PubMed

    Zhang, Yuquan; Zheng, Yuan; Fernandez-Rodriguez, E; Yang, Chunxia; Zhu, Yantao; Liu, Huiwen; Jiang, Hao

    The operating condition of a submerged propeller has a significant impact on flow field and energy consumption of the oxidation ditch. An experimentally validated numerical model, based on the computational fluid dynamics (CFD) tool, is presented to optimize the operating condition by considering two important factors: flow field and energy consumption. Performance demonstration and comparison of different operating conditions were carried out in a Carrousel oxidation ditch at the Yingtang wastewater treatment plants in Anhui Province, China. By adjusting the position and rotating speed together with the number of submerged propellers, problems of sludge deposit and the low velocity in the bend could be solved in a most cost-effective way. The simulated results were acceptable compared with the experimental data and the following results were obtained. The CFD model characterized flow pattern and energy consumption in the full-scale oxidation ditch. The predicted flow field values were within -1.28 ± 7.14% difference from the measured values. By determining three sets of propellers under the rotating speed of 6.50 rad/s with one located 5 m from the first curved wall, after numerical simulation and actual measurement, not only the least power density but also the requirement of the flow pattern could be realized.

  18. 78 FR 16051 - Vehicle/Track Interaction Safety Standards; High-Speed and High Cant Deficiency Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ...FRA is amending the Track Safety Standards and Passenger Equipment Safety Standards to promote the safe interaction of rail vehicles with the track over which they operate under a variety of conditions at speeds up to 220 m.p.h. The final rule revises standards for track geometry and safety limits for vehicle response to track conditions, enhances vehicle/track qualification procedures, and adds flexibility for permitting high cant deficiency train operations through curves at conventional speeds. The rule accounts for a range of vehicle types that are currently in operation, as well as vehicle types that may likely be used in future high-speed or high cant deficiency rail operations, or both. The rule is based on the results of simulation studies designed to identify track geometry irregularities associated with unsafe wheel/rail forces and accelerations, thorough reviews of vehicle qualification and revenue service test data, and consideration of international practices.

  19. Mechanical pumps for superfluid helium transfer in space

    NASA Technical Reports Server (NTRS)

    Izenson, M. G.; Swift, W. L.

    1988-01-01

    Two alternate mechanical pump concepts have been identified for the transfer of superfluid helium in space. Both pumps provide flow at sufficient head and have operating characteristics suitable for the Space Infrared Telescope Facility (SIRTF) refill mission. One pump operates at a relatively low speed and utilizes mechanical roller bearings, while the other operates at a higher rotational speed using either electromagnetic or tilting pad gas-dynamic bearings. The use of gas bearings requires transfer of normal helium so that the gas pressure within the pump casing is high enough to operate the bearings. The operating characteristics of both pumps are predicted, the dimensions are estimated and major technology issues are identified. The major issues for each pump design are cavitation performance and bearing development. Roller bearings require quantified reliability for operation in space while electromagnetic bearings require basic development as well as a complex control system. The low speed pump has significantly poorer hydraulic efficiency than the high speed pump.

  20. Pressure Pulsation in a High Head Francis Turbine Operating at Variable Speed

    NASA Astrophysics Data System (ADS)

    Sannes, D. B.; Iliev, I.; Agnalt, E.; Dahlhaug, O. G.

    2018-06-01

    This paper presents the preliminary work of the master thesis of the author, written at the Norwegian University of Science and Technology. Today, many Francis turbines experience formations of cracks in the runner due to pressure pulsations. This can eventually cause failure. One way to reduce this effect is to change the operation point of the turbine, by utilizing variable speed technology. This work presents the results from measurements of the Francis turbine at the Waterpower Laboratory at NTNU. Measurements of pressure pulsations and efficiency were done for the whole operating range of a high head Francis model turbine. The results will be presented in a similar diagram as the Hill Chart, but instead of constant efficiency curves there will be curves of constant peak-peak values. This way, it is possible to find an optimal operation point for the same power production, were the pressure pulsations are at its lowest. Six points were chosen for further analysis to instigate the effect of changing the speed by ±50 rpm. The analysis shows best results for operation below BEP when the speed was reduced. The change in speed also introduced the possibility to have other frequencies in the system. It is therefore important avoid runner speeds that can cause resonance in the system.

  1. Variable speed controller

    NASA Technical Reports Server (NTRS)

    Estes, Christa; Spiggle, Charles; Swift, Shannon; Vangeffen, Stephen; Younger, Frank

    1992-01-01

    This report details a new design for a variable speed controller which can be used to operate lunar machinery without the astronaut using his or her upper body. In order to demonstrate the design, a treadle for an industrial sewing machine was redesigned to be used by a standing operator. Since the invention of an electrically powered sewing machine, the operator has been seated. Today, companies are switching from sit down to stand up operation involving modular stations. The old treadle worked well with a sitting operator, but problems have been found when trying to use the same treadle with a standing operator. Emphasis is placed on the ease of use by the operator along with the ergonomics involved. Included with the design analysis are suggestions for possible uses for the speed controller in other applications.

  2. Active control system for high speed windmills

    DOEpatents

    Avery, D.E.

    1988-01-12

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  3. Active control system for high speed windmills

    DOEpatents

    Avery, Don E.

    1988-01-01

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.

  4. Experimental analysis of IMEP in a rotary combustion engine. [Indicated Mean Effective Pressure

    NASA Technical Reports Server (NTRS)

    Schock, H. J.; Rice, W. J.; Meng, P. R.

    1981-01-01

    This experimental work demonstrates the use of a NASA designed, real time Indicated Mean Effective Pressure (IMEP) measurement system which will be used to judge proposed improvements in cycle efficiency of a rotary combustion engine. This is the first self-contained instrument that is capable of making real time measurements of IMEP in a rotary engine. Previous methods used require data recording and later processing using a digital computer. The unique features of this instrumentation include its ability to measure IMEP on a cycle by cycle, real time basis and the elimination of the need to differentiate the volume function in real time. Measurements at two engine speeds (2000 and 3000 RPM) and a full range of loads are presented, although the instrument was designed to operate to speeds of 9000 RPM.

  5. Integrated propulsion/energy transfer control systems for lift-fan V/STOL aircraft. [reduction of total propulsion system and control system installation requirements

    NASA Technical Reports Server (NTRS)

    Deckert, W. H.; Rolls, L. S.

    1974-01-01

    An integrated propulsion/control system for lift-fan transport aircraft is described. System behavior from full-scale experimental and piloted simulator investigations are reported. The lift-fan transport is a promising concept for short-to-medium haul civil transportation and for other missions. The lift-fan transport concept features high cruise airspeed, favorable ride qualities, small perceived noise footprints, high utilization, transportation system flexibility, and adaptability to VTOL, V/STOL, or STOL configurations. The lift-fan transport has high direct operating costs in comparison to conventional aircraft, primarily because of propulsion system and aircraft low-speed control system installation requirements. An integrated lift-fan propulsion system/aircraft low-speed control system that reduces total propulsion system and control system installation requirements is discussed.

  6. 77 FR 51554 - Draft Environmental Impact Statement and Habitat Conservation Plan; Receipt of Application for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... from Beech Ridge Energy for an ITP for the operation, and maintenance of 67 existing turbines in the project area; the construction, operation and maintenance of up to 33 additional turbines and associated... low wind speeds by raising turbine cut-in speeds (the wind speed at which turbines begin generating...

  7. Integrate Thermal Modules for Cooling Silicon and Silicon Carbide Power Modules

    DTIC Science & Technology

    2007-06-01

    currently valid OMB control number. 1 . REPORT DATE 11 JUN 2007 2 . REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Integrate Thermal...vehicle operation as follows: 1 ) Normal Operation at High Speed 2 ) Normal Operation at Low Speed 3) Acceleration at High Speed 4) Acceleration at Low...diodes. For a basis of comparing the performance of the ITMs, we are using the Semikron 100 kW SKAI inverter (fig 1 ) to quantify and generate

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alderfer, R.R.; Futa, P.W.

    This patent describes a fuel system for an engine having a filter through which fuel from a pump passes to a regulator in response to an operator input. The regulator controls the flow of fuel presented to a combustion chamber in the engine, the regulator having a feedback apparatus to provide an operator with a signal indicative of the fuel supplied to the combustion chamber. It comprises: bypass means having a housing with a chamber therein, the chamber having an entrance port connected to the pump and an exit port connected to the regulator; piston means located in the chambermore » for separating the entrance port from the exit port, the piston having a face with a projection extending therefrom; stop means located in the chamber; resilient means located is the chamber for urging the piston means toward the stop means to prevent the flow of fuel from the pump through the housing to the regulator; and indicator means having a body retained in the housing with a first end which extends through the housing into the from a full-open position at which the closed circuit is fully opened to a full-closed position at which the closed circuit is fully blocked; ratio detecting means which detects the speed reduction ratio to find if the speed reduction ratio becomes substantially 1; and valve position detecting means which detects position of the direct clutch valve to find if the direct clutch valve is moved to a slight-open position at which the closed circuit is slightly opened.« less

  9. Bearing Fault Diagnosis under Variable Speed Using Convolutional Neural Networks and the Stochastic Diagonal Levenberg-Marquardt Algorithm

    PubMed Central

    Tra, Viet; Kim, Jaeyoung; Kim, Jong-Myon

    2017-01-01

    This paper presents a novel method for diagnosing incipient bearing defects under variable operating speeds using convolutional neural networks (CNNs) trained via the stochastic diagonal Levenberg-Marquardt (S-DLM) algorithm. The CNNs utilize the spectral energy maps (SEMs) of the acoustic emission (AE) signals as inputs and automatically learn the optimal features, which yield the best discriminative models for diagnosing incipient bearing defects under variable operating speeds. The SEMs are two-dimensional maps that show the distribution of energy across different bands of the AE spectrum. It is hypothesized that the variation of a bearing’s speed would not alter the overall shape of the AE spectrum rather, it may only scale and translate it. Thus, at different speeds, the same defect would yield SEMs that are scaled and shifted versions of each other. This hypothesis is confirmed by the experimental results, where CNNs trained using the S-DLM algorithm yield significantly better diagnostic performance under variable operating speeds compared to existing methods. In this work, the performance of different training algorithms is also evaluated to select the best training algorithm for the CNNs. The proposed method is used to diagnose both single and compound defects at six different operating speeds. PMID:29211025

  10. 49 CFR 230.68 - Speed indicators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Speed indicators. 230.68 Section 230.68... Tenders Speed Indicators § 230.68 Speed indicators. Steam locomotives that operate at speeds in excess of 20 miles per hour over the general system of railroad transportation shall be equipped with speed...

  11. 49 CFR 230.68 - Speed indicators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Speed indicators. 230.68 Section 230.68... Tenders Speed Indicators § 230.68 Speed indicators. Steam locomotives that operate at speeds in excess of 20 miles per hour over the general system of railroad transportation shall be equipped with speed...

  12. The Design of the Automatic Control System of the Gripping-Belt Speed in Long-Rootstalk Traditional Chinese Herbal Harvester

    NASA Astrophysics Data System (ADS)

    Huang, Jinxia; Wang, Junfa; Yu, Yonghong

    This article aims to design a kind of gripping-belt speed automatic tracking system of traditional Chinese herbal harvester by AT89C52 single-chip micro computer as a core combined with fuzzy PID control algorithm. The system can adjust the gripping-belt speed in accordance with the variation of the machine's operation, so there is a perfect matching between the machine operation speed and the gripping-belt speed. The harvesting performance of the machine can be improved greatly. System design includes hardware and software.

  13. Multiroller traction drive speed reducer: Evaluation for automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Rohn, D. A.; Anderson, N. E.; Loewenthal, S. H.

    1982-01-01

    Tests were conducted on a nominal 14:1 fixed-ratio Nasvytis multiroller traction drive retrofitted as the speed reducer in an automotive gas turbine engine. Power turbine speeds of 45,000 rpm and a drive output power of 102 kW (137 hp) were reached. The drive operated under both variable roller loading (proportional to torque) and fixed roller loading (automatic loading mechanism locked). The drive operated smoothly and efficiently as the engine speed reducer. Engine specific fuel consumption with the traction speed reducer was comparable to that with the original helical gearset.

  14. Effect of Exit-Slot Position and Opening on the Available Cooling Pressure for NACA Nose-Slot Cowlings

    NASA Technical Reports Server (NTRS)

    Stickle, George W; Naiman, Irven; Crigler, John L

    1940-01-01

    Report presents the results of an investigation of full-scale nose-slot cowlings conducted in the NACA 20-foot wind tunnel to furnish information on the pressure drop available for cooling. Engine conductances from 0 to 0.12 and exit-slot conductances from 0 to 0.30 were covered. Two basic nose shapes were tested to determine the effect of the radius of curvature of the nose contour; the nose shape with the smaller radius of curvature gave the higher pressure drop across the engine. The best axial location of the slot for low-speed operation was found to be in the region of maximum negative pressure for the basic shape for the particular operating condition. The effect of the pressure operating condition on the available cooling pressure is shown.

  15. Reactive, Safe Navigation for Lunar and Planetary Robots

    NASA Technical Reports Server (NTRS)

    Utz, Hans; Ruland, Thomas

    2008-01-01

    When humans return to the moon, Astronauts will be accompanied by robotic helpers. Enabling robots to safely operate near astronauts on the lunar surface has the potential to significantly improve the efficiency of crew surface operations. Safely operating robots in close proximity to astronauts on the lunar surface requires reactive obstacle avoidance capabilities not available on existing planetary robots. In this paper we present work on safe, reactive navigation using a stereo based high-speed terrain analysis and obstacle avoidance system. Advances in the design of the algorithms allow it to run terrain analysis and obstacle avoidance algorithms at full frame rate (30Hz) on off the shelf hardware. The results of this analysis are fed into a fast, reactive path selection module, enforcing the safety of the chosen actions. The key components of the system are discussed and test results are presented.

  16. Rotordynamic Feasibility of a Conceptual Variable-Speed Power Turbine Propulsion System for Large Civil Tilt-Rotor Applications

    NASA Technical Reports Server (NTRS)

    Howard, Samuel

    2012-01-01

    A variable-speed power turbine concept is analyzed for rotordynamic feasibility in a Large Civil Tilt-Rotor (LCTR) class engine. Implementation of a variable-speed power turbine in a rotorcraft engine would enable high efficiency propulsion at the high forward velocities anticipated of large tilt-rotor vehicles. Therefore, rotordynamics is a critical issue for this engine concept. A preliminary feasibility study is presented herein to address this concern and identify if variable-speed is possible in a conceptual engine sized for the LCTR. The analysis considers critical speed placement in the operating speed envelope, stability analysis up to the maximum anticipated operating speed, and potential unbalance response amplitudes to determine that a variable-speed power turbine is likely to be challenging, but not impossible to achieve in a tilt-rotor propulsion engine.

  17. Feasibility of Using Littoral Combat Ships (LCS) for Humanitarian Assistance/Disaster Relief (HA/DR) Operations

    DTIC Science & Technology

    2012-09-01

    when travelling at sprint speed. To help overcome the shortcomings of the LCS in conducting HA/DR operations, the Irregular Warfare (IW) mission...high sprint speed, which allows the LCS to reach the disaster region faster than any other ships, especially if the IW mission package is adopted. The...high sprint speed in excess of 40 knots and a high sustained speed to enable it to run along a 30+ knots CSG or 20+ knots ESG. The high sprint

  18. 49 CFR 174.86 - Maximum allowable operating speed.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Handling of Placarded Rail Cars, Transport Vehicles and Freight Containers § 174.86 Maximum allowable operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in...

  19. 49 CFR 174.86 - Maximum allowable operating speed.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Handling of Placarded Rail Cars, Transport Vehicles and Freight Containers § 174.86 Maximum allowable operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in...

  20. 49 CFR 174.86 - Maximum allowable operating speed.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Handling of Placarded Rail Cars, Transport Vehicles and Freight Containers § 174.86 Maximum allowable operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in...

  1. 29 CFR 1918.86 - Roll-on roll-off (Ro-Ro) operations (see also § 1918.2, Ro-Ro operations, and § 1918.25).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... simultaneous use of the ramp by vehicles and pedestrians. (d) Ramp maintenance. Ramps shall be properly... ramp inclines safely. (j) Safe speeds. Power driven vehicles used in Ro-Ro operations shall be operated at speeds that are safe for prevailing conditions. (k) Ventilation. Internal combustion engine-driven...

  2. Diesel engine torsional vibration control coupling with speed control system

    NASA Astrophysics Data System (ADS)

    Guo, Yibin; Li, Wanyou; Yu, Shuwen; Han, Xiao; Yuan, Yunbo; Wang, Zhipeng; Ma, Xiuzhen

    2017-09-01

    The coupling problems between shafting torsional vibration and speed control system of diesel engine are very common. Neglecting the coupling problems sometimes lead to serious oscillation and vibration during the operation of engines. For example, during the propulsion shafting operation of a diesel engine, the oscillation of engine speed and the severe vibration of gear box occur which cause the engine is unable to operate. To find the cause of the malfunctions, a simulation model coupling the speed control system with the torsional vibration of deformable shafting is proposed and investigated. In the coupling model, the shafting is simplified to be a deformable one which consists of several inertias and shaft sections and with characteristics of torsional vibration. The results of instantaneous rotation speed from this proposed model agree with the test results very well and are successful in reflecting the real oscillation state of the engine operation. Furthermore, using the proposed model, the speed control parameters can be tuned up to predict the diesel engine a stable and safe running. The results from the tests on the diesel engine with a set of tuned control parameters are consistent with the simulation results very well.

  3. Prediction of Francis Turbine Prototype Part Load Pressure and Output Power Fluctuations with Hydroelectric Model

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.

    2017-04-01

    The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).

  4. Bearing fatigue investigation 3

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.; Bamberger, E. N.; Signer, H. R.

    1982-01-01

    The operating characteristics of large diameter rolling-element bearings in the ultra high speed regimes expected in advanced turbine engines for high performance aircraft were investigated. A high temperature lubricant, DuPont Krytox 143 AC, was evaluated at bearing speeds to 3 million DN. Compared to the results of earlier, similar tests using a MIL-L-23699 (Type II) lubricant, bearings lubricated with the high density Krytox fluid showed significantly higher power requirements. Additionally, short bearing lives were observed when this fluid was used with AISI M50 bearings in an air atmosphere. The primary mode of failure was corrosion initiated surface distress (fatigue) on the raceways. The potential of a case-carburized bearing to sustain a combination of high-tangential and hertzian stresses without experiencing race fracture was also investigated. Limited full scale bearing tests of a 120 mm bore ball bearing at a speed of 25,000 rpm (3 million DN) indicated that a carburized material could sustain spalling fatigue without subsequent propagation to fracture. Planned life tests of the carburized material had to be aborted, however, because of apparent processing-induced material defects.

  5. Static and wind tunnel near-field/far field jet noise measurements from model scale single-flow baseline and suppressor nozzles. Volume 2: Forward speed effects

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1976-01-01

    A model scale flight effects test was conducted in the 40 by 80 foot wind tunnel to investigate the effect of aircraft forward speed on single flow jet noise characteristics. The models tested included a 15.24 cm baseline round convergent nozzle, a 20-lobe and annular nozzle with and without lined ejector shroud, and a 57-tube nozzle with a lined ejector shroud. Nozzle operating conditions covered jet velocities from 412 to 640 m/s at a total temperature of 844 K. Wind tunnel speeds were varied from near zero to 91.5 m/s. Measurements were analyzed to (1) determine apparent jet noise source location including effects of ambient velocity; (2) verify a technique for extrapolating near field jet noise measurements into the far field; (3) determine flight effects in the near and far field for baseline and suppressor nozzles; and (4) establish the wind tunnel as a means of accurately defining flight effects for model nozzles and full scale engines.

  6. Computational Evaluation of Inlet Distortion on an Ejector Powered Hybrid Wing Body at Takeoff and Landing Conditions

    NASA Technical Reports Server (NTRS)

    Tompkins, Daniel M.; Sexton, Matthew R.; Mugica, Edward A.; Beyar, Michael D.; Schuh, Michael J.; Stremel, Paul M.; Deere, Karen A.; McMillin, Naomi; Carter, Melissa B.

    2016-01-01

    Due to the aft, upper surface engine location on the Hybrid Wing Body (HWB) planform, there is potential to shed vorticity and separated wakes into the engine when the vehicle is operated at off-design conditions and corners of the envelope required for engine and airplane certification. CFD simulations were performed of the full-scale reference propulsion system, operating at a range of inlet flow rates, flight speeds, altitudes, angles of attack, and angles of sideslip to identify the conditions which produce the largest distortion and lowest pressure recovery. Pretest CFD was performed by NASA and Boeing, using multiple CFD codes, with various turbulence models. These data were used to make decisions regarding model integration, characterize inlet flow distortion patterns, and help define the wind tunnel test matrix. CFD was also performed post-test; when compared with test data, it was possible to make comparisons between measured model-scale and predicted full-scale distortion levels. This paper summarizes these CFD analyses.

  7. All-optical OFDM network coding scheme for all-optical virtual private communication in PON

    NASA Astrophysics Data System (ADS)

    Li, Lijun; Gu, Rentao; Ji, Yuefeng; Bai, Lin; Huang, Zhitong

    2014-03-01

    A novel optical orthogonal frequency division multiplexing (OFDM) network coding scheme is proposed over passive optical network (PON) system. The proposed scheme for all-optical virtual private network (VPN) does not only improve transmission efficiency, but also realize full-duplex communication mode in a single fiber. Compared with the traditional all-optical VPN architectures, the all-optical OFDM network coding scheme can support higher speed, more flexible bandwidth allocation, and higher spectrum efficiency. In order to reduce the difficulty of alignment for encoding operation between inter-communication traffic, the width of OFDM subcarrier pulse is stretched in our proposed scheme. The feasibility of all-optical OFDM network coding scheme for VPN is verified, and the relevant simulation results show that the full-duplex inter-communication traffic stream can be transmitted successfully. Furthermore, the tolerance of misalignment existing in inter-ONUs traffic is investigated and analyzed for all-optical encoding operation, and the difficulty of pulse alignment is proved to be lower.

  8. Power Smoothing of a Variable-Speed Wind Turbine Generator in Association With the Rotor-Speed-Dependent Gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeonhee; Kang, Moses; Muljadi, Eduard

    This paper proposes a power-smoothing scheme for a variable-speed wind turbine generator (WTG) that can smooth out the WTG's fluctuating power caused by varying wind speeds, and thereby keep the system frequency within a narrow range. The proposed scheme employs an additional loop based on the system frequency deviation that operates in conjunction with the maximum power point tracking (MPPT) control loop. Unlike the conventional, fixed-gain scheme, its control gain is modified with the rotor speed. In the proposed scheme, the control gain is determined by considering the ratio of the output of the additional loop to that of themore » MPPT loop. To improve the contribution of the scheme toward maintaining the frequency while ensuring the stable operation of WTGs, in the low rotor speed region, the ratio is set to be proportional to the rotor speed; in the high rotor speed region, the ratio remains constant. The performance of the proposed scheme is investigated under varying wind conditions for the IEEE 14-bus system. The simulation results demonstrate that the scheme successfully operates regardless of the output power fluctuation of a WTG by adjusting the gain with the rotor speed, and thereby improves the frequency-regulating capability of a WTG.« less

  9. 14 CFR Appendix E to Part 135 - Helicopter Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Keying On-Off (Discrete) 1 0.25 sec Power in Each Engine: Free Power Turbine Speed and Engine Torque 0-130% (power Turbine Speed) Full range (Torque) ±2% 1 speed 1 torque (per engine) 0.2% 1 to 0.4% 1 Main... Controls (Collective, Longitudinal Cyclic, Lateral Cyclic, Pedal) 3 Full range ±3% 2 0.5% 1 Flight Control...

  10. 14 CFR Appendix E to Part 135 - Helicopter Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Keying On-Off (Discrete) 1 0.25 sec Power in Each Engine: Free Power Turbine Speed and Engine Torque 0-130% (power Turbine Speed) Full range (Torque) ±2% 1 speed 1 torque (per engine) 0.2% 1 to 0.4% 1 Main... Controls (Collective, Longitudinal Cyclic, Lateral Cyclic, Pedal) 3 Full range ±3% 2 0.5% 1 Flight Control...

  11. 14 CFR Appendix E to Part 135 - Helicopter Flight Recorder Specifications

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Keying On-Off (Discrete) 1 0.25 sec Power in Each Engine: Free Power Turbine Speed and Engine Torque 0-130% (power Turbine Speed) Full range (Torque) ±2% 1 speed 1 torque (per engine) 0.2% 1 to 0.4% 1 Main... Controls (Collective, Longitudinal Cyclic, Lateral Cyclic, Pedal) 3 Full range ±3% 2 0.5% 1 Flight Control...

  12. Wind Velocity and Position Sensor-less Operation for PMSG Wind Generator

    NASA Astrophysics Data System (ADS)

    Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki

    Electric power generation using non-conventional sources is receiving considerable attention throughout the world. Wind energy is one of the available non-conventional energy sources. Electrical power generation using wind energy is possible in two ways, viz. constant speed operation and variable speed operation using power electronic converters. Variable speed power generation is attractive, because maximum electric power can be generated at all wind velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate wind velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.

  13. Advanced superposition methods for high speed turbopump vibration analysis

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.; Campany, A. D.

    1981-01-01

    The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.

  14. Speed control system for an access gate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzorgi, Fariborz M

    2012-03-20

    An access control apparatus for an access gate. The access gate typically has a rotator that is configured to rotate around a rotator axis at a first variable speed in a forward direction. The access control apparatus may include a transmission that typically has an input element that is operatively connected to the rotator. The input element is generally configured to rotate at an input speed that is proportional to the first variable speed. The transmission typically also has an output element that has an output speed that is higher than the input speed. The input element and the outputmore » element may rotate around a common transmission axis. A retardation mechanism may be employed. The retardation mechanism is typically configured to rotate around a retardation mechanism axis. Generally the retardation mechanism is operatively connected to the output element of the transmission and is configured to retard motion of the access gate in the forward direction when the first variable speed is above a control-limit speed. In many embodiments the transmission axis and the retardation mechanism axis are substantially co-axial. Some embodiments include a freewheel/catch mechanism that has an input connection that is operatively connected to the rotator. The input connection may be configured to engage an output connection when the rotator is rotated at the first variable speed in a forward direction and configured for substantially unrestricted rotation when the rotator is rotated in a reverse direction opposite the forward direction. The input element of the transmission is typically operatively connected to the output connection of the freewheel/catch mechanism.« less

  15. Low Speed Control for Automatic Welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. E.

    1982-01-01

    Amplifier module allows rotating positioner of automatic welding machine to operate at speeds below normal range. Low speeds are precisely regulated by a servomechanism as are normal-range speeds. Addition of module to standard welding machine makes it unnecessary to purchase new equipment for low-speed welding.

  16. Variable current speed controller for eddy current motors

    DOEpatents

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  17. The experimental studies of operating modes of a diesel-generator set at variable speed

    NASA Astrophysics Data System (ADS)

    Obukhov, S. G.; Plotnikov, I. A.; Surkov, M. A.; Sumarokova, L. P.

    2017-02-01

    A diesel generator set working at variable speed to save fuel is studied. The results of experimental studies of the operating modes of an autonomous diesel generator set are presented. Areas for regulating operating modes are determined. It is demonstrated that the transfer of the diesel generator set to variable speed of the diesel engine makes it possible to improve the energy efficiency of the autonomous generator source, as well as the environmental and ergonomic performance of the equipment as compared with general industrial analogues.

  18. Evaluation of advanced airship concepts

    NASA Technical Reports Server (NTRS)

    Joner, B. A.; Schneider, J. J.

    1975-01-01

    A historical overview of the airship, technical and operational characteristics of conventional and hybrid concepts, and the results of a parametric design analysis and evaluation are presented. The lift capabilities of certain buoyant fluids for a hypothetical 16 million cu.ft. volume airship are compared. The potential advanced airship concepts are surveyed, followed by a discussion of the six configurations: conventional nonrigid, conventional rigid, Deltoid (Dynairship), Guppoid (Megalifter), Helipsoid, and Heli-Stat. It is suggested that a partially buoyant Helipsoid concept of the optimum buoyancy ratio has the potential to solve the problems facing future airship development, such as Ballast and Ballast Recovery System, Full Low-Speed Controllability, Susceptibility to Wind/Gusting, Weather/Icing Constraints, Ground Handling/Hangaring, and Direct/Indirect Operating Costs.

  19. Experimental and Analytical Performance of a Dual Brayton Power Conversion System

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas A.; Hervol, David S.; Briggs, Maxwell; Owen, A. Karl

    2009-01-01

    The interactions between two closed Brayton cycle (CBC) power conversion units (PCU) which share a common gas inventory and heat source have been studied experimentally using the Dual Brayton Power Conversion System (DBPCS) and analytically using the Closed- Cycle System Simulation (CCSS) computer code. Selected operating modes include steady-state operation at equal and unequal shaft speeds and various start-up scenarios. Equal shaft speed steady-state tests were conducted for heater exit temperatures of 840 to 950 K and speeds of 50 to 90 krpm, providing a system performance map. Unequal shaft speed steady-state testing over the same operating conditions shows that the power produced by each Brayton is sensitive to the operating conditions of the other due to redistribution of gas inventory. Startup scenarios show that starting the engines one at a time can dramatically reduce the required motoring energy. Although the DBPCS is not considered a flight-like system, these insights, as well as the operational experience gained from operating and modeling this system provide valuable information for the future development of Brayton systems.

  20. Control of a High Speed Flywheel System for Energy Storage in Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy; Santiago, Walter

    2004-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented demonstrating the successful operation of the flywheel control up to the rated speed of 60,000 rpm.

  1. Data Quality Software for the South Pole Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotter, Cory; Besnon, Brad; Anderson, Adam

    2017-01-01

    The South Pole Telescope (SPT) observes the cosmic microwave background in order to answer questions such as how old is the universe, what is the universe made of, and how has the universe evolved. The telescope is in its third generation of upgrades (SPT-3G), but much work has yet to be done to reach full operating capabilities. When fully deployed, it will increase the mapping speed by a factor of 20 over the previous receiver and increase sensitivity significantly. SPT-3G is observing for four years from 2016 to 2019.

  2. The CP-PACS Project and Lattice QCD Results

    NASA Astrophysics Data System (ADS)

    Iwasaki, Y.

    The aim of the CP-PACS project was to develop a massively parallel computer for performing numerical research in computational physics with primary emphasis on lattice QCD. The CP-PACS computer with a peak speed of 614 GFLOPS with 2048 processors was completed in September 1996, and has been in full operation since October 1996. We present an overview of the CP-PACS project and describe characteristics of the CP-PACS computer. The CP-PACS has been mainly used for hadron spectroscopy studies in lattice QCD. Main results in lattice QCD simulations are given.

  3. Development of Doppler Global Velocimetry as a Flow Diagnostics Tool

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    1995-01-01

    The development of Doppler global velocimetry is described from its inception to its use as a flow diagnostics tool. Its evolution is traced from an elementary one-component laboratory prototype, to a full three-component configuration operating in a wind tunnel at focal distances exceeding 15 m. As part of the developmental process, several wind tunnel flow field investigations were conducted. These included supersonic flow measurements about an oblique shock, subsonic and supersonic measurements of the vortex flow above a delta wing, and three-component measurements of a high-speed jet.

  4. Low-noise pulse conditioner

    DOEpatents

    Bird, David A.

    1983-01-01

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits.

  5. 49 CFR 213.307 - Class of track: operating speed limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... operating speed for trains 1 is— Class 6 track 110 m.p.h. Class 7 track 125 m.p.h. Class 8 track 160 m.p.h. 2 Class 9 track 200 m.p.h. 1 Freight may be transported at passenger train speeds if the following... 150 m.p.h. are authorized by this part only in conjunction with a rule of particular applicability...

  6. LPV control for the full region operation of a wind turbine integrated with synchronous generator.

    PubMed

    Cao, Guoyan; Grigoriadis, Karolos M; Nyanteh, Yaw D

    2015-01-01

    Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control.

  7. LPV Control for the Full Region Operation of a Wind Turbine Integrated with Synchronous Generator

    PubMed Central

    Grigoriadis, Karolos M.; Nyanteh, Yaw D.

    2015-01-01

    Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control. PMID:25884036

  8. Shaft seal assembly and method

    NASA Technical Reports Server (NTRS)

    Keba, John E. (Inventor)

    2007-01-01

    A pressure-actuated shaft seal assembly and associated method for controlling the flow of fluid adjacent a rotatable shaft are provided. The seal assembly includes one or more seal members that can be adjusted between open and closed positions, for example, according to the rotational speed of the shaft. For example, the seal member can be configured to be adjusted according to a radial pressure differential in a fluid that varies with the rotational speed of the shaft. In addition, in the closed position, each seal member can contact a rotatable member connected to the shaft to form a seal with the rotatable member and prevent fluid from flowing through the assembly. Thus, the seal can be closed at low speeds of operation and opened at high speeds of operation, thereby reducing the heat and wear in the seal assembly while maintaining a sufficient seal during all speeds of operation.

  9. Straight and chopped dc performance data for a Prestolite MTC-4001 motor and a general electric EV-1 controller

    NASA Technical Reports Server (NTRS)

    Edie, P. C.

    1981-01-01

    Performance data on the Prestolite MTC-4001 series wound dc motor and General Electric EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data are provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing show the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 76% and 82%, regardless of temperature or mode of operation.

  10. Repressing the effects of variable speed harmonic orders in operational modal analysis

    NASA Astrophysics Data System (ADS)

    Randall, R. B.; Coats, M. D.; Smith, W. A.

    2016-10-01

    Discrete frequency components such as machine shaft orders can disrupt the operation of normal Operational Modal Analysis (OMA) algorithms. With constant speed machines, they have been removed using time synchronous averaging (TSA). This paper compares two approaches for varying speed machines. In one method, signals are transformed into the order domain, and after the removal of shaft speed related components by a cepstral notching method, are transformed back to the time domain to allow normal OMA. In the other simpler approach an exponential shortpass lifter is applied directly in the time domain cepstrum to enhance the modal information at the expense of other disturbances. For simulated gear signals with speed variations of both ±5% and ±15%, the simpler approach was found to give better results The TSA method is shown not to work in either case. The paper compares the results with those obtained using a stationary random excitation.

  11. Operation of High Speed Passenger Trains in Rail Freight Corridors

    DOT National Transportation Integrated Search

    1975-09-01

    A preliminary examination of the problems associated with mixed-traffic operations - conventional freight and high speed passenger trains - is presented. Approaches based upon a modest upgrading of existing signal systems are described. Potential cos...

  12. Evaluation of mobile work zone alarm systems.

    DOT National Transportation Integrated Search

    2014-06-01

    Maintenance of highways often involves mobile work zones for various types of low speed moving operations such as : striping and sweeping. The speed differential between the moving operation and traffic, and the increasing problem of : distracted dri...

  13. Principle and Basic Characteristics of Variable-Magnetic-Force Memory Motors

    NASA Astrophysics Data System (ADS)

    Sakai, Kazuto; Yuki, Kazuaki; Hashiba, Yutaka; Takahashi, Norio; Yasui, Kazuya; Kovudhikulrungsri, Lilit

    A reduction in the power consumed by motors is required for energy saving in the case of electrical appliances and electric vehicles (EV). The motors used for operating these apparatus operate at variable speeds. Further, the motors operate with small load in stationary mode and with large load in start-up mode. A permanent magnet motor can operate at the rated power with a high efficiency. However, the efficiency is lower at small load or high speed because the large constant magnetic force results in substantial core loss. Furthermore, the flux-weakening current that depresses voltage at high speed leads to significant copper loss. Therefore, we have developed a new technique for controlling the magnetic force of permanent magnet on the basis of the load or speed of the motor. In this paper, we propose the novel motor that can vary magnetic flux and we clarify the principle.

  14. Assessment of potential aerodynamic effects on personnel and equipment in proximity to high-speed train operations : safety of high-speed ground transportation systems

    DOT National Transportation Integrated Search

    1999-12-01

    Amtrak is planning to provide high-speed passenger train service at speeds significantly higher than their current top speed of 125 mph, and with these higher speeds, there are concerns with safety from the aerodynamic effects created by a passing tr...

  15. 14 CFR 29.931 - Shafting critical speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Shafting critical speed. 29.931 Section 29... speed. (a) The critical speeds of any shafting must be determined by demonstration except that...) If any critical speed lies within, or close to, the operating ranges for idling, power-on, and...

  16. 14 CFR 27.931 - Shafting critical speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Shafting critical speed. 27.931 Section 27... speed. (a) The critical speeds of any shafting must be determined by demonstration except that...) If any critical speed lies within, or close to, the operating ranges for idling, power on, and...

  17. 78 FR 22031 - California High-Speed Rail Authority-Construction Exemption-In Merced, Madera and Fresno Counties...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... High-Speed Rail Authority--Construction Exemption--In Merced, Madera and Fresno Counties, CA AGENCY... High-Speed Rail Authority (Authority). This Final EIS is titled ``California High-Speed Train: Merced... Final EIS assesses the potential environmental impacts of constructing and operating a high-speed...

  18. 14 CFR 27.931 - Shafting critical speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Shafting critical speed. 27.931 Section 27... speed. (a) The critical speeds of any shafting must be determined by demonstration except that...) If any critical speed lies within, or close to, the operating ranges for idling, power on, and...

  19. 14 CFR 29.931 - Shafting critical speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Shafting critical speed. 29.931 Section 29... speed. (a) The critical speeds of any shafting must be determined by demonstration except that...) If any critical speed lies within, or close to, the operating ranges for idling, power-on, and...

  20. Lubrication of optimized-design tapered-roller bearings to 2.4 million DN

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Pinel, S. I.; Signer, Hans R.

    1980-01-01

    The performance of 120.65 mm (4.75 in.) bore high speed design, tapered roller bearings was investigated at shaft speeds to 20,000 rpm (2.4 million DN) under combined thrust and radial load. The test bearing design was computer optimized for high speed operation. Temperature distribution bearing heat generation were determined as a function of shaft speed, radial and thrust loads, lubricant flow rates, and lubricant inlet temperature. The high speed design, tapered roller bearing operated successfully at shaft speeds up to 20,000 rpm under heavy thrust and radial loads. Bearing temperatures and heat generation with the high speed design bearing were significantly less than those of a modified standard bearing tested previously. Cup cooling was effective in decreasing the high cup temperatures to levels equal to the cone temperature.

  1. Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector

    NASA Astrophysics Data System (ADS)

    Hult, J.; Simmank, P.; Matlok, S.; Mayer, S.; Falgout, Z.; Linne, M.

    2016-04-01

    A consolidated effort at optically characterising flow patterns, in-nozzle cavitation, and near-nozzle jet structure of a marine diesel fuel injector is presented. A combination of several optical techniques was employed to fully transparent injector models, compound metal-glass and full metal injectors. They were all based on a common real-scale dual nozzle hole geometry for a marine two-stroke diesel engine. In a stationary flow rig, flow velocities in the sac-volume and nozzle holes were measured using PIV, and in-nozzle cavitation visualized using high-resolution shadowgraphs. The effect of varying cavitation number was studied and results compared to CFD predictions. In-nozzle cavitation and near-nozzle jet structure during transient operation were visualized simultaneously, using high-speed imaging in an atmospheric pressure spray rig. Near-nozzle spray formation was investigated using ballistic imaging. Finally, the injector geometry was tested on a full-scale marine diesel engine, where the dynamics of near-nozzle jet development was visualized using high-speed shadowgraphy. The range of studies focused on a single common geometry allows a comprehensive survey of phenomena ranging from first inception of cavitation under well-controlled flow conditions to fuel jet structure at real engine conditions.

  2. Study on fault diagnosis and load feedback control system of combine harvester

    NASA Astrophysics Data System (ADS)

    Li, Ying; Wang, Kun

    2017-01-01

    In order to timely gain working status parameters of operating parts in combine harvester and improve its operating efficiency, fault diagnosis and load feedback control system is designed. In the system, rotation speed sensors were used to gather these signals of forward speed and rotation speeds of intermediate shaft, conveying trough, tangential and longitudinal flow threshing rotors, grain conveying auger. Using C8051 single chip microcomputer (SCM) as processor for main control unit, faults diagnosis and forward speed control were carried through by rotation speed ratio analysis of each channel rotation speed and intermediate shaft rotation speed by use of multi-sensor fused fuzzy control algorithm, and these processing results would be sent to touch screen and display work status of combine harvester. Field trials manifest that fault monitoring and load feedback control system has good man-machine interaction and the fault diagnosis method based on rotation speed ratios has low false alarm rate, and the system can realize automation control of forward speed for combine harvester.

  3. A Mathematical Model of Marine Diesel Engine Speed Control System

    NASA Astrophysics Data System (ADS)

    Sinha, Rajendra Prasad; Balaji, Rajoo

    2018-02-01

    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  4. Optimization of Progressive Freeze Concentration on Apple Juice via Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Samsuri, S.; Amran, N. A.; Jusoh, M.

    2018-05-01

    In this work, a progressive freeze concentration (PFC) system was developed to concentrate apple juice and was optimized by response surface methodology (RSM). The effects of various operating conditions such as coolant temperature, circulation flowrate, circulation time and shaking speed to effective partition constant (K) were investigated. Five different level of central composite design (CCD) was employed to search for optimal concentration of concentrated apple juice. A full quadratic model for K was established by using method of least squares. A coefficient of determination (R2) of this model was found to be 0.7792. The optimum conditions were found to be coolant temperature = -10.59 °C, circulation flowrate = 3030.23 mL/min, circulation time = 67.35 minutes and shaking speed = 30.96 ohm. A validation experiment was performed to evaluate the accuracy of the optimization procedure and the best K value of 0.17 was achieved under the optimized conditions.

  5. Shutdown characteristics of the Mod-O wind turbine with aileron controls

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Corrigan, R. D.

    1984-01-01

    Horizontal-axis wind turbines utilize partial or full variable blade pitch to regulate rotor speed. The weight and costs of these systems indicated a need for alternate methods of rotor control. Aileron control is an alternative which has potential to meet this need. The NASA Lewis Research Center has been experimentally testing aileron control rotors on the Mod-U wind turbine to determine their power regulation and shutdown characteristics. Experimental and analytical shutdown test results are presented for a 38 percent chord aileron-control rotor. These results indicated that the 38 percent chord ailerons provided overspeed protection over the entire Mod-O operational windspeed range, and had a no-load equilibrium tip speed ratio of 1.9. Thus, the 38 percent chord ailerons had much improved aerodynamic braking capability when compared with the first aileron-control rotor having 20 percent chord ailerons.

  6. Measured far-field flight noise of a counterrotation turboprop at cruise conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loeffler, Irvin J.; Dittmar, James H.

    1989-01-01

    Modern high speed propeller (advanced turboprop) aircraft are expected to operate on 50 to 60 percent less fuel than the 1980 vintage turbofan fleet while at the same time matching the flight speed and performance of those aircraft. Counterrotation turboprop engines offer additional fuel savings by means of upstream propeller swirl recovery. This paper presents acoustic sideline results for a full-scale counterrotation turboprop engine at cruise conditions. The engine was installed on a Boeing 727 aircraft in place of the right-side turbofan engine. Acoustic data were taken from an instrumented Learjet chase plane. Sideline acoustic results are presented for 0.50 and 0.72 Mach cruise conditions. A scale model of the engine propeller was tested in a wind tunnel at 0.72 Mach cruise conditions. The model data were adjusted to flight acquisition conditions and were in general agreement with the flight results.

  7. Neural Network Modeling of UH-60A Pilot Vibration

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi

    2003-01-01

    Full-scale flight-test pilot floor vibration is modeled using neural networks and full-scale wind tunnel test data for low speed level flight conditions. Neural network connections between the wind tunnel test data and the tlxee flight test pilot vibration components (vertical, lateral, and longitudinal) are studied. Two full-scale UH-60A Black Hawk databases are used. The first database is the NASMArmy UH-60A Airloads Program flight test database. The second database is the UH-60A rotor-only wind tunnel database that was acquired in the NASA Ames SO- by 120- Foot Wind Tunnel with the Large Rotor Test Apparatus (LRTA). Using neural networks, the flight-test pilot vibration is modeled using the wind tunnel rotating system hub accelerations, and separately, using the hub loads. The results show that the wind tunnel rotating system hub accelerations and the operating parameters can represent the flight test pilot vibration. The six components of the wind tunnel N/rev balance-system hub loads and the operating parameters can also represent the flight test pilot vibration. The present neural network connections can significandy increase the value of wind tunnel testing.

  8. Maglev program test plan. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    deBenedet, D.; Gilchrist, A.J.; Karanian, L.A.

    1992-07-01

    Maglev systems represent a promising evolution in the high-speed ground transportation, offering speeds in excess of 300 mph along with the potential for low operating costs and minimal environmental impact. The goal of this effort is to investigate the feasibility and viability of maglev systems in the United States. The emergence of a sophisticated technology such as maglev requires a need for a coordinated research test program and the determination of test requirements to identify and mitigate development risk and to maximize the use of domestic resources. The study is directed toward the identification and characterization of maglev systems developmentmore » risks tied to a preliminary system architecture. Research objectives are accomplished by surveying experiences from previous maglev development programs, both foreign and domestic, and interviews with individuals involved with maglev research and testing. Findings include ninety-four distinct development risks and twenty risk types. Planning and implementation requirements are identified for a maglev test program, including the development of a facilities strategy to meet any operational concepts that evolve out of early development effort. Also specified is the logical development flow and associated long-lead support needs for sub-scale and full-scale testing.« less

  9. A 727 airplane center duct inlet low speed performance confirmation model test for refanned JT8D engines, phase 2

    NASA Technical Reports Server (NTRS)

    Kaldschmidt, G.; Syltebo, B. E.; Ting, C. T.

    1973-01-01

    The results from testing of a 0.3 scale model center duct inlet (S duct) for the Pratt and Whitney Aircraft JT8D-100 engines are presented. The objective of this test was to demonstrate that the required airflow of the JT8D-100 engine (480 lb/sec as compared to 334 lb/sec for JT8D-15) can be achieved with minimum modifications to the existing 727 airplane structure at acceptable levels of total pressure recovery and distortion. Steady-state pressure recovery, steady-state pressure distortion, and dynamic pressure measurements were taken at the engine face station. Surface static pressure measurements were taken along the duct. Test results indicated that the required airflow was achieved with acceptable pressure recovery (comparable to the current 727-200 S duct). Inlet inflow angle variation within the 727 airplane operating regime (minus 5 to 5 degrees) had no effect on the inlet performance. Pressure distortion at static and forward speed at takeoff airflow conditions are within P and WA limits for the Phase II duct when equipped with vortex generators. Static crosswind operation between 10 knots and 25 knots appears feasible at full takeoff power.

  10. Applications of variable speed control for contending with recurrent highway congestion.

    DOT National Transportation Integrated Search

    2014-07-01

    This research project developed vital operational guidelines for design of a variable speed limit (VSL) system and its integrated operations with ramp metering control in contending with recurrent highway congestion. The developed guidelines can serv...

  11. Variable speed generator technology options for wind turbine generators

    NASA Technical Reports Server (NTRS)

    Lipo, T. A.

    1995-01-01

    The electrical system options for variable speed operation of a wind turbine generator are treated in this paper. The key operating characteristics of each system are discussed and the major advantages and disadvantages of each are identified

  12. An Efficient Fuzzy Controller Design for Parallel Connected Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Usha, S.; Subramani, C.

    2018-04-01

    Generally, an induction motors are highly non-linear and has a complex time varying dynamics. This makes the speed control of an induction motor a challenging issue in the industries. But, due to the recent trends in the power electronic devices and intelligent controllers, the speed control of the induction motor is achieved by including non-linear characteristics also. Conventionally a single inverter is used to run one induction motor in industries. In the traction applications, two or more inductions motors are operated in parallel to reduce the size and cost of induction motors. In this application, the parallel connected induction motors can be driven by a single inverter unit. The stability problems may introduce in the parallel operation under low speed operating conditions. Hence, the speed deviations should be reduce with help of suitable controllers. The speed control of the parallel connected system is performed by PID controller and fuzzy logic controller. In this paper the speed response of the induction motor for the rating of IHP, 1440 rpm, and 50Hz with these controller are compared in time domain specifications. The stability analysis of the system also performed under low speed using matlab platform. The hardware model is developed for speed control using fuzzy logic controller which exhibited superior performances over the other controller.

  13. Math Lab Activities

    ERIC Educational Resources Information Center

    Brumbaugh, Douglas K.; Hynes, Michael C.

    1974-01-01

    Students calculated the potential speed of a 10-speed bicycle when operated in different gears from measured tire circumference and observed number of revolutions per minute. They then tested the bicycle's speed and compared achieved and theoretical speeds. Hypotheses to explain differences are solicited. (SD)

  14. Effects of children's working memory capacity and processing speed on their sentence imitation performance.

    PubMed

    Poll, Gerard H; Miller, Carol A; Mainela-Arnold, Elina; Adams, Katharine Donnelly; Misra, Maya; Park, Ji Sook

    2013-01-01

    More limited working memory capacity and slower processing for language and cognitive tasks are characteristics of many children with language difficulties. Individual differences in processing speed have not consistently been found to predict language ability or severity of language impairment. There are conflicting views on whether working memory and processing speed are integrated or separable abilities. To evaluate four models for the relations of individual differences in children's processing speed and working memory capacity in sentence imitation. The models considered whether working memory and processing speed are integrated or separable, as well as the effect of the number of operations required per sentence. The role of working memory as a mediator of the effect of processing speed on sentence imitation was also evaluated. Forty-six children with varied language and reading abilities imitated sentences. Working memory was measured with the Competing Language Processing Task (CLPT), and processing speed was measured with a composite of truth-value judgment and rapid automatized naming tasks. Mixed-effects ordinal regression models evaluated the CLPT and processing speed as predictors of sentence imitation item scores. A single mediator model evaluated working memory as a mediator of the effect of processing speed on sentence imitation total scores. Working memory was a reliable predictor of sentence imitation accuracy, but processing speed predicted sentence imitation only as a component of a processing speed by number of operations interaction. Processing speed predicted working memory capacity, and there was evidence that working memory acted as a mediator of the effect of processing speed on sentence imitation accuracy. The findings support a refined view of working memory and processing speed as separable factors in children's sentence imitation performance. Processing speed does not independently explain sentence imitation accuracy for all sentence types, but contributes when the task requires more mental operations. Processing speed also has an indirect effect on sentence imitation by contributing to working memory capacity. © 2013 Royal College of Speech and Language Therapists.

  15. Variable-Speed Power-Turbine Research at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; McVetta, Ashlie B.; Stevens, Mark A.; Howard, Samuel A.; Giel, Paul W.; Ameri, Ali, A.; To, Waiming; Skoch, Gary J.; Thurman, Douglas R.

    2012-01-01

    The main rotors of the NASA Large Civil Tilt-Rotor (LCTR) notional vehicle operate over a wide speed-range, from 100 percent at takeoff to 54 percent at cruise. The variable-speed power turbine (VSPT) offers one approach by which to effect this speed variation. VSPT aerodynamics challenges include high work factors at cruise, wide (40 to 60 ) incidence-angle variations in blade and vane rows over the speed range, and operation at low Reynolds numbers. Rotordynamics challenges include potential responsiveness to shaft modes within the 50 percent VSPT speed-range. A research effort underway at NASA Glenn Research Center, intended to address these key aerodynamic and rotordynamic challenges, is described. Conceptual design and 3-D multistage RANS and URANS analyses, conducted internally and under contract, provide expected VSPT sizing, stage-count, performance and operability information, and maps for system studies. Initial steps toward experimental testing of incidence-tolerant blading in a transonic linear cascade are described, and progress toward development/improvement of a simulation capability for multistage turbines with low Reynolds number transitional flow is summarized. Preliminary rotordynamics analyses indicate that viable concept engines with 50 percent VSPT shaft-speed range. Assessments of potential paths toward VSPT component-level testing are summarized.

  16. Dynamic and thermal analysis of high speed tapered roller bearings under combined loading

    NASA Technical Reports Server (NTRS)

    Crecelius, W. J.; Milke, D. R.

    1973-01-01

    The development of a computer program capable of predicting the thermal and kinetic performance of high-speed tapered roller bearings operating with fluid lubrication under applied axial, radial and moment loading (five degrees of freedom) is detailed. Various methods of applying lubrication can be considered as well as changes in bearing internal geometry which occur as the bearing is brought to operating speeds, loads and temperatures.

  17. Workload Capacity: A Response Time-Based Measure of Automation Dependence.

    PubMed

    Yamani, Yusuke; McCarley, Jason S

    2016-05-01

    An experiment used the workload capacity measure C(t) to quantify the processing efficiency of human-automation teams and identify operators' automation usage strategies in a speeded decision task. Although response accuracy rates and related measures are often used to measure the influence of an automated decision aid on human performance, aids can also influence response speed. Mean response times (RTs), however, conflate the influence of the human operator and the automated aid on team performance and may mask changes in the operator's performance strategy under aided conditions. The present study used a measure of parallel processing efficiency, or workload capacity, derived from empirical RT distributions as a novel gauge of human-automation performance and automation dependence in a speeded task. Participants performed a speeded probabilistic decision task with and without the assistance of an automated aid. RT distributions were used to calculate two variants of a workload capacity measure, COR(t) and CAND(t). Capacity measures gave evidence that a diagnosis from the automated aid speeded human participants' responses, and that participants did not moderate their own decision times in anticipation of diagnoses from the aid. Workload capacity provides a sensitive and informative measure of human-automation performance and operators' automation dependence in speeded tasks. © 2016, Human Factors and Ergonomics Society.

  18. Development of Permanent Magnet Reluctance Motor Suitable for Variable-Speed Drive for Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Sakai, Kazuto; Takahashi, Norio; Shimomura, Eiji; Arata, Masanobu; Nakazawa, Yousuke; Tajima, Toshinobu

    Regarding environmental and energy issues, increasing importance has been placed on energy saving in various systems. To save energy, it would be desirable if the total efficiency of various types of equipment were increased.Recently, a hybrid electric vehicle (HEV) and an electric vehicle (EV) have been developed. The use of new technologies will eventually lead to the realization of the new- generation vehicle with high efficiency. One new technology is the variable-speed drive over a wide range of speeds. The motor driving systems of the EV or the HEV must operate in the variable-speed range of up to 1:5. This has created the need for a high-efficiency motor that is capable of operation over a wide speed range. In this paper, we describe the concept of a novel permanent magnet reluctance motor (PRM) and discuss its characteristics. We developed the PRM, which has the capability of operating over a wide speed range with high efficiency. The PRM has a rotor with a salient pole, which generates magnetic anisotropy. In addition, the permanent magnets embedded in the rotor core counter the q-axis flux by the armature reaction. Then, the power density and the power factor increase. The PRM produces reluctance torque and torque by permanent magnet (PM) flux. The reluctance torque is 1 to 2 times larger than the PM torque. When the PRM operates over a constant-power speed range, the field component of the current will be regulated to maintain a constant voltage. The output power of the developed PRM is 8 to 250kW. It is clarified that the PRM operates at a wide variable-speed range (1:5) with high efficiency (92-97%). It is concluded that the PRM has high performance over a wide constant-power speed range. In addition, the PRM is constructed using a small PM, so that we can solve the problem of cost. Thus, the PRM is a superior machine that is suited for variable-speed drive applications.

  19. Study on the combustion process in a modern diesel engine controlled by pre-injection strategy

    NASA Astrophysics Data System (ADS)

    Punov, P.; Milkov, N.; Perilhon, C.; Podevin, P.; Evtimov, T.

    2017-10-01

    The paper aims to study the combustion process in a modern diesel engine over the engine operating map. In order to study the rate of heat release (ROHR), an automotive diesel engine was experimentally tested using the injection parameters factory defined. The experimental test was conducted over the engine operating map as the engine speed was limited to 2400 rpm. Then, an engine simulation model was developed in AVL Boost. By means of that model the ROHR was estimated and approximated by means of double Vibe function. In all engine operating points we found two peaks at the ROHR. The first is a result of the pilot injection as the second corresponds to the main injection. There was not found an overlap between both peaks. It was found that the first peak of ROHR occurs closely before top dead center (BTDC) at partial load than full load. The ROHR peak as a result of main injection begins from 4°BTDC to 18°ATDC. It starts earlier with increasing engine speed and load. The combustion duration varies from 30 ºCA to 70 °CA. In order to verify the results pressure curve was estimated by means of defined Vibe function parameters and combustion duration. As a result, we observed small deviation between measured and simulated pressure curves.

  20. Factors influencing specific fuel use in Nebraska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelton, D.P.; Von Bargen, K.

    1981-01-01

    Fuel use data relating to agricultural field operations were collected and analyzed during the Nebraska fuel use survey. The farms surveyed had a mean size of 598 ha and a mean total tractor power rating of 221 kW. Mean operating depth, field speed, and tractor power rating were determined for the major field operations. Mean field speeds were generally in agreement with commonly accepted values. Total annual fuel energy use increased with increasing farm size. Over 87 percent of this energy was used from April through October. Even though total fuel energy was increased, specific fuel energy use decreased withmore » increasing farm size. Specific fuel use for field operations was influenced by the size of area worked, operation depth, field speed, and tractor power rating.« less

  1. MT6425CA: a 640 X 512-25μm CTIA ROIC for SWIR InGaAs detector arrays

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim; Mahsereci, Yigit Uygar; Altiner, Caglar; Akin, Tayfun

    2012-06-01

    This paper reports the development of a new CTIA ROIC (MT6425CA) suitable for SWIR InGaAs detector arrays. MT6425CA has a format of 640 × 512 with a pixel pitch of 25 μm and has a system-on-chip architecture, where all the critical timing and biasing for this ROIC are generated by programmable blocks on-chip. MT6425CA is a highly configurable and flexible ROIC, where many of its features can be programmed through a 3-wire serial interface allowing on-the-fly configuration of many ROIC features. The ROIC runs on 3.3V supply voltage at nominal clock speed of 10 MHz clock. It performs snapshot operation both using Integrate-Then-Read (ITR) and Integrate-While- Read (IWR) modes. The CTIA type pixel input circuitry has a full-well-capacity (FWC) of about 320,000e-, with an input referred read noise of less than 110e- at 300K. MT6425CA has programmable number of outputs, where 4, 2, or 1 output can be selected along with an analog reference for pseudo-differential operation. The integration time can be programmed up to 1s in steps of 0.1μs. The gain and offset in the ROIC can be programmed to adjust the output offset and voltage swing. ROIC dissipates less than 130mW from a 3.3V supply at full speed and full frame size with 4 outputs, providing both low-power and low-noise operation. MT6425CA is fabricated using a modern mixed-signal CMOS process on 200mm CMOS wafers with a high yield above 75%, yielding more than 50 working parts per wafer. It has been silicon verified, and tested parts are available either in wafer and die levels with a complete documentation including test reports and wafer maps. A USB based camera electronics and camera development platform with software are available to help customers to evaluate the imaging performance of MT6425CA in a fast and efficient way.

  2. High-speed and ultrahigh-speed cinematographic recording techniques

    NASA Astrophysics Data System (ADS)

    Miquel, J. C.

    1980-12-01

    A survey is presented of various high-speed and ultrahigh-speed cinematographic recording systems (covering a range of speeds from 100 to 14-million pps). Attention is given to the functional and operational characteristics of cameras and to details of high-speed cinematography techniques (including image processing, and illumination). A list of cameras (many of them French) available in 1980 is presented

  3. Alternative Fuels Data Center

    Science.gov Websites

    Low-Speed Vehicle Access to Roadways Low-speed vehicles are only permitted on highways with speed limits up to 35 miles per hour (mph) or up to 45 mph in some municipalities or boroughs. Low-speed highway that allows low-speed vehicle use. Operators of low-speed vehicles are subject to all traffic laws

  4. Simulated Altitude Performance of Combustor of Westinghouse 19XB-1 Jet-Propulsion Engine

    NASA Technical Reports Server (NTRS)

    Childs, J. Howard; McCafferty, Richard J.

    1948-01-01

    A 19XB-1 combustor was operated under conditions simulating zero-ram operation of the 19XB-1 turbojet engine at various altitudes and engine speeds. The combustion efficiencies and the altitude operational limits were determined; data were also obtained on the character of the combustion, the pressure drop through the combustor, and the combustor-outlet temperature and velocity profiles. At altitudes about 10,000 feet below the operational limits, the flames were yellow and steady and the temperature rise through the combustor increased with fuel-air ratio throughout the range of fuel-air ratios investigated. At altitudes near the operational limits, the flames were blue and flickering and the combustor was sluggish in its response to changes in fuel flow. At these high altitudes, the temperature rise through the combustor increased very slowly as the fuel flow was increased and attained a maximum at a fuel-air ratio much leaner than the over-all stoichiometric; further increases in fuel flow resulted in decreased values of combustor temperature rise and increased resonance until a rich-limit blow-out occurred. The approximate operational ceiling of the engine as determined by the combustor, using AN-F-28, Amendment-3, fuel, was 30,400 feet at a simulated engine speed of 7500 rpm and increased as the engine speed was increased. At an engine speed of 16,000 rpm, the operational ceiling was approximately 48,000 feet. Throughout the range of simulated altitudes and engine speeds investigated, the combustion efficiency increased with increasing engine speed and with decreasing altitude. The combustion efficiency varied from over 99 percent at operating conditions simulating high engine speed and low altitude operation to less than 50 percent at conditions simulating operation at altitudes near the operational limits. The isothermal total pressure drop through the combustor was 1.82 times as great as the inlet dynamic pressure. As expected from theoretical considerations, a straight-line correlation was obtained when the ratio of the combustor total pressure drop to the combustor-inlet dynamic pressure was plotted as a function of the ratio of the combustor-inlet air density to the combustor-outlet gas density. The combustor-outlet temperature profiles were, in general, more uniform for runs in which the temperature rise was low and the combustion efficiency was high. Inspection of the combustor basket after 36 hours of operation showed very little deterioration and no appreciable carbon deposits.

  5. Point-and-stare operation and high-speed image acquisition in real-time hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Driver, Richard D.; Bannon, David P.; Ciccone, Domenic; Hill, Sam L.

    2010-04-01

    The design and optical performance of a small-footprint, low-power, turnkey, Point-And-Stare hyperspectral analyzer, capable of fully automated field deployment in remote and harsh environments, is described. The unit is packaged for outdoor operation in an IP56 protected air-conditioned enclosure and includes a mechanically ruggedized fully reflective, aberration-corrected hyperspectral VNIR (400-1000 nm) spectrometer with a board-level detector optimized for point and stare operation, an on-board computer capable of full system data-acquisition and control, and a fully functioning internal hyperspectral calibration system for in-situ system spectral calibration and verification. Performance data on the unit under extremes of real-time survey operation and high spatial and high spectral resolution will be discussed. Hyperspectral acquisition including full parameter tracking is achieved by the addition of a fiber-optic based downwelling spectral channel for solar illumination tracking during hyperspectral acquisition and the use of other sensors for spatial and directional tracking to pinpoint view location. The system is mounted on a Pan-And-Tilt device, automatically controlled from the analyzer's on-board computer, making the HyperspecTM particularly adaptable for base security, border protection and remote deployments. A hyperspectral macro library has been developed to control hyperspectral image acquisition, system calibration and scene location control. The software allows the system to be operated in a fully automatic mode or under direct operator control through a GigE interface.

  6. Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears test program

    NASA Technical Reports Server (NTRS)

    Misel, O. W.

    1977-01-01

    Sets of under the wing (UTW) engine reduction gears and sets of over the wing (OTW) engine reduction gears were fabricated for rig testing and subsequent installation in engines. The UTW engine reduction gears which have a ratio of 2.465:1 and a design rating of 9712 kW at 3157 rpm fan speed were operated at up to 105% speed at 60% torque and 100% speed at 125% torque. The OTW engine reduction gears which have a ratio of 2.062:1 and a design rating of 12,615 kW at 3861 rpm fan speed were operated at up to 95% speed at 50% torque and 80% speed at 109% torque. Satisfactory operation was demonstrated at powers up to 12,172 kW, mechanical efficiency up to 99.1% UTW, and a maximum gear pitch line velocity of 112 m/s (22,300 fpm) with a corresponding star gear spherical roller bearing DN of 850,00 OTW. Oil and star gear bearing temperatures, oil churning, heat rejection, and vibratory characteristics were acceptable for engine installation.

  7. Evaluating outcomes of raising speed limits on high speed non-freeways.

    DOT National Transportation Integrated Search

    2015-04-01

    The purpose of this research was to assist in determining the potential impacts of implementing a : proposed 65 mph speed limit on non-freeways in Michigan. Consideration was given to a broad range of : performance measures, including operating speed...

  8. Scouts behave as streakers in honeybee swarms

    NASA Astrophysics Data System (ADS)

    Greggers, Uwe; Schöning, Caspar; Degen, Jacqueline; Menzel, Randolf

    2013-08-01

    Harmonic radar tracking was used to record the flights of scout bees during takeoff and initial flight path of two honeybee swarms. One swarm remained intact and performed a full flight to a destination beyond the range of the harmonic radar, while a second swarm disintegrated within the range of the radar and most of the bees returned to the queen. The initial stretch of the full flight is characterized by accelerating speed, whereas the disintegrating swarm flew steadily at low speed. The two scouts in the swarm displaying full flight performed characteristic flight maneuvers. They flew at high speed when traveling in the direction of their destination and slowed down or returned over short stretches at low speed. Scouts in the disintegrating swarm did not exhibit the same kind of characteristic flight performance. Our data support the streaker bee hypothesis proposing that scout bees guide the swarm by traveling at high speed in the direction of the new nest site for short stretches of flight and slowing down when reversing flight direction.

  9. Permanent split capacitor single phase electric motor system

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation.

  10. Organizational Design for USSOCOM Rapid Acquisition

    DTIC Science & Technology

    2017-03-31

    cycle times, leaving operators at a strategic disadvantage. It seeks to understand how it can adapt and upgrade at the speed of the commercial market ...technologies at the speed of the commercial market . Despite SOF AT&L’s innovative approaches, it still finds itself leaving SOF operators potentially at a...how it can adapt to take advantage of technology advances and upgrade its technologies at the speed of the commercial market . Its goal is to adapt

  11. Providing wireless bandwidth for high-speed rail operations : final report.

    DOT National Transportation Integrated Search

    2016-07-01

    This project examined the possibility of providing wireless communication for train control systems on American high-speed trains. In this : study, the key issue is that the frequencies allocated for rail operations in the U.S. and the frequencies us...

  12. Factors Influencing Operating Speeds and Safety on Rural and Suburban Roads

    DOT National Transportation Integrated Search

    2015-05-01

    The objective of this project was to develop a technical report that describes treatments that result in driver self-selection of appropriate operational speeds on curve and tangent sections. The study was conducted in two phases. The first phase inc...

  13. 77 FR 64183 - Notice of Availability of a Final General Conformity Determination for the California High-Speed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ..., operation of the Project (i.e., operation of the high-speed train, once the infrastructure was constructed... Agreement (VERA) between the Authority and the SJVAPCD. The VERA will offset the NOx and VOC emissions...

  14. Evaluation of sounds for hybrid and electric vehicles operating at low speed

    DOT National Transportation Integrated Search

    2012-10-22

    Electric vehicles (EV) and hybrid electric vehicles (HEVs), operated at low speeds may reduce auditory cues used by pedestrians to assess the state of nearby traffic creating a safety issue. This field study compares the auditory detectability of num...

  15. 78 FR 65161 - Airworthiness Directives; Agusta S.p.A. (Type Certificate Currently Held by AgustaWestland S.p.A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... engine speeds during steady-state operations. These actions are intended to alert pilots to avoid certain... alert pilots to avoid certain engine speeds during steady-state operations, prevent failure of the third...

  16. Testing of Face-milled Spiral Bevel Gears at High-speed and Load

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2001-01-01

    Spiral bevel gears are an important drive system components of rotorcraft (helicopters) currently in use. In this application the spiral bevel gears are required to transmit very high torque at high rotational speed. Available experimental data on the operational characteristics for thermal and structural behavior is relatively small in comparison to that found for parallel axis gears. An ongoing test program has been in place at NASA Glenn Research Center over the last ten years to investigate their operational behavior at operating conditions found in aerospace applications. This paper will summarize the results of the tests conducted on face-milled spiral bevel gears. The data from the pinion member (temperature and stress) were taken at conditions from slow-roll to 14400 rpm and up to 537 kW (720 hp). The results have shown that operating temperature is affected by the location of the lubricating jet with respect to the point it is injected and the operating conditions that are imposed. Also the stress measured from slow-roll to very high rotational speed, at various torque levels, indicated little dynamic affect over the rotational speeds tested.

  17. Use of optimization to predict the effect of selected parameters on commuter aircraft performance

    NASA Technical Reports Server (NTRS)

    Wells, V. L.; Shevell, R. S.

    1982-01-01

    An optimizing computer program determined the turboprop aircraft with lowest direct operating cost for various sets of cruise speed and field length constraints. External variables included wing area, wing aspect ratio and engine sea level static horsepower; tail sizes, climb speed and cruise altitude were varied within the function evaluation program. Direct operating cost was minimized for a 150 n.mi typical mission. Generally, DOC increased with increasing speed and decreasing field length but not by a large amount. Ride roughness, however, increased considerably as speed became higher and field length became shorter.

  18. The Effect of Rotor Cruise Tip Speed, Engine Technology and Engine/Drive System RPM on the NASA Large Civil Tiltrotor (LCTR2) Size and Performance

    NASA Technical Reports Server (NTRS)

    Robuck, Mark; Wilkerson, Joseph; Maciolek, Robert; Vonderwell, Dan

    2012-01-01

    A multi-year study was conducted under NASA NNA06BC41C Task Order 10 and NASA NNA09DA56C task orders 2, 4, and 5 to identify the most promising propulsion system concepts that enable rotor cruise tip speeds down to 54% of the hover tip speed for a civil tiltrotor aircraft. Combinations of engine RPM reduction and 2-speed drive systems were evaluated. Three levels of engine and the drive system advanced technology were assessed; 2015, 2025 and 2035. Propulsion and drive system configurations that resulted in minimum vehicle gross weight were identified. Design variables included engine speed reduction, drive system speed reduction, technology, and rotor cruise propulsion efficiency. The NASA Large Civil Tiltrotor, LCTR, aircraft served as the base vehicle concept for this study and was resized for over thirty combinations of operating cruise RPM and technology level, quantifying LCTR2 Gross Weight, size, and mission fuel. Additional studies show design sensitivity to other mission ranges and design airspeeds, with corresponding relative estimated operational cost. The lightest vehicle gross weight solution consistently came from rotor cruise tip speeds between 422 fps and 500 fps. Nearly equivalent results were achieved with operating at reduced engine RPM with a single-speed drive system or with a two-speed drive system and 100% engine RPM. Projected performance for a 2025 engine technology provided improved fuel flow over a wide range of operating speeds relative to the 2015 technology, but increased engine weight nullified the improved fuel flow resulting in increased aircraft gross weights. The 2035 engine technology provided further fuel flow reduction and 25% lower engine weight, and the 2035 drive system technology provided a 12% reduction in drive system weight. In combination, the 2035 technologies reduced aircraft takeoff gross weight by 14% relative to the 2015 technologies.

  19. Effect of present technology on airship capabilities

    NASA Technical Reports Server (NTRS)

    Madden, R. T.

    1975-01-01

    The effect is presented of updating past airship designs using current materials and propulsion systems to determine new airship performance and productivity capabilities. New materials and power plants permit reductions in the empty weights and increases in the useful load capabilities of past airship designs. The increased useful load capability results in increased productivity for a given range, i.e., either increased payload at the same operating speed or increased operating speed for the same payload weight or combinations of both. Estimated investment costs and operating costs are presented to indicate the significant cost parameters in estimating transportation costs of payloads in cents per ton mile. Investment costs are presented considering production lots of 1, 10 and 100 units. Operating costs are presented considering flight speeds and ranges.

  20. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch limits. 23.33... Propeller speed and pitch limits. (a) General. The propeller speed and pitch must be limited to values that... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p...

  1. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch limits. 23.33... Propeller speed and pitch limits. (a) General. The propeller speed and pitch must be limited to values that... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p...

  2. Wind tunnel performance results of swirl recovery vanes as tested with an advanced high speed propeller

    NASA Technical Reports Server (NTRS)

    Gazzaniga, John A.; Rose, Gayle E.

    1992-01-01

    Tests of swirl recovery vanes designed for use in conjunction with advanced high speed propellers were carried out at the NASA Lewis Research Center. The eight bladed 62.23 cm vanes were tested with a 62.23 cm SR = 7A high speed propeller in the NASA Lewis 2.44 x 1.83 m Supersonic Wind Tunnel for a Mach number range of 0.60 to 0.80. At the design operating condition for cruise of Mach 0.80 at an advance ratio of 3.26, the vane contribution to the total efficiency approached 2 percent. At lower off-design Mach numbers, the vane efficiency is even higher, approaching 4.5 percent for the Mach 0.60 condition. Use of the swirl recovery vanes essentially shifts the peak of the high speed propeller efficiency to a higher operating speed. This allows a greater degree of freedom in the selection of rpm over a wider operating range. Another unique result of the swirl recovery vane configuration is their essentially constant torque split between the propeller and the swirl vanes over a wide range of operating conditions for the design vane angle.

  3. The Effects of Operational Parameters on a Mono-wire Cutting System: Efficiency in Marble Processing

    NASA Astrophysics Data System (ADS)

    Yilmazkaya, Emre; Ozcelik, Yilmaz

    2016-02-01

    Mono-wire block cutting machines that cut with a diamond wire can be used for squaring natural stone blocks and the slab-cutting process. The efficient use of these machines reduces operating costs by ensuring less diamond wire wear and longer wire life at high speeds. The high investment costs of these machines will lead to their efficient use and reduce production costs by increasing plant efficiency. Therefore, there is a need to investigate the cutting performance parameters of mono-wire cutting machines in terms of rock properties and operating parameters. This study aims to investigate the effects of the wire rotational speed (peripheral speed) and wire descending speed (cutting speed), which are the operating parameters of a mono-wire cutting machine, on unit wear and unit energy, which are the performance parameters in mono-wire cutting. By using the obtained results, cuttability charts for each natural stone were created on the basis of unit wear and unit energy values, cutting optimizations were performed, and the relationships between some physical and mechanical properties of rocks and the optimum cutting parameters obtained as a result of the optimization were investigated.

  4. Safety and operational impacts of differential speed limits on two-lane rural highways in Montana.

    DOT National Transportation Integrated Search

    2016-07-01

    Speed limit policies can be broadly classified into two categories. Uniform speed limit policies establish the same maximum limit for all vehicles, while differential speed limit policies set a lower limit for heavy trucks in comparison to cars and l...

  5. 14 CFR 91.603 - Aural speed warning device.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aural speed warning device. 91.603 Section... Operating Requirements for Large and Transport Category Aircraft § 91.603 Aural speed warning device. No... aural speed warning device that complies with § 25.1303(c)(1). ...

  6. 14 CFR 91.603 - Aural speed warning device.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aural speed warning device. 91.603 Section... Operating Requirements for Large and Transport Category Aircraft § 91.603 Aural speed warning device. No... aural speed warning device that complies with § 25.1303(c)(1). ...

  7. 14 CFR 91.603 - Aural speed warning device.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aural speed warning device. 91.603 Section... Operating Requirements for Large and Transport Category Aircraft § 91.603 Aural speed warning device. No... aural speed warning device that complies with § 25.1303(c)(1). ...

  8. 14 CFR 91.603 - Aural speed warning device.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aural speed warning device. 91.603 Section... Operating Requirements for Large and Transport Category Aircraft § 91.603 Aural speed warning device. No... aural speed warning device that complies with § 25.1303(c)(1). ...

  9. 14 CFR 91.603 - Aural speed warning device.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aural speed warning device. 91.603 Section... Operating Requirements for Large and Transport Category Aircraft § 91.603 Aural speed warning device. No... aural speed warning device that complies with § 25.1303(c)(1). ...

  10. Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive.

    PubMed

    Ramesh, Tejavathu; Kumar Panda, Anup; Shiva Kumar, S

    2015-07-01

    In this research study, a model reference adaptive system (MRAS) speed estimator for speed sensorless direct torque and flux control (DTFC) of an induction motor drive (IMD) using two adaptation mechanism schemes are proposed to replace the conventional proportional integral controller (PIC). The first adaptation mechanism scheme is based on Type-1 fuzzy logic controller (T1FLC), which is used to achieve high performance sensorless drive in both transient as well as steady state conditions. However, the Type-1 fuzzy sets are certain and unable to work effectively when higher degree of uncertainties presents in the system which can be caused by sudden change in speed or different load disturbances, process noise etc. Therefore, a new Type-2 fuzzy logic controller (T2FLC) based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties and improves the performance and also robust to various load torque and sudden change in speed conditions, respectively. The detailed performances of various adaptation mechanism schemes are carried out in a MATLAB/Simulink environment with a speed sensor and speed sensorless modes of operation when an IMD is operating under different operating conditions, such as, no-load, load and sudden change in speed, respectively. To validate the different control approaches, the system also implemented on real-time system and adequate results are reported for its validation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. 76 FR 50213 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... Bakersfield Section High-Speed Train, Proposes to Construct, Operate, and Maintain an Electric-Powered High...): Merced to Fresno Section High-Speed Train, Proposes to Construct, Operate, and Maintain an Electric.... 20110190, Draft EIS, FRA, MS, Tupelo Railroad Relocation Planning and Environmental Study, To Improve...

  12. High speed passenger trains in freight railroad corridors : operations and safety considerations

    DOT National Transportation Integrated Search

    1994-12-01

    This report presents the results of a study into some operations and technical issues likely to be encountered when planning for high-speed rail passenger service on corridors that presently carry freight or commuter traffic. The study starts with a ...

  13. A novel high-speed PLC communication modem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, K.C.; Roy, S.

    1992-10-01

    In this paper an innovative design for power line carrier (PLC) communication using digitally modulated signals is presented. The major contribution consists of a new signal coupler to the power line that achieves a stable transmission bandwidth of 4 KHz on distribution lines over long distances. Preliminary field tests achieved half-duplex operation at 1.2 Kbaud over a distribution power line to the 120V network and back with a symbol error rate of about 2% using less than about 10 W of average transmitted power, which is considerably superior to the present state-of-the-art PLC modems. Full-duplex operation over 120/240V intra-building wiringmore » has also been field tested at 9.6 Kbaud over distances of 3000 ft. using 1W of average transmitted power.« less

  14. The Effect of an Operating Propeller on the Aerodynamic Characteristics of a 1/10-Scale Model of the Lockheed XFV-1 Airplane at High Subsonic Speeds (TED No. NACA DE-377)

    NASA Technical Reports Server (NTRS)

    Sutton, Fred B.; Buell, Donald A.

    1952-01-01

    An investigation was conducted in the Ames 12-foot pressure wind tunnel to determine the effect of an operating propeller on the aerodynamic characteristics of a l/l9-scale model of the Lockheed XFV-1 airplane, Several full-scale power conditions were simulated at Mach numbers from 0.50 to 0.92; the.Reynolds number was constant at 1,7 million. Lift, longitudinal force, pitch, roll, and yaw characteristics, determined with and without power, are presented for the complete model and for various combinations of model components, Results of an investigation to determine the characteristics of the dual-rotating propeller used on the model are given also,

  15. A Control Simulation Method of High-Speed Trains on Railway Network with Irregular Influence

    NASA Astrophysics Data System (ADS)

    Yang, Li-Xing; Li, Xiang; Li, Ke-Ping

    2011-09-01

    Based on the discrete time method, an effective movement control model is designed for a group of highspeed trains on a rail network. The purpose of the model is to investigate the specific traffic characteristics of high-speed trains under the interruption of stochastic irregular events. In the model, the high-speed rail traffic system is supposed to be equipped with the moving-block signalling system to guarantee maximum traversing capacity of the railway. To keep the safety of trains' movements, some operational strategies are proposed to control the movements of trains in the model, including traction operation, braking operation, and entering-station operation. The numerical simulations show that the designed model can well describe the movements of high-speed trains on the rail network. The research results can provide the useful information not only for investigating the propagation features of relevant delays under the irregular disturbance but also for rerouting and rescheduling trains on the rail network.

  16. Permanent split capacitor single phase electric motor system

    DOEpatents

    Kirschbaum, H.S.

    1984-08-14

    A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation. 4 figs.

  17. Overall Impact of Speed-Related Initiatives and Factors on Crash Outcomes

    PubMed Central

    D’Elia, A.; Newstead, S.; Cameron, M.

    2007-01-01

    From December 2000 until July 2002 a package of speed-related initiatives and factors took place in Victoria, Australia. The broad aim of this study was to evaluate the overall impact of the package on crash outcomes. Monthly crash counts and injury severity proportions were assessed using Poisson and logistic regression models respectively. The model measured the overall effect of the package after adjusting as far as possible for non-speed road safety initiatives and socio-economic factors. The speed-related package was associated with statistically significant estimated reductions in casualty crashes and suggested reductions in injury severity with trends towards increased reductions over time. From December 2000 until July 2002, three new speed enforcement initiatives were implemented in Victoria, Australia. These initiatives were introduced in stages and involved the following key components: More covert operations of mobile speed cameras, including flash-less operations; 50% increase in speed camera operating hours; and lowering of cameras’ speed detection threshold. In addition, during the period 2001 to 2002, the 50 km/h General Urban Speed Limit (GUSL) was introduced (January 2001), there was an increase in speed-related advertising including the “Wipe Off 5” campaign, media announcements were made related to the above enforcement initiatives and there was a speeding penalty restructure. The above elements combine to make up a package of speed-related initiatives and factors. The package represents a broad, long term program by Victorian government agencies to reduce speed based on three linked strategies: more intensive Police enforcement of speed limits to deter potential offenders, i.e. the three new speed enforcement initiatives just described - supported by higher penalties; a reduction in the speed limit on local streets throughout Victoria from 60 km/h to 50 km/h; and provision of information using the mass media (television, radio and billboard) to reinforce the benefits of reducing low level speeding - the central message of “Wipe Off 5”. These strategies were implemented across the entire state of Victoria with the intention of covering as many road users as possible. PMID:18184508

  18. Results of an Advanced Fan Stage Operating Over a Wide Range of Speed and Bypass Ratio. Part 1; Fan Stage Design and Experimental Results

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.; Prahst, Patricia S.; Thorp, Scott A.

    2011-01-01

    NASA s Fundamental Aeronautics Program is investigating turbine-based combined cycle (TBCC) propulsion systems for access to space because it provides the potential for aircraft-like, space-launch operations that may significantly reduce launch costs and improve safety. To this end, National Aeronautics and Space Administration (NASA) and General Electric (GE) teamed to design a Mach 4 variable cycle turbofan/ramjet engine for access to space. To enable the wide operating range of a Mach 4+ variable cycle turbofan ramjet required the development of a unique fan stage design capable of multi-point operation to accommodate variations in bypass ratio (10 ), fan speed (7 ), inlet mass flow (3.5 ), inlet pressure (8 ), and inlet temperature (3 ). In this paper, NASA has set out to characterize a TBCC engine fan stage aerodynamic performance and stability limits over a wide operating range including power-on and hypersonic-unique "windmill" operation. Herein, we will present the fan stage design, and the experimental test results of the fan stage operating from 15 to 100 percent corrected design speed. Whereas, in the companion paper, we will provide an assessment of NASA s APNASA code s ability to predict the fan stage performance and operability over a wide range of speed and bypass ratio.

  19. PIV study of the wake of a model wind turbine transitioning between operating set points

    NASA Astrophysics Data System (ADS)

    Houck, Dan; Cowen, Edwin (Todd)

    2016-11-01

    Wind turbines are ideally operated at their most efficient tip speed ratio for a given wind speed. There is increasing interest, however, in operating turbines at other set points to increase the overall power production of a wind farm. Specifically, Goit and Meyers (2015) used LES to examine a wind farm optimized by unsteady operation of its turbines. In this study, the wake of a model wind turbine is measured in a water channel using PIV. We measure the wake response to a change in operational set point of the model turbine, e.g., from low to high tip speed ratio or vice versa, to examine how it might influence a downwind turbine. A modified torque transducer after Kang et al. (2010) is used to calibrate in situ voltage measurements of the model turbine's generator operating across a resistance to the torque on the generator. Changes in operational set point are made by changing the resistance or the flow speed, which change the rotation rate measured by an encoder. Single camera PIV on vertical planes reveals statistics of the wake at various distances downstream as the turbine transitions from one set point to another. From these measurements, we infer how the unsteady operation of a turbine may affect the performance of a downwind turbine as its incoming flow. National Science Foundation and the Atkinson Center for a Sustainable Future.

  20. Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation

    DOEpatents

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2015-12-08

    A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.

  1. Method and system for determining induction motor speed

    DOEpatents

    Parlos, Alexander G.; Bharadwaj, Raj M.

    2004-03-30

    A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.

  2. Comparison of three control methods for an autonomous vehicle

    NASA Astrophysics Data System (ADS)

    Deshpande, Anup; Mathur, Kovid; Hall, Ernest

    2010-01-01

    The desirability and challenge of developing a completely autonomous vehicle and the rising need for more efficient use of energy by automobiles motivate this research- a study for an optimum solution to computer control of energy efficient vehicles. The purpose of this paper is to compare three control methods - mechanical, hydraulic and electric that have been used to convert an experimental all terrain vehicle to drive by wire which would eventually act as a test bed for conducting research on various technologies for autonomous operation. Computer control of basic operations in a vehicle namely steering, braking and speed control have been implemented and will be described in this paper. The output from a 3 axis motion controller is used for this purpose. The motion controller is interfaced with a software program using WSDK (Windows Servo Design Kit) as an intermediate tuning layer for tuning and parameter settings in autonomous operation. The software program is developed in C++. The voltage signal sent to the motion controller can be varied through the control program for desired results in controlling the steering motor, activating the hydraulic brakes and varying the vehicle's speed. The vehicle has been tested for its basic functionality which includes testing of street legal operations and also a 1000 mile test while running in a hybrid mode. The vehicle has also been tested for control when it is interfaced with devices such as a keyboard, joystick and sensors under full autonomous operation. The vehicle is currently being tested in various safety studies and is being used as a test bed for experiments in control courses and research studies. The significance of this research is in providing a greater understanding of conventional driving controls and the possibility of improving automobile safety by removing human error in control of a motor vehicle.

  3. The Full Cost of Intercity Transportation: A Comparison of High Speed Rail, Air, and Highway Transportation in California

    DOT National Transportation Integrated Search

    1996-06-01

    This study evaluated the full cost of three modes of intercity transportation: air, highway, and high speed rail. The evaluation is done within the context of the California Corridor, connecting the Los Angeles Basin and the San Francisco Bay Area. T...

  4. Wind speed time series reconstruction using a hybrid neural genetic approach

    NASA Astrophysics Data System (ADS)

    Rodriguez, H.; Flores, J. J.; Puig, V.; Morales, L.; Guerra, A.; Calderon, F.

    2017-11-01

    Currently, electric energy is used in practically all modern human activities. Most of the energy produced came from fossil fuels, making irreversible damage to the environment. Lately, there has been an effort by nations to produce energy using clean methods, such as solar and wind energy, among others. Wind energy is one of the cleanest alternatives. However, the wind speed is not constant, making the planning and operation at electric power systems a difficult activity. Knowing in advance the amount of raw material (wind speed) used for energy production allows us to estimate the energy to be generated by the power plant, helping the maintenance planning, the operational management, optimal operational cost. For these reasons, the forecast of wind speed becomes a necessary task. The forecast process involves the use of past observations from the variable to forecast (wind speed). To measure wind speed, weather stations use devices called anemometers, but due to poor maintenance, connection error, or natural wear, they may present false or missing data. In this work, a hybrid methodology is proposed, and it uses a compact genetic algorithm with an artificial neural network to reconstruct wind speed time series. The proposed methodology reconstructs the time series using a ANN defined by a Compact Genetic Algorithm.

  5. Safety and operational impacts of differential speed limits on two-lane rural highways in Montana : project summary.

    DOT National Transportation Integrated Search

    2016-07-01

    Speed limit policies can be broadly classified into two categories. Uniform speed limit policies establish the same maximum limit for all vehicles, while differential speed limit policies set a lower limit for heavy trucks in comparison to cars and l...

  6. Evaluation of 70 mph speed limit in Kentucky.

    DOT National Transportation Integrated Search

    2008-05-01

    The objective of this study was to document the change in operating speeds of cars and trucks on rural interstates and parkways as a result of the change in speed limit from 65 mph to 70 mph. The 85th percentile speed increased 1.3 mph for cars (74.6...

  7. 49 CFR 236.503 - Automatic brake application; initiation when predetermined rate of speed exceeded.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... predetermined rate of speed exceeded. 236.503 Section 236.503 Transportation Other Regulations Relating to... § 236.503 Automatic brake application; initiation when predetermined rate of speed exceeded. An automatic train control system shall operate to initiate an automatic brake application when the speed of...

  8. 49 CFR 236.503 - Automatic brake application; initiation when predetermined rate of speed exceeded.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... predetermined rate of speed exceeded. 236.503 Section 236.503 Transportation Other Regulations Relating to... § 236.503 Automatic brake application; initiation when predetermined rate of speed exceeded. An automatic train control system shall operate to initiate an automatic brake application when the speed of...

  9. Wayside noise and vibration signatures of high-speed trains in the Northeast Corridor

    DOT National Transportation Integrated Search

    1973-09-01

    Measurements were made of the wayside noise and ground vibration levels generated during the passby of high-speed Metroliner and Trubo-trains operating on the tracks of the Penn Central Railroad. The Metroliner in operation on the Nnew York-to-Washin...

  10. Computerized Torque Control for Large dc Motors

    NASA Technical Reports Server (NTRS)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  11. 14 CFR 29.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... helicopter, the hovering performance must be determined over the ranges of weight, altitude, and temperature...) The helicopter in ground effect at a height consistent with normal takeoff procedures. (c) For each...

  12. 14 CFR 29.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... helicopter, the hovering performance must be determined over the ranges of weight, altitude, and temperature...) The helicopter in ground effect at a height consistent with normal takeoff procedures. (c) For each...

  13. 14 CFR 29.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... helicopter, the hovering performance must be determined over the ranges of weight, altitude, and temperature...) The helicopter in ground effect at a height consistent with normal takeoff procedures. (c) For each...

  14. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions... rotational speed shown under the rotor speed requirements in § 27.1509(c); and (3) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions for which certification is...

  15. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions... rotational speed shown under the rotor speed requirements in § 27.1509(c); and (3) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions for which certification is...

  16. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions... rotational speed shown under the rotor speed requirements in § 27.1509(c); and (3) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions for which certification is...

  17. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions... rotational speed shown under the rotor speed requirements in § 27.1509(c); and (3) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions for which certification is...

  18. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions... rotational speed shown under the rotor speed requirements in § 27.1509(c); and (3) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions for which certification is...

  19. Effects of drilling parameters in numerical simulation to the bone temperature elevation

    NASA Astrophysics Data System (ADS)

    Akhbar, Mohd Faizal Ali; Malik, Mukhtar; Yusoff, Ahmad Razlan

    2018-04-01

    Drilling into the bone can produce significant amount of heat which can cause bone necrosis. Understanding the drilling parameters influence to the heat generation is necessary to prevent thermal necrosis to the bone. The aim of this study is to investigate the influence of drilling parameters on bone temperature elevation. Drilling simulations of various combinations of drill bit diameter, rotational speed and feed rate were performed using finite element software DEFORM-3D. Full-factorial design of experiments (DOE) and two way analysis of variance (ANOVA) were utilised to examine the effect of drilling parameters and their interaction influence on the bone temperature. The maximum bone temperature elevation of 58% was demonstrated within the range in this study. Feed rate was found to be the main parameter to influence the bone temperature elevation during the drilling process followed by drill diameter and rotational speed. The interaction between drill bit diameter and feed rate was found to be significantly influence the bone temperature. It is discovered that the use of low rotational speed, small drill bit diameter and high feed rate are able to minimize the elevation of bone temperature for safer surgical operations.

  20. Reflectively Coupled Waveguide Photodetector for High Speed Optical Interconnection

    PubMed Central

    Hsu*, Shih-Hsiang

    2010-01-01

    To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector’s planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520–1,550 nm wavelength range and the pass band was 1 nm at the −1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 27-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation. PMID:22163502

  1. Mod-2 wind turbine field operations experiment

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1985-01-01

    The three-machine, 7.5 MW Goodnoe Hills located near Goldendale, Washington and is now in a research/experimental operations phase that offers a unique opportunity to study the effects of single and multiple wind turbines interacting with each other, the power grid; and the environment. Following a brief description of the turbine and project history, this paper addresses major problem areas and research and development test results. Field operations, both routine and nonroutine, are discussed. Routine operation to date has produced over 13,379,000 KWh of electrical energy during 11,064 hr of rotation. Nonroutine operation includes suspended activities caused by a crack in the low speed shaft that necessitated a redesign and reinstallation of this assembly on all three turbines. With the world's largest cluster back in full operation, two of the turbines will be operated over the next years to determine their value as energy producer. The third unit will be used primarily for conducting research tests requiring configuration changes to better understand the wind turbine technology. Technical areas summarized pertain to system performance and enhancements. Specific research tests relating to acoustics, TV interference, and wake effects conclude the paper.

  2. Two speed drive system. [mechanical device for changing speed on rotating vehicle wheel

    NASA Technical Reports Server (NTRS)

    Burch, J. L. (Inventor)

    1972-01-01

    A two speed drive system for a wheel of a vehicle by which shifting from one speed to the other is accomplished by the inherent mechanism of the wheel is described. A description of the speed shifting operation is provided and diagrams of the mechanism are included. Possible application to lunar roving vehicles is proposed.

  3. Assessment of C-Type Darrieus Wind Turbine Under Low Wind Speed Condition

    NASA Astrophysics Data System (ADS)

    Misaran, M. S.; Rahman, Md. M.; Muzammil, W. K.; Ismail, M. A.

    2017-07-01

    Harvesting wind energy in in a low wind speed region is deem un-economical if not daunting task. Study shows that a minimum cut in speed of 3.5 m/s is required to extract a meaningful wind energy for electricity while a mean speed of 6 m/s is preferred. However, in Malaysia the mean speed is at 2 m/s with certain potential areas having 3 m/s mean speed. Thus, this work aims to develop a wind turbine that able to operate at lower cut-in speed and produce meaningful power for electricity generation. A C-type Darrieus blade is selected as it shows good potential to operate in arbitrary wind speed condition. The wind turbine is designed and fabricated in UMS labs while the performance of the wind turbine is evaluated in a simulated wind condition. Test result shows that the wind turbine started to rotate at 1 m/s compared to a NACA 0012 Darrieus turbine that started to rotate at 3 m/s. The performance of the turbine shows that it have good potential to be used in an intermittent arbitrary wind speed condition as well as low mean wind speed condition.

  4. Improved circumferential shaft seal for aircraft gear transmissions

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.; Strom, T. N.

    1973-01-01

    Operation under simulated aircraft transmission conditions of speeds to 2850 m/min (9350 ft/min), lubricant temperatures to 394 K (250 F), shaft radial runouts to 0.254 mm (0.010 in.) F.I.R. (full indicator reading), and pressure differentials to 1.03 N/cm2 (1.5 psi) revealed that conventional circumferential seals leaked excessively. Modifying the conventional seal by adding helical grooves to the seal bore reduced leakage rates to within the acceptable level of 10 cm3/hr. The leakage rate of this modified seal was not significantly affected by lubricant flooding or by shaft radial runout.

  5. Rapid estimation of frequency response functions by close-range photogrammetry

    NASA Technical Reports Server (NTRS)

    Tripp, J. S.

    1985-01-01

    The accuracy of a rapid method which estimates the frequency response function from stereoscopic dynamic data is computed. It is shown that reversal of the order of the operations of coordinate transformation and Fourier transformation, which provides a significant increase in computational speed, introduces error. A portion of the error, proportional to the perturbation components normal to the camera focal planes, cannot be eliminated. The remaining error may be eliminated by proper scaling of frequency data prior to coordinate transformation. Methods are developed for least squares estimation of the full 3x3 frequency response matrix for a three dimensional structure.

  6. Foil system fatigue load environments for commercial hydrofoil operation

    NASA Technical Reports Server (NTRS)

    Graves, D. L.

    1979-01-01

    The hydrofoil fatigue loads environment in the open sea is examined. The random nature of wave orbital velocities, periods and heights plus boat heading, speed and control system design are considered in the assessment of structural fatigue requirements. Major nonlinear load events such as hull slamming and foil unwetting are included in the fatigue environment. Full scale rough water load tests, field experience plus analytical loads work on the model 929 Jetfoil commercial hydrofoil are discussed. The problem of developing an overall sea environment for design is defined. State of the art analytical approaches are examined.

  7. The CP-PACS parallel computer

    NASA Astrophysics Data System (ADS)

    Ukawa, Akira

    1998-05-01

    The CP-PACS computer is a massively parallel computer consisting of 2048 processing units and having a peak speed of 614 GFLOPS and 128 GByte of main memory. It was developed over the four years from 1992 to 1996 at the Center for Computational Physics, University of Tsukuba, for large-scale numerical simulations in computational physics, especially those of lattice QCD. The CP-PACS computer has been in full operation for physics computations since October 1996. In this article we describe the chronology of the development, the hardware and software characteristics of the computer, and its performance for lattice QCD simulations.

  8. 75 FR 417 - Certificate of Alternative Compliance for the High Speed Ferry SUSITNA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Compliance for the High Speed Ferry SUSITNA AGENCY: Coast Guard, DHS. ACTION: Notice. SUMMARY: The Coast Guard announces that a Certificate of Alternative Compliance was issued for the high speed ferry SUSITNA... been issued for the high speed ferry SUSITNA, O.N. 1189367. Full compliance with 72 COLREGS and the...

  9. Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth; Repp, Russ; Weir, Donald S.

    1996-01-01

    A calibration of the acoustic and aerodynamic prediction methods was performed and a baseline fan definition was established and evaluated to support the quiet high speed fan program. A computational fluid dynamic analysis of the NASA QF-12 Fan rotor, using the DAWES flow simulation program was performed to demonstrate and verify the causes of the relatively poor aerodynamic performance observed during the fan test. In addition, the rotor flowfield characteristics were qualitatively compared to the acoustic measurements to identify the key acoustic characteristics of the flow. The V072 turbofan source noise prediction code was used to generate noise predictions for the TFE731-60 fan at three operating conditions and compared to experimental data. V072 results were also used in the Acoustic Radiation Code to generate far field noise for the TFE731-60 nacelle at three speed points for the blade passage tone. A full 3-D viscous flow simulation of the current production TFE731-60 fan rotor was performed with the DAWES flow analysis program. The DAWES analysis was used to estimate the onset of multiple pure tone noise, based on predictions of inlet shock position as a function of the rotor tip speed. Finally, the TFE731-60 fan rotor wake structure predicted by the DAWES program was used to define a redesigned stator with the leading edge configured to minimize the acoustic effects of rotor wake / stator interaction, without appreciably degrading performance.

  10. Methods to speed up the gain recovery of an SOA

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Wang, Yongjun; Meng, Qingwen; Zhao, Rui

    2008-01-01

    The semiconductor optical amplifiers (SOAs) are employed in all optical networking and all optical signal processing due to the excellent nonlinearity and high speed. The gain recovery time is the key parameter to describe the response speed of the SOA. The relationship between the gain dynamics and a few operation parameters is obtained in this article. A few simple formula and some simulations are demonstrated, from which, a few methods to improve the response speed of the SOA can be concluded as following, lengthening the active area, or lessening the cross area, increasing the injection current, increasing the probe power, operating with a CW holding beam.

  11. Stage effects on stalling and recovery of a high-speed 10-stage axial-flow compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copenhaver, W.W.

    1988-01-01

    Results of a high-speed 10-stage axial-flow compressor test involving overall compressor and individual stage performance while stalling and operating in quasi-steady rotating stall are described. Test procedures and data-acquisition methods used to obtain the dynamic stalling and quasi-steady in-stall data are explained. Unstalled and in-stall time-averaged data obtained from the compressor operating at five different shaft speeds and one off-schedule variable vane condition are presented. Effects of compressor speed and variable geometry on overall compressor in-stall pressure rise and hysteresis extent are illustrated through the use of quasi-steady-stage temperature rise and pressure-rise characteristics. Results indicate that individual stage performance duringmore » overall compressor rotating stall operation varies considerably throughout the length of the compressor. The measured high-speed 10-stage test compressor individual stage pressure and temperature characteristics were input into a stage-by-stage dynamic compressor performance model. Comparison of the model results and measured pressures provided the additional validation necessary to demonstrate the model's ability to predict high-speed multistage compressor stalling and in-stall performance.« less

  12. The research of automatic speed control algorithm based on Green CBTC

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Xiong, Hui; Wang, Xiaoliang; Wu, Youyou; Zhang, Chuanqi

    2017-06-01

    Automatic speed control algorithm is one of the core technologies of train operation control system. It’s a typical multi-objective optimization control algorithm, which achieve the train speed control for timing, comfort, energy-saving and precise parking. At present, the train speed automatic control technology is widely used in metro and inter-city railways. It has been found that the automatic speed control technology can effectively reduce the driver’s intensity, and improve the operation quality. However, the current used algorithm is poor at energy-saving, even not as good as manual driving. In order to solve the problem of energy-saving, this paper proposes an automatic speed control algorithm based on Green CBTC system. Based on the Green CBTC system, the algorithm can adjust the operation status of the train to improve the efficient using rate of regenerative braking feedback energy while ensuring the timing, comfort and precise parking targets. Due to the reason, the energy-using of Green CBTC system is lower than traditional CBTC system. The simulation results show that the algorithm based on Green CBTC system can effectively reduce the energy-using due to the improvement of the using rate of regenerative braking feedback energy.

  13. Driver speed selection on high-speed two-lane highways: Comparing speed profiles between uniform and differential speed limits.

    PubMed

    Russo, Brendan J; Savolainen, Peter T; Gates, Timothy J; Kay, Jonathan J; Frazier, Sterling

    2017-07-04

    Although a considerable amount of prior research has investigated the impacts of speed limits on traffic safety and operations, much of this research, and nearly all of the research related to differential speed limits, has been specific to limited access freeways. The unique safety and operational issues on highways without access control create difficulty relating the conclusions from prior freeway-related speed limit research to 2-lane highways, particularly research on differential limits due to passing limitations and subsequent queuing. Therefore, the objective of this study was to assess differences in driver speed selection with respect to the posted speed limit on rural 2-lane highways, with a particular emphasis on the differences between uniform and differential speed limits. Data were collected from nearly 59,000 vehicles across 320 sites in Montana and 4 neighboring states. Differences in mean speeds, 85th percentile speeds, and the standard deviation in speeds for free-flowing vehicles were examined across these sites using ordinary least squares regression models. Ultimately, the results of the analysis show that the mean speed, 85th percentile speed, and variability in travel speeds for free-flowing vehicles on 2-lane highways are generally lower at locations with uniform 65 mph speed limits, compared to locations with differential limits of 70 mph for cars and 60 mph for trucks. In addition to posted speed limits, several site characteristics were shown to influence speed selection including shoulder widths, frequency of horizontal curves, percentage of the segment that included no passing zones, and hourly volumes. Differences in vehicle speed characteristics were also observed between states, indicating that speed selection may also be influenced by local factors, such as driver population or enforcement.

  14. Combining spray nozzle simulators with meshes: characterization of rainfall intensity and drop properties

    NASA Astrophysics Data System (ADS)

    Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.

    2013-04-01

    Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.

  15. A wireless high-speed data acquisition system for geotechnical centrifuge model testing

    NASA Astrophysics Data System (ADS)

    Gaudin, C.; White, D. J.; Boylan, N.; Breen, J.; Brown, T.; DeCatania, S.; Hortin, P.

    2009-09-01

    This paper describes a novel high-speed wireless data acquisition system (WDAS) developed at the University of Western Australia for operation onboard a geotechnical centrifuge, in an enhanced gravitational field of up to 300 times Earth's gravity. The WDAS system consists of up to eight separate miniature units distributed around the circumference of a 0.8 m diameter drum centrifuge, communicating with the control room via wireless Ethernet. Each unit is capable of powering and monitoring eight instrument channels at a sampling rate of up to 1 MHz at 16-bit resolution. The data are stored within the logging unit in solid-state memory, but may also be streamed in real-time at low frequency (up to 10 Hz) to the centrifuge control room, via wireless transmission. The high-speed logging runs continuously within a circular memory (buffer), allowing for storage of a pre-trigger segment of data prior to an event. To suit typical geotechnical modelling applications, the system can record low-speed data continuously, until a burst of high-speed acquisition is triggered when an experimental event occurs, after which the system reverts back to low-speed acquisition to monitor the aftermath of the event. Unlike PC-based data acquisition solutions, this system performs the full sequence of amplification, conditioning, digitization and storage on a single circuit board via an independent micro-controller allocated to each pair of instrumented channels. This arrangement is efficient, compact and physically robust to suit the centrifuge environment. This paper details the design specification of the WDAS along with the software interface developed to control the units. Results from a centrifuge test of a submarine landslide are used to illustrate the performance of the new WDAS.

  16. Compatibility of information and mode of control: The case for natural control systems

    NASA Technical Reports Server (NTRS)

    Owen, Dean H.

    1993-01-01

    The operation of control systems has been determined largely by mechanical constraints. Compatibility with the characteristics of the operator is a secondary consideration, with the result that control may never be optimal, control workload may interfere with performance of secondary tasks, and learning may be more difficult and protracted than necessary. With the introduction of a computer in the control loop, the mode of operation can be adapted to the operator, rather than vice versa. The concept of natural control is introduced to describe a system that supports control of the information used by the operator in achieving an intended goal. As an example, control of speed during simulated approach to a pad by helicopter pilots is used to contrast path-speed control with direct control of global optical flow-pattern information. Differences are evidenced in the performance domains of control activity, speed, and global optical flow velocity.

  17. Operation ranges and dynamic capabilities of variable-speed pumped-storage hydropower

    NASA Astrophysics Data System (ADS)

    Mercier, Thomas; Olivier, Mathieu; Dejaeger, Emmanuel

    2017-04-01

    The development of renewable and intermittent power generation creates incentives for the development of both energy storage solutions and more flexible power generation assets. Pumped-storage hydropower (PSH) is the most established and mature energy storage technology, but recent developments in power electronics have created a renewed interest by providing PSH units with a variable-speed feature, thereby increasing their flexibility. This paper reviews technical considerations related to variable-speed PSH in link with the provision of primary frequency control, also referred to as frequency containment reserves (FCRs). Based on the detailed characteristics of a scale model pump-turbine, the variable-speed operation ranges in pump and turbine modes are precisely assessed and the implications for the provision of FCRs are highlighted. Modelling and control for power system studies are discussed, both for fixed- and variable-speed machines and simulation results are provided to illustrate the high dynamic capabilities of variable-speed PSH.

  18. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test Primary Partical Mean Size a (µm) Full Wind Tunnel Test 2 km/hr 24 km/hr Inlet...

  19. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test Primary Partical Mean Size a (µm) Full Wind Tunnel Test 2 km/hr 24 km/hr Inlet...

  20. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test Primary Partical Mean Size a (µm) Full Wind Tunnel Test 2 km/hr 24 km/hr Inlet...

  1. Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second.

    PubMed

    Huber, R; Adler, D C; Srinivasan, V J; Fujimoto, J G

    2007-07-15

    A Fourier domain mode-locked (FDML) laser at 1050 nm for ultra-high-speed optical coherence tomography (OCT) imaging of the human retina is demonstrated. Achievable performance, physical limitations, design rules, and scaling principles for FDML operation and component choice in this wavelength range are discussed. The fiber-based FDML laser operates at a sweep rate of 236 kHz over a 63 nm tuning range, with 7 mW average output power. Ultra-high-speed retinal imaging is demonstrated at 236,000 axial scans per second. This represents a speed improvement of approximately10x over typical high-speed OCT systems, paving the way for densely sampled volumetric data sets and new imaging protocols.

  2. Supersonic Wind Tunnel Capabilities Expanded Into Subsonic Region

    NASA Technical Reports Server (NTRS)

    Roeder, James W., Jr.

    1997-01-01

    The operating envelope of the Abe Silverstein 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) at the NASA Lewis Research Center was recently expanded to include operation at subsonic test section speeds. This new capability generates test section air speeds ranging from Mach 0.05 to 0.35 (32 to 240 kn). Most of the expansion in air speed range was obtained by running the tunnel's main compressor at much lower speeds than ever before. The compressor drive system, consisting of four large electric motors, was run with only one or two motors energized to obtain the lower compressor speed range. This new capability makes the 10x10 SWT more versatile and gives U.S. researchers an enhanced ability to perform subsonic propulsion and aerodynamic testing.

  3. Test Operations Procedure (TOP) 06-2-301 Wind Testing

    DTIC Science & Technology

    2017-06-14

    critical to ensure that the test item is exposed to the required wind speeds. This may be an iterative process as the fan blade pitch, fan speed...fan speed is the variable that is adjusted to reach the required velocities. Calibration runs with a range of fan speeds are performed and a

  4. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits. (a) The propeller speed and pitch must be limited to values that will ensure— (1) Safe operation...

  5. 49 CFR 213.57 - Curves; elevation and speed limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Curves; elevation and speed limitations. 213.57... speed limitations. (a) The maximum crosslevel on the outside rail of a curve may not be more than 8... applicable September 21, 1999.) (b)(1) The maximum allowable operating speed for each curve is determined by...

  6. 49 CFR 392.6 - Schedules to conform with speed limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Schedules to conform with speed limits. 392.6... DRIVING OF COMMERCIAL MOTOR VEHICLES General § 392.6 Schedules to conform with speed limits. No motor... points in such period of time as would necessitate the commercial motor vehicle being operated at speeds...

  7. 49 CFR 213.329 - Curves, elevation and speed limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Curves, elevation and speed limitations. 213.329... Higher § 213.329 Curves, elevation and speed limitations. (a) The maximum crosslevel on the outside rail... lower than the inside rail. (b) (1) The maximum allowable operating speed for each curve is determined...

  8. 14 CFR 29.1517 - Limiting height-speed envelope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of heights exists at any speed, including zero, within which it is not possible to make a safe landing...

  9. 49 CFR 213.57 - Curves; elevation and speed limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Curves; elevation and speed limitations. 213.57... speed limitations. (a) The maximum crosslevel on the outside rail of a curve may not be more than 8... applicable September 21, 1999.) (b)(1) The maximum allowable operating speed for each curve is determined by...

  10. 46 CFR 154.1862 - Posting of speed reduction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Posting of speed reduction. 154.1862 Section 154.1862... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1862 Posting of speed reduction. If a speed reduction is specially approved by the Commandant under § 154.409, the master shall...

  11. 46 CFR 154.1862 - Posting of speed reduction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Posting of speed reduction. 154.1862 Section 154.1862... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1862 Posting of speed reduction. If a speed reduction is specially approved by the Commandant under § 154.409, the master shall...

  12. 49 CFR 213.329 - Curves, elevation and speed limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Curves, elevation and speed limitations. 213.329... Higher § 213.329 Curves, elevation and speed limitations. (a) The maximum crosslevel on the outside rail... lower than the inside rail. (b) (1) The maximum allowable operating speed for each curve is determined...

  13. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits. (a) The propeller speed and pitch must be limited to values that will ensure- (1) Safe operation...

  14. 49 CFR 392.6 - Schedules to conform with speed limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Schedules to conform with speed limits. 392.6... DRIVING OF COMMERCIAL MOTOR VEHICLES General § 392.6 Schedules to conform with speed limits. No motor... points in such period of time as would necessitate the commercial motor vehicle being operated at speeds...

  15. 14 CFR 29.1517 - Limiting height-speed envelope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of heights exists at any speed, including zero, within which it is not possible to make a safe landing...

  16. A conceptual framework for evaluating variable speed generator options for wind energy applications

    NASA Technical Reports Server (NTRS)

    Reddoch, T. W.; Lipo, T. A.; Hinrichsen, E. N.; Hudson, T. L.; Thomas, R. J.

    1995-01-01

    Interest in variable speed generating technology has accelerated as greater emphasis on overall efficiency and superior dynamic and control properties in wind-electric generating systems are sought. This paper reviews variable speed technology options providing advantages and disadvantages of each. Furthermore, the dynamic properties of variable speed systems are contrasted with synchronous operation. Finally, control properties of variable speed systems are examined.

  17. Wide speed range turboshaft study

    NASA Technical Reports Server (NTRS)

    Dangelo, Martin

    1995-01-01

    NASA-Lewis and NASA-Ames have sponsored a series of studies over the last few years to identify key high speed rotorcraft propulsion and airframe technologies. NASA concluded from these studies that for near term aircraft with cruise speeds up to 450 kt, tilting rotor rotorcraft concepts are the most economical and technologically viable. The propulsion issues critical to tilting rotor rotorcraft are: (1) high speed cruise propulsion system efficiency and (2) adequate power to hover safely with one engine inoperative. High speed cruise propeller efficiency can be dramatically improved by reducing rotor speed, yet high rotor speed is critical for good hover performance. With a conventional turboshaft, this wide range of power turbine operating speeds would result in poor engine performance at one or more of these critical operating conditions. This study identifies several wide speed range turboshaft concepts, and analyzes their potential to improve performance at the diverse cruise and hover operating conditions. Many unique concepts were examined, and the selected concepts are simple, low cost, relatively low risk, and entirely contained within the power turbine. These power turbine concepts contain unique, incidence tolerant airfoil designs that allow the engine to cruise efficiently at 51 percent of the hover rotor speed. Overall propulsion system efficiency in cruise is improved as much as 14 percent, with similar improvements in engine weight and cost. The study is composed of a propulsion requirement survey, a concept screening study, a preliminary definition and evaluation of selected concepts, and identification of key technologies and development needs. In addition, a civil transport tilting rotor rotorcraft mission analysis was performed to show the benefit of these concepts versus a conventional turboshaft. Other potential applications for this technology are discussed.

  18. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump

    DOEpatents

    Jostlein, Hans

    2006-04-04

    An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

  19. Determination of the wind power systems load to achieve operation in the maximum energy area

    NASA Astrophysics Data System (ADS)

    Chioncel, C. P.; Tirian, G. O.; Spunei, E.; Gillich, N.

    2018-01-01

    This paper analyses the operation of the wind turbine, WT, in the maximum power point, MPP, by linking the load of the Permanent Magnet Synchronous Generator, PMSG, with the wind speed value. The load control methods at wind power systems aiming an optimum performance in terms of energy are based on the fact that the energy captured by the wind turbine significantly depends on the mechanical angular speed of the wind turbine. The presented control method consists in determining the optimal mechanical angular speed, ωOPTIM, using an auxiliary low power wind turbine, WTAUX, operating without load, at maximum angular velocity, ωMAX. The method relies on the fact that the ratio ωOPTIM/ωMAX has a constant value for a given wind turbine and does not depend on the time variation of the wind speed values.

  20. Power Conditioning for High-Speed Tracked Vehicles

    DOT National Transportation Integrated Search

    1971-01-01

    The linear induction motor is to provide the propulsion of high-speed tracked vehicles; speed and brake control of the propulsion motor is essential for vehicle operation. The purpose of power conditioning is to provide the power matching interface b...

  1. Power Conditioning for High Speed Tracked Vehicles

    DOT National Transportation Integrated Search

    1973-01-01

    The linear induction motor is to provide the propulsion of high-speed tracked vehicles; speed and brake control of the propulsion motor is essential for vehicle operation. The purpose of power conditioning is to provide the power matching interface b...

  2. Internet Voice Distribution System (IVoDS) Utilization in Remote Payload Operations

    NASA Technical Reports Server (NTRS)

    Best, Susan; Bradford, Bob; Chamberlain, Jim; Nichols, Kelvin; Bailey, Darrell (Technical Monitor)

    2002-01-01

    Due to limited crew availability to support science and the large number of experiments to be operated simultaneously, telescience is key to a successful International Space Station (ISS) science program. Crew, operations personnel at NASA centers, and researchers at universities and companies around the world must work closely together to perform scientific experiments on-board ISS. NASA has initiated use of Voice over Internet Protocol (VoIP) to supplement the existing HVoDS mission voice communications system used by researchers. The Internet Voice Distribution System (IVoDS) connects researchers to mission support "loops" or conferences via Internet Protocol networks such as the high-speed Internet 2. Researchers use IVoDS software on personal computers to talk with operations personnel at NASA centers. IVoDS also has the capability, if authorized, to allow researchers to communicate with the ISS crew during experiment operations. NODS was developed by Marshall Space Flight Center with contractors A2 Technology, Inc. FVC, Lockheed- Martin, and VoIP Group. IVoDS is currently undergoing field-testing with full deployment for up to 50 simultaneous users expected in 2002. Research is currently being performed to take full advantage of the digital world - the Personal Computer and Internet Protocol networks - to qualitatively enhance communications among ISS operations personnel. In addition to the current voice capability, video and data-sharing capabilities are being investigated. Major obstacles being addressed include network bandwidth capacity and strict security requirements. Techniques being investigated to reduce and overcome these obstacles include emerging audio-video protocols and network technology including multicast and quality-of-service.

  3. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1993-01-01

    The main objective of this work is to develop an interim Quiet (low-disturbance) supersonic wind tunnel for the NASA-Ames Fluid Mechanics Laboratory (FML). The main emphasis is to bring on-line a full-scale Mach 1.6 tunnel as rapidly as possible to impact the NASA High Speed Research Program (HSRP). The development of a cryogenic adaptive nozzle and other sophisticated features of the tunnel will now happen later, after the full scale wind tunnel is in operation. The work under this contract for the period of this report can be summarized as follows: provide aerodynamic design requirements for the NASA-Ames Fluid Mechanics Laboratory (FML) Laminar Flow Supersonic Wind Tunnel (LFSWT); research design parameters for a unique Mach 1.6 drive system for the LFSWT using an 1/8th-scale Proof-of-Concept (PoC) supersonic wind tunnel; carry out boundary layer transition studies in PoC to aid the design of critical components of the LFSWT; appraise the State of the Art in quiet supersonic wind tunnel design; and help develop a supersonic research capability within the FML particularly in the areas of high speed transition measurements and schlieren techniques. The body of this annual report summarizes the work of the Principal Investigator.

  4. Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.; Sims, Robert L.

    1998-01-01

    Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.

  5. Research and development of a high-performance differential-hybrid charge sensitive preamplifier.

    PubMed

    Zeng, Guoqiang; Hu, Chuanhao; Wei, Shilong; Yang, Jian; Li, Qiang; Ge, Liangquan; Tan, Chengjun

    2017-02-01

    A differential-hybrid charge sensitive preamplifier (CSP) was designed by taking a monolithic dual N-Channel Junction Field-effect Transistor (JFET) and a high-speed, low-noise, operational amplifier as the core parts. Input-stage of the circuit employs low-noise differential dual JFET, which ensures high input impedance and low noise. The differential dual transistor makes the quiescent point of the first-stage differential output stable, which is convenient for connecting with the post stage high-speed operational amplifier. Broadband could be amplified by connecting to the double differential dual transistors through the folded cascode-bootstrap. The amplifying circuit which replaces the interstage and post stage discrete components of a traditional CSP with integrated operational amplifier is simpler and more reliable. It simplifies the design of the quiescent point, gives full play to advantages of releasing large open-loop gain, and improves charge-voltage conversion gain stability. Particularly, the charge-voltage conversion gain is larger under a smaller feedback capacitor, thus enabling to gain better signal-noise ratio. The designed CSP was tested, reporting 3.3×10 13 V/C charge sensitivity, about 90ns rise time of signals, 35:1 signal-noise ratio to gamma-rays of 137 Cs (662keV) and a 0.023 fC/pF noise slope. Gamma-rays of 241 Am (59.5keV) were measured by the BPX66 detector and the designed CSP under room temperature, providing 1.97% energy resolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Sub-scale Inverse Wind Turbine Blade Design Using Bound Circulation

    NASA Astrophysics Data System (ADS)

    Kelley, Christopher; Berg, Jonathan

    2014-11-01

    A goal of the National Rotor Testbed project at Sandia is to design a sub-scale wind turbine blade that has similitude to a modern, commercial size blade. However, a smaller diameter wind turbine operating at the same tip-speed-ratio exhibits a different range of operating Reynolds numbers across the blade span, thus changing the local lift and drag coefficients. Differences to load distribution also affect the wake dynamics and stability. An inverse wind turbine blade design tool has been implemented which uses a target, dimensionless circulation distribution from a full-scale blade to find the chord and twist along a sub-scale blade. In addition, airfoil polar data are interpolated from a few specified span stations leading to a smooth, manufacturable blade. The iterative process perturbs chord and twist, after running a blade element momentum theory code, to reduce the residual sum of the squares between the modeled sub-scale circulation and the target full-scale circulation. It is shown that the converged sub-scale design also leads to performance similarity in thrust and power coefficients. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy under Contract DE-AC04-94AL85000.

  7. Multiplex networks in metropolitan areas: generic features and local effects.

    PubMed

    Strano, Emanuele; Shai, Saray; Dobson, Simon; Barthelemy, Marc

    2015-10-06

    Most large cities are spanned by more than one transportation system. These different modes of transport have usually been studied separately: it is however important to understand the impact on urban systems of coupling different modes and we report in this paper an empirical analysis of the coupling between the street network and the subway for the two large metropolitan areas of London and New York. We observe a similar behaviour for network quantities related to quickest paths suggesting the existence of generic mechanisms operating beyond the local peculiarities of the specific cities studied. An analysis of the betweenness centrality distribution shows that the introduction of underground networks operate as a decentralizing force creating congestion in places located at the end of underground lines. Also, we find that increasing the speed of subways is not always beneficial and may lead to unwanted uneven spatial distributions of accessibility. In fact, for London—but not for New York—there is an optimal subway speed in terms of global congestion. These results show that it is crucial to consider the full, multimodal, multilayer network aspects of transportation systems in order to understand the behaviour of cities and to avoid possible negative side-effects of urban planning decisions. © 2015 The Author(s).

  8. Multiplex networks in metropolitan areas: generic features and local effects

    PubMed Central

    Strano, Emanuele; Shai, Saray; Dobson, Simon; Barthelemy, Marc

    2015-01-01

    Most large cities are spanned by more than one transportation system. These different modes of transport have usually been studied separately: it is however important to understand the impact on urban systems of coupling different modes and we report in this paper an empirical analysis of the coupling between the street network and the subway for the two large metropolitan areas of London and New York. We observe a similar behaviour for network quantities related to quickest paths suggesting the existence of generic mechanisms operating beyond the local peculiarities of the specific cities studied. An analysis of the betweenness centrality distribution shows that the introduction of underground networks operate as a decentralizing force creating congestion in places located at the end of underground lines. Also, we find that increasing the speed of subways is not always beneficial and may lead to unwanted uneven spatial distributions of accessibility. In fact, for London—but not for New York—there is an optimal subway speed in terms of global congestion. These results show that it is crucial to consider the full, multimodal, multilayer network aspects of transportation systems in order to understand the behaviour of cities and to avoid possible negative side-effects of urban planning decisions. PMID:26400198

  9. Straight and chopped dc performance data for a General Electric 5BT 2366C10 motor and an EV-1 controller

    NASA Technical Reports Server (NTRS)

    Edie, P. C.

    1981-01-01

    Performance data on the General Electric 5BT 2366C10 series wound dc motor and EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data is provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing shows the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 86% and 87%, regardless of temperature or mode of operation. When the chopper is utilized, maximum motor efficiency occurs when the chopper duty cycle approaches 100%.

  10. Signaling cascades modulate the speed of signal propagation through space.

    PubMed

    Govern, Christopher C; Chakraborty, Arup K

    2009-01-01

    Cells are not mixed bags of signaling molecules. As a consequence, signals must travel from their origin to distal locations. Much is understood about the purely diffusive propagation of signals through space. Many signals, however, propagate via signaling cascades. Here, we show that, depending on their kinetics, cascades speed up or slow down the propagation of signals through space, relative to pure diffusion. We modeled simple cascades operating under different limits of Michaelis-Menten kinetics using deterministic reaction-diffusion equations. Cascades operating far from enzyme saturation speed up signal propagation; the second mobile species moves more quickly than the first through space, on average. The enhanced speed is due to more efficient serial activation of a downstream signaling module (by the signaling molecule immediately upstream in the cascade) at points distal from the signaling origin, compared to locations closer to the source. Conversely, cascades operating under saturated kinetics, which exhibit zero-order ultrasensitivity, can slow down signals, ultimately localizing them to regions around the origin. Signal speed modulation may be a fundamental function of cascades, affecting the ability of signals to penetrate within a cell, to cross-react with other signals, and to activate distant targets. In particular, enhanced speeds provide a way to increase signal penetration into a cell without needing to flood the cell with large numbers of active signaling molecules; conversely, diminished speeds in zero-order ultrasensitive cascades facilitate strong, but localized, signaling.

  11. Evaluation of range and distortion tolerance for high Mach number transonic fan stages. Task 2: Performance of a 1500-foot-per-second tip speed transonic fan stage with variable geometry inlet guide vanes and stator

    NASA Technical Reports Server (NTRS)

    Bilwakesh, K. R.; Koch, C. C.; Prince, D. C.

    1972-01-01

    A 0.5 hub/tip radius ratio compressor stage consisting of a 1500 ft/sec tip speed rotor, a variable camber inlet guide vane and a variable stagger stator was designed and tested with undistorted inlet flow, flow with tip radial distortion, and flow with 90 degrees, one-per-rev, circumferential distortion. At the design speed and design IGV and stator setting the design stage pressure ratio was achieved at a weight within 1% of the design flow. Analytical results on rotor tip shock structure, deviation angle and part-span shroud losses at different operating conditions are presented. The variable geometry blading enabled efficient operation with adequate stall margin at the design condition and at 70% speed. Closing the inlet guide vanes to 40 degrees changed the speed-versus-weight flow relationship along the stall line and thus provided the flexibility of operation at off-design conditions. Inlet flow distortion caused considerable losses in peak efficiency, efficiency on a constant throttle line through design pressure ratio at design speed, stall pressure ratio, and stall margin at the 0 degrees IGV setting and high rotative speeds. The use of the 40 degrees inlet guide vane setting enabled partial recovery of the stall margin over the standard constant throttle line.

  12. 14 CFR 27.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... minimum operating speed. (a) For helicopters— (1) The hovering ceiling must be determined over the ranges...; (ii) The landing gear extended; and (iii) The helicopter in-ground effect at a height consistent with... must be at least— (i) For reciprocating engine powered helicopters, 4,000 feet at maximum weight with a...

  13. 14 CFR 27.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... minimum operating speed. (a) For helicopters— (1) The hovering ceiling must be determined over the ranges...; (ii) The landing gear extended; and (iii) The helicopter in-ground effect at a height consistent with... must be at least— (i) For reciprocating engine powered helicopters, 4,000 feet at maximum weight with a...

  14. 14 CFR 27.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... minimum operating speed. (a) For helicopters— (1) The hovering ceiling must be determined over the ranges...; (ii) The landing gear extended; and (iii) The helicopter in-ground effect at a height consistent with... must be at least— (i) For reciprocating engine powered helicopters, 4,000 feet at maximum weight with a...

  15. 78 FR 65206 - Airworthiness Directives; Bell Helicopter Textron Canada Limited (Bell) Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... engine speeds during steady- state operations. These actions are intended to alert pilots to avoid... intended to alert pilots to avoid certain engine speeds during steady- state operations, prevent failure of... decal as described in Bell Alert Service Bulletin (ASB) No. 430-05-34, dated June 10, 2005 (ASB 430-05...

  16. 78 FR 65202 - Airworthiness Directives; Bell Helicopter Textron Canada Limited (Bell) Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... engine speeds during steady-state operations. These actions are intended to alert pilots to avoid certain... operation between speeds of 71% and 92%. The proposed requirements were intended to alert pilots to avoid... amending the RFM, advising pilots of the change, and installing a decal as described in Bell Alert Service...

  17. Preliminary Data on the Effects of Inlet Pressure Distortions on the J57-P-1 Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Wallner, Lewis E.; Lubick, Robert J.; Einstein, Thomas H.

    1954-01-01

    An investigation to determine the steady-state and surge characteristics of the J57-P-1 two-spool turbojet engine with various inlet air-flow distortions was conducted in the altitude wind tunnel at the NACA Lewis laboratory. Along with a uniform inlet total-pressure distribution, one circumferential and three radial pressure distortions were investigated. Data were obtained over a complete range of compressor speeds both with and without intercompressor air bleed at a flight Mach number of 0.8 and at altitudes of 35,000 and 50,000 feet. Total-pressure distortions of the magnitudes investigated had very little effect on the steady-state operating line for either the outer or inner compressor. The small radial distortions investigated also had engine over that obtained with the uniform inlet pressure distribution. The circumferential distortion, however, raised the minimum speed at which the engine could operate without encountering surge when the intercompressor bleeds were closed. This increase in minimum speed resulted in a substantial reduction in the operable speed range accompanied by a reduction in the altitude operating limit.

  18. A Flight Examination of Operating Problems of V/STOL Aircraft in STOL-Type Landing and Approach

    NASA Technical Reports Server (NTRS)

    Innis, Robert C.; Quigley, Hervey C.

    1961-01-01

    A flight investigation has been conducted using a large twin-engine cargo aircraft to isolate the problems associated with operating propeller-driven aircraft in the STOL speed range where appreciable engine power is used to augment aerodynamic lift. The problems considered would also be representative of those of a large overloaded VTOL aircraft operating in an STOL manner with comparable thrust-to-weight ratios. The study showed that operation at low approach speeds was compromised by the necessity of maintaining high thrust to generate high lift and yet achieving the low lift-drag ratios needed for steep descents. The useable range of airspeed and flight path angle was limited by the pilot's demand for a positive climb margin at the approach speed, a suitable stall margin, and a control and/or performance margin for one engine inoperative. The optimum approach angle over an obstacle was found to be a compromise between obtaining the shortest air distance and the lowest touchdown velocity. In order to realize the greatest low-speed potential from STOL designs, the stability and control characteristics must be satisfactory.

  19. Method for controlling a motor vehicle powertrain

    DOEpatents

    Burba, Joseph C.; Landman, Ronald G.; Patil, Prabhakar B.; Reitz, Graydon A.

    1990-01-01

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission.

  20. Method for controlling a motor vehicle powertrain

    DOEpatents

    Burba, J.C.; Landman, R.G.; Patil, P.B.; Reitz, G.A.

    1990-05-22

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission. 7 figs.

  1. Safety impacts of different speed limits on cars and trucks : final report

    DOT National Transportation Integrated Search

    1994-05-01

    The objectives of this study were to determine whether differential or uniform speed limits are more beneficial to transportation safety and traffic operations on Interstate highways. The approach to achieving this objective was to examine speed and ...

  2. Passenger Acceptance of Alignments with Frequent Curves in Maglev or Other Very-High-Speed Ground Systems

    DOT National Transportation Integrated Search

    1995-10-31

    Proposed high-speed ground transportation systems, such as Maglev, may have motion characteristics : affecting passenger comfort which set them apart from anything previously experienced. Operating at : aircraft speeds along rights-of-way established...

  3. The high speed interconnect system architecture and operation

    NASA Astrophysics Data System (ADS)

    Anderson, Steven C.

    The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.

  4. Optical characterization of high speed microscanners based on static slit profiling method

    NASA Astrophysics Data System (ADS)

    Alaa Elhady, A.; Sabry, Yasser M.; Khalil, Diaa

    2017-01-01

    Optical characterization of high-speed microscanners is a challenging task that usually requires special high speed, extremely expensive camera systems. This paper presents a novel simple method to characterize the scanned beam spot profile and size in high-speed optical scanners under operation. It allows measuring the beam profile and the spot sizes at different scanning angles. The method is analyzed theoretically and applied experimentally on the characterization of a Micro Electro Mechanical MEMS scanner operating at 2.6 kHz. The variation of the spot size versus the scanning angle, up to ±15°, is extracted and the dynamic bending curvature effect of the micromirror is predicted.

  5. Ultra-wideband directional sampler

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in "real time", and the other two ports operate at a slow millisecond-speed, in "equivalent time". A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus.

  6. System solution to improve energy efficiency of HVAC systems

    NASA Astrophysics Data System (ADS)

    Chretien, L.; Becerra, R.; Salts, N. P.; Groll, E. A.

    2017-08-01

    According to recent surveys, heating and air conditioning systems account for over 45% of the total energy usage in US households. Three main types of HVAC systems are available to homeowners: (1) fixed-speed systems, where the compressor cycles on and off to match the cooling load; (2) multi-speed (typically, two-speed) systems, where the compressor can operate at multiple cooling capacities, leading to reduced cycling; and (3) variable-speed systems, where the compressor speed is adjusted to match the cooling load of the household, thereby providing higher efficiency and comfort levels through better temperature and humidity control. While energy consumption could reduce significantly by adopting variable-speed compressor systems, the market penetration has been limited to less than 10% of the total HVAC units and a vast majority of systems installed in new construction remains single speed. A few reasons may explain this phenomenon such as the complexity of the electronic circuitry required to vary compressor speed as well as the associated system cost. This paper outlines a system solution to boost the Seasonal Energy Efficiency Rating (SEER) of a traditional single-speed unit through using a low power electronic converter that allows the compressor to operate at multiple low capacity settings and is disabled at high compressor speeds.

  7. Power Sources for Micro-Autonomous Vehicles- Challenges and Prospects

    NASA Technical Reports Server (NTRS)

    Narayan, S. R.; Kisor, A.; Valdez, T. I.; Manohara, H.

    2009-01-01

    Micro-autonomous vehicle systems are expected to have expanded role in military missions by providing full spectrum intelligence, surveillance and reconnaissance support on the battlefield, suppression of enemy defenses, and enabling co-operative (swarm-like) configurations. Of the numerous demanding requirements of autonomy, sensing, navigation, mobility, etc., meeting the requirement of mission duration or endurance is a very challenging one. This requirement is demanding because of the constraints of mass and volume that limit the quantity of energy that can be stored on-board. Energy is required for mobility, payload operation, information processing, and communication. Mobility requirements typically place an extraordinary demand on the specific energy (Wh/kg) and specific power (W/kg) of the power source; the actual distribution of the energy between mobility and other system functions could vary substantially with the mission type. The power requirements for continuous mobility can vary from 100-1000 W/kg depending on the terrain, ground speed and flight speed. Even with the power source accounting for 30% of the mass of the vehicle, the best of rechargeable batteries can provide only up to 1-2 hours of run-time for a continuous power demand at 100W/kg. In the case of micro-aerial vehicles with flight speed requirements in the range of 5-15 m s-1, the mission times rarely exceed 20 minutes [2]. Further, the power required during take-off and hover can be twice or thrice that needed for steady level flight, and thus the number and sequence of such events is also limited by the mass and size of the power source. For operations such as "perch and stare" or "silent watch" the power demand is often only a tenth of that required during continuous flight. Thus, variation in power demand during various phases of the mission importantly affects the power source selection.

  8. 14 CFR 25.1517 - Rough air speed, VRA.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... rough air encounters will not cause the overspeed warning to operate too frequently. In the absence of a...

  9. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p... approved overspeed, a means to limit the maximum engine and propeller speed to not more than the maximum... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch limits. 23.33...

  10. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p... approved overspeed, a means to limit the maximum engine and propeller speed to not more than the maximum... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch limits. 23.33...

  11. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p... approved overspeed, a means to limit the maximum engine and propeller speed to not more than the maximum... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch limits. 23.33...

  12. 76 FR 18298 - Notice of Availability of a Final Environmental Impact Statement for the DesertXpress High-Speed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Environmental Impact Statement for the DesertXpress High-Speed Passenger Train Project AGENCY: Federal Railroad... for the DesertXpress High-Speed Passenger Train Project (DesertXpress project). FRA is the Lead Agency... and operation of an interstate high-speed passenger train system between Victorville, California and...

  13. Investigation of spoiler ailerons for use as speed brakes or glide-path controls on two NACA 65-series wings equipped with full-span slotted flaps

    NASA Technical Reports Server (NTRS)

    Fischel, Jack; Watson, James M

    1951-01-01

    A wind-tunnel investigation was made to determine the characteristics of spoiler ailerons used as speed brakes or glide-path controls on an NACA 65-210 wing and an NACA 65-215 wing equipped with full-span slotted flaps. Several plug aileron and retractable-aileron configurations were investigated on two wing models with the full-span flaps retracted and deflected. Tests were made at various Mach numbers between 0.13 and 0.71. The results of this investigation have indicated that the use of plug or retractable ailerons, either alone or in conjunction with wing flaps, as speed brakes or glide-path controls is feasible and very effective.

  14. Noise generated by quiet engine fans. 2: Fan A. [measurement of power spectra and sideline perceived noise levels

    NASA Technical Reports Server (NTRS)

    Montegani, F. J.; Schaefer, J. W.; Stakolich, E. G.

    1974-01-01

    A significant effort within the NASA Quiet Engine Program has been devoted to acoustical evaluation at the Lewis Research Center noise test facility of a family of full-scale fans. This report, documents the noise results obtained with fan A - a 1.5-pressure-ratio, 1160-ft/sec-tip-speed fan. The fan is described and some aerodynamic operating data are given. Far-field noise around the fan was measured for a variety of configurations pertaining to acoustical treatment and over a range of operating conditions. Complete results of 1/3-octave band analysis of the data are presented in tabular form. Included also are power spectra and sideline perceived noise levels. Some representative 1/3-octave band data are presented graphically, and sample graphs of continuous narrow-band spectra are also provided.

  15. Flow Characterization and Dynamic Analysis of a Radial Compressor with Passive Method of Surge Control

    NASA Astrophysics Data System (ADS)

    Guillou, Erwann

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratio. Unfortunately, increasing the rotational speed tends to reduce the turbocharger radial compressor range of operation which is limited at low mass flow rate by the occurrence of surge. In order to extent the operability of turbochargers, compressor housings can be equipped with a passive surge control device also known as ported shroud. This specific casing treatment has been demonstrated to enhance surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the bypass system remain not well understood. In order to optimize the design of the ported shroud, it is then crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. Experimental methods were used to assess the development of instabilities from stable, stall and eventually surge regimes of a ported shroud centrifugal compressor. Systematic comparison was conducted with the same compressor design without ported shroud. Hence, the full pressure dynamic survey of both compressors' performance characteristics converged toward two different and probably interrelated driving mechanisms to the development and/or propagation of unsteadiness within each compressor. One related the pressure disturbances at the compressor inlet, and notably the more apparent development of perturbations in the non-ported compressor impeller, whereas the other was attributed to the pressure distortions induced by the presence of the tongue in the asymmetric design of the compressor volute. Specific points of operation were selected to carry out planar flow measurements. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to calculate the instantaneous and mean velocity fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. In this work, satisfying characterization of the compressor inlet flow instabilities was obtained at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanisms was achieved.

  16. Optimization of fuel-cell tram operation based on two dimension dynamic programming

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbin; Lu, Xuecheng; Zhao, Jingsong; Li, Jianqiu

    2018-02-01

    This paper proposes an optimal control strategy based on the two-dimension dynamic programming (2DDP) algorithm targeting at minimizing operation energy consumption for a fuel-cell tram. The energy consumption model with the tram dynamics is firstly deduced. Optimal control problem are analyzed and the 2DDP strategy is applied to solve the problem. The optimal tram speed profiles are obtained for each interstation which consist of three stages: accelerate to the set speed with the maximum traction power, dynamically adjust to maintain a uniform speed and decelerate to zero speed with the maximum braking power at a suitable timing. The optimal control curves of all the interstations are connected with the parking time to form the optimal control method of the whole line. The optimized speed profiles are also simplified for drivers to follow.

  17. Retrofitting a water-pumping station with adjustable speed drives: Feasibility analysis: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-08-01

    The objective of this report is to develop a generalized methodology for examining water distribution systems for adjustable speed drive (ASD) applications and to provide an example (the City of Chicago 68th Street Water Pumping Station) using the methodology. The City of Chicago water system was chosen as the candidate for analysis because it has a large service area distribution network with no storage provisions after the distribution pumps. Many industrial motors operate at only one speed or a few speeds. By speeding up or slowing down, ASDs achieve gentle startups and gradual shutdowns thereby providing plant equipment a longermore » life with fewer breakdowns while minimizing the energy requirements. The test program substantiated that ASDs enhance product quality and increase productivity in many industrial operations, including extended equipment life. 35 figs.« less

  18. GRAPE-4: A special-purpose computer for gravitational N-body problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makino, Junichiro; Taiji, Makoto; Ebisuzaki, Toshikazu

    1995-12-01

    We describe GRAPE-4, a special-purpose computer for gravitational N-body simulations. In gravitational N-body simulations, almost all computing time is spent for the calculation of interaction between particles. GRAPE-4 is a specialized hardware to calculate the interaction between particles. It is used with a general-purpose host computer that performs all calculations other than the force calculation. With this architecture, it is relatively easy to realize a massively parallel system. In 1991, we developed the GRAPE-3 system with the peak speed equivalent to 14.4 Gflops. It consists of 48 custom pipelined processors. In 1992 we started the development of GRAPE-4. The GRAPE-4more » system will consist of 1920 custom pipeline chips. Each chip has the speed of 600 Mflops, when operated on 30 MHz clock. A prototype system with two custom LSIs has been completed July 1994, and the full system is now under manufacturing.« less

  19. High speed cylindrical roller bearing analysis. SKF computer program CYBEAN. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Dyba, G. J.; Kleckner, R. J.

    1981-01-01

    CYBEAN (CYlindrical BEaring ANalysis) was created to detail radially loaded, aligned and misaligned cylindrical roller bearing performance under a variety of operating conditions. Emphasis was placed on detailing the effects of high speed, preload and system thermal coupling. Roller tilt, skew, radial, circumferential and axial displacement as well as flange contact were considered. Variable housing and flexible out-of-round outer ring geometries, and both steady state and time transient temperature calculations were enabled. The complete range of elastohydrodynamic contact considerations, employing full and partial film conditions were treated in the computation of raceway and flange contacts. The practical and correct implementation of CYBEAN is discussed. The capability to execute the program at four different levels of complexity was included. In addition, the program was updated to properly direct roller-to-raceway contact load vectors automatically in those cases where roller or ring profiles have small radii of curvature. Input and output architectures containing guidelines for use and two sample executions are detailed.

  20. Vertical axis wind turbine turbulent response model. Part 2: Response of Sandia National laboratories' 34-meter VAWT with aeroelastic effects

    NASA Astrophysics Data System (ADS)

    1990-01-01

    The dynamic response of Sandia National Laboratories' 34-m Darrieus rotor wind turbine at Bushland, Texas, is presented. The formulation used a double-multiple streamtube aerodynamic model with a turbulent airflow and included the effects of linear aeroelastic forces. The structural analysis used established procedures with the program MSC/NASTRAN. The effects of aeroelastic forces on the damping of natural modes agree well with previous results at operating rotor speeds, but show some discrepancies at very high rotor speeds. A number of alternative expressions for the spectrum of turbulent wind were investigated. The model loading represented by each does not differ significantly; a more significant difference is caused by imposing a full lateral coherence of the turbulent flow. Spectra of the predicted stresses at various locations show that without aeroelastic forces, very severe resonance is likely to occur at certain natural frequencies. Inclusion of aeroelastic effects greatly attenuates this stochastic response, especially in modes involving in-plane blade bending.

  1. Low Speed Wind Tunnel Tests on a One-Seventh Scale Model of the H.126 Jet Flap Aircraft

    NASA Technical Reports Server (NTRS)

    Laub, G. H.

    1975-01-01

    Low speed wind tunnel tests were performed on a one-seventh scale model of the British H.126 jet flap research aircraft over a range of jet momentum coefficients. The primary objective was to compare model aerodynamic characteristics with those of the aircraft, with the intent to provide preliminary data needed towards establishing small-to-full scale correlating techniques on jet flap V/STOL aircraft configurations. Lift and drag coefficients from the model and aircraft tests were found to be in reasonable agreement. The pitching moment coefficient and trim condition correlation was poor. A secondary objective was to evaluate a modified thrust nozzle having thrust reversal capability. The results showed there was a considerable loss of lift in the reverse thrust operational mode because of increased nozzle-wing flow interference. A comparison between the model simulated H.126 wing jet efflux and the model uniform pressure distribution wing jet efflux indicated no more than 5% loss in weight flow rate.

  2. Cruise noise of the 2/9th scale model of the Large-scale Advanced Propfan (LAP) propeller, SR-7A

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Stang, David B.

    1987-01-01

    Noise data on the Large-scale Advanced Propfan (LAP) propeller model SR-7A were taken in the NASA Lewis Research Center 8 x 6 foot Wind Tunnel. The maximum blade passing tone noise first rises with increasing helical tip Mach number to a peak level, then remains the same or decreases from its peak level when going to higher helical tip Mach numbers. This trend was observed for operation at both constant advance ratio and approximately equal thrust. This noise reduction or, leveling out at high helical tip Mach numbers, points to the use of higher propeller tip speeds as a possible method to limit airplane cabin noise while maintaining high flight speed and efficiency. Projections of the tunnel model data are made to the full scale LAP propeller mounted on the test bed aircraft and compared with predictions. The prediction method is found to be somewhat conservative in that it slightly overpredicts the projected model data at the peak.

  3. Cruise noise of the 2/9 scale model of the Large-scale Advanced Propfan (LAP) propeller, SR-7A

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Stang, David B.

    1987-01-01

    Noise data on the Large-scale Advanced Propfan (LAP) propeller model SR-7A were taken in the NASA Lewis Research Center 8 x 6 foot Wind Tunnel. The maximum blade passing tone noise first rises with increasing helical tip Mach number to a peak level, then remains the same or decreases from its peak level when going to higher helical tip Mach numbers. This trend was observed for operation at both constant advance ratio and approximately equal thrust. This noise reduction or, leveling out at high helical tip Mach numbers, points to the use of higher propeller tip speeds as a possible method to limit airplane cabin noise while maintaining high flight speed and efficiency. Projections of the tunnel model data are made to the full scale LAP propeller mounted on the test bed aircraft and compared with predictions. The prediction method is found to be somewhat conservative in that it slightly overpredicts the projected model data at the peak.

  4. The development of an augmentor wing jet STOL research aircraft (modified C-8A). Volume 2: Analysis of contractor's flight test

    NASA Technical Reports Server (NTRS)

    Skavdahl, H.; Patterson, D. H.

    1972-01-01

    The initial flight test phase of the modified C-8A airplane was conducted. The primary objective of the testing was to establish the basic airworthiness of the research vehicle. This included verification of the structural design and evaluation of the aircraft's systems. Only a minimum amount of performance testing was scheduled; this has been used to provide a preliminary indication of the airplane's performance and flight characteristics for future flight planning. The testing included flutter and loads investigations up to the maximum design speed. The operational characteristics of all systems were assessed including hydraulics, environmental control system, air ducts, the vectoring conical nozzles, and the stability augmentation system (SAS). Approaches to stall were made at three primary flap settings: up, 30 deg and 65 deg, but full stalls were not scheduled. Minimum control speeds and maneuver margins were checked. All takeoffs and landings were conventional, and STOL performance was not scheduled during this phase of the evaluation.

  5. Florida High Speed Rail Authority - 2003 report to the legislature

    DOT National Transportation Integrated Search

    2003-01-01

    Since its last full report to the Legislature in January 2002, the Florida High Speed Rail Authority (FHSRA) has continued to fulfill the duties defined in the Florida High Speed Rail Authority Act, Section 341.8201 to 341.842, Florida Statutes. The ...

  6. Aerodynamic effects of high-speed passenger trains on other trains.

    DOT National Transportation Integrated Search

    2002-04-01

    This study assesses the potential safety risks associated with aerodynamic loads produced by the Acela high-speed train when passing freight and bi-level commuter passenger cars. Acela operates at speeds up to 150 mph, on tangent tracks adjacent to n...

  7. High-speed rail aerodynamic assessment and mitigation report : final report.

    DOT National Transportation Integrated Search

    2015-12-01

    This report advances the current state of knowledge, as well as shared understanding and evaluation of present procedures used to : mitigate the impacts effects from high-speed trains (HST) operating at speeds between 110 mph and 250 mph. This work g...

  8. Engineering studies in support of the development of high-speed track geometry specifications

    DOT National Transportation Integrated Search

    1997-03-01

    The Federal Railroad Administration has been directing engineering studies to support the development of high speed track geometry standards. These standards are intended to cover train operating speeds from 110 mph to 200 mph. The studies conducted ...

  9. Speed Control Law for Precision Terminal Area In-Trail Self Spacing

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2002-01-01

    This document describes a speed control law for precision in-trail airborne self-spacing during final approach. This control law was designed to provide an operationally viable means to obtain a desired runway threshold crossing time or minimum distance, one aircraft relative to another. The control law compensates for dissimilar final approach speeds between aircraft pairs and provides guidance for a stable final approach. This algorithm has been extensively tested in Monte Carlo simulation and has been evaluated in piloted simulation, with preliminary results indicating acceptability from operational and workload standpoints.

  10. Operational Influence on Thermal Behavior of High-Speed Helical Gear Trains

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Kilmain, Charles J.

    2006-01-01

    An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal behavior of the gear system as many important operational conditions were varied. Drive system performance measurements were made at varying speeds and loads (to 5,000 hp and 15,000 rpm). Also, an analytical effort was undertaken for comparison to the measured results. The influence of the various loss mechanisms from the analysis for this high speed helical gear train gearbox will be presented and compared to the experimental results.

  11. Freeway travel speed calculation model based on ETC transaction data.

    PubMed

    Weng, Jiancheng; Yuan, Rongliang; Wang, Ru; Wang, Chang

    2014-01-01

    Real-time traffic flow operation condition of freeway gradually becomes the critical information for the freeway users and managers. In fact, electronic toll collection (ETC) transaction data effectively records operational information of vehicles on freeway, which provides a new method to estimate the travel speed of freeway. First, the paper analyzed the structure of ETC transaction data and presented the data preprocess procedure. Then, a dual-level travel speed calculation model was established under different levels of sample sizes. In order to ensure a sufficient sample size, ETC data of different enter-leave toll plazas pairs which contain more than one road segment were used to calculate the travel speed of every road segment. The reduction coefficient α and reliable weight θ for sample vehicle speed were introduced in the model. Finally, the model was verified by the special designed field experiments which were conducted on several freeways in Beijing at different time periods. The experiments results demonstrated that the average relative error was about 6.5% which means that the freeway travel speed could be estimated by the proposed model accurately. The proposed model is helpful to promote the level of the freeway operation monitoring and the freeway management, as well as to provide useful information for the freeway travelers.

  12. Software and hardware complex for research and management of the separation process

    NASA Astrophysics Data System (ADS)

    Borisov, A. P.

    2018-01-01

    The article is devoted to the development of a program for studying the operation of an asynchronous electric drive using vector-algorithmic switching of windings, as well as the development of a hardware-software complex for controlling parameters and controlling the speed of rotation of an asynchronous electric drive for investigating the operation of a cyclone. To study the operation of an asynchronous electric drive, a method was used in which the average value of flux linkage is found and a method for vector-algorithmic calculation of the power and electromagnetic moment of an asynchronous electric drive feeding from a single-phase network is developed, with vector-algorithmic commutation, and software for calculating parameters. The software part of the complex allows to regulate the speed of rotation of the motor by vector-algorithmic switching of transistors or, using pulse-width modulation (PWM), set any engine speed. Also sensors are connected to the hardware-software complex at the inlet and outlet of the cyclone. The developed cyclone with an inserted complex allows to receive high efficiency of product separation at various entrance speeds. At an inlet air speed of 18 m / s, the cyclone’s maximum efficiency is achieved. For this, it is necessary to provide the rotational speed of an asynchronous electric drive with a frequency of 45 Hz.

  13. Ultrahigh-speed phaselocked-loop type clock recovery circuit using a travelling-wave laser diode amplifier as a 50 GHz phase detector

    NASA Astrophysics Data System (ADS)

    Kawanishi, S.; Takara, H.; Saruwatari, M.; Kitoh, T.

    1993-09-01

    Successful operation of a phase-locked loop is demonstrated using a traveling-wave laser-diode amplifier as a 50 GHz phase detector. Optical gain modulation in the laser diode amplifier and an all-optical clock multiplication technique using a silica-based guided-wave optical circuit are used to achieve the extremely high-speed operation. Also discussed is the possibility of more than 100 GHz operation.

  14. Utility gas turbine combustor viewing system: Volume 2, Engine operating envelope test: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morey, W.W.

    1988-12-01

    This report summarizes the development and field testing of a combustor viewing probe (CVP) as a flame diagnostic monitor for utility gas turbine engines. The prototype system is capable of providing a visual record of combustor flame images, recording flame spectral data, analyzing image and spectral data, and diagnosing certain engine malfunctions. The system should provide useful diagnostic information to utility plant operators, and reduced maintenance costs. The field tests demonstrated the ability of the CVP to monitor combustor flame condition and to relate changes in the engine operation with variations in the flame signature. Engine light off, run upmore » to full speed, the addition of load, and the effect of water injection for NO/sub x/ control could easily be identified on the video monitor. The viewing probe was also valuable in identifying hard startups and shutdowns, as well as transient effects that can seriously harm the engine.« less

  15. 75 FR 49365 - Airworthiness Directives; BAE Systems (Operations) Limited Model BAe 146-100A and -200A Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... lift to ensure that the wheel brakes can provide the necessary speed reduction. * * * * * The effects... brakes can provide the necessary speed reduction. A review of the changing operational profile of the... landing to provide aerodynamic braking and to dump lift to ensure that the wheel brakes can provide the...

  16. 76 FR 66281 - Withdrawal of the Notice of Intent To Prepare a Programmatic Environmental Impact Statement for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... DEPARTMENT OF DEFENSE Department of the Army Withdrawal of the Notice of Intent To Prepare a Programmatic Environmental Impact Statement for the Stationing and Operation of Joint High Speed Vessels AGENCY... Environmental Impact Statement (PEIS) for the stationing and operation of up to 12 Joint High Speed Vessels...

  17. Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor

    NASA Astrophysics Data System (ADS)

    Suder, Kenneth L.; Celestina, Mark L.

    1995-06-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.

  18. Disturbance-Adaptive Short-Term Frequency Support of a DFIG Associated With the Variable Gain Based on the ROCOF and Rotor Speed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Min; Muljadi, Eduard; Jang, Gilsoo

    This paper proposes a disturbance-adaptive short-term frequency support scheme of a doubly fed induction generator (DFIG) that can improve the frequency-supporting capability while ensuring stable operation. In the proposed scheme, the output of the additional control loop is determined as the product of the frequency deviation and adaptive gain, which is modified depending on the rate of change of frequency (ROCOF) and rotor speed. To achieve these objectives, the adaptive gain is set to be high during the early stage of a disturbance, when the ROCOF and rotor speed are high. Until the frequency nadir (FN), the gain decreases withmore » the ROCOF and rotor speed. After the FN, the gain decreases only with the rotor speed. The simulation results demonstrate that the proposed scheme improves the FN and maximum ROCOF while ensuring the stable operation of a DFIG under various wind conditions irrespective of the disturbance conditions by adaptively changing the control gain with the ROCOF and rotor speed, even if the wind speed decreases and a consecutive disturbance occurs.« less

  19. Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.; Celestina, Mark L.

    1995-01-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.

  20. An aerodynamic investigation of two 1.83-meter-diameter fan systems designed to drive a subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Page, V. R.; Eckert, W. T.; Mort, K. W.

    1977-01-01

    An experimental, aerodynamic investigation was made of two 1.83 m diameter fan systems which are being considered for the repowered drive section of the 40- by 80-foot wind tunnel at NASA Ames Research Center. One system was low speed, the other was high speed. The low speed fan was tested at various stagger angles from 32.9 deg to 62.9 deg. At a fan blade stagger angle of 40.8 deg and operating at a tip speed of 1155 m/sec, the low speed fan developed 207.3 m of head. The high speed fan had a design blade stagger angle of 56.2 deg and was tested at this stagger angle only. The high speed fan operating at 191.5 m/sec developed 207.3 m of head. Radial distributions of static pressure coefficients, total pressure coefficients, and angles of swirl are presented. Radial surveys were conducted at four azimuth locations in front of the fan, and repeated downstream of the fan. Data were taken for various flow control devices and for two inlet contraction lengths.

  1. Computational Aerodynamic Simulations of a 1484 ft/sec Tip Speed Quiet High-Speed Fan System Model for Acoustic Methods Assessment and Development

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1484 ft/sec tip speed quiet high-speed fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which includes a core duct and a bypass duct that merge upstream of the fan system nozzle. As a result, only fan rotational speed and the system bypass ratio, set by means of a translating nozzle plug, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive or critical boundary layer separations or related secondary-flow problems, with the exception of the hub boundary layer at the core duct entrance. At that location a significant flow separation is present. The region of local flow recirculation extends through a mixing plane, however, which for the particular mixing-plane model used is now known to exaggerate the recirculation. In any case, the flow separation has relatively little impact on the computed rotor and FEGV flow fields.

  2. Environmental impact statement : Chicago-St. Louis high speed rail project

    DOT National Transportation Integrated Search

    2000-05-16

    The proposed action would provide High-Speed Rail (HSR) passenger service between Chicago and St. Louis, operating at top speeds of 110 mph (180 kph) through most of the project area, except for a 29-kilometer (18-mile) segment between Lincoln and Sp...

  3. Eigenvalue assignment strategies in rotor systems

    NASA Technical Reports Server (NTRS)

    Youngblood, J. N.; Welzyn, K. J.

    1986-01-01

    The work done to establish the control and direction of effective eigenvalue excursions of lightly damped, speed dependent rotor systems using passive control is discussed. Both second order and sixth order bi-axis, quasi-linear, speed dependent generic models were investigated. In every case a single, bi-directional control bearing was used in a passive feedback stabilization loop to resist modal destabilization above the rotor critical speed. Assuming incomplete state measurement, sub-optimal control strategies were used to define the preferred location of the control bearing, the most effective measurement locations, and the best set of control gains to extend the speed range of stable operation. Speed dependent control gains were found by Powell's method to maximize the minimum modal damping ratio for the speed dependent linear model. An increase of 300 percent in stable speed operation was obtained for the sixth order linear system using passive control. Simulations were run to examine the effectiveness of the linear control law on nonlinear rotor models with bearing deadband. The maximum level of control effort (force) required by the control bearing to stabilize the rotor at speeds above the critical was determined for the models with bearing deadband.

  4. Designing train-speed trajectory with energy efficiency and service quality

    NASA Astrophysics Data System (ADS)

    Jia, Jiannan; Yang, Kai; Yang, Lixing; Gao, Yuan; Li, Shukai

    2018-05-01

    With the development of automatic train operations, optimal trajectory design is significant to the performance of train operations in railway transportation systems. Considering energy efficiency and service quality, this article formulates a bi-objective train-speed trajectory optimization model to minimize simultaneously the energy consumption and travel time in an inter-station section. This article is distinct from previous studies in that more sophisticated train driving strategies characterized by the acceleration/deceleration gear, the cruising speed, and the speed-shift site are specifically considered. For obtaining an optimal train-speed trajectory which has equal satisfactory degree on both objectives, a fuzzy linear programming approach is applied to reformulate the objectives. In addition, a genetic algorithm is developed to solve the proposed train-speed trajectory optimization problem. Finally, a series of numerical experiments based on a real-world instance of Beijing-Tianjin Intercity Railway are implemented to illustrate the practicability of the proposed model as well as the effectiveness of the solution methodology.

  5. Concepts for Multi-Speed Rotorcraft Drive System - Status of Design and Testing at NASA GRC

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Lewicki, David G.; Handschuh, Robert F.

    2015-01-01

    In several studies and on-going developments for advanced rotorcraft, the need for variable/multi-speed capable rotors has been raised. Speed changes of up to 50 percent have been proposed for future rotorcraft to improve vehicle performance. A rotor speed change during operation not only requires a rotor that can perform effectively over the operating speed/load range, but also requires a propulsion system possessing these same capabilities. A study was completed investigating possible drive system arrangements that can accommodate up to a 50 percent speed change. Key drivers were identified from which simplicity and weight were judged as central. This paper presents the current status of two gear train concepts coupled with the first of two clutch types developed and tested thus far with focus on design lessons learned and areas requiring development. Also, a third concept is presented, a dual input planetary differential as leveraged from a simple planetary with fixed carrier.

  6. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  7. Analytical design of a parasitic-loading digital speed controller for a 400-hertz turbine driven alternator

    NASA Technical Reports Server (NTRS)

    Ingle, B. D.; Ryan, J. P.

    1972-01-01

    A design for a solid-state parasitic speed controller using digital logic was analyzed. Parasitic speed controllers are used in space power electrical generating systems to control the speed of turbine-driven alternators within specified limits. The analysis included the performance characteristics of the speed controller and the generation of timing functions. The speed controller using digital logic applies step loads to the alternator. The step loads conduct for a full half wave starting at either zero or 180 electrical degrees.

  8. Using Sentinel-1 SAR satellites to map wind speed variation across offshore wind farm clusters

    NASA Astrophysics Data System (ADS)

    James, S. F.

    2017-11-01

    Offshore wind speed maps at 500m resolution are derived from freely available satellite Synthetic Aperture Radar (SAR) data. The method for processing many SAR images to derive wind speed maps is described in full. The results are tested against coincident offshore mast data. Example wind speed maps for the UK Thames Estuary offshore wind farm cluster are presented.

  9. Aeroacoustic effects of reduced aft tip speed at constant thrust for a model counterrotation turboprop at takeoff conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hughes, Christopher E.

    1990-01-01

    A model high-speed, advanced counterrotation propeller, F7/A7, was tested in the anechoic wind tunnel at simulated takeoff and approach conditions of Mach 0.2. The propeller was operated in a baseline configuration with the forward and aft rotor blade setting angles and forward and aft rotational speeds essentially equal. Two additional configurations were tested with the aft rotor at increased blade setting angles and the rotational speed reduced to achieve overall performance similar to that of the baseline configuration. Acoustic data were taken with an axially translating microphone probe that was attached to the tunnel floor. Concurrent aerodynamic data were taken to define propeller operating conditions.

  10. Ultra-wideband directional sampler

    DOEpatents

    McEwan, T.E.

    1996-05-14

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in ``real time``, and the other two ports operate at a slow millisecond-speed, in ``equivalent time``. A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus. 3 figs.

  11. Modal Parameters Evaluation in a Full-Scale Aircraft Demonstrator under Different Environmental Conditions Using HS 3D-DIC.

    PubMed

    Molina-Viedma, Ángel Jesús; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A; Rodríguez-Ahlquist, Javier; Iglesias-Vallejo, Manuel

    2018-02-02

    In real aircraft structures the comfort and the occupational performance of crewmembers and passengers are affected by the presence of noise. In this sense, special attention is focused on mechanical and material design for isolation and vibration control. Experimental characterization and, in particular, experimental modal analysis, provides information for adequate cabin noise control. Traditional sensors employed in the aircraft industry for this purpose are invasive and provide a low spatial resolution. This paper presents a methodology for experimental modal characterization of a front fuselage full-scale demonstrator using high-speed 3D digital image correlation, which is non-invasive, ensuring that the structural response is unperturbed by the instrumentation mass. Specifically, full-field measurements on the passenger window area were conducted when the structure was excited using an electrodynamic shaker. The spectral analysis of the measured time-domain displacements made it possible to identify natural frequencies and full-field operational deflection shapes. Changes in the modal parameters due to cabin pressurization and the behavior of different local structural modifications were assessed using this methodology. The proposed full-field methodology allowed the characterization of relevant dynamic response patterns, complementing the capabilities provided by accelerometers.

  12. Modal Parameters Evaluation in a Full-Scale Aircraft Demonstrator under Different Environmental Conditions Using HS 3D-DIC

    PubMed Central

    López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.; Rodríguez-Ahlquist, Javier; Iglesias-Vallejo, Manuel

    2018-01-01

    In real aircraft structures the comfort and the occupational performance of crewmembers and passengers are affected by the presence of noise. In this sense, special attention is focused on mechanical and material design for isolation and vibration control. Experimental characterization and, in particular, experimental modal analysis, provides information for adequate cabin noise control. Traditional sensors employed in the aircraft industry for this purpose are invasive and provide a low spatial resolution. This paper presents a methodology for experimental modal characterization of a front fuselage full-scale demonstrator using high-speed 3D digital image correlation, which is non-invasive, ensuring that the structural response is unperturbed by the instrumentation mass. Specifically, full-field measurements on the passenger window area were conducted when the structure was excited using an electrodynamic shaker. The spectral analysis of the measured time-domain displacements made it possible to identify natural frequencies and full-field operational deflection shapes. Changes in the modal parameters due to cabin pressurization and the behavior of different local structural modifications were assessed using this methodology. The proposed full-field methodology allowed the characterization of relevant dynamic response patterns, complementing the capabilities provided by accelerometers. PMID:29393897

  13. Transient CFD simulation of a Francis turbine startup

    NASA Astrophysics Data System (ADS)

    Nicolle, J.; Morissette, J. F.; Giroux, A. M.

    2012-11-01

    To assess the life expectancy of hydraulic turbines, it is essential to obtain the loading on the blades, especially during transient operations known to be the most damaging. This paper presents a simplified CFD setup to model the startup phase of a Francis turbine while it goes from rest to speed no-load condition. The fluid domain included one distributor sector coupled with one runner passage. The guide vane motion and change in the angular velocity were included in a commercial code with user functions. Comparisons between numerical results and measurements acquired on a full-size turbine showed that most of the flow physics occurring during startup were captured.

  14. HPG operating experience at CEM-UT

    NASA Astrophysics Data System (ADS)

    Gully, J. H.; Aanstoos, T. A.; Nalty, K.; Walls, W. A.

    1986-11-01

    Design and functional features are presented for three homopolar generators (HPG) used in experiments during the last decade at the Center for Electromechanics at the University of Texas. The first, a disk-type, 10 MJ HPG, was built in 1973 as a prototype power source for fusion experiments. A second, compact HPG was built in 1980 for opening switch experiments as part of railgun research. The third device is an iron-core, full-scale, high speed bearing and brush test facility for supplying an energy density of 60 MJ/cu m. Engineering data obtained during studies of armature reactions actively cooled brushes morganite-copper graphite rim brushes, and peak currents, are summarized.

  15. Experimental validation of flexible robot arm modeling and control

    NASA Technical Reports Server (NTRS)

    Ulsoy, A. Galip

    1989-01-01

    Flexibility is important for high speed, high precision operation of lightweight manipulators. Accurate dynamic modeling of flexible robot arms is needed. Previous work has mostly been based on linear elasticity with prescribed rigid body motions (i.e., no effect of flexible motion on rigid body motion). Little or no experimental validation of dynamic models for flexible arms is available. Experimental results are also limited for flexible arm control. Researchers include the effects of prismatic as well as revolute joints. They investigate the effect of full coupling between the rigid and flexible motions, and of axial shortening, and consider the control of flexible arms using only additional sensors.

  16. Acoustic Signatures of a Model Fan in the NASA-Lewis Anechoic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Dietrich, D. A.; Heidmann, M. F.; Abbott, J. M.

    1977-01-01

    One-third octave band and narrowband spectra and continuous directivity patterns radiated from an inlet are presented over ranges of fan operating conditions, tunnel velocity, and angle of attack. Tunnel flow markedly reduced the unsteadiness and level of the blade passage tone, revealed the cutoff design feature of the blade passage tone, and exposed a lobular directivity pattern for the second harmonic tone. The full effects of tunnel flow are shown to be complete above a tunnel velocity of 20 meters/second. The acoustic signatures are also shown to be strongly affected by fan rotational speed, fan blade loading, and inlet angle of attack.

  17. Cold-air performance of a tip turbine designed to drive a lift fan. 3: Effect of simulated fan leakage on turbine performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.; Hotz, G. M.; Futral, S. M., Jr.

    1978-01-01

    Performance data were obtained experimentally for a 0.4 linear scale version of the LF460 lift fan turbine for a range of scroll inlet total to diffuser exit static pressure ratios at design equivalent speed with simulated fan leakage air. Tests were conducted for full and partial admission operation with three separate combinations of rotor inlet and rotor exit leakage air. Data were compared to the results obtained from previous investigations in which no leakage air was present. Results are presented in terms of mass flow, torque, and efficiency.

  18. Micro air vehicle autonomous obstacle avoidance from stereo-vision

    NASA Astrophysics Data System (ADS)

    Brockers, Roland; Kuwata, Yoshiaki; Weiss, Stephan; Matthies, Lawrence

    2014-06-01

    We introduce a new approach for on-board autonomous obstacle avoidance for micro air vehicles flying outdoors in close proximity to structure. Our approach uses inverse-range, polar-perspective stereo-disparity maps for obstacle detection and representation, and deploys a closed-loop RRT planner that considers flight dynamics for trajectory generation. While motion planning is executed in 3D space, we reduce collision checking to a fast z-buffer-like operation in disparity space, which allows for significant speed-up compared to full 3d methods. Evaluations in simulation illustrate the robustness of our approach, whereas real world flights under tree canopy demonstrate the potential of the approach.

  19. Speed-Accuracy Tradeoff Operator Characteristics of Endogenous and Exogenous Covert Orienting of Attention

    PubMed Central

    McCormick, Peter A.; Francis, Lori

    2005-01-01

    There is debate over the mechanisms that govern the orienting of attention. Some argue that the enhanced performance observed at a cued location is the result of increased perceptual sensitivity or preferential access to decision-making processes. It has also been suggested that these effects may be the result of trades in speed for accuracy on the part of the observers. In the present study, observers performed either an exogenous or an endogenous orienting of attention task under both normal instructions (respond as quickly and as accurately as possible) and speeded instructions that used a deadline procedure to limit the amount of time observers had to complete a choice reaction time (CRT) task. An examination of the speed-accuracy operating characteristics (SAOCs) yielded evidence against the notion that CRT precuing effects are due primarily to a tradeoff of accuracy for speed. PMID:15759078

  20. Short-term wind speed prediction based on the wavelet transformation and Adaboost neural network

    NASA Astrophysics Data System (ADS)

    Hai, Zhou; Xiang, Zhu; Haijian, Shao; Ji, Wu

    2018-03-01

    The operation of the power grid will be affected inevitably with the increasing scale of wind farm due to the inherent randomness and uncertainty, so the accurate wind speed forecasting is critical for the stability of the grid operation. Typically, the traditional forecasting method does not take into account the frequency characteristics of wind speed, which cannot reflect the nature of the wind speed signal changes result from the low generality ability of the model structure. AdaBoost neural network in combination with the multi-resolution and multi-scale decomposition of wind speed is proposed to design the model structure in order to improve the forecasting accuracy and generality ability. The experimental evaluation using the data from a real wind farm in Jiangsu province is given to demonstrate the proposed strategy can improve the robust and accuracy of the forecasted variable.

Top