Gravitational waveforms for neutron star binaries from binary black hole simulations
NASA Astrophysics Data System (ADS)
Barkett, Kevin; Scheel, Mark; Haas, Roland; Ott, Christian; Bernuzzi, Sebastiano; Brown, Duncan; Szilagyi, Bela; Kaplan, Jeffrey; Lippuner, Jonas; Muhlberger, Curran; Foucart, Francois; Duez, Matthew
2016-03-01
Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of < 1 radian over ~ 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter λ.
Gravitational waveforms for neutron star binaries from binary black hole simulations
NASA Astrophysics Data System (ADS)
Barkett, Kevin; Scheel, Mark A.; Haas, Roland; Ott, Christian D.; Bernuzzi, Sebastiano; Brown, Duncan A.; Szilágyi, Béla; Kaplan, Jeffrey D.; Lippuner, Jonas; Muhlberger, Curran D.; Foucart, Francois; Duez, Matthew D.
2016-02-01
Gravitational waves from binary neutron star (BNS) and black hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the nontidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of <1 radian over ˜15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter λ .
Computer Code Gives Astrophysicists First Full Simulation of Star's Final Hours
Andy Nonaka
2017-12-09
The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions. But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe.
Computer Code Gives Astrophysicists First Full Simulation of Star's Final Hours
Applin, Bradford; Almgren, Ann S.; Nonaka, Andy
2018-05-11
The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions. But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe. http://www.lbl.gov/cs/Archive/news091509.html
Semi-physical simulation test for micro CMOS star sensor
NASA Astrophysics Data System (ADS)
Yang, Jian; Zhang, Guang-jun; Jiang, Jie; Fan, Qiao-yun
2008-03-01
A designed star sensor must be extensively tested before launching. Testing star sensor requires complicated process with much time and resources input. Even observing sky on the ground is a challenging and time-consuming job, requiring complicated and expensive equipments, suitable time and location, and prone to be interfered by weather. And moreover, not all stars distributed on the sky can be observed by this testing method. Semi-physical simulation in laboratory reduces the testing cost and helps to debug, analyze and evaluate the star sensor system while developing the model. The test system is composed of optical platform, star field simulator, star field simulator computer, star sensor and the central data processing computer. The test system simulates the starlight with high accuracy and good parallelism, and creates static or dynamic image in FOV (Field of View). The conditions of the test are close to observing real sky. With this system, the test of a micro star tracker designed by Beijing University of Aeronautics and Astronautics has been performed successfully. Some indices including full-sky autonomous star identification time, attitude update frequency and attitude precision etc. meet design requirement of the star sensor. Error source of the testing system is also analyzed. It is concluded that the testing system is cost-saving, efficient, and contributes to optimizing the embed arithmetic, shortening the development cycle and improving engineering design processes.
Magnetorotatioal Collapse of Supermassive Stars: Black Hole Formation and Jets
NASA Astrophysics Data System (ADS)
Sun, Lunan; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart
2017-01-01
We perform magnetohydrodynamic simulations in full general relativity of the collapse of radially unstable, uniformly rotating, massive stars to black holes. The stars spin at the mass-shedding limit, account for magnetic fields and obey a Γ = 4/3 EOS. The calculations lift the restriction of axisymmetry imposed in previous simulations. Our simulations model the direct collapse of supermassive stars to supermassive BHs (>=104M⊙) at high cosmological redshifts, which may explain the appearance of supermassive BHs and quasars by z 7. They also crudely model the collapse of massive Pop III stars to massive BHs, which could power some of the long gamma-ray bursts observed by FERMI and SWIFT at z 6-8. We analyze the properties of the electromagnetic and gravitational wave signatures of these events and discuss the detectability of such multimessenger sources.
NASA Astrophysics Data System (ADS)
Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya; Thielemann, Friedrich-Karl
2018-06-01
We study the final fate of a very massive star by performing full general relativistic (GR), three-dimensional (3D) simulation with three-flavour multi-energy neutrino transport. Utilizing a 70 solar mass zero-metallicity progenitor, we self-consistently follow the radiation-hydrodynamics from the onset of gravitational core-collapse until the second collapse of the proto-neutron star (PNS), leading to black hole (BH) formation. Our results show that the BH formation occurs at a post-bounce time of Tpb ˜ 300 ms for the 70 M⊙ star. This is significantly earlier than those in the literature where lower mass progenitors were employed. At a few ˜10 ms before BH formation, we find that the stalled bounce shock is revived by intense neutrino heating from the very hot PNS, which is aided by violent convection behind the shock. In the context of 3D-GR core-collapse modelling with multi-energy neutrino transport, our numerical results present the first evidence to validate a fallback BH formation scenario of the 70 M⊙ star.
Super massive black hole in galactic nuclei with tidal disruption of stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer
Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters formore » a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank and Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.« less
Super Massive Black Hole in Galactic Nuclei with Tidal Disruption of Stars
NASA Astrophysics Data System (ADS)
Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer
2014-09-01
Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank & Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.
The Unbiased Velocity Distribution of Neutron Stars from a Simulation of Pulsar Surveys
NASA Astrophysics Data System (ADS)
Arzoumanian, Z.; Cordes, J. M.; Chernoff, D.
1997-12-01
We present the results of a new simulation of the Galactic population of neutron stars: their birthrate, velocity distribution, luminosities, beaming characteristics, and spin evolution. The many simulations in the literature differ from one another primarily in their treatment of the selection effects associated with pulsar detection. Our method, the most realistic to date, goes beyond earlier efforts by retaining the full kinematic, rotational, luminosity, and beaming evolution of each simulated star: ``Monte-Carlo'' neutron stars are created according to assumed distributions (at birth) in spatial coordinates, kick velocity, and magnitudes and orientations of the spin and magnetic field vectors. The neutron stars spin down following an assumed braking law, and their Galactic trajectories are traced to the present epoch. For each star, a pulse waveform is generated using a phenomenological radio-beam model, obviating the need for an arbitrary beaming fraction. Luminosity is assumed to be a parameterized function of period and spin-down rate, with no intrinsic spread, and a parameterized death-line is applied. Interstellar dispersion and scattering consistent with survey instrumentation and the galactic locales of the neutron stars are applied to the pulse waveforms, which are Fourier analyzed and tested for detection following the techniques of real-world surveys. A unique algorithm is used to compare the populations of simulated and known, non-millisecond, pulsars in the multi-dimensional space of observables (any subset of galactic coordinates, dispersion measure, period, spin-down rate, flux, and proper motion). Model parameters are varied, and statistically independent neutron star populations are created until a maximum likelihood model is found. The highlight of this effort is an unbiased determination of the velocity distribution of neutron stars. We discuss the implications of our results for supernova physics, binary evolution, and the nature of gamma -ray transients.
Convective Excitation of Inertial Modes in Binary Neutron Star Mergers
NASA Astrophysics Data System (ADS)
De Pietri, Roberto; Feo, Alessandra; Font, José A.; Löffler, Frank; Maione, Francesco; Pasquali, Michele; Stergioulas, Nikolaos
2018-06-01
We present the first very long-term simulations (extending up to ˜140 ms after merger) of binary neutron star mergers with piecewise polytropic equations of state and in full general relativity. Our simulations reveal that, at a time of 30-50 ms after merger, parts of the star become convectively unstable, which triggers the excitation of inertial modes. The excited inertial modes are sustained up to several tens of milliseconds and are potentially observable by the planned third-generation gravitational-wave detectors at frequencies of a few kilohertz. Since inertial modes depend on the rotation rate of the star and they are triggered by a convective instability in the postmerger remnant, their detection in gravitational waves will provide a unique opportunity to probe the rotational and thermal state of the merger remnant. In addition, our findings have implications for the long-term evolution and stability of binary neutron star remnants.
CASL VMA Milestone Report FY16 (L3:VMA.VUQ.P13.08): Westinghouse Mixing with STAR-CCM+
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilkey, Lindsay Noelle
2016-09-30
STAR-CCM+ (STAR) is a high-resolution computational fluid dynamics (CFD) code developed by CD-adapco. STAR includes validated physics models and a full suite of turbulence models including ones from the k-ε and k-ω families. STAR is currently being developed to be able to do two phase flows, but the current focus of the software is single phase flow. STAR can use imported meshes or use the built in meshing software to create computation domains for CFD. Since the solvers generally require a fine mesh for good computational results, the meshes used with STAR tend to number in the millions of cells,more » with that number growing with simulation and geometry complexity. The time required to model the flow of a full 5x5 Mixing Vane Grid Assembly (5x5MVG) in the current STAR configuration is on the order of hours, and can be very computationally expensive. COBRA-TF (CTF) is a low-resolution subchannel code that can be trained using high fidelity data from STAR. CTF does not have turbulence models and instead uses a turbulent mixing coefficient β. With a properly calibrated β, CTF can be used a low-computational cost alternative to expensive full CFD calculations performed with STAR. During the Hi2Lo work with CTF and STAR, STAR-CCM+ will be used to calibrate β and to provide high-resolution results that can be used in the place of and in addition to experimental results to reduce the uncertainty in the CTF results.« less
NASA Astrophysics Data System (ADS)
Shapiro, Stuart
2017-01-01
Hans A. Bethe elucidated our understanding of the fundamental forces of Nature by exploring and explaining countless phenomena occurring in nuclear laboratories and in stars. With the dawn of gravitational wave astronomy we now can probe compact binary mergers - Nature's cosmic collision experiments - to deepen our understanding, especially where strong-field gravitation is involved. In addition to gravitational waves, some mergers are likely to generate observable electromagnetic and/or neutrino radiation, heralding a new era of multimessenger astronomy. Robust numerical algorithms now allow us to simulate these events in full general relativity on supercomputers. We will describe some recent magnetohydrodynamic simulations that show how binary black hole-neutron star and neutron star-neutron star mergers can launch jets, lending support to the idea that such mergers could be the engines that power short gamma-ray bursts. We will also show how the magnetorotational collapse of very massive stars to spinning black holes immersed in magnetized accretion disks can launch jets as well, reinforcing the belief that such ``collapsars'' are the progenitors of long gamma-ray bursts. Computer-generated movies highlighting some of these simulations will be shown. We gratefully acknowledge support from NSF Grants 1300903 and 1602536 and NASA Grant NNX13AH44G.
A role for self-gravity at multiple length scales in the process of star formation.
Goodman, Alyssa A; Rosolowsky, Erik W; Borkin, Michelle A; Foster, Jonathan B; Halle, Michael; Kauffmann, Jens; Pineda, Jaime E
2009-01-01
Self-gravity plays a decisive role in the final stages of star formation, where dense cores (size approximately 0.1 parsecs) inside molecular clouds collapse to form star-plus-disk systems. But self-gravity's role at earlier times (and on larger length scales, such as approximately 1 parsec) is unclear; some molecular cloud simulations that do not include self-gravity suggest that 'turbulent fragmentation' alone is sufficient to create a mass distribution of dense cores that resembles, and sets, the stellar initial mass function. Here we report a 'dendrogram' (hierarchical tree-diagram) analysis that reveals that self-gravity plays a significant role over the full range of possible scales traced by (13)CO observations in the L1448 molecular cloud, but not everywhere in the observed region. In particular, more than 90 per cent of the compact 'pre-stellar cores' traced by peaks of dust emission are projected on the sky within one of the dendrogram's self-gravitating 'leaves'. As these peaks mark the locations of already-forming stars, or of those probably about to form, a self-gravitating cocoon seems a critical condition for their existence. Turbulent fragmentation simulations without self-gravity-even of unmagnetized isothermal material-can yield mass and velocity power spectra very similar to what is observed in clouds like L1448. But a dendrogram of such a simulation shows that nearly all the gas in it (much more than in the observations) appears to be self-gravitating. A potentially significant role for gravity in 'non-self-gravitating' simulations suggests inconsistency in simulation assumptions and output, and that it is necessary to include self-gravity in any realistic simulation of the star-formation process on subparsec scales.
Design and application of star map simulation system for star sensors
NASA Astrophysics Data System (ADS)
Wu, Feng; Shen, Weimin; Zhu, Xifang; Chen, Yuheng; Xu, Qinquan
2013-12-01
Modern star sensors are powerful to measure attitude automatically which assure a perfect performance of spacecrafts. They achieve very accurate attitudes by applying algorithms to process star maps obtained by the star camera mounted on them. Therefore, star maps play an important role in designing star cameras and developing procession algorithms. Furthermore, star maps supply significant supports to exam the performance of star sensors completely before their launch. However, it is not always convenient to supply abundant star maps by taking pictures of the sky. Thus, star map simulation with the aid of computer attracts a lot of interests by virtue of its low price and good convenience. A method to simulate star maps by programming and extending the function of the optical design program ZEMAX is proposed. The star map simulation system is established. Firstly, based on analyzing the working procedures of star sensors to measure attitudes and the basic method to design optical system by ZEMAX, the principle of simulating star sensor imaging is given out in detail. The theory about adding false stars and noises, and outputting maps is discussed and the corresponding approaches are proposed. Then, by external programming, the star map simulation program is designed and produced. Its user interference and operation are introduced. Applications of star map simulation method in evaluating optical system, star image extraction algorithm and star identification algorithm, and calibrating system errors are presented completely. It was proved that the proposed simulation method provides magnificent supports to the study on star sensors, and improves the performance of star sensors efficiently.
Destruction of a Magnetized Star
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-01-01
What happens when a magnetized star is torn apart by the tidal forces of a supermassive black hole, in a violent process known as a tidal disruption event? Two scientists have broken new ground by simulating the disruption of stars with magnetic fields for the first time.The magnetic field configuration during a simulation of the partial disruption of a star. Top left: pre-disruption star. Bottom left: matter begins to re-accrete onto the surviving core after the partial disruption. Right: vortices form in the core as high-angular-momentum debris continues to accrete, winding up and amplifying the field. [Adapted from Guillochon McCourt 2017]What About Magnetic Fields?Magnetic fields are expected to exist in the majority of stars. Though these fields dont dominate the energy budget of a star the magnetic pressure is a million times weaker than the gas pressure in the Suns interior, for example they are the drivers of interesting activity, like the prominences and flares of our Sun.Given this, we can wonder what role stars magnetic fields might play when the stars are torn apart in tidal disruption events. Do the fields change what we observe? Are they dispersed during the disruption, or can they be amplified? Might they even be responsible for launching jets of matter from the black hole after the disruption?Star vs. Black HoleIn a recent study, James Guillochon (Harvard-Smithsonian Center for Astrophysics) and Michael McCourt (Hubble Fellow at UC Santa Barbara) have tackled these questions by performing the first simulations of tidal disruptions of stars that include magnetic fields.In their simulations, Guillochon and McCourt evolve a solar-mass star that passes close to a million-solar-mass black hole. Their simulations explore different magnetic field configurations for the star, and they consider both what happens when the star barely grazes the black hole and is only partially disrupted, as well as what happens when the black hole tears the star apart completely.Amplifying EncountersFor stars that survive their encounter with the black hole, Guillochon and McCourt find that the process of partial disruption and re-accretion can amplify the magnetic field of the star by up to a factor of 20. Repeated encounters of the star with the black hole could amplify the field even more.The authors suggest an interesting implication of this idea: a population of highly magnetized stars may have formed in our own galactic center, resulting from their encounters with the supermassive black hole Sgr A*.A turbulent magnetic field forms after a partial stellar disruption and re-accretion of the tidal tails. [Adapted from Guillochon McCourt 2017]Effects in DestructionFor stars that are completely shredded and form a tidal stream after their encounter with the black hole, the authors find that the magnetic field geometry straightens within the stream of debris. There, the pressure of the magnetic field eventually dominates over the gas pressure and self-gravity.Guillochon and McCourt find that the fields new configuration isnt ideal for powering jets from the black hole but it is strong enough to influence how the stream interacts with itself and its surrounding environment, likely affecting what we can expect to see from these short-lived events.These simulations have clearly demonstrated the need to further explore the role of magnetic fields in the disruptions of stars by black holes.BonusCheck out the full (brief) video from one of the simulations by Guillochon and McCourt (be sure to watch it in high-res!). It reveals the evolution of a stars magnetic field configuration as the star is partially disrupted by the forces of a supermassive black hole and then re-accretes.CitationJames Guillochon and Michael McCourt 2017 ApJL 834 L19. doi:10.3847/2041-8213/834/2/L19
Jets from Merging Neutron Stars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-06-01
With the recent discovery of gravitational waves from the merger of two black holes, its especially important to understand the electromagnetic signals resulting from mergers of compact objects. New simulations successfully follow a merger of two neutron stars that produces a short burst of energy via a jet consistent with short gamma-ray burst (sGRB) detections.Still from the authors simulation showing the two neutron stars, and their magnetic fields, before merger. [Adapted from Ruiz et al. 2016]Challenging SystemWe have long suspected that sGRBs are produced by the mergers of compact objects, but this model has been difficult to prove. One major hitch is that modeling the process of merger and sGRB launch is very difficult, due to the fact that these extreme systems involve magnetic fields, fluids and full general relativity.Traditionally, simulations are only able to track such mergers over short periods of time. But in a recent study, Milton Ruiz (University of Illinois at Urbana-Champaign and Industrial University of Santander, Colombia) and coauthors Ryan Lang, Vasileios Paschalidis and Stuart Shapiro have modeled a binary neutron star system all the way through the process of inspiral, merger, and the launch of a jet.A Merger TimelineHow does this happen? Lets walk through one of the teams simulations, in which dipole magnetic field lines thread through the interior of each neutron star and extend beyond its surface(like magnetic fields found in pulsars). In this example, the two neutron stars each have a mass of 1.625 solar masses.Simulation start (0 ms)Loss of energy via gravitational waves cause the neutron stars to inspiral.Merger (3.5 ms)The neutron stars are stretched by tidal effects and make contact. Their merger produces a hypermassive neutron star that is supported against collapse by its differential (nonuniform) rotation.Delayed collapse into a black hole (21.5 ms)Once the differential rotation is redistributed by magnetic fields and partially radiated away in gravitational waves, the hypermassive neutron star loses its support and collapses to a black hole.Plasma velocities turn around (51.5 ms)Initially the plasma was falling inward, but as the disk of neutron-star debris is accreted onto the black hole, energy is released. This turns the plasma near the black hole poles around and flings it outward.Magnetic field forms a helical funnel (62.5 ms)The fields near the poles of the black hole amplify as they are wound around, creating a funnel that provides the wall of the jet.Jet outflow extends to heights greater than 445 km (64.5 ms)The disk is all accreted and, since the fuel is exhausted, the outflow shuts off (within 100ms)Neutron-Star SuccessPlot showing the gravitational wave signature for one of the authors simulations. The moments of merger of the neutron stars and collapse to a black hole are marked. [Adapted from Ruiz et al. 2016]These simulations show that no initial black hole is needed to launch outflows; a merger of two neutron stars can result in an sGRB-like jet. Another interesting result is that the magnetic field configuration doesnt affect the formation of a jet: neutron stars with magnetic fields confined to their interiors launch jets as effectively as those with pulsar-like magnetic fields. The accretion timescale for both cases is consistent with the duration of an sGRB.While this simulation models milliseconds of real time, its enormously computationally challenging and takes months to simulate. The successes of this simulation represent exciting advances in numerical relativity, as well as in our understanding of the electromagnetic counterparts that may accompany gravitational waves.BonusCheck out this awesome video of the authors simulations. The colors differentiate the plasma density and the white lines depict the pulsar-like magnetic field that initially threads the two merging neutron stars. Watch as the neutron stars evolve through the different stages outlined above, eventually forming a black hole and launching a powerful jet.[Simulations and visualization by M. Ruiz, R. Lang, V. Paschalidis, S. Shapiro and the Illinois Relativity Group REU team: S. Connelly, C. Fan, A. Khan, and P. Wongsutthikoson]CitationMilton Ruiz et al 2016 ApJ 824 L6. doi:10.3847/2041-8205/824/1/L6
WEIGHING THE GALACTIC DARK MATTER HALO: A LOWER MASS LIMIT FROM THE FASTEST HALO STAR KNOWN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Przybilla, Norbert; Tillich, Alfred; Heber, Ulrich
2010-07-20
The mass of the Galactic dark matter halo is under vivid discussion. A recent study by Xue et al. revised the Galactic halo mass downward by a factor of {approx}2 relative to previous work, based on the line-of-sight velocity distribution of {approx}2400 blue horizontal-branch (BHB) halo stars. The observations were interpreted with a statistical approach using cosmological galaxy formation simulations, as only four of the six-dimensional phase-space coordinates were determined. Here we concentrate on a close investigation of the stars with the highest negative radial velocity from that sample. For one star, SDSSJ153935.67+023909.8 (J1539+0239 for short), we succeed in measuringmore » a significant proper motion, i.e., full phase-space information is obtained. We confirm the star to be a Population II BHB star from an independent quantitative analysis of the Sloan Digital Sky Survey (SDSS) spectrum-providing the first non-LTE (NLTE) study of any halo BHB star-and reconstruct its three-dimensional trajectory in the Galactic potential. J1539+0239 turns out to be the fastest halo star known to date, with a Galactic rest-frame velocity of 694{sup +300}{sub -221} km s{sup -1} (full uncertainty range from Monte Carlo error propagation) at its current position. The extreme kinematics of the star allows a significant lower limit to be put on the halo mass in order to keep it bound, of M {sub halo} {>=} 1.7{sup +2.3}{sub -1.1} x 10{sup 12} M{sub sun}. We conclude that the Xue et al. results tend to underestimate the true halo mass as their most likely mass value is consistent with our analysis only at a level of 4%. However, our result confirms other studies that make use of the full phase-space information.« less
A physical model of mass ejection in failed supernovae
NASA Astrophysics Data System (ADS)
Coughlin, Eric R.; Quataert, Eliot; Fernández, Rodrigo; Kasen, Daniel
2018-06-01
During the core collapse of massive stars, the formation of the proto-neutron star is accompanied by the emission of a significant amount of mass energy (˜0.3 M⊙) in the form of neutrinos. This mass-energy loss generates an outward-propagating pressure wave that steepens into a shock near the stellar surface, potentially powering a weak transient associated with an otherwise-failed supernova. We analytically investigate this mass-loss-induced wave generation and propagation. Heuristic arguments provide an accurate estimate of the amount of energy contained in the outgoing sound pulse. We then develop a general formalism for analysing the response of the star to centrally concentrated mass loss in linear perturbation theory. To build intuition, we apply this formalism to polytropic stellar models, finding qualitative and quantitative agreement with simulations and heuristic arguments. We also apply our results to realistic pre-collapse massive star progenitors (both giants and compact stars). Our analytic results for the sound pulse energy, excitation radius, and steepening in the stellar envelope are in good agreement with full time-dependent hydrodynamic simulations. We show that prior to the sound pulses arrival at the stellar photosphere, the photosphere has already reached velocities ˜ 20-100 per cent of the local sound speed, thus likely modestly decreasing the stellar effective temperature prior to the star disappearing. Our results provide important constraints on the physical properties and observational appearance of failed supernovae.
Rotational properties of hypermassive neutron stars from binary mergers
NASA Astrophysics Data System (ADS)
Hanauske, Matthias; Takami, Kentaro; Bovard, Luke; Rezzolla, Luciano; Font, José A.; Galeazzi, Filippo; Stöcker, Horst
2017-08-01
Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and, hence, on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of "quasiuniversality" found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a "disk." Such a configuration is significantly different from the j -constant differential-rotation law that is commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass contained in such a disk can be quite large, ranging from ≃0.03 M⊙ in the case of high-mass binaries with stiff equations of state, up to ≃0.2 M⊙ for low-mass binaries with soft equations of state. We comment on the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be conjectured on the basis of our simulations.
NEMESIS: Near Encounters with M-dwarfs from an Enormous Sample and Integrated Simulations
NASA Astrophysics Data System (ADS)
Bochanski, John J.; Sanderson, R. E.; West, A. A.; Burgasser, A. J.
2011-01-01
The latest spectroscopic catalog of M dwarfs identified in the Sloan Digital Sky Survey provides radial velocities, proper motions and distances for nearly 40,000 low-mass stars. Using the full 6D phase space coverage and a realistic Galactic potential, we calculated orbits for each star in the sample. The sample consists of stars from both the thin and thick disks, and the orbital properties between the two groups are compared. We also examine trends in orbital properties with spectroscopic features, such as Balmer emission and molecular bands, that should correlate with age. In addition, we have identified a number of stars that will pass very close to the Sun within the next 1000 Myrs. These stars form the "Nemesis" family of orbits. Potential encounters with these stars could have a significant impact on orbits of Oort Cloud and Kuiper Belt members as well as the planets. We comment on the probability of a catastrophic encounter within the next 1000 Myrs.
Inferring the post-merger gravitational wave emission from binary neutron star coalescences
NASA Astrophysics Data System (ADS)
Chatziioannou, Katerina; Clark, James Alexander; Bauswein, Andreas; Millhouse, Margaret; Littenberg, Tyson B.; Cornish, Neil
2017-12-01
We present a robust method to characterize the gravitational wave emission from the remnant of a neutron star coalescence. Our approach makes only minimal assumptions about the morphology of the signal and provides a full posterior probability distribution of the underlying waveform. We apply our method on simulated data from a network of advanced ground-based detectors and demonstrate the gravitational wave signal reconstruction. We study the reconstruction quality for different binary configurations and equations of state for the colliding neutron stars. We show how our method can be used to constrain the yet-uncertain equation of state of neutron star matter. The constraints on the equation of state we derive are complementary to measurements of the tidal deformation of the colliding neutron stars during the late inspiral phase. In the case of nondetection of a post-merger signal following a binary neutron star inspiral, we show that we can place upper limits on the energy emitted.
NASA Technical Reports Server (NTRS)
Cunningham, Kevin; Foster, John V.; Morelli, Eugene A.; Murch, Austin M.
2008-01-01
Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.
Kinematics of Globular Cluster: new Perspectives of Energy Equipartition from N-body Simulations
NASA Astrophysics Data System (ADS)
Kim, Hyunwoo; Pasquato, Mario; Yoon, Suk-jin
2018-01-01
Globular clusters (GCs) evolve dynamically through gravitational two-body interactions between stars. We investigated the evolution towards energy equipartition in GCs using direct n-body simulations in NBODY6. If a GC reaches full energy equipartition, the velocity dispersion as a function of stars’ mass becomes a power law with exponent -1/2. However, our n-body simulations never reach full equipartition, which is similar to Trenti & van de Marel (2013) results. Instead we found that in simulations with a shallow mass spectrum the best fit exponent becomes positive slightly before core collapse time. This inversion is a new result, which can be used as a kinematic predictor of core collapse. We are currently exploring applications of this inversion indicator to the detection of intermediate mass black holes.
NASA Astrophysics Data System (ADS)
Xu, Hao; Wise, John H.; Norman, Michael L.; Ahn, Kyungjin; O'Shea, Brian W.
2016-12-01
Cosmic reionization is thought to be primarily fueled by the first generations of galaxies. We examine their stellar and gaseous properties, focusing on the star formation rates and the escape of ionizing photons, as a function of halo mass, redshift, and environment using the full suite of the Renaissance Simulations with an eye to provide better inputs to global reionization simulations. This suite probes overdense, average, and underdense regions of the universe of several hundred comoving Mpc3, each yielding a sample of over 3000 halos in the mass range of 107-109.5 {M}⊙ at their final redshifts of 15, 12.5, and 8, respectively. In the process, we simulate the effects of radiative and supernova feedback from 5000 to 10,000 Population III stars in each simulation. We find that halos as small as 107 {M}⊙ are able to host bursty star formation due to metal-line cooling from earlier enrichment by massive Population III stars. Using our large sample, we find that the galaxy-halo occupation fraction drops from unity at virial masses above 108.5 {M}⊙ to ˜50% at 108 {M}⊙ and ˜10% at 107 {M}⊙ , quite independent of redshift and region. Their average ionizing escape fraction is ˜5% in the mass range of 108-109 {M}⊙ and increases with decreasing halo mass below this range, reaching 40%-60% at 107 {M}⊙ . Interestingly, we find that the escape fraction varies between 10%-20% in halos with virial masses of ˜3 × 109 {M}⊙ . Taken together, our results confirm the importance of the smallest galaxies as sources of ionizing radiation contributing to the reionization of the universe.
Representing Misalignments of the STAR Geometry Model using AgML
NASA Astrophysics Data System (ADS)
Webb, Jason C.; Lauret, Jérôme; Perevotchikov, Victor; Smirnov, Dmitri; Van Buren, Gene
2017-10-01
The STAR Heavy Flavor Tracker (HFT) was designed to provide high-precision tracking for the identification of charmed hadron decays in heavy-ion collisions at RHIC. It consists of three independently mounted subsystems, providing four precision measurements along the track trajectory, with the goal of pointing decay daughters back to vertices displaced by less than 100 microns from the primary event vertex. The ultimate efficiency and resolution of the physics analysis will be driven by the quality of the simulation and reconstruction of events in heavy-ion collisions. In particular, it is important that the geometry model properly accounts for the relative misalignments of the HFT subsystems, along with the alignment of the HFT relative to STARs primary tracking detector, the Time Projection Chamber (TPC). The Abstract Geometry Modeling Language (AgML) provides a single description of the STAR geometry, generating both our simulation (GEANT 3) and reconstruction geometries (ROOT). AgML implements an ideal detector model, while misalignments are stored separately in database tables. These have historically been applied at the hit level. Simulated detector hits are projected from their ideal position along the track’s trajectory, until they intersect the misaligned detector volume, where the struck detector element is calculated for hit digitization. This scheme has worked well as hit errors have been negligible compared with the size of sensitive volumes. The precision and complexity of the HFT detector require us to apply misalignments to the detector volumes themselves. In this paper we summarize the extension of the AgML language and support libraries to enable the static misalignment of our reconstruction and simulation geometries, discussing the design goals, limitations and path to full misalignment support in ROOT/VMC-based simulation.
Disruption of Giant Molecular Clouds by Massive Star Clusters
NASA Astrophysics Data System (ADS)
Harper-Clark, Elizabeth
The lifetime of a Giant Molecular Cloud (GMC) and the total mass of stars that form within it are crucial to the understanding of star formation rates across a whole galaxy. In particular, the stars within a GMC may dictate its disruption and the quenching of further star formation. Indeed, observations show that the Milky Way contains GMCs with extensive expanding bubbles while the most massive stars are still alive. Simulating entire GMCs is challenging, due to the large variety of physics that needs to be included, and the computational power required to accurately simulate a GMC over tens of millions of years. Using the radiative-magneto-hydrodynamic code Enzo, I have run many simulations of GMCs. I obtain robust results for the fraction of gas converted into stars and the lifetimes of the GMCs: (A) In simulations with no stellar outputs (or "feedback''), clusters form at a rate of 30% of GMC mass per free fall time; the GMCs were not disrupted but contained forming stars. (B) Including ionization gas pressure or radiation pressure into the simulations, both separately and together, the star formation was quenched at between 5% and 21% of the original GMC mass. The clouds were fully disrupted within two dynamical times after the first cluster formed. The radiation pressure contributed the most to the disruption of the GMC and fully quenched star formation even without ionization. (C) Simulations that included supernovae showed that they are not dynamically important to GMC disruption and have only minor effects on subsequent star formation. (D) The inclusion of a few micro Gauss magnetic field across the cloud slightly reduced the star formation rate but accelerated GMC disruption by reducing bubble shell disruption and leaking. These simulations show that new born stars quench further star formation and completely disrupt the parent GMC. The low star formation rate and the short lifetimes of GMCs shown here can explain the low star formation rate across the whole galaxy.
Sharma, Monika; Anirudh, C R
2017-10-03
STAR proteins are evolutionary conserved mRNA-binding proteins that post-transcriptionally regulate gene expression at all stages of RNA metabolism. These proteins possess conserved STAR domain that recognizes identical RNA regulatory elements as YUAAY. Recently reported crystal structures show that STAR domain is composed of N-terminal QUA1, K-homology domain (KH) and C-terminal QUA2, and mRNA binding is mediated by KH-QUA2 domain. Here, we present simulation studies done to investigate binding of mRNA to STAR protein, mammalian Quaking protein (QKI). We carried out conventional MD simulations of STAR domain in presence and absence of mRNA, and studied the impact of mRNA on the stability, dynamics and underlying allosteric mechanism of STAR domain. Our unbiased simulations results show that presence of mRNA stabilizes the overall STAR domain by reducing the structural deviations, correlating the 'within-domain' motions, and maintaining the native contacts information. Absence of mRNA not only influenced the essential modes of motion of STAR domain, but also affected the connectivity of networks within STAR domain. We further explored the dissociation of mRNA from STAR domain using umbrella sampling simulations, and the results suggest that mRNA binding to STAR domain occurs in multi-step: first conformational selection of mRNA backbone conformations, followed by induced fit mechanism as nucleobases interact with STAR domain.
Multiblob coarse-graining for mixtures of long polymers and soft colloids
NASA Astrophysics Data System (ADS)
Locatelli, Emanuele; Capone, Barbara; Likos, Christos N.
2016-11-01
Soft nanocomposites represent both a theoretical and an experimental challenge due to the high number of the microscopic constituents that strongly influence the behaviour of the systems. An effective theoretical description of such systems invokes a reduction of the degrees of freedom to be analysed, hence requiring the introduction of an efficient, quantitative, coarse-grained description. We here report on a novel coarse graining approach based on a set of transferable potentials that quantitatively reproduces properties of mixtures of linear and star-shaped homopolymeric nanocomposites. By renormalizing groups of monomers into a single effective potential between a f-functional star polymer and an homopolymer of length N0, and through a scaling argument, it will be shown how a substantial reduction of the to degrees of freedom allows for a full quantitative description of the system. Our methodology is tested upon full monomer simulations for systems of different molecular weight, proving its full predictive potential.
Collapse of magnetized hypermassive neutron stars in general relativity.
Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Shibata, Masaru; Stephens, Branson C
2006-01-27
Hypermassive neutron stars (HMNSs)--equilibrium configurations supported against collapse by rapid differential rotation--are possible transient remnants of binary neutron-star mergers. Using newly developed codes for magnetohydrodynamic simulations in dynamical spacetimes, we are able to track the evolution of a magnetized HMNS in full general relativity for the first time. We find that secular angular momentum transport due to magnetic braking and the magnetorotational instability results in the collapse of an HMNS to a rotating black hole, accompanied by a gravitational wave burst. The nascent black hole is surrounded by a hot, massive torus undergoing quasistationary accretion and a collimated magnetic field. This scenario suggests that HMNS collapse is a possible candidate for the central engine of short gamma-ray bursts.
Manufacturing and Integration Status of the JWST OSIM Optical Simulator
NASA Technical Reports Server (NTRS)
Sullivan, Joe; Eichhorn, William; vonHandorf, Rob; Sabatke, Derek; Barr, Nick; Nyquist, Rich; Pederson, Bob; Bennett, Rick; Volmer, Paul; Happs, Dave;
2010-01-01
OSIM is a full field, cryogenic, optical simulator of the James Webb Space Telescope (JWST) Optical Telescope Element (OTE). It provides simulated point source/star images for optical performance testing of the JWST Integrated Science Instrument Module (ISIM). OSIM is currently being assembled at the Goddard Space Flight Center (GSFC). In this paper, we describe the capabilities, design, manufacturing and integration status, and uses of the OSIM during the optical test program of ISIM and the Science Instruments. Where applicable, the ISIM tests are also described.
The Spacelab IPS Star Simulator
NASA Astrophysics Data System (ADS)
Wessling, Francis C., III
The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the-loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 deg each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is two to eight visual magnitudes. The star size is less than 100 arcsec. The minimum star movement is less than 5 arcsec and the relative position accuracy is approximately 40 arcsec. The purpose of this paper is to describe the IPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.
COCOA: Simulating Observations of Star Cluster Simulations
NASA Astrophysics Data System (ADS)
Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele
2017-03-01
COCOA (Cluster simulatiOn Comparison with ObservAtions) creates idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. The code can simulate optical observations from simulation snapshots in which positions and magnitudes of objects are known. The parameters for simulating the observations can be adjusted to mimic telescopes of various sizes. COCOA also has a photometry pipeline that can use standalone versions of DAOPHOT (ascl:1104.011) and ALLSTAR to produce photometric catalogs for all observed stars.
A Demonstration Setup to Simulate Detection of Planets outside the Solar System
ERIC Educational Resources Information Center
Choopan, W.; Ketpichainarong, W.; Laosinchai, P.; Panijpan, B.
2011-01-01
We constructed a simple demonstration setup to simulate an extrasolar planet and its star revolving around the system's centre of mass. Periodic dimming of light from the star by the transiting planet and the star's orbital revolution simulate the two major ways of deducing the presence of an exoplanet near a distant star. Apart from being a…
NASA Astrophysics Data System (ADS)
Kaplan, Jeffrey Daniel
2014-01-01
Computational general relativity is a field of study which has reached maturity only within the last decade. This thesis details several studies that elucidate phenomena related to the coalescence of compact object binaries. Chapters 2 and 3 recounts work towards developing new analytical tools for visualizing and reasoning about dynamics in strongly curved spacetimes. In both studies, the results employ analogies with the classical theory of electricity and magnetism, first (Ch. 2) in the post-Newtonian approximation to general relativity and then (Ch. 3) in full general relativity though in the absence of matter sources. In Chapter 4, we examine the topological structure of absolute event horizons during binary black hole merger simulations conducted with the SpEC code. Chapter 6 reports on the progress of the SpEC code in simulating the coalescence of neutron star-neutron star binaries, while Chapter 7 tests the effects of various numerical gauge conditions on the robustness of black hole formation from stellar collapse in SpEC. In Chapter 5, we examine the nature of pseudospectral expansions of non-smooth functions motivated by the need to simulate the stellar surface in Chapters 6 and 7. In Chapter 8, we study how thermal effects in the nuclear equation of state effect the equilibria and stability of hypermassive neutron stars. Chapter 9 presents supplements to the work in Chapter 8, including an examination of the stability question raised in Chapter 8 in greater mathematical detail.
The Spacelab IPS Star Simulator
NASA Astrophysics Data System (ADS)
Wessling, Francis C., III
The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 degrees each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is 2 to 8 visual magnitudes. The star size is less than 100 arc seconds. The minimum star movement is less than 5 arc seconds and the relative position accuracy is approximately 40 arc seconds. The purpose of this paper is to describe the LPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.
Science with Synthetic Stellar Surveys
NASA Astrophysics Data System (ADS)
Sanderson, Robyn Ellyn
2018-04-01
A new generation of observational projects is poised to revolutionize our understanding of the resolved stellar populations of Milky-Way-like galaxies at an unprecedented level of detail, ushering in an era of precision studies of galaxy formation. In the Milky Way itself, astrometric, spectroscopic and photometric surveys will measure three-dimensional positions and velocities and numerous chemical abundances for stars from the disk to the halo, as well as for many satellite dwarf galaxies. In the Local Group and beyond, HST, JWST and eventually WFIRST will deliver pristine views of resolved stars. The groundbreaking scale and dimensionality of this new view of resolved stellar populations in galaxies challenge us to develop new theoretical tools to robustly compare these surveys to simulated galaxies, in order to take full advantage of our new ability to make detailed predictions for stellar populations within a cosmological context. I will describe a framework for generating realistic synthetic star catalogs and mock surveys from state-of-the-art cosmological-hydrodynamical simulations, and present several early scientific results from, and predictions for, resolved stellar surveys of our Galaxy and its neighbors.
Terrestrial Planet Formation Around Close Binary Stars
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Quintana, Elisa V.
2003-01-01
Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets around close binary stars, using a new, ultrafast, symplectic integrator that we have developed for this purpose. The sum of the masses of the two stars is one solar mass, and the initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and in the Alpha Centauri wide binary star system. Giant planets &are included in the simulations, as they are in most simulations of the late stages of terrestrial planet accumulation in our Solar System. When the stars travel on a circular orbit with semimajor axis of up to 0.1 AU about their mutual center of mass, the planetary embryos grow into a system of terrestrial planets that is statistically identical to those formed about single stars, but a larger semimajor axis and/or a significantly eccentric binary orbit can lead to significantly more dynamically hot terrestrial planet systems.
NASA Astrophysics Data System (ADS)
Lackey, Benjamin D.; Kyutoku, Koutarou; Shibata, Masaru; Brady, Patrick R.; Friedman, John L.
2014-02-01
Information about the neutron-star equation of state is encoded in the waveform of a black hole-neutron star system through tidal interactions and the possible tidal disruption of the neutron star. During the inspiral this information depends on the tidal deformability Λ of the neutron star, and we find that the best-measured parameter during the merger and ringdown is consistent with Λ as well. We performed 134 simulations where we systematically varied the equation of state as well as the mass ratio, neutron star mass, and aligned spin of the black hole. Using these simulations we develop an analytic representation of the full inspiral-merger-ringdown waveform calibrated to these numerical waveforms; we use this analytic waveform and a Fisher matrix analysis to estimate the accuracy to which Λ can be measured with gravitational-wave detectors. We find that although the inspiral tidal signal is small, coherently combining this signal with the merger-ringdown matter effect improves the measurability of Λ by a factor of ˜3 over using just the merger-ringdown matter effect alone. However, incorporating correlations between all the waveform parameters then decreases the measurability of Λ by a factor of ˜3. The uncertainty in Λ increases with the mass ratio, but decreases as the black hole spin increases. Overall, a single Advanced LIGO detector can only marginally measure Λ for mass ratios Q =2-5, black hole spins JBH/MBH2=-0.5-0.75, and neutron star masses MNS=1.2M⊙-1.45M⊙ at an optimally oriented distance of 100 Mpc. For the proposed Einstein Telescope, however, the uncertainty in Λ is an order of magnitude smaller.
Flow-induced translocation of star polymers through a nanopore.
Ding, Mingming; Duan, Xiaozheng; Shi, Tongfei
2016-03-21
We study the flow-induced translocation of the star polymers through a nanopore using a hybrid simulation method that incorporates a lattice-Boltzmann approach for the fluid into a molecular dynamics model for the polymer. Our simulation demonstrates the existence of an optimal forward arm number of the star polymers captured by the nanopore, and illustrates its significance in determining the critical velocity flux of the star polymer translocation through the nanopore. Importantly, we find that the critical velocity flux of the star polymers is independent of the arm polymerization degree, but exhibits a linear dependence on the arm number. Based on previous scaling arguments and our simulation results, we conclude a linear dependence of the critical velocity flux on the arm number of the star polymers, which can successfully describe the dynamics of the star polymer translocation. Our simulation results rationalize the experimental results for the dependence of the critical velocity flux on the arm polymerization degree and the arm number of the star polymers, which provide new insights for the characterization and the purification of the star polymers.
Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers
NASA Astrophysics Data System (ADS)
Theodorakis, P. E.; Avgeropoulos, A.; Freire, J. J.; Kosmas, M.; Vlahos, C.
2007-11-01
The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.
MOCCA-SURVEY Database I: Is NGC 6535 a dark star cluster harbouring an IMBH?
NASA Astrophysics Data System (ADS)
Askar, Abbas; Bianchini, Paolo; de Vita, Ruggero; Giersz, Mirek; Hypki, Arkadiusz; Kamann, Sebastian
2017-01-01
We describe the dynamical evolution of a unique type of dark star cluster model in which the majority of the cluster mass at Hubble time is dominated by an intermediate-mass black hole (IMBH). We analysed results from about 2000 star cluster models (Survey Database I) simulated using the Monte Carlo code MOnte Carlo Cluster simulAtor and identified these dark star cluster models. Taking one of these models, we apply the method of simulating realistic `mock observations' by utilizing the Cluster simulatiOn Comparison with ObservAtions (COCOA) and Simulating Stellar Cluster Observation (SISCO) codes to obtain the photometric and kinematic observational properties of the dark star cluster model at 12 Gyr. We find that the perplexing Galactic globular cluster NGC 6535 closely matches the observational photometric and kinematic properties of the dark star cluster model presented in this paper. Based on our analysis and currently observed properties of NGC 6535, we suggest that this globular cluster could potentially harbour an IMBH. If it exists, the presence of this IMBH can be detected robustly with proposed kinematic observations of NGC 6535.
NASA Astrophysics Data System (ADS)
Aigrain, S.; Llama, J.; Ceillier, T.; Chagas, M. L. das; Davenport, J. R. A.; García, R. A.; Hay, K. L.; Lanza, A. F.; McQuillan, A.; Mazeh, T.; de Medeiros, J. R.; Nielsen, M. B.; Reinhold, T.
2015-07-01
We present the results of a blind exercise to test the recoverability of stellar rotation and differential rotation in Kepler light curves. The simulated light curves lasted 1000 d and included activity cycles, Sun-like butterfly patterns, differential rotation and spot evolution. The range of rotation periods, activity levels and spot lifetime were chosen to be representative of the Kepler data of solar-like stars. Of the 1000 simulated light curves, 770 were injected into actual quiescent Kepler light curves to simulate Kepler noise. The test also included five 1000-d segments of the Sun's total irradiance variations at different points in the Sun's activity cycle. Five teams took part in the blind exercise, plus two teams who participated after the content of the light curves had been released. The methods used included Lomb-Scargle periodograms and variants thereof, autocorrelation function and wavelet-based analyses, plus spot modelling to search for differential rotation. The results show that the `overall' period is well recovered for stars exhibiting low and moderate activity levels. Most teams reported values within 10 per cent of the true value in 70 per cent of the cases. There was, however, little correlation between the reported and simulated values of the differential rotation shear, suggesting that differential rotation studies based on full-disc light curves alone need to be treated with caution, at least for solar-type stars. The simulated light curves and associated parameters are available online for the community to test their own methods.
A study of overflow simulations using MPAS-Ocean: Vertical grids, resolution, and viscosity
NASA Astrophysics Data System (ADS)
Reckinger, Shanon M.; Petersen, Mark R.; Reckinger, Scott J.
2015-12-01
MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are carried out using three of the vertical coordinate types available in MPAS-Ocean, including z-star with partial bottom cells, z-star with full cells, and sigma coordinates. The results are first benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model, which are used to set the base case used for this work. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Lastly, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates.
The Fate of Exoplanetary Systems and the Implications for White Dwarf Pollution
NASA Astrophysics Data System (ADS)
Veras, D.; Mustill, A. J.; Bonsor, A.; Wyatt, M. C.
2013-09-01
Mounting discoveries of extrasolar planets orbiting post-main-sequence stars motivate studies to understand the fate of these planets. Also, polluted white dwarfs (WDs) likely represent dynamically active systems at late times. Here, we perform full-lifetime simulations of one-, two- and three-planet systems from the endpoint of formation to several Gyr into the WD phase of the host star. We outline the physical and computational processes which must be considered for post-main-sequence planetary studies, and characterize the challenges in explaining the robust observational signatures of infrared excess in white dwarfs by appealing to late-stage planetary systems.
Nonuniversal star formation efficiency in turbulent ISM
Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.
2016-07-29
Here, we present a study of a star formation prescription in which star formation efficiency depends on local gas density and turbulent velocity dispersion, as suggested by direct simulations of SF in turbulent giant molecular clouds (GMCs). We test the model using a simulation of an isolated Milky Way-sized galaxy with a self-consistent treatment of turbulence on unresolved scales. We show that this prescription predicts a wide variation of local star formation efficiency per free-fall time,more » $$\\epsilon_{\\rm ff} \\sim 0.1 - 10\\%$$, and gas depletion time, $$t_{\\rm dep} \\sim 0.1 - 10$$ Gyr. In addition, it predicts an effective density threshold for star formation due to suppression of $$\\epsilon_{\\rm ff}$$ in warm diffuse gas stabilized by thermal pressure. We show that the model predicts star formation rates in agreement with observations from the scales of individual star-forming regions to the kiloparsec scales. This agreement is non-trivial, as the model was not tuned in any way and the predicted star formation rates on all scales are determined by the distribution of the GMC-scale densities and turbulent velocities $$\\sigma$$ in the cold gas within the galaxy, which is shaped by galactic dynamics. The broad agreement of the star formation prescription calibrated in the GMC-scale simulations with observations, both gives credence to such simulations and promises to put star formation modeling in galaxy formation simulations on a much firmer theoretical footing.« less
Exploring the Dynamics of Exoplanetary Systems in a Young Stellar Cluster
NASA Astrophysics Data System (ADS)
Thornton, Jonathan Daniel; Glaser, Joseph Paul; Wall, Joshua Edward
2018-01-01
I describe a dynamical simulation of planetary systems in a young star cluster. One rather arbitrary aspect of cluster simulations is the choice of initial conditions. These are typically chosen from some standard model, such as Plummer or King, or from a “fractal” distribution to try to model young clumpy systems. Here I adopt the approach of realizing an initial cluster model directly from a detailed magnetohydrodynamical model of cluster formation from a 1000-solar-mass interstellar gas cloud, with magnetic fields and radiative and wind feedback from massive stars included self-consistently. The N-body simulation of the stars and planets starts once star formation is largely over and feedback has cleared much of the gas from the region where the newborn stars reside. It continues until the cluster dissolves in the galactic field. Of particular interest is what would happen to the free-floating planets created in the gas cloud simulation. Are they captured by a star or are they ejected from the cluster? This method of building a dynamical cluster simulation directly from the results of a cluster formation model allows us to better understand the evolution of young star clusters and enriches our understanding of extrasolar planet development in them. These simulations were performed within the AMUSE simulation framework, and combine N-body, multiples and background potential code.
New prospects for observing and cataloguing exoplanets in well-detached binaries
NASA Astrophysics Data System (ADS)
Schwarz, R.; Funk, B.; Zechner, R.; Bazsó, Á.
2016-08-01
This paper is devoted to study the circumstances favourable to detect circumstellar and circumbinary planets in well-detached binary-star systems using eclipse timing variations (ETVs). We investigated the dynamics of well-detached binary star systems with a star separation from 0.5 to 3 au, to determine the probability of the detection of such variations with ground-based telescopes and space telescopes (like former missions CoRoT and Kepler and future space missions Plato, Tess and Cheops). For the chosen star separations both dynamical configurations (circumstellar and circumbinary) may be observable. We performed numerical simulations by using the full three-body problem as dynamical model. The dynamical stability and the ETVs are investigated by computing ETV maps for different masses of the secondary star and the exoplanet (Earth, Neptune and Jupiter size). In addition we changed the planet's and binary's eccentricities. We conclude that many amplitudes of ETVs are large enough to detect exoplanets in binary-star systems. As an application, we prepared statistics of the catalogue of exoplanets in binary star systems which we introduce in this article and compared the statistics with our parameter-space which we used for our calculations. In addition to these statistics of the catalogue we enlarged them by the investigation of well-detached binary star systems from several catalogues and discussed the possibility of further candidates.
The mass spectrum of the first stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susa, Hajime; Tominaga, Nozomu; Hasegawa, Kenji, E-mail: susa@konan-u.ac.jp
2014-09-01
We perform cosmological hydrodynamics simulations with non-equilibrium primordial chemistry to obtain 59 minihalos that host first stars. The obtained minihalos are used as the initial conditions of local three-dimensional radiation hydrodynamics simulations to investigate the formation of the first stars. We find that two-thirds of the minihalos host multiple stars, while the other third has single stars. The mass of the stars found in our simulations are in the range of 1 M {sub ☉} ≲ M ≲ 300 M {sub ☉}, peaking at several× 10 M {sub ☉}. Most of the very massive stars of ≳ 140 M {submore » ☉} are born as single stars, although not all of the single stars are very massive. We also find a few stars of ≲ 1 M {sub ☉} that are kicked by the gravitational three body interactions to the position distant from the center of mass. The frequency that a star forming minihalo contains a binary system is ∼50%. We also investigate the abundance pattern of the stellar remnants by summing up the contributions from the first stars in the simulations. Consequently, the pattern is compatible with that of the low metallicity damped Lyα systems or the extremely metal-poor (EMP) stars, if the mass spectrum obtained in our experiment is shifted to the low mass side by 0.2 dex. If we consider the case that an EMP star is born in the remnant of the individual minihalo without mixing with others, the chemical signature of the pair instability supernova is more prominent, because most of them are born as single stars.« less
The Making of a Pre-Planetary Nebula
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-07-01
The gas expelled by dying stars gets twisted into intricate shapes and patterns as nebulae form. Now a team of researchers might have some answers about how this happens.Whats a Pre-Planetary Nebula?This H-R diagram for the globular cluster M5 shows where AGB stars lie: they are represented by blue markers here. The AGB is one of the final stages in a low- to intermediate-mass stars lifetime. [Lithopsian]When a low- to intermediate-mass star approaches the end of its lifetime, it moves onto the Asymptotic Giant Branch (AGB) in the Herzsprung-Russell diagram. As the star exhausts its fuel here, it shrugs off its outer layers. These layers of gas then encase the stars core, which is not yet hot enough to ionize the gas and cause it to glow.Instead, during this time the gas is relatively cool and dark, faintly reflecting light from the star and emitting only very dim infrared emission of its own. At this stage, the gas represents a pre-planetary nebula. Only later when the stellar core contracts enough to heat up and emit ionizing radiation does the nebula begin to properly glow, at which point it qualifies as a full planetary nebula.Images of OH231 in optical light (top) and 12CO (bottom) taken from the literature. [See Balick et al. 2017 for full credit]Unexpected ShapesPre-planetary nebulae are a very short-lived evolutionary stage, so weve observed only a few hundred of them which has left many unanswered questions about these objects.One particular mystery is that of their shapes: if these nebulae are formed by stars expelling their outer layers, we would naively expect them to be simple spherical shells and yet we observe pre-planetary nebulae to have intricate shapes and patterns. How does the star create these asymmetric shapes? A team of scientists led by Bruce Balick (University of Washington, Seattle) has now used simulations to address this question.Injecting MassBalick and collaborators use 3D hydrodynamic simulations to model one particular pre-planetary nebula, OH231, which lies 4,200 light-years away and is about 1.4 light-years long. This is a well studied nebula, so the team had many observations that their model needed to successfully replicate: the nebulas shapes, dimensions, overall geometry, locations of shocks, timescales, and even velocity gradients are known.The authors model included mass injection from the central source into the ambient gas in three different ways:clumps: spherical knots injected all at once,cylindrical jets: thin outflows with parallel streamlines, andsprays: conical outflows with diverging streamlines.Explanation from a Champagne BottlePanel A: best-fitting simulations of OH231 200, 400, and 800 yr after the clump and spray are launched. Panel B: example from the same family of solutions, in which the mass is reduced by a factor of 10. Click for a closer look. [Balick et al. 2017]Balick and collaborators found that by injecting the mass in these three ways with a specific order and spacing, they were able to find a family of solutions that very well replicated observations of OH231. In the best-fitting model, combinations of pairs of clumps are embedded within sprays of brief duration and launched into static ancient AGB winds. The authors compare the setup to the ejection of the cork and the spray of high-pressure fluid when a bottle of champagne is opened.These simulations successfully map out all but perhaps the first century of the nebulas evolution and give us some of the best insight yet into how these short-lived objects are formed. The authors are now working to reproduce these simulations for other pre-planetary nebulae, with the goal of piecing together common attributes of their ejection histories.CitationBruce Balick et al 2017 ApJ 843 108. doi:10.3847/1538-4357/aa77f0
Rotating and Binary Stars in General Relativit
NASA Astrophysics Data System (ADS)
Shapiro, Stuart
The inspiral and coalescence of compact binary stars is one of the most challenging problems in theoretical astrophysics. Only recently have advances in numerical relativity made it possible to explore this topic in full general relativity (GR). The mergers of compact binaries have important consequences for the detection of gravitational waves. In addition, the coalescence of binary neutron stars (NSNSs) and binary black-hole neutron stars (BHNSs) may hold the key for resolving other astrophysical puzzles, such as the origin of short-hard gamma-ray bursts (GRBs). While simulations of these systems in full GR are now possible, only the most idealized treatments have been performed to date. More detailed physics, including magnetic fields, black hole spin, a realistic hot, nuclear equation of state and neutrino transport must be incorporated. Only then will we be able to identify reliably future sources that may be detected simultaneously in gravitational waves and as GRBs. Likewise, the coalescence of binary black holes (BHBHs) is now a solved problem in GR, but only in vacuum. Simulating the coalescence of BHBHs in the gaseous environments likely to be found in nearby galaxy cores or in merging galaxies is crucial to identifying an electromagnetic signal that might accompany the gravitational waves produced during the merger. The coalescence of a binary white dwarf-neutron star (WDNS) has only recently been treated in GR, but GR is necessary to explore tidal disruption scenarios in which the capture of WD debris by the NS may lead to catastrophic collapse. Alternatively, the NS may survive and the merger might result in the formation of pulsar planets. The stability of rotating neutron stars in these and other systems has not been fully explored in GR, and the final fate of unstable stars has not been determined in many cases, especially in the presence of magnetic fields and differential rotation. These systems will be probed observationally by current NASA instruments, such as HST, CHANDRA, SWIFT and FERMI, and by future NASA detectors, such as NuStar, ASTRO-H, GEMS, JWST, and, possibly, GEN-X and SGO (a Space-Based Gravitational-Wave Observatory). Treating all of these phenomena theoretically requires the same computational machinery: a fully relativistic code that simultaneously solves Einstein s equations for the gravitational field, Maxwell s equations for the electromagnetic field and the equations of relativistic magnetohydrodynamics for the plasma, all in three spatial dimensions plus time. Recent advances we have made in constructing such a code now make it possible for us to solve these fundamental, closely related computational problems, some for the first time.
NASA Astrophysics Data System (ADS)
Ruiz, Milton; Shapiro, Stuart L.
2017-10-01
Inspiraling and merging binary neutron stars are not only important source of gravitational waves, but also promising candidates for coincident electromagnetic counterparts. These systems are thought to be progenitors of short gamma-ray bursts (sGRBs). We have shown previously that binary neutron star mergers that undergo delayed collapse to a black hole surrounded by a weighty magnetized accretion disk can drive magnetically powered jets. We now perform magnetohydrodynamic simulations in full general relativity of binary neutron stars mergers that undergo prompt collapse to explore the possibility of jet formation from black hole- light accretion disk remnants. We find that after t -tBH˜26 (MNS/1.8 M⊙) ms (MNS is the ADM mass) following prompt black hole formation, there is no evidence of mass outflow or magnetic field collimation. The rapid formation of the black hole following merger prevents magnetic energy from approaching force-free values above the magnetic poles, which is required for the launching of a jet by the usual Blandford-Znajek mechanism. Detection of gravitational waves in coincidence with sGRBs may provide constraints on the nuclear equation of state (EOS): the fate of an NSNS merger-delayed or prompt collapse, and hence the appearance or nonappearance of an sGRB-depends on a critical value of the total mass of the binary, and this value is sensitive to the EOS.
Simulation of the Simbol-X telescope: imaging performance of a deformable x-ray telescope
NASA Astrophysics Data System (ADS)
Chauvin, Maxime; Roques, Jean-Pierre
2009-08-01
We have developed a simulation tool for a Wolter I telescope subject to deformations. The aim is to understand and predict the behavior of Simbol-X and other future missions (NuSTAR, Astro-H, IXO, ...). Our code, based on Monte-Carlo ray-tracing, computes the full photon trajectories up to the detector plane, along with the deformations. The degradation of the imaging system is corrected using metrology. This tool allows to perform many analyzes in order to optimize the configuration of any of these telescopes.
Rocket nozzle thermal shock tests in an arc heater facility
NASA Technical Reports Server (NTRS)
Painter, James H.; Williamson, Ronald A.
1986-01-01
A rocket motor nozzle thermal structural test technique that utilizes arc heated nitrogen to simulate a motor burn was developed. The technique was used to test four heavily instrumented full-scale Star 48 rocket motor 2D carbon/carbon segments at conditions simulating the predicted thermal-structural environment. All four nozzles survived the tests without catastrophic or other structural failures. The test technique demonstrated promise as a low cost, controllable alternative to rocket motor firing. The technique includes the capability of rapid termination in the event of failure, allowing post-test analysis.
Terrestrial Planet Formation in Binary Star Systems
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Quintana, Elisa V.; Chambers, John; Duncan, Martin J.; Adams, Fred
2003-01-01
Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets within binary star systems, using a new, ultrafast, symplectic integrator that we have developed for this purpose. We show that the late stages of terrestrial planet formation can indeed take place in a wide variety of binary systems and we have begun to delineate the range of parameter space for which this statement is true. Results of our initial simulations of planetary growth around each star in the alpha Centauri system and other 'wide' binary systems, as well as around both stars in very close binary systems, will be presented.
KEY ISSUES REVIEW: Insights from simulations of star formation
NASA Astrophysics Data System (ADS)
Larson, Richard B.
2007-03-01
Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the gas being accreted by the forming stars, and accretion from these discs may be episodic, driven by gravitational instabilities or by protostellar interactions. Star-forming clouds typically develop filamentary structures, which may, along with the thermal physics, play an important role in the origin of stellar masses because of the sensitivity of filament fragmentation to temperature variations. Simulations of the formation of star clusters show that the most massive stars form by continuing accretion in the dense cluster cores, and this again is a runaway process that couples star formation and cluster formation. Star-forming clouds also tend to develop hierarchical structures, and smaller groups of forming objects tend to merge into progressively larger ones, a generic feature of self-gravitating systems that is common to star formation and galaxy formation. Because of the large range of scales and the complex dynamics involved, analytic models cannot adequately describe many aspects of star formation, and detailed numerical simulations are needed to advance our understanding of the subject. 'The purpose of computing is insight, not numbers.' Richard W Hamming, in Numerical Methods for Scientists and Engineers (1962) 'There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.' William Shakespeare, in Hamlet, Prince of Denmark (1604)
Astronomical Simulations Using Visual Python
NASA Astrophysics Data System (ADS)
Cobb, Michael L.
2007-05-01
The Physics and Engineering Physics Department at Southeast Missouri State University has adopted the “Matter and Interactions I Modern Mechanics” text by Chabay and Sherwood for our calculus based introductory physics course. We have fully integrated the use of modeling and simulations by using the Visual Python language also know as VPython. This powerful, high level, object orientated language with full three dimensional, stereo graphics has stimulated both my students and myself to find wider applications for our new found skills. We have successfully modeled gravitational resonances in planetary rings, galaxy collisions, and planetary orbits around binary star systems. This talk will provide a quick overview of VPython and demonstrate the various simulations.
Common Envelope Light Curves. I. Grid-code Module Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galaviz, Pablo; Marco, Orsola De; Staff, Jan E.
The common envelope (CE) binary interaction occurs when a star transfers mass onto a companion that cannot fully accrete it. The interaction can lead to a merger of the two objects or to a close binary. The CE interaction is the gateway of all evolved compact binaries, all stellar mergers, and likely many of the stellar transients witnessed to date. CE simulations are needed to understand this interaction and to interpret stars and binaries thought to be the byproduct of this stage. At this time, simulations are unable to reproduce the few observational data available and several ideas have been putmore » forward to address their shortcomings. The need for more definitive simulation validation is pressing and is already being fulfilled by observations from time-domain surveys. In this article, we present an initial method and its implementation for post-processing grid-based CE simulations to produce the light curve so as to compare simulations with upcoming observations. Here we implemented a zeroth order method to calculate the light emitted from CE hydrodynamic simulations carried out with the 3D hydrodynamic code Enzo used in unigrid mode. The code implements an approach for the computation of luminosity in both optically thick and optically thin regimes and is tested using the first 135 days of the CE simulation of Passy et al., where a 0.8 M {sub ⊙} red giant branch star interacts with a 0.6 M {sub ⊙} companion. This code is used to highlight two large obstacles that need to be overcome before realistic light curves can be calculated. We explain the nature of these problems and the attempted solutions and approximations in full detail to enable the next step to be identified and implemented. We also discuss our simulation in relation to recent data of transients identified as CE interactions.« less
NASA Astrophysics Data System (ADS)
Safarzadeh, Mohammadtaher; Scannapieco, Evan
2018-06-01
The history of r-process enrichment in our galaxy is modeled through a novel set of zoom cosmo- logical simulations on a MilkyWay type galaxy. r-process sources are assumed to be neutron star mergers with a distribution of natal kicks and merge time distribution. We model turbulent mixing to estimate the pristine gas fraction in each simulation cell which we use to determine the Pop III star formation with assigned Carbon rich ejecta when going off as SNe. We follow the formation of Carbon-Enhanced Metal-Poor (CEMP) stars and the statistics of different r-process enhanced class of stars. The simulation underpredict the frequency of CEMP/MP stars by a factor of 2-4. Likewise the MP-rI/MP and MP-rII/MP and CEMP-r/CEMP cumulative ratios are all under predicted by 1-2 orders of magnitude. Our results show that NS binaries by themselves fall too short to explain the observed frequency of r-process enhanced stars and other sources of r-process enrichment at high redshifts are needed to fill the gap.
The Frequency of Low-Mass Exoplanets
NASA Astrophysics Data System (ADS)
O'Toole, S. J.; Jones, H. R. A.; Tinney, C. G.; Butler, R. P.; Marcy, G. W.; Carter, B.; Bailey, J.; Wittenmyer, R. A.
2009-08-01
We report first results from the Anglo-Australian Telescope Rocky Planet Search—an intensive, high-precision Doppler planet search targeting low-mass exoplanets in contiguous 48 night observing blocks. On this run, we targeted 24 bright, nearby and intrinsically stable Sun-like stars selected from the Anglo-Australian Planet Search's main sample. These observations have already detected one low-mass planet reported elsewhere (HD 16417b), and here we reconfirm the detection of HD 4308b. Further, we have Monte Carlo simulated data from this run on a star-by-star basis to produce robust detection constraints. These simulations demonstrate clear differences in the exoplanet detectability functions from star to star due to differences in sampling, data quality and intrinsic stellar stability. They reinforce the importance of star-by-star simulation when interpreting the data from Doppler planet searches. These simulations indicate that for some of our target stars we are sensitive to close-orbiting planets as small as a few Earth masses. The two low-mass planets present in our 24-star sample indicate that the exoplanet minimum mass function at low masses is likely to be a flat α ~ -1 (for dN/dM vprop M α) and that between 15% ± 10% (at α = -0.3) and 48% ± 34% (at α = -1.3) of stars host planets with orbital periods of less than 16 days and minimum masses greater than 3 M ⊕.
Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.; ...
2017-11-23
Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. Here, we find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 10 5–6 M ⊙ collectively to high density, at which point it rapidly turns into stars beforemore » stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ~420 Myr till the end of the simulation. Finally, because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.
Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. Here, we find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 10 5–6 M ⊙ collectively to high density, at which point it rapidly turns into stars beforemore » stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ~420 Myr till the end of the simulation. Finally, because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.« less
NASA Astrophysics Data System (ADS)
Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.; Hopkins, Philip F.; Hayward, Christopher C.; Wetzel, Andrew; Faucher-Giguère, Claude-André; Kereš, Dušan; Garrison-Kimmel, Shea; Murray, Norman
2018-03-01
Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. We find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 105-6 M⊙ collectively to high density, at which point it rapidly turns into stars before stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ˜420 Myr till the end of the simulation. Because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.
NASA Astrophysics Data System (ADS)
Perez, Adrianna; Moreno, Jorge; Naiman, Jill; Ramirez-Ruiz, Enrico; Hopkins, Philip F.
2017-01-01
In this work, we analyze the environments surrounding star clusters of simulated merging galaxies. Our framework employs Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high resolution cosmological simulation that resolves star forming regions and incorporates stellar feedback in a physically realistic way. The project focuses on analyzing the properties of the star clusters formed in merging galaxies. The locations of these star clusters are identified with astrodendro.py, a publicly available dendrogram algorithm. Once star cluster properties are extracted, they will be used to create a sub-grid (smaller than the resolution scale of FIRE) of gas confinement in these clusters. Then, we can examine how the star clusters interact with these available gas reservoirs (either by accreting this mass or blowing it out via feedback), which will determine many properties of the cluster (star formation history, compact object accretion, etc). These simulations will further our understanding of star formation within stellar clusters during galaxy evolution. In the future, we aim to enhance sub-grid prescriptions for feedback specific to processes within star clusters; such as, interaction with stellar winds and gas accretion onto black holes and neutron stars.
NASA Technical Reports Server (NTRS)
Kenner, B. G.; Lincoln, N. R.
1979-01-01
The manual is intended to show the revisions and additions to the current STAR FORTRAN. The changes are made to incorporate an FMP (Flow Model Processor) for use in the Numerical Aerodynamic Simulation Facility (NASF) for the purpose of simulating fluid flow over three-dimensional bodies in wind tunnel environments and in free space. The FORTRAN programming language for the STAR-100 computer contains both CDC and unique STAR extensions to the standard FORTRAN. Several of the STAR FORTRAN extensions to standard FOR-TRAN allow the FORTRAN user to exploit the vector processing capabilities of the STAR computer. In STAR FORTRAN, vectors can be expressed with an explicit notation, functions are provided that return vector results, and special call statements enable access to any machine instruction.
The Physical Origin of Long Gas Depletion Times in Galaxies
NASA Astrophysics Data System (ADS)
Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.
2017-08-01
We present a model that explains why galaxies form stars on a timescale significantly longer than the timescales of processes governing the evolution of interstellar gas. We show that gas evolves from a non-star-forming to a star-forming state on a relatively short timescale, and thus the rate of this evolution does not limit the star formation rate (SFR). Instead, the SFR is limited because only a small fraction of star-forming gas is converted into stars before star-forming regions are dispersed by feedback and dynamical processes. Thus, gas cycles into and out of a star-forming state multiple times, which results in a long timescale on which galaxies convert gas into stars. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in simulations. In particular, the model explains how feedback self-regulates the SFR in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolated L *-sized galaxy simulation that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is almost linear on kiloparsec scales, although a nonlinear relation is adopted in simulation cells. We discuss how a linear relation emerges from non-self-similar scaling of the gas density PDF with the average gas surface density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y., E-mail: semenov@uchicago.edu
We present a model that explains why galaxies form stars on a timescale significantly longer than the timescales of processes governing the evolution of interstellar gas. We show that gas evolves from a non-star-forming to a star-forming state on a relatively short timescale, and thus the rate of this evolution does not limit the star formation rate (SFR). Instead, the SFR is limited because only a small fraction of star-forming gas is converted into stars before star-forming regions are dispersed by feedback and dynamical processes. Thus, gas cycles into and out of a star-forming state multiple times, which results inmore » a long timescale on which galaxies convert gas into stars. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in simulations. In particular, the model explains how feedback self-regulates the SFR in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolated L {sub *}-sized galaxy simulation that reproduces the observed Kennicutt–Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is almost linear on kiloparsec scales, although a nonlinear relation is adopted in simulation cells. We discuss how a linear relation emerges from non-self-similar scaling of the gas density PDF with the average gas surface density.« less
NASA Astrophysics Data System (ADS)
Hirschmann, Michaela; Charlot, Stephane; Feltre, Anna; Naab, Thorsten; Choi, Ena; Ostriker, Jeremiah P.; Somerville, Rachel S.
2017-12-01
Galaxies occupy different regions of the [O III]λ5007/H β-versus-[N II]λ6584/H α emission-line ratio diagram in the distant and local Universe. We investigate the origin of this intriguing result by modelling self-consistently, for the first time, nebular emission from young stars, accreting black holes (BHs) and older, post-asymptotic giant branch (post-AGB) stellar populations in galaxy formation simulations in a full cosmological context. In post-processing, we couple new-generation nebular-emission models with high-resolution, cosmological zoom-in simulations of massive galaxies to explore which galaxy physical properties drive the redshift evolution of the optical-line ratios [O III]λ5007/H β, [N II]λ6584/H α, [S II]λλ6717, 6731/H α and [O I]λ6300/H α. The line ratios of simulated galaxies agree well with observations of both star-forming and active local Sloan Digital Sky Survey galaxies. Towards higher redshifts, at fixed galaxy stellar mass, the average [O III]/H β is predicted to increase and [N II]/H α, [S II]/H α and [O I]/H α to decrease - widely consistent with observations. At fixed stellar mass, we identify star formation history, which controls nebular emission from young stars via the ionization parameter, as the primary driver of the cosmic evolution of [O III]/H β and [N II]/H α. For [S II]/H α and [O I]/H α, this applies only to redshifts greater than z = 1.5, the evolution at lower redshift being driven in roughly equal parts by nebular emission from active galactic nuclei and post-AGB stellar populations. Instead, changes in the hardness of ionizing radiation, ionized-gas density, the prevalence of BH accretion relative to star formation and the dust-to-metal mass ratio (whose impact on the gas-phase N/O ratio we model at fixed O/H) play at most a minor role in the cosmic evolution of simulated galaxy line ratios.
Post-merger evolution of a neutron star-black hole binary with neutrino transport
NASA Astrophysics Data System (ADS)
Foucart, Francois; O'Connor, Evan; Roberts, Luke; Duez, Matthew; Kidder, Lawrence; Ott, Christian; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; SXS Collaboration
2015-04-01
We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated truncated moment formalism for neutrino transport. The moment formalism is included as a new module in the SpEC code. We describe the implementation and tests of this new module, and its use to study the formation phase of an accretion disk after a black hole-neutron star merger. We discuss differences with simpler treatments of the neutrinos, the importance of relativistic effects, and the impact of the formation phase of the disk on its expected long-term evolution. We also show that a small amount of material is ejected in the polar region during the circularization of the disk and its interactions with fallback material, and discuss its effects on potential electromagnetic counterparts to the merger.
Magnetized hypermassive neutron-star collapse: a central engine for short gamma-ray bursts.
Shibata, Masaru; Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Stephens, Branson C
2006-01-27
A hypermassive neutron star (HMNS) is a possible transient formed after the merger of a neutron-star binary. In the latest axisymmetric magnetohydrodynamic simulations in full general relativity, we find that a magnetized HMNS undergoes "delayed" collapse to a rotating black hole (BH) as a result of angular momentum transport via magnetic braking and the magnetorotational instability. The outcome is a BH surrounded by a massive, hot torus with a collimated magnetic field. The torus accretes onto the BH at a quasisteady accretion rate [FORMULA: SEE TEXT]; the lifetime of the torus is approximately 10 ms. The torus has a temperature [FORMULA: SEE TEXT], leading to copious ([FORMULA: SEE TEXT]) thermal radiation that could trigger a fireball. Therefore, the collapse of a HMNS is a promising scenario for generating short-duration gamma-ray bursts and an accompanying burst of gravitational waves and neutrinos.
NASA Astrophysics Data System (ADS)
Romano, Donatella; Starkenburg, Else
2013-09-01
We present a new approach for chemical evolution modelling, specifically designed to investigate the chemical properties of dwarf galaxies in a full cosmological framework. In particular, we focus on the Sculptor dwarf spheroidal galaxy, for which a wealth of observational data exists, as a test bed for our model. We select four candidate Sculptor-like galaxies from the satellite galaxy catalogue generated by implementation of a version of the Munich semi-analytic model for galaxy formation on the level 2 Aquarius dark matter simulations and use the mass assembly and star formation histories predicted for these four systems as an input for the chemical evolution code. We follow explicitly the evolution of several chemical elements, both in the cold gas out of which the stars form and in the hot medium residing in the halo. We take into account in detail the lifetimes of stars of different initial masses, the distribution of the delay times for Type Ia supernova explosions and the dependence of the stellar yields from the initial metallicity of the stars. We allow large fractions of metals to be deposited into the hot phase, either directly as stars die or through reheated gas flows powered by supernova explosions. We find that, in order to reproduce both the observed metallicity distribution function and the observed abundance ratios of long-lived stars of Sculptor, large fractions of the reheated metals must never re-enter regions of active star formation. With this prescription, all the four analogues to the Sculptor dwarf spheroidal galaxy extracted from the simulated satellites catalogue on the basis of luminosity and stellar population ages are found to reasonably match the detailed chemical properties of real Sculptor stars. However, all model galaxies do severely underestimate the fraction of very metal poor stars observed in Sculptor. Our analysis thus sets further constraints on the semi-analytical models and, at large, on possible metal enrichment scenarios for the Sculptor dwarf spheroidal galaxy.
Structure and rheology of star polymers in confined geometries: a mesoscopic simulation study.
Zheng, Feiwo; Goujon, Florent; Mendonça, Ana C F; Malfreyt, Patrice; Tildesley, Dominic J
2015-11-28
Mesoscopic simulations of star polymer melts adsorbed onto solid surfaces are performed using the dissipative particle dynamics (DPD) method. A set of parameters is developed to study the low functionality star polymers under shear. The use of a new bond-angle potential between the arms of the star creates more rigid chains and discriminates between different functionalities at equilibrium, but still allows the polymers to deform appropriately under shear. The rheology of the polymer melts is studied by calculating the kinetic friction and viscosity and there is good agreement with experimental properties of these systems. The study is completed with predictive simulations of star polymer solutions in an athermal solvent.
Frequency band of the f-mode Chandrasekhar-Friedman-Schutz instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zink, Burkhard; Korobkin, Oleg; Schnetter, Erik
2010-04-15
Rapidly rotating neutron stars can be unstable to the gravitational-wave-driven Chandrasekhar-Friedman-Schutz (CFS) mechanism if they have a neutral point in the spectrum of nonaxisymmetric f-modes. We investigate the frequencies of these modes in two sequences of uniformly rotating polytropes using nonlinear simulations in full general relativity, determine the approximate locations of the neutral points, and derive limits on the observable frequency band available to the instability in these sequences. We find that general relativity enhances the detectability of a CFS-unstable neutron star substantially, both by widening the instability window and enlarging the band into the optimal range for interferometric detectorsmore » like LIGO, VIRGO, and GEO-600.« less
A box full of chocolates: The rich structure of the nearby stellar halo revealed by Gaia and RAVE
NASA Astrophysics Data System (ADS)
Helmi, Amina; Veljanoski, Jovan; Breddels, Maarten A.; Tian, Hao; Sales, Laura V.
2017-02-01
Context. The hierarchical structure formation model predicts that stellar halos should form, at least partly, via mergers. If this was a predominant formation channel for the Milky Way's halo, imprints of this merger history in the form of moving groups or streams should also exist in the vicinity of the Sun. Aims: We study the kinematics of halo stars in the Solar neighbourhood using the very recent first data release from the Gaia mission, and in particular the TGAS dataset, in combination with data from the RAVE survey. Our aim is to determine the amount of substructure present in the phase-space distribution of halo stars that could be linked to merger debris. Methods: To characterise kinematic substructure, we measured the velocity correlation function in our sample of halo (low-metallicity) stars. We also studied the distribution of these stars in the space of energy and two components of the angular momentum, in what we call "integrals of motion" space. Results: The velocity correlation function reveals substructure in the form of an excess of pairs of stars with similar velocities, well above that expected for a smooth distribution. Comparison to cosmological simulations of the formation of stellar halos indicates that the levels found are consistent with the Galactic halo having been built solely via accretion. Similarly, the distribution of stars in the space of integrals of motion is highly complex. A strikingly high fraction (from 58% up to more than 73%) of the stars that are somewhat less bound than the Sun are on (highly) retrograde orbits. A simple comparison to Milky Way-mass galaxies in cosmological hydrodynamical simulations suggests that less than 1% have such prominently retrograde outer halos. We also identify several other statistically significant structures in integrals of motion space that could potentially be related to merger events.
Numerical Simulations of a Jet–Cloud Collision and Starburst: Application to Minkowski’s Object
Fragile, P. Chris; Anninos, Peter; Croft, Steve; ...
2017-11-30
In this work, we present results of three-dimensional, multi-physics simulations of an AGN jet colliding with an intergalactic cloud. The purpose of these simulations is to assess the degree of "positive feedback," i.e., jet-induced star formation, that results. We have specifically tailored our simulation parameters to facilitate a comparison with recent observations of Minkowski's Object (MO), a stellar nursery located at the termination point of a radio jet coming from galaxy NGC 541. As shown in our simulations, such a collision triggers shocks, which propagate around and through the cloud. These shocks condense the gas and under the right circumstancesmore » may trigger cooling instabilities, creating runaway increases in density, to the point that individual clumps can become Jeans unstable. Our simulations provide information about the expected star formation rate, total mass converted to H I, H 2, and stars, and the relative velocity of the stars and gas. Finally, our results confirm the possibility of jet-induced star formation, and agree well with the observations of MO.« less
Numerical Simulations of a Jet–Cloud Collision and Starburst: Application to Minkowski’s Object
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fragile, P. Chris; Anninos, Peter; Croft, Steve
In this work, we present results of three-dimensional, multi-physics simulations of an AGN jet colliding with an intergalactic cloud. The purpose of these simulations is to assess the degree of "positive feedback," i.e., jet-induced star formation, that results. We have specifically tailored our simulation parameters to facilitate a comparison with recent observations of Minkowski's Object (MO), a stellar nursery located at the termination point of a radio jet coming from galaxy NGC 541. As shown in our simulations, such a collision triggers shocks, which propagate around and through the cloud. These shocks condense the gas and under the right circumstancesmore » may trigger cooling instabilities, creating runaway increases in density, to the point that individual clumps can become Jeans unstable. Our simulations provide information about the expected star formation rate, total mass converted to H I, H 2, and stars, and the relative velocity of the stars and gas. Finally, our results confirm the possibility of jet-induced star formation, and agree well with the observations of MO.« less
Numerical Simulations of a Jet-Cloud Collision and Starburst: Application to Minkowski’s Object
NASA Astrophysics Data System (ADS)
Fragile, P. Chris; Anninos, Peter; Croft, Steve; Lacy, Mark; Witry, Jason W. L.
2017-12-01
We present results of three-dimensional, multi-physics simulations of an AGN jet colliding with an intergalactic cloud. The purpose of these simulations is to assess the degree of “positive feedback,” i.e., jet-induced star formation, that results. We have specifically tailored our simulation parameters to facilitate a comparison with recent observations of Minkowski’s Object (MO), a stellar nursery located at the termination point of a radio jet coming from galaxy NGC 541. As shown in our simulations, such a collision triggers shocks, which propagate around and through the cloud. These shocks condense the gas and under the right circumstances may trigger cooling instabilities, creating runaway increases in density, to the point that individual clumps can become Jeans unstable. Our simulations provide information about the expected star formation rate, total mass converted to H I, H2, and stars, and the relative velocity of the stars and gas. Our results confirm the possibility of jet-induced star formation, and agree well with the observations of MO.
Simulating the dust content of galaxies: successes and failures
NASA Astrophysics Data System (ADS)
McKinnon, Ryan; Torrey, Paul; Vogelsberger, Mark; Hayward, Christopher C.; Marinacci, Federico
2017-06-01
We present full-volume cosmological simulations, using the moving-mesh code arepo to study the coevolution of dust and galaxies. We extend the dust model in arepo to include thermal sputtering of grains and investigate the evolution of the dust mass function, the cosmic distribution of dust beyond the interstellar medium and the dependence of dust-to-stellar mass ratio on galactic properties. The simulated dust mass function is well described by a Schechter fit and lies closest to observations at z = 0. The radial scaling of projected dust surface density out to distances of 10 Mpc around galaxies with magnitudes 17 < I < 21 is similar to that seen in Sloan Digital Sky Survey data, albeit with a lower normalization. At z = 0, the predicted dust density of Ωdust ≈ 1.3 × 10-6 lies in the range of Ωdust values seen in low-redshift observations. We find that the dust-to-stellar mass ratio anticorrelates with stellar mass for galaxies living along the star formation main sequence. Moreover, we estimate the 850 μm number density functions for simulated galaxies and analyse the relation between dust-to-stellar flux and mass ratios at z = 0. At high redshift, our model fails to produce enough dust-rich galaxies, and this tension is not alleviated by adopting a top-heavy initial mass function. We do not capture a decline in Ωdust from z = 2 to 0, which suggests that dust production mechanisms more strongly dependent on star formation may help to produce the observed number of dusty galaxies near the peak of cosmic star formation.
AMR Studies of Star Formation: Simulations and Simulated Observations
NASA Astrophysics Data System (ADS)
Offner, Stella; McKee, C. F.; Klein, R. I.
2009-01-01
Molecular clouds are typically observed to be approximately virialized with gravitational and turbulent energy in balance, yielding a star formation rate of a few percent. The origin and characteristics of the observed supersonic turbulence are poorly understood, and without continued energy injection the turbulence is predicted to decay within a cloud dynamical time. Recent observations and analytic work have suggested a strong connection between the initial stellar mass function, the core mass function, and turbulence characteristics. The role of magnetic fields in determining core lifetimes, shapes, and kinematic properties remains hotly debated. Simulations are a formidable tool for studying the complex process of star formation and addressing these puzzles. I present my results modeling low-mass star formation using the ORION adaptive mesh refinement (AMR) code. I investigate the properties of forming cores and protostars in simulations in which the turbulence is driven to maintain virial balance and where it is allowed to decay. I will discuss simulated observations of cores in dust emission and in molecular tracers and compare to observations of local star-forming clouds. I will also present results from ORION cluster simulations including flux-limited diffusion radiative transfer and show that radiative feedback, even from low-mass stars, has a significant effect on core fragmentation, disk properties, and the IMF. Finally, I will discuss the new simulation frontier of AMR multigroup radiative transfer.
NASA Astrophysics Data System (ADS)
Ruiz-Rocha, Krystal; Montes, Gabriela; Ramirez-Ruiz, Enrico
2017-01-01
Studies of galaxy evolution and formation through simulations and observations have yielded valuable insight into the life of stars. Abundance gradients, in particular, provide useful information about the element assembly history in the Milky Way. To study these gradients we use data from a simulation titled Eris which has been constructed with the goal of reproducing the properties of the Milky Way, to find the gradients of stars located in the disk that have been enriched by Supernovae and Neutron Star Mergers. We compare these gradients to the observations acquired from looking at Cepheids and field stars in the disk of our Milky Way. We also aim to understand whether radial metallicity gradients can be used to differentiate between Neutron Star Merger versus Type II Supernovae enrichment.
FRAGMENTATION AND EVOLUTION OF MOLECULAR CLOUDS. II. THE EFFECT OF DUST HEATING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, Andrea; Evans, Neal J.; Martel, Hugo
2010-02-20
We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations; two simulations assume an isothermal equation of state and the two other simulations include dust heating. We investigate two mass regimes, i.e., 84 M{sub sun} and 671 M{sub sun}, using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations that include dust heating are drastically different. In themore » isothermal simulation, we do not form any objects with masses above 1 M{sub sun}. However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects ({approx}20 M{sub sun}) which have a distribution similar to the Salpeter initial mass function. The envelope density profiles around the stars formed in our simulation match observed values around isolated, low-mass star-forming cores. We find the accretion rates to be highly variable and, on average, increasing with final stellar mass. By including radiative feedback from stars in a cluster-scale simulation, we have determined that it is a very important effect which drastically affects the mass function and yields important insights into the formation of massive stars.« less
When Feedback Fails: The Scaling and Saturation of Star Formation Efficiency
NASA Astrophysics Data System (ADS)
Y Grudic, Michael; Hopkins, Philip F.; Faucher-Giguere, Claude-Andre; Quataert, Eliot; Murray, Norman W.; Keres, Dusan
2017-06-01
We present a suite of 3D multi-physics MHD simulations following star formation in isolated turbulent molecular gas disks ranging from 5 to 500 parsecs in radius. These simulations are designed to survey the range of surface densities between those typical of Milky Way GMCs (˜100 M⊙pc-2) and extreme ULIRG environments (˜104M⊙pc-2) so as to map out the scaling of star formation efficiency (SFE) between these two regimes. The simulations include prescriptions for supernova, stellar wind, and radiative feedback, which we find to be essential in determining both the instantaneous (ɛff) and integrated (ɛint) star formation efficiencies. In all simulations, the gas disks form stars until a critical stellar mass has been reached and the remaining gas is blown out by stellar feedback. We find that surface density is the best predictor of ɛint of all of the gas cloud's global properties, as suggested by analytic force balance arguments from previous works. Furthermore, SFE eventually saturates to ˜1 at high surface density, with very good agreement across different spatial scales. We also find a roughly proportional relationship between ɛff and ɛint. These results have implications for star formation in galactic disks, the nature and fate of nuclear starbursts, and the formation of bound star clusters. The scaling of ɛff also contradicts star formation models in which ɛff˜1% universally, including popular subgrid models for galaxy simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Benjamin; Tan, Jonathan C.; Christie, Duncan
We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three-dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation subgrid models. Two such models are explored: (1) “Density-Regulated,” i.e., fixed efficiency per free-fall time above a set density threshold and (2) “Magnetically Regulated,” i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMCmore » collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between the non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial substructure and more disturbed kinematics.« less
THE DUAL ORIGIN OF STELLAR HALOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotov, Adi; Hogg, David W.; Willman, Beth
2009-09-10
We investigate the formation of the stellar halos of four simulated disk galaxies using high-resolution, cosmological SPH + N-body simulations. These simulations include a self-consistent treatment of all the major physical processes involved in galaxy formation. The simulated galaxies presented here each have a total mass of {approx}10{sup 12} M{sub sun}, but span a range of merger histories. These simulations allow us to study the competing importance of in situ star formation (stars formed in the primary galaxy) and accretion of stars from subhalos in the building of stellar halos in a {lambda}CDM universe. All four simulated galaxies are surroundedmore » by a stellar halo, whose inner regions (r < 20 kpc) contain both accreted stars, and an in situ stellar population. The outer regions of the galaxies' halos were assembled through pure accretion and disruption of satellites. Most of the in situ halo stars formed at high redshift out of smoothly accreted cold gas in the inner 1 kpc of the galaxies' potential wells, possibly as part of their primordial disks. These stars were displaced from their central locations into the halos through a succession of major mergers. We find that the two galaxies with recently quiescent merger histories have a higher fraction of in situ stars ({approx}20%-50%) in their inner halos than the two galaxies with many recent mergers ({approx}5%-10% in situ fraction). Observational studies concentrating on stellar populations in the inner halo of the Milky Way will be the most affected by the presence of in situ stars with halo kinematics, as we find that their existence in the inner few tens of kpc is a generic feature of galaxy formation.« less
NASA Astrophysics Data System (ADS)
Abarca, David; Kluźniak, Wlodek; Sądowski, Aleksander
2018-06-01
We run two GRRMHD simulations of super-Eddington accretion disks around a black hole and a non-magnetized, non-rotating neutron star. The neutron star was modeled using a reflective inner boundary condition. We observe the formation of a transition layer in the inner region of the disk in the neutron star simulation which leads to a larger mass outflow rate and a lower radiative luminosity over the black hole case. Sphereization of the flow leads to an observable luminosity at infinity around the Eddington value when viewed from all directions for the neutron star case, contrasting to the black hole case where collimation of the emission leads to observable luminosities about an order of magnitude higher when observed along the disk axis. We find the outflow to be optically thick to scattering, which would lead to the obscuring of any neutron star pulsations observed in corresponding ULXs.
The Destructive Birth of Massive Stars and Massive Star Clusters
NASA Astrophysics Data System (ADS)
Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico
2017-01-01
Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is amplified. Our results suggest that the combined effect of turbulence, magnetic pressure, and radiative feedback from massive stars is responsible for the low star formation efficiencies observed in molecular clouds.
NASA Astrophysics Data System (ADS)
Corsaro, Enrico; Lee, Yueh-Ning; García, Rafael A.; Hennebelle, Patrick; Mathur, Savita; Beck, Paul G.; Mathis, Stephane; Stello, Dennis; Bouvier, Jérôme
2017-10-01
Stars originate by the gravitational collapse of a turbulent molecular cloud of a diffuse medium, and are often observed to form clusters. Stellar clusters therefore play an important role in our understanding of star formation and of the dynamical processes at play. However, investigating the cluster formation is diffcult because the density of the molecular cloud undergoes a change of many orders of magnitude. Hierarchical-step approaches to decompose the problem into different stages are therefore required, as well as reliable assumptions on the initial conditions in the clouds. We report for the first time the use of the full potential of NASA Kepler asteroseismic observations coupled with 3D numerical simulations, to put strong constraints on the early formation stages of open clusters. Thanks to a Bayesian peak bagging analysis of about 50 red giant members of NGC 6791 and NGC 6819, the two most populated open clusters observed in the nominal Kepler mission, we derive a complete set of detailed oscillation mode properties for each star, with thousands of oscillation modes characterized. We therefore show how these asteroseismic properties lead us to a discovery about the rotation history of stellar clusters. Finally, our observational findings will be compared with hydrodynamical simulations for stellar cluster formation to constrain the physical processes of turbulence, rotation, and magnetic fields that are in action during the collapse of the progenitor cloud into a proto-cluster.
Warm Dark Matter and Cosmic Reionization
Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga
2018-01-10
In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in bothmore » CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. Furthermore, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.« less
Warm Dark Matter and Cosmic Reionization
NASA Astrophysics Data System (ADS)
Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga
2018-01-01
In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in both CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. However, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.
Warm Dark Matter and Cosmic Reionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga
In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in bothmore » CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. Furthermore, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.« less
Arm retraction dynamics of entangled star polymers: A forward flux sampling method study
NASA Astrophysics Data System (ADS)
Zhu, Jian; Likhtman, Alexei E.; Wang, Zuowei
2017-07-01
The study of dynamics and rheology of well-entangled branched polymers remains a challenge for computer simulations due to the exponentially growing terminal relaxation times of these polymers with increasing molecular weights. We present an efficient simulation algorithm for studying the arm retraction dynamics of entangled star polymers by combining the coarse-grained slip-spring (SS) model with the forward flux sampling (FFS) method. This algorithm is first applied to simulate symmetric star polymers in the absence of constraint release (CR). The reaction coordinate for the FFS method is determined by finding good agreement of the simulation results on the terminal relaxation times of mildly entangled stars with those obtained from direct shooting SS model simulations with the relative difference between them less than 5%. The FFS simulations are then carried out for strongly entangled stars with arm lengths up to 16 entanglements that are far beyond the accessibility of brute force simulations in the non-CR condition. Apart from the terminal relaxation times, the same method can also be applied to generate the relaxation spectra of all entanglements along the arms which are desired for the development of quantitative theories of entangled branched polymers. Furthermore, we propose a numerical route to construct the experimentally measurable relaxation correlation functions by effectively linking the data stored at each interface during the FFS runs. The obtained star arm end-to-end vector relaxation functions Φ (t ) and the stress relaxation function G(t) are found to be in reasonably good agreement with standard SS simulation results in the terminal regime. Finally, we demonstrate that this simulation method can be conveniently extended to study the arm-retraction problem in entangled star polymer melts with CR by modifying the definition of the reaction coordinate, while the computational efficiency will depend on the particular slip-spring or slip-link model employed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dierickx, Marion I. P.; Loeb, Abraham, E-mail: mdierickx@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu
The extensive span of the Sagittarius (Sgr) stream makes it a promising tool for studying the gravitational potential of the Milky Way (MW). Characterizing its stellar kinematics can constrain halo properties and provide a benchmark for the paradigm of galaxy formation from cold dark matter. Accurate models of the disruption dynamics of the Sgr progenitor are necessary to employ this tool. Using a combination of analytic modeling and N -body simulations, we build a new model of the Sgr orbit and resulting stellar stream. In contrast to previous models, we simulate the full infall trajectory of the Sgr progenitor frommore » the time it first crossed the MW virial radius 8 Gyr ago. An exploration of the parameter space of initial phase-space conditions yields tight constraints on the angular momentum of the Sgr progenitor. Our best-fit model is the first to accurately reproduce existing data on the 3D positions and radial velocities of the debris detected 100 kpc away in the MW halo. In addition to replicating the mapped stream, the simulation also predicts the existence of several arms of the Sgr stream extending to hundreds of kiloparsecs. The two most distant stars known in the MW halo coincide with the predicted structure. Additional stars in the newly predicted arms can be found with future data from the Large Synoptic Survey Telescope. Detecting a statistical sample of stars in the most distant Sgr arms would provide an opportunity to constrain the MW potential out to unprecedented Galactocentric radii.« less
NASA Astrophysics Data System (ADS)
Pfeffer, Joel; Kruijssen, J. M. Diederik; Crain, Robert A.; Bastian, Nate
2018-04-01
We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population's initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ˜L⋆ galaxies with disc-like morphologies at z = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z ≳ 1-2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome this shortcoming.
Detecting unresolved binary stars in Euclid VIS images
NASA Astrophysics Data System (ADS)
Kuntzer, T.; Courbin, F.
2017-10-01
Measuring a weak gravitational lensing signal to the level required by the next generation of space-based surveys demands exquisite reconstruction of the point-spread function (PSF). However, unresolved binary stars can significantly distort the PSF shape. In an effort to mitigate this bias, we aim at detecting unresolved binaries in realistic Euclid stellar populations. We tested methods in numerical experiments where (I) the PSF shape is known to Euclid requirements across the field of view; and (II) the PSF shape is unknown. We drew simulated catalogues of PSF shapes for this proof-of-concept paper. Following the Euclid survey plan, the objects were observed four times. We propose three methods to detect unresolved binary stars. The detection is based on the systematic and correlated biases between exposures of the same object. One method is a simple correlation analysis, while the two others use supervised machine-learning algorithms (random forest and artificial neural network). In both experiments, we demonstrate the ability of our methods to detect unresolved binary stars in simulated catalogues. The performance depends on the level of prior knowledge of the PSF shape and the shape measurement errors. Good detection performances are observed in both experiments. Full complexity, in terms of the images and the survey design, is not included, but key aspects of a more mature pipeline are discussed. Finding unresolved binaries in objects used for PSF reconstruction increases the quality of the PSF determination at arbitrary positions. We show, using different approaches, that we are able to detect at least binary stars that are most damaging for the PSF reconstruction process. The code corresponding to the algorithms used in this work and all scripts to reproduce the results are publicly available from a GitHub repository accessible via http://lastro.epfl.ch/software
THE DUAL ORIGIN OF STELLAR HALOS. II. CHEMICAL ABUNDANCES AS TRACERS OF FORMATION HISTORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotov, Adi; Hogg, David W.; Willman, Beth
2010-09-20
Fully cosmological, high-resolution N-body+smooth particle hydrodynamic simulations are used to investigate the chemical abundance trends of stars in simulated stellar halos as a function of their origin. These simulations employ a physically motivated supernova feedback recipe, as well as metal enrichment, metal cooling, and metal diffusion. As presented in an earlier paper, the simulated galaxies in this study are surrounded by stellar halos whose inner regions contain both stars accreted from satellite galaxies and stars formed in situ in the central regions of the main galaxies and later displaced by mergers into their inner halos. The abundance patterns ([Fe/H] andmore » [O/Fe]) of halo stars located within 10 kpc of a solar-like observer are analyzed. We find that for galaxies which have not experienced a recent major merger, in situ stars at the high [Fe/H] end of the metallicity distribution function are more [{alpha}/Fe]-rich than accreted stars at similar [Fe/H]. This dichotomy in the [O/Fe] of halo stars at a given [Fe/H] results from the different potential wells within which in situ and accreted halo stars form. These results qualitatively match recent observations of local Milky Way halo stars. It may thus be possible for observers to uncover the relative contribution of different physical processes to the formation of stellar halos by observing such trends in the halo populations of the Milky Way and other local L{sup *} galaxies.« less
Analysis of Neutral Pion Helicity Asymmetry with the STAR Detector
NASA Astrophysics Data System (ADS)
Hauck, Alec; Strand, Noah; STAR Collaboration
2017-09-01
The gluon contribution to the proton spin is poorly constrained compared to the quark contribution. To further constrain the gluon contribution, the STAR collaboration at RHIC analyzes the asymmetry in neutral pion (π0) production as a function of spin alignment in longitudinally polarized proton beam collisions. These π0s mostly decay into photon pairs, some of which are identified in the Endcap Electromagnetic Calorimeter (EEMC) within the STAR detector. The EEMC has a pseudorapidity range of 1 < η < 2 with full azimuthal coverage. The EEMC's Shower Max Detector (SMD) determines the positions of photon showers. A first step in identifying photons is reconstructing clusters of energy in each layer of the SMD. Knowing the position and energy of these photons allows us to reconstruct the π0s they decayed from. From these reconstructed π0s, a corrected count is determined by fitting signal and background templates from Monte Carlo simulation to the π0 candidate invariant mass distributions. We will describe the state of our analysis on the √{ s} = 510 GeV dataset from 2012 (integrated luminosity 82 pb-1) including cluster identification, Monte Carlo simulation, and data. We will also give a first glimpse of the 2013 dataset (300 pb-1).
Tiny Stars, Strong Fields: Exploring the Origin of Intense Magnetism in M Stars
NASA Astrophysics Data System (ADS)
Toomre, Juri
The M-type stars are becoming dominant targets in searches for Earth-like planets that could occupy their habitable zones. The low masses and luminosities of M-dwarf central stars make them very attractive for such exoplanetary hunts. The habitable zone of M dwarfs is close to the star due to their low luminosity. Thus possibly habitable planets will have short orbital periods, making their detection feasible both with the transit method (used by Kepler, K2 and soon with TESS) and with the radial velocity approaches. Yet habitability on a planet likely requires both solid surfaces and atmospheres, but also a favorable radiation environment. It is here that the M-dwarf central stars raise major theoretical puzzles, for many of them exhibit remarkably intense and frequent flaring, despite their modest intrinsic luminosities. The super-flares release their energy both in white light and in X-rays, and can be thousands of times brighter than the strongest solar flares. Such striking events must have magnetic origins, likely from fields built by convective dynamos operating in their interiors. Further, recent observations suggest that the surface of some M stars is carpeted with magnetic fields of 3 kG or more. Such field strengths are reminiscent of a sunspot, but here instead cover much of the stellar surface. With M stars now taking center stage in the search for Earthlike planets, it is crucial to begin to understand how convective dynamos may be able to build intense magnetic fields involved with super-flares and vast star spots, and how they depend upon the mass and rotation rate of these stars. We propose to use major 3-D MHD simulations with our Anelastic Spherical Harmonic (ASH) code to study the coupling of turbulent convection, rotation, and magnetism within full spherical domains such as the interior of an M dwarf. This permits the exploration of the magnetic dynamos that must be responsible for the evolving magnetism and intense activity of many M dwarfs. We bring to this our prior experience with studying dynamo processes in the outer convective envelopes of G- (the Sun) and Ftype stars, briefly of M dwarfs, and in full convective cores within more massive A- and B-type stars. Our previous work suggests that M dwarfs could display a broad range of dynamo behavior, from cyclic reversals to more chaotic variations, and further to both weak and strong dynamo states. We will focus on the latter, exploring how superequipartition magnetic fields could be achieved by dynamo action in M dwarfs, as are likely needed to energize super-flares and huge active regions, and what limits the peak field strengths. M-type stars are distinctive in becoming fully convective with decreasing mass at about M3.5 in spectral type (or about 0.35 solar masses). At this transition, a steep rise in the fraction of magnetically active stars is observed that is accompanied by an increasing rotational velocity. Clearly how mass-loss and spin-down can lead to this is of interest in itself. However, here we propose to study the manner in which dynamos operating in fully convective M dwarf interiors beyond the transition may be able to achieve very strong magnetic fields, and how field strengths and apparent magnetic activity increases with rotation rate as suggested by observations. We believe that global connectivity of flows and fields across the core center will admit new classes of strong behavior, as revealed by our B star core dynamos, not realized when a convective envelope is bounded below by a tachocline. These ideas need to be tested in a self-consistent manner with global ASH simulations to gain theoretical insights into what is the origin of the fierce magnetic activity in some of M dwarfs that may be potential hosts to Earth-like planets. Such 3-D MHD simulations, though challenging, are now feasible and would complement the intensive observational searches under way.
Simulating a binary system that experiences the grazing envelope evolution
NASA Astrophysics Data System (ADS)
Shiber, Sagiv; Soker, Noam
2018-06-01
We conduct three-dimensional hydrodynamical simulations, and show that when a secondary star launches jets while performing spiral-in motion into the envelope of a giant star, the envelope is inflated, some mass is ejected by the jets, and the common envelope phase is postponed. We simulate this grazing envelope evolution (GEE) under the assumption that the secondary star accretes mass from the envelope of the asymptotic giant branch (AGB) star and launches jets. In these simulations we do not yet include the gravitational energy that is released by the spiraling-in binary system. Neither do we include the spinning of the envelope. Considering these omissions, we conclude that our results support the idea that jets might play a crucial role in the common envelope evolution or in preventing it.
Spatial differences between stars and brown dwarfs: a dynamical origin?
NASA Astrophysics Data System (ADS)
Parker, Richard J.; Andersen, Morten
2014-06-01
We use N-body simulations to compare the evolution of spatial distributions of stars and brown dwarfs in young star-forming regions. We use three different diagnostics: the ratio of stars to brown dwarfs as a function of distance from the region's centre, {R}_SSR, the local surface density of stars compared to brown dwarfs, ΣLDR, and we compare the global spatial distributions using the ΛMSR method. From a suite of 20 initially statistically identical simulations, 6/20 attain {R}_SSR ≪ 1 and ΣLDR ≪ 1 and ΛMSR ≪ 1, indicating that dynamical interactions could be responsible for observed differences in the spatial distributions of stars and brown dwarfs in star-forming regions. However, many simulations also display apparently contradictory results - for example, in some cases the brown dwarfs have much lower local densities than stars (ΣLDR ≪ 1), but their global spatial distributions are indistinguishable (ΛMSR = 1) and the relative proportion of stars and brown dwarfs remains constant across the region ({R}_SSR = 1). Our results suggest that extreme caution should be exercised when interpreting any observed difference in the spatial distribution of stars and brown dwarfs, and that a much larger observational sample of regions/clusters (with complete mass functions) is necessary to investigate whether or not brown dwarfs form through similar mechanisms to stars.
Massive Stars and Star Clusters in the Era of JWST
NASA Astrophysics Data System (ADS)
Klein, Richard
Massive stars lie at the center of the web of physical processes that has shaped the universe as we know it, governing the evolution of the interstellar medium of galaxies, producing a majority of the heavy elements, and thereby determining the evolution of galaxies. Massive stars are also important as signposts, since they produce most of the light and almost all the ionizing radiation in regions of active star formation. A significant fraction of all stars form in massive clusters, which will be observable throughout the visible universe with JWST. Their luminosities are so high that the pressure of their light on interstellar dust grains is likely the dominant feedback mechanism regulating their formation. While this process has been studied in the local Universe, much less attention has been focused on how it behaves at high redshift, where the dust abundance is much lower due to the overall lower abundance of heavy elements. The high redshift Universe also differs from the nearby one in that observations imply that high redshift star formation occurs at significantly higher densities than are typically found locally. We propose to simulate the formation of individual massive stars from the high redshift universe to the present day universe spanning metallicities ranging from 0.001 to 1.0 and column densities from 0.1to 30.0 g/cm2 focusing on how the process depends on both the dust abundance and on the density of the star-forming gas. These simulations will be among the first to treat the formation of Population II stars, which form in regions of low metallicity. Based on these results, we shall then simulate the formation of clusters of stars across also cosmic time, both of moderate mass, such as the Orion Nebula Cluster, and of high mass, such as the super star clusters seen in starburst galaxies. These state-of-the-art simulations will be carried out using our newly developed advanced techniques in our radiation-magneto-hydrodynamic AMR code ORION, for radiative transfer with both ionizing and non-ionizing radiation that accurately handle both the direct radiation from stars and the diffuse infrared radiation field that builds up when direct radiation is reprocessed by dust grains. Our simulations include all of the relevant feedback effects such as radiative heating, radiation pressure, photodissociation and photoionization, protostellar outflows and stellar winds. The challenge in simulating the formation of massive stars and massive clusters is to include all these feedback effects self-consistently as they occur collectively. We are in an excellent position to do so. The results of these simulations will be directly relevant to the interpretation of observations with JWST, which will probe cluster formation in both the nearby and distant universe, and with SOFIA, which can observe high-mass star formation in the Galaxy. We shall make direct comparison with observations of massive protostars in the Galactic disk. We shall also compare with observations of star clusters that form in dense environments, such as the Galactic Center and in merging galaxies (e.g., the Antennae), and in low metallicity environments, such as the dwarf starburst galaxy I Zw 18. Once our simulations have been benchmarked with observations of massive protostars in the Galaxy and massive protoclusters in the local universe, they will provide the theoretical basis for interpreting observations of the formation of massive star clusters at high redshift with JWST. What determines the maximum mass of a star? How does stellar feedback affect the formation of individual stars and the formation of massive star clusters and how the answers to these questions evolve with cosmic time. The proposed research will provide high-resolution input to the study of stellar feedback on galaxy formation with a significantly more accurate treatment of the physics, particularly the radiative transfer that is so important for feedback.
NASA Astrophysics Data System (ADS)
Vlasov, Vladimir; Pikovsky, Arkady; Macau, Elbert E. N.
2015-12-01
We analyze star-type networks of phase oscillators by virtue of two methods. For identical oscillators we adopt the Watanabe-Strogatz approach, which gives full analytical description of states, rotating with constant frequency. For nonidentical oscillators, such states can be obtained by virtue of the self-consistent approach in a parametric form. In this case stability analysis cannot be performed, however with the help of direct numerical simulations we show which solutions are stable and which not. We consider this system as a model for a drum orchestra, where we assume that the drummers follow the signal of the leader without listening to each other and the coupling parameters are determined by a geometrical organization of the orchestra.
The dangers of being trigger-happy
NASA Astrophysics Data System (ADS)
Dale, J. E.; Haworth, T. J.; Bressert, E.
2015-06-01
We examine the evidence offered for triggered star formation against the backdrop provided by recent numerical simulations of feedback from massive stars at or below giant molecular cloud sizescales. We compile a catalogue of 67 observational papers, mostly published over the last decade, and examine the signposts most commonly used to infer the presence of triggered star formation. We then determine how well these signposts perform in a recent suite of hydrodynamic simulations of star formation including feedback from O-type stars performed by Dale et al. We find that none of the observational markers improve the chances of correctly identifying a given star as triggered by more than factors of 2 at most. This limits the fidelity of these techniques in interpreting star formation histories. We therefore urge caution in interpreting observations of star formation near feedback-driven structures in terms of triggering.
The central spheroids of Milky Way mass-sized galaxies
NASA Astrophysics Data System (ADS)
Tissera, Patricia B.; Machado, Rubens E. G.; Carollo, Daniela; Minniti, Dante; Beers, Timothy C.; Zoccali, Manuela; Meza, Andres
2018-01-01
We study the properties of the central spheroids located within 10 kpc of the centre of mass of Milky Way mass-sized galaxies simulated in a cosmological context. The simulated central regions are dominated by stars older than 10 Gyr, mostly formed in situ, with a contribution of ∼30 per cent from accreted stars. These stars formed in well-defined starbursts, although accreted stars exhibit sharper and earlier ones. The fraction of accreted stars increases with galactocentric distance, so that at a radius of ∼8-10 kpc, a fraction of ∼40 per cent, on average, is detected. Accreted stars are slightly younger, lower metallicity, and more α-enhanced than in situ stars. A significant fraction of old stars in the central regions come from a few (2-3) massive satellites (∼1010 M⊙). The bulge components receive larger contributions of accreted stars formed in dwarfs smaller than ∼109.5 M⊙. The difference between the distributions of ages and metallicities of old stars is thus linked to the accretion histories - those central regions with a larger fraction of accreted stars are those with contributions from more massive satellites. The kinematical properties of in situ and accreted stars are consistent with the latter being supported by their velocity dispersions, while the former exhibit clear signatures of rotational support. Our simulations demonstrate a range of characteristics, with some systems exhibiting a co-existing bar and spheroid in their central regions, resembling in some respect the central region of the Milky Way.
The 3D Death of a Massive Star
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-07-01
What happens at the very end of a massive star's life, just before its core's collapse? A group led by Sean Couch (California Institute of Technology and Michigan State University) claim to have carried out the first three-dimensional simulations of these final few minutes — revealing new clues about the factors that can lead a massive star to explode in a catastrophic supernova at the end of its life. A Giant Collapses In dying massive stars, in-falling matter bounces off the of collapsed core, creating a shock wave. If the shock wave loses too much energy as it expands into the star, it can stall out — but further energy input can revive it and result in a successful explosion of the star as a core-collapse supernova. In simulations of this process, however, theorists have trouble getting the stars to consistently explode: the shocks often stall out and fail to revive. Couch and his group suggest that one reason might be that these simulations usually start at core collapse assuming spherical symmetry of the progenitor star. Adding Turbulence Couch and his collaborators suspect that the key is in the final minutes just before the star collapses. Models that assume a spherically-symmetric star can't include the effects of convection as the final shell of silicon is burned around the core — and those effects might have a significant impact! To test this hypothesis, the group ran fully 3D simulations of the final three minutes of the life of a 15 solar-mass star, ending with core collapse, bounce, and shock-revival. The outcome was striking: the 3D modeling introduced powerful turbulent convection (with speeds of several hundred km/s!) in the last few minutes of silicon-shell burning. As a result, the initial structure and motions in the star just before core collapse were very different from those in core-collapse simulations that use spherically-symmetric initial conditions. The turbulence was then further amplified during collapse and formation of the shock, generating pressure that aided the shock expansion — which should ultimately help the star explode! The group cautions that their simulations are still very idealized, but these results clearly indicate that the 3D structure of massive stellar cores has an important impact on the core-collapse supernova mechanism. Citation Sean M. Couch et al. 2015 ApJ 808 L21 doi:10.1088/2041-8205/808/1/L21
Angular momentum transport by heat-driven g-modes in slowly pulsating B stars
NASA Astrophysics Data System (ADS)
Townsend, R. H. D.; Goldstein, J.; Zweibel, E. G.
2018-03-01
Motivated by recent interest in the phenomenon of waves transport in massive stars, we examine whether the heat-driven gravity (g) modes excited in slowly pulsating B (SPB) stars can significantly modify the stars' internal rotation. We develop a formalism for the differential torque exerted by g modes, and implement this formalism using the GYRE oscillation code and the MESASTAR stellar evolution code. Focusing first on a 4.21M⊙ model, we simulate 1 000 yr of stellar evolution under the combined effects of the torque due to a single unstable prograde g mode (with an amplitude chosen on the basis of observational constraints), and diffusive angular momentum transport due to convection, overshooting, and rotational instabilities. We find that the g mode rapidly extracts angular momentum from the surface layers, depositing it deeper in the stellar interior. The angular momentum transport is so efficient that by the end of the simulation, the initially non-rotating surface layers are spun in the retrograde direction to ≈ 30 per cent of the critical rate. However, the additional inclusion of magnetic stresses in our simulations almost completely inhibits this spin-up. Expanding our simulations to cover the whole instability strip, we show that the same general behaviour is seen in all SPB stars. After providing some caveats to contextualize our results, we hypothesize that the observed slower surface rotation of SPB stars (as compared to other B-type stars) may be the direct consequence of the angular momentum transport that our simulations demonstrate.
Preliminary Design and Analysis of the GIFTS Instrument Pointing System
NASA Technical Reports Server (NTRS)
Zomkowski, Paul P.
2003-01-01
The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Instrument is the next generation spectrometer for remote sensing weather satellites. The GIFTS instrument will be used to perform scans of the Earth s atmosphere by assembling a series of field-of- views (FOV) into a larger pattern. Realization of this process is achieved by step scanning the instrument FOV in a contiguous fashion across any desired portion of the visible Earth. A 2.3 arc second pointing stability, with respect to the scanning instrument, must be maintained for the duration of the FOV scan. A star tracker producing attitude data at 100 Hz rate will be used by the autonomous pointing algorithm to precisely track target FOV s on the surface of the Earth. The main objective is to validate the pointing algorithm in the presence of spacecraft disturbances and determine acceptable disturbance limits from expected noise sources. Proof of concept validation of the pointing system algorithm is carried out with a full system simulation developed using Matlab Simulink. Models for the following components function within the full system simulation: inertial reference unit (IRU), attitude control system (ACS), reaction wheels, star tracker, and mirror controller. With the spacecraft orbital position and attitude maintained to within specified limits the pointing algorithm receives quaternion, ephemeris, and initialization data that are used to construct the required mirror pointing commands at a 100 Hz rate. This comprehensive simulation will also aid in obtaining a thorough understanding of spacecraft disturbances and other sources of pointing system errors. Parameter sensitivity studies and disturbance analysis will be used to obtain limits of operability for the GIFTS instrument. The culmination of this simulation development and analysis will be used to validate the specified performance requirements outlined for this instrument.
MOCCA code for star cluster simulation: comparison with optical observations using COCOA
NASA Astrophysics Data System (ADS)
Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Olech, Arkadiusz; Hypki, Arkadiusz
2016-02-01
We introduce and present preliminary results from COCOA (Cluster simulatiOn Comparison with ObservAtions) code for a star cluster after 12 Gyr of evolution simulated using the MOCCA code. The COCOA code is being developed to quickly compare results of numerical simulations of star clusters with observational data. We use COCOA to obtain parameters of the projected cluster model. For comparison, a FITS file of the projected cluster was provided to observers so that they could use their observational methods and techniques to obtain cluster parameters. The results show that the similarity of cluster parameters obtained through numerical simulations and observations depends significantly on the quality of observational data and photometric accuracy.
Simulating the Birth of Massive Star Clusters: Is Destruction Inevitable?
NASA Astrophysics Data System (ADS)
Rosen, Anna
2013-10-01
Very early in its operation, the Hubble Space Telescope {HST} opened an entirely new frontier: study of the demographics and properties of star clusters far beyond the Milky Way. However, interpretation of HST's observations has proven difficult, and has led to the development of two conflicting models. One view is that most massive star clusters are disrupted during their infancy by feedback from newly formed stars {i.e., "infant mortality"}, independent of cluster mass or environment. The other model is that most star clusters survive their infancy and are disrupted later by mass-dependent dynamical processes. Since observations at present have failed to discriminate between these views, we propose a theoretical investigation to provide new insight. We will perform radiation-hydrodynamic simulations of the formation of massive star clusters, including for the first time a realistic treatment of the most important stellar feedback processes. These simulations will elucidate the physics of stellar feedback, and allow us to determine whether cluster disruption is mass-dependent or -independent. We will also use our simulations to search for observational diagnostics that can distinguish bound from unbound clusters, and to predict how cluster disruption affects the cluster luminosity function in a variety of galactic environments.
Rotation in young massive star clusters
NASA Astrophysics Data System (ADS)
Mapelli, Michela
2017-05-01
Hydrodynamical simulations of turbulent molecular clouds show that star clusters form from the hierarchical merger of several sub-clumps. We run smoothed-particle hydrodynamics simulations of turbulence-supported molecular clouds with mass ranging from 1700 to 43 000 M⊙. We study the kinematic evolution of the main cluster that forms in each cloud. We find that the parent gas acquires significant rotation, because of large-scale torques during the process of hierarchical assembly. The stellar component of the embedded star cluster inherits the rotation signature from the parent gas. Only star clusters with final mass < few × 100 M⊙ do not show any clear indication of rotation. Our simulated star clusters have high ellipticity (˜0.4-0.5 at t = 4 Myr) and are subvirial (Qvir ≲ 0.4). The signature of rotation is stronger than radial motions due to subvirial collapse. Our results suggest that rotation is common in embedded massive (≳1000 M⊙) star clusters. This might provide a key observational test for the hierarchical assembly scenario.
NASA Astrophysics Data System (ADS)
Mayer, L.
2012-07-01
We review progress in cosmological SPH simulations of disk galaxy formation. We discuss the role of numerical resolution and sub-grid recipes of star formation and feedback from supernovae, higlighting the important role of a high star formation density threshold comparable to that of star forming molecular gas phase. Two recent succesfull examples, in simulations of the formation of gas-rich bulgeless dwarf galaxies and in simulations of late-type spirals (the ERIS simulations), are presented and discussed. In the ERIS simulations, already in the progenitors at z = 3 the resolution is above the threshold indicated by previous idealized numerical experiments as necessary to minimize numerical angular momentum loss (Kaufmann et al. 2007). A high star formation density threshold maintains an inhomogeneous interstellar medium, where star formation is clustered, and thus the local effect of supernovae feedback is enhanced. As a result, outflows are naturally generated removing 2/3 of the baryons in galaxies with Vvir˜50 km/s and ˜ 30% of the baryons in galaxies with (Vvir ˜ 150 km/s). Low angular momentum baryons are preferentially removed since the strongest bursts of star formation occur predominantly near the center, especially after a merger event. This produces pure exponential disks or small bulges depending on galaxy mass, and, correspondingly, slowly rising or nearly flat rotation curves that match those of observed disk galaxies. In dwarfs the rapid mass removal by outflows generates a core-like distribution in the dark matter. Furthermore, contrary to the common picture, in the ERIS spiral galaxies a bar/pseudobulge forms rapidly, and not secularly, as a result of mergers and interactions at high-z.
Gartner, Thomas E; Jayaraman, Arthi
2018-01-17
In this paper, we apply molecular simulation and liquid state theory to uncover the structure and thermodynamics of homopolymer blends of the same chemistry and varying chain architecture in the presence of explicit solvent species. We use hybrid Monte Carlo (MC)/molecular dynamics (MD) simulations in the Gibbs ensemble to study the swelling of ∼12 000 g mol -1 linear, cyclic, and 4-arm star polystyrene chains in toluene. Our simulations show that the macroscopic swelling response is indistinguishable between the various architectures and matches published experimental data for the solvent annealing of linear polystyrene by toluene vapor. We then use standard MD simulations in the NPT ensemble along with polymer reference interaction site model (PRISM) theory to calculate effective polymer-solvent and polymer-polymer Flory-Huggins interaction parameters (χ eff ) in these systems. As seen in the macroscopic swelling results, there are no significant differences in the polymer-solvent and polymer-polymer χ eff between the various architectures. Despite similar macroscopic swelling and effective interaction parameters between various architectures, the pair correlation function between chain centers-of-mass indicates stronger correlations between cyclic or star chains in the linear-cyclic blends and linear-star blends, compared to linear chain-linear chain correlations. Furthermore, we note striking similarities in the chain-level correlations and the radius of gyration of cyclic and 4-arm star architectures of identical molecular weight. Our results indicate that the cyclic and star chains are 'smaller' and 'harder' than their linear counterparts, and through comparison with MD simulations of blends of soft spheres with varying hardness and size we suggest that these macromolecular characteristics are the source of the stronger cyclic-cyclic and star-star correlations.
MINERVA: Small Planets from Small Telescopes
NASA Astrophysics Data System (ADS)
Wittenmyer, Robert A.; Johnson, John Asher; Wright, Jason; McCrady, Nate; Swift, Jonathan; Bottom, Michael; Plavchan, Peter; Riddle, Reed; Muirhead, Philip S.; Herzig, Erich; Myles, Justin; Blake, Cullen H.; Eastman, Jason; Beatty, Thomas G.; Lin, Brian; Zhao, Ming; Gardner, Paul; Falco, Emilio; Criswell, Stephen; Nava, Chantanelle; Robinson, Connor; Hedrick, Richard; Ivarsen, Kevin; Hjelstrom, Annie; de Vera, Jon; Szentgyorgyi, Andrew
2015-09-01
The Kepler mission has shown that small planets are extremely common. It is likely that nearly every star in the sky hosts at least one rocky planet. We just need to look hard enough-but this requires vast amounts of telescope time. MINERVA (MINiature Exoplanet Radial Velocity Array) is a dedicated exoplanet observatory with the primary goal of discovering rocky, Earth-like planets orbiting in the habitable zone of bright, nearby stars. The MINERVA team is a collaboration among UNSW Australia, Harvard-Smithsonian Center for Astrophysics, Penn State University, University of Montana, and the California Institute of Technology. The four-telescope MINERVA array will be sited at the F.L. Whipple Observatory on Mt Hopkins in Arizona, USA. Full science operations will begin in mid-2015 with all four telescopes and a stabilised spectrograph capable of high-precision Doppler velocity measurements. We will observe ~100 of the nearest, brightest, Sun-like stars every night for at least five years. Detailed simulations of the target list and survey strategy lead us to expect new low-mass planets.
NASA Astrophysics Data System (ADS)
Ziosi, Brunetto Marco; Mapelli, Michela; Branchesi, Marica; Tormen, Giuseppe
2014-07-01
In this paper, we study the formation and dynamical evolution of black hole-black hole (BH-BH) binaries in young star clusters (YSCs), by means of N-body simulations. The simulations include metallicity-dependent recipes for stellar evolution and stellar winds, and have been run for three different metallicities (Z = 0.01, 0.1 and 1 Z⊙). Following recent theoretical models of wind mass-loss and core-collapse supernovae, we assume that the mass of the stellar remnants depends on the metallicity of the progenitor stars. We find that BH-BH binaries form efficiently because of dynamical exchanges: in our simulations, we find about 10 times more BH-BH binaries than double neutron star binaries. The simulated BH-BH binaries form earlier in metal-poor YSCs, which host more massive black holes (BHs) than in metal-rich YSCs. The simulated BH-BH binaries have very large chirp masses (up to 80 M⊙), because the BH mass is assumed to depend on metallicity, and because BHs can grow in mass due to the merger with stars. The simulated BH-BH binaries span a wide range of orbital periods (10-3-107 yr), and only a small fraction of them (0.3 per cent) is expected to merge within a Hubble time. We discuss the estimated merger rate from our simulations and the implications for Advanced VIRGO and LIGO.
2011-11-10
Scientists are simulating how the very first stars in our universe were born. The stars we see today formed out of collapsing clouds of gas and dust. In the very early universe, however, the stars had fewer ingredients available.
The Physical Origin of Long Gas Depletion Times in Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.
2017-08-18
We present a model that elucidates why gas depletion times in galaxies are long compared to the time scales of the processes driving the evolution of the interstellar medium. We show that global depletion times are not set by any "bottleneck" in the process of gas evolution towards the star-forming state. Instead, depletion times are long because star-forming gas converts only a small fraction of its mass into stars before it is dispersed by dynamical and feedback processes. Thus, complete depletion requires that gas transitions between star-forming and non-star-forming states multiple times. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in galaxy simulations. In particular, the model explains the mechanism by which feedback self-regulates star formation rate in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolatedmore » $$L_*$$-sized disk galaxy simulation that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is close to linear on kiloparsec scales, even though a non-linear relation is adopted in simulation cells. This difference is due to stellar feedback, which breaks the self-similar scaling of the gas density PDF with the average gas surface density.« less
ERIC Educational Resources Information Center
Noone, E. T., Jr.
1991-01-01
Presented is an activity in which probability and percents are taught using a basketball computer simulation. Computer programs that replicate the free-throw accuracy of college and professional stars and allow students to compete with those stars are included. (KR)
Exploring simulated early star formation in the context of the ultrafaint dwarf galaxies
NASA Astrophysics Data System (ADS)
Corlies, Lauren; Johnston, Kathryn V.; Wise, John H.
2018-04-01
Ultrafaint dwarf galaxies (UFDs) are typically assumed to have simple, stellar populations with star formation ending at reionization. Yet as the observations of these galaxies continue to improve, their star formation histories (SFHs) are revealed to be more complicated than previously thought. In this paper, we study how star formation, chemical enrichment, and mixing proceed in small, dark matter haloes at early times using a high-resolution, cosmological, hydrodynamical simulation. The goals are to inform the future use of analytic models and to explore observable properties of the simulated haloes in the context of UFD data. Specifically, we look at analytic approaches that might inform metal enrichment within and beyond small galaxies in the early Universe. We find that simple assumptions for modelling the extent of supernova-driven winds agree with the simulation on average, whereas inhomogeneous mixing and gas flows have a large effect on the spread in simulated stellar metallicities. In the context of the UFDs, this work demonstrates that simulations can form haloes with a complex SFH and a large spread in the metallicity distribution function within a few hundred Myr in the early Universe. In particular, bursty and continuous star formation are seen in the simulation and both scenarios have been argued from the data. Spreads in the simulated metallicities, however, remain too narrow and too metal-rich when compared to the UFDs. Future work is needed to help reduce these discrepancies and advance our interpretation of the data.
NASA Astrophysics Data System (ADS)
Bonatto, C.; Lima, E. F.; Bica, E.
2012-04-01
Context. Usually, important parameters of young, low-mass star clusters are very difficult to obtain by means of photometry, especially when differential reddening and/or binaries occur in large amounts. Aims: We present a semi-analytical approach (ASAmin) that, when applied to the Hess diagram of a young star cluster, is able to retrieve the values of mass, age, star-formation spread, distance modulus, foreground and differential reddening, and binary fraction. Methods: The global optimisation method known as adaptive simulated annealing (ASA) is used to minimise the residuals between the observed and simulated Hess diagrams of a star cluster. The simulations are realistic and take the most relevant parameters of young clusters into account. Important features of the simulations are a normal (Gaussian) differential reddening distribution, a time-decreasing star-formation rate, the unresolved binaries, and the smearing effect produced by photometric uncertainties on Hess diagrams. Free parameters are cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and binary fraction. Results: Tests with model clusters built with parameters spanning a broad range of values show that ASAmin retrieves the input values with a high precision for cluster mass, distance modulus, and foreground reddening, but they are somewhat lower for the remaining parameters. Given the statistical nature of the simulations, several runs should be performed to obtain significant convergence patterns. Specifically, we find that the retrieved (absolute minimum) parameters converge to mean values with a low dispersion as the Hess residuals decrease. When applied to actual young clusters, the retrieved parameters follow convergence patterns similar to the models. We show how the stochasticity associated with the early phases may affect the results, especially in low-mass clusters. This effect can be minimised by averaging out several twin clusters in the simulated Hess diagrams. Conclusions: Even for low-mass star clusters, ASAmin is sensitive to the values of cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and to a lesser degree, binary fraction. Compared with simpler approaches, including binaries, a decaying star-formation rate, and a normally distributed differential reddening appears to yield more constrained parameters, especially the mass, age, and distance from the Sun. A robust determination of cluster parameters may have a positive impact on many fields. For instance, age, mass, and binary fraction are important for establishing the dynamical state of a cluster or for deriving a more precise star-formation rate in the Galaxy.
Simulating Shock Triggered Star Formation with AstroBEAR2.0
NASA Astrophysics Data System (ADS)
Li, Shule; Frank, Adam; Blackman, Eric
2013-07-01
Star formation can be triggered by the compression from shocks running over stable clouds. Triggered star formation is a favored explanation for the traces of SLRI's in our solar system. Previous research has shown that when parameters such as shock speed are within a certain range, the gravitational collapse of otherwise stable, dense cloud cores is possible. However, these studies usually focus on the precursors of star formation, and the conditions for the triggering. We use AstroBEAR2.0 code to simulate the collapse and subsequent evolution of a stable Bonnor-Ebert cloud by an incoming shock. Through our simulations, we show that interesting physics happens when the newly formed star interacts with the cloud residue and the post-shock flow. We identify these interactions as controlled by the initial conditions of the triggering and study the flow pattern as well as the evolution of important physics quantities such as accretion rate and angular momentum.
NASA Astrophysics Data System (ADS)
Portegies Zwart, S. F.; Chen, H.-C.
2008-06-01
We reconstruct the initial two-body relaxation time at the half mass radius for a sample of young ⪉ 300 Myr star clusters in the Large Magellanic cloud. We achieve this by simulating star clusters with 12288 to 131072 stars using direct N-body integration. The equations of motion of all stars are calculated with high precision direct N-body simulations which include the effects of the evolution of single stars and binaries. We find that the initial relaxation times of the sample of observed clusters in the Large Magellanic Cloud ranges from about 200 Myr to about 2 Gyr. The reconstructed initial half-mass relaxation times for these clusters have a much narrower distribution than the currently observed distribution, which ranges over more than two orders of magnitude.
NASA Technical Reports Server (NTRS)
Kiang, N. Y.; Jablonski, Emma R.; Way, Michael J.; Del Genio, Anthony; Roberge, Aki
2015-01-01
The mean surface temperature of a planet is now acknowledged as insufficient to surmise its full potential habitability. Advancing our understanding requires exploration with 3D general circulation models (GCMs), which can take into account how gradients and fluxes across a planet's surface influence the distribution of heat, clouds, and the potential for heterogeneous distribution of liquid water. Here we present 3D GCM simulations of the effects of alternative stellar spectra, instellation, model resolution, and ocean heat transport, on the simulated distribution of heat and moisture of an Earth-like planet (ELP).
NASA Astrophysics Data System (ADS)
Sagunski, Laura; Zhang, Jun; Johnson, Matthew C.; Lehner, Luis; Sakellariadou, Mairi; Liebling, Steven L.; Palenzuela, Carlos; Neilsen, David
2018-03-01
Observations of gravitational radiation from compact binary systems provide an unprecedented opportunity to test general relativity in the strong field dynamical regime. In this paper, we investigate how future observations of gravitational radiation from binary neutron star mergers might provide constraints on finite-range forces from a universally coupled massive scalar field. Such scalar degrees of freedom (d.o.f.) are a characteristic feature of many extensions of general relativity. For concreteness, we work in the context of metric f (R ) gravity, which is equivalent to general relativity and a universally coupled scalar field with a nonlinear potential whose form is fixed by the choice of f (R ). In theories where neutron stars (or other compact objects) obtain a significant scalar charge, the resulting attractive finite-range scalar force has implications for both the inspiral and merger phases of binary systems. We first present an analysis of the inspiral dynamics in Newtonian limit, and forecast the constraints on the mass of the scalar and charge of the compact objects for the Advanced LIGO gravitational wave observatory. We then perform a comparative study of binary neutron star mergers in general relativity with those of a one-parameter model of f (R ) gravity using fully relativistic hydrodynamical simulations. These simulations elucidate the effects of the scalar on the merger and postmerger dynamics. We comment on the utility of the full waveform (inspiral, merger, postmerger) to probe different regions of parameter space for both the particular model of f (R ) gravity studied here and for finite-range scalar forces more generally.
Stellar granulation as the source of high-frequency flicker in Kepler light curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cranmer, Steven R.; Saar, Steven H.; Bastien, Fabienne A.
2014-02-01
A large fraction of cool, low-mass stars exhibit brightness fluctuations that arise from a combination of convective granulation, acoustic oscillations, magnetic activity, and stellar rotation. Much of the short-timescale variability takes the form of stochastic noise, whose presence may limit the progress of extrasolar planet detection and characterization. In order to lay the groundwork for extracting useful information from these quasi-random signals, we focus on the origin of the granulation-driven component of the variability. We apply existing theoretical scaling relations to predict the star-integrated variability amplitudes for 508 stars with photometric light curves measured by the Kepler mission. We alsomore » derive an empirical correction factor that aims to account for the suppression of convection in F-dwarf stars with magnetic activity and shallow convection zones. So that we can make predictions of specific observational quantities, we performed Monte Carlo simulations of granulation light curves using a Lorentzian power spectrum. These simulations allowed us to reproduce the so-called flicker floor (i.e., a lower bound in the relationship between the full light-curve range and power in short-timescale fluctuations) that was found in the Kepler data. The Monte Carlo model also enabled us to convert the modeled fluctuation variance into a flicker amplitude directly comparable with observations. When the magnetic suppression factor described above is applied, the model reproduces the observed correlation between stellar surface gravity and flicker amplitude. Observationally validated models like these provide new and complementary evidence for a possible impact of magnetic activity on the properties of near-surface convection.« less
NASA Astrophysics Data System (ADS)
Peng, Bo; Blackman, Eric
2018-01-01
Closely interacting binary stars can incur Common Envelope Evolution (CEE) when at least one of the stars enters a giant phase. The extent to which CEE leads to envelope ejection and how tight the binaries become after CEE as a function of the mass and type of the companion stars has a broad range of phenomenological implications for both low mass and high mass binary stellar systems. Global simulations of CEE are emerging, but to understand the underlying physics of CEE and make connections with analytic formalisms, it helpful to employ reduced numerical models. Here we present results and analyses from simulations of gravitational drag using a Cartesian approach. Using AstroBEAR, a parallelized hydrodynamic/MHD simulation code, we simulate a system in which a 0.1 MSun main sequence secondary star is embedded in gas characteristic of the Envelope of a 3 MSun AGB star. The relative motion of the secondary star against the stationary envelope is represented by a supersonic wind that immerses a point particle, which is initially at rest, yet gradually dragged by the wind. Our approach differs from previous related wind-tunnel work by MacLeod et al. (2015,2017) in that we allow the particle to be displaced, offering a direct measurement of the drag force from its motion. We verify the validity of our method, extract the accretion rate of material in the wake via numerical integration, and compare the results between our method and previous work. We also use the results to help constrain the efficiency parameter in widely used analytic parameterizations of CEE.
Simulations of the Neutron Star Crust
NASA Astrophysics Data System (ADS)
Schramm, Stefan; Nandi, Rana
The properties of the neutron star crust are crucially important for many physical processes occurring in the star. For instance, the crustal transport coefficients define the temperature evolution of accreting stars after bursts, which can be compared to observation. Furthermore, the structure of the inner crust can modify the neutrino transport through the matter considerably, significantly impacting the dynamics of supernova explosions. Therefore, we perform numerical studies of the inner crust, and among other aspects, investigate the dependence of the pasta phase on the isospin properties of the nuclear interactions. To this end we developed an efficient computer code to simulate the inner and outer crust using molecular dynamics techniques. First results of the simulations and insights into the crust-core transition are presented.
Research on techniques for computer three-dimensional simulation of satellites and night sky
NASA Astrophysics Data System (ADS)
Yan, Guangwei; Hu, Haitao
2007-11-01
To study space attack-defense technology, a simulation of satellites is needed. We design and implement a 3d simulating system of satellites. The satellites are rendered under the Night sky background. The system structure is as follows: one computer is used to simulate the orbital of satellites, the other computers are used to render 3d simulation scene. To get a realistic effect, a three-channel multi-projector display system is constructed. We use MultiGen Creator to construct satellite and star models. We use MultiGen Distributed Vega to render the three-channel scene. There are one master and three slaves. The master controls the three slaves to render three channels separately. To get satellites' positions and attitudes, the master communicates with the satellite orbit simulator based on TCP/IP protocol. Then it calculates the observer's position, the satellites' position, the moon's and the sun's position and transmits the data to the slaves. To get a smooth orbit of target satellites, an orbit prediction method is used. Because the target satellite data packets and the attack satellite data packets cannot keep synchronization in the network, a target satellite dithering phenomenon will occur when the scene is rendered. To resolve this problem, an anti-dithering algorithm is designed. To render Night sky background, a file which stores stars' position and brightness data is used. According to the brightness of each star, the stars are classified into different magnitude. The star model is scaled according to the magnitude. All the stars are distributed on a celestial sphere. Experiments show, the whole system can run correctly, and the frame rate can reach 30Hz. The system can be used in a space attack-defense simulation field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Hao; Norman, Michael L.; O’Shea, Brian W.
2016-06-01
We present results on the formation of Population III (Pop III) stars at redshift 7.6 from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich radiation transport hydrodynamics cosmological adaptive-mesh refinement simulations of high-redshift galaxy formation performed on the Blue Waters supercomputer. In a survey volume of about 220 comoving Mpc{sup 3}, we found 14 Pop III galaxies with recent star formation. The surprisingly late formation of Pop III stars is possible due to two factors: (i) the metal enrichment process is local and slow, leaving plenty of pristine gas to exist in the vast volume; and (ii) strongmore » Lyman–Werner radiation from vigorous metal-enriched star formation in early galaxies suppresses Pop III formation in (“not so”) small primordial halos with mass less than ∼3 × 10{sup 7} M {sub ⊙}. We quantify the properties of these Pop III galaxies and their Pop III star formation environments. We look for analogs to the recently discovered luminous Ly α emitter CR7, which has been interpreted as a Pop III star cluster within or near a metal-enriched star-forming galaxy. We find and discuss a system similar to this in some respects, however, the Pop III star cluster is far less massive and luminous than CR7 is inferred to be.« less
Ionization-induced star formation - IV. Triggering in bound clusters
NASA Astrophysics Data System (ADS)
Dale, J. E.; Ercolano, B.; Bonnell, I. A.
2012-12-01
We present a detailed study of star formation occurring in bound star-forming clouds under the influence of internal ionizing feedback from massive stars across a spectrum of cloud properties. We infer which objects are triggered by comparing our feedback simulations with control simulations in which no feedback was present. We find that feedback always results in a lower star formation efficiency and usually but not always results in a larger number of stars or clusters. Cluster mass functions are not strongly affected by feedback, but stellar mass functions are biased towards lower masses. Ionization also affects the geometrical distribution of stars in ways that are robust against projection effects, but may make the stellar associations more or less subclustered depending on the background cloud environment. We observe a prominent pillar in one simulation which is the remains of an accretion flow feeding the central ionizing cluster of its host cloud and suggest that this may be a general formation mechanism for pillars such as those observed in M16. We find that the association of stars with structures in the gas such as shells or pillars is a good but by no means foolproof indication that those stars have been triggered and we conclude overall that it is very difficult to deduce which objects have been induced to form and which formed spontaneously simply from observing the system at a single time.
General relativistic viscous hydrodynamics of differentially rotating neutron stars
NASA Astrophysics Data System (ADS)
Shibata, Masaru; Kiuchi, Kenta; Sekiguchi, Yu-ichiro
2017-04-01
Employing a simplified version of the Israel-Stewart formalism for general-relativistic shear-viscous hydrodynamics, we perform axisymmetric general-relativistic simulations for a rotating neutron star surrounded by a massive torus, which can be formed from differentially rotating stars. We show that with our choice of a shear-viscous hydrodynamics formalism, the simulations can be stably performed for a long time scale. We also demonstrate that with a possibly high shear-viscous coefficient, not only viscous angular momentum transport works but also an outflow could be driven from a hot envelope around the neutron star for a time scale ≳100 ms with the ejecta mass ≳10-2 M⊙ , which is comparable to the typical mass for dynamical ejecta of binary neutron-star mergers. This suggests that massive neutron stars surrounded by a massive torus, which are typical outcomes formed after the merger of binary neutron stars, could be the dominant source for providing neutron-rich ejecta, if the effective shear viscosity is sufficiently high, i.e., if the viscous α parameter is ≳10-2. The present numerical result indicates the importance of a future high-resolution magnetohydrodynamics simulation that is the unique approach to clarify the viscous effect in the merger remnants of binary neutron stars by the first-principle manner.
Exposure Time Optimization for Highly Dynamic Star Trackers
Wei, Xinguo; Tan, Wei; Li, Jian; Zhang, Guangjun
2014-01-01
Under highly dynamic conditions, the star-spots on the image sensor of a star tracker move across many pixels during the exposure time, which will reduce star detection sensitivity and increase star location errors. However, this kind of effect can be compensated well by setting an appropriate exposure time. This paper focuses on how exposure time affects the star tracker under highly dynamic conditions and how to determine the most appropriate exposure time for this case. Firstly, the effect of exposure time on star detection sensitivity is analyzed by establishing the dynamic star-spot imaging model. Then the star location error is deduced based on the error analysis of the sub-pixel centroiding algorithm. Combining these analyses, the effect of exposure time on attitude accuracy is finally determined. Some simulations are carried out to validate these effects, and the results show that there are different optimal exposure times for different angular velocities of a star tracker with a given configuration. In addition, the results of night sky experiments using a real star tracker agree with the simulation results. The summarized regularities in this paper should prove helpful in the system design and dynamic performance evaluation of the highly dynamic star trackers. PMID:24618776
A Local Laboratory for Studying Positive Feedback from Supermassive Black Holes
NASA Astrophysics Data System (ADS)
Croft, Steve
2016-10-01
AGN feedback is a critical regulator of galaxy growth. As well as curtailing star formation in diffuse, hot gas, it is increasingly understood to sometimes enhance star formation in the clumpy ISM through shock-induced collapse of clouds. Simulations have shown that such positive feedback may play a significant role in determining the stellar populations of galaxies. Minkowsi's Object (MO) provides an excellent local laboratory to probe this poorly-studied process in detail. The detection of a Type II supernova in MO (unexpected given the low mass of MO) suggests that jet-induced star formation may overproduce massive stars, and that models of the initial mass function in such systems may need to be revised. Recent results also suggest that star formation efficiency is enhanced in MO. Using WFC3, we will obtain morphologies, SEDs, H-a luminosities, equivalent widths, sizes, and population synthesis models of star forming regions across MO in order to address these questions, critical for understanding not just this single object, but the general process: 1. Does jet induced star formation change the luminosities and initial mass functions of star clusters? 2. What do the age gradients of the star clusters tell us about the process of conversion of gas (HI, CO) into stars as the radio jet progressed through the parent cloud? Does this match numerical simulations? 3. By using observations to refine simulations, what can we learn about intrinsic properties of these kinds of radio jets, such as propagation speed, age, pressure and jet energy flux?
Baseline metal enrichment from Population III star formation in cosmological volume simulations
NASA Astrophysics Data System (ADS)
Jaacks, Jason; Thompson, Robert; Finkelstein, Steven L.; Bromm, Volker
2018-04-01
We utilize the hydrodynamic and N-body code GIZMO coupled with our newly developed sub-grid Population III (Pop III) Legacy model, designed specifically for cosmological volume simulations, to study the baseline metal enrichment from Pop III star formation at z > 7. In this idealized numerical experiment, we only consider Pop III star formation. We find that our model Pop III star formation rate density (SFRD), which peaks at ˜ 10- 3 M⊙ yr- 1 Mpc- 1 near z ˜ 10, agrees well with previous numerical studies and is consistent with the observed estimates for Pop II SFRDs. The mean Pop III metallicity rises smoothly from z = 25 to 7, but does not reach the critical metallicity value, Zcrit = 10-4 Z⊙, required for the Pop III to Pop II transition in star formation mode until z ≃ 7. This suggests that, while individual haloes can suppress in situ Pop III star formation, the external enrichment is insufficient to globally terminate Pop III star formation. The maximum enrichment from Pop III star formation in star-forming dark matter haloes is Z ˜ 10-2 Z⊙, whereas the minimum found in externally enriched haloes is Z ≳ 10-7 Z⊙. Finally, mock observations of our simulated IGM enriched with Pop III metals produce equivalent widths similar to observations of an extremely metal-poor damped Lyman alpha system at z = 7.04, which is thought to be enriched by Pop III star formation only.
Star tracking method based on multiexposure imaging for intensified star trackers.
Yu, Wenbo; Jiang, Jie; Zhang, Guangjun
2017-07-20
The requirements for the dynamic performance of star trackers are rapidly increasing with the development of space exploration technologies. However, insufficient knowledge of the angular acceleration has largely decreased the performance of the existing star tracking methods, and star trackers may even fail to track under highly dynamic conditions. This study proposes a star tracking method based on multiexposure imaging for intensified star trackers. The accurate estimation model of the complete motion parameters, including the angular velocity and angular acceleration, is established according to the working characteristic of multiexposure imaging. The estimation of the complete motion parameters is utilized to generate the predictive star image accurately. Therefore, the correct matching and tracking between stars in the real and predictive star images can be reliably accomplished under highly dynamic conditions. Simulations with specific dynamic conditions are conducted to verify the feasibility and effectiveness of the proposed method. Experiments with real starry night sky observation are also conducted for further verification. Simulations and experiments demonstrate that the proposed method is effective and shows excellent performance under highly dynamic conditions.
Simulations of Supernova Shock Breakout
NASA Astrophysics Data System (ADS)
Frey, Lucille; Fryer, C. L.; Hungerford, A. L.
2009-01-01
Massive stars at the end of their lives release huge amounts of energy in supernova explosions which can be detected across cosmological distances. Even if prior observations exist, such distances make supernova progenitors difficult to identify. Very early observations of supernovae give us a rare view of these short-lived stars immediately before core collapse. Several recently observed X-ray and UV bursts associated with supernova have been interpreted as shock breakout observations. When the radiation-dominated shock wave from core collapse approaches the stellar surface, the optical depth of the plasma ahead of the shock decreases until the radiation can escape in a burst. If a dense wind is present, the shock breaks out beyond the stellar surface. Occurring days or weeks before the optical light from radioactive decay peaks, shock breakout radiation can be used to determine the radius of the progenitor star or its recent mass loss history. Whether the durations and spectra of the observed X-ray and UV bursts match those expected for shock breakout is currently being debated. A similar phenomenon would occur when the shockwave interacts with gas shells such as those ejected by luminous blue variable outbursts. Full radiation-hydrodynamics calculations are necessary to reproduce the behavior of the radiation-dominated shock and shock breakout. We use a radiation-hydrodynamics code with adaptive mesh refinement to follow the motion of the shock wave with high resolution. We run a suite of one dimensional simulations using binary and single progenitors with a range of mass loss histories, wind velocities and explosion energies. These simulations will better constrain the properties of the progenitor star and its environment that can be derived from shock breakout observations. This work was funded in part under the auspices of the U.S. Dept. of Energy, and supported by its contract W-7405-ENG-36 to Los Alamos National Laboratory.
NASA Astrophysics Data System (ADS)
Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W.
2016-05-01
Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.
Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W
2016-05-06
Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.
SED16 autonomous star tracker night sky testing
NASA Astrophysics Data System (ADS)
Foisneau, Thierry; Piriou, Véronique; Perrimon, Nicolas; Jacob, Philippe; Blarre, Ludovic; Vilaire, Didier
2017-11-01
The SED16 is an autonomous multi-missions star tracker which delivers three axis satellite attitude in an inertial reference frame and the satellite angular velocity with no prior information. The qualification process of this star sensor includes five validation steps using optical star simulator, digitized image simulator and a night sky tests setup. The night sky testing was the final step of the qualification process during which all the functions of the star tracker were used in almost nominal conditions : Autonomous Acquisition of the attitude, Autonomous Tracking of ten stars. These tests were performed in Calern in the premises of the OCA (Observatoire de la Cote d'Azur). The test set-up and the test results are described after a brief review of the sensor main characteristics and qualification process.
A robust star identification algorithm with star shortlisting
NASA Astrophysics Data System (ADS)
Mehta, Deval Samirbhai; Chen, Shoushun; Low, Kay Soon
2018-05-01
A star tracker provides the most accurate attitude solution in terms of arc seconds compared to the other existing attitude sensors. When no prior attitude information is available, it operates in "Lost-In-Space (LIS)" mode. Star pattern recognition, also known as star identification algorithm, forms the most crucial part of a star tracker in the LIS mode. Recognition reliability and speed are the two most important parameters of a star pattern recognition technique. In this paper, a novel star identification algorithm with star ID shortlisting is proposed. Firstly, the star IDs are shortlisted based on worst-case patch mismatch, and later stars are identified in the image by an initial match confirmed with a running sequential angular match technique. The proposed idea is tested on 16,200 simulated star images having magnitude uncertainty, noise stars, positional deviation, and varying size of the field of view. The proposed idea is also benchmarked with the state-of-the-art star pattern recognition techniques. Finally, the real-time performance of the proposed technique is tested on the 3104 real star images captured by a star tracker SST-20S currently mounted on a satellite. The proposed technique can achieve an identification accuracy of 98% and takes only 8.2 ms for identification on real images. Simulation and real-time results depict that the proposed technique is highly robust and achieves a high speed of identification suitable for actual space applications.
The detection of planetary systems from Space Station - A star observation strategy
NASA Technical Reports Server (NTRS)
Mascy, Alfred C.; Nishioka, Ken; Jorgensen, Helen; Swenson, Byron L.
1987-01-01
A 10-20-yr star-observation program for the Space Station Astrometric Telescope Facility (ATF) is proposed and evaluated by means of computer simulations. The primary aim of the program is to detect stars with planetary systems by precise determination of their motion relative to reference stars. The designs proposed for the ATF are described and illustrated; the basic parameters of the 127 stars selected for the program are listed in a table; spacecraft and science constraints, telescope slewing rates, and the possibility of limiting the program sample to stars near the Galactic equator are discussed; and the effects of these constraints are investigated by simulating 1 yr of ATF operation. Viewing all sky regions, the ATF would have 81-percent active viewing time, observing each star about 200 times (56 h) per yr; only small decrements in this performance would result from limiting the viewing field.
NASA Astrophysics Data System (ADS)
Berchem, J.; Marchaudon, A.; Bosqued, J.; Escoubet, C. P.; Dunlop, M.; Owen, C. J.; Reme, H.; Balogh, A.; Carr, C.; Fazakerley, A. N.; Cao, J. B.
2005-12-01
Synoptic measurements from the DOUBLE STAR and CLUSTER spacecraft offer a unique opportunity to evaluate global models in simulating the complex topology and dynamics of the dayside merging region. We compare observations from the DOUBLE STAR TC-1 and CLUSTER spacecraft on May 8, 2004 with the predictions from a three-dimensional magnetohydrodynamic (MHD) simulation that uses plasma and magnetic field parameters measured upstream of the bow shock by the WIND spacecraft. Results from the global simulation are consistent with the large-scale features observed by CLUSTER and TC-1. We discuss topological changes and plasma flows at the dayside magnetospheric boundary inferred from the simulation results. The simulation shows that the DOUBLE STAR spacecraft passed through the dawn side merging region as the IMF rotated. In particular, the simulation indicates that at times TC-1 was very close to the merging region. In addition, we found that the bifurcation of the merging region in the simulation results is consistent with predictions by the antiparallel merging model. However, because of the draping of the magnetosheath field lines over the magnetopause, the positions and shape of the merging region differ significantly from those predicted by the model.
Stability of general-relativistic accretion disks
NASA Astrophysics Data System (ADS)
Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard
2011-02-01
Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a Γ-law equation of state with Γ=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.
NASA Astrophysics Data System (ADS)
Faucher-Giguere, Claude-Andre
2016-10-01
HST has invested thousands of orbits to complete multi-wavelength surveys of high-redshift galaxies including the Deep Fields, COSMOS, 3D-HST and CANDELS. Over the next few years, JWST will undertake complementary, spatially-resolved infrared observations. Cosmological simulations are the most powerful tool to make detailed predictions for the properties of galaxy populations and to interpret these surveys. We will leverage recent major advances in the predictive power of cosmological hydrodynamic simulations to produce the first statistical sample of hundreds of galaxies simulated with 10 pc resolution and with explicit interstellar medium and stellar feedback physics proved to simultaneously reproduce the galaxy stellar mass function, the chemical enrichment of galaxies, and the neutral hydrogen content of galaxy halos. We will process our new set of full-volume cosmological simulations, called FIREBOX, with a mock imaging and spectral synthesis pipeline to produce realistic mock HST and JWST observations, including spatially-resolved photometry and spectroscopy. By comparing FIREBOX with recent high-redshift HST surveys, we will study the stellar build up of galaxies, the evolution massive star-forming clumps, their contribution to bulge growth, the connection of bulges to star formation quenching, and the triggering mechanisms of AGN activity. Our mock data products will also enable us to plan future JWST observing programs. We will publicly release all our mock data products to enable HST and JWST science beyond our own analysis, including with the Frontier Fields.
Formation of stellar clusters in magnetized, filamentary infrared dark clouds
NASA Astrophysics Data System (ADS)
Li, Pak Shing; Klein, Richard I.; McKee, Christopher F.
2018-01-01
Star formation in a filamentary infrared dark cloud (IRDC) is simulated over the dynamic range of 4.2 pc to 28 au for a period of 3.5 × 105 yr, including magnetic fields and both radiative and outflow feedback from the protostars. At the end of the simulation, the star formation efficiency is 4.3 per cent and the star formation rate per free-fall time is εff ≃ 0.04, within the range of observed values. The total stellar mass increases as ∼t2, whereas the number of protostars increases as ∼t1.5. We find that the density profile around most of the simulated protostars is ∼ρ ∝ r-1.5. At the end of the simulation, the protostellar mass function approaches the Chabrier stellar initial mass function. We infer that the time to form a star of median mass 0.2 M⊙ is about 1.4 × 105 yr from the median mass accretion rate. We find good agreement among the protostellar luminosities observed in the large sample of Dunham et al., our simulation and a theoretical estimate, and we conclude that the classical protostellar luminosity problem is resolved. The multiplicity of the stellar systems in the simulation agrees, to within a factor of 2, with observations of Class I young stellar objects; most of the simulated multiple systems are unbound. Bipolar protostellar outflows are launched using a subgrid model, and extend up to 1 pc from their host star. The mass-velocity relation of the simulated outflows is consistent with both observation and theory.
Performance of the Satellite Test Assistant Robot in JPL's Space Simulation Facility
NASA Technical Reports Server (NTRS)
Mcaffee, Douglas; Long, Mark; Johnson, Ken; Siebes, Georg
1995-01-01
An innovative new telerobotic inspection system called STAR (the Satellite Test Assistant Robot) has been developed to assist engineers as they test new spacecraft designs in simulated space environments. STAR operates inside the ultra-cold, high-vacuum, test chambers and provides engineers seated at a remote Operator Control Station (OCS) with high resolution video and infrared (IR) images of the flight articles under test. STAR was successfully proof tested in JPL's 25-ft (7.6-m) Space Simulation Chamber where temperatures ranged from +85 C to -190 C and vacuum levels reached 5.1 x 10(exp -6) torr. STAR's IR Camera was used to thermally map the entire interior of the chamber for the first time. STAR also made several unexpected and important discoveries about the thermal processes occurring within the chamber. Using a calibrated test fixture arrayed with ten sample spacecraft materials, the IR camera was shown to produce highly accurate surface temperature data. This paper outlines STAR's design and reports on significant results from the thermal vacuum chamber test.
Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback.
Forbes, John C; Krumholz, Mark R; Goldbaum, Nathan J; Dekel, Avishai
2016-07-28
Photoelectric heating--heating of dust grains by far-ultraviolet photons--has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies have shown some indication that photoelectric heating could suppress star formation; however, simulations that include photoelectric heating have typically shown that it has little effect on the rate of star formation in either spiral galaxies or dwarf galaxies, which suggests that supernovae are responsible for setting the gas depletion time in galaxies. This result is in contrast with recent work indicating that a star formation law that depends on galaxy metallicity--as is expected with photoelectric heating,but not with supernovae--reproduces the present-day galaxy population better than does a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, the class of galaxy in which the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space and time-dependent photoelectric heating in our simulations, and we resolve the energy-conserving phase of every supernova blast wave, which allows us to directly measure the relative importance of feedback by supernovae and photoelectric heating in suppressing star formation. We find that supernovae are unable to account for the observed large gas depletion times in dwarf galaxies. Instead, photoelectric heating is the dominant means by which dwarf galaxies regulate their star formation rate at any given time,suppressing the rate by more than an order of magnitude relative to simulations with only supernovae.
The Million-Body Problem: Particle Simulations in Astrophysics
Rasio, Fred
2018-05-21
Computer simulations using particles play a key role in astrophysics. They are widely used to study problems across the entire range of astrophysical scales, from the dynamics of stars, gaseous nebulae, and galaxies, to the formation of the largest-scale structures in the universe. The 'particles' can be anything from elementary particles to macroscopic fluid elements, entire stars, or even entire galaxies. Using particle simulations as a common thread, this talk will present an overview of computational astrophysics research currently done in our theory group at Northwestern. Topics will include stellar collisions and the gravothermal catastrophe in dense star clusters.
Nano-JASMINE: Simulation of Data Outputs
NASA Astrophysics Data System (ADS)
Kobayashi, Y.; Yano, T.; Hatsutori, Y.; Gouda, N.; Murooka, J.; Niwa, Y.; Yamada, Y.
We simulated the data outputs of the first Japanese astrometry satellite Nano-JASMINE, which is scheduled to be launched by the Cyclone-4 rocket in August 2011. The simulations were carried out using existing stellar catalogues such as the Hipparcos catalogue, the Tycho catalogue, and the Guide Star catalogue version 2.3. Several statics are shown such as the number of stars those will be measured distances using annual aberration observations. The method for determining the initial direction of the satellite's spin axis has also been discussed. In this case, the frequency of bright stars observed by the satellite is an important factor.
Simulated airline service experience with laminar-flow control leading-edge systems
NASA Technical Reports Server (NTRS)
Maddalon, Dal V.; Fisher, David F.; Jennett, Lisa A.; Fischer, Michael C.
1987-01-01
The first JetStar leading edge flight test was made November 30, 1983. The JetStar was flown for more than 3 years. The titanium leading edge test articles today remain in virtually the same condition as they were in on that first flight. No degradation of laminar flow performance has occurred as a result of service. The JetStar simulated airline service flights have demonstrated that effective, practical leading edge systems are available for future commercial transports. Specific conclusions based on the results of the simulated airline service test program are summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, Alfred J.; McMillan, Stephen L. W.; Vesperini, Enrico
2013-12-01
We perform a series of simulations of evolving star clusters using the Astrophysical Multipurpose Software Environment (AMUSE), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions and contain a tidal cutoff. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After studying and understanding that the differences between AMUSE results and results from previous studies are understood, we explored the variation in cluster lifetimes due to the random realization noisemore » introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a runaway cluster dissolution with a sudden loss of mass, and a dissolution mode that does not contain this feature. We refer to these dissolution modes as 'dynamical' and 'relaxation' dominated, respectively. For Salpeter-like initial mass functions, we determined the boundary between these two modes in terms of the dynamical and relaxation timescales.« less
Baryons Matter: Why Luminous Satellite Galaxies have Reduced Central Masses
NASA Astrophysics Data System (ADS)
Zolotov, Adi; Brooks, Alyson M.; Willman, Beth; Governato, Fabio; Pontzen, Andrew; Christensen, Charlotte; Dekel, Avishai; Quinn, Tom; Shen, Sijing; Wadsley, James
2012-12-01
Using high-resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < MV < -8) satellite galaxies. These simulations resolve high-density regions, comparable to giant molecular clouds, where stars form. This resolution allows us to adopt a prescription for H2 formation and destruction that ties star formation to the presence of shielded, molecular gas. Before infall, supernova feedback from the clumpy, bursty star formation captured by this physically motivated model leads to reduced dark matter (DM) densities and shallower inner density profiles in the massive satellite progenitors (M vir >= 109 M ⊙, M * >= 107 M ⊙) compared with DM-only simulations. The progenitors of the lower mass satellites are unable to maintain bursty star formation histories, due to both heating at reionization and gas loss from initial star-forming events, preserving the steep inner density profile predicted by DM-only simulations. After infall, gas stripping from satellites reduces the total central masses of satellites simulated with DM+baryons relative to DM-only satellites. Additionally, enhanced tidal stripping after infall due to the baryonic disk acts to further reduce the central DM densities of the luminous satellites. Satellites that enter with cored DM halos are particularly vulnerable to the tidal effects of the disk, exacerbating the discrepancy in the central masses predicted by baryon+DM and DM-only simulations. We show that DM-only simulations, which neglect the highly non-adiabatic evolution of baryons described in this work, produce denser satellites with larger central velocities. We provide a simple correction to the central DM mass predicted for satellites by DM-only simulations. We conclude that DM-only simulations should be used with great caution when interpreting kinematic observations of the Milky Way's dwarf satellites.
Boundary between stable and unstable regimes of accretion. Ordered and chaotic unstable regimes
NASA Astrophysics Data System (ADS)
Blinova, A. A.; Romanova, M. M.; Lovelace, R. V. E.
2016-07-01
We present a new study of the Rayleigh-Taylor unstable regime of accretion on to rotating magnetized stars in a set of high grid resolution three-dimensional magnetohydrodynamic simulations performed in low-viscosity discs. We find that the boundary between the stable and unstable regimes is determined almost entirely by the fastness parameter ωs = Ω⋆/ΩK(rm), where Ω⋆ is the angular velocity of the star and ΩK(rm) is the angular velocity of the Keplerian disc at the disc-magnetosphere boundary r = rm. We found that accretion is unstable if ωs ≲ 0.6. Accretion through instabilities is present in stars with different magnetospheric sizes. However, only in stars with relatively small magnetospheres, rm/R⋆ ≲ 7, do the unstable tongues produce chaotic hotspots on the stellar surface and irregular light curves. At even smaller values of the fastness parameter, ωs ≲ 0.45, multiple irregular tongues merge, forming one or two ordered unstable tongues that rotate with the angular frequency of the inner disc. This transition occurs in stars with even smaller magnetospheres, rm/R⋆ ≲ 4.2. Most of our simulations were performed at a small tilt of the dipole magnetosphere, Θ = 5°, and a small viscosity parameter α = 0.02. Test simulations at higher α values show that many more cases become unstable, and the light curves become even more irregular. Test simulations at larger tilts of the dipole Θ show that instability is present, however, accretion in two funnel streams dominates if Θ ≳ 15°. The results of these simulations can be applied to accreting magnetized stars with relatively small magnetospheres: Classical T Tauri stars, accreting millisecond X-ray pulsars, and cataclysmic variables.
NASA Astrophysics Data System (ADS)
Baumgardt, H.; Amaro-Seoane, P.; Schödel, R.
2018-01-01
Context. The distribution of stars around a massive black hole (MBH) has been addressed in stellar dynamics for the last four decades by a number of authors. Because of its proximity, the centre of the Milky Way is the only observational test case where the stellar distribution can be accurately tested. Past observational work indicated that the brightest giants in the Galactic centre (GC) may show a density deficit around the central black hole, not a cusp-like distribution, while we theoretically expect the presence of a stellar cusp. Aims: We here present a solution to this long-standing problem. Methods: We performed direct-summation N-body simulations of star clusters around massive black holes and compared the results of our simulations with new observational data of the GC's nuclear cluster. Results: We find that after a Hubble time, the distribution of bright stars as well as the diffuse light follow power-law distributions in projection with slopes of Γ ≈ 0.3 in our simulations. This is in excellent agreement with what is seen in star counts and in the distribution of the diffuse stellar light extracted from adaptive-optics (AO) assisted near-infrared observations of the GC. Conclusions: Our simulations also confirm that there exists a missing giant star population within a projected radius of a few arcsec around Sgr A*. Such a depletion of giant stars in the innermost 0.1 pc could be explained by a previously present gaseous disc and collisions, which means that a stellar cusp would also be present at the innermost radii, but in the form of degenerate compact cores.
Revisiting The First Galaxies: The effects of Population III stars on their host galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratov, Alexander L.; Gnedin, Oleg Y.; Gnedin, Nickolay Y.
2013-07-12
We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H 2 formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch duringmore » which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 10 8 years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 × 10 6 M ⊙ re-accrete most of their baryons and transition to metal-enriched Pop II star formation.« less
REVISITING THE FIRST GALAXIES: THE EFFECTS OF POPULATION III STARS ON THEIR HOST GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratov, Alexander L.; Gnedin, Oleg Y.; Zemp, Marcel
2013-08-01
We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H{sub 2} formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch duringmore » which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 10{sup 8} years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 Multiplication-Sign 10{sup 6} M{sub Sun} re-accrete most of their baryons and transition to metal-enriched Pop II star formation.« less
NASA Astrophysics Data System (ADS)
Takasao, Shinsuke; Tomida, Kengo; Iwasaki, Kazunari; Suzuki, Takeru K.
2018-04-01
We present the results of a global, three-dimensional magnetohydrodynamics simulation of an accretion disk with a rotating, weakly magnetized central star. The disk is threaded by a weak, large-scale poloidal magnetic field, and the central star has no strong stellar magnetosphere initially. Our simulation investigates the structure of the accretion flows from a turbulent accretion disk onto the star. The simulation reveals that fast accretion onto the star at high latitudes occurs even without a stellar magnetosphere. We find that the failed disk wind becomes the fast, high-latitude accretion as a result of angular momentum exchange mediated by magnetic fields well above the disk, where the Lorentz force that decelerates the rotational motion of gas can be comparable to the centrifugal force. Unlike the classical magnetospheric accretion scenario, fast accretion streams are not guided by magnetic fields of the stellar magnetosphere. Nevertheless, the accretion velocity reaches the free-fall velocity at the stellar surface due to the efficient angular momentum loss at a distant place from the star. This study provides a possible explanation why Herbig Ae/Be stars whose magnetic fields are generally not strong enough to form magnetospheres also show indications of fast accretion. A magnetically driven jet is not formed from the disk in our model. The differential rotation cannot generate sufficiently strong magnetic fields for the jet acceleration because the Parker instability interrupts the field amplification.
Bar quenching in gas-rich galaxies
NASA Astrophysics Data System (ADS)
Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.
2018-01-01
Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.
Spotted star mapping by light curve inversion: Tests and application to HD 12545
NASA Astrophysics Data System (ADS)
Kolbin, A. I.; Shimansky, V. V.
2013-06-01
A code for mapping the surfaces of spotted stars is developed. The concept of the code is to analyze rotational-modulated light curves. We simulate the process of reconstruction for the star surface and the results of simulation are presented. The reconstruction atrifacts caused by the ill-posed nature of the problem are deduced. The surface of the spotted component of system HD 12545 is mapped using the procedure.
Simulating the Exoplanet Yield from the Transiting Exoplanet Survey Satellite
NASA Astrophysics Data System (ADS)
Barclay, Thomas; Pepper, Joshua; Schlieder, Joshua; Quintana, Elisa
2018-01-01
In 2018 NASA will launch the MIT-led Transiting Exoplanet Survey Satellite (TESS) which has a goal of detecting terrestrial-mass planets orbiting stars bright enough for mass determination via ground-based radial velocity observations. We inferred how many exoplanets the TESS mission will detect, the physical properties of these detected planets, and the properties of the stars that those planets orbit, subject to certain assumptions about the mission performance. To make these predictions we use samples of stars that are drawn from the TESS Input Catalog Candidate Target List. We place zero or more planets in orbit around these stars with physical properties following known exoplanet occurrence rates, and use the TESS noise model to predict the derived properties of the detected exoplanets. We find that it is feasible to detect around 1000 exoplanets, including 250 smaller than 2 earth-radii using the TESS 2-min cadence data. We examined alternative noise models and detection models and find in our pessimistic model that TESS will detect just 500 exoplanets. When potential detections in the full-frame image data are included, the number of detected planets could increase by a factor of 4. Perhaps most excitingly, TESS will find over 2 dozen planets orbiting in the habitable zone of bright, nearby cool stars. These planets will make ideal candidates for atmospheric characerization by JWST.
Simulations as a Source of Learning: Using "StarPower" to Teach Ethical Leadership and Management
ERIC Educational Resources Information Center
Allen, Scott J.
2008-01-01
This research examines the use simulation, "StarPower," as an instrument to teach students about ethics in management and leadership. The paper begins with an overview of sources of learning in leadership and management development and later focuses specifically on the use of simulations. This is followed by a brief explanation of the…
2014-02-19
NuSTAR has provided the first observational evidence in support of a theory that says exploding stars slosh around before detonating. That theory, referred to as mild asymmetries, is shown here in a simulation by Christian Ott.
Driving Turbulence and Triggering Star Formation by Ionizing Radiation
NASA Astrophysics Data System (ADS)
Gritschneder, Matthias; Naab, Thorsten; Walch, Stefanie; Burkert, Andreas; Heitsch, Fabian
2009-03-01
We present high-resolution simulations on the impact of ionizing radiation of massive O stars on the surrounding turbulent interstellar medium (ISM). The simulations are performed with the newly developed software iVINE which combines ionization with smoothed particle hydrodynamics (SPH) and gravitational forces. We show that radiation from hot stars penetrates the ISM, efficiently heats cold low-density gas and amplifies overdensities seeded by the initial turbulence. The formation of observed pillar-like structures in star-forming regions (e.g. in M16) can be explained by this scenario. At the tip of the pillars gravitational collapse can be induced, eventually leading to the formation of low-mass stars. Detailed analysis of the evolution of the turbulence spectra shows that UV radiation of O stars indeed provides an excellent mechanism to sustain and even drive turbulence in the parental molecular cloud.
Modelling the dynamo in fully convective M-stars
NASA Astrophysics Data System (ADS)
Yadav, Rakesh Kumar; Christensen, Ulrich; Morin, Julien; Wolk, Scott; Poppenhaeger, Katja; Reiners, Ansgar; gastine, Thomas
2017-05-01
M-stars are among the most active and numerous stars in our galaxy. Their activity plays a fundamentally important role in shaping the exoplanetary biosphere since the habitable zones are very close to these stars. Therefore, modeling M-star activity has become a focal point in habitability studies. The fully convective members of the M-star population demand more immediate attention due to the discovery of Earth-like exoplanets around our stellar neighbors Proxima Centauri and TRAPPIST-1 which are both fully convective. The activity of these stars is driven by their convective dynamo, which may be fundamentally different from the solar dynamo due the absence of radiative cores. We model this dynamo mechanism using high-resolution 3D anelastic MHD simulations. To understand the evolution of the dynamo mechanism we simulate two cases, one with a fast enough rotation period to model a star in the `saturated' regime of the rotation-activity realtionship and the other with a slower period to represent cases in the `unsaturated' regime. We find the rotation period fundamentally controls the behavior of the dynamo solution: faster rotation promotes strong magnetic fields (of order kG) on both small and large length scales and the dipolar component of the magnetic field is dominant and stable, however, slower rotation leads to weaker magnetic fields which exhibit cyclic behavior. In this talk, I will present the simulation results and discuss how we can use them to interpret several observed features of the M-star activity.
NASA Astrophysics Data System (ADS)
Bianchini, Paolo; Norris, Mark A.; van de Ven, Glenn; Schinnerer, Eva
2015-10-01
The detection of intermediate-mass black holes in the centres of globular clusters is highly controversial, as complementary observational methods often deliver significantly different results. In order to understand these discrepancies, we develop a procedure to simulate integral field unit (IFU) observations of globular clusters: Simulating IFU Star Cluster Observations (SISCO). The inputs of our software are realistic dynamical models of globular clusters that are then converted in a spectral data cube. We apply SISCO to Monte Carlo cluster simulations with a realistic number of stars and concentrations. Using independent realizations of a given simulation we are able to quantify the stochasticity intrinsic to the problem of observing a partially resolved stellar population with integrated-light spectroscopy. We show that the luminosity-weighted IFU observations can be strongly biased by the presence of a few bright stars that introduce a scatter in the velocity dispersion measurements up to ≃40 per cent around the expected value, preventing any sound assessment of the central kinematic and a sensible interpretation of the presence/absence of an intermediate-mass black hole. Moreover, we illustrate that, in our mock IFU observations, the average kinematic tracer has a mass of ≃0.75 M⊙, only slightly lower than the mass of the typical stars examined in studies of resolved line-of-sight velocities of giant stars. Finally, in order to recover unbiased kinematic measurements we test different masking techniques that allow us to remove the spaxels dominated by bright stars, bringing the scatter down to a level of only a few per cent. The application of SISCO will allow us to investigate state-of-the-art simulations as realistic observations.
Radiative and Kinetic Feedback by Low-Mass Primordial Stars
NASA Astrophysics Data System (ADS)
Whalen, Daniel; Hueckstaedt, Robert M.; McConkie, Thomas O.
2010-03-01
Ionizing UV radiation and supernova (SN) flows amidst clustered minihalos at high redshift regulated the rise of the first stellar populations in the universe. Previous studies have addressed the effects of very massive primordial stars on the collapse of nearby halos into new stars, but the absence of the odd-even nucleosynthetic signature of pair-instability SNe in ancient metal-poor stars suggests that Population III stars may have been less than 100 M sun. We extend our earlier survey of local UV feedback on star formation to 25-80 M sun stars and include kinetic feedback by SNe for 25-40 M sun stars. We find radiative feedback to be relatively uniform over this mass range, primarily because the larger fluxes of more massive stars are offset by their shorter lifetimes. Our models demonstrate that prior to the rise of global UV backgrounds, Lyman-Werner (LW) photons from nearby stars cannot prevent halos from forming new stars. These calculations also reveal that violent dynamical instabilities can erupt in the UV radiation front enveloping a primordial halo, but that they ultimately have no effect on the formation of a star. Finally, our simulations suggest that relic H II regions surrounding partially evaporated halos may expel LW backgrounds at lower redshifts, allowing stars to form that were previously suppressed. We provide fits to radiative and kinetic feedback on star formation for use in both semianalytic models and numerical simulations.
Star cluster formation in a turbulent molecular cloud self-regulated by photoionization feedback
NASA Astrophysics Data System (ADS)
Gavagnin, Elena; Bleuler, Andreas; Rosdahl, Joakim; Teyssier, Romain
2017-12-01
Most stars in the Galaxy are believed to be formed within star clusters from collapsing molecular clouds. However, the complete process of star formation, from the parent cloud to a gas-free star cluster, is still poorly understood. We perform radiation-hydrodynamical simulations of the collapse of a turbulent molecular cloud using the RAMSES-RT code. Stars are modelled using sink particles, from which we self-consistently follow the propagation of the ionizing radiation. We study how different feedback models affect the gas expulsion from the cloud and how they shape the final properties of the emerging star cluster. We find that the star formation efficiency is lower for stronger feedback models. Feedback also changes the high-mass end of the stellar mass function. Stronger feedback also allows the establishment of a lower density star cluster, which can maintain a virial or sub-virial state. In the absence of feedback, the star formation efficiency is very high, as well as the final stellar density. As a result, high-energy close encounters make the cluster evaporate quickly. Other indicators, such as mass segregation, statistics of multiple systems and escaping stars confirm this picture. Observations of young star clusters are in best agreement with our strong feedback simulation.
COCOA code for creating mock observations of star cluster models
NASA Astrophysics Data System (ADS)
Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele
2018-04-01
We introduce and present results from the COCOA (Cluster simulatiOn Comparison with ObservAtions) code that has been developed to create idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. In this paper, we describe the COCOA code and demonstrate its different applications by utilizing globular cluster (GC) models simulated with the MOCCA (MOnte Carlo Cluster simulAtor) code. COCOA is used to synthetically observe these different GC models with optical telescopes, perform point spread function photometry, and subsequently produce observed colour-magnitude diagrams. We also use COCOA to compare the results from synthetic observations of a cluster model that has the same age and metallicity as the Galactic GC NGC 2808 with observations of the same cluster carried out with a 2.2 m optical telescope. We find that COCOA can effectively simulate realistic observations and recover photometric data. COCOA has numerous scientific applications that maybe be helpful for both theoreticians and observers that work on star clusters. Plans for further improving and developing the code are also discussed in this paper.
A New Approach for Simulating Galaxy Cluster Properties
NASA Astrophysics Data System (ADS)
Arieli, Y.; Rephaeli, Y.; Norman, M. L.
2008-08-01
We describe a subgrid model for including galaxies into hydrodynamical cosmological simulations of galaxy cluster evolution. Each galaxy construct—or galcon—is modeled as a physically extended object within which star formation, galactic winds, and ram pressure stripping of gas are modeled analytically. Galcons are initialized at high redshift (z ~ 3) after galaxy dark matter halos have formed but before the cluster has virialized. Each galcon moves self-consistently within the evolving cluster potential and injects mass, metals, and energy into intracluster (IC) gas through a well-resolved spherical interface layer. We have implemented galcons into the Enzo adaptive mesh refinement code and carried out a simulation of cluster formation in a ΛCDM universe. With our approach, we are able to economically follow the impact of a large number of galaxies on IC gas. We compare the results of the galcon simulation with a second, more standard simulation where star formation and feedback are treated using a popular heuristic prescription. One advantage of the galcon approach is explicit control over the star formation history of cluster galaxies. Using a galactic SFR derived from the cosmic star formation density, we find the galcon simulation produces a lower stellar fraction, a larger gas core radius, a more isothermal temperature profile, and a flatter metallicity gradient than the standard simulation, in better agreement with observations.
When feedback fails: the scaling and saturation of star formation efficiency
NASA Astrophysics Data System (ADS)
Grudić, Michael Y.; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Quataert, Eliot; Murray, Norman; Kereš, Dušan
2018-04-01
We present a suite of 3D multiphysics MHD simulations following star formation in isolated turbulent molecular gas discs ranging from 5 to 500 parsecs in radius. These simulations are designed to survey the range of surface densities between those typical of Milky Way giant molecular clouds (GMCs) ({˜ } 10^2 {M_{\\odot } pc^{-2}}) and extreme ultraluminous infrared galaxy environments ({˜ } 10^4 {M_{\\odot } pc^{-2}}) so as to map out the scaling of the cloud-scale star formation efficiency (SFE) between these two regimes. The simulations include prescriptions for supernova, stellar wind, and radiative feedback, which we find to be essential in determining both the instantaneous per-freefall (ɛff) and integrated (ɛint) star formation efficiencies. In all simulations, the gas discs form stars until a critical stellar surface density has been reached and the remaining gas is blown out by stellar feedback. We find that surface density is a good predictor of ɛint, as suggested by analytic force balance arguments from previous works. SFE eventually saturates to ˜1 at high surface density. We also find a proportional relationship between ɛff and ɛint, implying that star formation is feedback-moderated even over very short time-scales in isolated clouds. These results have implications for star formation in galactic discs, the nature and fate of nuclear starbursts, and the formation of bound star clusters. The scaling of ɛff with surface density is not consistent with the notion that ɛff is always ˜ 1 per cent on the scale of GMCs, but our predictions recover the ˜ 1 per cent value for GMC parameters similar to those found in spiral galaxies, including our own.
Stellar motion induced by gravitational instabilities in protoplanetary discs
NASA Astrophysics Data System (ADS)
Michael, Scott; Durisen, R. H.
2010-07-01
We test the effect of assumptions about stellar motion on the behaviour of gravitational instabilities (GIs) in protoplanetary discs around solar-type stars by performing two simulations that are identical in all respects except the treatment of the star. In one simulation, the star is assumed to remain fixed at the centre of the inertial reference frame. In the other, stellar motion is handled properly by including an indirect potential in the hydrodynamic equations to model the star's reference frame as one which is accelerated by star/disc interactions. The discs in both simulations orbit a solar mass star, initially extend from 2.3 to 40 au with a ϖ-1/2 surface density profile, and have a total mass of 0.14 Msolar. The γ = 5/3 ideal gas is assumed to cool everywhere with a constant cooling time of two outer rotation periods. The overall behaviour of the disc evolution is similar, except for weakening in various measures of GI activity by about at most tens of per cent for the indirect potential case. Overall conclusions about disc evolution in earlier papers by our group, where the star was always assumed to be fixed in an inertial frame, remain valid. There is no evidence for independent one-armed instabilities, like the Stimulation by the Long-range Interaction of Newtonian Gravity (SLING), in either simulation. On the other hand, the stellar motion about the system centre of mass (COM) in the simulation with the indirect potential is substantial, up to 0.25 au during the burst phase, as GIs initiate, and averaging about 0.9 au during the asymptotic phase, when the GIs reach an overall balance of heating and cooling. These motions appear to be a stellar response to non-linear interactions between discrete global spiral modes in both the burst and asymptotic phases of the evolution, and the star's orbital motion about the COM reflects the orbit periods of disc material near the corotation radii of the dominant spiral waves. This motion is, in principle, large enough to be observable and could be confused with stellar wobble due to the presence of one or more super-Jupiter mass protoplanets orbiting at 10's au. We discuss why the excursions in our simulation are so much larger than those seen in simulations by Rice et al.
Formation and Assembly of Massive Star Clusters
NASA Astrophysics Data System (ADS)
McMillan, Stephen
The formation of stars and star clusters is a major unresolved problem in astrophysics. It is central to modeling stellar populations and understanding galaxy luminosity distributions in cosmological models. Young massive clusters are major components of starburst galaxies, while globular clusters are cornerstones of the cosmic distance scale and represent vital laboratories for studies of stellar dynamics and stellar evolution. Yet how these clusters form and how rapidly and efficiently they expel their natal gas remain unclear, as do the consequences of this gas expulsion for cluster structure and survival. Also unclear is how the properties of low-mass clusters, which form from small-scale instabilities in galactic disks and inform much of our understanding of cluster formation and star-formation efficiency, differ from those of more massive clusters, which probably formed in starburst events driven by fast accretion at high redshift, or colliding gas flows in merging galaxies. Modeling cluster formation requires simulating many simultaneous physical processes, placing stringent demands on both software and hardware. Simulations of galaxies evolving in cosmological contexts usually lack the numerical resolution to simulate star formation in detail. They do not include detailed treatments of important physical effects such as magnetic fields, radiation pressure, ionization, and supernova feedback. Simulations of smaller clusters include these effects, but fall far short of the mass of even single young globular clusters. With major advances in computing power and software, we can now directly address this problem. We propose to model the formation of massive star clusters by integrating the FLASH adaptive mesh refinement magnetohydrodynamics (MHD) code into the Astrophysical Multi-purpose Software Environment (AMUSE) framework, to work with existing stellar-dynamical and stellar evolution modules in AMUSE. All software will be freely distributed on-line, allowing open access to state-of- the-art simulation techniques within a modern, modular software environment. We will follow the gravitational collapse of 0.1-10 million-solar mass gas clouds through star formation and coalescence into a star cluster, modeling in detail the coupling of the gas and the newborn stars. We will study the effects of star formation by detecting accreting regions of gas in self-gravitating, turbulent, MHD, FLASH models that we will translate into collisional dynamical systems of stars modeled with an N-body code, coupled together in the AMUSE framework. Our FLASH models will include treatments of radiative transfer from the newly formed stars, including heating and radiative acceleration of the surrounding gas. Specific questions to be addressed are: (1) How efficiently does the gas in a star forming region form stars, how does this depend on mass, metallicity, and other parameters, and what terminates star formation? What observational predictions can be made to constrain our models? (2) How important are different mechanisms for driving turbulence and removing gas from a cluster: accretion, radiative feedback, and mechanical feedback? (3) How does the infant mortality rate of young clusters depend on the initial properties of the parent cloud? (4) What are the characteristic formation timescales of massive star clusters, and what observable imprints does the assembly process leave on their structure at an age of 10-20 Myr, when formation is essentially complete and many clusters can be observed? These studies are directly relevant to NASA missions at many electromagnetic wavelengths, including Chandra, GALEX, Hubble, and Spitzer. Each traces different aspects of cluster formation and evolution: X-rays trace supernovae, ultraviolet traces young stars, visible colors can distinguish between young blue stars and older red stars, and the infrared directly shows young embedded star clusters.
NASA Astrophysics Data System (ADS)
Côté, Benoit; Silvia, Devin W.; O’Shea, Brian W.; Smith, Britton; Wise, John H.
2018-05-01
We use a cosmological hydrodynamic simulation calculated with Enzo and the semi-analytic galaxy formation model (SAM) GAMMA to address the chemical evolution of dwarf galaxies in the early universe. The long-term goal of the project is to better understand the origin of metal-poor stars and the formation of dwarf galaxies and the Milky Way halo by cross-validating these theoretical approaches. We combine GAMMA with the merger tree of the most massive galaxy found in the hydrodynamic simulation and compare the star formation rate, the metallicity distribution function (MDF), and the age–metallicity relationship predicted by the two approaches. We found that the SAM can reproduce the global trends of the hydrodynamic simulation. However, there are degeneracies between the model parameters, and more constraints (e.g., star formation efficiency, gas flows) need to be extracted from the simulation to isolate the correct semi-analytic solution. Stochastic processes such as bursty star formation histories and star formation triggered by supernova explosions cannot be reproduced by the current version of GAMMA. Non-uniform mixing in the galaxy’s interstellar medium, coming primarily from self-enrichment by local supernovae, causes a broadening in the MDF that can be emulated in the SAM by convolving its predicted MDF with a Gaussian function having a standard deviation of ∼0.2 dex. We found that the most massive galaxy in the simulation retains nearby 100% of its baryonic mass within its virial radius, which is in agreement with what is needed in GAMMA to reproduce the global trends of the simulation.
NASA Astrophysics Data System (ADS)
Hu, Guansheng; Zhang, Tao; Zhang, Xuan; Shi, Gentai; Bai, Haojie
2018-03-01
In order to achieve multi-color temperature and multi-magnitude output, magnitude and temperature can real-time adjust, a new type of calibration single star simulator was designed with adjustable magnitude and optical spectrum output in this article. xenon lamp and halogen tungsten lamp were used as light source. The control of spectrum band and temperature of star was realized with different multi-beam narrow band spectrum with light of varying intensity. When light source with different spectral characteristics and color temperature go into the magnitude regulator, the light energy attenuation were under control by adjusting the light luminosity. This method can completely satisfy the requirements of calibration single star simulator with adjustable magnitude and optical spectrum output in order to achieve the adjustable purpose of magnitude and spectrum.
Second relativistic mean field and virial equation of state for astrophysical simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, G.; Horowitz, C. J.; O'Connor, E.
2011-06-15
We generate a second equation of state (EOS) of nuclear matter for a wide range of temperatures, densities, and proton fractions for use in supernovae, neutron star mergers, and black hole formation simulations. We employ full relativistic mean field (RMF) calculations for matter at intermediate density and high density, and the virial expansion of a nonideal gas for matter at low density. For this EOS we use the RMF effective interaction FSUGold, whereas our earlier EOS was based on the RMF effective interaction NL3. The FSUGold interaction has a lower pressure at high densities compared to the NL3 interaction. Wemore » calculate the resulting EOS at over 100 000 grid points in the temperature range T=0 to 80 MeV, the density range n{sub B}=10{sup -8} to 1.6 fm{sup -3}, and the proton fraction range Y{sub p}=0 to 0.56. We then interpolate these data points using a suitable scheme to generate a thermodynamically consistent equation of state table on a finer grid. We discuss differences between this EOS, our NL3-based EOS, and previous EOSs by Lattimer-Swesty and H. Shen et al. for the thermodynamic properties, composition, and neutron star structure. The original FSUGold interaction produces an EOS, which we call FSU1.7, that has a maximum neutron star mass of 1.7 solar masses. A modification in the high-density EOS is introduced to increase the maximum neutron star mass to 2.1 solar masses and results in a slightly different EOS that we call FSU2.1. The EOS tables for FSU1.7 and FSU2.1 are available for download.« less
Modeling for Stellar Feedback in Galaxy Formation Simulations
NASA Astrophysics Data System (ADS)
Núñez, Alejandro; Ostriker, Jeremiah P.; Naab, Thorsten; Oser, Ludwig; Hu, Chia-Yu; Choi, Ena
2017-02-01
Various heuristic approaches to model unresolved supernova (SN) feedback in galaxy formation simulations exist to reproduce the formation of spiral galaxies and the overall inefficient conversion of gas into stars. Some models, however, require resolution-dependent scalings. We present a subresolution model representing the three major phases of supernova blast wave evolution—free expansion, energy-conserving Sedov-Taylor, and momentum-conserving snowplow—with energy scalings adopted from high-resolution interstellar-medium simulations in both uniform and multiphase media. We allow for the effects of significantly enhanced SN remnant propagation in a multiphase medium with the cooling radius scaling with the hot volume fraction, {f}{hot}, as {(1-{f}{hot})}-4/5. We also include winds from young massive stars and AGB stars, Strömgren sphere gas heating by massive stars, and a mechanism that limits gas cooling that is driven by radiative recombination of dense H II regions. We present initial tests for isolated Milky Way-like systems simulated with the Gadget-based code SPHgal with improved SPH prescription. Compared to pure thermal SN input, the model significantly suppresses star formation at early epochs, with star formation extended both in time and space in better accord with observations. Compared to models with pure thermal SN feedback, the age at which half the stellar mass is assembled increases by a factor of 2.4, and the mass-loading parameter and gas outflow rate from the galactic disk increase by a factor of 2. Simulation results are converged for a variation of two orders of magnitude in particle mass in the range (1.3-130) × 104 solar masses.
Image improvement from a sodium-layer laser guide star adaptive optics system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Max, C. E., LLNL
1997-06-01
A sodium-layer laser guide star beacon with high-order adaptive optics at Lick Observatory produced a factor of 2.4 intensity increase and a factor of 2 decrease in full width at half maximum for an astronomical point source, compared with image motion compensation alone. Image full widths at half maximum were identical for laser and natural guide stars (0.3 arc seconds). The Strehl ratio with the laser guide star was 65% of that with a natural guide star. This technique should allow ground-based telescopes to attain the diffraction limit, by correcting for atmospheric distortions.
NASA Astrophysics Data System (ADS)
Figueira, Joana; José, Jordi; García-Berro, Enrique; Campbell, Simon W.; García-Senz, Domingo; Mohamed, Shazrene
2018-05-01
Context. Classical novae are thermonuclear explosions hosted by accreting white dwarfs in stellar binary systems. Material piles up on top of the white dwarf star under mildly degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope, mostly proton-capture reactions and β+-decays, heats the material up to peak temperatures ranging from 100 to 400 MK. In these events, about 10-3-10-7 M⊙, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, and Al) are ejected into the interstellar medium. Aims: To date, most of the efforts undertaken in the modeling of classical nova outbursts have focused on the early stages of the explosion and ejection, ignoring the interaction of the ejecta, first with the accretion disk orbiting the white dwarf and ultimately with the secondary star. Methods: A suite of 3D, smoothed-particle hydrodynamics (SPH) simulations of the interaction between the nova ejecta, accretion disk, and stellar companion were performed to fill this gap; these simulations were aimed at testing the influence of the model parameters—that is, the mass and velocity of the ejecta, mass and the geometry of the accretion disk—on the dynamical and chemical properties of the system. Results: We discuss the conditions that lead to the disruption of the accretion disk and to mass loss from the binary system. In addition, we discuss the likelihood of chemical contamination of the stellar secondary induced by the impact with the nova ejecta and its potential effect on the next nova cycle. Movies showing the full evolution of several models are available online at http://https://www.aanda.org and at http://www.fen.upc.edu/users/jjose/Downloads.html
NASA Astrophysics Data System (ADS)
Sun, Lunan; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.
2017-08-01
We perform magnetohydrodynamic simulations in full general relativity of uniformly rotating stars that are marginally unstable to collapse. These simulations model the direct collapse of supermassive stars (SMSs) to seed black holes that can grow to become the supermassive black holes at the centers of quasars and active galactic nuclei. They also crudely model the collapse of massive Population III stars to black holes, which could power a fraction of distant, long gamma-ray bursts. The initial stellar models we adopt are Γ =4 /3 polytropes initially with a dynamically unimportant dipole magnetic field. We treat initial magnetic-field configurations either confined to the stellar interior or extending out from the stellar interior into the exterior. We find that the black hole formed following collapse has mass MBH≃0.9 M (where M is the mass of the initial star) and dimensionless spin parameter aBH/MBH≃0.7 . A massive, hot, magnetized torus surrounds the remnant black hole. At Δ t ˜400 - 550 M ≈2000 -2700 (M /106 M⊙)s following the gravitational wave peak amplitude, an incipient jet is launched. The disk lifetime is Δ t ˜105(M /106 M⊙)s , and the outgoing Poynting luminosity is LEM˜1 051 -52 ergs /s . If≳1 %-10 % of this power is converted into gamma rays, Swift and Fermi could potentially detect these events out to large redshifts z ˜20 . Thus, SMSs could be sources of ultra-long gamma-ray bursts (ULGRBs), and massive Population III stars could be the progenitors that power a fraction of the long GRBs observed at redshift z ˜5 - 8 . Gravitational waves are copiously emitted during the collapse and peak at ˜15 (106 M⊙/M ) mHz [˜0.15 (104 M⊙/M ) Hz ], i.e., in the LISA (DECIGO/BBO) band; optimally oriented SMSs could be detectable by LISA (DECIGO/BBO) at z ≲3 (z ≲11 ). Hence, 1 04 M⊙ SMSs collapsing at z ˜10 are promising multimessenger sources of coincident gravitational and electromagnetic waves.
Deep data fusion method for missile-borne inertial/celestial system
NASA Astrophysics Data System (ADS)
Zhang, Chunxi; Chen, Xiaofei; Lu, Jiazhen; Zhang, Hao
2018-05-01
Strap-down inertial-celestial integrated navigation system has the advantages of autonomy and high precision and is very useful for ballistic missiles. The star sensor installation error and inertial measurement error have a great influence for the system performance. Based on deep data fusion, this paper establishes measurement equations including star sensor installation error and proposes the deep fusion filter method. Simulations including misalignment error, star sensor installation error, IMU error are analyzed. Simulation results indicate that the deep fusion method can estimate the star sensor installation error and IMU error. Meanwhile, the method can restrain the misalignment errors caused by instrument errors.
The Next Generation of Numerical Modeling in Mergers- Constraining the Star Formation Law
NASA Astrophysics Data System (ADS)
Chien, Li-Hsin
2010-09-01
Spectacular images of colliding galaxies like the "Antennae", taken with the Hubble Space Telescope, have revealed that a burst of star/cluster formation occurs whenever gas-rich galaxies interact. A?The ages and locations of these clusters reveal the interaction history and provide crucial clues to the process of star formation in galaxies. A?We propose to carry out state-of-the-art numerical simulations to model six nearby galaxy mergers {Arp 256, NGC 7469, NGC 4038/39, NGC 520, NGC 2623, NGC 3256}, hence increasing the number with this level of sophistication by a factor of 3. These simulations provide specific predictions for the age and spatial distributions of young star clusters. The comparison between these simulation results and the observations will allow us to answer a number of fundamental questions including: 1} is shock-induced or density-dependent star formation the dominant mechanism; 2} are the demographics {i.e. mass and age distributions} of the clusters in different mergers similar, i.e. "universal", or very different; and 3} will it be necessary to include other mechanisms, e.g., locally triggered star formation, in the models to better match the observations?
Radiation hydrodynamics simulations of the formation of direct-collapse supermassive stellar systems
NASA Astrophysics Data System (ADS)
Chon, Sunmyon; Hosokawa, Takashi; Yoshida, Naoki
2018-04-01
Formation of supermassive stars (SMSs) with mass ≳104 M⊙ is a promising pathway to seed the formation of supermassive black holes in the early universe. The so-called direct-collapse (DC) model postulates that such an SMS forms in a hot gas cloud irradiated by a nearby star-forming galaxy. We study the DC SMS formation in a fully cosmological context using three-dimensional radiation hydrodynamics simulations. We initialize our simulations using the outputs of the cosmological simulation of Chon et al., where two DC gas clouds are identified. The long-term evolution over a hundred thousand years is followed from the formation of embryo protostars through their growth to SMSs. We show that the strength of the tidal force by a nearby galaxy determines the multiplicity of the formed stars and affects the protostellar growth. In one case, where a collapsing cloud is significantly stretched by strong tidal force, multiple star-disc systems are formed via filament fragmentation. Small-scale fragmentation occurs in each circumstellar disc, and more than 10 stars with masses of a few ×103 M⊙ are finally formed. Interestingly, about a half of them are found as massive binary stars. In the other case, the gas cloud collapses nearly spherically under a relatively weak tidal field, and a single star-disc system is formed. Only a few SMSs with masses ˜104 M⊙ are found already after evolution of a hundred thousand years, and the SMSs are expected to grow further by gas accretion and to leave massive black holes at the end of their lives.
Star tracker operation in a high density proton field
NASA Technical Reports Server (NTRS)
Miklus, Kenneth J.; Kissh, Frank; Flynn, David J.
1993-01-01
Algorithms that reject transient signals due to proton effects on charge coupled device (CCD) sensors have been implemented in the HDOS ASTRA-l Star Trackers to be flown on the TOPEX mission scheduled for launch in July 1992. A unique technique for simulating a proton-rich environment to test trackers is described, as well as the test results obtained. Solar flares or an orbit that passes through the South Atlantic Anomaly can subject the vehicle to very high proton flux levels. There are three ways in which spurious proton generated signals can impact tracker performance: the many false signals can prevent or extend the time to acquire a star; a proton-generated signal can compromise the accuracy of the star's reported magnitude and position; and the tracked star can be lost, requiring reacquisition. Tests simulating a proton-rich environment were performed on two ASTRA-1 Star Trackers utilizing these new algorithms. There were no false acquisitions, no lost stars, and a significant reduction in reported position errors due to these improvements.
Universal scaling relations in scale-free structure formation
NASA Astrophysics Data System (ADS)
Guszejnov, Dávid; Hopkins, Philip F.; Grudić, Michael Y.
2018-07-01
A large number of astronomical phenomena exhibit remarkably similar scaling relations. The most well-known of these is the mass distribution dN/dM ∝ M-2 which (to first order) describes stars, protostellar cores, clumps, giant molecular clouds, star clusters, and even dark matter haloes. In this paper we propose that this ubiquity is not a coincidence and that it is the generic result of scale-free structure formation where the different scales are uncorrelated. We show that all such systems produce a mass function proportional to M-2 and a column density distribution with a power-law tail of dA/dln Σ ∝ Σ-1. In the case where structure formation is controlled by gravity the two-point correlation becomes ξ2D ∝ R-1. Furthermore, structures formed by such processes (e.g. young star clusters, DM haloes) tend to a ρ ∝ R-3 density profile. We compare these predictions with observations, analytical fragmentation cascade models, semi-analytical models of gravito-turbulent fragmentation, and detailed `full physics' hydrodynamical simulations. We find that these power laws are good first-order descriptions in all cases.
Universal Scaling Relations in Scale-Free Structure Formation
NASA Astrophysics Data System (ADS)
Guszejnov, Dávid; Hopkins, Philip F.; Grudić, Michael Y.
2018-04-01
A large number of astronomical phenomena exhibit remarkably similar scaling relations. The most well-known of these is the mass distribution dN/dM∝M-2 which (to first order) describes stars, protostellar cores, clumps, giant molecular clouds, star clusters and even dark matter halos. In this paper we propose that this ubiquity is not a coincidence and that it is the generic result of scale-free structure formation where the different scales are uncorrelated. We show that all such systems produce a mass function proportional to M-2 and a column density distribution with a power law tail of dA/d lnΣ∝Σ-1. In the case where structure formation is controlled by gravity the two-point correlation becomes ξ2D∝R-1. Furthermore, structures formed by such processes (e.g. young star clusters, DM halos) tend to a ρ∝R-3 density profile. We compare these predictions with observations, analytical fragmentation cascade models, semi-analytical models of gravito-turbulent fragmentation and detailed "full physics" hydrodynamical simulations. We find that these power-laws are good first order descriptions in all cases.
Medical Support for ISS Crewmember Training in Star City, Russia
NASA Technical Reports Server (NTRS)
Chough, Natacha; Pattarini, James; Cole, Richard; Patlach, Robert; Menon, Anil
2017-01-01
Medical support of spaceflight training operations across international lines is a unique circumstance with potential applications to other aerospace medicine support scenarios. KBRwyle's Star City Medical Support Group (SCMSG) has fulfilled this role since the Mir-Shuttle era, with extensive experience and updates to share with the greater AsMA community. OVERVIEW: The current Soyuz training flow for assigned ISS crewmembers takes place in Star City, Russia. Soyuz training flow involves numerous activities that pose potential physical and occupational risks to crewmembers, including centrifuge runs and pressurized suit simulations at ambient and hypobaric pressures. In addition, Star City is a relatively remote location in a host nation with variable access to reliable, Western-standard medical care. For these reasons, NASA's Human Health & Performance contract allocates full-time physician support to assigned ISS crewmembers training in Star City. The Star City physician also treats minor injuries and illnesses as needed for both long- and short-term NASA support personnel traveling in the area, while working to develop and maintain relationships with local health care resources in the event of more serious medical issues that cannot be treated on-site. The specifics of this unique scope of practice will be discussed. SIGNIFICANCE: ISS crewmembers training in Star City are at potential physical and occupational risk of trauma or dysbarism during nominal Soyuz training flow, requiring medical support from an on-duty aerospace medicine specialist. This support maintains human health and performance by preserving crewmember safety and well-being for mission success; sharing information regarding this operational model may contribute to advances in other areas of international, military, and civilian operational aerospace medicine.
Theoretical Study of White Dwarf Double Stars
NASA Astrophysics Data System (ADS)
Hira, Ajit; Koetter, Ted; Rivera, Ruben; Diaz, Juan
2015-04-01
We continue our interest in the computational simulation of the astrophysical phenomena with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.0 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We hope to extend our computational studies to blue giant stars in the future. Research Supported by National Science Foundation.
Stellar tracking attitude reference system
NASA Technical Reports Server (NTRS)
Klestadt, B.
1974-01-01
A satellite precision attitude control system was designed, based on the use of STARS as the principal sensing system. The entire system was analyzed and simulated in detail, considering the nonideal properties of the control and sensing components and realistic spacecraft mass properties. Experimental results were used to improve the star tracker noise model. The results of the simulation indicate that STARS performs in general as predicted in a realistic application and should be a strong contender in most precision earth pointing applications.
Biology Students Building Computer Simulations Using StarLogo TNG
ERIC Educational Resources Information Center
Smith, V. Anne; Duncan, Ishbel
2011-01-01
Confidence is an important issue for biology students in handling computational concepts. This paper describes a practical in which honours-level bioscience students simulate complex animal behaviour using StarLogo TNG, a freely-available graphical programming environment. The practical consists of two sessions, the first of which guides students…
Hybridizing Gravitationl Waveforms of Inspiralling Binary Neutron Star Systems
NASA Astrophysics Data System (ADS)
Cullen, Torrey; LIGO Collaboration
2016-03-01
Gravitational waves are ripples in space and time and were predicted to be produced by astrophysical systems such as binary neutron stars by Albert Einstein. These are key targets for Laser Interferometer and Gravitational Wave Observatory (LIGO), which uses template waveforms to find weak signals. The simplified template models are known to break down at high frequency, so I wrote code that constructs hybrid waveforms from numerical simulations to accurately cover a large range of frequencies. These hybrid waveforms use Post Newtonian template models at low frequencies and numerical data from simulations at high frequencies. They are constructed by reading in existing Post Newtonian models with the same masses as simulated stars, reading in the numerical data from simulations, and finding the ideal frequency and alignment to ``stitch'' these waveforms together.
The Genesis of the Milky Way's Thick Disk via Stellar Migration
NASA Astrophysics Data System (ADS)
Loebman, Sarah; Roskar, R.; Debattista, V. P.; Ivezic, Z.; Quinn, T. R.; Wadsley, J.
2011-01-01
The separation of the Milky Way disk into a thin and thick component is supported by differences in kinematics and metallicity. These differences have lead to the predominant view that the thick disk formed early via a cataclysmic event and constitutes fossil evidence of the hierarchical growth of the Milky Way. We show here, using N-body simulations, how a double vertical structure, with stellar populations displaying similar dichotomies can arise purely through internal evolution. Stars migrate radially, while retaining nearly circular orbits, as described by Sellwood & Binney (2002). As stars move outwards their vertical motions carry them to larger heights above the mid-plane, populating a thickened component. Such stars found at present time in the solar neighborhood formed early in the disk’s history at smaller radii where stars are more metal-poor and α-enhanced, leading to exactly the properties observed for thick disk stars. Classifying stars as members of the thin or thick disk by either velocity or metallicity leads to an apparent separation in the other property as observed. This scenario is supported by the SDSS observation that stars in the transition region do not show any correlation between rotation and metallicity. Such a correlation is present in young stars and arises because of epicyclic motions but migration radially mixes stars, washing out the correlation. Using the Geneva Copenhagen Survey, we indeed find a velocity-metallicity correlation in the younger stars and none in the older stars. We predict a similar result when separating stars by [α/Fe]. The good qualitative agreement between our simulation and observations are remarkable because the simulation was not tuned to reproduce the Milky Way, hinting that the thick disk may be dominated by stellar migration. Nonetheless, we cannot exclude that some fraction of the thick disk is a fossil of a past more violent history.
Gravitational Interactions of White Dwarf Double Stars
NASA Astrophysics Data System (ADS)
McKeough, James; Robinson, Chloe; Ortiz, Bridget; Hira, Ajit
2016-03-01
In the light of the possible role of White Dwarf stars as progenitors of Type Ia supernovas, we present computational simulations of some astrophysical phenomena associated with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.5 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We will extend our computational studies to blue giant and red giant stars in the future. Funding from National Science Foundation.
How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ke-Jung; Whalen, Daniel J.; Wollenberg, Katharina M. J.
Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablativemore » flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.« less
How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae
NASA Astrophysics Data System (ADS)
Chen, Ke-Jung; Whalen, Daniel J.; Wollenberg, Katharina M. J.; Glover, Simon C. O.; Klessen, Ralf S.
2017-08-01
Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.
Feedback Driven Chemical Evolution in Simulations of Low Mass Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Emerick, Andrew; Bryan, Greg; Mac Low, Mordecai-Mark
2018-06-01
Galaxy chemical properties place some of the best constraints on models of galaxy evolution. Both gas and stellar metal abundances in galaxies depend upon the integrated star formation history of the galaxy, gas accretion, outflows, and the effectiveness of metal mixing within the interstellar medium (ISM). Capturing the physics that governs these processes in detail, however, is challenging, in part due to the difficulty in self-consistently modelling stellar feedback physics that impacts each of these processes. Using high resolution hydrodynamics simulations of isolated dwarf galaxies where we follow stars as individual star particles, we examine the role of feedback in driving dwarf galaxy chemical evolution. This star-by-star method allows us to directly follow feedback from stellar winds from massive and AGB stars, stellar ionizing radiation and photoelectric heating, and supernovae. Additionally, we track 15 individual metal species yields from these stars as they pollute the ISM and enrich new stellar populations. I will present initial results from these simulations in the context of observational constraints on the retention/ejection of metals from Local Group dwarf galaxies. In addition, I will discuss the variations with which individual elements evolve in the various phases of the ISM, as they progress from hot, ionized gas down to cold, star forming regions. I will conclude by outlining the implications of these results on interpretations of observed chemical abundances in dwarf galaxies and on standard assumptions made in semi-analytic chemical evolution models of these galaxies.
What FIREs Up Star Formation: the Emergence of the Kennicutt-Schmidt Law from Feedback
NASA Astrophysics Data System (ADS)
Orr, Matthew E.; Hayward, Christopher C.; Hopkins, Philip F.; Chan, T. K.; Faucher-Giguère, Claude-André; Feldmann, Robert; Kereš, Dušan; Murray, Norman; Quataert, Eliot
2018-05-01
We present an analysis of the global and spatially-resolved Kennicutt-Schmidt (KS) star formation relation in the FIRE (Feedback In Realistic Environments) suite of cosmological simulations, including halos with z = 0 masses ranging from 1010 - 1013 M⊙. We show that the KS relation emerges and is robustly maintained due to the effects of feedback on local scales regulating star-forming gas, independent of the particular small-scale star formation prescriptions employed. We demonstrate that the time-averaged KS relation is relatively independent of redshift and spatial averaging scale, and that the star formation rate surface density is weakly dependent on metallicity and inversely dependent on orbital dynamical time. At constant star formation rate surface density, the `Cold & Dense' gas surface density (gas with T < 300 K and n > 10 cm-3, used as a proxy for the molecular gas surface density) of the simulated galaxies is ˜0.5 dex less than observed at ˜kpc scales. This discrepancy may arise from underestimates of the local column density at the particle-scale for the purposes of shielding in the simulations. Finally, we show that on scales larger than individual giant molecular clouds, the primary condition that determines whether star formation occurs is whether a patch of the galactic disk is thermally Toomre-unstable (not whether it is self-shielding): once a patch can no longer be thermally stabilized against fragmentation, it collapses, becomes self-shielding, cools, and forms stars, regardless of epoch or environment.
Star formation in simulated galaxies: understanding the transition to quiescence at 3 × 1010 M⊙
NASA Astrophysics Data System (ADS)
Taylor, Philip; Federrath, Christoph; Kobayashi, Chiaki
2017-08-01
Star formation in galaxies relies on the availability of cold, dense gas, which, in turn, relies on factors internal and external to the galaxies. In order to provide a simple model for how star formation is regulated by various physical processes in galaxies, we analyse data at redshift z = 0 from a hydrodynamical cosmological simulation that includes prescriptions for star formation and stellar evolution, active galactic nuclei, and their associated feedback processes. This model can determine the star formation rate (SFR) as a function of galaxy stellar mass, gas mass, black hole mass, and environment. We find that gas mass is the most important quantity controlling star formation in low-mass galaxies, and star-forming galaxies in dense environments have higher SFR than their counterparts in the field. In high-mass galaxies, we find that black holes more massive than ˜ 107.5 M⊙ can be triggered to quench star formation in their host; this mass scale is emergent in our simulations. Furthermore, this black hole mass corresponds to a galaxy bulge mass ˜ 2 × 1010 M⊙, consistent with the mass at which galaxies start to become dominated by early types ( ˜ 3 × 1010 M⊙, as previously shown in observations by Kauffmann et al.). Finally, we demonstrate that our model can reproduce well the SFR measured from observations of galaxies in the Galaxy And Mass Assembly and Arecibo Legacy Fast ALFA surveys.
NASA Astrophysics Data System (ADS)
Wu, Tonggen; Ma, Jianxin
2017-12-01
This paper proposes an original scheme to generate the photonic dual-tone optical millimeter wave (MMW) carrying the 16-star quadrature-amplitude-modulation (QAM) signal via an optical phase modulator (PM) and an interleaver with adaptive photonic frequency-nonupling without phase precoding. To enable the generated optical vector MMW signal to resist the power fading effect caused by the fiber chromatic dispersion, the modulated -5th- and +4th-order sidebands are selected from the output of the PM, which is driven by the precoding 16-star QAM signal. The modulation index of the PM is optimized to gain the maximum opto-electrical conversion efficiency. A radio over fiber link is built by simulation, and the simulated constellations and the bit error rate graph demonstrate that the frequency-nonupling 16-star QAM MMW signal has good transmission performance. The simulation results agree well with our theoretical results.
CHORUS code for solar and planetary convection
NASA Astrophysics Data System (ADS)
Wang, Junfeng
Turbulent, density stratified convection is ubiquitous in stars and planets. Numerical simulation has become an indispensable tool for understanding it. A primary contribution of this dissertation work is the creation of the Compressible High-ORder Unstructured Spectral-difference (CHORUS) code for simulating the convection and related fluid dynamics in the interiors of stars and planets. In this work, the CHORUS code is verified by using two newly defined benchmark cases and demonstrates excellent parallel performance. It has unique potential to simulate challenging physical phenomena such as multi-scale solar convection, core convection, and convection in oblate, rapidly-rotating stars. In order to exploit its unique capabilities, the CHORUS code has been extended to perform the first 3D simulations of convection in oblate, rapidly rotating solar-type stars. New insights are obtained with respect to the influence of oblateness on the convective structure and heat flux transport. With the presence of oblateness resulting from the centrifugal force effect, the convective structure in the polar regions decouples from the main convective modes in the equatorial regions. Our convection simulations predict that heat flux peaks in both the polar and equatorial regions, contrary to previous theoretical results that predict darker equators. High latitudinal zonal jets are also observed in the simulations.
Key issues review: numerical studies of turbulence in stars
NASA Astrophysics Data System (ADS)
Arnett, W. David; Meakin, Casey
2016-10-01
Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.
NASA Astrophysics Data System (ADS)
Jones, Mackenzie L.; Hickox, Ryan C.; Mutch, Simon J.; Croton, Darren J.; Ptak, Andrew F.; DiPompeo, Michael A.
2017-07-01
In studies of the connection between active galactic nuclei (AGNs) and their host galaxies, there is widespread disagreement on some key aspects of the connection. These disagreements largely stem from a lack of understanding of the nature of the full underlying AGN population. Recent attempts to probe this connection utilize both observations and simulations to correct for a missed population, but presently are limited by intrinsic biases and complicated models. We take a simple simulation for galaxy evolution and add a new prescription for AGN activity to connect galaxy growth to dark matter halo properties and AGN activity to star formation. We explicitly model selection effects to produce an “observed” AGN population for comparison with observations and empirically motivated models of the local universe. This allows us to bypass the difficulties inherent in models that attempt to infer the AGN population by inverting selection effects. We investigate the impact of selecting AGNs based on thresholds in luminosity or Eddington ratio on the “observed” AGN population. By limiting our model AGN sample in luminosity, we are able to recreate the observed local AGN luminosity function and specific star formation-stellar mass distribution, and show that using an Eddington ratio threshold introduces less bias into the sample by selecting the full range of growing black holes, despite the challenge of selecting low-mass black holes. We find that selecting AGNs using these various thresholds yield samples with different AGN host galaxy properties.
Radiative Feedback of Forming Star Clusters on Their GMC Environments: Theory and Simulation
NASA Astrophysics Data System (ADS)
Howard, C. S.; Pudritz, R. E.; Harris, W. E.
2013-07-01
Star clusters form from dense clumps within a molecular cloud. Radiation from these newly formed clusters feeds back on their natal molecular cloud through heating and ionization which ultimately stops gas accretion into the cluster. Recent studies suggest that radiative feedback effects from a single cluster may be sufficient to disrupt an entire cloud over a short timescale. Simulating cluster formation on a large scale, however, is computationally demanding due to the high number of stars involved. For this reason, we present a model for representing the radiative output of an entire cluster which involves randomly sampling an initial mass function (IMF) as the cluster accretes mass. We show that this model is able to reproduce the star formation histories of observed clusters. To examine the degree to which radiative feedback shapes the evolution of a molecular cloud, we use the FLASH adaptive-mesh refinement hydrodynamics code to simulate cluster formation in a turbulent cloud. Unlike previous studies, sink particles are used to represent a forming cluster rather than individual stars. Our cluster model is then coupled with a raytracing scheme to treat radiative transfer as the clusters grow in mass. This poster will outline the details of our model and present preliminary results from our 3D hydrodynamical simulations.
The edge of galaxy formation - I. Formation and evolution of MW-satellite analogues before accretion
NASA Astrophysics Data System (ADS)
Macciò, Andrea V.; Frings, Jonas; Buck, Tobias; Penzo, Camilla; Dutton, Aaron A.; Blank, Marvin; Obreja, Aura
2017-12-01
The satellites of the Milky Way and Andromeda represent the smallest galaxies we can observe in our Universe. In this series of papers, we aim to shed light on their formation and evolution using cosmological hydrodynamical simulations. In this first paper, we focus on the galaxy properties before accretion, by simulating 27 haloes with masses between 5 × 108 and 1010 M⊙. Out of this set 19 haloes successfully form stars, while 8 remain dark. The simulated galaxies match quite well present day observed scaling relations between stellar mass, size and metallicity, showing that such relations are in place before accretion. Our galaxies show a large variety of star formation histories, from extended star formation periods to single bursts. As in more massive galaxies, large star formation bursts are connected with major mergers events, which greatly contribute to the overall stellar mass build up. The intrinsic stochasticity of mergers induces a large scatter in the stellar mass-halo mass relation, up to two orders of magnitude. Despite the bursty star formation history, on these mass scales baryons are very ineffective in modifying the dark matter profiles, and galaxies with a stellar mass below ≈106 M⊙ retain their cuspy central dark matter distribution, very similar to results from pure N-body simulations.
The impact of dark energy on galaxy formation. What does the future of our Universe hold?
NASA Astrophysics Data System (ADS)
Salcido, Jaime; Bower, Richard G.; Barnes, Luke A.; Lewis, Geraint F.; Elahi, Pascal J.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop
2018-04-01
We investigate the effect of the accelerated expansion of the Universe due to a cosmological constant, Λ, on the cosmic star formation rate. We utilise hydrodynamical simulations from the EAGLE suite, comparing a ΛCDM Universe to an Einstein-de Sitter model with Λ = 0. Despite the differences in the rate of growth of structure, we find that dark energy, at its observed value, has negligible impact on star formation in the Universe. We study these effects beyond the present day by allowing the simulations to run forward into the future (t > 13.8 Gyr). We show that the impact of Λ becomes significant only when the Universe has already produced most of its stellar mass, only decreasing the total co-moving density of stars ever formed by ≈15%. We develop a simple analytic model for the cosmic star formation rate that captures the suppression due to a cosmological constant. The main reason for the similarity between the models is that feedback from accreting black holes dramatically reduces the cosmic star formation at late times. Interestingly, simulations without feedback from accreting black holes predict an upturn in the cosmic star formation rate for t > 15 Gyr due to the rejuvenation of massive (>1011M⊙) galaxies. We briefly discuss the implication of the weak dependence of the cosmic star formation on Λ in the context of the anthropic principle.
Simulating neutron star mergers as r-process sources in ultrafaint dwarf galaxies
NASA Astrophysics Data System (ADS)
Safarzadeh, Mohammadtaher; Scannapieco, Evan
2017-10-01
To explain the high observed abundances of r-process elements in local ultrafaint dwarf (UFD) galaxies, we perform cosmological zoom simulations that include r-process production from neutron star mergers (NSMs). We model star formation stochastically and simulate two different haloes with total masses ≈108 M⊙ at z = 6. We find that the final distribution of [Eu/H] versus [Fe/H] is relatively insensitive to the energy by which the r-process material is ejected into the interstellar medium, but strongly sensitive to the environment in which the NSM event occurs. In one halo, the NSM event takes place at the centre of the stellar distribution, leading to high levels of r-process enrichment such as seen in a local UFD, Reticulum II (Ret II). In a second halo, the NSM event takes place outside of the densest part of the galaxy, leading to a more extended r-process distribution. The subsequent star formation occurs in an interstellar medium with shallow levels of r-process enrichment that results in stars with low levels of [Eu/H] compared to Ret II stars even when the maximum possible r-process mass is assumed to be ejected. This suggests that the natal kicks of neutron stars may also play an important role in determining the r-process abundances in UFD galaxies, a topic that warrants further theoretical investigation.
Star and Planet Formation through Cosmic Time
NASA Astrophysics Data System (ADS)
Lee, Aaron Thomas
The computational advances of the past several decades have allowed theoretical astrophysics to proceed at a dramatic pace. Numerical simulations can now simulate the formation of individual molecules all the way up to the evolution of the entire universe. Observational astrophysics is producing data at a prodigious rate, and sophisticated analysis techniques of large data sets continue to be developed. It is now possible for terabytes of data to be effectively turned into stunning astrophysical results. This is especially true for the field of star and planet formation. Theorists are now simulating the formation of individual planets and stars, and observing facilities are finally capturing snapshots of these processes within the Milky Way galaxy and other galaxies. While a coherent theory remains incomplete, great strides have been made toward this goal. This dissertation discusses several projects that develop models of star and planet forma- tion. This work spans large spatial and temporal scales: from the AU-scale of protoplanetary disks all the way up to the parsec-scale of star-forming clouds, and taking place in both contemporary environments like the Milky Way galaxy and primordial environments at redshifts of z 20. Particularly, I show that planet formation need not proceed in incremental stages, where planets grow from millimeter-sized dust grains all the way up to planets, but instead can proceed directly from small dust grains to large kilometer-sized boulders. The requirements for this model to operate effectively are supported by observations. Additionally, I draw suspicion toward one model for how you form high mass stars (stars with masses exceeding 8 Msun), which postulates that high-mass stars are built up from the gradual accretion of mass from the cloud onto low-mass stars. I show that magnetic fields in star forming clouds thwart this transfer of mass, and instead it is likely that high mass stars are created from the gravitational collapse of large clouds. This work also provides a sub-grid model for computational codes that employ sink particles accreting from magnetized gas. Finally, I analyze the role that radiation plays in determining the final masses of the first stars to ever form in the universe. These stars formed in starkly different environments than stars form in today, and the role of the direct radiation from these stars turns out to be a crucial component of primordial star formation theory. These projects use a variety of computational tools, including the use of spectral hydrodynamics codes, magneto-hydrodynamics grid codes that employ adaptive mesh refinement techniques, and long characteristic ray tracing methods. I develop and describe a long characteristic ray tracing method for modeling hydrogen-ionizing radiation from stars. Additionally, I have developed Monte Carlo routines that convert hydrodynamic data used in smoothed particle hydrodynamics codes for use in grid-based codes. Both of these advances will find use beyond simulations of star and planet formation and benefit the astronomical community at large.
NASA Astrophysics Data System (ADS)
Klopfer, Eric; Scheintaub, Hal; Huang, Wendy; Wendel, Daniel
Computational approaches to science are radically altering the nature of scientific investigatiogn. Yet these computer programs and simulations are sparsely used in science education, and when they are used, they are typically “canned” simulations which are black boxes to students. StarLogo The Next Generation (TNG) was developed to make programming of simulations more accessible for students and teachers. StarLogo TNG builds on the StarLogo tradition of agent-based modeling for students and teachers, with the added features of a graphical programming environment and a three-dimensional (3D) world. The graphical programming environment reduces the learning curve of programming, especially syntax. The 3D graphics make for a more immersive and engaging experience for students, including making it easy to design and program their own video games. Another change to StarLogo TNG is a fundamental restructuring of the virtual machine to make it more transparent. As a result of these changes, classroom use of TNG is expanding to new areas. This chapter is concluded with a description of field tests conducted in middle and high school science classes.
CMacIonize: Monte Carlo photoionisation and moving-mesh radiation hydrodynamics
NASA Astrophysics Data System (ADS)
Vandenbroucke, Bert; Wood, Kenneth
2018-02-01
CMacIonize simulates the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given time, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code and also as a moving-mesh code.
DO R CORONAE BOREALIS STARS FORM FROM DOUBLE WHITE DWARF MERGERS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staff, Jan. E.; Clayton, Geoffrey C.; Tohline, Joel E.
2012-09-20
A leading formation scenario for R Coronae Borealis (RCB) stars invokes the merger of degenerate He and CO white dwarfs (WDs) in a binary. The observed ratio of {sup 16}O/{sup 18}O for RCB stars is in the range of 0.3-20 much smaller than the solar value of {approx}500. In this paper, we investigate whether such a low ratio can be obtained in simulations of the merger of a CO and a He WD. We present the results of five three-dimensional hydrodynamic simulations of the merger of a double WD system where the total mass is 0.9 M{sub Sun} and themore » initial mass ratio (q) varies between 0.5 and 0.99. We identify in simulations with q {approx}< 0.7 a feature around the merged stars where the temperatures and densities are suitable for forming {sup 18}O. However, more {sup 16}O is being dredged up from the C- and O-rich accretor during the merger than the amount of {sup 18}O that is produced. Therefore, on the dynamical timescale over which our hydrodynamics simulation runs, an {sup 16}O/{sup 18}O ratio of {approx}2000 in the 'best' case is found. If the conditions found in the hydrodynamic simulations persist for 10{sup 6} s the oxygen ratio drops to 16 in one case studied, while in a hundred years it drops to {approx}4 in another case studied, consistent with the observed values in RCB stars. Therefore, the merger of two WDs remains a strong candidate for the formation of these enigmatic stars.« less
NASA Astrophysics Data System (ADS)
Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.
2018-06-01
We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling, and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose three modifications to SAMs that will provide more accurate high-redshift simulations. These include (1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; (2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and (3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.
Prompt merger collapse and the maximum mass of neutron stars.
Bauswein, A; Baumgarte, T W; Janka, H-T
2013-09-27
We perform hydrodynamical simulations of neutron-star mergers for a large sample of temperature-dependent nuclear equations of state and determine the threshold mass above which the merger remnant promptly collapses to form a black hole. We find that, depending on the equation of state, the threshold mass is larger than the maximum mass of a nonrotating star in isolation by between 30 and 70 percent. Our simulations also show that the ratio between the threshold mass and maximum mass is tightly correlated with the compactness of the nonrotating maximum-mass configuration. We speculate on how this relation can be used to derive constraints on neutron-star properties from future observations.
Numerical relativity simulations of neutron star merger remnants using conservative mesh refinement
NASA Astrophysics Data System (ADS)
Dietrich, Tim; Bernuzzi, Sebastiano; Ujevic, Maximiliano; Brügmann, Bernd
2015-06-01
We study equal- and unequal-mass neutron star mergers by means of new numerical relativity simulations in which the general relativistic hydrodynamics solver employs an algorithm that guarantees mass conservation across the refinement levels of the computational mesh. We consider eight binary configurations with total mass M =2.7 M⊙, mass ratios q =1 and q =1.16 , four different equations of state (EOSs) and one configuration with a stiff EOS, M =2.5 M⊙ and q =1.5 , which is one of the largest mass ratios simulated in numerical relativity to date. We focus on the postmerger dynamics and study the merger remnant, the dynamical ejecta, and the postmerger gravitational wave spectrum. Although most of the merger remnants are a hypermassive neutron star collapsing to a black hole+disk system on dynamical time scales, stiff EOSs can eventually produce a stable massive neutron star. During the merger process and on very short time scales, about ˜10-3- 10-2M⊙ of material become unbound with kinetic energies ˜1050 erg . Ejecta are mostly emitted around the orbital plane and favored by large mass ratios and softer EOS. The postmerger wave spectrum is mainly characterized by the nonaxisymmetric oscillations of the remnant neutron star. The stiff EOS configuration consisting of a 1.5 M⊙ and a 1.0 M⊙ neutron star, simulated here for the first time, shows a rather peculiar dynamics. During merger the companion star is very deformed; about ˜0.03 M⊙ of the rest mass becomes unbound from the tidal tail due to the torque generated by the two-core inner structure. The merger remnant is a stable neutron star surrounded by a massive accretion disk of rest mass ˜0.3 M⊙. This and similar configurations might be particularly interesting for electromagnetic counterparts. Comparing results obtained with and without the conservative mesh refinement algorithm, we find that postmerger simulations can be affected by systematic errors if mass conservation is not enforced in the mesh refinement strategy. However, mass conservation also depends on grid details and on the artificial atmosphere setup; the latter are particularly significant in the computation of the dynamical ejecta.
X-33 Simulation Flown by Steve Ishmael
NASA Technical Reports Server (NTRS)
1997-01-01
Steve Ishmael flies a simulation of the X-33 Advanced Technology Demonstrator at NASA's Dryden Flight Research Center, Edwards, California. This simulation was used to provide flight trajectory data while flight control laws were being designed and developed, as well as to provide aerodynamic design information to X-33 developer Lockheed Martin. The X-33 program was a government/industry effort to design, build and fly a half-scale prototype that was to have demonstrated in flight the new technologies needed for the proposed Lockheed Martin full-scale VentureStar Reusable Launch Vehicle. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to provide the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improved U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen tank and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.
X-33 Simulation Lab and Staff Engineers
NASA Technical Reports Server (NTRS)
1997-01-01
X-33 program engineers at NASA's Dryden Flight Research Center, Edwards, California, monitor a flight simulation of the X-33 Advanced Technology Demonstrator as a 'flight' unfolds. The simulation provided flight trajectory data while flight control laws were being designed and developed. It also provided information which assisted X-33 developer Lockheed Martin in aerodynamic design of the vehicle. The X-33 program was a government/industry effort to design, build and fly a half-scale prototype that was to demonstrate in flight the new technologies needed for Lockheed Martin's proposed full-scale VentureStar Reusable Launch Vehicle. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was intended to provide the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was intended to dramatically increase reliability and lower costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to create new opportunities for space access and significantly improve U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to reach altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to be launched from a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen fuel tank, and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.
Simulations of inspiraling and merging double neutron stars using the Spectral Einstein Code
NASA Astrophysics Data System (ADS)
Haas, Roland; Ott, Christian D.; Szilagyi, Bela; Kaplan, Jeffrey D.; Lippuner, Jonas; Scheel, Mark A.; Barkett, Kevin; Muhlberger, Curran D.; Dietrich, Tim; Duez, Matthew D.; Foucart, Francois; Pfeiffer, Harald P.; Kidder, Lawrence E.; Teukolsky, Saul A.
2016-06-01
We present results on the inspiral, merger, and postmerger evolution of a neutron star-neutron star (NSNS) system. Our results are obtained using the hybrid pseudospectral-finite volume Spectral Einstein Code (SpEC). To test our numerical methods, we evolve an equal-mass system for ≈22 orbits before merger. This waveform is the longest waveform obtained from fully general-relativistic simulations for NSNSs to date. Such long (and accurate) numerical waveforms are required to further improve semianalytical models used in gravitational wave data analysis, for example, the effective one body models. We discuss in detail the improvements to SpEC's ability to simulate NSNS mergers, in particular mesh refined grids to better resolve the merger and postmerger phases. We provide a set of consistency checks and compare our results to NSNS merger simulations with the independent bam code. We find agreement between them, which increases confidence in results obtained with either code. This work paves the way for future studies using long waveforms and more complex microphysical descriptions of neutron star matter in SpEC.
Cosmic Reionization On Computers: Numerical and Physical Convergence
Gnedin, Nickolay Y.
2016-04-01
In this paper I show that simulations of reionization performed under the Cosmic Reionization On Computers (CROC) project do converge in space and mass, albeit rather slowly. A fully converged solution (for a given star formation and feedback model) can be determined at a level of precision of about 20%, but such a solution is useless in practice, since achieving it in production-grade simulations would require a large set of runs at various mass and spatial resolutions, and computational resources for such an undertaking are not yet readily available. In order to make progress in the interim, I introduce amore » weak convergence correction factor in the star formation recipe, which allows one to approximate the fully converged solution with finite resolution simulations. The accuracy of weakly converged simulations approaches a comparable, ~20% level of precision for star formation histories of individual galactic halos and other galactic properties that are directly related to star formation rates, like stellar masses and metallicities. Yet other properties of model galaxies, for example, their HI masses, are recovered in the weakly converged runs only within a factor of two.« less
Cosmic Reionization On Computers: Numerical and Physical Convergence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y.
In this paper I show that simulations of reionization performed under the Cosmic Reionization On Computers (CROC) project do converge in space and mass, albeit rather slowly. A fully converged solution (for a given star formation and feedback model) can be determined at a level of precision of about 20%, but such a solution is useless in practice, since achieving it in production-grade simulations would require a large set of runs at various mass and spatial resolutions, and computational resources for such an undertaking are not yet readily available. In order to make progress in the interim, I introduce amore » weak convergence correction factor in the star formation recipe, which allows one to approximate the fully converged solution with finite resolution simulations. The accuracy of weakly converged simulations approaches a comparable, ~20% level of precision for star formation histories of individual galactic halos and other galactic properties that are directly related to star formation rates, like stellar masses and metallicities. Yet other properties of model galaxies, for example, their HI masses, are recovered in the weakly converged runs only within a factor of two.« less
High-velocity runaway stars from three-body encounters
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.
2010-01-01
We performed numerical simulations of dynamical encounters between hard, massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster) to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (≥ 200 - 400 km s-1) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of ≥ 200 M⊙) and found that about 3 - 4% of all encounters produce velocities ≥ 400 km s-1, while in about 2% of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (≥ 200 - 400 km s-1) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50 - 100 M⊙ stars. We found that from 1 to ≃ 4% of these encounters can produce runaway stars with velocities of ≥ 300 - 400 km s-1 (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1% of encounters) produce hypervelocity (≥ 700 km s-1) late B-type escapers.
Simulating a High-Spin Black Hole-Neutron Star Binary
NASA Astrophysics Data System (ADS)
Derby, John; Lovelace, Geoffrey; Duez, Matt; Foucart, Francois; Simulating Extreme Spacetimes (SXS) Collaboration
2017-01-01
During their first observing run (fall 2015) Advanced LIGO detected gravitational waves from merging black holes. In its future observations LIGO could detect black hole neutron star binaries (BHNS). It is important to have numerical simulations to predict these waves, to help find as many of these waves as possible and to estimate the sources properties, because at times near merger analytic approximations fail. Also, numerical models of the disk formed when the black hole tears apart the neutron star can help us learn about these systems' potential electromagnetic counterparts. One area of the parameter space for BHNS systems that is particularly challenging is simulations with high black hole spin. I will present results from a new BHNS simulation that has a black hole spin of 90% of the theoretical maximum. We are part of SXS but not all.
NASA Astrophysics Data System (ADS)
Harries, Tim J.; Douglas, Tom A.; Ali, Ahmad
2017-11-01
We present a numerical simulation of the formation of a massive star using Monte Carlo-based radiation hydrodynamics (RHD). The star forms via stochastic disc accretion and produces fast, radiation-driven bipolar cavities. We find that the evolution of the infall rate (considered to be the mass flux across a 1500 au spherical boundary) and the accretion rate on to the protostar, are broadly consistent with observational constraints. After 35 kyr the star has a mass of 25 M⊙ and is surrounded by a disc of mass 7 M⊙ and 1500 au radius, and we find that the velocity field of the disc is close to Keplerian. Once again these results are consistent with those from recent high-resolution studies of discs around forming massive stars. Synthetic imaging of the RHD model shows good agreement with observations in the near- and far-IR, but may be in conflict with observations that suggest that massive young stellar objects are typically circularly symmetric in the sky at 24.5 μm. Molecular line simulations of a CH3CN transition compare well with observations in terms of surface brightness and line width, and indicate that it should be possible to reliably extract the protostellar mass from such observations.
MAGNETIC CYCLES IN A DYNAMO SIMULATION OF FULLY CONVECTIVE M-STAR PROXIMA CENTAURI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rakesh K.; Wolk, Scott J.; Christensen, Ulrich R.
2016-12-20
The recent discovery of an Earth-like exoplanet around Proxima Centauri has shined a spot light on slowly rotating fully convective M-stars. When such stars rotate rapidly (period ≲20 days), they are known to generate very high levels of activity that is powered by a magnetic field much stronger than the solar magnetic field. Recent theoretical efforts are beginning to understand the dynamo process that generates such strong magnetic fields. However, the observational and theoretical landscape remains relatively uncharted for fully convective M-stars that rotate slowly. Here, we present an anelastic dynamo simulation designed to mimic some of the physical characteristicsmore » of Proxima Centauri, a representative case for slowly rotating fully convective M-stars. The rotating convection spontaneously generates differential rotation in the convection zone that drives coherent magnetic cycles where the axisymmetric magnetic field repeatedly changes polarity at all latitudes as time progress. The typical length of the “activity” cycle in the simulation is about nine years, in good agreement with the recently proposed activity cycle length of about seven years for Proxima Centauri. Comparing our results with earlier work, we hypothesis that the dynamo mechanism undergoes a fundamental change in nature as fully convective stars spin down with age.« less
Chemo-Dynamical Evolution of r-process Elements in the Local Group Galaxies
NASA Astrophysics Data System (ADS)
Hirai, Yutaka; Ishimaru, Yuhri; Saitoh, Takayuki R.; Fujii, Michiko S.; Hidaka, Jun; Kajino, Toshitaka
The astrophysical site(s) of r-process is not yet identified over half a century. Astronomical high dispersion observations have shown that extremely metal-poor (EMP) stars in the Milky Way (MW) halo have large star-to-star dispersions in the abundance of r-process elements. Binary neutron star mergers (NSMs) are one of the most promising sites of r-process. However, several studies suggested that it is difficult to reproduce the dispersions by NSMs due to their long merger times and low rates. In this study, we performed a series of N-body/smoothed particle hydrodynamic simulations of dwarf galaxies. We show that NSMs can explain the dispersions with long merger times (˜100 Myr). We find that the metallicity of our simulated galaxies does not correlate with time in their early phase due to slow chemical enrichment. This slow chemical enrichment produces [Eu/Fe] distribution which is consistent with the observation. Our results suggest that stars in the MW halo formed with a low star formation rate of less than 10 - 3M ⊙ yr-1, which is common for typical dwarf galaxies in the MW. Our simulations support the scenario that early enrichment of the MW halo occurred in the framework of hierarchical structure formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E., E-mail: kpan2@illinois.edu, E-mail: pmricker@illinois.edu, E-mail: r-taam@northwestern.edu
The progenitor systems of Type Ia supernovae (SNe Ia) are still under debate. Based on recent hydrodynamics simulations, non-degenerate companions in the single-degenerate scenario (SDS) should survive the supernova (SN) impact. One way to distinguish between the SDS and the double-degenerate scenario is to search for the post-impact remnant stars (PIRSs) in SN Ia remnants. Using a technique that combines multi-dimensional hydrodynamics simulations with one-dimensional stellar evolution simulations, we have examined the post-impact evolution of helium-rich binary companions in the SDS. It is found that these helium-rich PIRSs (He PIRSs) dramatically expand and evolve to a luminous phase (L {approx}more » 10{sup 4} L{sub Sun }) about 10 yr after an SN explosion. Subsequently, they contract and evolve to become hot blue-subdwarf-like (sdO-like) stars by releasing gravitational energy, persisting as sdO-like stars for several million years before evolving to the helium red-giant phase. We therefore predict that a luminous OB-like star should be detectable within {approx}30 yr after the SN explosion. Thereafter, it will shrink and become an sdO-like star in the central regions of SN Ia remnants within star-forming regions for SN Ia progenitors evolved via the helium-star channel in the SDS. These He PIRSs are predicted to be rapidly rotating (v{sub rot} {approx}> 50 km s{sup -1}) and to have high spatial velocities (v{sub linear} {approx}> 500 km s{sup -1}). Furthermore, if SN remnants have diffused away and are not recognizable at a later stage, He PIRSs could be an additional source of single sdO stars and/or hypervelocity stars.« less
Slooh Takes Observing into the Classroom
NASA Astrophysics Data System (ADS)
Godfrey, Paige
2018-01-01
For many students, studying space is limited to simulations and a vivid imagination. Slooh is providing a new education tool that gives students an authentic experience, mimicking the practices of professional astronomers by bringing real-time astronomical observing to the classroom. Teachers and students have robotic control of Slooh’s global network of ground-based telescopes located at the Institute of Astrophysics in the Canary Islands and at the Catholic University based in Santiago, Chile. Slooh Classroom and Slooh Astrolab are products designed to offer K-12 and higher education an accessible, affordable way to interact with space. The lab manuals provide fully-designed classroom activities that explore celestial objects representing a robust sample of star clusters, nebulae, galaxies, stars, planets, comets and asteroids. Slooh’s education tools provide a unique online platform for the sharing of space content and access to live-hosted shows that discuss current astronomy events, creating a full STEAM experience.
Investigating a method of producing "red and dead" galaxies
NASA Astrophysics Data System (ADS)
Skory, Stephen
2010-08-01
In optical wavelengths, galaxies are observed to be either red or blue. The overall color of a galaxy is due to the distribution of the ages of its stellar population. Galaxies with currently active star formation appear blue, while those with no recent star formation at all (greater than about a Gyr) have only old, red stars. This strong bimodality has lead to the idea of star formation quenching, and various proposed physical mechanisms. In this dissertation, I attempt to reproduce with Enzo the results of Naab et al. (2007), in which red and dead galaxies are formed using gravitational quenching, rather than with one of the more typical methods of quenching. My initial attempts are unsuccessful, and I explore the reasons why I think they failed. Then using simpler methods better suited to Enzo + AMR, I am successful in producing a galaxy that appears to be similar in color and formation history to those in Naab et al. However, quenching is achieved using unphysically high star formation efficiencies, which is a different mechanism than Naab et al. suggests. Preliminary results of a much higher resolution, follow-on simulation of the above show some possible contradiction with the results of Naab et al. Cold gas is streaming into the galaxy to fuel starbursts, while at a similar epoch the galaxies in Naab et al. have largely already ceased forming stars in the galaxy. On the other hand, the results of the high resolution simulation are qualitatively similar to other works in the literature that show a somewhat different gravitational quenching mechanism than Naab et al. I also discuss my work using halo finders to analyze simulated cosmological data, and my work improving the Enzo/AMR analysis tool "yt". This includes two parallelizations of the halo finder HOP (Eisenstein and Hut, 1998) which allows analysis of very large cosmological datasets on parallel machines. The first version is "yt-HOP," which works well for datasets between about 2563 and 5123 particles, but has memory bottlenecks as the datasets get larger. These bottlenecks inspired the second version, "Parallel HOP," which is a fully parallelized method and implementation of HOP that has worked on datasets with more than 20483 particles on hundreds of processing cores. Both methods are described in detail, as are the various effects of performance-related runtime options. Additionally, both halo finders are subjected to a full suite of performance benchmarks varying both dataset sizes and computational resources used. I conclude with descriptions of four new tools I added to yt. A Parallel Structure Function Generator allows analysis of two-point functions, such as correlation functions, using memory- and workload-parallelism. A Parallel Merger Tree Generator leverages the parallel halo finders in yt, such as Parallel HOP, to build the merger tree of halos in a cosmological simulation, and outputs the result to a SQLite database for simple and powerful data extraction. A Star Particle Analysis toolkit takes a group of star particles and can output the rate of formation as a function of time, and/or a synthetic Spectral Energy Distribution (S.E.D.) using the Bruzual and Charlot (2003) data tables. Finally, a Halo Mass Function toolkit takes as input a list of halo masses and can output the halo mass function for the halos, as well as an analytical fit for those halos using several previously published fits.
Formation of intermediate-mass black holes through runaway collisions in the first star clusters
NASA Astrophysics Data System (ADS)
Sakurai, Yuya; Yoshida, Naoki; Fujii, Michiko S.; Hirano, Shingo
2017-12-01
We study the formation of massive black holes in the first star clusters. We first locate star-forming gas clouds in protogalactic haloes of ≳107 M⊙ in cosmological hydrodynamics simulations and use them to generate the initial conditions for star clusters with masses of ∼105 M⊙. We then perform a series of direct-tree hybrid N-body simulations to follow runaway stellar collisions in the dense star clusters. In all the cluster models except one, runaway collisions occur within a few million years, and the mass of the central, most massive star reaches ∼400-1900 M⊙. Such very massive stars collapse to leave intermediate-mass black holes (IMBHs). The diversity of the final masses may be attributed to the differences in a few basic properties of the host haloes such as mass, central gas velocity dispersion and mean gas density of the central core. Finally, we derive the IMBH mass to cluster mass ratios, and compare them with the observed black hole to bulge mass ratios in the present-day Universe.
An outburst powered by the merging of two stars inside the envelope of a giant
NASA Astrophysics Data System (ADS)
Hillel, Shlomi; Schreier, Ron; Soker, Noam
2017-11-01
We conduct 3D hydrodynamical simulations of energy deposition into the envelope of a red giant star as a result of the merger of two close main sequence stars or brown dwarfs, and show that the outcome is a highly non-spherical outflow. Such a violent interaction of a triple stellar system can explain the formation of `messy', I.e. lacking any kind of symmetry, planetary nebulae and similar nebulae around evolved stars. We do not simulate the merging process, but simply assume that after the tight binary system enters the envelope of the giant star the interaction with the envelope causes the two components, stars or brown dwarfs, to merge and liberate gravitational energy. We deposit the energy over a time period of about 9 h, which is about 1 per cent of the the orbital period of the merger product around the centre of the giant star. The ejection of the fast hot gas and its collision with previously ejected mass are very likely to lead to a transient event, I.e. an intermediate luminosity optical transient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Hiroyuki R.; Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp
By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of themore » disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.« less
Star Formation and Gas Dynamics in Galactic Disks: Physical Processes and Numerical Models
NASA Astrophysics Data System (ADS)
Ostriker, Eve C.
2011-04-01
Star formation depends on the available gaseous ``fuel'' as well as galactic environment, with higher specific star formation rates where gas is predominantly molecular and where stellar (and dark matter) densities are higher. The partition of gas into different thermal components must itself depend on the star formation rate, since a steady state distribution requires a balance between heating (largely from stellar UV for the atomic component) and cooling. In this presentation, I discuss a simple thermal and dynamical equilibrium model for the star formation rate in disk galaxies, where the basic inputs are the total surface density of gas and the volume density of stars and dark matter, averaged over ~kpc scales. Galactic environment is important because the vertical gravity of the stars and dark matter compress gas toward the midplane, helping to establish the pressure, and hence the cooling rate. In equilibrium, the star formation rate must evolve until the gas heating rate is high enough to balance this cooling rate and maintain the pressure imposed by the local gravitational field. In addition to discussing the formulation of this equilibrium model, I review the current status of numerical simulations of multiphase disks, focusing on measurements of quantities that characterize the mean properties of the diffuse ISM. Based on simulations, turbulence levels in the diffuse ISM appear relatively insensitive to local disk conditions and energetic driving rates, consistent with observations. It remains to be determined, both from observations and simulations, how mass exchange processes control the ratio of cold-to-warm gas in the atomic ISM.
Comparing models of star formation simulating observed interacting galaxies
NASA Astrophysics Data System (ADS)
Quiroga, L. F.; Muñoz-Cuartas, J. C.; Rodrigues, I.
2017-07-01
In this work, we make a comparison between different models of star formation to reproduce observed interacting galaxies. We use observational data to model the evolution of a pair of galaxies undergoing a minor merger. Minor mergers represent situations weakly deviated from the equilibrium configuration but significant changes in star fomation (SF) efficiency can take place, then, minor mergers provide an unique scene to study SF in galaxies in a realistic but yet simple way. Reproducing observed systems also give us the opportunity to compare the results of the simulations with observations, which at the end can be used as probes to characterize the models of SF implemented in the comparison. In this work we compare two different star formation recipes implemented in Gadget3 and GIZMO codes. Both codes share the same numerical background, and differences arise mainly in the star formation recipe they use. We use observations from Pico dos Días and GEMINI telescopes and show how we use observational data of the interacting pair in AM2229-735 to characterize the interacting pair. Later we use this information to simulate the evolution of the system to finally reproduce the observations: Mass distribution, morphology and main features of the merger-induced star formation burst. We show that both methods manage to reproduce roughly the star formation activity. We show, through a careful study, that resolution plays a major role in the reproducibility of the system. In that sense, star formation recipe implemented in GIZMO code has shown a more robust performance. Acknowledgements: This work is supported by Colciencias, Doctorado Nacional - 617 program.
Full-Text Searching on Major Supermarket Systems: Dialog, Data-Star, and Nexis.
ERIC Educational Resources Information Center
Tenopir, Carol; Berglund, Sharon
1993-01-01
Examines the similarities, differences, and full-text features of the three most-used online systems for full-text searching in general libraries: DIALOG, Data-Star, and NEXIS. Overlapping databases, unique sources, search features, proximity operators, set building, language enhancement and word equivalencies, and display features are discussed.…
Observing the First Stars in Luminous, Red Galaxies
NASA Technical Reports Server (NTRS)
Heap, Sally; Lindler, Don
2010-01-01
Modern cosmological simulations predict that the first stars are to be found today in luminous, red galaxies. Although observing such stars individually against a background of younger, metal-rich stars is impossible, the first stars should make their presence known by their strong, line-free ultraviolet flux. We have found evidence for a UV-bright stellar population in Sloan spectra of LRG's at z=0.4-0.5. We present arguments for interpreting this UV-bright stellar population as the oldest stars, rather than other types of stellar populations (e.g. young stars or blue straggler stars in the dominant, metal-rich stellar population
An Old Tool Reexamined: Using the Star Power Simulation to Teach Social Inequality
ERIC Educational Resources Information Center
Prince, Barbara F.; Kozimor-King, Michele Lee; Steele, Jennifer
2015-01-01
This study examined the effectiveness of the Star Power simulation for teaching stratification and inequality to students of the net generation. The data for this study were obtained through the use of survey methodology and content analysis of 126 course papers from introductory sociology classes. Papers were analyzed for identification and…
Age Spreads and the Temperature Dependence of Age Estimates in Upper Sco
NASA Astrophysics Data System (ADS)
Fang, Qiliang; Herczeg, Gregory J.; Rizzuto, Aaron
2017-06-01
Past estimates for the age of the Upper Sco Association are typically 11–13 Myr for intermediate-mass stars and 4–5 Myr for low-mass stars. In this study, we simulate populations of young stars to investigate whether this apparent dependence of estimated age on spectral type may be explained by the star formation history of the association. Solar and intermediate mass stars begin their pre-main sequence evolution on the Hayashi track, with fully convective interiors and cool photospheres. Intermediate-mass stars quickly heat up and transition onto the radiative Henyey track. As a consequence, for clusters in which star formation occurs on a timescale similar to that of the transition from a convective to a radiative interior, discrepancies in ages will arise when ages are calculated as a function of temperature instead of mass. Simple simulations of a cluster with constant star formation over several Myr may explain about half of the difference in inferred ages versus photospheric temperature; speculative constructions that consist of a constant star formation followed by a large supernova-driven burst could fully explain the differences, including those between F and G stars where evolutionary tracks may be more accurate. The age spreads of low-mass stars predicted from these prescriptions for star formation are consistent with the observed luminosity spread of Upper Sco. The conclusion that a lengthy star formation history will yield a temperature dependence in ages is expected from the basic physics of pre-main sequence evolution, and is qualitatively robust to the large uncertainties in pre-main sequence evolutionary models.
A software package for evaluating the performance of a star sensor operation
NASA Astrophysics Data System (ADS)
Sarpotdar, Mayuresh; Mathew, Joice; Sreejith, A. G.; Nirmal, K.; Ambily, S.; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant
2017-02-01
We have developed a low-cost off-the-shelf component star sensor ( StarSense) for use in minisatellites and CubeSats to determine the attitude of a satellite in orbit. StarSense is an imaging camera with a limiting magnitude of 6.5, which extracts information from star patterns it records in the images. The star sensor implements a centroiding algorithm to find centroids of the stars in the image, a Geometric Voting algorithm for star pattern identification, and a QUEST algorithm for attitude quaternion calculation. Here, we describe the software package to evaluate the performance of these algorithms as a star sensor single operating system. We simulate the ideal case where sky background and instrument errors are omitted, and a more realistic case where noise and camera parameters are added to the simulated images. We evaluate such performance parameters of the algorithms as attitude accuracy, calculation time, required memory, star catalog size, sky coverage, etc., and estimate the errors introduced by each algorithm. This software package is written for use in MATLAB. The testing is parametrized for different hardware parameters, such as the focal length of the imaging setup, the field of view (FOV) of the camera, angle measurement accuracy, distortion effects, etc., and therefore, can be applied to evaluate the performance of such algorithms in any star sensor. For its hardware implementation on our StarSense, we are currently porting the codes in form of functions written in C. This is done keeping in view its easy implementation on any star sensor electronics hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang Qiliang; Herczeg, Gregory J.; Rizzuto, Aaron
Past estimates for the age of the Upper Sco Association are typically 11–13 Myr for intermediate-mass stars and 4–5 Myr for low-mass stars. In this study, we simulate populations of young stars to investigate whether this apparent dependence of estimated age on spectral type may be explained by the star formation history of the association. Solar and intermediate mass stars begin their pre-main sequence evolution on the Hayashi track, with fully convective interiors and cool photospheres. Intermediate-mass stars quickly heat up and transition onto the radiative Henyey track. As a consequence, for clusters in which star formation occurs on amore » timescale similar to that of the transition from a convective to a radiative interior, discrepancies in ages will arise when ages are calculated as a function of temperature instead of mass. Simple simulations of a cluster with constant star formation over several Myr may explain about half of the difference in inferred ages versus photospheric temperature; speculative constructions that consist of a constant star formation followed by a large supernova-driven burst could fully explain the differences, including those between F and G stars where evolutionary tracks may be more accurate. The age spreads of low-mass stars predicted from these prescriptions for star formation are consistent with the observed luminosity spread of Upper Sco. The conclusion that a lengthy star formation history will yield a temperature dependence in ages is expected from the basic physics of pre-main sequence evolution, and is qualitatively robust to the large uncertainties in pre-main sequence evolutionary models.« less
NASA Astrophysics Data System (ADS)
Bekki, Kenji
2017-08-01
Internal chemical abundance spreads are one of fundamental properties of globular clusters (GCs) in the Galaxy. In order to understand the origin of such abundance spreads, we numerically investigate GC formation from massive molecular clouds (MCs) with fractal structures using our new hydrodynamical simulations with star formation and feedback effects of core-collapse supernovae (SNe) and asymptotic giant branch (AGB) stars. We particularly investigate star formation from gas chemically contaminated by SNe and AGB stars ('self-enrichment') in forming GCs within MCs with different initial conditions and environments. The principal results are as follows. GCs with multiple generations of stars can be formed from merging of hierarchical star cluster complexes that are developed from high-density regions of fractal MCs. Feedback effects of SNe and AGB stars can control the formation efficiencies of stars formed from original gas of MCs and from gas ejected from AGB stars. The simulated GCs have strong radial gradients of helium abundances within the central 3 pc. The original MC masses need to be as large as 107 M⊙ for a canonical initial stellar mass function (IMF) so that the final masses of stars formed from AGB ejecta can be ˜105 M⊙. Since star formation from AGB ejecta is rather prolonged (˜108 yr), their formation can be strongly suppressed by SNe of the stars themselves. This result implies that the so-called mass budget problem is much more severe than ever thought in the self-enrichment scenario of GC formation and thus that IMF for the second generation of stars should be 'top-light'.
BANQUET SPEECH Full Circle: Star Ferry to Stardust
NASA Astrophysics Data System (ADS)
Matthews, Clifford N.
2008-10-01
Good evening. I'd like to invite you to join me on a journey that could be entitled “Full Circle: Star Ferry to Stardust”. “Star Ferry” represents Hong Kong, my home town, and especially its university - Hong Kong University - as I knew it during the years of World War II. “Stardust” refers to our gathering here to report on our research on possible organic chemistry in space.
BUILDING LATE-TYPE SPIRAL GALAXIES BY IN-SITU AND EX-SITU STAR FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pillepich, Annalisa; Madau, Piero; Mayer, Lucio
We analyze the formation and evolution of the stellar components in ''Eris'', a 120 pc resolution cosmological hydrodynamic simulation of a late-type spiral galaxy. The simulation includes the effects of a uniform UV background, a delayed-radiative-cooling scheme for supernova feedback, and a star formation recipe based on a high gas density threshold. It allows a detailed study of the relative contributions of ''in-situ'' (within the main host) and ''ex-situ'' (within satellite galaxies) star formation to each major Galactic component in a close Milky Way analog. We investigate these two star-formation channels as a function of galactocentric distance, along different lines ofmore » sight above and along the disk plane, and as a function of cosmic time. We find that: (1) approximately 70% of today's stars formed in-situ; (2) more than two thirds of the ex-situ stars formed within satellites after infall; (3) the majority of ex-situ stars are found today in the disk and in the bulge; (4) the stellar halo is dominated by ex-situ stars, whereas in-situ stars dominate the mass profile at distances ≲ 5 kpc from the center at high latitudes; and (5) approximately 25% of the inner, r ≲ 20 kpc, halo is composed of in-situ stars that have been displaced from their original birth sites during Eris' early assembly history.« less
Star Formation in Merging Galaxies Using FIRE
NASA Astrophysics Data System (ADS)
Perez, Adrianna; Hung, Chao-Ling; Naiman, Jill; Moreno, Jorge; Hopkins, Philip
2018-01-01
Galaxy interactions and mergers are efficient mechanisms to birth stars at rates that are significantly higher than found in our Milky Way galaxy. The Kennicut-Schmidt (KS) relation is an empirical relationship between the star-forming rate and gas surface densities of galaxies (Schmidt 1959; Kennicutt 1998). Although most galaxies follow the KS relation, the high levels of star formation in galaxy mergers places them outside of this otherwise tight relationship. The goal of this research is to analyze the gas content and star formation of simulated merging galaxies. Our work utilizes the Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high-resolution cosmological simulation that resolves star-forming regions and incorporates stellar feedback in a physically realistic way. In this work, we have noticed a significant increase in the star formation rate at first and second passage, when the two black holes of each galaxy approach one other. Next, we will analyze spatially resolved star-forming regions over the course of the interacting system. Then, we can study when and how the rates that gas converts into stars deviate from the standard KS. These analyses will provide important insights into the physical mechanisms that regulate star formation of normal and merging galaxies and valuable theoretical predictions that can be used to compare with current and future observations from ALMA or the James Webb Space Telescope.
Gravitational wave asteroseismology with protoneutron stars
NASA Astrophysics Data System (ADS)
Sotani, Hajime; Takiwaki, Tomoya
2016-08-01
We examine the time evolution of the frequencies of the gravitational wave after the bounce within the framework of relativistic linear perturbation theory using the results of one-dimensional numerical simulations of core-collapse supernovae. Protoneutron star models are constructed in such a way that the mass and the radius of the protoneutron star become equivalent to the results obtained from the numerical simulations. Then we find that the frequencies of gravitational waves radiating from protoneutron stars strongly depend on the mass and the radius of protoneutron stars, but almost independently of the profiles of the electron fraction and the entropy per baryon inside the star. Additionally, we find that the frequencies of gravitational waves can be characterized by the square root of the average density of the protoneutron star irrespective of the progenitor models, which are completely different from the empirical formula for cold neutron stars. The dependence of the spectra on the mass and the radius is different from that of the g -mode: the oscillations around the surface of protoneutron stars due to the convection and the standing accretion-shock instability. Careful observation of these modes of gravitational waves can determine the evolution of the mass and the radius of protoneutron stars after core bounce. Furthermore, the expected frequencies of gravitational waves are around a few hundred hertz in the early stages after bounce, which must be a good candidate for the ground-based gravitational wave detectors.
Approximations to galaxy star formation rate histories: properties and uses of two examples
NASA Astrophysics Data System (ADS)
Cohn, J. D.
2018-05-01
Galaxies evolve via a complex interaction of numerous different physical processes, scales and components. In spite of this, overall trends often appear. Simplified models for galaxy histories can be used to search for and capture such emergent trends, and thus to interpret and compare results of galaxy formation models to each other and to nature. Here, two approximations are applied to galaxy integrated star formation rate histories, drawn from a semi-analytic model grafted onto a dark matter simulation. Both a lognormal functional form and principal component analysis (PCA) approximate the integrated star formation rate histories fairly well. Machine learning, based upon simplified galaxy halo histories, is somewhat successful at recovering both fits. The fits to the histories give fixed time star formation rates which have notable scatter from their true final time rates, especially for quiescent and "green valley" galaxies, and more so for the PCA fit. For classifying galaxies into subfamilies sharing similar integrated histories, both approximations are better than using final stellar mass or specific star formation rate. Several subsamples from the simulation illustrate how these simple parameterizations provide points of contact for comparisons between different galaxy formation samples, or more generally, models. As a side result, the halo masses of simulated galaxies with early peak star formation rate (according to the lognormal fit) are bimodal. The galaxies with a lower halo mass at peak star formation rate appear to stall in their halo growth, even though they are central in their host halos.
Effect of Population III Multiplicity on Dark Star Formation
NASA Technical Reports Server (NTRS)
Stacy, Athena; Pawlik, Andreas H.; Bromm, Volker; Loeb, Abraham
2012-01-01
We numerically study the mutual interaction between dark matter (DM) and Population III (Pop III) stellar systems in order to explore the possibility of Pop III dark stars within this physical scenario. We perform a cosmological simulation, initialized at z approx. 100, which follows the evolution of gas and DM. We analyze the formation of the first mini halo at z approx. 20 and the subsequent collapse of the gas to densities of 10(exp 12)/cu cm. We then use this simulation to initialize a set of smaller-scale 'cut-out' simulations in which we further refine the DM to have spatial resolution similar to that of the gas. We test multiple DM density profiles, and we employ the sink particle method to represent the accreting star-forming region. We find that, for a range of DM configurations, the motion of the Pop III star-disk system serves to separate the positions of the protostars with respect to the DM density peak, such that there is insufficient DM to influence the formation and evolution of the protostars for more than approx. 5000 years. In addition, the star-disk system causes gravitational scattering of the central DM to lower densities, further decreasing the influence of DM over time. Any DM-powered phase of Pop III stars will thus be very short-lived for the typical multiple system, and DM will not serve to significantly prolong the life of Pop III stars.
The impact of dark energy on galaxy formation. What does the future of our Universe hold?
NASA Astrophysics Data System (ADS)
Salcido, Jaime; Bower, Richard G.; Barnes, Luke A.; Lewis, Geraint F.; Elahi, Pascal J.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop
2018-07-01
We investigate the effect of the accelerated expansion of the Universe due to a cosmological constant, Λ, on the cosmic star formation rate. We utilize hydrodynamical simulations from the EAGLE suite, comparing a ΛCDM (cold dark matter) Universe to an Einstein-de Sitter model with Λ = 0. Despite the differences in the rate of growth of structure, we find that dark energy, at its observed value, has negligible impact on star formation in the Universe. We study these effects beyond the present day by allowing the simulations to run forward into the future (t > 13.8 Gyr). We show that the impact of Λ becomes significant only when the Universe has already produced most of its stellar mass, only decreasing the total comoving density of stars ever formed by ≈ 15 per cent. We develop a simple analytic model for the cosmic star formation rate that captures the suppression due to a cosmological constant. The main reason for the similarity between the models is that feedback from accreting black holes dramatically reduces the cosmic star formation at late times. Interestingly, simulations without feedback from accreting black holes predict an upturn in the cosmic star formation rate for t > 15 Gyr due to the rejuvenation of massive (>1011 M⊙) galaxies. We briefly discuss the implication of the weak dependence of the cosmic star formation on Λ in the context of the anthropic principle.
NASA Astrophysics Data System (ADS)
Hirano, Shingo; Yoshida, Naoki; Sakurai, Yuya; Fujii, Michiko S.
2018-03-01
We perform a set of cosmological simulations of early structure formation incorporating baryonic streaming motions. We present a case where a significantly elongated gas cloud with ∼104 solar mass (M ⊙) is formed in a pre-galactic (∼107 M ⊙) dark halo. The gas streaming into the halo compresses and heats the massive filamentary cloud to a temperature of ∼10,000 Kelvin. The gas cloud cools rapidly by atomic hydrogen cooling, and then by molecular hydrogen cooling down to ∼400 Kelvin. The rapid decrease of the temperature and hence of the Jeans mass triggers fragmentation of the filament to yield multiple gas clumps with a few hundred solar masses. We estimate the mass of the primordial star formed in each fragment by adopting an analytic model based on a large set of radiation hydrodynamics simulations of protostellar evolution. The resulting stellar masses are in the range of ∼50–120 M ⊙. The massive stars gravitationally attract each other and form a compact star cluster. We follow the dynamics of the star cluster using a hybrid N-body simulation. We show that massive star binaries are formed in a few million years through multi-body interactions at the cluster center. The eventual formation of the remnant black holes will leave a massive black hole binary, which can be a progenitor of strong gravitational wave sources similar to those recently detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).
NASA Technical Reports Server (NTRS)
1974-01-01
The feasibility is evaluated of an evolutionary development for use of a single-axis gimbal star tracker from prior two-axis gimbal star tracker based system applications. Detailed evaluation of the star tracker gimbal encoder is considered. A brief system description is given including the aspects of tracker evolution and encoder evaluation. System analysis includes evaluation of star availability and mounting constraints for the geosynchronous orbit application, and a covariance simulation analysis to evaluate performance potential. Star availability and covariance analysis digital computer programs are included.
Simulations of Magnetic Fields in Tidally Disrupted Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillochon, James; McCourt, Michael, E-mail: jguillochon@cfa.harvard.edu
2017-01-10
We perform the first magnetohydrodynamical simulations of tidal disruptions of stars by supermassive black holes. We consider stars with both tangled and ordered magnetic fields, for both grazing and deeply disruptive encounters. When the star survives disruption, we find its magnetic field amplifies by a factor of up to 20, but see no evidence for a self-sustaining dynamo that would yield arbitrary field growth. For stars that do not survive, and within the tidal debris streams produced in partial disruptions, we find that the component of the magnetic field parallel to the direction of stretching along the debris stream onlymore » decreases slightly with time, eventually resulting in a stream where the magnetic pressure is in equipartition with the gas. Our results suggest that the returning gas in most (if not all) stellar tidal disruptions is already highly magnetized by the time it returns to the black hole.« less
OBSERVATIONAL SIGNATURES OF CONVECTIVELY DRIVEN WAVES IN MASSIVE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aerts, C.; Rogers, T. M.
We demonstrate observational evidence for the occurrence of convectively driven internal gravity waves (IGWs) in young massive O-type stars observed with high-precision CoRoT space photometry. This evidence results from a comparison between velocity spectra based on two-dimensional hydrodynamical simulations of IGWs in a differentially rotating massive star and the observed spectra. We also show that the velocity spectra caused by IGWs may lead to detectable line-profile variability and explain the occurrence of macroturbulence in the observed line profiles of OB stars. Our findings provide predictions that can readily be tested by including a sample of bright, slowly and rapidly rotatingmore » OB-type stars in the scientific program of the K2 mission accompanied by high-precision spectroscopy and their confrontation with multi-dimensional hydrodynamic simulations of IGWs for various masses and ages.« less
Kinematic Evolution of Simulated Star-Forming Galaxies
NASA Technical Reports Server (NTRS)
Kassin, Susan A.; Brooks, Alyson; Governato, Fabio; Weiner, Benjamin J.; Gardner, Jonathan P.
2014-01-01
Recent observations have shown that star-forming galaxies like our own Milky Way evolve kinematically into ordered thin disks over the last approximately 8 billion years since z = 1.2, undergoing a process of "disk settling." For the first time, we study the kinematic evolution of a suite of four state of the art "zoom in" hydrodynamic simulations of galaxy formation and evolution in a fully cosmological context and compare with these observations. Until now, robust measurements of the internal kinematics of simulated galaxies were lacking as the simulations suffered from low resolution, overproduction of stars, and overly massive bulges. The current generation of simulations has made great progress in overcoming these difficulties and is ready for a kinematic analysis. We show that simulated galaxies follow the same kinematic trends as real galaxies: they progressively decrease in disordered motions (sigma(sub g)) and increase in ordered rotation (V(sub rot)) with time. The slopes of the relations between both sigma(sub g) and V(sub rot) with redshift are consistent between the simulations and the observations. In addition, the morphologies of the simulated galaxies become less disturbed with time, also consistent with observations. This match between the simulated and observed trends is a significant success for the current generation of simulations, and a first step in determining the physical processes behind disk settling.
History of Hubble Space Telescope (HST)
1998-01-01
This photograph is a Hubble Space Telescope (HST) image of a sky full of glittering jewels. The HST peered into the Sagittarius star cloud, a narrow dust free region, providing this spectacular glimpse of a treasure chest full of stars.
RCB stars from double degenerate white dwarf mergers
NASA Astrophysics Data System (ADS)
Staff, Jan; Wiggins, Brandon K.; Marcello, Dominic; Motl, Patrick; Clayton, Geoffrey C.
2018-01-01
We have conducted grid based and SPH based hydrodynamic simulations of white dwarf mergers, to investigate the role of dredge-up and mixing during the merger. The goal is to test if sufficiently little 16O can be brought up to the surface to explain the observed 16O to 18O ratio of order unity found in RCB stars. In all simulations, the total mass is ~< 1 M⊙. By initializing both the grid based and the SPH simulations with the same setup, we can compare the results from these different methods. In most of the simulations, more than 0.01 M⊙ of 16O is brought up to the surface. Hence a similar mass of 18O must be produced in order to explain the observed oxygen ratio. However,in SPH simulations where the accretor is a hybrid He/CO white dwarf, much less 16O is brought to the surface, making this an excellent candidate for the progenitor of RCB stars.
The Aurora radiation-hydrodynamical simulations of reionization: calibration and first results
NASA Astrophysics Data System (ADS)
Pawlik, Andreas H.; Rahmati, Alireza; Schaye, Joop; Jeon, Myoungwon; Dalla Vecchia, Claudio
2017-04-01
We introduce a new suite of radiation-hydrodynamical simulations of galaxy formation and reionization called Aurora. The Aurora simulations make use of a spatially adaptive radiative transfer technique that lets us accurately capture the small-scale structure in the gas at the resolution of the hydrodynamics, in cosmological volumes. In addition to ionizing radiation, Aurora includes galactic winds driven by star formation and the enrichment of the universe with metals synthesized in the stars. Our reference simulation uses 2 × 5123 dark matter and gas particles in a box of size 25 h-1 comoving Mpc with a force softening scale of at most 0.28 h-1 kpc. It is accompanied by simulations in larger and smaller boxes and at higher and lower resolution, employing up to 2 × 10243 particles, to investigate numerical convergence. All simulations are calibrated to yield simulated star formation rate functions in close agreement with observational constraints at redshift z = 7 and to achieve reionization at z ≈ 8.3, which is consistent with the observed optical depth to reionization. We focus on the design and calibration of the simulations and present some first results. The median stellar metallicities of low-mass galaxies at z = 6 are consistent with the metallicities of dwarf galaxies in the Local Group, which are believed to have formed most of their stars at high redshifts. After reionization, the mean photoionization rate decreases systematically with increasing resolution. This coincides with a systematic increase in the abundance of neutral hydrogen absorbers in the intergalactic medium.
MaGICC baryon cycle: the enrichment history of simulated disc galaxies
NASA Astrophysics Data System (ADS)
Brook, C. B.; Stinson, G.; Gibson, B. K.; Shen, S.; Macciò, A. V.; Obreja, A.; Wadsley, J.; Quinn, T.
2014-10-01
Using cosmological galaxy formation simulations from the MaGICC (Making Galaxies in a Cosmological Context) project, spanning stellar mass from ˜107 to 3 × 1010 M⊙, we trace the baryonic cycle of infalling gas from the virial radius through to its eventual participation in the star formation process. An emphasis is placed upon the temporal history of chemical enrichment during its passage through the corona and circumgalactic medium. We derive the distributions of time between gas crossing the virial radius and being accreted to the star-forming region (which allows for mixing within the corona), as well as the time between gas being accreted to the star-forming region and then ultimately forming stars (which allows for mixing within the disc). Significant numbers of stars are formed from gas that cycles back through the hot halo after first accreting to the star-forming region. Gas entering high-mass galaxies is pre-enriched in low-mass proto-galaxies prior to entering the virial radius of the central progenitor, with only small amounts of primordial gas accreted, even at high redshift (z ˜ 5). After entering the virial radius, significant further enrichment occurs prior to the accretion of the gas to the star-forming region, with gas that is feeding the star-forming region surpassing 0.1 Z⊙ by z = 0. Mixing with halo gas, itself enriched via galactic fountains, is thus crucial in determining the metallicity at which gas is accreted to the disc. The lowest mass simulated galaxy (Mvir ˜ 2 × 1010 M⊙, with M⋆ ˜ 107 M⊙), by contrast, accretes primordial gas through the virial radius and on to the disc, throughout its history. Much like the case for classical analytical solutions to the so-called `G-dwarf problem', overproduction of low-metallicity stars is ameliorated by the interplay between the time of accretion on to the disc and the subsequent involvement in star formation - i.e. due to the inefficiency of star formation. Finally, gas outflow/metal removal rates from star-forming regions as a function of galactic mass are presented.
Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves
NASA Technical Reports Server (NTRS)
Airapetian, V.; Carpenter, K. G.; Ofman, L.
2010-01-01
We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.
Rise of the First Super-Massive Stars
NASA Astrophysics Data System (ADS)
Regan, John A.; Downes, Turlough P.
2018-05-01
We use high resolution adaptive mesh refinement simulations to model the formation of massive metal-free stars in the early Universe. By applying Lyman-Werner (LW) backgrounds of 100 J21 and 1000 J21 respectively we construct environments conducive to the formation of massive stars. We find that only in the case of the higher LW backgrounds are super-critical accretion rates realised that are necessary for super-massive star (SMS) formation. Mild fragmentation is observed for both backgrounds. Violent dynamical interactions between the stars that form in the more massive halo formed (1000 J21 background) results in the eventual expulsion of the two most massive stars from the halo. In the smaller mass halo (100 J21 background) mergers of stars occur before any multibody interactions and a single massive Pop III star is left at the centre of the halo at the end of our simulation. Feedback from the very massive Pop III stars is not effective in generating a large HII region with ionising photons absorbed within a few thousand AU of the star. In all cases a massive black hole seed is the expected final fate of the most massive objects. The seed of the massive Pop III star which remained at the centre of the less massive halo experiences steady accretion rates of almost 10-2M_{⊙}/yr and if these rates continue could potentially experience super-Eddington accretion rates in the immediate aftermath of collapsing into a black hole.
Star-disc interaction in galactic nuclei: orbits and rates of accreted stars
NASA Astrophysics Data System (ADS)
Kennedy, Gareth F.; Meiron, Yohai; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer
2016-07-01
We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterized by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical capability, we find that the stellar accretion rate converges for models with N ≥ 32k. The eccentricity distribution of accreted stars, however, does not converge. We find that there are two competing effects at work when improving the resolution: larger particle number leads to a smaller fraction of stars accreted on nearly circular orbits, while higher spatial resolution increases this fraction. We scale our simulations to some nearby galaxies and find that the expected boost in stellar accretion (or tidal disruption, which could be observed as X-ray flares) in the presence of a gas disc is about a factor of 10. Even with this boost, the accretion of mass from stars is still a factor of ˜100 slower than the accretion of gas from the disc. Thus, it seems accretion of stars is not a major contributor to black hole mass growth.
WFIRST: Exoplanet Target Selection and Scheduling with Greedy Optimization
NASA Astrophysics Data System (ADS)
Keithly, Dean; Garrett, Daniel; Delacroix, Christian; Savransky, Dmitry
2018-01-01
We present target selection and scheduling algorithms for missions with direct imaging of exoplanets, and the Wide Field Infrared Survey Telescope (WFIRST) in particular, which will be equipped with a coronagraphic instrument (CGI). Optimal scheduling of CGI targets can maximize the expected value of directly imaged exoplanets (completeness). Using target completeness as a reward metric and integration time plus overhead time as a cost metric, we can maximize the sum completeness for a mission with a fixed duration. We optimize over these metrics to create a list of target stars using a greedy optimization algorithm based off altruistic yield optimization (AYO) under ideal conditions. We simulate full missions using EXOSIMS by observing targets in this list for their predetermined integration times. In this poster, we report the theoretical maximum sum completeness, mean number of detected exoplanets from Monte Carlo simulations, and the ideal expected value of the simulated missions.
Star Cluster Formation in Cosmological Simulations. I. Properties of Young Clusters
NASA Astrophysics Data System (ADS)
Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; Meng, Xi; Semenov, Vadim A.; Kravtsov, Andrey V.
2017-01-01
We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope is α ≈ 1.8{--}2, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. Comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.
COSMIC REIONIZATION ON COMPUTERS: NUMERICAL AND PHYSICAL CONVERGENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y., E-mail: gnedin@fnal.gov; Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637; Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637
In this paper I show that simulations of reionization performed under the Cosmic Reionization On Computers project do converge in space and mass, albeit rather slowly. A fully converged solution (for a given star formation and feedback model) can be determined at a level of precision of about 20%, but such a solution is useless in practice, since achieving it in production-grade simulations would require a large set of runs at various mass and spatial resolutions, and computational resources for such an undertaking are not yet readily available. In order to make progress in the interim, I introduce a weakmore » convergence correction factor in the star formation recipe, which allows one to approximate the fully converged solution with finite-resolution simulations. The accuracy of weakly converged simulations approaches a comparable, ∼20% level of precision for star formation histories of individual galactic halos and other galactic properties that are directly related to star formation rates, such as stellar masses and metallicities. Yet other properties of model galaxies, for example, their H i masses, are recovered in the weakly converged runs only within a factor of 2.« less
NASA Astrophysics Data System (ADS)
Kalyuzhnyi, O.; Ilnytskyi, J. M.; Holovatch, Yu; von Ferber, C.
2018-05-01
In this paper we study the shape characteristics of star-like polymers in various solvent quality using a mesoscopic level of modeling. The dissipative particle dynamics simulations are performed for the homogeneous and four different heterogeneous star polymers with the same molecular weight. We analyse the gyration radius and asphericity at the poor, good and θ-solvent regimes. Detailed explanation based on interplay between enthalpic and entropic contributions to the free energy and analyses on of the asphericity of individual branches are provided to explain the increase of the apsphericity in θ-solvent regime.
Nnawulezi, Nkiru; Campbell, Christina; Landstra, Kalleigh; Davis, Se'ara; Vandegrift, Cortney; Taylor, Amanda
2013-01-01
The purpose of this article is to describe the utility of Star Power as an experiential learning exercise applied in a community psychology undergraduate course. This exercise simulates systems of power, privilege, and oppression while fostering an ecological perspective that raises students' awareness and knowledge about power differentials within society. The simulation of trading and lawmaking works best with 18 to 35 students and takes approximately 80 minutes to conduct. This article highlights three representative student perspectives concerning their participation and experience with Star Power. Strategies for facilitating class discussion are also reported.
Nnawulezi, Nkiru; Campbell, Christina; Landstra, Kalleigh; Davis, Se'ara; Vandegrift, Cortney; Taylor, Amanda
2014-01-01
The purpose of this article is to describe the utility of Star Power, as an experiential learning exercise applied in a community psychology undergraduate course. This exercise simulates systems of power, privilege, and oppression while fostering an ecological perspective that raises students’ awareness and knowledge about power differentials within society. The simulation of trading and lawmaking works best with 18 to 35 students and takes approximately 80 minutes to conduct. This paper highlights three representative student perspectives concerning their participation and experience with Star Power. Strategies for facilitating class discussion are also discussed. PMID:23480288
RNAV STAR Procedural Adherence
NASA Technical Reports Server (NTRS)
Stewart, Michael J.; Matthews, Bryan L.
2017-01-01
In this exploratory archival study we mined the performance of 24 major US airports area navigation standard terminal arrival routes (RNAV STARs) over the preceding three years. Overlaying radar track data on top of RNAV STAR routes provided a comparison between aircraft flight paths and the waypoint positions and altitude restrictions. NASA Ames Supercomputing resources were utilized to perform the data mining and processing. We investigated STARs by lateral transition path (full-lateral), vertical restrictions (full-lateral/full-vertical), and skipped waypoints (skips). In addition, we graphed altitudes and their frequencies of occurrence for altitude restrictions. Full-lateral compliance was generally greater than Full-lateral/full-vertical, but the delta between the rates was not always consistent. Full-lateral/full-vertical usage medians of the 2016 procedures ranged from 0 in KDEN (Denver) to 21 in KMEM (Memphis). Waypoint skips ranged from 0 to nearly 100 for specific waypoints. Altitudes restrictions were sometimes missed by systemic amounts in 1000 ft. increments from the restriction, creating multi-modal distributions. Other times, altitude misses looked to be more normally distributed around the restriction. This work is a preliminary investigation into the objective performance of instrument procedures and provides a framework to track how procedural concepts and design intervention function. In addition, this tool may aid in providing acceptability metrics as well as risk assessment information.
The Physical Nature of the Circum-Galactic Medium
NASA Astrophysics Data System (ADS)
Faucher-Giguere, Claude-Andre
The installation of the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) as part of its last servicing mission has revolutionized the study of gas in and around galaxies through the study of ultra-violet (UV) diagnostics. These diagnostics are enabling studies of gas flows in and out of low-redshift, evolved galaxies that are not feasible from the ground. Despite the great observational advances made possible with COS, it is necessary to complement the high-quality spectra with theoretical modeling sufficiently accurate for robust and complete physical interpretation so that the full scientific potential of the mission can be realized. The clear correlation between O VI absorption in galactic halos and the specific star formation rate of central galaxies revealed by COS, in particular, highlights the close connection between circum-galactic gas and galaxies. It is now also appreciated that the gaseous halos of galaxies contain a total mass and a mass in metals that are at least comparable to (and likely significantly greater than) the total and metal masses in the interstellar medium of galaxies. The circum-galactic medium (CGM) is thus intimately related to galaxy evolution, including the transformation of blue star-forming disks into red passive ellipticals. However, the physical origin of observed galaxy-halo gas correlations and of halo gas in general is presently not understood. We will model the CGM of low-redshift galaxies probed by HST observations with cosmological simulations of unprecedented resolution and with much more physically predictive models of star formation and stellar and black hole feedback than previously available. Our simulations will also employ a numerical solver that resolves all the main historical differences between grid- and particle-based hydrodynamical codes. Importantly, we will process all of our simulations with radiative transfer calculations to faithfully map the simulations to observable quantities, a crucial step that has been neglected in the majority theoretical studies so far. We will complete our research program with a detailed comparison of our radiative transfer results with existing measurements of covering fractions, kinematics, and position of absorbing gas relative to galaxies, and generate a catalog of simulated statistics for all the main atomic transitions for comparison with other ongoing and future HST observations. Using these results, we will develop diagnostics for testing the predictions of cosmological simulations for cold and hot gas accretion onto galaxies, and for galactic winds, including the mass fractions in hot and cool components, their energetics, and how far they disperse metals. Our work will extend high-redshift studies to the low-redshift Universe, which has received comparatively little theoretical attention. Our systematic study will test our current best numerical models of galaxy formation, powerfully complementing observations of stars and gas inside galaxies by directly probing the gas flows that ultimately regulate the fuel for star formation. Notably, we will quantify the implications of HST results for several key physical processes in galaxy formation, including: gas accretion from the IGM, cooling of hot gas in galaxy halos, angular momentum acquisition by galactic disks, galactic winds, galactic fountains, interactions between inflows and outflows, the quenching of star formation in massive halos, the dispersal of metals in the Universe, and the impact of galaxies on the IGM. We will investigate how each of these processes probed by CGM gas correlates with the properties of associated galaxies, and its relation to the color and morphological transformations of galaxies. In addition to HST, our work will have ramifications for all NASA missions used to study galaxy evolution and the IGM, including the James Webb Space Telescope, WFIRST, Spitzer, Chandra, NuSTAR, and Herschel.
Stellar and Binary Evolution in Star Clusters
NASA Technical Reports Server (NTRS)
McMillan, Stephen L. W.
2001-01-01
This paper presents a final report on research activities covered on Stellar and Binary Evolution in Star Clusters. Substantial progress was made in the development and dissemination of the "Starlab" software environment. Significant improvements were made to "kira," an N-body simulation program tailored to the study of dense stellar systems such as star clusters and galactic nuclei. Key advances include (1) the inclusion of stellar and binary evolution in a self-consistent manner, (2) proper treatment of the anisotropic Galactic tidal field, (3) numerous technical enhancements in the treatment of binary dynamics and interactions, and (4) full support for the special-purpose GRAPE-4 hardware, boosting the program's performance by a factor of 10-100 over the accelerated version. The data-reduction and analysis tools in Starlab were also substantially expanded. A Starlab Web site (http://www.sns.ias.edu/-starlab) was created and developed. The site contains detailed information on the structure and function of the various tools that comprise the package, as well as download information, "how to" tips and examples of common operations, demonstration programs, animations, etc. All versions of the software are freely distributed to all interested users, along with detailed installation instructions.
NASA Astrophysics Data System (ADS)
Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.; Skinner, M. Aaron
2017-12-01
We present an implementation of an adaptive ray-tracing (ART) module in the Athena hydrodynamics code that accurately and efficiently handles the radiative transfer involving multiple point sources on a three-dimensional Cartesian grid. We adopt a recently proposed parallel algorithm that uses nonblocking, asynchronous MPI communications to accelerate transport of rays across the computational domain. We validate our implementation through several standard test problems, including the propagation of radiation in vacuum and the expansions of various types of H II regions. Additionally, scaling tests show that the cost of a full ray trace per source remains comparable to that of the hydrodynamics update on up to ∼ {10}3 processors. To demonstrate application of our ART implementation, we perform a simulation of star cluster formation in a marginally bound, turbulent cloud, finding that its star formation efficiency is 12% when both radiation pressure forces and photoionization by UV radiation are treated. We directly compare the radiation forces computed from the ART scheme with those from the M1 closure relation. Although the ART and M1 schemes yield similar results on large scales, the latter is unable to resolve the radiation field accurately near individual point sources.
A common origin for globular clusters and ultra-faint dwarfs in simulations of the first galaxies
Ricotti, Massimo; Parry, Owen H.; Gnedin, Nickolay Y.
2016-11-09
In this study, the first in a series on galaxy formation before reionization, we focus on understanding what determines the size and morphology of stellar objects in the first low-mass galaxies, using parsec-scale cosmological simulations performed with an adaptive mesh hydrodynamics code. Although the dense gas in which stars are formed tends to have a disk structure, stars are found in spheroids with little rotation. Halos with masses betweenmore » $${10}^{6}\\,{M}_{\\odot }$$ and $$5\\times {10}^{8}\\,{M}_{\\odot }$$ form stars stochastically, with stellar masses in the range $${10}^{4}\\,{M}_{\\odot }$$ to $$2\\times {10}^{6}\\,{M}_{\\odot }$$. We observe, nearly independent of stellar mass, a large range of half-light radii for the stars, from a few parsecs to a few hundred parsecs and surface brightnesses and mass-to-light ratios ranging from those typical of globular clusters to ultra-faint dwarfs. In our simulations, stars form in dense stellar clusters with high gas-to-star conversion efficiencies and rather uniform metallicities. A fraction of these clusters remain bound after the gas is removed by feedback, but others are destroyed, and their stars, which typically have velocity dispersions of 20–40 km s –1, expand until they become bound by the dark matter halo. We thus speculate that the stars in ultra-faint dwarf galaxies may show kinematic and chemical signatures consistent with their origin in a few distinct stellar clusters. On the other hand, some globular clusters may form at the center of primordial dwarf galaxies and may contain dark matter, perhaps detectable in the outer parts.« less
A common origin for globular clusters and ultra-faint dwarfs in simulations of the first galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricotti, Massimo; Parry, Owen H.; Gnedin, Nickolay Y.
In this study, the first in a series on galaxy formation before reionization, we focus on understanding what determines the size and morphology of stellar objects in the first low-mass galaxies, using parsec-scale cosmological simulations performed with an adaptive mesh hydrodynamics code. Although the dense gas in which stars are formed tends to have a disk structure, stars are found in spheroids with little rotation. Halos with masses betweenmore » $${10}^{6}\\,{M}_{\\odot }$$ and $$5\\times {10}^{8}\\,{M}_{\\odot }$$ form stars stochastically, with stellar masses in the range $${10}^{4}\\,{M}_{\\odot }$$ to $$2\\times {10}^{6}\\,{M}_{\\odot }$$. We observe, nearly independent of stellar mass, a large range of half-light radii for the stars, from a few parsecs to a few hundred parsecs and surface brightnesses and mass-to-light ratios ranging from those typical of globular clusters to ultra-faint dwarfs. In our simulations, stars form in dense stellar clusters with high gas-to-star conversion efficiencies and rather uniform metallicities. A fraction of these clusters remain bound after the gas is removed by feedback, but others are destroyed, and their stars, which typically have velocity dispersions of 20–40 km s –1, expand until they become bound by the dark matter halo. We thus speculate that the stars in ultra-faint dwarf galaxies may show kinematic and chemical signatures consistent with their origin in a few distinct stellar clusters. On the other hand, some globular clusters may form at the center of primordial dwarf galaxies and may contain dark matter, perhaps detectable in the outer parts.« less
NASA Astrophysics Data System (ADS)
de la Cita, V. M.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Khangulyan, D.; Perucho, M.
2016-06-01
Context. Stars and their winds can contribute to the non-thermal emission in extragalactic jets. Because of the complexity of jet-star interactions, the properties of the resulting emission are closely linked to those of the emitting flows. Aims: We simulate the interaction between a stellar wind and a relativistic extragalactic jet and use the hydrodynamic results to compute the non-thermal emission under different conditions. Methods: We performed relativistic axisymmetric hydrodynamical simulations of a relativistic jet interacting with a supersonic, non-relativistic stellar wind. We computed the corresponding streamlines out of the simulation results and calculated the injection, evolution, and emission of non-thermal particles accelerated in the jet shock, focusing on electrons or e±-pairs. Several cases were explored, considering different jet-star interaction locations, magnetic fields, and observer lines of sight. The jet luminosity and star properties were fixed, but the results are easily scalable when these parameters are changed. Results: Individual jet-star interactions produce synchrotron and inverse Compton emission that peaks from X-rays to MeV energies (depending on the magnetic field), and at ~100-1000 GeV (depending on the stellar type), respectively. The radiation spectrum is hard in the scenarios explored here as a result of non-radiative cooling dominance, as low-energy electrons are efficiently advected even under relatively high magnetic fields. Interactions of jets with cold stars lead to an even harder inverse Compton spectrum because of the Klein-Nishina effect in the cross section. Doppler boosting has a strong effect on the observer luminosity. Conclusions: The emission levels for individual interactions found here are in the line of previous, more approximate, estimates, strengthening the hypothesis that collective jet-star interactions could significantly contribute at high energies under efficient particle acceleration.
Magnetic Inclination E Ects In Star-Planet Magnetic Interactions
NASA Astrophysics Data System (ADS)
Strugarek, Antoine
2017-10-01
A large fraction of the exoplanets discovered today are in a close-in orbit around their host star. This proximity allows them to be magnetically connected to their host, which lead to e cient energy and angular momentum exchanges between the star and the planet. We carry out three-dimensional magneto-hydrodynamic simulations of close-in star-planet systems to characterize the e ect of the inclination of the planetary magnetic eld on the star-planet magnetic interaction. We parametrize this e ect in scaling laws depending on the star, planet, and stellar wind properties that can be applied to any exoplanetary systems around cool stars.
The Stellar IMF from Isothermal MHD Turbulence
NASA Astrophysics Data System (ADS)
Haugbølle, Troels; Padoan, Paolo; Nordlund, Åke
2018-02-01
We address the turbulent fragmentation scenario for the origin of the stellar initial mass function (IMF), using a large set of numerical simulations of randomly driven supersonic MHD turbulence. The turbulent fragmentation model successfully predicts the main features of the observed stellar IMF assuming an isothermal equation of state without any stellar feedback. As a test of the model, we focus on the case of a magnetized isothermal gas, neglecting stellar feedback, while pursuing a large dynamic range in both space and timescales covering the full spectrum of stellar masses from brown dwarfs to massive stars. Our simulations represent a generic 4 pc region within a typical Galactic molecular cloud, with a mass of 3000 M ⊙ and an rms velocity 10 times the isothermal sound speed and 5 times the average Alfvén velocity, in agreement with observations. We achieve a maximum resolution of 50 au and a maximum duration of star formation of 4.0 Myr, forming up to a thousand sink particles whose mass distribution closely matches the observed stellar IMF. A large set of medium-size simulations is used to test the sink particle algorithm, while larger simulations are used to test the numerical convergence of the IMF and the dependence of the IMF turnover on physical parameters predicted by the turbulent fragmentation model. We find a clear trend toward numerical convergence and strong support for the model predictions, including the initial time evolution of the IMF. We conclude that the physics of isothermal MHD turbulence is sufficient to explain the origin of the IMF.
Starshade Observation Scheduling for WFIRST
NASA Astrophysics Data System (ADS)
Soto, Gabriel; Garrett, Daniel; Delacroix, Christian; Savransky, Dmitry
2018-01-01
An exoplanet direct imaging mission can employ an external starshade for starlight suppression to achieve higher contrasts and potentially higher throughput than with an internal coronagraph. This separately-launched starshade spacecraft is assumed to maintain a single, constant separation distance from the space telescope—for this study, the Wide Field Infrared Survey Telescope (WFIRST)—based on a designated inner working angle during integration times. The science yield of such a mission can be quantified using the Exoplanet Open-Source Imaging Simulator (EXOSIMS): this simulator determines the distributions of mission outcomes, such as the types and amount of exoplanet detections, based on ensembles of end-to-end simulations of the mission. This study adds a starshade class to the survey simulation module of EXOSIMS and outlines a method for efficiently determining observation schedules. The new starshade class solves boundary value problems using circular restricted three-body dynamics to find fast, high-accuracy estimates of the starshade motion while repositioning between WFIRST observations. Fuel usage dictates the mission lifetime of the starshade given its limited fuel supply and is dominated by the Δv used to reposition the starshade between the LOS of different targets; the repositioning time-of-flight is kept constant in this study. A starshade burns less fuel to reach certain target stars based on their relative projected positions on a skymap; other targets with costly transfers can be filtered out to increase the starshade mission duration. Because the initial target list can consist of nearly 2000 stars, calculating the Δv required to move the starshade to every other star on the target list would be too computationally expensive and renders running ensembles of survey simulations infeasible. Assuming the starshade begins its transfer at the LOS of a certain star, a Δv curve is approximated for the remaining target stars based on their right ascension or declination angle, depending on the starting and ending position of WFIRST on its halo orbit. The required Δv for a given star can be quickly interpolated and used to filter out stars in the target list.
The influence of the merger history of dwarf galaxies in a reionized universe
NASA Astrophysics Data System (ADS)
Verbeke, Robbert; Vandenbroucke, Bert; De Rijcke, Sven; Koleva, Mina
2015-08-01
In the ΛCDM model, cosmic structure forms in a hierarchical fashion. According to this paradigm, even low-mass dwarf galaxies grow via smooth accretion and mergers. Given the low masses of dwarf galaxies and their even smaller progenitors, the UV background is expected to have a significant influence on their gas content and, consequently, their star formation histories. Generally, cosmological simulations predict that most dwarf systems with circular velocities below ~30 km/s should not be able to form significant amounts of stars or contain gas and be, in effect, "dark" galaxies (Sawala et al. 2013, 2014; Hopkins et al. 2014; Shen et al. 2014). This is in contradiction with the recent discovery of low-mass yet gas-rich dwarf galaxies, such as Leo P (Skillman et al. 2013), Pisces A (Tollerud et al. 2014), and SECCO 1 (Bellazzini et al. 2015). Moreover, Tollerud et al. (2014) point out that most isolated dark-matter halos down to circular velocities of ~15 km/s contain neutral gas, in contradiction with the predictions of current simulations.Based on a suite of simulations of the formation and evolution of dwarf galaxies we show that, by reducing the first peak of star formation by including Pop-III stars in the simulations, the resulting dwarf galaxies have severely suppressed SFRs and can hold on to their gas reservoirs. Moreover, we show that the majority of the zero-metallicity stars are ejected during mergers, resulting in an extended, low-metallicity stellar halo. This results in a marked difference between a galaxy's "total" star-formation history and the one read from the stars in the center of the galaxy at z=0. This mechanism leads to the formation of realistic low-mass, gas-rich dwarfs with a broad range of SFHs and which adhere to the observed scaling relations, such as the baryonic Tully-Fisher relation.In short, the simulations presented here are for the first time able to reproduce the observed properties of low-mass, gas-rich dwarfs such as DDO 210, Leo P, Pisces A and SECCO 1.
Methods to Directly Image Exoplanets around Alpha Centauri and Other Multi-Star Systems
NASA Astrophysics Data System (ADS)
Belikov, R.; Sirbu, D.; Bendek, E.; Pluzhnik, E.
2017-12-01
The majority of FGK stars exist as multi-star star systems, and thus form a potentially rich target sample for direct imaging of exoplanets. A large fraction of these stars have starlight leakage from their companion that is brighter than rocky planets. This is in particular true of Alpha Centauri, which is 2.4x closer and about an order of magnitude brighter than any other FGK star, and thus may be the best target for any direct imaging mission, if the light of both stars can be suppressed. Thus, the ability to suppress starlight from two stars improves both the quantity and quality of Sun-like targets for missions such as WFIRST, LUVOIR, and HabEx. We present an analysis of starlight leak challenges in multi-star systems and techniques to solve those challenges, with an emphasis on imaging Alpha Centauri with WFIRST. For the case of internal coronagraphs, the fundamental problem appears to be independent wavefront control of multiple stars (at least if the companion is close enough or bright enough that it cannot simply be removed by longer exposure times or post-processing). We present a technique called Multi-Star Wavefront Control (MSWC) as a solution to this challenge and describe the results of our technology development program that advanced MSWC to TRL 3. Our program consisted of lab demonstrations of dark zones in two-star systems, validated simulations, as well as simulated predictions demonstrating that with this technology, contrasts needed for Earth-like planets are in principle achievable. We also demonstrate MSWC in Super-Nyquist mode, which allows suppression of multiple stars at separations greater than the spatial Nyquist limit of the deformable mirror.
Simulating the X-ray luminosity of Be X-ray binaries: the case for black holes versus neutron stars
NASA Astrophysics Data System (ADS)
Brown, R. O.; Ho, W. C. G.; Coe, M. J.; Okazaki, A. T.
2018-04-01
There are over 100 Be stars that are known to have neutron star companions but only one such system with a black hole. Previous theoretical work suggests this is not due to their formation but due to differences in X-ray luminosity. It has also been proposed that the truncation of the Be star's circumstellar disc is dependent on the mass of the compact object. Hence, Be star discs in black hole binaries are smaller. Since accretion onto the compact object from the Be star's disc is what powers the X-ray luminosity, a smaller disc in black hole systems leads to a lower luminosity. In this paper, simulations are performed with a range of eccentricities and compact object mass. The disc's size and density are shown to be dependent on both quantities. Mass capture and, in turn, X-ray luminosity are heavily dependent on the size and density of the disc. Be/black hole binaries are expected to be up to ˜10 times fainter than Be/neutron star binaries when both systems have the same eccentricity and can be 100 times fainter when comparing systems with different eccentricity.
The structure and spectrum of the accretion shock in the atmospheres of young stars
NASA Astrophysics Data System (ADS)
Dodin, Alexandr
2018-04-01
The structure and spectrum of the accretion shock have been self-consistently simulated for a wide range of parameters typical for Classical T Tauri Stars (CTTS). Radiative cooling of the shocked gas was calculated, taking into account the self-absorption and non-equilibrium (time-dependent) effects in the level populations. These effects modify the standard cooling curve for an optically thin plasma in coronal equilibrium, however the shape of high-temperature (T > 3 × 105 K) part of the curve remains unchanged. The applied methods allow us to smoothly describe the transition from the cooling flow to the hydrostatic stellar atmosphere. Thanks to this approach, it has been found that the narrow component of He II lines is formed predominantly in the irradiated stationary atmosphere (hotspot), i.e. at velocities of the settling gas <2 km s-1. The structure of the pre-shock region is calculated simultaneously with the heated atmosphere. The simulation shows that the pre-shock gas produces a noticeable emission component in He II lines and practically does not manifest itself in He I lines (λλ 5876, 10830 Å). The ultraviolet spectrum of the hotspot is distorted by the pre-shock gas, namely numerous red-shifted emission and absorption lines overlap each other forming a pseudo-continuum. The spectrum of the accretion region at high pre-shock densities ˜1014 cm-3 is fully formed in the in-falling gas and can be qualitatively described as a spectrum of a star with an effective temperature derived from the Stefan-Boltzmann law via the full energy flux.
Self-consistent semi-analytic models of the first stars
NASA Astrophysics Data System (ADS)
Visbal, Eli; Haiman, Zoltán; Bryan, Greg L.
2018-04-01
We have developed a semi-analytic framework to model the large-scale evolution of the first Population III (Pop III) stars and the transition to metal-enriched star formation. Our model follows dark matter haloes from cosmological N-body simulations, utilizing their individual merger histories and three-dimensional positions, and applies physically motivated prescriptions for star formation and feedback from Lyman-Werner (LW) radiation, hydrogen ionizing radiation, and external metal enrichment due to supernovae winds. This method is intended to complement analytic studies, which do not include clustering or individual merger histories, and hydrodynamical cosmological simulations, which include detailed physics, but are computationally expensive and have limited dynamic range. Utilizing this technique, we compute the cumulative Pop III and metal-enriched star formation rate density (SFRD) as a function of redshift at z ≥ 20. We find that varying the model parameters leads to significant qualitative changes in the global star formation history. The Pop III star formation efficiency and the delay time between Pop III and subsequent metal-enriched star formation are found to have the largest impact. The effect of clustering (i.e. including the three-dimensional positions of individual haloes) on various feedback mechanisms is also investigated. The impact of clustering on LW and ionization feedback is found to be relatively mild in our fiducial model, but can be larger if external metal enrichment can promote metal-enriched star formation over large distances.
Stacked Star Formation Rate Profiles of Bursty Galaxies Exhibit “Coherent” Star Formation
NASA Astrophysics Data System (ADS)
Orr, Matthew E.; Hayward, Christopher C.; Nelson, Erica J.; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan; Chan, T. K.; Schmitz, Denise M.; Miller, Tim B.
2017-11-01
In a recent work based on 3200 stacked Hα maps of galaxies at z˜ 1, Nelson et al. find evidence for “coherent star formation”: the stacked star formation rate (SFR) profiles of galaxies above (below) the “star formation main sequence” (MS) are above (below) that of galaxies on the MS at all radii. One might interpret this result as inconsistent with highly bursty star formation and evidence that galaxies evolve smoothly along the MS rather than crossing it many times. We analyze six simulated galaxies at z˜ 1 from the Feedback in Realistic Environments (FIRE) project in a manner analogous to the observations to test whether the above interpretations are correct. The trends in stacked SFR profiles are qualitatively consistent with those observed. However, SFR profiles of individual galaxies are much more complex than the stacked profiles: the former can be flat or even peak at large radii because of the highly clustered nature of star formation in the simulations. Moreover, the SFR profiles of individual galaxies above (below) the MS are not systematically above (below) those of MS galaxies at all radii. We conclude that the time-averaged coherent star formation evident stacks of observed galaxies is consistent with highly bursty, clumpy star formation of individual galaxies and is not evidence that galaxies evolve smoothly along the MS.
Fates of the most massive primordial stars
NASA Astrophysics Data System (ADS)
Chen, Ke-Jung; Heger, Alexander; Almgren, Ann; Woosley, Stan
2012-09-01
We present our results of numerical simulations of the most massive primordial stars. For the extremely massive non-rotating Pop III stars over 300Msolar, they would simply die as black holes. But the Pop III stars with initial masses 140 - 260Msolar may have died as gigantic explosions called pair-instability supernovae (PSNe). We use a new radiation-hydrodynamics code CASTRO to study evolution of PSNe. Our models follow the entire explosive burning and the explosion until the shock breaks out from the stellar surface. In our simulations, we find that fluid instabilities occurred during the explosion. These instabilities are driven by both nuclear burning and hydrodynamical instability. In the red supergiant models, fluid instabilities can lead to significant mixing of supernova ejecta and alter the observational signature.
On the Kennicutt-Schmidt Relation of Low-Metallicity High-Redshift Galaxies
NASA Astrophysics Data System (ADS)
Gnedin, Nickolay Y.; Kravtsov, Andrey V.
2010-05-01
We present results of self-consistent, high-resolution cosmological simulations of galaxy formation at z ~ 3. The simulations employ a recently developed recipe for star formation based on the local abundance of molecular hydrogen, which is tracked self-consistently during the course of simulation. The phenomenological H2 formation model accounts for the effects of dissociating UV radiation of stars in each galaxy, as well as self-shielding and shielding of H2 by dust, and therefore allows us to explore effects of lower metallicities and higher UV fluxes prevalent in high-redshift galaxies on their star formation. We compare stellar masses, metallicities, and star formation rates of the simulated galaxies to available observations of the Lyman break galaxies (LBGs) and find a reasonable agreement. We find that the Kennicutt-Schmidt (KS) relation exhibited by our simulated galaxies at z ≈ 3 is substantially steeper and has a lower amplitude than the z = 0 relation at ΣH <~ 100 M odot pc-2. The predicted relation, however, is consistent with existing observational constraints for the z ≈ 3 damped Lyα and LBGs. Our tests show that the main reason for the difference from the local KS relation is lower metallicity of the interstellar medium in high-redshift galaxies. We discuss several implications of the metallicity-dependence of the KS relation for galaxy evolution and interpretation of observations. In particular, we show that the observed size of high-redshift exponential disks depends sensitively on their KS relation. Our results also suggest that significantly reduced star formation efficiency at low gas surface densities can lead to strong suppression of star formation in low-mass high-redshift galaxies and long gas consumption time scales over most of the disks in large galaxies. The longer gas consumption time scales could make disks more resilient to major and minor mergers and could help explain the prevalence of the thin stellar disks in the local universe.
Formation of the first galaxies under Population III stellar feedback
NASA Astrophysics Data System (ADS)
Jeon, Myoungwon
2015-01-01
The first galaxies, which formed a few hundred million years after the big bang, are related to important cosmological questions. Given thatthey are thought to be the basic building blocks of large galaxies seen today, understanding their formation and properties is essentialto studying galaxy formation as a whole. In this dissertation talk, I will present the results of our highly-resolved cosmological ab-initio simulations to understand the assembly process of first galaxies under the feedback from the preceding generations of first stars, the so-called Population III (Pop III). The first stars formed at z≲30 in dark matter (DM) minihalos with M_{vir}=10^5-10^6Msun, predominately via molecular hydrogen (H_2) cooling. Radiation from Pop III stars dramatically altered the gas within their host minihalos, through photoionization, photoheating, and photoevaporation. Once a Pop III star explodes as a supernova (SN), heavy elements are dispersed, enriching the interstellar (ISM) and intergalactic medium (IGM), thus initiating the process of chemical evolution. I will begin by presenting how the SN explosion of the first stars influences early cosmic history, specifically assessing the time delay in further star formation and tracing the evolution of metal-enriched gas until the second episode star formation happens. These results will show the role of Pop III supernovae on the star formation transition from Pop III to Population II. Additionally, the more distant, diffuse IGM was heated by X-rays emitted by accreting black holes (BHs), or high-mass X-ray binaries (HMXBs), both remnants of Pop III stars. I will present results of a series of simulations where we study the impact of X-ray feedback from BHs and HMXBs on the star formation history in the early universe, and discuss the resulting implications on reionization. I will also present the role of X-rays on the early BH growth, providing constraints on models for supermassive black hole formation. Finally, I will discuss key physical quantities of the first galaxies derived from our simulations, such as their stellar population mix, star formation rates, metallicities, and resulting broad-band color and recombination spectra.
Simulating the thermodynamics of charging in weak polyelectrolytes: the Debye-Hückel limit
NASA Astrophysics Data System (ADS)
Rathee, Vikramjit S.; Sikora, Benjamin J.; Sidky, Hythem; Whitmer, Jonathan K.
2018-01-01
The coil-globule transition in weak (annealed) polyelectrolytes involves a subtle balance of pH, charge strength, and solvation forces. In this work, we utilize a coarse-grained hybrid grand-canonical Monte Carlo and molecular dynamics approach to explore the swelling behavior of weak linear and star polyelectrolytes under different ionic screening conditions and pH. Importantly, we are able to quantify topology-dependent effects in charging which arise at the core of star polymers. Our results are suggestive of suppression of charging in star weak polyelectrolytes in comparison to linear weak polyelectrolytes. Furthermore, we characterize the coil-globule transition in linear and star weak polyelectrolyte through expanded ensemble density-of-states simulations which suggest a change from a first order to second order phase transition moving from linear to star polyelectrolytes. Lastly, we characterize the inhomogeneous charging across the weak star polyelectrolyte through observed shifts in {{Δ }}{{{pK}}}{{o}}, and compare with experimental work. We discuss these results in relation to surfaces functionalized by weak polyelectrolyte brushes and weak polyelectrolyte-based drug delivery applications.
Effects of Combined Stellar Feedback on Star Formation in Stellar Clusters
NASA Astrophysics Data System (ADS)
Wall, Joshua Edward; McMillan, Stephen; Pellegrino, Andrew; Mac Low, Mordecai; Klessen, Ralf; Portegies Zwart, Simon
2018-01-01
We present results of hybrid MHD+N-body simulations of star cluster formation and evolution including self consistent feedback from the stars in the form of radiation, winds, and supernovae from all stars more massive than 7 solar masses. The MHD is modeled with the adaptive mesh refinement code FLASH, while the N-body computations are done with a direct algorithm. Radiation is modeled using ray tracing along long characteristics in directions distributed using the HEALPIX algorithm, and causes ionization and momentum deposition, while winds and supernova conserve momentum and energy during injection. Stellar evolution is followed using power-law fits to evolution models in SeBa. We use a gravity bridge within the AMUSE framework to couple the N-body dynamics of the stars to the gas dynamics in FLASH. Feedback from the massive stars alters the structure of young clusters as gas ejection occurs. We diagnose this behavior by distinguishing between fractal distribution and central clustering using a Q parameter computed from the minimum spanning tree of each model cluster. Global effects of feedback in our simulations will also be discussed.
75 FR 60283 - Gold Star Mother's and Families' Day, 2010
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... Gold Star Mother's and Families' Day, 2010 By the President of the United States of America A... Star Mothers and Families. For those in our Armed Forces who gave their last full measure of devotion... last Sunday in September as ``Gold Star Mother's Day.'' NOW, THEREFORE, I, BARACK OBAMA, President of...
Confronting Models of Massive Star Evolution and Explosions with Remnant Mass Measurements
NASA Astrophysics Data System (ADS)
Raithel, Carolyn A.; Sukhbold, Tuguldur; Özel, Feryal
2018-03-01
The mass distribution of compact objects provides a fossil record that can be studied to uncover information on the late stages of massive star evolution, the supernova explosion mechanism, and the dense matter equation of state. Observations of neutron star masses indicate a bimodal Gaussian distribution, while the observed black hole mass distribution decays exponentially for stellar-mass black holes. We use these observed distributions to directly confront the predictions of stellar evolution models and the neutrino-driven supernova simulations of Sukhbold et al. We find strong agreement between the black hole and low-mass neutron star distributions created by these simulations and the observations. We show that a large fraction of the stellar envelope must be ejected, either during the formation of stellar-mass black holes or prior to the implosion through tidal stripping due to a binary companion, in order to reproduce the observed black hole mass distribution. We also determine the origins of the bimodal peaks of the neutron star mass distribution, finding that the low-mass peak (centered at ∼1.4 M ⊙) originates from progenitors with M ZAMS ≈ 9–18 M ⊙. The simulations fail to reproduce the observed peak of high-mass neutron stars (centered at ∼1.8 M ⊙) and we explore several possible explanations. We argue that the close agreement between the observed and predicted black hole and low-mass neutron star mass distributions provides new, promising evidence that these stellar evolution and explosion models capture the majority of relevant stellar, nuclear, and explosion physics involved in the formation of compact objects.
Origin of chemically distinct discs in the Auriga cosmological simulations
NASA Astrophysics Data System (ADS)
Grand, Robert J. J.; Bustamante, Sebastián; Gómez, Facundo A.; Kawata, Daisuke; Marinacci, Federico; Pakmor, Rüdiger; Rix, Hans-Walter; Simpson, Christine M.; Sparre, Martin; Springel, Volker
2018-03-01
The stellar disc of the Milky Way shows complex spatial and abundance structure that is central to understanding the key physical mechanisms responsible for shaping our Galaxy. In this study, we use six very high resolution cosmological zoom-in simulations of Milky Way-sized haloes to study the prevalence and formation of chemically distinct disc components. We find that our simulations develop a clearly bimodal distribution in the [α/Fe]-[Fe/H] plane. We find two main pathways to creating this dichotomy, which operate in different regions of the galaxies: (a) an early (z > 1) and intense high-[α/Fe] star formation phase in the inner region (R ≲ 5 kpc) induced by gas-rich mergers, followed by more quiescent low-[α/Fe] star formation; and (b) an early phase of high-[α/Fe] star formation in the outer disc followed by a shrinking of the gas disc owing to a temporarily lowered gas accretion rate, after which disc growth resumes. In process (b), a double-peaked star formation history around the time and radius of disc shrinking accentuates the dichotomy. If the early star formation phase is prolonged (rather than short and intense), chemical evolution proceeds as per process (a) in the inner region, but the dichotomy is less clear. In the outer region, the dichotomy is only evident if the first intense phase of star formation covers a large enough radial range before disc shrinking occurs; otherwise, the outer disc consists of only low-[α/Fe] sequence stars. We discuss the implication that both processes occurred in the Milky Way.
New Parallaxes for the Upper Scorpius OB Association
NASA Astrophysics Data System (ADS)
Donaldson, J. K.; Weinberger, A. J.; Gagné, J.; Boss, A. P.; Keiser, S. A.
2017-11-01
Upper Scorpius is a subgroup of the nearest OB association, Scorpius-Centaurus. Its young age makes it an important association to study star and planet formation. We present parallaxes to 52 low-mass stars in Upper Scorpius, 28 of which have full kinematics. We measure ages of the individual stars by combining our measured parallaxes with pre-main-sequence evolutionary tracks. We find a significant difference in the ages of stars with and without circumstellar disks. The stars without disks have a mean age of 4.9 ± 0.8 Myr and those with disks have an older mean age of 8.2 ± 0.9 Myr. This somewhat counterintuitive result suggests that evolutionary effects in young stars can dominate their apparent ages. We also attempt to use the 28 stars with full kinematics (I.e., proper motion, radial velocity (RV), and parallax) to trace the stars back in time to their original birthplace to obtain a trackback age. As expected, given the large measurement uncertainties on available RV measurements, we find that measurement uncertainties alone cause the group to diverge after a few Myr.
Researchers Resolve Intermediate Mass Black Hole Mystery
NASA Astrophysics Data System (ADS)
2004-04-01
New research, funded by the Royal Netherlands Academy of Sciences, the Institute of Advanced Physical and Chemical Research, NASA and the University of Tokyo, solved the mystery of how a black hole, with the mass more than several hundreds times larger than that of our Sun, could be formed in the nearby starburst galaxy, M82. Recent observations of the Chandra X-ray observatory (Matsumoto et al., 2001 ApJ 547, L25) indicate the presence of an unusually bright source in the star cluster MGG11 in the starburst galaxy M82. The properties of the X-ray source are best explained by a black hole with a mass of about a thousand times the mass of the Sun, placing it intermediate between the relatively small (stellar mass) black holes in the Milky way Galaxy and the supermassive black holes found in the nuclei of galaxies. For comparison, stellar-mass black holes are only a few times more massive than the Sun, whereas the black hole in the center of the Milky-way Galaxy is more than a few million times more massive than the Sun. An international team of researchers, using the world's fastest computer, the GRAPE-6 system in Japan, were engaged in a series of simulations of star clusters that resembled MGG11. They used the GRAPE-6 to perform simulations with two independently developed computer programs (Starlab and NBODY4 developed by Sverre Aarseth in Cambridge), both of which give the same qualitative result. The simulations ware initiated by high resolution observations of the star cluster MGG11 by McCrady et al (2003, ApJ 596, 240) using the Hubble Space Telescope and Keck, and by Harashima et al (2001) using the giant Subaru telescope. M82 Chandra X-ray image of the central region of the starburst galaxy M82. The GRAPE's detailed, star-by-star simulations represent the state of the art in cluster modeling. For the first time using the GRAPE, researchers perform simulations of the evolution of young and dense star clusters with up to 600000 stars; they calculate the orbital trajectory and the evolution of each star individually. Using this unique tool, the team found they could reproduce the observed characteristics of the star cluster MGG11. As a bonus, however, the star cluster produces a black hole with a mass between 800 and 3000 times the mass of the Sun. The black hole is produced within 4 million years which is in an early phase in the evolution of the star cluster. During this phase the stellar density in the center becomes so high that physical collisions between the stars become frequent. If the stellar densities exceed a million times the density in the neighborhood of the Sun, collision start to dominate the further evolution of the star cluster. In this over-dense cluster center, stars experience repeated collisions with each other, resulting in a collision runaway in which a single stars grows to enormous mass. After the central fuel of this star is exhausted, it collapses to a black hole of about 1000 times the mass of the Sun. New results of these detailed computer simulations, published in Nature show that the star cluster in which the X-ray source resides has characteristics such that a black hole of 800-3000 times the mass of the Sun can form within a very short time. The calculations therewith provide compelling evidence for the process which produces intermediate mass black holes and at the same time provide an explanation for the bright X-ray source observed in the cluster. The GRAPE team's members are Simon Portegies Zwart, from the University of Amsterdam in the Netherlands; Holger Baumgardt, from RIKEN in Tokyo; Piet Hut, of the Institute for Advanced Study in Princeton, N.J.; Jun Makino from Tokyo University; Steve McMillan, from Drexel University in Philadelphia. The GRAPE group's results appear in the April 15, 2004, issue of Nature. Relevant internet addresses: http://carol.wins.uva.nl/~spz/act/press/Nature2004/index.html http://www.astrogrape.org http://www.manybody.org http://www.manybody.org/manybody/starlab.html
The ν process in the innermost supernova ejecta
NASA Astrophysics Data System (ADS)
Sieverding, Andre; Martínez Pinedo, Gabriel; Langanke, Karlheinz; Harris, J. Austin; Hix, W. Raphael
2018-01-01
The neutrino-induced nucleosynthesis (ν process) in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 13 and 30 M⊙ has been studied with an analytic explosion model using a new extensive set of neutrino-nucleus cross-sections and spectral properties that agree with modern supernova simulations. The production factors for the nuclei 7Li, 11B, 19F, 138La and 180Ta, are still significantly enhanced but do not reproduce the full solar abundances. We study the possible contribution of the innermost supernova eject to the production of the light elements 7Li and 11B with tracer particles based on a 2D supernova simulation of a 12 M⊙ progenitor and conclude, that a contribution exists but is negligible for the total yield for this explosion model.
NASA Astrophysics Data System (ADS)
Hayward, Christopher C.; Kereš, Dušan; Jonsson, Patrik; Narayanan, Desika; Cox, T. J.; Hernquist, Lars
2011-12-01
We perform three-dimensional dust radiative transfer (RT) calculations on hydrodynamic simulations of isolated and merging disk galaxies in order to quantitatively study the dependence of observed-frame submillimeter (submm) flux density on galaxy properties. We find that submm flux density and star formation rate (SFR) are related in dramatically different ways for quiescently star-forming galaxies and starbursts. Because the stars formed in the merger-induced starburst do not dominate the bolometric luminosity and the rapid drop in dust mass and more compact geometry cause a sharp increase in dust temperature during the burst, starbursts are very inefficient at boosting submm flux density (e.g., a >~ 16 × boost in SFR yields a <~ 2 × boost in submm flux density). Moreover, the ratio of submm flux density to SFR differs significantly between the two modes; thus one cannot assume that the galaxies with highest submm flux density are necessarily those with the highest bolometric luminosity or SFR. These results have important consequences for the bright submillimeter-selected galaxy (SMG) population. Among them are: (1) The SMG population is heterogeneous. In addition to merger-driven starbursts, there is a subpopulation of galaxy pairs, where two disks undergoing a major merger but not yet strongly interacting are blended into one submm source because of the large (gsim 15" or ~130 kpc at z = 2) beam of single-dish submm telescopes. (2) SMGs must be very massive (M sstarf >~ 6 × 1010 M ⊙). (3) The infall phase makes the SMG duty cycle a factor of a few greater than what is expected for a merger-driven starburst. Finally, we provide fitting functions for SCUBA and AzTEC submm flux densities as a function of SFR and dust mass and bolometric luminosity and dust mass; these should be useful for calculating submm flux density in semi-analytic models and cosmological simulations when performing full RT is computationally not feasible.
Formation of young massive clusters from turbulent molecular clouds
NASA Astrophysics Data System (ADS)
Fujii, Michiko; Portegies Zwart, Simon
2015-08-01
We simulate the formation and evolution of young star clusters using smoothed-particle hydrodynamics (SPH) and direct N-body methods. We start by performing SPH simulations of the giant molecular cloud with a turbulent velocity field, a mass of 10^4 to 10^6 M_sun, and a density between 17 and 1700 cm^-3. We continue the SPH simulations for a free-fall time scale, and analyze the resulting structure of the collapsed cloud. We subsequently replace a density-selected subset of SPH particles with stars. As a consequence, the local star formation efficiency exceeds 30 per cent, whereas globally only a few per cent of the gas is converted to stars. The stellar distribution is very clumpy with typically a dozen bound conglomerates that consist of 100 to 10000 stars. We continue to evolve the stars dynamically using the collisional N-body method, which accurately treats all pairwise interactions, stellar collisions and stellar evolution. We analyze the results of the N-body simulations at 2 Myr and 10 Myr. From dense massive molecular clouds, massive clusters grow via hierarchical merging of smaller clusters. The shape of the cluster mass function that originates from an individual molecular cloud is consistent with a Schechter function with a power-law slope of beta = -1.73 at 2 Myr and beta = -1.67 at 10 Myr, which fits to observed cluster mass function of the Carina region. The superposition of mass functions have a power-law slope of < -2, which fits the observed mass function of star clusters in the Milky Way, M31 and M83. We further find that the mass of the most massive cluster formed in a single molecular cloud with a mass of M_g scales with 6.1 M_g^0.51 which also agrees with recent observation in M51. The molecular clouds which can form massive clusters are much denser than those typical in the Milky Way. The velocity dispersion of such molecular clouds reaches 20 km/s and it is consistent with the relative velocity of the molecular clouds observed near NGC 3603 and Westerlund 2, for which a triggered star formation by cloud-cloud collisions is suggested.
NASA Astrophysics Data System (ADS)
Jeon, Myoungwon; Besla, Gurtina; Bromm, Volker
2017-10-01
We investigate the star formation history (SFH) and chemical evolution of isolated analogs of Local Group (LG) ultrafaint dwarf galaxies (UFDs; stellar mass range of {10}2 {M}⊙ < {M}* < {10}5 {M}⊙ ) and gas-rich, low-mass dwarfs (Leo P analogs; stellar mass range of {10}5 {M}⊙ < {M}* < {10}6 {M}⊙ ). We perform a suite of cosmological hydrodynamic zoom-in simulations to follow their evolution from the era of the first generation of stars down to z = 0. We confirm that reionization, combined with supernova (SN) feedback, is primarily responsible for the truncated star formation in UFDs. Specifically, halos with a virial mass of {M}{vir}≲ 2× {10}9 {M}⊙ form ≳ 90 % of stars prior to reionization. Our work further demonstrates the importance of Population III stars, with their intrinsically high [{{C}}/{Fe}] yields and the associated external metal enrichment, in producing low-metallicity stars ([{Fe}/{{H}}]≲ -4) and carbon-enhanced metal-poor (CEMP) stars. We find that UFDs are composite systems, assembled from multiple progenitor halos, some of which hosted only Population II stars formed in environments externally enriched by SNe in neighboring halos, naturally producing extremely low metallicity Population II stars. We illustrate how the simulated chemical enrichment may be used to constrain the SFHs of true observed UFDs. We find that Leo P analogs can form in halos with {M}{vir}˜ 4× {10}9 {M}⊙ (z = 0). Such systems are less affected by reionization and continue to form stars until z = 0, causing higher-metallicity tails. Finally, we predict the existence of extremely low metallicity stars in LG UFD galaxies that preserve the pure chemical signatures of Population III nucleosynthesis.
Star cluster formation in cosmological simulations. I. Properties of young clusters
Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; ...
2017-01-03
We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope ismore » $$\\alpha \\approx 1.8\\mbox{–}2$$, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. As a result, comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.« less
Radiative Hydrodynamic Simulations of In Situ Star Formation in the Galactic Center
NASA Astrophysics Data System (ADS)
Frazer, Chris; Heitsch, Fabian
2018-01-01
Many stars observed in the Galactic Center (GC) orbit the supermassive black hole (SMBH), Sagittarius A*, in a region where the extreme gravitational field is expected to inhibit star formation. Yet, many of these stars are young which favors an in situ formation scenario. Previous numerical work on this topic has focused on two possible solutions. First, the tidal capture of a > 10^4 Msun infalling molecular cloud by an SMBH may result in the formation of a surrounding gas disk which then rapidly cools and forms stars. This process results in stellar populations that are consistent with the observed stellar disk in the GC. Second, dense gas clumps of approximately 100 Msun on highly eccentric orbits about an SMBH can experience sparks of star formation via orbital compressions occurring during pericenter passage. In my dissertation, I build upon these models using a series of grid-based radiative hydrodynamic simulations, including the effects of both ionizing ultraviolet light from existing stars as well as X-ray radiation emanating from the central black hole. Radiation is treated with an adaptive ray-tracing routine, including appropriate heating and cooling for both neutral and ionized gas. These models show that ultraviolet radiation is sufficiently strong to heat low mass gas clouds, thus suppressing star formation from clump compression. Gas disks that form from cloud capture become sufficiently dense to provide shielding from the radiation of existing central stars, thus allowing star formation to continue. Conversely, X-rays easily penetrate and heat the potentially star forming gas. For sufficiently high radiation fields, this provides a mechanism to disrupt star formation for both scenarios considered above.
Star cluster formation in cosmological simulations. I. Properties of young clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.
We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope ismore » $$\\alpha \\approx 1.8\\mbox{–}2$$, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. As a result, comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.« less
Objective Assessment Method for RNAV STAR Adherence
NASA Technical Reports Server (NTRS)
Stewart, Michael; Matthews, Bryan
2017-01-01
Flight crews and air traffic controllers have reported many safety concerns regarding area navigation standard terminal arrival routes (RNAV STARs). Specifically, optimized profile descents (OPDs). However, our information sources to quantify these issues are limited to subjective reporting and time consuming case-by-case investigations. This work is a preliminary study into the objective performance of instrument procedures and provides a framework to track procedural concepts and assess design specifications. We created a tool and analysis methods for gauging aircraft adherence as it relates to RNAV STARs. This information is vital for comprehensive understanding of how our air traffic behaves. In this study, we mined the performance of 24 major US airports over the preceding three years. Overlaying 4D radar track data onto RNAV STAR routes provided a comparison between aircraft flight paths and the waypoint positions and altitude restrictions. NASA Ames Supercomputing resources were utilized to perform the data mining and processing. We assessed STARs by lateral transition path (full-lateral), vertical restrictions (full-lateral/full-vertical), and skipped waypoints (skips). In addition, we graphed frequencies of aircraft altitudes relative to the altitude restrictions. Full-lateral adherence was always greater than Full-lateral/ full- vertical, as it is a subset, but the difference between the rates was not consistent. Full-lateral/full-vertical adherence medians of the 2016 procedures ranged from 0% in KDEN (Denver) to 21% in KMEM (Memphis). Waypoint skips ranged from 0% to nearly 100% for specific waypoints. Altitudes restrictions were sometimes missed by systematic amounts in 1,000 ft. increments from the restriction, creating multi-modal distributions. Other times, altitude misses looked to be more normally distributed around the restriction. This tool may aid in providing acceptability metrics as well as risk assessment information.
Feedback by AGN Jets and Wide-angle Winds on a Galactic Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dugan, Zachary; Silk, Joseph; Gaibler, Volker
To investigate the differences in mechanical feedback from radio-loud and radio-quiet active galactic nuclei on the host galaxy, we perform 3D AMR hydrodynamic simulations of wide-angle, radio-quiet winds with different inclinations on a single, massive, gas-rich disk galaxy at a redshift of 2–3. We compare our results to hydrodynamic simulations of the same galaxy but with a jet. The jet has an inclination of 0° (perpendicular to the galactic plane), and the winds have inclinations of 0°, 45°, and 90°. We analyze the impact on the host’s gas, star formation, and circumgalactic medium. We find that jet feedback is energy-drivenmore » and wind feedback is momentum-driven. In all the simulations, the jet or wind creates a cavity mostly devoid of dense gas in the nuclear region where star formation is then quenched, but we find strong positive feedback in all the simulations at radii greater than 3 kpc. All four simulations have similar SFRs and stellar velocities with large radial and vertical components. However, the wind at an inclination of 90° creates the highest density regions through ram pressure and generates the highest rates of star formation due to its ongoing strong interaction with the dense gas of the galactic plane. With increased wind inclination, we find greater asymmetry in gas distribution and resulting star formation. Our model generates an expanding ring of triggered star formation with typical velocities of the order of 1/3 of the circular velocity, superimposed on the older stellar population. This should result in a potentially detectable blue asymmetry in stellar absorption features at kiloparsec scales.« less
Feedback by AGN Jets and Wide-angle Winds on a Galactic Scale
NASA Astrophysics Data System (ADS)
Dugan, Zachary; Gaibler, Volker; Silk, Joseph
2017-07-01
To investigate the differences in mechanical feedback from radio-loud and radio-quiet active galactic nuclei on the host galaxy, we perform 3D AMR hydrodynamic simulations of wide-angle, radio-quiet winds with different inclinations on a single, massive, gas-rich disk galaxy at a redshift of 2-3. We compare our results to hydrodynamic simulations of the same galaxy but with a jet. The jet has an inclination of 0° (perpendicular to the galactic plane), and the winds have inclinations of 0°, 45°, and 90°. We analyze the impact on the host’s gas, star formation, and circumgalactic medium. We find that jet feedback is energy-driven and wind feedback is momentum-driven. In all the simulations, the jet or wind creates a cavity mostly devoid of dense gas in the nuclear region where star formation is then quenched, but we find strong positive feedback in all the simulations at radii greater than 3 kpc. All four simulations have similar SFRs and stellar velocities with large radial and vertical components. However, the wind at an inclination of 90° creates the highest density regions through ram pressure and generates the highest rates of star formation due to its ongoing strong interaction with the dense gas of the galactic plane. With increased wind inclination, we find greater asymmetry in gas distribution and resulting star formation. Our model generates an expanding ring of triggered star formation with typical velocities of the order of 1/3 of the circular velocity, superimposed on the older stellar population. This should result in a potentially detectable blue asymmetry in stellar absorption features at kiloparsec scales.
Beta Dips in the Gaia Era: Simulation Predictions of the Galactic Velocity Anisotropy Parameter (β)
NASA Astrophysics Data System (ADS)
Loebman, Sarah; Valluri, Monica; Hattori, Kohei; Debattista, Victor P.; Bell, Eric F.; Stinson, Greg; Christensen, Charlotte; Brooks, Alyson; Quinn, Thomas R.; Governato, Fabio
2017-01-01
Milky Way (MW) science has entered a new era with the advent of Gaia. Combined with spectroscopic survey data, we have newfound access to full 6D phase space information for halo stars. Such data provides an invaluable opportunity to assess kinematic trends as a function of radius and confront simulations with these observations to draw insight about our merger history. I will discuss predictions for the velocity anisotropy parameter, β, drawn from three suites of state-of-the-art cosmological N-body and N-body+SPH MW-like simulations. On average, all three suites predict a monotonically increasing value of β that is radially biased, and beyond 10 kpc, β > 0.5. I will also discuss β as a function of time for individual simulated galaxies. I will highlight when "dips" in β form, the severity (the rarity of β < 0), origin (in situ versus accreted halo), and persistence of these dips. Thereby, I present a cohesive set of predictions of β from simulations for comparison to forthcoming observations.
Using Voronoi Tessellations to identify groups in N-body Simulation
NASA Astrophysics Data System (ADS)
Gonzalez, R. E.; Theuns, T.
Dark matter N-body simulations often use a friends-of-friends (FOF) group finder to link together particles above a specified density threshold. An over density of 200 picks-out objects that can be identified with virialised dark matter haloes, based on the spherical collapse model for the formation of structure. When the halo contains significant substructure, as is the case in very high resolution simulations, then FOF will simply link all substructure to the parent halo. Many cosmological simulations now also include gas and stars, and these are often distributed differently from the dark matter. It is then not clear whether the structures identified by FOF are very physical. Here we use Voronoi tesselations to identify structures in hydrodynamical cosmological simulations, that contain dark matter, gas and stars. This adaptive technique allows accurate estimates of densities, and density gradients, for a non-structured distribution of points. We discuss how these estimates allow us to identify structures in the dark matter that can be identified with haloes, and in the stars, to identify galaxies.
Quantum nuclear pasta and nuclear symmetry energy
NASA Astrophysics Data System (ADS)
Fattoyev, F. J.; Horowitz, C. J.; Schuetrumpf, B.
2017-05-01
Complex and exotic nuclear geometries, collectively referred to as "nuclear pasta," are expected to appear naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta geometries depend on the average baryon density, proton fraction, and temperature and are critically important in the determination of many transport properties of matter in supernovae and the crusts of neutron stars. Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of large scale quantum simulations of pasta phases at baryon densities 0.03 ≤ρ ≤0.10 fm-3 , proton fractions 0.05 ≤Yp≤0.40 , and zero temperature. The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated by tuning two purely isovector observables that are insensitive to the current available experimental data. We find that a minimum total number of nucleons A =2000 is necessary to prevent the results from containing spurious shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at T =0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable solutions are discussed.
The violent interstellar medium in Milky-Way like disk galaxies
NASA Astrophysics Data System (ADS)
Karoline Walch, Stefanie
2015-08-01
Molecular clouds are cold, dense, and turbulent filamentary structures that condense out of the multi-phase interstellar medium. They are also the sites of star formation. The minority of new-born stars is massive, but these stars are particularly important for the fate of their parental molecular clouds as their feedback drives turbulence and regulates star formation.I will present results from the SILCC project (SImulating the Life Cycle of molecular Clouds), in which we study the formation and dispersal of molecular clouds within the multi-phase ISM using high-performance, three-dimensional simulations of representative pieces of disk galaxies. Apart from stellar feedback, self-gravity, an external stellar potential, and magnetic fields, we employ an accurate description of gas heating and cooling as well as a small chemical network including molecule formation and (self-)shielding from the interstellar radiation field. We study the impact of the supernova rate and the positioning of the supernova explosions with respect to the molecular gas in a well defined set of simulations. This allows us to draw conclusions on structure of the multi-phase ISM, the amount of molecular gas formed, and the onset of galactic outflows. Furthermore, we show how important stellar wind feedback is for regulating star formation in these disks.
Obscuring and Feeding Supermassive Black Holes with Evolving Nuclear Star Clusters
NASA Astrophysics Data System (ADS)
Schartmann, M.; Burkert, A.; Krause, M.; Camenzind, M.; Meisenheimer, K.; Davies, R. I.
2010-05-01
Recently, high-resolution observations made with the help of the near-infrared adaptive optics integral field spectrograph SINFONI at the VLT proved the existence of massive and young nuclear star clusters in the centers of a sample of Seyfert galaxies. With the help of high-resolution hydrodynamical simulations with the pluto code, we follow the evolution of such clusters, especially focusing on mass and energy feedback from young stars. This leads to a filamentary inflow of gas on large scales (tens of parsecs), whereas a turbulent and very dense disk builds up on the parsec scale. Here we concentrate on the long-term evolution of the nuclear disk in NGC 1068 with the help of an effective viscous disk model, using the mass input from the large-scale simulations and accounting for star formation in the disk. This two-stage modeling enables us to connect the tens-of-parsecs scale region (observable with SINFONI) with the parsec-scale environment (MIDI observations). At the current age of the nuclear star cluster, our simulations predict disk sizes of the order 0.8 to 0.9 pc, gas masses of order 106 M⊙, and mass transfer rates through the inner boundary of order 0.025 M⊙ yr-1, in good agreement with values derived from observations.
The Formation of Filamentary Structures in Radiative Cluster Winds
NASA Astrophysics Data System (ADS)
Rodríguez-González, Ary; Esquivel, Alejandro; Raga, Alejandro C.; Cantó, Jorge
We explore the dynamics of a "cluster wind" flow in the regime in which the shocks resulting from the interaction of winds from nearby stars are radiative. We show that for a cluster with low-intermedia mass stars, the wind interactions are indeed likely to be radiative. We then compute three dimensional, radiative simulations of a cluster of 75 young stars, exploring the effects of varying the wind parameters and the density of the initial ISM that permeates the volume of the cluster. These simulations show that the ISM is compressed by the action of the winds into a structure of dense knots and filaments.
Triggering active galactic nuclei in galaxy clusters
NASA Astrophysics Data System (ADS)
Marshall, Madeline A.; Shabala, Stanislav S.; Krause, Martin G. H.; Pimbblet, Kevin A.; Croton, Darren J.; Owers, Matt S.
2018-03-01
We model the triggering of active galactic nuclei (AGN) in galaxy clusters using the semi-analytic galaxy formation model SAGE. We prescribe triggering methods based on the ram pressure galaxies experience as they move throughout the intracluster medium, which is hypothesized to trigger star formation and AGN activity. The clustercentric radius and velocity distribution of the simulated active galaxies produced by these models are compared with those of AGN and galaxies with intense star formation from a sample of low-redshift relaxed clusters from the Sloan Digital Sky Survey. The ram pressure triggering model that best explains the clustercentric radius and velocity distribution of these observed galaxies has AGN and star formation triggered if 2.5 × 10-14 Pa < Pram < 2.5 × 10-13 Pa and Pram > 2Pinternal; this is consistent with expectations from hydrodynamical simulations of ram-pressure-induced star formation. Our results show that ram pressure is likely to be an important mechanism for triggering star formation and AGN activity in clusters.
The Outcome of Neutron Star Mergers
NASA Astrophysics Data System (ADS)
Foucart, Francois
2014-10-01
Black hole-neutron star and neutron star-neutron star mergers are among the main sources of gravitational waves which will be detected in the coming years by the Advanced LIGO/VIRGO/KAGRA observatories. In some cases, these mergers can also power bright electromagnetic emissions: they are the most likely progenitors of short gamma-ray bursts, and the radioactive decay of neutron-rich material ejected by the merger can power optical/infrared transients days after the merger. Finally, they may provide important constraints on the equation of state of cold dense matter, and on the source of heavy elements in the universe. I will discuss the general relativistic simulations which are required to properly model these events, and what they have told us so far about the outcome of neutron star mergers. I will also discuss efforts to improve the physical realism of the simulations by improving the treatment of the most important effects beyond general relativistic hydrodynamics: magnetic fields, neutrinos, and the properties of nuclear matter.
Star formation history: Modeling of visual binaries
NASA Astrophysics Data System (ADS)
Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.
2018-05-01
Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.
Core Collapse: The Race Between Stellar Evolution and Binary Heating
NASA Astrophysics Data System (ADS)
Converse, Joseph M.; Chandar, R.
2012-01-01
The dynamical formation of binary stars can dramatically affect the evolution of their host star clusters. In relatively small clusters (M < 6000 Msun) the most massive stars rapidly form binaries, heating the cluster and preventing any significant contraction of the core. The situation in much larger globular clusters (M 105 Msun) is quite different, with many showing collapsed cores, implying that binary formation did not affect them as severely as lower mass clusters. More massive clusters, however, should take longer to form their binaries, allowing stellar evolution more time to prevent the heating by causing the larger stars to die off. Here, we simulate the evolution of clusters between those of open and globular clusters in order to find at what size a star cluster is able to experience true core collapse. Our simulations make use of a new GPU-based computing cluster recently purchased at the University of Toledo. We also present some benchmarks of this new computational resource.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilkey, Lindsay
This milestone presents a demonstration of the High-to-Low (Hi2Lo) process in the VVI focus area. Validation and additional calculations with the commercial computational fluid dynamics code, STAR-CCM+, were performed using a 5x5 fuel assembly with non-mixing geometry and spacer grids. This geometry was based on the benchmark experiment provided by Westinghouse. Results from the simulations were compared to existing experimental data and to the subchannel thermal-hydraulics code COBRA-TF (CTF). An uncertainty quantification (UQ) process was developed for the STAR-CCM+ model and results of the STAR UQ were communicated to CTF. Results from STAR-CCM+ simulations were used as experimental design pointsmore » in CTF to calibrate the mixing parameter β and compared to results obtained using experimental data points. This demonstrated that CTF’s β parameter can be calibrated to match existing experimental data more closely. The Hi2Lo process for the STAR-CCM+/CTF code coupling was documented in this milestone and closely linked L3:VVI.H2LP15.01 milestone report.« less
A tunable integrated system to simulate colder stellar radiation
NASA Astrophysics Data System (ADS)
Erculiani, Marco S.; Claudi, Riccardo; Barbisan, Diego; Giro, Enrico; Bonato, Matteo; Cocola, Lorenzo; Farisato, Giancarlo; Meneghini, Metteo; Poletto, Luca; Salasnich, Bernardo; Trivellin, Nicola
2015-09-01
In the last years, a lot of extrasolar planets have been discovered in any direction of the Galaxy. More interesting, some of them have been found in the habitable zone of their host stars. A large diversity of spectral type, from early types (A) to colder ones (M), is covered by the planetary system host stars. A lot of efforts are done in order to find habitable planets around M stars and indeed some habitable super earths were found. In this framework, "Atmosphere in a Test Tube", a project started at Astronomical observatory of Padua, simulates planetary environmental condition in order to understand how and how much the behavior of photosynthetic bacteria in different planetary/star scenarios can modify the planet atmosphere. The particular case of an habitable planet orbiting a M dwarf star is under study for the time being. The irradiation of an M star, due to its lower surface temperature is very different in quality and quantity by the irradiation of a star like our Sun. We would like to describe the study of feasibility of a new kind of tunable led stellarlight simulator capable to recreate the radiation spectrum of M type stars (but with the potential to be expanded even to F, G, K star spectra types) incident on the planet. The radiation source is a multiple LED matrix cooled by means of air fan technology. In order to endow it with modularity this device will be composed by a mosaic of circuit boards arranged in a pie-chart shape, on the surface of which will be welded the LEDs. This concept is a smart way in order to replace blown out pieces instead of changing the entire platform as well as implement the device with new modules suitable to reproduce other type of stars. The device can be driven by a PC to raise or lower the intensity of both each LED and the lamp, in order to simulate as close as possible a portion of the star spectrum. The wavelength intervals overlap the limits of photosynthetic pigment absorption range (280-850 nm), while the range of the radiation source will be between 365 nm and 940 nm. The reason why we chose a higher outer limit is that M stars have the emission peak at about 1000 nm and we want to study the effects of low-light radiation on bacterial vitality. The innovative concept behind this radiative source is the use of the LED components to simulate the main stellar absorption lines and to make this a dynamic-light. Last but not least the use of LED is crucial to keep the device compact and handy. This device could help us to better understand the link between radiation and NIR-photosynthesis and could find applications in the field of photobioreactors as a test bench for the choice of the wavelength to be used in order to maximize the production rate. Other fields of application are the microscopy light sources field and the yeasts growth sector.
NASA Astrophysics Data System (ADS)
Foucart, Francois
2018-04-01
General relativistic radiation hydrodynamic simulations are necessary to accurately model a number of astrophysical systems involving black holes and neutron stars. Photon transport plays a crucial role in radiatively dominated accretion discs, while neutrino transport is critical to core-collapse supernovae and to the modelling of electromagnetic transients and nucleosynthesis in neutron star mergers. However, evolving the full Boltzmann equations of radiative transport is extremely expensive. Here, we describe the implementation in the general relativistic SPEC code of a cheaper radiation hydrodynamic method that theoretically converges to a solution of Boltzmann's equation in the limit of infinite numerical resources. The algorithm is based on a grey two-moment scheme, in which we evolve the energy density and momentum density of the radiation. Two-moment schemes require a closure that fills in missing information about the energy spectrum and higher order moments of the radiation. Instead of the approximate analytical closure currently used in core-collapse and merger simulations, we complement the two-moment scheme with a low-accuracy Monte Carlo evolution. The Monte Carlo results can provide any or all of the missing information in the evolution of the moments, as desired by the user. As a first test of our methods, we study a set of idealized problems demonstrating that our algorithm performs significantly better than existing analytical closures. We also discuss the current limitations of our method, in particular open questions regarding the stability of the fully coupled scheme.
A review of direct numerical simulations of astrophysical detonations and their implications
Parete-Koon, Suzanne T.; Smith, Christopher R.; Papatheodore, Thomas L.; ...
2013-04-11
Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerablemore » effort has been expended modeling Type Ia supernovae at densities above 1x10 7 g∙cm -3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1x10 7 g∙cm -3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. In conclusion, this work reviews the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.« less
NASA Astrophysics Data System (ADS)
Ott, Christian D.; Roberts, Luke F.; da Silva Schneider, André; Fedrow, Joseph M.; Haas, Roland; Schnetter, Erik
2018-03-01
We present a first study of the progenitor star dependence of the three-dimensional (3D) neutrino mechanism of core-collapse supernovae. We employ full 3D general-relativistic multi-group neutrino radiation-hydrodynamics and simulate the postbounce evolutions of progenitors with zero-age main sequence masses of 12, 15, 20, 27, and 40 M ⊙. All progenitors, with the exception of the 12 M ⊙ star, experience shock runaway by the end of their simulations. In most cases, a strongly asymmetric explosion will result. We find three qualitatively distinct evolutions that suggest a complex dependence of explosion dynamics on progenitor density structure, neutrino heating, and 3D flow. (1) Progenitors with massive cores, shallow density profiles, and high post-core-bounce accretion rates experience very strong neutrino heating and neutrino-driven turbulent convection, leading to early shock runaway. Accretion continues at a high rate, likely leading to black hole formation. (2) Intermediate progenitors experience neutrino-driven, turbulence-aided explosions triggered by the arrival of density discontinuities at the shock. These occur typically at the silicon/silicon–oxygen shell boundary. (3) Progenitors with small cores and density profiles without strong discontinuities experience shock recession and develop the 3D standing-accretion shock instability (SASI). Shock runaway ensues late, once declining accretion rate, SASI, and neutrino-driven convection create favorable conditions. These differences in explosion times and dynamics result in a non-monotonic relationship between progenitor and compact remnant mass.
Featured Image: Orbiting Stars Share an Envelope
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-03-01
This beautiful series of snapshots from a simulation (click for a better look!) shows what happens when two stars in a binary system become enclosed in the same stellar envelope. In this binary system, one of the stars has exhausted its hydrogen fuel and become a red giant, complete with an expanding stellar envelope composed of hydrogen and helium. Eventually, the envelope expands so much that the companion star falls into it, where it releases gravitational potential energy into the common envelope. A team led by Sebastian Ohlmann (Heidelberg Institute for Theoretical Studies and University of Wrzburg) recently performed hydrodynamic simulations of this process. Ohlmann and collaborators discovered that the energy release eventually triggers large-scale flow instabilities, which leads to turbulence within the envelope. This process has important consequences for how these systems next evolve (for instance, determining whether or not a supernova occurs!). You can check out the authors video of their simulated stellar inspiral below, or see their paper for more images and results from their study.CitationSebastian T. Ohlmann et al 2016 ApJ 816 L9. doi:10.3847/2041-8205/816/1/L9
NASA Astrophysics Data System (ADS)
Bhattacharyya, S.; Thampan, A. V.; Bombaci, I.
2001-06-01
We compute the temperature profiles of accretion discs around rapidly rotating strange stars, using constant gravitational mass equilibrium sequences of these objects, considering the full effect of general relativity. Beyond a certain critical value of stellar angular momentum (J), we observe the radius (r_orb) of the innermost stable circular orbit (ISCO) to increase with J (a property seen neither in rotating black holes nor in rotating neutron stars). The reason for this is traced to the crucial dependence of dr_orb/dJ on the rate of change of the radial gradient of the Keplerian angular velocity at r_orb with respect to J. The structure parameters and temperature profiles obtained are compared with those of neutron stars, as an attempt to provide signatures for distinguishing between the two. We show that when the full gamut of strange star equation of state models, with varying degrees of stiffness are considered, there exists a substantial overlap in properties of both neutron stars and strange stars. However, applying accretion disc model constraints to rule out stiff strange star equation of state models, we notice that neutron stars and strange stars exclusively occupy certain parameter spaces. This result implies the possibility of distinguishing these objects from each other by sensitive observations through future X-ray detectors.
The Fate of Merging Neutron Stars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-08-01
A rapidly spinning, highly magnetized neutron star is one possible outcome when two smaller neutron stars merge. [Casey Reed/Penn State University]When two neutron stars collide, the new object that they make can reveal information about the interior physics of neutron stars. New theoretical work explores what we should be seeing, and what it can teach us.Neutron Star or Black Hole?So far, the only systems from which weve detected gravitational waves are merging black holes. But other compact-object binaries exist and are expected to merge on observable timescales in particular, binary neutron stars. When two neutron stars merge, the resulting object falls into one of three categories:a stable neutron star,a black hole, ora supramassive neutron star, a large neutron star thats supported by its rotation but will eventually collapse to a black hole after it loses angular momentum.Histograms of the initial (left) and final (right) distributions of objects in the authors simulations, for five different equations of state. Most cases resulted primarily in the formation of neutron stars (NSs) or supramassive neutron stars (sNSs), not black holes (BHs). [Piro et al. 2017]Whether a binary-neutron-star merger results in another neutron star, a black hole, or a supramassive neutron star depends on the final mass of the remnant and what the correct equation of state is that describes the interiors of neutron stars a longstanding astrophysical puzzle.In a recent study, a team of scientists led by Anthony Piro (Carnegie Observatories) estimated which of these outcomes we should expect for mergers of binary neutron stars. The teams results along with future observations of binary neutron stars may help us to eventually pin down the equation of state for neutron stars.Merger OutcomesPiro and collaborators used relativistic calculations of spinning and non-spinning neutron stars to estimate the mass range that neutron stars would have for several different realistic equations of state. They then combined this information with Monte Carlo simulations based on the mass distribution of neutron-star binaries in our galaxy. From these simulations, Piro and collaborators could predict the distribution of fates expected for merging neutron-star binaries, given different equations of state.The authors found that the fate of the merger could vary greatly depending on the equation of state you assume. Intriguingly, all equations of state resulted in a surprisingly high fraction of systems that merged to form a neutron star or a supramassive neutron star in fact, four out of the five equations of state predicted that 80100% of systems would result in a neutron star or a supermassive neutron star.Lessons from ObservationsThe frequency bands covered by various current and planned gravitational wave observatories. Advanced LIGO has the right frequency coverage to be able to explore a neutron-star remnant if the signal is loud enough. [Christopher Moore, Robert Cole and Christopher Berry]These results have important implications for our future observations. The high predicted fraction of neutron stars resulting from these mergers tells us that its especially important for gravitational-wave observatories to probe 14 kHz emission. This frequency range will enable us to study the post-merger neutron-star or supramassive-neutron-star remnants.Even if we cant observe the remnants behavior after it forms, we can still compare the distribution of remnants that we observe in the future to the predictions made by Piro and collaborators. This will potentially allow us to constrain the neutron-star equation of state, revealing the physics of neutron-star interiors even without direct observations.CitationAnthony L. Piro et al 2017 ApJL 844 L19. doi:10.3847/2041-8213/aa7f2f
The Origin of Scales and Scaling Laws in Star Formation
NASA Astrophysics Data System (ADS)
Guszejnov, David; Hopkins, Philip; Grudich, Michael
2018-01-01
Star formation is one of the key processes of cosmic evolution as it influences phenomena from the formation of galaxies to the formation of planets, and the development of life. Unfortunately, there is no comprehensive theory of star formation, despite intense effort on both the theoretical and observational sides, due to the large amount of complicated, non-linear physics involved (e.g. MHD, gravity, radiation). A possible approach is to formulate simple, easily testable models that allow us to draw a clear connection between phenomena and physical processes.In the first part of the talk I will focus on the origin of the IMF peak, the characteristic scale of stars. There is debate in the literature about whether the initial conditions of isothermal turbulence could set the IMF peak. Using detailed numerical simulations, I will demonstrate that not to be the case, the initial conditions are "forgotten" through the fragmentation cascade. Additional physics (e.g. feedback) is required to set the IMF peak.In the second part I will use simulated galaxies from the Feedback in Realistic Environments (FIRE) project to show that most star formation theories are unable to reproduce the near universal IMF peak of the Milky Way.Finally, I will present analytic arguments (supported by simulations) that a large number of observables (e.g. IMF slope) are the consequences of scale-free structure formation and are (to first order) unsuitable for differentiating between star formation theories.
CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, A. W.; Hempel, M.; Fischer, T.
2013-09-01
Many of the currently available equations of state for core-collapse supernova simulations give large neutron star radii and do not provide large enough neutron star masses, both of which are inconsistent with some recent neutron star observations. In addition, one of the critical uncertainties in the nucleon-nucleon interaction, the nuclear symmetry energy, is not fully explored by the currently available equations of state. In this article, we construct two new equations of state which match recent neutron star observations and provide more flexibility in studying the dependence on nuclear matter properties. The equations of state are also provided in tabularmore » form, covering a wide range in density, temperature, and asymmetry, suitable for astrophysical simulations. These new equations of state are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. The results are compared with commonly used equations of state in supernova simulations of 11.2 and 40 M{sub Sun} progenitors. We consider only equations of state which are fitted to nuclear binding energies and other experimental and observational constraints. We find that central densities at bounce are weakly correlated with L and that there is a moderate influence of the symmetry energy on the evolution of the electron fraction. The new models also obey the previously observed correlation between the time to black hole formation and the maximum mass of an s = 4 neutron star.« less
NextGen Technologies on the FAA's Standard Terminal Automation Replacement System
NASA Technical Reports Server (NTRS)
Witzberger, Kevin; Swenson, Harry; Martin, Lynne; Lin, Melody; Cheng, Jinn-Hwei
2014-01-01
This paper describes the integration, evaluation, and results from a high-fidelity human-in-the-loop (HITL) simulation of key NASA Air Traffic Management Technology Demonstration - 1 (ATD- 1) technologies implemented in an enhanced version of the FAA's Standard Terminal Automation Replacement System (STARS) platform. These ATD-1 technologies include: (1) a NASA enhanced version of the FAA's Time-Based Flow Management, (2) a NASA ground-based automation technology known as controller-managed spacing (CMS), and (3) a NASA advanced avionics airborne technology known as flight-deck interval management (FIM). These ATD-1 technologies have been extensively tested in large-scale HITL simulations using general-purpose workstations to study air transportation technologies. These general purpose workstations perform multiple functions and are collectively referred to as the Multi-Aircraft Control System (MACS). Researchers at NASA Ames Research Center and Raytheon collaborated to augment the STARS platform by including CMS and FIM advisory tools to validate the feasibility of integrating these automation enhancements into the current FAA automation infrastructure. NASA Ames acquired three STARS terminal controller workstations, and then integrated the ATD-1 technologies. HITL simulations were conducted to evaluate the ATD-1 technologies when using the STARS platform. These results were compared with the results obtained when the ATD-1 technologies were tested in the MACS environment. Results collected from the numerical data show acceptably minor differences, and, together with the subjective controller questionnaires showing a trend towards preferring STARS, validate the ATD-1/STARS integration.
Scaling laws of passive-scalar diffusion in the interstellar medium
NASA Astrophysics Data System (ADS)
Colbrook, Matthew J.; Ma, Xiangcheng; Hopkins, Philip F.; Squire, Jonathan
2017-05-01
Passive-scalar mixing (metals, molecules, etc.) in the turbulent interstellar medium (ISM) is critical for abundance patterns of stars and clusters, galaxy and star formation, and cooling from the circumgalactic medium. However, the fundamental scaling laws remain poorly understood in the highly supersonic, magnetized, shearing regime relevant for the ISM. We therefore study the full scaling laws governing passive-scalar transport in idealized simulations of supersonic turbulence. Using simple phenomenological arguments for the variation of diffusivity with scale based on Richardson diffusion, we propose a simple fractional diffusion equation to describe the turbulent advection of an initial passive scalar distribution. These predictions agree well with the measurements from simulations, and vary with turbulent Mach number in the expected manner, remaining valid even in the presence of a large-scale shear flow (e.g. rotation in a galactic disc). The evolution of the scalar distribution is not the same as obtained using simple, constant 'effective diffusivity' as in Smagorinsky models, because the scale dependence of turbulent transport means an initially Gaussian distribution quickly develops highly non-Gaussian tails. We also emphasize that these are mean scalings that apply only to ensemble behaviours (assuming many different, random scalar injection sites): individual Lagrangian 'patches' remain coherent (poorly mixed) and simply advect for a large number of turbulent flow-crossing times.
Marchand, Sandrine; Bouchene, Salim; de Monte, Michèle; Guilleminault, Laurent; Montharu, Jérôme; Cabrera, Maria; Grégoire, Nicolas; Gobin, Patrice; Diot, Patrice; Couet, William; Vecellio, Laurent
2015-10-01
The objective of this study was to compare two different nebulizers: Eflow rapid® and Pari LC star® by scintigraphy and PK modeling to simulate epithelial lining fluid concentrations from measured plasma concentrations, after nebulization of CMS in baboons. Three baboons received CMS by IV infusion and by 2 types of aerosols generators and colistin by subcutaneous infusion. Gamma imaging was performed after nebulisation to determine colistin distribution in lungs. Blood samples were collected during 9 h and colistin and CMS plasma concentrations were measured by LC-MS/MS. A population pharmacokinetic analysis was conducted and simulations were performed to predict lung concentrations after nebulization. Higher aerosol distribution into lungs was observed by scintigraphy, when CMS was nebulized with Pari LC® star than with Eflow Rapid® nebulizer. This observation was confirmed by the fraction of CMS deposited into the lung (respectively 3.5% versus 1.3%).CMS and colistin simulated concentrations in epithelial lining fluid were higher after using the Pari LC star® than the Eflow rapid® system. A limited fraction of CMS reaches lungs after nebulization, but higher colistin plasma concentrations were measured and higher intrapulmonary colistin concentrations were simulated with the Pari LC Star® than with the Eflow Rapid® system.
Smashing a Jet into a Cloud to Form Stars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
What happens when the highly energetic jet from the center of an active galaxy rams into surrounding clouds of gas and dust? A new study explores whether this might be a way to form stars.The authors simulations at an intermediate (top) and final (bottom) stage show the compression in the gas cloud as a jet (red) enters from the left. Undisturbed cloud material is shown in blue, whereas green corresponds to cold, compressed gas actively forming stars. [Fragile et al. 2017]Impacts of FeedbackCorrelation between properties of supermassive black holes and their host galaxies suggest that there is some means of communication between them. For this reason, we suspect that feedback from an active galactic nucleus (AGN) in the form of jets, for instance controls the size of the galaxy by influencing star formation. But how does this process work?AGN feedback can be either negative or positive. In negative feedback, the gas necessary for forming stars is heated or dispersed by the jet, curbing or halting star formation. In positive feedback, jets propagate through the surrounding gas with energies high enough to create compression in the gas, but not so high that they heat it. The increased density can cause the gas to collapse, thereby triggering star formation.In a recent study, a team of scientists led by Chris Fragile (College of Charleston) modeled what happens when an enormous AGN jet slams into a dwarf-galaxy-sized, inactive cloud of gas. In particular, the team explored the possibility of star-forming positive feedback with the goal of reproducing recent observations of something called Minkowskis Object, a stellar nursery located at the endpoint of a radio jet emitted from the active galaxy NGC 541.The star formation rate in the simulated cloud increases dramatically as a result of the jets impact, reaching the rate currently observed for Minkowskis Objects within 20 million years. [Fragile et al. 2017]Triggering Stellar BirthFragile and collaborators used a computational astrophysics code called Cosmos++ to produce three-dimensional hydrodynamic simulations of an AGN jet colliding with a spherical intergalactic cloud. They show that the collision triggers a series shocks that move through and around the cloud, condensing the gas and triggering runaway cooling instabilities that can lead to cloud clumps collapsing to form stars.The authors are able to find a model in which the dramatic increase in the star formation rate matches that measured for Minkowskis Object very well. In particular, the increased star formation occurs upstream of the bulk of the available H I gas, which is consistent with observations of Minkowskis Object and implicates the jets interaction with the cloud as the cause.The spatial distribution of particles tracing stars that formed as a result of the jet entering from the left, after 40 million years. Color tracks the particle age (in Myr) in the top panel and particle velocity (in km/s) inthe bottom. [Adapted from Fragile et al. 2017]An intriguing result of the authors simulations is a look at the spatial distribution of the velocities of stars that form when triggered by the jet. Because the propagation speed of the star-formation front gradually slows, the fastest-moving stars are those that were formed first, and they are found furthest downstream. This provides an interesting testable prediction we can look to see if a similar distribution is visible in Minkowskis Object.Fragile and collaborators plan further refinements to their simulations, but they argue that the success of their model to reproduce observations of Minkowskis Object are very promising. Positive feedback from AGN jets indeed appears to have an important impact on the surrounding environment.CitationP. Chris Fragile et al 2017 ApJ 850 171. doi:10.3847/1538-4357/aa95c6
Dynamical ejections of stars due to an accelerating gas filament
NASA Astrophysics Data System (ADS)
Boekholt, T. C. N.; Stutz, A. M.; Fellhauer, M.; Schleicher, D. R. G.; Matus Carrillo, D. R.
2017-11-01
Observations of the Orion A integral shaped filament (ISF) have shown indications of an oscillatory motion of the gas filament. This evidence is based on both the wave-like morphology of the filament and the kinematics of the gas and stars, where the characteristic velocities of the stars require a dynamical heating mechanism. As proposed by Stutz & Gould, such a heating mechanism (the `Slingshot') may be the result of an oscillating gas filament in a gas-dominated (as opposed to stellar-mass dominated) system. Here we test this hypothesis with the first stellar-dynamical simulations in which the stars are subjected to the influence of an oscillating cylindrical potential. The accelerating, cylindrical background potential is populated with a narrow distribution of stars. By coupling the potential to N-body dynamics, we are able to measure the influence of the potential on the stellar distribution. The simulations provide evidence that the slingshot mechanism can successfully reproduce several stringent observational constraints. These include the stellar spread (both in projected position and in velocity) around the filament, the symmetry in these distributions, and a bulk motion of the stars with respect to the filament. Using simple considerations, we show that star-star interactions are incapable of reproducing these spreads on their own when properly accounting for the gas potential. Thus, properly accounting for the gas potential is essential for understanding the dynamical evolution of star-forming filamentary systems in the era of Gaia (Gaia Collaboration 2016).
How do stars affect ψDM halos?
NASA Astrophysics Data System (ADS)
Chan, James H. H.; Schive, Hsi-Yu; Woo, Tak-Pong; Chiueh, Tzihong
2018-04-01
Wave dark matter (ψDM) predicts a compact soliton core and a granular halo in every galaxy. This work presents the first simulation study of an elliptical galaxy by including both stars and ψDM, focusing on the systematic changes of the central soliton and halo granules. With the addition of stars in the inner halo, we find the soliton core consistently becomes more prominent by absorbing mass from the host halo than that without stars, and the halo granules become "non-isothermal", "hotter" in the inner halo and "cooler" in the outer halo, as opposed to the isothermal halo in pure ψDM cosmological simulations. Moreover, the composite (star+ψDM) mass density is found to follow a r-2 isothermal profile near the half-light radius in most cases. Most striking is the velocity dispersion of halo stars that increases rapidly toward the galactic center by a factor of at least 2 inside the half-light radius caused by the deepened soliton gravitational potential, a result that compares favorably with observations of elliptical galaxies and bulges in spiral galaxies. However in some rare situations we find a phase segregation turning a compact distribution of stars into two distinct populations with high and very low velocity dispersions; while the high-velocity component mostly resides in the halo, the very low-velocity component is bound to the interior of the soliton core, resembling stars in faint dwarf spheroidal galaxies.
NASA Technical Reports Server (NTRS)
Freyer, Tim; Hensler, Gerhard; Yorke, Harold W.
2003-01-01
We present results of numerical simulations carried out with a two-dimensional radiation hydrodynamics code in order to study the impact of massive stars on their surrounding interstellar medium. This first paper deals with the evolution of the circumstellar gas around an isolated 60 M. star. The interaction of the photo- ionized H II region with the stellar wind bubble forms a variety of interesting structures like shells, clouds, fingers, and spokes. These results demonstrate that complex structures found in H II regions are not necessarily relics from the time before the gas became ionized but may result from dynamical processes during the course of the H II region evolution. We have also analyzed the transfer and deposit of the stellar wind and radiation energy into the circumstellar medium until the star explodes as a supernova. Although the total mechanical wind energy supplied by the star is negligible compared to the accumulated energy of the Lyman continuum photons, the kinetic energy imparted to the circumstellar gas over the star s lifetime is 4 times higher than for a comparable windless simulation. Furthermore, the thermal energy of warm photoionized gas is lower by some 55%). Our results document the necessity to consider both ionizing radiation and stellar winds for an appropriate description of the interaction of OB stars with their circumstellar environment.
Are neutron stars crushed? Gravitomagnetic tidal fields as a mechanism for binary-induced collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favata, Marc
Numerical simulations of binary neutron stars by Wilson, Mathews, and Marronetti indicated that neutron stars that are stable in isolation can be made to collapse to black holes when placed in a binary. This claim was surprising as it ran counter to the Newtonian expectation that a neutron star in a binary should be more stable, not less. After correcting an error found by Flanagan, Wilson and Mathews found that the compression of the neutron stars was significantly reduced but not eliminated. This has motivated us to ask the following general question: Under what circumstances can general-relativistic tidal interactions causemore » an otherwise stable neutron star to be compressed? We have found that if a nonrotating neutron star possesses a current-quadrupole moment, interactions with a gravitomagnetic tidal field can lead to a compressive force on the star. If this current quadrupole is induced by the gravitomagnetic tidal field, it is related to the tidal field by an equation-of-state-dependent constant called the gravitomagnetic Love number. This is analogous to the Newtonian Love number that relates the strength of a Newtonian tidal field to the induced mass quadrupole moment of a star. The compressive force is almost never larger than the Newtonian tidal interaction that stabilizes the neutron star against collapse. In the case in which a current quadrupole is already present in the star (perhaps as an artifact of a numerical simulation), the compressive force can exceed the stabilizing one, leading to a net increase in the central density of the star. This increase is small (< or approx. 1%) but could, in principle, cause gravitational collapse in a star that is close to its maximum mass. This paper also reviews the history of the Wilson-Mathews-Marronetti controversy and, in an appendix, extends the discussion of tidally induced changes in the central density to rotating stars.« less
Climbing the Ladder of Star Formation Feedback
NASA Astrophysics Data System (ADS)
Frank, Adam
2012-10-01
While much is understood about isolated star formation, the opposite is true for star formation in clusters of both low and high mass. In particular the mechanisms by which many coevally formed stars affect their parent cloud environment remains poorly characterized. Fundamental questions such as interplay between multiple outflows, ionization fronts and turbulence are just beginning to be fully articulated. Distinguishing between the nature of feedback in clusters of different mass is also critical. In high mass clusters O stars are expected to dominate energetics while in low mass clusters multiple collimated outflows may represent the dominant feedback mechanism. Thus the issue of feedback modalities in clusters of different masses represents one of the major challenges to the next generation of star formation studies. In this proposal we seek to carry forward a focused theoretical study of feedback in both low and high-mass cluster environments with direct connections to observations. Using a state-of-the-art Adaptive Mesh Refinement MHD multi-physics code {developed by our group} we propose two computational studies: {1} multiple, interacting outflows and their role in altering the properties of a parent low mass cluster {2} Poorly collimated outburst/outflows from massive star{s} and their effect on high mass cluster star forming environments. In both cases we will use initial conditions derived from high-resolution AMR MHD simulations of cloud/cluster formation. Synthetic observations derived from the simulations {in a variety of emission lines from ions to atoms to molecules} will allow for direct contact with HST and other star formation databases.
Massive stars, disks, and clustered star formation
NASA Astrophysics Data System (ADS)
Moeckel, Nickolas Barry
The formation of an isolated massive star is inherently more complex than the relatively well-understood collapse of an isolated, low-mass star. The dense, clustered environment where massive stars are predominantly found further complicates the picture, and suggests that interactions with other stars may play an important role in the early life of these objects. In this thesis we present the results of numerical hydrodynamic experiments investigating interactions between a massive protostar and its lower-mass cluster siblings. We explore the impact of these interactions on the orientation of disks and outflows, which are potentially observable indications of encounters during the formation of a star. We show that these encounters efficiently form eccentric binary systems, and in clusters similar to Orion they occur frequently enough to contribute to the high multiplicity of massive stars. We suggest that the massive protostar in Cepheus A is currently undergoing a series of interactions, and present simulations tailored to that system. We also apply the numerical techniques used in the massive star investigations to a much lower-mass regime, the formation of planetary systems around Solar- mass stars. We perform a small number of illustrative planet-planet scattering experiments, which have been used to explain the eccentricity distribution of extrasolar planets. We add the complication of a remnant gas disk, and show that this feature has the potential to stabilize the system against strong encounters between planets. We present preliminary simulations of Bondi-Hoyle accretion onto a protoplanetary disk, and consider the impact of the flow on the disk properties as well as the impact of the disk on the accretion flow.
NASA Astrophysics Data System (ADS)
Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.
2014-11-01
At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.
Post-merger evolution of a neutron star-black hole binary with neutrino transport
NASA Astrophysics Data System (ADS)
Foucart, Francois; O'Connor, Evan; Roberts, Luke; Duez, Matthew D.; Haas, Roland; Kidder, Lawrence E.; Ott, Christian D.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela
2015-06-01
We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated general-relativistic truncated moment formalism for neutrino transport. We describe our implementation of the moment formalism and important tests of our code, before studying the formation phase of an accretion disk after a black hole-neutron star merger. We use as initial data an existing general-relativistic simulation of the merger of a neutron star of mass 1.4 M⊙ with a black hole of mass 7 M⊙ and dimensionless spin χBH=0.8 . Comparing with a simpler leakage scheme for the treatment of the neutrinos, we find noticeable differences in the neutron-to-proton ratio in and around the disk, and in the neutrino luminosity. We find that the electron neutrino luminosity is much lower in the transport simulations, and that both the disk and the disk outflows are less neutron rich. The spatial distribution of the neutrinos is significantly affected by relativistic effects, due to large velocities and curvature in the regions of strongest emission. Over the short time scale evolved, we do not observe purely neutrino-driven outflows. However, a small amount of material (3 ×10-4M⊙ ) is ejected in the polar region during the circularization of the disk. Most of that material is ejected early in the formation of the disk, and is fairly neutron rich (electron fraction Ye˜0.15 - 0.25 ). Through r-process nucleosynthesis, that material should produce high-opacity lanthanides in the polar region, and could thus affect the light curve of radioactively powered electromagnetic transients. We also show that by the end of the simulation, while the bulk of the disk remains neutron rich (Ye˜0.15 - 0.2 and decreasing), its outer layers have a higher electron fraction: 10% of the remaining mass has Ye>0.3 . As that material would be the first to be unbound by disk outflows on longer time scales, and as composition evolution is slower at later times, the changes in Ye experienced during the formation phase of the disk could have an impact on nucleosynthesis outputs from neutrino-driven and viscously driven outflows. Finally, we find that the effective viscosity due to momentum transport by neutrinos is unlikely to have a strong effect on the growth of the magnetorotational instability in the post-merger accretion disk.
A triangle voting algorithm based on double feature constraints for star sensors
NASA Astrophysics Data System (ADS)
Fan, Qiaoyun; Zhong, Xuyang
2018-02-01
A novel autonomous star identification algorithm is presented in this study. In the proposed algorithm, each sensor star constructs multi-triangle with its bright neighbor stars and obtains its candidates by triangle voting process, in which the triangle is considered as the basic voting element. In order to accelerate the speed of this algorithm and reduce the required memory for star database, feature extraction is carried out to reduce the dimension of triangles and each triangle is described by its base and height. During the identification period, the voting scheme based on double feature constraints is proposed to implement triangle voting. This scheme guarantees that only the catalog star satisfying two features can vote for the sensor star, which improves the robustness towards false stars. The simulation and real star image test demonstrate that compared with the other two algorithms, the proposed algorithm is more robust towards position noise, magnitude noise and false stars.
Blurred Star Image Processing for Star Sensors under Dynamic Conditions
Zhang, Weina; Quan, Wei; Guo, Lei
2012-01-01
The precision of star point location is significant to identify the star map and to acquire the aircraft attitude for star sensors. Under dynamic conditions, star images are not only corrupted by various noises, but also blurred due to the angular rate of the star sensor. According to different angular rates under dynamic conditions, a novel method is proposed in this article, which includes a denoising method based on adaptive wavelet threshold and a restoration method based on the large angular rate. The adaptive threshold is adopted for denoising the star image when the angular rate is in the dynamic range. Then, the mathematical model of motion blur is deduced so as to restore the blurred star map due to large angular rate. Simulation results validate the effectiveness of the proposed method, which is suitable for blurred star image processing and practical for attitude determination of satellites under dynamic conditions. PMID:22778666
Secular Stellar Dynamics near a Massive Black Hole
NASA Astrophysics Data System (ADS)
Madigan, Ann-Marie; Hopman, Clovis; Levin, Yuri
2011-09-01
The angular momentum evolution of stars close to massive black holes (MBHs) is driven by secular torques. In contrast to two-body relaxation, where interactions between stars are incoherent, the resulting resonant relaxation (RR) process is characterized by coherence times of hundreds of orbital periods. In this paper, we show that all the statistical properties of RR can be reproduced in an autoregressive moving average (ARMA) model. We use the ARMA model, calibrated with extensive N-body simulations, to analyze the long-term evolution of stellar systems around MBHs with Monte Carlo simulations. We show that for a single-mass system in steady state, a depression is carved out near an MBH as a result of tidal disruptions. Using Galactic center parameters, the extent of the depression is about 0.1 pc, of similar order to but less than the size of the observed "hole" in the distribution of bright late-type stars. We also find that the velocity vectors of stars around an MBH are locally not isotropic. In a second application, we evolve the highly eccentric orbits that result from the tidal disruption of binary stars, which are considered to be plausible precursors of the "S-stars" in the Galactic center. We find that RR predicts more highly eccentric (e > 0.9) S-star orbits than have been observed to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain
2017-06-01
Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in themore » largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.« less
NASA Astrophysics Data System (ADS)
Parkin, E. R.; Pittard, J. M.; Corcoran, M. F.; Hamaguchi, K.
2011-01-01
Three-dimensional adaptive mesh refinement hydrodynamical simulations of the wind-wind collision between the enigmatic supermassive star η Car and its mysterious companion star are presented which include radiative driving of the stellar winds, gravity, optically thin radiative cooling, and orbital motion. Simulations with static stars with a periastron passage separation reveal that the preshock companion star's wind speed is sufficiently reduced so that radiative cooling in the postshock gas becomes important, permitting the runaway growth of nonlinear thin-shell instabilities (NTSIs) which massively distort the wind-wind collision region (WCR). However, large-scale simulations, which include the orbital motion of the stars, show that orbital motion reduces the impact of radiative inhibition and thus increases the acquired preshock velocities. As such, the postshock gas temperature and cooling time see a commensurate increase, and sufficient gas pressure is preserved to stabilize the WCR against catastrophic instability growth. We then compute synthetic X-ray spectra and light curves and find that, compared to previous models, the X-ray spectra agree much better with XMM-Newton observations just prior to periastron. The narrow width of the 2009 X-ray minimum can also be reproduced. However, the models fail to reproduce the extended X-ray minimum from previous cycles. We conclude that the key to explaining the extended X-ray minimum is the rate of cooling of the companion star's postshock wind. If cooling is rapid then powerful NTSIs will heavily disrupt the WCR. Radiative inhibition of the companion star's preshock wind, albeit with a stronger radiation-wind coupling than explored in this work, could be an effective trigger.
The radial velocity technique and the discovery of exoplanets as seen by high school students.
NASA Astrophysics Data System (ADS)
Alves, Mauro; Gusev, Anatoly; Pugacheva, Galina; Martin, Inacio; Lyra, Cassia
2012-07-01
Presently, the existence of more than 750 exoplanets has been confirmed. The radial velocity technique has proven to be the most effective means to detect planets orbiting other stars. In this technique, which is based on the Doppler effect, the observation of the displacement of spectral lines is used to infer the presence of exoplanets orbiting distant stars. Despite the apparent complexity of this technique, high-school students not only can understand its basic principles, but also create simple programs and software to represent and simulate changes in the radial velocity of a star. Thus, as an extracurricular activity, high-school students developed a simple computer program using the C programming language to simulate the influence of a planet orbiting a star in order to obtain radial velocity curves. The radial velocity curve depends on the masses of the star and planet, and orbital parameters such as orbital period, semi-major axis, eccentricity, inclination, argument of periapsis, longitude of the ascending node and mean anomaly. The software allows the variation of these parameters so that the influence of any planet (or system of planets) in orbit of a star can be simulated and the corresponding changes in the radial velocity be observed. For comparison purposes, the radial velocity curve of the Sun under the influence of Jupiter and Saturn are compared with the radial velocity curves of other stars with known exoplanets. This activity became a multidisciplinary study of an interesting physical phenomenon. To obtain the desired results, the students had to learn new concepts and use different tools, which was very rewarding to them.
NASA Astrophysics Data System (ADS)
Do, T.; Lu, J. R.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Martinez, G. D.; Wright, S. A.; Matthews, K.
2013-02-01
We present new high angular resolution near-infrared spectroscopic observations of the nuclear star cluster surrounding the Milky Way's central supermassive black hole. Using the integral-field spectrograph OSIRIS on Keck II behind the laser-guide-star adaptive optics system, this spectroscopic survey enables us to separate early-type (young, 4-6 Myr) and late-type (old, >1 Gyr) stars with a completeness of 50% down to K' = 15.5 mag, which corresponds to ~10 M ⊙ for the early-type stars. This work increases the radial extent of reported OSIRIS/Keck measurements by more than a factor of three from 4'' to 14'' (0.16 to 0.56 pc), along the projected disk of young stars. For our analysis, we implement a new method of completeness correction using a combination of star-planting simulations and Bayesian inference. We assign probabilities for the spectral type of every source detected in deep imaging down to K' = 15.5 mag using information from spectra, simulations, number counts, and the distribution of stars. The inferred radial surface-density profiles, Σ(R)vpropR -Γ, for the young stars and late-type giants are consistent with earlier results (Γearly = 0.93 ± 0.09, Γlate = 0.16 ± 0.07). The late-type surface-density profile is approximately flat out to the edge of the survey. While the late-type stellar luminosity function is consistent with the Galactic bulge, the completeness-corrected luminosity function of the early-type stars has significantly more young stars at faint magnitudes compared with previous surveys with similar depth. This luminosity function indicates that the corresponding mass function of the young stars is likely less top-heavy than that inferred from previous surveys.
Optimizing exoplanet transit searches around low-mass stars with inclination constraints
NASA Astrophysics Data System (ADS)
Herrero, E.; Ribas, I.; Jordi, C.; Guinan, E. F.; Engle, S. G.
2012-01-01
Aims: We investigate a method to increase the efficiency of a targeted exoplanet search with the transit technique by preselecting a subset of candidates from large catalogs of stars. Assuming spin-orbit alignment, this can be achieved by considering stars that have a higher probability to be oriented nearly equator-on (inclination close to 90°). Methods: We used activity-rotation velocity relations for low-mass stars with a convective envelope to study the dependence of the position in the activity-vsini diagram on the stellar axis inclination. We composed a catalog of G-, K-, M-type main-sequence simulated stars using isochrones, an isotropic inclination distribution and empirical relations to obtain their rotation periods and activity indexes. Then the activity-vsini diagram was completed and statistics were applied to trace the areas containing the higher ratio of stars with inclinations above 80°. A similar statistics was applied to stars from real catalogs with log(R'HK) and vsini data to find their probability of being oriented equator-on. Results: We present our method to generate the simulated star catalog and the subsequent statistics to find the highly inclined stars from real catalogs using the activity-vsini diagram. Several catalogs from the literature are analyzed and a subsample of stars with the highest probability of being equator-on is presented. Conclusions: Assuming spin-orbit alignment, the efficiency of an exoplanet transit search in the resulting subsample of probably highly inclined stars is estimated to be two to three times higher than with a general search without preselection. Table 4 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/537/A147
NASA Astrophysics Data System (ADS)
Queiroz, A. B. A.; Anders, F.; Santiago, B. X.; Chiappini, C.; Steinmetz, M.; Dal Ponte, M.; Stassun, K. G.; da Costa, L. N.; Maia, M. A. G.; Crestani, J.; Beers, T. C.; Fernández-Trincado, J. G.; García-Hernández, D. A.; Roman-Lopes, A.; Zamora, O.
2018-05-01
Understanding the formation and evolution of our Galaxy requires accurate distances, ages, and chemistry for large populations of field stars. Here, we present several updates to our spectrophotometric distance code, which can now also be used to estimate ages, masses, and extinctions for individual stars. Given a set of measured spectrophotometric parameters, we calculate the posterior probability distribution over a given grid of stellar evolutionary models, using flexible Galactic stellar-population priors. The code (called StarHorse) can accommodate different observational data sets, prior options, partially missing data, and the inclusion of parallax information into the estimated probabilities. We validate the code using a variety of simulated stars as well as real stars with parameters determined from asteroseismology, eclipsing binaries, and isochrone fits to star clusters. Our main goal in this validation process is to test the applicability of the code to field stars with known Gaia-like parallaxes. The typical internal precisions (obtained from realistic simulations of an APOGEE+Gaia-like sample) are {˜eq } 8 {per cent} in distance, {˜eq } 20 {per cent} in age, {˜eq } 6 {per cent} in mass, and ≃ 0.04 mag in AV. The median external precision (derived from comparisons with earlier work for real stars) varies with the sample used, but lies in the range of {˜eq } [0,2] {per cent} for distances, {˜eq } [12,31] {per cent} for ages, {˜eq } [4,12] {per cent} for masses, and ≃ 0.07 mag for AV. We provide StarHorse distances and extinctions for the APOGEE DR14, RAVE DR5, GES DR3, and GALAH DR1 catalogues.
The bright-star masks for the HSC-SSP survey
NASA Astrophysics Data System (ADS)
Coupon, Jean; Czakon, Nicole; Bosch, James; Komiyama, Yutaka; Medezinski, Elinor; Miyazaki, Satoshi; Oguri, Masamune
2018-01-01
We present the procedure to build and validate the bright-star masks for the Hyper-Suprime-Cam Strategic Subaru Proposal (HSC-SSP) survey. To identify and mask the saturated stars in the full HSC-SSP footprint, we rely on the Gaia and Tycho-2 star catalogues. We first assemble a pure star catalogue down to GGaia < 18 after removing ˜1.5% of sources that appear extended in the Sloan Digital Sky Survey (SDSS). We perform visual inspection on the early data from the S16A internal release of HSC-SSP, finding that our star catalogue is 99.2% pure down to GGaia < 18. Second, we build the mask regions in an automated way using stacked detected source measurements around bright stars binned per GGaia magnitude. Finally, we validate those masks by visual inspection and comparison with the literature of galaxy number counts and angular two-point correlation functions. This version (Arcturus) supersedes the previous version (Sirius) used in the S16A internal and DR1 public releases. We publicly release the full masks and tools to flag objects in the entire footprint of the planned HSC-SSP observations at "ftp://obsftp.unige.ch/pub/coupon/brightStarMasks/HSC-SSP/".
Full Ionisation In Binary-Binary Encounters With Small Positive Energies
NASA Astrophysics Data System (ADS)
Sweatman, W. L.
2006-08-01
Interactions between binary stars and single stars and binary stars and other binary stars play a key role in the dynamics of a dense stellar system. Energy can be transferred between the internal dynamics of a binary and the larger scale dynamics of the interacting objects. Binaries can be destroyed and created by the interaction. In a binary-binary encounter, full ionisation occurs when both of the binary stars are destroyed in the interaction to create four single stars. This is only possible when the total energy of the system is positive. For very small energies the probability of this occurring is very low and it tends towards zero as the total energy tends towards zero. Here the case is considered for which all the stars have equal masses. An asymptotic power law is predicted relating the probability of full ionisation with the total energy when this latter quantity is small. The exponent, which is approximately 2.31, is compared with the results from numerical scattering experiments. The theoretical approach taken is similar to one used previously in the three-body problem. It makes use of the fact that the most dramatic changes in scale and energies of a few-body system occur when its components pass near to a central configuration. The position, and number, of these configurations is not known for the general four-body problem, however, with equal masses there are known to be exactly five different cases. Separate consideration and comparison of the properties of orbits close to each of these five central configurations enables the prediction of the form of the cross-section for full ionisation for the case of small positive total energy. This is the relation between total energy and the probability of total ionisation described above.
Star-Forming Clouds Feed, Churn, and Fall
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
Molecular clouds, the birthplaces of stars in galaxies throughout the universe, are complicated and dynamic environments. A new series of simulations has explored how these clouds form, grow, and collapse over their lifetimes.This composite image shows part of the Taurus Molecular Cloud. [ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey]Stellar BirthplacesMolecular clouds form out of the matter in between stars, evolving through constant interactions with their turbulent environments. These interactions taking the form of accretion flows and surface forces, while gravity, turbulence, and magnetic fields interplay are thought to drive the properties and evolution of the clouds.Our understanding of the details of this process, however, remains fuzzy. How does mass accretion affect these clouds as they evolve? What happens when nearby supernova explosions blast the outsides of the clouds? What makes the clouds churn, producing the motion within them that prevents them from collapsing? The answers to these questions can tellus about the gas distributed throughout galaxies, revealing information about the environments in which stars form.A still from the simulation results showing the broader population of molecular clouds that formed in the authors simulations, as well as zoom-in panels of three low-mass clouds tracked in high resolution. [Ibez-Meja et al. 2017]Models of TurbulenceIn a new study led by Juan Ibez-Meja (MPI Garching and Universities of Heidelberg and Cologne in Germany, and American Museum of Natural History), scientists have now explored these questions using a series of three-dimensional simulations of a population of molecular clouds forming and evolving in the turbulent interstellar medium.The simulations take into account a whole host of physics, including the effects of nearby supernova explosions, self-gravitation, magnetic fields, diffuse heating, and radiative cooling. After looking at the behavior of the broader population of clouds, the authors zoom in and explore three clouds in high-resolution to learn more about the details.Watching Clouds EvolveIbez-Meja and collaborators find that mass accretion occurring after the molecular clouds form plays an important role in the clouds evolution, increasing the mass available to form stars and carrying kinetic energy into the cloud. The accretion process is driven both by background turbulent flows and gravitational attraction as the cloud draws in the gas in its nearby environment.Plots of the cloud mass and radius (top) and mass accretion rate (bottom) for one of the three zoomed-in clouds, shown as a function of time over the 10-Myr simulation. [Adapted from Ibez-Meja et al. 2017]The simulations show that nearby supernovae have two opposing effects on a cloud. On one hand, the blast waves from supernovae compress the envelope of the cloud, increasing the instantaneous rate of accretion. On the other hand, the blast waves disrupt parts of the envelope and erode mass from the clouds surface, decreasing accretion overall. These events ensure that the mass accretion rate of molecular clouds is non-uniform, regularly punctuated by sporadic increases and decreases as the clouds are battered by nearby explosions.Lastly, Ibez-Meja and collaborators show that mass accretion alone isnt enough to power the turbulent internal motions we observe inside molecular clouds. Instead, they conclude, the cloud motions must be primarily powered by gravitational potential energy being converted into kinetic energy as the cloud contracts.The authors simulations therefore show that molecular clouds exist in a state of precarious balance, prevented from collapsing by internal turbulence driven by interactions with their environment and by their own contraction. These results give us an intriguing glimpse into the complex environments in which stars are born.BonusCheck out the animated figure below, which displays how the clouds in the authors simulations evolve over the span of 10 million years.http://cdn.iopscience.com/images/0004-637X/850/1/62/Full/apjaa93fef1_video.mp4CitationJuan C. Ibez-Meja et al 2017 ApJ 850 62. doi:10.3847/1538-4357/aa93fe
Revisiting The First Galaxies: The epoch of Population III stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratov, Alexander L.; Gnedin, Oleg Y.; Gnedin, Nickolay Y.
2013-07-19
We investigate the transition from primordial Population III (Pop III) star formation to normal Pop II star formation in the first galaxies using new cosmological hydrodynamic simulations. We find that while the first stars seed their host galaxies with metals, they cannot sustain significant outflows to enrich the intergalactic medium, even assuming a top-heavy initial mass function. This means that Pop III star formation could potentially continue until z 6 in different unenriched regions of the universe, before being ultimately shut off by cosmic reionization. Within an individual galaxy, the metal production and stellar feedback from Pop II stars overtake Pop III stars inmore » 20-200 Myr, depending on galaxy mass.« less
Gravitational lensing of a star by a rotating black hole
NASA Astrophysics Data System (ADS)
Dokuchaev, V. I.; Nazarova, N. O.
2017-11-01
The gravitational lensing of a finite star moving around a rotating Kerr black hole has been numerically simulated. Calculations for the direct image of the star and for the first and second light echoes have been performed for the star moving with an orbital period of 3.22 h around the supermassive black hole SgrA* at the center of the Galaxy. The time dependences for the observed position of the star on the celestial sphere, radiation flux from the star, frequency of detected radiation, and major and minor semiaxes of the lensed image of the star have been calculated and plotted. The detailed observation of such lensing requires a space interferometer such as the Russian Millimetron project.
Resolution convergence in cosmological hydrodynamical simulations using adaptive mesh refinement
NASA Astrophysics Data System (ADS)
Snaith, Owain N.; Park, Changbom; Kim, Juhan; Rosdahl, Joakim
2018-06-01
We have explored the evolution of gas distributions from cosmological simulations carried out using the RAMSES adaptive mesh refinement (AMR) code, to explore the effects of resolution on cosmological hydrodynamical simulations. It is vital to understand the effect of both the resolution of initial conditions (ICs) and the final resolution of the simulation. Lower initial resolution simulations tend to produce smaller numbers of low-mass structures. This will strongly affect the assembly history of objects, and has the same effect of simulating different cosmologies. The resolution of ICs is an important factor in simulations, even with a fixed maximum spatial resolution. The power spectrum of gas in simulations using AMR diverges strongly from the fixed grid approach - with more power on small scales in the AMR simulations - even at fixed physical resolution and also produces offsets in the star formation at specific epochs. This is because before certain times the upper grid levels are held back to maintain approximately fixed physical resolution, and to mimic the natural evolution of dark matter only simulations. Although the impact of hold-back falls with increasing spatial and IC resolutions, the offsets in the star formation remain down to a spatial resolution of 1 kpc. These offsets are of the order of 10-20 per cent, which is below the uncertainty in the implemented physics but are expected to affect the detailed properties of galaxies. We have implemented a new grid-hold-back approach to minimize the impact of hold-back on the star formation rate.
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.; Cox, Thomas J.; Hernquist, Lars; Narayanan, Desika; Hayward, Christopher C.; Murray, Norman
2013-04-01
We use hydrodynamic simulations with detailed, explicit models for stellar feedback to study galaxy mergers. These high-resolution (˜1 pc) simulations follow the formation and destruction of individual giant molecular clouds (GMC) and star clusters. We find that the final starburst is dominated by in situ star formation, fuelled by gas which flows inwards due to global torques. The resulting high gas density results in rapid star formation. The gas is self-gravitating, and forms massive (≲1010 M⊙) GMC and subsequently super star clusters (with masses up to 108 M⊙). However, in contrast to some recent simulations, the bulk of new stars which eventually form the central bulge are not born in super-clusters which then sink to the centre of the galaxy. This is because feedback efficiently disperses GMC after they turn several per cent of their mass into stars. In other words, most of the mass that reaches the nucleus does so in the form of gas. The Kennicutt-Schmidt law emerges naturally as a consequence of feedback balancing gravitational collapse, independent of the small-scale star formation microphysics. The same mechanisms that drive this relation in isolated galaxies, in particular radiation pressure from infrared photons, extend, with no fine-tuning, over seven decades in star formation rate (SFR) to regulate star formation in the most extreme starburst systems with densities ≳104 M⊙ pc-2. This feedback also drives super-winds with large mass-loss rates; however, a significant fraction of the wind material falls back on to the discs at later times, leading to higher post-starburst SFRs in the presence of stellar feedback. This suggests that strong active galactic nucleus feedback may be required to explain the sharp cut-offs in SFR that are observed in post-merger galaxies. We compare the results to those from simulations with no explicit resolution of GMC or feedback [`effective equation-of-state' (EOS) models]. We find that global galaxy properties are similar between EOS and resolved-feedback models. The relic structure and mass profile, and the total mass of stars formed in the nuclear starburst are quite similar, as is the morphological structure during and after mergers (tails, bridges, etc.). Disc survival in sufficiently gas rich mergers is similar in the two cases, and the new models follow the same scalings as derived for the efficiency of disc re-formation after a merger as derived from previous work with the simplified EOS models. While the global galaxy properties are similar between EOS and feedback models, subgalaxy-scale properties and the SFRs can be quite different: the more detailed models exhibit significantly higher star formation in tails and bridges (especially in shocks), and allow us to resolve the formation of super star clusters. In the new models, the star formation is more strongly time-variable and drops more sharply between close passages. The instantaneous burst enhancement can be higher or lower, depending on the details of the orbit and initial structural properties of the galaxies; first-passage bursts are more sensitive to these details than those at the final coalescence.
NASA Astrophysics Data System (ADS)
Baraffe, I.; Pratt, J.; Goffrey, T.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.; Viallet, M.
2017-08-01
We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a young low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ˜50 Myr to ˜4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baraffe, I.; Pratt, J.; Goffrey, T.
We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a youngmore » low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ∼50 Myr to ∼4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.« less
Unveiling the Role of Galactic Rotation on Star Formation
NASA Astrophysics Data System (ADS)
Utreras, José; Becerra, Fernando; Escala, Andrés
2016-12-01
We study the star formation process at galactic scales and the role of rotation through numerical simulations of spiral and starburst galaxies using the adaptive mesh refinement code Enzo. We focus on the study of three integrated star formation laws found in the literature: the Kennicutt-Schmidt (KS) and Silk-Elmegreen (SE) laws, and the dimensionally homogeneous equation proposed by Escala {{{Σ }}}{SFR}\\propto \\sqrt{G/L}{{{Σ }}}{gas}1.5. We show that using the last we take into account the effects of the integration along the line of sight and find a unique regime of star formation for both types of galaxies, suppressing the observed bi-modality of the KS law. We find that the efficiencies displayed by our simulations are anti-correlated with the angular velocity of the disk Ω for the three laws studied in this work. Finally, we show that the dimensionless efficiency of star formation is well represented by an exponentially decreasing function of -1.9{{Ω }}{t}{ff}{ini}, where {t}{ff}{ini} is the initial free-fall time. This leads to a unique galactic star formation relation which reduces the scatter of the bi-modal KS, SE, and Escala relations by 43%, 43%, and 35%, respectively.
STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph
2015-03-01
Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatlymore » suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.« less
Star Clusters in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Gallagher, J. S., III
2014-09-01
The Magellanic Clouds (MC) are prime locations for studies of star clusters covering a full range in age and mass. This contribution briefly reviews selected properties of Magellanic star clusters, by focusing first on young systems that show evidence for hierarchical star formation. The structures and chemical abundance patterns of older intermediate age star clusters in the Small Magellanic Cloud (SMC) are a second topic. These suggest a complex history has affected the chemical enrichment in the SMC and that low tidal stresses in the SMC foster star cluster survival.
NASA Astrophysics Data System (ADS)
Kumar, Prayush; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Brown, Duncan A.; Lovelace, Geoffrey; Scheel, Mark A.; Szilágyi, Béla
2015-11-01
Coalescing binaries of neutron stars and black holes are one of the most important sources of gravitational waves for the upcoming network of ground-based detectors. Detection and extraction of astrophysical information from gravitational-wave signals requires accurate waveform models. The effective-one-body and other phenomenological models interpolate between analytic results and numerical relativity simulations, that typically span O (10 ) orbits before coalescence. In this paper we study the faithfulness of these models for neutron star-black hole binaries. We investigate their accuracy using new numerical relativity (NR) simulations that span 36-88 orbits, with mass ratios q and black hole spins χBH of (q ,χBH)=(7 ,±0.4 ),(7 ,±0.6 ) , and (5 ,-0.9 ). These simulations were performed treating the neutron star as a low-mass black hole, ignoring its matter effects. We find that (i) the recently published SEOBNRv1 and SEOBNRv2 models of the effective-one-body family disagree with each other (mismatches of a few percent) for black hole spins χBH≥0.5 or χBH≤-0.3 , with waveform mismatch accumulating during early inspiral; (ii) comparison with numerical waveforms indicates that this disagreement is due to phasing errors of SEOBNRv1, with SEOBNRv2 in good agreement with all of our simulations; (iii) phenomenological waveforms agree with SEOBNRv2 only for comparable-mass low-spin binaries, with overlaps below 0.7 elsewhere in the neutron star-black hole binary parameter space; (iv) comparison with numerical waveforms shows that most of this model's dephasing accumulates near the frequency interval where it switches to a phenomenological phasing prescription; and finally (v) both SEOBNR and post-Newtonian models are effectual for neutron star-black hole systems, but post-Newtonian waveforms will give a significant bias in parameter recovery. Our results suggest that future gravitational-wave detection searches and parameter estimation efforts would benefit from using SEOBNRv2 waveform templates when focused on neutron star-black hole systems with q ≲7 and χBH≈[-0.9 ,+0.6 ] . For larger black hole spins and/or binary mass ratios, we recommend the models be further investigated as NR simulations in that region of the parameter space become available.
Linear-algebraic bath transformation for simulating complex open quantum systems
Huh, Joonsuk; Mostame, Sarah; Fujita, Takatoshi; ...
2014-12-02
In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly coupled multiple parallelmore » chains. Furthermore, the transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics.« less
Particle tagging and its implications for stellar population dynamics
NASA Astrophysics Data System (ADS)
Le Bret, Theo; Pontzen, Andrew; Cooper, Andrew P.; Frenk, Carlos; Zolotov, Adi; Brooks, Alyson M.; Governato, Fabio; Parry, Owen H.
2017-07-01
We establish a controlled comparison between the properties of galactic stellar haloes obtained with hydrodynamical simulations and with 'particle tagging'. Tagging is a fast way to obtain stellar population dynamics: instead of tracking gas and star formation, it 'paints' stars directly on to a suitably defined subset of dark matter particles in a collisionless, dark-matter-only simulation. Our study shows that 'live' particle tagging schemes, where stellar masses are painted on to the dark matter particles dynamically throughout the simulation, can generate good fits to the hydrodynamical stellar density profiles of a central Milky Way-like galaxy and its most prominent substructure. Energy diffusion processes are crucial to reshaping the distribution of stars in infalling spheroidal systems and hence the final stellar halo. We conclude that the success of any particular tagging scheme hinges on this diffusion being taken into account, and discuss the role of different subgrid feedback prescriptions in driving this diffusion.
Diffusion in Coulomb crystals.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2011-07-01
Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.
Hydrodynamical simulations of Pinwheel nebula WR 104
NASA Astrophysics Data System (ADS)
Lamberts, A.; Fromang, S.; Dubus, G.
2010-12-01
The interaction of stellar winds from two companion stars leads to the formation of a shocked structure. Several analytic solutions have been developped to model this phenomenon. We compare our 2D and 3D hydrodynamical simulations to these results and highlight their shortcomings. Analytic solutions do not take orbital motion into account although this drastically changes the structure at large distances, turning it into a spiral. This is observed in Pinwheel Nebulae, binaries composed of a Wolf-Rayet star and an early-type star. Their infrared emission is due to dust whose origin is stil poorly constrained. We perform large scale 2D simulations of one particular system, WR 104. Including the orbital motion, we follow the flow up to a few steps of the spiral. This is made possible using adaptive mesh refinement. We determine the properties of the gas in the winds and confirm the flow in the spiral has a ballistic motion.
NASA Astrophysics Data System (ADS)
Ostriker, Eve
Current studies of star and galaxy formation have concluded that energetic feedback from young stars and supernovae (SNe) is crucial, both for controlling observed interstellar medium (ISM) properties and star formation rates in the Milky Way and other galaxies, and for driving galactic winds that govern the baryon abundance in dark matter halos. However, in many numerical studies of the ISM, energy inputs have not been implemented self-consistently with the evolving rate of gravitational collapse to make stars, or have considered only isolated star-forming clouds without a realistic galactic environment (including sheared rotation and externally-originating SNe), or have not directly incorporated radiation, magnetic, and chemical effects that are important or even dominant. In models of galaxy formation and evolution in the cosmic context, galactic winds are indispensable but highly uncertain as the physics of superbubble evolution and radiation-gas interactions cannot be resolved. Our central objectives are (1) to address the above limitations of current models, developing self-consistent simulations of the multiphase ISM in disk galaxies that resolve both star formation and stellar feedback, covering the range of scales needed to connect star cluster formation to galactic superwind ejection, and the range of environments from dwarfs to ULIRGs; and (2) to analyze the detailed properties of the gas, magnetic field, radiation field, and star formation/SNe in our simulations, including dependencies on local galactic disk environment, and to connect intrinsic properties with observable diagnostics. The proposed project will employ the Athena code for numerical magneto-hydrodynamic (MHD) and radiation-hydrodynamic (RHD) simulations, using comprehensive physics modules that have been developed, tested, and demonstrated in sample simulations. We will consider local ``shearing box'' disk models with gas surface density Sigma = 2 - 10,000 Msun/pc^2, and a range of stellar potentials and galactic rotation rates. Our simulations follow all thermal phases of the gas, the driving of turbulence, and the expulsion of material in high-velocity galactic winds as well as the circulation of lowervelocity material in galactic ``fountains.'' We resolve gravitational collapse and apply stellar population modeling to determine radiation emitted by star cluster particles, and both in situ and runaway O-star SN events. With time-dependent chemistry, we will be able to follow C+/C/CO transitions and assess the relationship between the observed molecular component and self-gravitating or diffuse clouds in varying galactic environments, also determining how cloud properties (e.g. distributions of mass, size, virial parameter, internal/external pressure, magnetization) and lifetimes depend on environment. We will also investigate the dependence on local galactic environment of: * mass and volume fractions, and turbulent and magnetic state, of each thermal and chemical ISM phase * star formation rate, and galactic wind mass loss rate in each ISM phase * metrics of ISM energy gain/loss, large-scale force balance, wind acceleration * roles of SN and radiation feedback in setting cloud SFEs, overall SFRs, and wind massloss rates Our models will be valuable for interpreting a wide range of observations with Chandra, Hubble, Spitzer, Herschel, Planck, and ground-based telescopes. Obtaining self-consistent solutions for the dynamical, thermal, magnetic, chemical, and radiative state of the star-forming ISM is a long-sought goal of galactic theory. Understanding why ISM and star formation properties vary among and within galaxies is essential for interpreting new multiwavelength extragalactic surveys. Connecting galactic winds to star formation via resolved physical mechanisms will provide a missing link in contemporary galaxy formation models. With our planned research program, we are in a position to achieve all of these advances.
MERGER SIGNATURES IN THE DYNAMICS OF STAR-FORMING GAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, Chao-Ling; Sanders, D. B.; Hayward, Christopher C.
2016-01-10
The recent advent of integral field spectrographs and millimeter interferometers has revealed the internal dynamics of many hundreds of star-forming galaxies. Spatially resolved kinematics have been used to determine the dynamical status of star-forming galaxies with ambiguous morphologies, and constrain the importance of galaxy interactions during the assembly of galaxies. However, measuring the importance of interactions or galaxy merger rates requires knowledge of the systematics in kinematic diagnostics and the visible time with merger indicators. We analyze the dynamics of star-forming gas in a set of binary merger hydrodynamic simulations with stellar mass ratios of 1:1 and 1:4. We findmore » that the evolution of kinematic asymmetries traced by star-forming gas mirrors morphological asymmetries derived from mock optical images, in which both merger indicators show the largest deviation from isolated disks during strong interaction phases. Based on a series of simulations with various initial disk orientations, orbital parameters, gas fractions, and mass ratios, we find that the merger signatures are visible for ∼0.2–0.4 Gyr with kinematic merger indicators but can be approximately twice as long for equal-mass mergers of massive gas-rich disk galaxies designed to be analogs of z ∼ 2–3 submillimeter galaxies. Merger signatures are most apparent after the second passage and before the black holes coalescence, but in some cases they persist up to several hundred Myr after coalescence. About 20%–60% of the simulated galaxies are not identified as mergers during the strong interaction phase, implying that galaxies undergoing violent merging process do not necessarily exhibit highly asymmetric kinematics in their star-forming gas. The lack of identifiable merger signatures in this population can lead to an underestimation of merger abundances in star-forming galaxies, and including them in samples of star-forming disks may bias the measurements of disk properties such as intrinsic velocity dispersion.« less
Samson, Pamela; Keogan, Kathleen; Crabtree, Traves; Colditz, Graham; Broderick, Stephen; Puri, Varun; Meyers, Bryan
2017-01-01
To identify the variability of short- and long-term survival outcomes among closed Phase III randomized controlled trials with small sample sizes comparing SBRT (stereotactic body radiation therapy) and surgical resection in operable clinical Stage I non-small cell lung cancer (NSCLC) patients. Clinical Stage I NSCLC patients who underwent surgery at our institution meeting the inclusion/exclusion criteria for STARS (Randomized Study to Compare CyberKnife to Surgical Resection in Stage I Non-small Cell Lung Cancer), ROSEL (Trial of Either Surgery or Stereotactic Radiotherapy for Early Stage (IA) Lung Cancer), or both were identified. Bootstrapping analysis provided 10,000 iterations to depict 30-day mortality and three-year overall survival (OS) in cohorts of 16 patients (to simulate the STARS surgical arm), 27 patients (to simulate the pooled surgical arms of STARS and ROSEL), and 515 (to simulate the goal accrual for the surgical arm of STARS). From 2000 to 2012, 749/873 (86%) of clinical Stage I NSCLC patients who underwent resection were eligible for STARS only, ROSEL only, or both studies. When patients eligible for STARS only were repeatedly sampled with a cohort size of 16, the 3-year OS rates ranged from 27 to 100%, and 30-day mortality varied from 0 to 25%. When patients eligible for ROSEL or for both STARS and ROSEL underwent bootstrapping with n=27, the 3-year OS ranged from 46 to 100%, while 30-day mortality varied from 0 to 15%. Finally, when patients eligible for STARS were repeatedly sampled in groups of 515, 3-year OS narrowed to 70-85%, with 30-day mortality varying from 0 to 4%. Short- and long-term survival outcomes from trials with small sample sizes are extremely variable and unreliable for extrapolation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
GLOBAL NON-SPHERICAL OSCILLATIONS IN THREE-DIMENSIONAL 4π SIMULATIONS OF THE H-INGESTION FLASH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herwig, Falk; Woodward, Paul R.; Lin, Pei-Hung
2014-09-01
We performed three-dimensional simulations of proton-rich material entrainment into {sup 12}C-rich He-shell flash convection and the subsequent H-ingestion flash that took place in the post-asymptotic giant branch star Sakurai's object. Observations of the transient nature and anomalous abundance features are available to validate our method and assumptions, with the aim of applying them to very low-metallicity stars in the future. We include nuclear energy feedback from H burning and cover the full 4π geometry of the shell. Runs on 768{sup 3} and 1536{sup 3} grids agree well with each other and have been followed for 1500 minutes and 1200 minutes.more » After an 850 minute long quiescent entrainment phase, the simulations enter into a global non-spherical oscillation that is launched and sustained by individual ignition events of H-rich fluid pockets. Fast circumferential flows collide at the antipode and cause the formation and localized ignition of the next H-overabundant pocket. The cycle repeats for more than a dozen times while its amplitude decreases. During the global oscillation, the entrainment rate increases temporarily by a factor of ≈100. Entrained entropy quenches convective motions in the upper layer until the burning of entrained H establishes a separate convection zone. The lower-resolution run hints at the possibility that another global oscillation, perhaps even more violent, will follow. The location of the H-burning convection zone agrees with a one-dimensional model in which the mixing efficiency is calibrated to reproduce the light curve. The simulations have been performed at the NSF Blue Waters supercomputer at NCSA.« less
Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations.
Strugarek, A; Beaudoin, P; Charbonneau, P; Brun, A S; do Nascimento, J-D
2017-07-14
The magnetic fields of solar-type stars are observed to cycle over decadal periods-11 years in the case of the Sun. The fields originate in the turbulent convective layers of stars and have a complex dependency upon stellar rotation rate. We have performed a set of turbulent global simulations that exhibit magnetic cycles varying systematically with stellar rotation and luminosity. We find that the magnetic cycle period is inversely proportional to the Rossby number, which quantifies the influence of rotation on turbulent convection. The trend relies on a fundamentally nonlinear dynamo process and is compatible with the Sun's cycle and those of other solar-type stars. Copyright © 2017, American Association for the Advancement of Science.
Space flight visual simulation.
Xu, L
1985-01-01
In this paper, based on the scenes of stars seen by astronauts in their orbital flights, we have studied the mathematical model which must be constructed for CGI system to realize the space flight visual simulation. Considering such factors as the revolution and rotation of the Earth, exact date, time and site of orbital injection of the spacecraft, as well as its orbital flight and attitude motion, etc., we first defined all the instantaneous lines of sight and visual fields of astronauts in space. Then, through a series of coordinate transforms, the pictures of the scenes of stars changing with time-space were photographed one by one mathematically. In the procedure, we have designed a method of three-times "mathematical cutting." Finally, we obtained each instantaneous picture of the scenes of stars observed by astronauts through the window of the cockpit. Also, the dynamic conditions shaded by the Earth in the varying pictures of scenes of stars could be displayed.
The evolution of stable magnetic fields in stars: an analytical approach
NASA Astrophysics Data System (ADS)
Mestel, Leon; Moss, David
2010-07-01
The absence of a rigorous proof of the existence of dynamically stable, large-scale magnetic fields in radiative stars has been for many years a missing element in the fossil field theory for the magnetic Ap/Bp stars. Recent numerical simulations, by Braithwaite & Spruit and Braithwaite & Nordlund, have largely filled this gap, demonstrating convincingly that coherent global scale fields can survive for times of the order of the main-sequence lifetimes of A stars. These dynamically stable configurations take the form of magnetic tori, with linked poloidal and toroidal fields, that slowly rise towards the stellar surface. This paper studies a simple analytical model of such a torus, designed to elucidate the physical processes that govern its evolution. It is found that one-dimensional numerical calculations reproduce some key features of the numerical simulations, with radiative heat transfer, Archimedes' principle, Lorentz force and Ohmic decay all playing significant roles.
Bovard, Luke; Martin, Dirk; Guercilena, Federico; ...
2017-12-05
Here, when binary systems of neutron stars merge, a very small fraction of their rest mass is ejected, either dynamically or secularly. This material is neutron-rich and its nucleosynthesis provides the astrophysical site for the production of heavy elements in the Universe, together with a kilonova signal confirming neutron-star mergers as the origin of short gamma-ray bursts. We perform full general-relativistic simulations of binary neutron-star mergers employing three different nuclear-physics equations of state (EOSs), considering both equal- and unequal-mass configurations, and adopting a leakage scheme to account for neutrino radiative losses. Using a combination of techniques, we carry out anmore » extensive and systematic study of the hydrodynamical, thermodynamical, and geometrical properties of the matter ejected dynamically, employing the WinNet nuclear-reaction network to recover the relative abundances of heavy elements produced by each configurations. Among the results obtained, three are particularly important. First, we find that, within the sample considered here, both the properties of the dynamical ejecta and the nucleosynthesis yields are robust against variations of the EOS and masses. Second, using a conservative but robust criterion for unbound matter, we find that the amount of ejected mass is ≲10 –3 M⊙, hence at least one order of magnitude smaller than what normally assumed in modelling kilonova signals. Finally, using a simplified and gray-opacity model we assess the observability of the infrared kilonova emission finding, that for all binaries the luminosity peaks around ~1/2 day in the H-band, reaching a maximum magnitude of –13, and decreasing rapidly after one day.« less
Neutrino signal from pair-instability supernovae
NASA Astrophysics Data System (ADS)
Wright, Warren P.; Gilmer, Matthew S.; Fröhlich, Carla; Kneller, James P.
2017-11-01
A very massive star with a carbon-oxygen core in the range of 64M ⊙
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovard, Luke; Martin, Dirk; Guercilena, Federico
Here, when binary systems of neutron stars merge, a very small fraction of their rest mass is ejected, either dynamically or secularly. This material is neutron-rich and its nucleosynthesis provides the astrophysical site for the production of heavy elements in the Universe, together with a kilonova signal confirming neutron-star mergers as the origin of short gamma-ray bursts. We perform full general-relativistic simulations of binary neutron-star mergers employing three different nuclear-physics equations of state (EOSs), considering both equal- and unequal-mass configurations, and adopting a leakage scheme to account for neutrino radiative losses. Using a combination of techniques, we carry out anmore » extensive and systematic study of the hydrodynamical, thermodynamical, and geometrical properties of the matter ejected dynamically, employing the WinNet nuclear-reaction network to recover the relative abundances of heavy elements produced by each configurations. Among the results obtained, three are particularly important. First, we find that, within the sample considered here, both the properties of the dynamical ejecta and the nucleosynthesis yields are robust against variations of the EOS and masses. Second, using a conservative but robust criterion for unbound matter, we find that the amount of ejected mass is ≲10 –3 M⊙, hence at least one order of magnitude smaller than what normally assumed in modelling kilonova signals. Finally, using a simplified and gray-opacity model we assess the observability of the infrared kilonova emission finding, that for all binaries the luminosity peaks around ~1/2 day in the H-band, reaching a maximum magnitude of –13, and decreasing rapidly after one day.« less
NASA Astrophysics Data System (ADS)
Roquette, J.; Bouvier, J.; Alencar, S. H. P.; Vaz, L. P. R.; Guarcello, M. G.
2017-07-01
Context. In recent decades, the picture of early pre-main sequence stellar rotational evolution has been constrained by studies targeting different regions at a variety of ages with respect to young star formation. Observational studies suggest a dependence of rotation with mass, and for some mass ranges a connection between rotation and the presence of a circumstellar disk. The role of environmental conditions on the rotational regulation, however, has still not been fully explored. Aims: We investigate the rotational properties of candidate members of the young massive association Cygnus OB2. By evaluating their rotational properties, we address questions regarding the effect of environment properties on PMS rotational evolution. Methods: We studied JHK-band variability in 5083 candidate members (24% of them are disk-bearing stars). We selected variable stars with the Stetson variability index and performed the period search with the Lomb-Scargle periodogram for periods between 0.83-45 days. Period detections were verified using false alarm probability levels, Saunders statistics, the string and rope length method, and visual verification of folded light curves. Results: We identified 1224 periodic variable stars (24% of the candidate member sample, 8% of the disk-bearing sample, and 28% of the non-disk-bearing sample). Monte Carlo simulations were performed in order to evaluate completeness and contamination of the periodic sample, out of which 894 measured periods were considered reliable. Our study was considered reasonably complete for periods between 2 and 30 days. Conclusions: The general scenario for the rotational evolution of young stars seen in other regions is confirmed by Cygnus OB2 period distributions with disc-bearing stars rotating on average more slowly than non-disk-bearing stars. A mass-rotation dependence was also verified, but as in NGC 6530, very low mass stars (M ≤ 0.4 M⊙) are rotating on average slower than higher mass stars (0.4M⊙
Bursts of star formation in computer simulations of dwarf galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comins, N.F.
1984-09-01
A three-dimensional Stochastic Self-Propagating Star Formation (SSPSF) model of compact galacies is presented. Two phases of gas, active and inactive, are present, and permanent depletion of gas in the form of long lived, low mass stars and remnants occurs. Similarly, global infall of gas from a galactic halo or through galactic cannibalism is permitted. We base our parameters on the observed properties of the compact blue galaxy I Zw 36. Our results are that bursts of star formation occur much more frequently in these runs than continuous nonbursting star formation, suggesting that the blue compact galaxies are probably undergoing burstsmore » rather than continuous, nonbursting low-level star formation activity.« less
Mass ejection by strange star mergers and observational implications.
Bauswein, A; Janka, H-T; Oechslin, R; Pagliara, G; Sagert, I; Schaffner-Bielich, J; Hohle, M M; Neuhäuser, R
2009-07-03
We determine the Galactic production rate of strangelets as a canonical input to calculations of the measurable cosmic ray flux of strangelets by performing simulations of strange star mergers and combining the results with recent estimates of stellar binary populations. We find that the flux depends sensitively on the bag constant of the MIT bag model of QCD and disappears for high values of the bag constant and thus more compact strange stars. In the latter case, strange stars could coexist with ordinary neutron stars as they are not converted by the capture of cosmic ray strangelets. An unambiguous detection of an ordinary neutron star would then not rule out the strange matter hypothesis.
Novel approach to improve the attitude update rate of a star tracker.
Zhang, Shuo; Xing, Fei; Sun, Ting; You, Zheng; Wei, Minsong
2018-03-05
The star tracker is widely used in attitude control systems of spacecraft for attitude measurement. The attitude update rate of a star tracker is important to guarantee the attitude control performance. In this paper, we propose a novel approach to improve the attitude update rate of a star tracker. The electronic Rolling Shutter (RS) imaging mode of the complementary metal-oxide semiconductor (CMOS) image sensor in the star tracker is applied to acquire star images in which the star spots are exposed with row-to-row time offsets, thereby reflecting the rotation of star tracker at different times. The attitude estimation method with a single star spot is developed to realize the multiple attitude updates by a star image, so as to reach a high update rate. The simulation and experiment are performed to verify the proposed approaches. The test results demonstrate that the proposed approach is effective and the attitude update rate of a star tracker is increased significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jester, Sebastian; Schneider, Donald P.; Richards, Gordon T.
The author investigates the extent to which the Palomar-Green (PG) Bright Quasar Survey (BQS) is complete and representative of the general quasar population by comparing with imaging and spectroscopy from the Sloan Digital Sky Survey. A comparison of SDSS and PG photometry of both stars and quasars reveals the need to apply a color and magnitude recalibration to the PG data. Using the SDSS photometric catalog, they define the PG's parent sample of objects that are not main-sequence stars and simulate the selection of objects from this parent sample using the PG photometric criteria and errors. This simulation shows thatmore » the effective U-B cut in the PG survey is U-B < -0.71, implying a color-related incompleteness. As the color distribution of bright quasars peaks near U-B = -0.7 and the 2-{sigma} error in U-B is comparable to the full width of the color distribution of quasars, the color incompleteness of the BQS is approximately 50% and essentially random with respect to U-B color for z < 0.5. There is however, a bias against bright quasars at 0.5 < z < 1, which is induced by the color-redshift relation of quasars (although quasars at z > 0.5 are inherently rare in bright surveys in any case). They find no evidence for any other systematic incompleteness when comparing the distributions in color, redshift, and FIRST radio properties of the BQS and a BQS-like subsample of the SDSS quasar sample. However, the application of a bright magnitude limit biases the BQS toward the inclusion of objects which are blue in g-i, in particular compared to the full range of g-i colors found among the i-band limited SDSS quasars, and even at i-band magnitudes comparable to those of the BQS objects.« less
The ν process in the innermost supernova ejecta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sieverding, Andre; Martínez-Pinedo, Gabriel; Langanke, Karlheinz
2017-12-01
The neutrino-induced nucleosynthesis (ν process) in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 13 and 30 M⊙ has been studied with an analytic explosion model using a new extensive set of neutrino-nucleus cross-sections and spectral properties that agree with modern supernova simulations. The production factors for the nuclei 7Li, 11B, 19F, 138La and 180Ta, are still significantly enhanced but do not reproduce the full solar abundances. We study the possible contribution of the innermost supernova eject to the production of the light elements 7Li and 11B with tracer particles based on a 2Dmore » supernova simulation of a 12 M⊙ progenitor and conclude, that a contribution exists but is negligible for the total yield for this explosion model.« less
Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability
NASA Technical Reports Server (NTRS)
Bailey, Roger M.; Hostetler, Robert W., Jr.; Barnes, Kevin N.; Belcastro, Celeste M.; Belcastro, Christine M.
2005-01-01
Experimental testing is an important aspect of validating complex integrated safety critical aircraft technologies. The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed is being developed at NASA Langley to validate technologies under conditions that cannot be flight validated with full-scale vehicles. The AirSTAR capability comprises a series of flying sub-scale models, associated ground-support equipment, and a base research station at NASA Langley. The subscale model capability utilizes a generic 5.5% scaled transport class vehicle known as the Generic Transport Model (GTM). The AirSTAR Ground Facilities encompass the hardware and software infrastructure necessary to provide comprehensive support services for the GTM testbed. The ground facilities support remote piloting of the GTM aircraft, and include all subsystems required for data/video telemetry, experimental flight control algorithm implementation and evaluation, GTM simulation, data recording/archiving, and audio communications. The ground facilities include a self-contained, motorized vehicle serving as a mobile research command/operations center, capable of deployment to remote sites when conducting GTM flight experiments. The ground facilities also include a laboratory based at NASA LaRC providing near identical capabilities as the mobile command/operations center, as well as the capability to receive data/video/audio from, and send data/audio to the mobile command/operations center during GTM flight experiments.
High-resolution optical imaging of the core of the globular cluster M15 with FastCam
NASA Astrophysics Data System (ADS)
Díaz-Sánchez, Anastasio; Pérez-Garrido, Antonio; Villó, Isidro; Rebolo, Rafael; Pérez-Prieto, Jorge A.; Oscoz, Alejandro; Hildebrandt, Sergi R.; López, Roberto; Rodríguez, Luis F.
2012-07-01
We present high-resolution I -band imaging of the core of the globular cluster M15 obtained at the 2.5-m Nordic Optical Telescope with FastCam, a low readout noise L3CCD-based instrument. Short exposure times (30 ms) were used to record 200 000 images (512 × 512 pixels each) over a period of 2 h and 43 min. The lucky imaging technique was then applied to generate a final image of the cluster centre with full width at half-maximum ˜0.1 arcsec and 13 × 13 arcsec 2 field of view. We obtained a catalogue of objects in this region with a limiting magnitude of I = 19.5. I -band photometry and astrometry are reported for 1181 stars. This is the deepest I -band observation of the M15 core at this spatial resolution. Simulations show that crowding is limiting the completeness of the catalogue. At shorter wavelengths, a similar number of objects have been reported using Hubble Space Telescope (HST )/Wide Field Planetary Camera observations of the same field. The cross-match with the available HST catalogues allowed us to produce colour-magnitude diagrams where we identify new blue straggler star candidates and previously known stars of this class.
The Hydrodynamical Models of the Cometary Compact HII Region
NASA Astrophysics Data System (ADS)
Zhu, Feng-Yao; Zhu, Qing-Feng; Li, Juan; Zhang, Jiang-Shui; Wang, Jun-Zhi
2015-10-01
We have developed a full numerical method to study the gas dynamics of cometary ultracompact H ii regions, and associated photodissociation regions (PDRs). The bow-shock and champagne-flow models with a 40.9/21.9 M⊙ star are simulated. In the bow-shock models, the massive star is assumed to move through dense (n = 8000 cm-3) molecular material with a stellar velocity of 15 km s-1. In the champagne-flow models, an exponential distribution of density with a scale height of 0.2 pc is assumed. The profiles of the [Ne ii] 12.81 μm and H2 S(2) lines from the ionized regions and PDRs are compared for two sets of models. In champagne-flow models, emission lines from the ionized gas clearly show the effect of acceleration along the direction toward the tail due to the density gradient. The kinematics of the molecular gas inside the dense shell are mainly due to the expansion of the H ii region. However, in bow-shock models the ionized gas mainly moves in the same direction as the stellar motion. The kinematics of the molecular gas inside the dense shell simply reflects the motion of the dense shell with respect to the star. These differences can be used to distinguish two sets of models.
NASA Astrophysics Data System (ADS)
Sainsbury-Martinez, Felix; Browning, Matthew; Miesch, Mark; Featherstone, Nicholas A.
2018-01-01
Low-Mass stars are typically fully convective, and as such their dynamics may differ significantly from sun-like stars. Here we present a series of 3D anelastic HD and MHD simulations of fully convective stars, designed to investigate how the meridional circulation, the differential rotation, and residual entropy are affected by both varying stellar parameters, such as the luminosity or the rotation rate, and by the presence of a magnetic field. We also investigate, more specifically, a theoretical model in which isorotation contours and residual entropy (σ‧ = σ ‑ σ(r)) are intrinsically linked via the thermal wind equation (as proposed in the Solar context by Balbus in 2009). We have selected our simulation parameters in such as way as to span the transition between Solar-like differential rotation (fast equator + slow poles) and ‘anti-Solar’ differential rotation (slow equator + fast poles), as characterised by the convective Rossby number and △Ω. We illustrate the transition from single-celled to multi-celled MC profiles, and from positive to negative latitudinal entropy gradients. We show that an extrapolation involving both TWB and the σ‧/Ω link provides a reasonable estimate for the interior profile of our fully convective stars. Finally, we also present a selection of MHD simulations which exhibit an almost unsuppressed differential rotation profile, with energy balances remaining dominated by kinetic components.
Insights from Synthetic Star-forming Regions. I. Reliable Mock Observations from SPH Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koepferl, Christine M.; Robitaille, Thomas P.; Biscani, Francesco
Through synthetic observations of a hydrodynamical simulation of an evolving star-forming region, we assess how the choice of observational techniques affects the measurements of properties that trace star formation. Testing and calibrating observational measurements requires synthetic observations that are as realistic as possible. In this part of the series (Paper I), we explore different techniques for mapping the distributions of densities and temperatures from the particle-based simulations onto a Voronoi mesh suitable for radiative transfer and consequently explore their accuracy. We further test different ways to set up the radiative transfer in order to produce realistic synthetic observations. We give amore » detailed description of all methods and ultimately recommend techniques. We have found that the flux around 20 μ m is strongly overestimated when blindly coupling the dust radiative transfer temperature with the hydrodynamical gas temperature. We find that when instead assuming a constant background dust temperature in addition to the radiative transfer heating, the recovered flux is consistent with actual observations. We present around 5800 realistic synthetic observations for Spitzer and Herschel bands, at different evolutionary time-steps, distances, and orientations. In the upcoming papers of this series (Papers II, III, and IV), we will test and calibrate measurements of the star formation rate, gas mass, and the star formation efficiency using our realistic synthetic observations.« less
Morphological diagnostics of star formation in molecular clouds
NASA Astrophysics Data System (ADS)
Beaumont, Christopher Norris
Molecular clouds are the birth sites of all star formation in the present-day universe. They represent the initial conditions of star formation, and are the primary medium by which stars transfer energy and momentum back to parsec scales. Yet, the physical evolution of molecular clouds remains poorly understood. This is not due to a lack of observational data, nor is it due to an inability to simulate the conditions inside molecular clouds. Instead, the physics and structure of the interstellar medium are sufficiently complex that interpreting molecular cloud data is very difficult. This dissertation mitigates this problem, by developing more sophisticated ways to interpret morphological information in molecular cloud observations and simulations. In particular, I have focused on leveraging machine learning techniques to identify physically meaningful substructures in the interstellar medium, as well as techniques to inter-compare molecular cloud simulations to observations. These contributions make it easier to understand the interplay between molecular clouds and star formation. Specific contributions include: new insight about the sheet-like geometry of molecular clouds based on observations of stellar bubbles; a new algorithm to disambiguate overlapping yet morphologically distinct cloud structures; a new perspective on the relationship between molecular cloud column density distributions and the sizes of cloud substructures; a quantitative analysis of how projection effects affect measurements of cloud properties; and an automatically generated, statistically-calibrated catalog of bubbles identified from their infrared morphologies.
Numerical simulations of continuum-driven winds of super-Eddington stars
NASA Astrophysics Data System (ADS)
van Marle, A. J.; Owocki, S. P.; Shaviv, N. J.
2008-09-01
We present the results of numerical simulations of continuum-driven winds of stars that exceed the Eddington limit and compare these against predictions from earlier analytical solutions. Our models are based on the assumption that the stellar atmosphere consists of clumped matter, where the individual clumps have a much larger optical thickness than the matter between the clumps. This `porosity' of the stellar atmosphere reduces the coupling between radiation and matter, since photons tend to escape through the more tenuous gas between the clumps. This allows a star that formally exceeds the Eddington limit to remain stable, yet produce a steady outflow from the region where the clumps become optically thin. We have made a parameter study of wind models for a variety of input conditions in order to explore the properties of continuum-driven winds. The results show that the numerical simulations reproduce quite closely the analytical scalings. The mass-loss rates produced in our models are much larger than can be achieved by line driving. This makes continuum driving a good mechanism to explain the large mass-loss and flow speeds of giant outbursts, as observed in η Carinae and other luminous blue variable stars. Continuum driving may also be important in population III stars, since line driving becomes ineffective at low metallicities. We also explore the effect of photon tiring and the limits it places on the wind parameters.
Gaseous infall and star formation from redshift 2 to the Milky Way
NASA Astrophysics Data System (ADS)
Hill, Alex
2015-10-01
We propose to model magnetized gas as it flows into galaxy disks in Milky Way-like and redshift 2 environments in order to understand the pc to kpc scale physics that control a crucial link in galaxy evolution: how do galaxies get the gas which sustains star formation over cosmic time? UV observations with the Cosmic Origins Spectrograph (COS) on HST have demonstrated that star-forming galaxies have baryonic halos much more massive than the galaxies themselves; these halos are most likely a link in the evolution of galaxies as cosmological filaments feed ongoing star formation in galactic disks. However, the galaxy formation simulations that support this hypothesis do not resolve the parsec-scale hydrodynamic processes which determine if and how the gas in the halo can reach the disk. To address this theoretical disconnect, we will conduct magnetohydrodynamic simulations in which these clouds fall under the galactic potential into a state-of-the-art simulation of the three-phase interstellar medium in the galactic disk. We will leverage recent HST and radio observations of accreting clouds around the Milky Way to set the initial conditions of the gas, including magnetic fields and metallicity. Our results will connect the HST metallicity measurements directly to the impact of gaseous galactic halos and infall on galaxy evolution and the star formation history of the Universe.
A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae.
Mösta, Philipp; Ott, Christian D; Radice, David; Roberts, Luke F; Schnetter, Erik; Haas, Roland
2015-12-17
Magnetohydrodynamic turbulence is important in many high-energy astrophysical systems, where instabilities can amplify the local magnetic field over very short timescales. Specifically, the magnetorotational instability and dynamo action have been suggested as a mechanism for the growth of magnetar-strength magnetic fields (of 10(15) gauss and above) and for powering the explosion of a rotating massive star. Such stars are candidate progenitors of type Ic-bl hypernovae, which make up all supernovae that are connected to long γ-ray bursts. The magnetorotational instability has been studied with local high-resolution shearing-box simulations in three dimensions, and with global two-dimensional simulations, but it is not known whether turbulence driven by this instability can result in the creation of a large-scale, ordered and dynamically relevant field. Here we report results from global, three-dimensional, general-relativistic magnetohydrodynamic turbulence simulations. We show that hydromagnetic turbulence in rapidly rotating protoneutron stars produces an inverse cascade of energy. We find a large-scale, ordered toroidal field that is consistent with the formation of bipolar magnetorotationally driven outflows. Our results demonstrate that rapidly rotating massive stars are plausible progenitors for both type Ic-bl supernovae and long γ-ray bursts, and provide a viable mechanism for the formation of magnetars. Moreover, our findings suggest that rapidly rotating massive stars might lie behind potentially magnetar-powered superluminous supernovae.
The circumstellar disk response to the motion of the host star
NASA Astrophysics Data System (ADS)
Regály, Zs.; Vorobyov, E.
2017-05-01
Context. Grid-based hydrodynamics simulations of circumstellar disks are often performed in the curvilinear coordinate system, in which the center of the computational domain coincides with the motionless star. However, the center of mass may be shifted from the star due to the presence of any non-axisymmetric mass distribution. As a result, the system exerts a non-zero gravity force on the star, causing the star to move in response, which can in turn affect the evolution of the circumstellar disk. Aims: We aim at studying the effects of stellar motion on the evolution of protostellar and protoplanetary disks. In protostellar disks, a non-axisymmetric distribution of matter in the form of spiral arms and/or massive clumps can form due to gravitational instability. Protoplanetary disks can also feature non-axisymmetric structures caused by an embedded high-mass planet or a large-scale vortex formed at viscosity transitions. Methods: We use 2D grid-based numerical hydrodynamic simulations to explore the effect of stellar motion. We adopt a non-inertial polar coordinate system centered on the star, in which the stellar motion is taken into account by calculating the indirect potential caused by the non-axisymmetric disk, a high-mass planet, or a large-scale vortex. We compare the results of numerical simulations with and without stellar motion. Results: We found that the stellar motion has a moderate effect on the evolution history and the mass accretion rate in protostellar disks, reducing somewhat the disk size and mass, while having a profound effect on the collapsing envelope, changing its inner shape from an initially axisymmetric to a non-axisymmetric configuration. Protoplanetary disk simulations show that the stellar motion slightly reduces the width of the gap opened by a high-mass planet, decreases the planet migration rate, and strengthens the large-scale vortices formed at the viscosity transition. Conclusions: We conclude that the inclusion of the indirect potential is recommended in grid-based hydrodynamics simulations of circumstellar disks which use the curvilinear coordinate system.
The Role of Stellar Feedback on the Structure of the ISM and Star Formation in Galaxies
NASA Astrophysics Data System (ADS)
Grisdale, Kearn Michael
2017-08-01
Stellar feedback refers to the injection of energy, momentum and mass into the interstellar medium (ISM) by massive stars. This feedback owes to a combination of ionising radiation, radiation pressure, stellar winds and supernovae and is likely responsible both for the inefficiency of star formation in galaxies, and the observed super-sonic turbulence of the ISM. In this thesis, I study how stellar feedback shapes the ISM thereby regulating galaxy evolution. In particular, I focus on three key questions: (i) How does stellar feedback shape the gas density distribution of the ISM? (ii) How does feedback change or influence the distribution of the kinetic energy in the ISM? and (iii) What role does feedback play in determining the star formation efficiency of giant molecular clouds (GMCs)? To answer these questions, I run high resolution (Deltax 4.6 pc) numerical simulations of three isolated galaxies, both with and without stellar feedback. I compare these simulations to observations of six galaxies from The HI Nearby Galaxy Survey (THINGS) using power spectra, and I use clump finding techniques to identify GMCs in my simulations and calculate their properties. I find that the kinetic energy power spectra in stellar feedback- regulated galaxies, regardless of the galaxy's mass and size, show scalings in excellent agreement with supersonic turbulence on scales below the thickness of the HI layer. I show that feedback influences the gas density field, and drives gas turbulence, up to large (kiloparsec) scales. This is in stark contrast to the density fields generated by large-scale gravity-only driven turbulence (i.e. without stellar feedback). Simulations with stellar feedback are able to reproduce the internal properties of GMCs such as: mass, size and velocity dispersion. Finally, I demonstrate that my simulations naturally reproduce the observed scatter (3.5-4 dex) in the star formation efficiency per free-fall time of GMCs, despite only employing a simple Schmidt star formation law. I conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales and that stellar feedback is, therefore, key to regulating the evolution of galaxies over cosmic time.
MODELING THE RISE OF FIBRIL MAGNETIC FIELDS IN FULLY CONVECTIVE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Maria A.; Browning, Matthew K., E-mail: mweber@astro.ex.ac.uk
Many fully convective stars exhibit a wide variety of surface magnetism, including starspots and chromospheric activity. The manner by which bundles of magnetic field traverse portions of the convection zone to emerge at the stellar surface is not especially well understood. In the solar context, some insight into this process has been gleaned by regarding the magnetism as consisting partly of idealized thin flux tubes (TFTs). Here we present the results of a large set of TFT simulations in a rotating spherical domain of convective flows representative of a 0.3 M {sub ⊙} main-sequence star. This is the first studymore » to investigate how individual flux tubes in such a star might rise under the combined influence of buoyancy, convection, and differential rotation. A time-dependent hydrodynamic convective flow field, taken from separate 3D simulations calculated with the anelastic equations, impacts the flux tube as it rises. Convective motions modulate the shape of the initially buoyant flux ring, promoting localized rising loops. Flux tubes in fully convective stars have a tendency to rise nearly parallel to the rotation axis. However, the presence of strong differential rotation allows some initially low-latitude flux tubes of moderate strength to develop rising loops that emerge in the near-equatorial region. Magnetic pumping suppresses the global rise of the flux tube most efficiently in the deeper interior and at lower latitudes. The results of these simulations aim to provide a link between dynamo-generated magnetic fields, fluid motions, and observations of starspots for fully convective stars.« less
NASA Astrophysics Data System (ADS)
Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.
2017-09-01
We have used the AMR hydrodynamic code, mg, to perform 3D hydrodynamic simulations with self-gravity of stellar feedback in a spherical clumpy molecular cloud formed through the action of thermal instability. We simulate the interaction of the mechanical energy input from 15, 40, 60 and 120 M⊙ stars into a 100 pc diameter 16 500 M⊙ cloud with a roughly spherical morphology with randomly distributed high-density condensations. The stellar winds are introduced using appropriate non-rotating Geneva stellar evolution models. In the 15 M⊙ star case, the wind has very little effect, spreading around a few neighbouring clumps before becoming overwhelmed by the cloud collapse. In contrast, in the 40, 60 and 120 M⊙ star cases, the more powerful stellar winds create large cavities and carve channels through the cloud, breaking out into the surrounding tenuous medium during the wind phase and considerably altering the cloud structure. After 4.97, 3.97 and 3.01 Myr, respectively, the massive stars explode as supernovae (SNe). The wind-sculpted surroundings considerably affect the evolution of these SN events as they both escape the cloud along wind-carved channels and sweep up remaining clumps of cloud/wind material. The 'cloud' as a coherent structure does not survive the SN from any of these stars, but only in the 120 M⊙ case is the cold molecular material completely destabilized and returned to the unstable thermal phase. In the 40 and 60 M⊙ cases, coherent clumps of cold material are ejected from the cloud by the SN, potentially capable of further star formation.
The innate origin of radial and vertical gradients in a simulated galaxy disc
NASA Astrophysics Data System (ADS)
Navarro, Julio F.; Yozin, Cameron; Loewen, Nic; Benítez-Llambay, Alejandro; Fattahi, Azadeh; Frenk, Carlos S.; Oman, Kyle A.; Schaye, Joop; Theuns, Tom
2018-05-01
We examine the origin of radial and vertical gradients in the age/metallicity of the stellar component of a galaxy disc formed in the APOSTLE cosmological hydrodynamical simulations. Some of these gradients resemble those in the Milky Way, where they have sometimes been interpreted as due to internal evolution, such as scattering off giant molecular clouds, radial migration driven by spiral patterns, or orbital resonances with a bar. Secular processes play a minor role in the simulated galaxy, which lacks strong spiral or bar patterns, and where such gradients arise as a result of the gradual enrichment of a gaseous disc that is born thick but thins as it turns into stars and settles into centrifugal equilibrium. The settling is controlled by the feedback of young stars; which links the star formation, enrichment, and equilibration time-scales, inducing radial and vertical gradients in the gaseous disc and its descendent stars. The kinematics of coeval stars evolve little after birth and provide a faithful snapshot of the gaseous disc structure at the time of their formation. In this interpretation, the age-velocity dispersion relation would reflect the gradual thinning of the disc rather than the importance of secular orbit scattering; the outward flaring of stars would result from the gas disc flare rather than from radial migration; and vertical gradients would arise because the gas disc gradually thinned as it enriched. Such radial and vertical trends might just reflect the evolving properties of the parent gaseous disc, and are not necessarily the result of secular evolutionary processes.
Effects of Pop III to PopII transition on the lowest metallicity stars in dwarf galaxies
NASA Astrophysics Data System (ADS)
Zhang, Yimiao; Keres, Dusan; FIRE Team
2018-01-01
We examine the effects of the enrichments from Population III (Pop III) stars on the formation and properties of the first generation of the Population II (Pop II) stars. Pop III stars begin to transition towards Pop II stars when the metals dispersed in Pop III supernovae pollute the nearby gas. However, details of this transition are still largely unknown. We use dwarf galaxy simulations from the Feedback In Realistic Environments (FIRE) project to identify the star-forming gas that is likely to be pre-enriched by Pop III supernovae and follow the stars that form in such gas. This pre-enrichment will leave the signature in the lowest metallicity stars that can be used to better constrain the details of the Pop III-to-Pop II transition.
The impact of galaxy geometry and mass evolution on the survival of star clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madrid, Juan P.; Hurley, Jarrod R.; Martig, Marie
2014-04-01
Direct N-body simulations of globular clusters in a realistic Milky-Way-like potential are carried out using the code NBODY6 to determine the impact of the host galaxy disk mass and geometry on the survival of star clusters. A relation between disk mass and star-cluster dissolution timescale is derived. These N-body models show that doubling the mass of the disk from 5 × 10{sup 10} M {sub ☉} to 10 × 10{sup 10} M {sub ☉} halves the dissolution time of a satellite star cluster orbiting the host galaxy at 6 kpc from the galactic center. Different geometries in a disk ofmore » identical mass can determine either the survival or dissolution of a star cluster orbiting within the inner 6 kpc of the galactic center. Furthermore, disk geometry has measurable effects on the mass loss of star clusters up to 15 kpc from the galactic center. N-body simulations performed with a fine output time step show that at each disk crossing the outer layers of star clusters experiences an increase in velocity dispersion of ∼5% of the average velocity dispersion in the outer section of star clusters. This leads to an enhancement of mass loss—a clearly discernable effect of disk shocking. By running models with different inclinations, we determine that star clusters with an orbit that is perpendicular to the Galactic plane have larger mass loss rates than do clusters that evolve in the Galactic plane or in an inclined orbit.« less
Impact of red giant/AGB winds on active galactic nucleus jet propagation
NASA Astrophysics Data System (ADS)
Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.
2017-10-01
Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to the mass-load of the jet and thus affect its dynamics. Shear layer mass-entrainment could be important. The interaction structure can be a source of significant non-thermal emission.
Multidimensional neutrino-transport simulations of the core-collapse supernova central engine
NASA Astrophysics Data System (ADS)
O'Connor, Evan; Couch, Sean
2017-01-01
Core-collapse supernovae (CCSNe) mark the explosive death of a massive star. The explosion itself is triggered by the collapse of the iron core that forms near the end of a massive star's life. The core collapses to nuclear densities where the stiff nuclear equation of state halts the collapse and leads to the formation of the supernova shock. In many cases, this shock will eventually propagate throughout the entire star and produces a bright optical display. However, the path from shock formation to explosion has proven difficult to recreate in simulations. Soon after the shock forms, its outward propagation is stagnated and must be revived in order for the CCSNe to be successful. The leading theory for the mechanism that reenergizes the shock is the deposition of energy by neutrinos. In 1D simulations this mechanism fails. However, there is growing evidence that in 2D and 3D, hydrodynamic instabilities can assist the neutrino heating in reviving the shock. In this talk, I will present new multi-D neutrino-radiation-hydrodynamic simulations of CCSNe performed with the FLASH hydrodynamics package. I will discuss the efficacy of neutrino heating in our simulations and show the impact of the multi-D hydrodynamic instabilities.
Modeling Early Galaxies Using Radiation Hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This simulation uses a flux-limited diffusion solver to explore the radiation hydrodynamics of early galaxies, in particular, the ionizing radiation created by Population III stars. At the time of this rendering, the simulation has evolved to a redshift of 3.5. The simulation volume is 11.2 comoving megaparsecs, and has a uniform grid of 10243 cells, with over 1 billion dark matter and star particles. This animation shows a combined view of the baryon density, dark matter density, radiation energy and emissivity from this simulation. The multi-variate rendering is particularly useful because is shows both the baryonic matter ("normal") and darkmore » matter, and the pressure and temperature variables are properties of only the baryonic matter. Visible in the gas density are "bubbles", or shells, created by the radiation feedback from young stars. Seeing the bubbles from feedback provides confirmation of the physics model implemented. Features such as these are difficult to identify algorithmically, but easily found when viewing the visualization. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.« less
Measuring Dark Matter With MilkyWay@home
NASA Astrophysics Data System (ADS)
Shelton, Siddhartha; Newberg, Heidi Jo; Arsenault, Matthew; Bauer, Jacob; Desell, Travis; Judd, Roland; Magdon-Ismail, Malik; Newby, Matthew; Rice, Colin; Thompson, Jeffrey; Ulin, Steve; Weiss, Jake; Widrow, Larry
2016-01-01
We perform N-body simulations of two component dwarf galaxies (dark matter and stars follow separate distributions) falling into the Milky Way and the forming of tidal streams. Using MilkyWay@home we optimize the parameters of the progenitor dwarf galaxy and the orbital time to fit the simulated distribution of stars along the tidal stream to the observed distribution of stars. Our initial dwarf galaxy models are constructed with two separate Plummer profiles (one for the dark matter and one for the baryonic matter), sampled using a generalized distribution function for spherically symmetric systems. We perform rigorous testing to ensure that our simulated galaxies are in virial equilibrium, and stable over a simulation time. The N-body simulations are performed using a Barnes-Hut Tree algorithm. Optimization traverses the likelihood surface from our six model parameters using particle swarm and differential evolution methods. We have generated simulated data with known model parameters that are similar to those of the Orphan Stream. We show that we are able to recover a majority of our model parameters, and most importantly the mass-to-light ratio of the now disrupted progenitor galaxy, using MilkyWay@home. This research is supported by generous gifts from the Marvin Clan, Babette Josephs, Manit Limlamai, and the MilkyWay@home volunteers.
Star Clusters Simulations Using GRAPE-5
NASA Astrophysics Data System (ADS)
Fukushige, Toshiyuki
We discuss simulations of star cluster, such as globular cluster, galaxy, and galaxy cluster, using GRAPE(GRAvity PipE)-5. GRAPE-5 is a new version of special-purpose computer for many-body simulation, GRAPE. GRAPE-5 has eight custom pipeline LSI (G5 chip) per board, and its peak performance is 38.4 Gflops. GRAPE-5 is different from its predecessor, GRAPE-3, regarding four points: a) the calculation speed per chip is 8 time faster, b) the PCI bus is adapted as an interface between host computer and GRAPE-5, and, therefore, the communication speed is order of magnitude faster, c) in addition to the pure 1/r potential, GRAPE-5 can calculate force with arbitrary cutoff function so that it can be applied to the Ewald or P3M methods, and d) the pair wise force calculated on GRAPE-5 is about 10 times more accurate. Using the GRAPE-5 system with Barnes-Hut tree algorithm, we can complete force calculations for one timestep in 10(N/106) seconds. This speed enables us to perform a pre-collapse globular cluster simulation with real number of particles, and a galaxy simulation with more than 1 million particles, within several days. We also present some results of star cluster simulations using the GRAPE-5 system.
The Preferential Tidal Stripping of Dark Matter versus Stars in Galaxies
NASA Astrophysics Data System (ADS)
Smith, Rory; Choi, Hoseung; Lee, Jaehyun; Rhee, Jinsu; Sanchez-Janssen, Ruben; Yi, Sukyoung K.
2016-12-01
Using high-resolution hydrodynamical cosmological simulations, we conduct a comprehensive study of how tidal stripping removes dark matter and stars from galaxies. We find that dark matter is always stripped far more significantly than the stars—galaxies that lose ˜80% of their dark matter, typically lose only 10% of their stars. This is because the dark matter halo is initially much more extended than the stars. As such, we find that the stellar-to-halo size-ratio (measured using r eff/r vir) is a key parameter controlling the relative amounts of dark matter and stellar stripping. We use simple fitting formulae to measure the relation between the fraction of bound dark matter and the fraction of bound stars. We measure a negligible dependence on cluster mass or galaxy mass. Therefore, these formulae have general applicability in cosmological simulations, and are ideal to improve stellar stripping recipes in semi-analytical models, and/or to estimate the impact that tidal stripping would have on galaxies when only their halo mass evolution is known.
NASA Astrophysics Data System (ADS)
Fujibayashi, Sho; Sekiguchi, Yuichiro; Kiuchi, Kenta; Shibata, Masaru
2017-09-01
We performed general relativistic, long-term, axisymmetric neutrino radiation hydrodynamics simulations for the remnant formed after a binary neutron star merger, which consists of a massive neutron star and a torus surrounding it. As an initial condition, we employ the result derived in a three-dimensional, numerical relativity simulation for the binary neutron star merger. We investigate the properties of neutrino-driven ejecta. Due to the pair-annihilation heating, the dynamics of the neutrino-driven ejecta are significantly modified. The kinetic energy of the ejecta is about two times larger than that in the absence of pair-annihilation heating. This suggests that the pair-annihilation heating plays an important role in the evolution of merger remnants. The relativistic outflow, which is required for driving gamma-ray bursts, is not observed because the specific heating rate around the rotational axis is not sufficiently high, due to the baryon loading caused by the neutrino-driven ejecta from the massive neutron star. We discuss the condition for launching the relativistic outflow and the nucleosynthesis in the ejecta.
NASA Astrophysics Data System (ADS)
van Wyk, Pieter; Tajima, Hiroyuki; Inotani, Daisuke; Ohnishi, Akira; Ohashi, Yoji
2018-01-01
We propose a theoretical idea to use an ultracold Fermi gas as a quantum simulator for the study of the low-density region of a neutron-star interior. Our idea is different from the standard quantum simulator that heads for perfect replication of another system, such as the Hubbard model discussed in high-Tc cuprates. Instead, we use the similarity between two systems and theoretically make up for the difference between them. That is, (1) we first show that the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR) can quantitatively explain the recent experiment on the equation of state (EoS) in a 6Li superfluid Fermi gas in the BCS (Bardeen-Cooper-Schrieffer) unitary limit far below the superfluid phase-transition temperature Tc. This region is considered to be very similar to the low-density region (crust regime) of a neutron star (where a nearly unitary s -wave neutron superfluid is expected). (2) We then theoretically compensate the difference that, while the effective range reff is negligibly small in a superfluid 6Li Fermi gas, it cannot be ignored (reff=2.7 fm) in a neutron star, by extending the NSR theory to include effects of reff. The calculated EoS when reff=2.7 fm is shown to agree well with the previous neutron-star EoS in the low-density region predicted in nuclear physics. Our idea indicates that an ultracold atomic gas may more flexibly be used as a quantum simulator for the study of other complicated quantum many-body systems, when we use not only the experimental high tunability, but also the recent theoretical development in this field. Since it is difficult to directly observe a neutron-star interior, our idea would provide a useful approach to the exploration for this mysterious astronomical object.
1970-08-09
The C-140 JetStar was reconfigured as the General Purpose Airborne Simulator (GPAS) to simulate the flight characteristics of other aircraft. The JetStar was used for research for supersonic transports, general aviation aircraft, and as a training support aircraft for the Space Shuttle Approach and Landing tests at Dryden Flight Research Center (under different names) at Edwards, CA, in 1977. One of the engineers on the GPAS program was Ken Szalai, who later became Dryden's director from 1990 to August 1998.
NASA Astrophysics Data System (ADS)
Krause, M.; Fierlinger, K.; Diehl, R.; Burkert, A.; Voss, R.; Ziegler, U.
2013-02-01
Context. Massive stars influence their environment through stellar winds, ionising radiation, and supernova explosions. This is signified by observed interstellar bubbles. Such feedback is an important factor for galaxy evolution theory and galactic wind models. The efficiency of the energy injection into the interstellar medium (ISM) via bubbles and superbubbles is uncertain, and is usually treated as a free parameter for galaxy scale effects. In particular, since many stars are born in groups, it is interesting to study the dependence of the effective energy injection on the concentration of the stars. Aims: We aim to reproduce observations of superbubbles, their relation to the energy injection of the parent stars, and to understand their effective energy input into the ISM, as a function of the spatial configuration of the group of parent stars. Methods: We study the evolution of isolated and merging interstellar bubbles of three stars (25, 32, and 60 M⊙) in a homogeneous background medium with a density of 10mp cm-3 via 3D-hydrodynamic simulations with standard ISM thermodynamics (optically thin radiative cooling and photo-electric heating) and time-dependent energy and mass input according to stellar evolutionary tracks. We vary the position of the three stars relative to each other to compare the energy response for cases of isolated, merging and initially cospatial bubbles. Results: Mainly due to the Vishniac instability, our simulated bubbles develop thick shells and filamentary internal structures in column density. The shell widths reach tens of per cent of the outer bubble radius, which compares favourably to observations. More energy is retained in the ISM for more closely packed groups, by up to a factor of three and typically a factor of two for intermediate times after the first supernova. Once the superbubble is established, different positions of the contained stars make only a minor difference to the energy tracks. For our case of three massive stars, the energy deposition varies only very little for distances up to about 30 pc between the stars. Energy injected by supernovae is entirely dissipated in a superbubble on a timescale of about 1 Myr, which increases slightly with the superbubble size at the time of the explosion. Conclusions: The Vishniac instability may be responsible for the broadening of the shells of interstellar bubbles. Massive star winds are significant energetically due to their - in the long run - more efficient, steady energy injection and because they evacuate the space around the massive stars. For larger scale simulations, the feedback effect of close groups of stars or clusters may be subsumed into one effective energy input with insignificant loss of energy accuracy. The movie associated to Fig. 3 is available at http://www.aanda.org
The Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE
NASA Astrophysics Data System (ADS)
Vandenbroucke, B.; Wood, K.
2018-04-01
We present the public Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE, which can be used to simulate the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given type, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code, but also as a moving-mesh code.
NASA Astrophysics Data System (ADS)
Stoeckel, Gerhard P.; Doyle, Keith B.
2017-08-01
The Transiting Exoplanet Survey Satellite (TESS) is an instrument consisting of four, wide fieldof- view CCD cameras dedicated to the discovery of exoplanets around the brightest stars, and understanding the diversity of planets and planetary systems in our galaxy. Each camera utilizes a seven-element lens assembly with low-power and low-noise CCD electronics. Advanced multivariable optimization and numerical simulation capabilities accommodating arbitrarily complex objective functions have been added to the internally developed Lincoln Laboratory Integrated Modeling and Analysis Software (LLIMAS) and used to assess system performance. Various optical phenomena are accounted for in these analyses including full dn/dT spatial distributions in lenses and charge diffusion in the CCD electronics. These capabilities are utilized to design CCD shims for thermal vacuum chamber testing and flight, and verify comparable performance in both environments across a range of wavelengths, field points and temperature distributions. Additionally, optimizations and simulations are used for model correlation and robustness optimizations.
Probing LSST's Ability to Detect Planets Around White Dwarfs
NASA Astrophysics Data System (ADS)
Cortes, Jorge; Kipping, David
2018-01-01
Over the last four years more than 2,000 planets outside our solar system have been discovered, motivating us to search for and characterize potentially habitable worlds. Most planets orbit Sun-like stars, but more exotic stars can also host planets. Debris disks and disintegrating planetary bodies have been detected around white dwarf stars, the inert, Earth-sized cores of once-thriving stars like our Sun. These detections are clues that planets may exist around white dwarfs. Due to the faintness of white dwarfs and the potential rarity of planets around them, a vast survey is required to have a chance at detecting these planetary systems. The Large Synoptic Survey Telescope (LSST), scheduled to commence operations in 2023, will image the entire southern sky every few nights for 10 years, providing our first real opportunity to detect planets around white dwarfs. We characterized LSST’s ability to detect planets around white dwarfs through simulations that incorporate realistic models for LSST’s observing strategy and the white dwarf distribution within the Milky Way galaxy. This was done through the use of LSST's Operations Simulator (OpSim) and Catalog Simulator (CatSim). Our preliminary results indicate that, if all white dwarfs were to possess a planet, LSST would yield a detection for every 100 observed white dwarfs. In the future, a larger set of ongoing simulations will help us quantify the number of planets LSST could potentially find.
Connecting the large- and the small-scale magnetic fields of solar-like stars
NASA Astrophysics Data System (ADS)
Lehmann, L. T.; Jardine, M. M.; Mackay, D. H.; Vidotto, A. A.
2018-05-01
A key question in understanding the observed magnetic field topologies of cool stars is the link between the small- and the large-scale magnetic field and the influence of the stellar parameters on the magnetic field topology. We examine various simulated stars to connect the small-scale with the observable large-scale field. The highly resolved 3D simulations we used couple a flux transport model with a non-potential coronal model using a magnetofrictional technique. The surface magnetic field of these simulations is decomposed into spherical harmonics which enables us to analyse the magnetic field topologies on a wide range of length scales and to filter the large-scale magnetic field for a direct comparison with the observations. We show that the large-scale field of the self-consistent simulations fits the observed solar-like stars and is mainly set up by the global dipolar field and the large-scale properties of the flux pattern, e.g. the averaged latitudinal position of the emerging small-scale field and its global polarity pattern. The stellar parameters flux emergence rate, differential rotation and meridional flow affect the large-scale magnetic field topology. An increased flux emergence rate increases the magnetic flux in all field components and an increased differential rotation increases the toroidal field fraction by decreasing the poloidal field. The meridional flow affects the distribution of the magnetic energy across the spherical harmonic modes.
NASA Astrophysics Data System (ADS)
Majczyna, A.; Madej, J.; Różańska, A.; Należyty, M.
2017-06-01
We present a simulation of an X-ray spectrum of a hot neutron star, as would be seen by the LAD detector on board of LOFT satellite. We also compute a grid of theoretical spectra corresponding to a range of effective temperatures Teff and surface gravities log g with values corresponding to compact stars in Type I X-ray bursters. A neutron star with the mass M=1.64 M⊙ and the radius R=11.95 km (which yields the surface gravity log g=14.30 [cgs] and the surface redshift z=0.30) is used in simulation. Accuracy of mass and radius determination by fitting theoretical spectra to the observed one is found to be M=1.64+0.16-0.02 M⊙ and R=11.95+1.57-0.40 km (2σ). The confidence contours for these two variables are narrow but elongated, and therefore the resulting constraints on the EOS cannot be strong. Note, that in this paper we aim to discuss error contours of NS mass and radius, whereas discussion of EOS is beyond the scope of this work.
The Origin of the Relation between Metallicity and Size in Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Sánchez Almeida, J.; Dalla Vecchia, C.
2018-06-01
For the same stellar mass, physically smaller star-forming galaxies are also metal richer. What causes the relation remains unclear. The central star-forming galaxies in the EAGLE cosmological numerical simulation reproduce the observed trend. We use them to explore the origin of the relation assuming that the physical mechanism responsible for the anticorrelation between size and gas-phase metallicity is the same in the simulated and the observed galaxies. We consider the three most likely causes: (1) metal-poor gas inflows feeding the star formation (SF) process, (2) metal-rich gas outflows particularly efficient in shallow gravitational potentials, and (3) enhanced efficiency of the SF process in compact galaxies. Outflows (cause 2) and enhanced SF efficiency (cause 3) can be discarded. Metal-poor gas inflows (cause 1) produce the correlation in the simulated galaxies. Galaxies grow in size with time, so those that receive gas later are both metal poorer and larger, giving rise to the observed anticorrelation. As expected within this explanation, larger galaxies have younger stellar populations. We explore the variation with redshift of the relation, which is maintained up to, at least, redshift 8.
The First Stars: A Low-Mass Formation Mode
NASA Technical Reports Server (NTRS)
Stacy, Athena; Bromm, Volker
2014-01-01
We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densities. The simulations resolve scales as small as approx. 1 AU, corresponding to gas densities of 10(exp 16)/cu cm. Using sink particles to represent the growing protostars, we evolve the stellar system for the next 5000 yr. We find that this emerging stellar group accretes at an unusually low rate compared with minihalos which form at earlier times (z = 20-30), or with lower baryonic angular momentum. The stars in this unusual system will likely reach masses ranging from <1Stellar Mass to approx. 5 Stellar Mass by the end of their main-sequence lifetimes, placing them in the mass range for which stars will undergo an asymptotic giant branch (AGB) phase. Based upon the simulation, we predict the rare existence of Population III stars that have survived to the present day and have been enriched by mass overflow from a previous AGB companion.
Relative-Motion Sensors and Actuators for Two Optical Tables
NASA Technical Reports Server (NTRS)
Gursel, Yekta; McKenney, Elizabeth
2004-01-01
Optoelectronic sensors and magnetic actuators have been developed as parts of a system for controlling the relative position and attitude of two massive optical tables that float on separate standard air suspensions that attenuate ground vibrations. In the specific application for which these sensors and actuators were developed, one of the optical tables holds an optical system that mimics distant stars, while the other optical table holds a test article that simulates a spaceborne stellar interferometer that would be used to observe the stars. The control system is designed to suppress relative motion of the tables or, on demand, to impose controlled relative motion between the tables. The control system includes a sensor system that detects relative motion of the tables in six independent degrees of freedom and a drive system that can apply force to the star-simulator table in the six degrees of freedom. The sensor system includes (1) a set of laser heterodyne gauges and (2) a set of four diode lasers on the star-simulator table, each aimed at one of four quadrant photodiodes at nominal corresponding positions on the test-article table. The heterodyne gauges are used to measure relative displacements along the x axis.
NASA Astrophysics Data System (ADS)
Caplan, Matthew E.
Recent work has used large scale molecular dynamics simulations to study the structures and phases of matter in the crusts of neutron stars, with an emphasis on applying techniques in material science to the study of astronomical objects. In the outer crust of an accreting neutron star, a mixture of heavy elements forms following an X-ray burst, which is buried and freezes. We will discuss the phase separation of this mixture, and the composition of the crust that forms. Additionally, calculations of the properties of the crust, such as diffusion coefficients and static structure factors, may be used to interpret observations. Deeper in the neutron star crust, at the base of the inner crust, nuclei are compressed until they touch and form structures which have come to be called 'nuclear pasta.' We study the phases of nuclear pasta with classical molecular dynamics simulations, and discuss how simulations at low density may be relevant to nucleosynthesis in neutron star mergers. Additionally, we discuss the structure factor of nuclear pasta and its impact on the properties of the crust, and use this to interpret observations of crust cooling in low mass X-ray binaries. Lastly, we discuss a correspondence between the structure of nuclear pasta and biophysics.
A computer-aided telescope pointing system utilizing a video star tracker
NASA Technical Reports Server (NTRS)
Murphy, J. P.; Lorell, K. R.; Swift, C. D.
1975-01-01
The Video Inertial Pointing (VIP) System developed to satisfy the acquisition and pointing requirements of astronomical telescopes is described. A unique feature of the system is the use of a single sensor to provide information for the generation of three axis pointing error signals and for a cathode ray tube (CRT) display of the star field. The pointing error signals are used to update the telescope's gyro stabilization and the CRT display is used by an operator to facilitate target acquisition and to aid in manual positioning of the telescope optical axis. A model of the system using a low light level vidicon built and flown on a balloon-borne infrared telescope is briefly described from a state of the art charge coupled device (CCD) sensor. The advanced system hardware is described and an analysis of the multi-star tracking and three axis error signal generation, along with an analysis and design of the gyro update filter, are presented. Results of a hybrid simulation are described in which the advanced VIP system hardware is driven by a digital simulation of the star field/CCD sensor and an analog simulation of the telescope and gyro stabilization dynamics.
Detectability of the first cosmic explosions
NASA Astrophysics Data System (ADS)
de Souza, R. S.; Ishida, E. E. O.; Johnson, J. L.; Whalen, D. J.; Mesinger, A.
2013-12-01
We present a fully self-consistent simulation of a synthetic survey of the furthermost cosmic explosions. The appearance of the first generation of stars (Population III) in the Universe represents a critical point during cosmic evolution, signalling the end of the dark ages, a period of absence of light sources. Despite their importance, there is no confirmed detection of Population III stars so far. A fraction of these primordial stars are expected to die as pair-instability supernovae (PISNe), and should be bright enough to be observed up to a few hundred million years after the big bang. While the quest for Population III stars continues, detailed theoretical models and computer simulations serve as a testbed for their observability. With the upcoming near-infrared missions, estimates of the feasibility of detecting PISNe are not only timely but imperative. To address this problem, we combine state-of-the-art cosmological and radiative simulations into a complete and self-consistent framework, which includes detailed features of the observational process. We show that a dedicated observational strategy using ≲ 8 per cent of the total allocation time of the James Webb Space Telescope mission can provide us with up to ˜9-15 detectable PISNe per year.
HOW THE FIRST STARS SHAPED THE FAINTEST GAS-DOMINATED DWARF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbeke, R.; Vandenbroucke, B.; Rijcke, S. De, E-mail: robbert.verbeke@UGent.be
2015-12-20
Low-mass dwarf galaxies are very sensitive test-beds for theories of cosmic structure formation since their weak gravitational fields allow the effects of the relevant physical processes to clearly stand out. Up to now, no unified account has existed of the sometimes seemingly conflicting properties of the faintest isolated dwarfs in and around the Local Group, such as Leo T and the recently discovered Leo P and Pisces A systems. Using new numerical simulations, we show that this serious challenge to our understanding of galaxy formation can be effectively resolved by taking into account the regulating influence of the ultraviolet radiation of themore » first population of stars on a dwarf’s star formation rate while otherwise staying within the standard cosmological paradigm for structure formation. These simulations produce faint, gas-dominated, star-forming dwarf galaxies that lie on the baryonic Tully–Fisher relation and that successfully reproduce a broad range of chemical, kinematical, and structural observables of real late-type dwarf galaxies. Furthermore, we stress the importance of obtaining properties of simulated galaxies in a manner as close as possible to the typically employed observational techniques.« less
The first H II regions in the universe
NASA Astrophysics Data System (ADS)
Whalen, Daniel James
State of the art simulations of primordial star formation suggest that the first stars in the universe were likely very massive, from 30 to 300 solar masses. These metal-free, Population III stars were prodigious sources of ionizing UV radiation that permeated the early intergalactic medium (IGM). As agents of early reionization, Pop III stars likely contributed to the cosmic free electrons recently observed at high redshifts by the WMAP satellite. However, until recently it was unknown what percentage of ionizing photons escaped the cosmological minihalos hosting these luminous objects, seriously hampering the power of large scale reionization calculations to predict the optical depths to electron scattering revealed by WMAP. UV escape from high-redshift minihalos crucially depends on the radiation hydrodynamics of ionization front transitions deep within the halos. I describe a multistep integration scheme for radiative transfer and reactive flow hydrodynamics developed for the accurate propagation of I-fronts and ionized flows from UV point sources or plane waves in cosmological simulations. The algorithm is a photon-conserving method which correctly tracks the position of I-fronts at much lower resolutions than non-conservative techniques. The method applies direct hierarchical updates to ionic species, bypassing the need for the costly matrix solutions required by implicit updates while retaining sufficient accuracy to capture the true evolution of the fronts. This radiation-matter coupling scheme is a significant advance beyond the radiative transfer performed in static media that is the current industry standard in cosmological reionization simulations. I review the major analytical and numerical studies of H II regions performed to date as well as the physics of ionization fronts in uniform and stratified media. My algorithm development greatly benefited from some recent analyses of I-front evolution in radially-symmetric power-law envelopes. These studies provided benchmarks that became severe tests of my code's accuracy. I present tests of I-front propagation in both static and hydrodynamical media, in both constant and radial density gradients. The code converges to the proper results with grid resolution and exhibits excellent agreement with theory in the density gradients most likely to be encountered in cosmological simulations. I next describe 1D radiation-hydrodynamical calculations of UV escape from minihalo density profiles taken from adaptive mesh refinement calculations of first star formation. These simulations demonstrate that in excess of 90% of the ionizing photons will exit the halo if the central star is greater than 80 solar masses, and that the final H II regions range from 2000 pc to 5000 pc in radius for 80 [Special characters omitted.] < M star < 500 [Special characters omitted.] . Of equal interest, they show the rise of shocked ionized flows capable of ejecting half of the baryons from the halo over the main sequence lifetime of the star, with important consequences to chemical enrichment of the early IGM and subsequent star formation. Finally, I detail the first three-dimensional massively parallel simulations of I-front instabilities ever performed. This suite is a survey of the morphological features we expect to arise in 3D minihalo evaporation studies currently in progress. Our numerical work has uncovered important evolutionary departures from earlier 2D work that may be due to the higher dimensionality of our 3D flows. I-front instabilities in high-redshift minihalos may have serious impact on the escape of metals into the early universe as well as foster the formation of the second generation of stars.
Massive-Star Magnetospheres: Now in 3-D!
NASA Astrophysics Data System (ADS)
Townsend, Richard
Magnetic fields are unexpected in massive stars, due to the absence of a dynamo convection zone beneath their surface layers. Nevertheless, kilogauss-strength, ordered fields were detected in a small subset of these stars over three decades ago, and the intervening years have witnessed the steady expansion of this subset. A distinctive feature of magnetic massive stars is that they harbor magnetospheres --- circumstellar environments where the magnetic field interacts strongly with the star's radiation-driven wind, confining it and channelling it into energetic shocks. A wide range of observational signatures are associated with these magnetospheres, in diagnostics ranging from X-rays all the way through to radio emission. Moreover, these magnetospheres can play an important role in massive-star evolution, by amplifying angular momentum loss in the wind. Recent progress in understanding massive-star magnetospheres has largely been driven by magnetohydrodynamical (MHD) simulations. However, these have been restricted to two- dimensional axisymmetric configurations, with three-dimensional configurations possible only in certain special cases. These restrictions are limiting further progress; we therefore propose to develop completely general three-dimensional models for the magnetospheres of massive stars, on the one hand to understand their observational properties and exploit them as plasma-physics laboratories, and on the other to gain a comprehensive understanding of how they influence the evolution of their host star. For weak- and intermediate-field stars, the models will be based on 3-D MHD simulations using a modified version of the ZEUS-MP code. For strong-field stars, we will extend our existing Rigid Field Hydrodynamics (RFHD) code to handle completely arbitrary field topologies. To explore a putative 'photoionization-moderated mass loss' mechanism for massive-star magnetospheres, we will also further develop a photoionization code we have recently prototyped. Simulation data from these codes will be used to synthesize observables, suitable for comparison with datasets from ground- and space-based facilities. Project results will be disseminated in the form of journal papers, presentations, data and visualizations, to facilitate the broad communication of our results. In addition, we will release the project codes under an open- source license, to encourage other groups' involvement in modeling massive-star magnetospheres. Through furthering our insights into these magnetospheres, the project is congruous with NASA's Strategic Goal 2, 'Expand scientific understanding of the Earth and the universe in which we live'. By making testable predictions of X-ray emission and UV line profiles, it is naturally synergistic with observational studies of magnetic massive stars using NASA's ROSAT, Chandra, IUE and FUSE missions. By exploring magnetic braking, it will have a direct impact on theoretical predictions of collapsar yields, and thereby help drive forward the analysis and interpretation of gamma-ray burst observations by NASA's Swift and Fermi missions. And, through its general contribution toward understanding the lifecycle of massive stars, the project will complement the past, present and future investments in studying these stars using NASA's other space-based observatories.
Predicting Instability Timescales in Closely-Packed Planetary Systems
NASA Astrophysics Data System (ADS)
Tamayo, Daniel; Hadden, Samuel; Hussain, Naireen; Silburt, Ari; Gilbertson, Christian; Rein, Hanno; Menou, Kristen
2018-04-01
Many of the multi-planet systems discovered around other stars are maximally packed. This implies that simulations with masses or orbital parameters too far from the actual values will destabilize on short timescales; thus, long-term dynamics allows one to constrain the orbital architectures of many closely packed multi-planet systems. A central challenge in such efforts is the large computational cost of N-body simulations, which preclude a full survey of the high-dimensional parameter space of orbital architectures allowed by observations. I will present our recent successes in training machine learning models capable of reliably predicting orbital stability a million times faster than N-body simulations. By engineering dynamically relevant features that we feed to a gradient-boosted decision tree algorithm (XGBoost), we are able to achieve a precision and recall of 90% on a holdout test set of N-body simulations. This opens a wide discovery space for characterizing new exoplanet discoveries and for elucidating how orbital architectures evolve through time as the next generation of spaceborne exoplanet surveys prepare for launch this year.
Simulation of the Francis-99 Hydro Turbine During Steady and Transient Operation
NASA Astrophysics Data System (ADS)
Dewan, Yuvraj; Custer, Chad; Ivashchenko, Artem
2017-01-01
Numerical simulation of the Francis-99 hydroturbine with correlation to experimental measurements are presented. Steady operation of the hydroturbine is analyzed at three operating conditions: the best efficiency point (BEP), high load (HL), and part load (PL). It is shown that global quantities such as net head, discharge and efficiency are well predicted. Additionally, time-averaged velocity predictions compare well with PIV measurements obtained in the draft tube immediately downstream of the runner. Differences in vortex rope structure between operating points are discussed. Unsteady operation of the hydroturbine from BEP to HL and from BEP to PL are modeled. It is shown that simulation methods used to model the steady operation produce predictions that correlate well with experiment for transient operation. Time-domain unsteady simulation is used for both steady and unsteady operation. The full-fidelity geometry including all components is meshed using an unstructured polyhedral mesh with body-fitted prism layers. Guide vane rotation for transient operation is imposed using fully-conservative, computationally efficient mesh morphing. The commercial solver STAR-CCM+ is used for all portions of the analysis including meshing, solving and post-processing.
Core-Collapse Supernovae Explored by Multi-D Boltzmann Hydrodynamic Simulations
NASA Astrophysics Data System (ADS)
Sumiyoshi, Kohsuke; Nagakura, Hiroki; Iwakami, Wakana; Furusawa, Shun; Matsufuru, Hideo; Imakura, Akira; Yamada, Shoichi
We report the latest results of numerical simulations of core-collapse supernovae by solving multi-D neutrino-radiation hydrodynamics with Boltzmann equations. One of the longstanding issues of the explosion mechanism of supernovae has been uncertainty in the approximations of the neutrino transfer in multi-D such as the diffusion approximation and ray-by-ray method. The neutrino transfer is essential, together with 2D/3D hydrodynamical instabilities, to evaluate the neutrino heating behind the shock wave for successful explosions and to predict the neutrino burst signals. We tackled this difficult problem by utilizing our solver of the 6D Boltzmann equation for neutrinos in 3D space and 3D neutrino momentum space coupled with multi-D hydrodynamics adding special and general relativistic extensions. We have performed a set of 2D core-collapse simulations from 11M ⊙ and 15M ⊙ stars on K-computer in Japan by following long-term evolution over 400 ms after bounce to reveal the outcome from the full Boltzmann hydrodynamic simulations with a sophisticated equation of state with multi-nuclear species and updated rates for electron captures on nuclei.
NASA Astrophysics Data System (ADS)
Kendrew, S.; Zieleniewski, S.; Houghton, R. C. W.; Thatte, N.; Devriendt, J.; Tecza, M.; Clarke, F.; O'Brien, K.; Häußler, B.
2016-05-01
We present a study into the capabilities of integrated and spatially resolved integral field spectroscopy of galaxies at z = 2-4 with the future HARMONI spectrograph for the European Extremely Large Telescope (E-ELT) using the simulation pipeline, HSIM. We focus particularly on the instrument's capabilities in stellar absorption line integral field spectroscopy, which will allow us to study the stellar kinematics and stellar population characteristics. Such measurements for star-forming and passive galaxies around the peak star formation era will provide a critical insight into the star formation, quenching and mass assembly history of high-z, and thus present-day galaxies. First, we perform a signal-to-noise study for passive galaxies at a range of stellar masses for z = 2-4, assuming different light profiles; for this population, we estimate that integrated stellar absorption line spectroscopy with HARMONI will be limited to galaxies with M* ≳ 1010.7 M⊙. Secondly, we use HSIM to perform a mock observation of a typical star-forming 1010 M⊙ galaxy at z = 3 generated from the high-resolution cosmological simulation NUTFB. We demonstrate that the input stellar kinematics of the simulated galaxy can be accurately recovered from the integrated spectrum in a 15-h observation, using common analysis tools. Whilst spatially resolved spectroscopy is likely to remain out of reach for this particular galaxy, we estimate HARMONI's performance limits in this regime from our findings. This study demonstrates how instrument simulators such as HSIM can be used to quantify instrument performance and study observational biases on kinematics retrieval; and shows the potential of making observational predictions from cosmological simulation output data.
NASA Astrophysics Data System (ADS)
Koleva, Mina; de Rijcke, Sven; Prugniel, Philippe; Zeilinger, Werner W.; Michielsen, Dolf
2009-07-01
We present optical Very Large Telescope spectroscopy of 16 dwarf elliptical galaxies (dEs) comparable in mass to NGC 205, and belonging to the Fornax cluster and to nearby groups of galaxies. Using full-spectrum fitting, we derive radial profiles of the SSP-equivalent ages and metallicities. We make a detailed analysis with ULYSS and STECKMAP of the star formation history in the core of the galaxies and in an aperture of one effective radius. We resolved the history into one to four epochs. The statistical significance of these reconstructions was carefully tested; the two programs give remarkably consistent results. The old stellar population of the dEs, which dominates their mass, is likely coeval with that of massive ellipticals or bulges, but the star formation efficiency is lower. Important intermediate age (1-5 Gyr) populations and frequently tails of star formation until recent times are detected. These histories are reminiscent of their lower mass dwarf spheroidal counterparts of the Local Group. Most galaxies (10/16) show significant metallicity gradients, with metallicity declining by 0.5 dex over one half-light radius on average. These gradients are already present in the old population. The flattened (or discy), rotating objects (6/16) have flat metallicity profiles. This may be consistent with a distinct origin for these galaxies or it may be due to their geometry. The central single stellar population equivalent age varies between 1 and 6 Gyr, with the age slowly increasing with radius in the vast majority of objects. The group and cluster galaxies have similar radial gradients and star formation histories. The strong and old metallicity gradients place important constraints on the possible formation scenarios of dEs. Numerical simulations of the formation of spherical low-mass galaxies reproduce these gradients, but they require a longer time for them to build up. A gentle depletion of the gas, by ram pressure stripping or starvation, could drive the gas-rich, star-forming progenitors to the present dEs.
Simulation and analyses of the aeroassist flight experiment attitude update method
NASA Technical Reports Server (NTRS)
Carpenter, J. R.
1991-01-01
A method which will be used to update the alignment of the Aeroassist Flight Experiment's Inertial Measuring Unit is simulated and analyzed. This method, the Star Line Maneuver, uses measurements from the Space Shuttle Orbiter star trackers along with an extended Kalman filter to estimate a correction to the attitude quaternion maintained by an Inertial Measuring Unit in the Orbiter's payload bay. This quaternion is corrupted by on-orbit bending of the Orbiter payload bay with respect to the Orbiter navigation base, which is incorporated into the payload quaternion when it is initialized via a direct transfer of the Orbiter attitude state. The method of updating this quaternion is examined through verification of baseline cases and Monte Carlo analysis using a simplified simulation, The simulation uses nominal state dynamics and measurement models from the Kalman filter as its real world models, and is programmed on Microvax minicomputer using Matlab, and interactive matrix analysis tool. Results are presented which confirm and augment previous performance studies, thereby enhancing confidence in the Star Line Maneuver design methodology.
Magnetic neutron star cooling and microphysics
NASA Astrophysics Data System (ADS)
Potekhin, A. Y.; Chabrier, G.
2018-01-01
Aims: We study the relative importance of several recent updates of microphysics input to the neutron star cooling theory and the effects brought about by superstrong magnetic fields of magnetars, including the effects of the Landau quantization in their crusts. Methods: We use a finite-difference code for simulation of neutron-star thermal evolution on timescales from hours to megayears with an updated microphysics input. The consideration of short timescales (≲1 yr) is made possible by a treatment of the heat-blanketing envelope without the quasistationary approximation inherent to its treatment in traditional neutron-star cooling codes. For the strongly magnetized neutron stars, we take into account the effects of Landau quantization on thermodynamic functions and thermal conductivities. We simulate cooling of ordinary neutron stars and magnetars with non-accreted and accreted crusts and compare the results with observations. Results: Suppression of radiative and conductive opacities in strongly quantizing magnetic fields and formation of a condensed radiating surface substantially enhance the photon luminosity at early ages, making the life of magnetars brighter but shorter. These effects together with the effect of strong proton superfluidity, which slows down the cooling of kiloyear-aged neutron stars, can explain thermal luminosities of about a half of magnetars without invoking heating mechanisms. Observed thermal luminosities of other magnetars are still higher than theoretical predictions, which implies heating, but the effects of quantizing magnetic fields and baryon superfluidity help to reduce the discrepancy.
Time-dependent Models of Magnetospheric Accretion onto Young Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, C. E.; Espaillat, C. C.; Owen, J. E.
Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that ifmore » the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.« less
Modeling Neutron stars as r-process sources in Ultra Faint Dwarf galaxies
NASA Astrophysics Data System (ADS)
Safarzadeh, Mohammadtaher; Scannapieco, Evan
2018-06-01
To explain the high observed abundances of r-process elements in local ultrafaint dwarf (UFD) galaxies, we perform cosmological zoom simulations that include r-process production from neutron star mergers (NSMs). We model star formation stochastically and simulate two different haloes with total masses ≈108 M⊙ at z = 6. We find that the final distribution of [Eu/H] versus [Fe/H] is relatively insensitive to the energy by which the r-process material is ejected into the interstellar medium, but strongly sensitive to the environment in which the NSM event occurs. In one halo, the NSM event takes place at the centre of the stellar distribution, leading to high levels of r-process enrichment such as seen in a local UFD, Reticulum II (Ret II). In a second halo, the NSM event takes place outside of the densest part of the galaxy, leading to a more extended r-process distribution. The subsequent star formation occurs in an interstellar medium with shallow levels of r-process enrichment that results in stars with low levels of [Eu/H] compared to Ret II stars even when the maximum possible r-process mass is assumed to be ejected. This suggests that the natal kicks of neutron stars may also play an important role in determining the r-process abundances in UFD galaxies, a topic that warrants further theoretical investigation.
Visible near-diffraction-limited lucky imaging with full-sky laser-assisted adaptive optics
NASA Astrophysics Data System (ADS)
Basden, A. G.
2014-08-01
Both lucky imaging techniques and adaptive optics require natural guide stars, limiting sky-coverage, even when laser guide stars are used. Lucky imaging techniques become less successful on larger telescopes unless adaptive optics is used, as the fraction of images obtained with well-behaved turbulence across the whole telescope pupil becomes vanishingly small. Here, we introduce a technique combining lucky imaging techniques with tomographic laser guide star adaptive optics systems on large telescopes. This technique does not require any natural guide star for the adaptive optics, and hence offers full sky-coverage adaptive optics correction. In addition, we introduce a new method for lucky image selection based on residual wavefront phase measurements from the adaptive optics wavefront sensors. We perform Monte Carlo modelling of this technique, and demonstrate I-band Strehl ratios of up to 35 per cent in 0.7 arcsec mean seeing conditions with 0.5 m deformable mirror pitch and full adaptive optics sky-coverage. We show that this technique is suitable for use with lucky imaging reference stars as faint as magnitude 18, and fainter if more advanced image selection and centring techniques are used.
Comparing cosmological hydrodynamic simulations with observations of high- redshift galaxy formation
NASA Astrophysics Data System (ADS)
Finlator, Kristian Markwart
We use cosmological hydrodynamic simulations to study the impact of outflows and radiative feedback on high-redshift galaxies. For outflows, we consider simulations that assume (i) no winds, (ii) a "constant-wind" model in which the mass-loading factor and outflow speed are constant, and (iii) "momentum-driven" winds in which both parameters vary smoothly with mass. In order to treat radiative feedback, we develop a moment-based radiative transfer technique that operates in both post-processing and coupled radiative hydrodynamic modes. We first ask how outflows impact the broadband spectral energy distributions (SEDs) of six observed reionization-epoch galaxies. Simulations reproduce five regardless of the outflow prescription, while the sixth suggests an unusually bursty star formation history. We conclude that (i) simulations broadly account for available constraints on reionization-epoch galaxies, (ii) individual SEDs do not constrain outflows, and (iii) SED comparisons efficiently isolate objects that challenge simulations. We next study how outflows impact the galaxy mass metallicity relation (MZR). Momentum-driven outflows uniquely reproduce observations at z = 2. In this scenario, galaxies obey two equilibria: (i) The rate at which a galaxy processes gas into stars and outflows tracks its inflow rate; and (ii) The gas enrichment rate owing to star formation balances the dilution rate owing to inflows. Combining these conditions indicates that the MZR is dominated by the (instantaneous) variation of outflows with mass, with more-massive galaxies driving less gas into outflows per unit stellar mass formed. Turning to radiative feedback, we use post-processing simulations to study the topology of reionization. Reionization begins in overdensities and then "leaks" directly into voids, with filaments reionizing last owing to their high density and low emissivity. This result conflicts with previous findings that voids ionize last. We argue that it owes to the uniqely-biased emissivity field produced by our star formation prescriptions, which have previously been shown to reproduce numerous post-reionization constraints. Finally, preliminary results from coupled radiative hydrodynamic simulations indicate that reionization suppresses the star formation rate density by at most 10-20% by z = 5. This is much less than previous estimates, which we attribute to our unique reionization topology although confirmation will have to await more detailed modeling.
LANES - LOCAL AREA NETWORK EXTENSIBLE SIMULATOR
NASA Technical Reports Server (NTRS)
Gibson, J.
1994-01-01
The Local Area Network Extensible Simulator (LANES) provides a method for simulating the performance of high speed local area network (LAN) technology. LANES was developed as a design and analysis tool for networking on board the Space Station. The load, network, link and physical layers of a layered network architecture are all modeled. LANES models to different lower-layer protocols, the Fiber Distributed Data Interface (FDDI) and the Star*Bus. The load and network layers are included in the model as a means of introducing upper-layer processing delays associated with message transmission; they do not model any particular protocols. FDDI is an American National Standard and an International Organization for Standardization (ISO) draft standard for a 100 megabit-per-second fiber-optic token ring. Specifications for the LANES model of FDDI are taken from the Draft Proposed American National Standard FDDI Token Ring Media Access Control (MAC), document number X3T9.5/83-16 Rev. 10, February 28, 1986. This is a mature document describing the FDDI media-access-control protocol. Star*Bus, also known as the Fiber Optic Demonstration System, is a protocol for a 100 megabit-per-second fiber-optic star-topology LAN. This protocol, along with a hardware prototype, was developed by Sperry Corporation under contract to NASA Goddard Space Flight Center as a candidate LAN protocol for the Space Station. LANES can be used to analyze performance of a networking system based on either FDDI or Star*Bus under a variety of loading conditions. Delays due to upper-layer processing can easily be nullified, allowing analysis of FDDI or Star*Bus as stand-alone protocols. LANES is a parameter-driven simulation; it provides considerable flexibility in specifying both protocol an run-time parameters. Code has been optimized for fast execution and detailed tracing facilities have been included. LANES was written in FORTRAN 77 for implementation on a DEC VAX under VMS 4.6. It consists of two programs, a simulation program and a user-interface program. The simulation program requires the SLAM II simulation library from Pritsker and Associates, W. Lafayette IN; the user interface is implemented using the Ingres database manager from Relational Technology, Inc. Information about running the simulation program without the user-interface program is contained in the documentation. The memory requirement is 129,024 bytes. LANES was developed in 1988.
Ma, Liheng; Bernelli-Zazzera, Franco; Jiang, Guangwen; Wang, Xingshu; Huang, Zongsheng; Qin, Shiqiao
2016-06-10
Under dynamic conditions, the centroiding accuracy of the motion-blurred star image decreases and the number of identified stars reduces, which leads to the degradation of the attitude accuracy of the star sensor. To improve the attitude accuracy, a region-confined restoration method, which concentrates on the noise removal and signal to noise ratio (SNR) improvement of the motion-blurred star images, is proposed for the star sensor under dynamic conditions. A multi-seed-region growing technique with the kinematic recursive model for star image motion is given to find the star image regions and to remove the noise. Subsequently, a restoration strategy is employed in the extracted regions, taking the time consumption and SNR improvement into consideration simultaneously. Simulation results indicate that the region-confined restoration method is effective in removing noise and improving the centroiding accuracy. The identification rate and the average number of identified stars in the experiments verify the advantages of the region-confined restoration method.
Resolving stellar populations with crowded field 3D spectroscopy
NASA Astrophysics Data System (ADS)
Kamann, S.; Wisotzki, L.; Roth, M. M.
2013-01-01
We describe a new method of extracting the spectra of stars from observations of crowded stellar fields with integral field spectroscopy (IFS). Our approach extends the well-established concept of crowded field photometry in images into the domain of 3-dimensional spectroscopic datacubes. The main features of our algorithm follow. (1) We assume that a high-fidelity input source catalogue already exists, e.g. from HST data, and that it is not needed to perform sophisticated source detection in the IFS data. (2) Source positions and properties of the point spread function (PSF) vary smoothly between spectral layers of the datacube, and these variations can be described by simple fitting functions. (3) The shape of the PSF can be adequately described by an analytical function. Even without isolated PSF calibrator stars we can therefore estimate the PSF by a model fit to the full ensemble of stars visible within the field of view. (4) By using sparse matrices to describe the sources, the problem of extracting the spectra of many stars simultaneously becomes computationally tractable. We present extensive performance and validation tests of our algorithm using realistic simulated datacubes that closely reproduce actual IFS observations of the central regions of Galactic globular clusters. We investigate the quality of the extracted spectra under the effects of crowding with respect to the resulting signal-to-noise ratios (S/N) and any possible changes in the continuum level, as well as with respect to absorption line spectral parameters, radial velocities, and equivalent widths. The main effect of blending between two nearby stars is a decrease in the S/N in their spectra. The effect increases with the crowding in the field in a way that the maximum number of stars with useful spectra is always ~0.2 per spatial resolution element. This balance breaks down when exceeding a total source density of one significantly detected star per resolution element. We also explore the effects of PSF mismatch and other systematics. We close with an outlook by applying our method to a simulated globular cluster observation with the upcoming MUSE instrument at the ESO-VLT. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA).
NASA Astrophysics Data System (ADS)
Ocvirk, Pierre; Gillet, Nicolas; Shapiro, Paul R.; Aubert, Dominique; Iliev, Ilian T.; Teyssier, Romain; Yepes, Gustavo; Choi, Jun-Hwan; Sullivan, David; Knebe, Alexander; Gottlöber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda; Stranex, Timothy
2016-12-01
Cosmic reionization by starlight from early galaxies affected their evolution, thereby impacting reionization itself. Star formation suppression, for example, may explain the observed underabundance of Local Group dwarfs relative to N-body predictions for cold dark matter. Reionization modelling requires simulating volumes large enough [˜ (100 Mpc)3] to sample reionization `patchiness', while resolving millions of galaxy sources above ˜108 M⊙ combining gravitational and gas dynamics with radiative transfer. Modelling the Local Group requires initial cosmological density fluctuations pre-selected to form the well-known structures of the Local Universe today. Cosmic Dawn (`CoDa') is the first such fully coupled, radiation-hydrodynamics simulation of reionization of the Local Universe. Our new hybrid CPU-GPU code, RAMSES-CUDATON, performs hundreds of radiative transfer and ionization rate-solver timesteps on the GPUs for each hydro-gravity timestep on the CPUs. CoDa simulated (91Mpc)3 with 40963 particles and cells, to redshift 4.23, on ORNL supercomputer Titan, utilizing 8192 cores and 8192 GPUs. Global reionization ended slightly later than observed. However, a simple temporal rescaling which brings the evolution of ionized fraction into agreement with observations also reconciles ionizing flux density, cosmic star formation history, CMB electron scattering optical depth and galaxy UV luminosity function with their observed values. Photoionization heating suppressed the star formation of haloes below ˜2 × 109 M⊙, decreasing the abundance of faint galaxies around MAB1600 = [-10, -12]. For most of reionization, star formation was dominated by haloes between 1010-1011 M⊙ , so low-mass halo suppression was not reflected by a distinct feature in the global star formation history. Intergalactic filaments display sheathed structures, with hot envelopes surrounding cooler cores, but do not self-shield, unlike regions denser than 100 <ρ>.
Hydrodynamic Interaction between the Be Star and the Pulsar in the TeV Binary PSR B1259-63/LS 2883
NASA Astrophysics Data System (ADS)
Okazaki, Atsuo T.; Nagataki, Shigehiro; Naito, Tsuguya; Kawachi, Akiko; Hayasaki, Kimitake; Owocki, Stanley P.; Takata, Jumpei
2011-08-01
We have been studying the interaction between the Be star and the pulsar in the TeV binary PSR B1259-63/LS 2883, using 3-D SPH simulations of the tidal and wind interactions in this Be-pulsar system. We first ran a simulation without pulsar wind nor Be wind, while taking into account only the gravitational effect of the pulsar on the Be disk. In this simulation, the gas particles are ejected at a constant rate from the equatorial surface of the Be star, which is tilted in a direction consistent with multi-waveband observations. We ran the simulation until the Be disk was fully developed and started to repeat a regular tidal interaction with the pulsar. Then, we turned on the pulsar wind and the Be wind. We ran two simulations with different wind mass-loss rates for the Be star, one for a B2 V type and the other for a significantly earlier spectral type. Although the global shape of the interaction surface between the pulsar wind and the Be wind agrees with the analytical solution, the effect of the pulsar wind on the Be disk is profound. The pulsar wind strips off an outer part of the Be disk, truncating the disk at a radius significantly smaller than the pulsar orbit. Our results, therefore, rule out the idea that the pulsar passes through the Be disk around periastron, which has been assumed in previous studies. It also turns out that the location of the contact discontinuity can be significantly different between phases when the pulsar wind directly hits the Be disk and those when the pulsar wind collides with the Be wind. It is thus important to adequately take into account the circumstellar environment of the Be star, in order to construct a satisfactory model for this prototypical TeV binary.
Supergiants and their shells in young globular clusters
NASA Astrophysics Data System (ADS)
Szécsi, Dorottya; Mackey, Jonathan; Langer, Norbert
2018-04-01
Context. Anomalous surface abundances are observed in a fraction of the low-mass stars of Galactic globular clusters, that may originate from hot-hydrogen-burning products ejected by a previous generation of massive stars. Aims: We aim to present and investigate a scenario in which the second generation of polluted low-mass stars can form in shells around cool supergiant stars within a young globular cluster. Methods: Simulations of low-metallicity massive stars (Mi 150-600 M⊙) show that both core-hydrogen-burning cool supergiants and hot ionizing stellar sources are expected to be present simulaneously in young globular clusters. Under these conditions, photoionization-confined shells form around the supergiants. We have simulated such a shell, investigated its stability and analysed its composition. Results: We find that the shell is gravitationally unstable on a timescale that is shorter than the lifetime of the supergiant, and the Bonnor-Ebert mass of the overdense regions is low enough to allow star formation. Since the low-mass stellar generation formed in this shell is made up of the material lost from the supergiant, its composition necessarily reflects the composition of the supergiant wind. We show that the wind contains hot-hydrogen-burning products, and that the shell-stars therefore have very similar abundance anomalies that are observed in the second generation stars of globular clusters. Considering the mass-budget required for the second generation star-formation, we offer two solutions. Either a top-heavy initial mass function is needed with an index of -1.71 to -2.07. Alternatively, we suggest the shell-stars to have a truncated mass distribution, and solve the mass budget problem by justifiably accounting for only a fraction of the first generation. Conclusions: Star-forming shells around cool supergiants could form the second generation of low-mass stars in Galactic globular clusters. Even without forming a photoionizaton-confined shell, the cool supergiant stars predicted at low-metallicity could contribute to the pollution of the interstellar medium of the cluster from which the second generation was born. Thus, the cool supergiant stars should be regarded as important contributors to the evolution of globular clusters.
Cassiopeia A: Supernova explosion and expansion simulations under strong asymmetry conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakhin, R. A., E-mail: yakhin.rafael@gmail.com; Rozanov, V. B.; Zmitrenko, N. V.
We propose a model for the explosion of a supernova and the expansion of its ejecta in the presence of a strong initial asymmetry (at the explosion time) in the central part of the star (core) and a possible smallscale asymmetry in the peripheral regions. The Chandra and NuSTAR observations of ejecta in the Cassiopeia A supernova remnant are analyzed. Based on our 1D and 2D numerical simulations performed using the DIANA and NUTCY codes, we propose a model for the explosion and expansion of ejecta that explains the observed experimental data where the materials initially located in the centralmore » region of the star end up on the periphery of the cloud of ejecta.« less
Cluster of Stars in Kepler Sight
2009-04-16
This image zooms into a small portion of NASA Kepler full field of view, an expansive, 100-square-degree patch of sky in our Milky Way galaxy. An eight-billion-year-old cluster of stars 13,000 light-years from Earth, called NGC 6791, can be seen in the image. Clusters are families of stars that form together out of the same gas cloud. This particular cluster is called an open cluster, because the stars are loosely bound and have started to spread out from each other. The area pictured is 0.2 percent of Kepler's full field of view, and shows hundreds of stars in the constellation Lyra. The image has been color-coded so that brighter stars appear white, and fainter stars, red. It is a 60-second exposure, taken on April 8, 2009, one day after the spacecraft's dust cover was jettisoned. Kepler was designed to hunt for planets like Earth. The mission will spend the next three-and-a-half years staring at the same stars, looking for periodic dips in brightness. Such dips occur when planets cross in front of their stars from our point of view in the galaxy, partially blocking the starlight. To achieve the level of precision needed to spot planets as small as Earth, Kepler's images are intentionally blurred slightly. This minimizes the number of saturated stars. Saturation, or "blooming," occurs when the brightest stars overload the individual pixels in the detectors, causing the signal to spill out into nearby pixels. http://photojournal.jpl.nasa.gov/catalog/PIA11986
Dynamics of Mass Transfer in Wide Symbiotic Systems
NASA Astrophysics Data System (ADS)
de Val-Borro, Miguel; Karovska, M.; Sasselov, D.
2010-01-01
We investigate the formation of accretion disks around the secondary in detached systems consisting of an Asymptotic Giant Branch (AGB) star and a compact accreting companion as a function of mass loss rate and orbital parameters. In particular, we study winds from late-type stars that are gravitationally focused by a companion in a wide binary system using hydrodynamical simulations. For a typical slow and massive wind from an evolved star there is a stream flow between the stars with accretion rates of a few percent of the mass loss from the primary. Mass transfer through a focused wind is an important mechanism for a broad range of interacting binary systems and can explain the formation of Barium stars and other chemically peculiar stars.
Nuclear pasta in protoneutron stars: simulations of neutrino emission from nucelar de-excitation
NASA Astrophysics Data System (ADS)
Witt, Matthew Charles; Newton, William
2017-01-01
Nuclear pasta is an exotic phase of matter with densities near ρ ≈ ρ0 = 1014 g cm-3 that consists of complex structures with geometries resembling spaghetti, lasagna, gnocchi, and other types of pasta. It is predicted to appear in the inner crust of neutron stars, protoneutron stars, and the collapsing cores of massive stars. It is hypothesized that nuclear pasta has a significant effect on transport and neutrino scattering properties of neutron and protoneutron stars. If this is true, then it is possible to find observational signatures of nuclear pasta. We present a calculation of neutrino emmissivity of pasta phases due to de-excitation of neutrons. We discuss observational implications on the neutrino signal of protoneutron stars.
The effects of magnetic fields and protostellar feedback on low-mass cluster formation
NASA Astrophysics Data System (ADS)
Cunningham, Andrew J.; Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.
2018-05-01
We present a large suite of simulations of the formation of low-mass star clusters. Our simulations include an extensive set of physical processes - magnetohydrodynamics, radiative transfer, and protostellar outflows - and span a wide range of virial parameters and magnetic field strengths. Comparing the outcomes of our simulations to observations, we find that simulations remaining close to virial balance throughout their history produce star formation efficiencies and initial mass function (IMF) peaks that are stable in time and in reasonable agreement with observations. Our results indicate that small-scale dissipation effects near the protostellar surface provide a feedback loop for stabilizing the star formation efficiency. This is true regardless of whether the balance is maintained by input of energy from large-scale forcing or by strong magnetic fields that inhibit collapse. In contrast, simulations that leave virial balance and undergo runaway collapse form stars too efficiently and produce an IMF that becomes increasingly top heavy with time. In all cases, we find that the competition between magnetic flux advection towards the protostar and outward advection due to magnetic interchange instabilities, and the competition between turbulent amplification and reconnection close to newly formed protostars renders the local magnetic field structure insensitive to the strength of the large-scale field, ensuring that radiation is always more important than magnetic support in setting the fragmentation scale and thus the IMF peak mass. The statistics of multiple stellar systems are similarly insensitive to variations in the initial conditions and generally agree with observations within the range of statistical uncertainty.
NASA Astrophysics Data System (ADS)
Sourie, A.; Chamel, N.; Novak, J.; Oertel, M.
2017-02-01
In this paper, we study in detail the role of general relativity on the global dynamics of giant pulsar glitches as exemplified by Vela. For this purpose, we carry out numerical simulations of the spin up triggered by the sudden unpinning of superfluid vortices. In particular, we compute the exchange of angular momentum between the core neutron superfluid and the rest of the star within a two-fluid model including both (non-dissipative) entrainment effects and (dissipative) mutual friction forces. Our simulations are based on a quasi-stationary approach using realistic equations of state (EoSs). We show that the evolution of the angular velocities of both fluids can be accurately described by an exponential law. The associated characteristic rise time τr, which can be precisely computed from stationary configurations only, has a form similar to that obtained in the Newtonian limit. However, general relativity changes the structure of the star and leads to additional couplings between the fluids due to frame-dragging effects. As a consequence, general relativity can have a large impact on the actual value of τr: the errors incurred by using Newtonian gravity are thus found to be as large as ˜40 per cent for the models considered. Values of the rise time are calculated for Vela and compared with current observational limits. Finally, we study the amount of gravitational waves emitted during a glitch. Simple expressions are obtained for the corresponding characteristic amplitudes and frequencies. The detectability of glitches through gravitational wave observatories is briefly discussed.
Changes in orientation and shape of protoplanetary discs moving through an ambient medium
NASA Astrophysics Data System (ADS)
Wijnen, T. P. G.; Pelupessy, F. I.; Pols, O. R.; Portegies Zwart, S.
2017-08-01
Misalignments between the orbital planes of planets and the equatorial planes of their host stars have been observed in our solar system, in transiting exoplanets, and for the orbital planes of debris discs. We present a mechanism that causes such a spin-orbit misalignment for a protoplanetary disc due to its movement through an ambient medium. Our physical explanation of the mechanism is based on the theoretical solutions to the Stark problem. We test this idea by performing self-consistent hydrodynamical simulations and simplified gravitational N-body simulations. The N-body model reduces the mechanism to the relevant physical processes. The hydrodynamical simulations show the mechanism in its full extent, including gas-dynamical and viscous processes in the disc which are not included in the theoretical framework. We find that a protoplanetary disc embedded in a flow changes its orientation as its angular momentum vector tends to align parallel to the relative velocity vector. Due to the force exerted by the flow, orbits in the disc become eccentric, which produces a net torque and consequentially changes the orbital inclination. The tilting of the disc causes it to contract. Apart from becoming lopsided, the gaseous disc also forms a spiral arm even if the inclination does not change substantially. The process is most effective at high velocities and observational signatures are therefore mostly expected in massive star-forming regions and around winds or supernova ejecta. Our N-body model indicates that the interaction with supernova ejecta is a viable explanation for the observed spin-orbit misalignment in our solar system.
THE DARK HALO-SPHEROID CONSPIRACY AND THE ORIGIN OF ELLIPTICAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remus, Rhea-Silvia; Burkert, Andreas; Dolag, Klaus
2013-04-01
Dynamical modeling and strong-lensing data indicate that the total density profiles of early-type galaxies are close to isothermal, i.e., {rho}{sub tot}{proportional_to}r {sup {gamma}} with {gamma} Almost-Equal-To -2. To understand the origin of this universal slope we study a set of simulated spheroids formed in isolated binary mergers as well as the formation within the cosmological framework. The total stellar plus dark matter density profiles can always be described by a power law with an index of {gamma} Almost-Equal-To -2.1 with a tendency toward steeper slopes for more compact, lower-mass ellipticals. In the binary mergers the amount of gas involved inmore » the merger determines the precise steepness of the slope. This agrees with results from the cosmological simulations where ellipticals with steeper slopes have a higher fraction of stars formed in situ. Each gas-poor merger event evolves the slope toward {gamma} {approx} -2, once this slope is reached further merger events do not change it anymore. All our ellipticals have flat intrinsic combined stellar and dark matter velocity dispersion profiles. We conclude that flat velocity dispersion profiles and total density distributions with a slope of {gamma} {approx} -2 for the combined system of stars and dark matter act as a natural attractor. The variety of complex formation histories as present in cosmological simulations, including major as well as minor merger events, is essential to generate the full range of observed density slopes seen for present-day elliptical galaxies.« less
L(sub 1) Adaptive Control Design for NASA AirSTAR Flight Test Vehicle
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira; Zou, Xiaotian
2009-01-01
In this paper we present a new L(sub 1) adaptive control architecture that directly compensates for matched as well as unmatched system uncertainty. To evaluate the L(sub 1) adaptive controller, we take advantage of the flexible research environment with rapid prototyping and testing of control laws in the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. We apply the L(sub 1) adaptive control laws to the subscale turbine powered Generic Transport Model. The presented results are from a full nonlinear simulation of the Generic Transport Model and some preliminary pilot evaluations of the L(sub 1) adaptive control law.
Wang, Tzu-Yu; Fang, Che-Ming; Sheng, Yu-Jane; Tsao, Heng-Kwong
2009-03-28
The effects of macromolecular architecture on the osmotic pressure pi and virial coefficients (B(2) and B(3)) of star and comb polymers in good solvents are studied by dissipative particle dynamics simulations for both dilute and semiconcentrated regimes. The dependence of the osmotic pressure on polymer concentration is directly calculated by considering two reservoirs separated by a semipermeable, fictitious membrane. Our simulation results show that the ratios A(n+1) identical with B(n+1)/R(g)(3n) are essentially constant and A(2) and A(3) are arm number (f) dependent, where R(g) is zero-density radius of gyration. The value of dimensionless virial ratio g = A(3)/A(2)(2) increases with arm number of stars whereas it is essentially arm number independent for comb polymers. In semiconcentrated regime the scaling relation between osmotic pressure and volume fraction, pi proportional to phi(lambda), still holds for both star and comb polymers. For comb polymers, the exponent lambda is close to lambda(*) (approximately = 2.73 for linear chains) and is independent of the arm number. However, for star polymers, the exponent lambda deviates from lambda(*) and actually grows with increasing the arm number. This may be attributed to the significant ternary interactions near the star core in the many-arm systems.
Using Stars to Align a Steered Laser System for Cosmic Ray Simulation
NASA Astrophysics Data System (ADS)
Krantz, Harry; Wiencke, Lawrence
2016-03-01
Ultra high energy cosmic rays (UHECRs) are the highest energy cosmic particles with kinetic energy above 1018eV . UHECRs are detected from the air shower of secondary particles and UV florescence that results from interaction with the atmosphere. A high power UV laser beam can be used to simulate the optical signature of a UHCER air shower. The Global Light System (GLS) is a planned network of ground-based light sources including lasers to support the planned space-based Extreme Universe Space Observatory (EUSO). A portable prototype GLS laser station has been constructed at the Colorado School of Mines. Currently the laser system uses reference targets on the ground but stars can be used to better align the beam by providing a complete hemisphere of targets. In this work, a CCD camera is used to capture images of known stars through the steering head optics. The images are analyzed to find the steering head coordinates of the target star. The true coordinates of the star are calculated from the location and time of observation. A universal adjustment for the steering head is determined from the differences between the two pairs of coordinates across multiple stars. This laser system prototype will also be used for preflight tests of the ESUO Super Pressure Balloon mission.
Numerical simulations of downward convective overshooting in giants
NASA Astrophysics Data System (ADS)
Tian, Chun-Lin; Deng, Li-Cai; Chan, Kwing-Lam
2009-09-01
An attempt at understanding downward overshooting in the convective envelopes of post-main-sequence stars has been made on the basis of three-dimensional large-eddy simulations, using artificially modified OPAL opacity and taking into account radiation and ionization in the equation of state. Two types of star, an intermediate-mass star and a massive star, were considered. To avoid a long thermal relaxation time of the intermediate-mass star, we increased the stellar energy flux artificially while trying to maintain a structure close to the one given by a 1D stellar model. A parametric study of the flux factor was performed. For the massive star, no such process was necessary. Numerical results were analysed when the system reached the statistical steady state. It was shown that the penetration distance in pressure scaleheights is of the order of unity. The scaling relations between penetration distance, input flux and vertical velocity fluctuations studied by Singh et al. were checked. The anisotropy of the turbulent convection and the diffusion models of the third-order moments representing the non-local transport were also investigated. These models are dramatically affected by the velocity fields and no universal constant parameters seem to exist. The limitations of the numerical results were also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kieffer, T. Forrest; Bogdanović, Tamara, E-mail: tkieffer3@gatech.edu, E-mail: tamarab@gatech.edu
Observations have revealed a relative paucity of red giant (RG) stars within the central 0.5 pc in the Galactic Center (GC). Motivated by this finding we investigate the hypothesis that collisions of stars with a fragmenting accretion disk are responsible for the observed dearth of evolved stars. We use three-dimensional hydrodynamic simulations to model a star with radius 10 R {sub ⊙} and mass 1 M {sub ⊙}, representative of the missing population of RGs, colliding with high density clumps. We find that multiple collisions with clumps of column density ≳10{sup 8} g cm{sup −2} can strip a substantial fractionmore » of the star’s envelope and in principle render it invisible to observations. Simulations confirm that repeated impacts are particularly efficient in driving mass loss as partially stripped RGs expand and have increased cross sections for subsequent collisions. Because the envelope is unbound on account of the kinetic energy of the star, any significant amount of stripping of the RG population in the GC should be mirrored by a systematic decay of their orbits and possibly by their enhanced rotational velocity. To be viable, this scenario requires that the total mass of the fragmenting disk has been several orders of magnitude higher than that of the early-type stars which now form the stellar disk in the GC.« less
The origin of interstellar asteroidal objects like 1I/2017 U1 'Oumuamua
NASA Astrophysics Data System (ADS)
Zwart, S. Portegies; Torres, S.; Pelupessy, I.; Bédorf, J.; Cai, Maxwell X.
2018-05-01
We study the origin of the interstellar object 1I/2017 U1 'Oumuamua by juxtaposing estimates based on the observations with simulations. We speculate that objects like 'Oumuamua are formed in the debris disc as left over from the star and planet formation process, and subsequently liberated. The liberation process is mediated either by interaction with other stars in the parental star-cluster, by resonant interactions within the planetesimal disc or by the relatively sudden mass loss when the host star becomes a compact object. Integrating 'Oumuamua backward in time in the Galactic potential together with stars from the Gaia-TGAS catalogue we find that about 1.3 Myr ago 'Oumuamua passed the nearby star HIP 17288 within a mean distance of 1.3 pc. By comparing nearby observed L-dwarfs with simulations of the Galaxy we conclude that the kinematics of 'Oumuamua is consistent with relatively young objects of 1.1-1.7 Gyr. We just met 'Oumuamua by chance, and with a derived mean Galactic density of ˜3 × 105 similarly sized objects within 100 au from the Sun or ˜1014 per cubic parsec we expect about 2 to 12 such visitors per year within 1 au from the Sun.
Formation of ultra-compact dwarf galaxies from supergiant molecular clouds
NASA Astrophysics Data System (ADS)
Goodman, Morgan; Bekki, Kenji
2018-05-01
The origin of ultra-compact dwarf galaxies (UCDs) is not yet clear. One possible formation path of UCDs is the threshing of a nucleated elliptical dwarf galaxy (dE, N), however, it remains unclear how such massive nuclear stellar systems were formed in dwarf galaxies. To better establish the early history of UCDs, we investigate the formation of UCD progenitor clusters from super giant molecular clouds (SGMCs), using hydrodynamical simulations. In this study we focus on SGMCs with masses 107 - 108 M_{\\odot } that can form massive star clusters that display physical properties similar to UCDs. We find that the clusters have extended star formation histories with two phases, producing multiple distinct stellar populations, and that the star formation rate is dependent on the feedback effects of SNe and AGB stars. The later generations of stars formed in these clusters are more compact, leading to a clearly nested structure, and these stars will be more He-rich than those of the first generation, leading to a slight colour gradient. The simulated clusters demonstrate scaling relations between Reff and M and σv and M consistent with those observed in UCDs and strongly consistent with those of the original SGMC. We discuss whether SGMCs such as these can be formed through merging of self-gravitating molecular clouds in galaxies at high-z.
Killing Star Formation in Satellite Galaxies
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-08-01
When a dwarf galaxy falls into the halo of a large galaxy like the Milky Way, how is star formation in the dwarf affected? A collaboration led by Andrew Wetzel (California Institute of Technology and Carnegie Observatories) recently set out to answer this question using observations of nearby galaxies and simulations of the infall process. Observed Quenching: Isolated dwarf galaxies tend to be gas-rich and very actively star-forming. In contrast, most dwarf galaxies within 300 kpc of us (the Milky Way's virial radius) contain little or no cold gas, and they're quiescent: there's not much star formation happening. And this isn't just true of the Milky Way; we observe the same difference in the satellite galaxies surrounding Andromeda galaxy. Once a dwarf galaxy has moved into the gravitational realm of a larger galaxy, the satellite's gas vanishes rapidly and its star formation is shut off — but how, and on what timescale? The known dwarf galaxies in the Local Group (out to 1.6 Mpc) are plotted by their distance from their host vs. their stellar mass. Blue stars indicate actively star-forming dwarfs and red circles indicate quiescent ones. Credit: Wetzel et al. 2015. Timescales for Quiescence: To answer these questions, the authors explored the process of galaxy infall using Exploring the Local Volume in Simulations (ELVIS), a suite of cosmological N-body simulations intended to explore the Local Group. They combined the infall times from the simulations with observational knowledge of the fraction of nearby galaxies that are currently quiescent, in order to determine what timescales are required for different processes to deplete the gas in the dwarf galaxies and quench star formation. Based on their results, two types of quenching culprits are at work: gas consumption (where a galaxy simply uses up its immediate gas supply and doesn't have access to more) and gas stripping (where external forces like ram pressure remove gas from the galaxy). These processes operate at different rates for different sizes of galaxies. The authors argue that for galaxies with stellar mass larger than 109 solar masses, the primary means of quenching is gas consumption. The timescale for this mechanism to quench the largest galaxies is roughly 5 Gyr. For galaxies with stellar mass smaller than 109 solar masses, gas stripping takes over, and star-formation is quenched within 1 Gyr for the smallest galaxies. Neither quenching mechanisms operates efficiently for galaxies with stellar mass right around 109 solar masses, though, so these galaxies can sustain star formation for much longer. This could explain why the Magellanic clouds (which both have stellar mass of roughly 109 solar masses) are still star-forming despite being within the Milky Way's halo! Citation: Andrew R. Wetzel et al. 2015, ApJ, 808, L27. doi:10.1088/2041-8205/808/1/L27
Legacy ExtraGalactic UV Survey (LEGUS): The HST View of Star Formation in Nearby Galaxies
NASA Astrophysics Data System (ADS)
Calzetti, Daniela; Lee, J. C.; Adamo, A.; Aloisi, A.; Andrews, J. E.; Brown, T. M.; Chandar, R.; Christian, C. A.; Cignoni, M.; Clayton, G. C.; Da Silva, R. L.; de Mink, S. E.; Dobbs, C.; Elmegreen, B.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S.; Gouliermis, D.; Grebel, E.; Herrero-Davo`, A.; Hilbert, B.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R.; Kim, H.; Krumholz, M. R.; Lennon, D. J.; Martin, C. D.; Nair, P.; Nota, A.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Schaerer, D.; Schiminovich, D.; Smith, L. J.; Thilker, D. A.; Tosi, M.; Van Dyk, S. D.; Walterbos, R. A.; Whitmore, B. C.; Wofford, A.
2014-01-01
The Treasury program LEGUS (HST/GO-13364) is the first HST UV Atlas of nearby galaxies, and is aimed at the thorough investigation of star formation and its relation with galaxy environment, from the scales of individual stars to those of ~kpc clustered structures. The 154-orbits program is obtaining NUV,U,B,V,I images of 50 star-forming galaxies in the distance range 4-12 Mpc, covering the full range of morphology, star formation rate (SFR), mass, metallicity, internal structure, and interaction state found in the local Universe. The imaging survey will yield accurate recent (<50 Myr) star formation histories (SFHs) from resolved massive stars, and the extinction-corrected ages and masses of star clusters and associations. These extensive inventories of massive stars, clustered systems, and SFHs will be used to: (1) quantify how the clustering of star formation evolves both in space and in time; (2) discriminate among models of star cluster evolution; (3) investigate the effects of SFH on the UV SFR calibrations; (4) explore the impact of environment on star formation and cluster evolution across the full range of galactic and ISM properties. LEGUS observations will inform theories of star formation and galaxy evolution, and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of the clumpy star formation at high redshift. LEGUS will generate the most homogeneous high-resolution, wide-field UV dataset to date, building and expanding on the GALEX legacy. Data products that will be delivered to the community include: catalogs of massive stars and star clusters, catalogs of star cluster properties (ages, masses, extinction), and a one-stop shop for all the ancillary data available for this well-studied galaxy sample. LEGUS will provide the reference survey and the foundation for future observations with JWST and with ALMA. This abstract accompanies another one from the same project, and presents the status of the project, its structure, and the data products that will be delivered to the community; the other abstract presents the science goals of LEGUS and how these will be addressed by the HST observations.
The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes
NASA Technical Reports Server (NTRS)
Thompson, David J.
2010-01-01
Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.
An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors
Li, Jian; Wei, Xinguo; Zhang, Guangjun
2017-01-01
Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method. PMID:28825684
An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors.
Li, Jian; Wei, Xinguo; Zhang, Guangjun
2017-08-21
Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method.
Star Identification Without Attitude Knowledge: Testing with X-Ray Timing Experiment Data
NASA Technical Reports Server (NTRS)
Ketchum, Eleanor
1997-01-01
As the budget for the scientific exploration of space shrinks, the need for more autonomous spacecraft increases. For a spacecraft with a star tracker, the ability to determinate attitude from a lost in space state autonomously requires the capability to identify the stars in the field of view of the tracker. Although there have been efforts to produce autonomous star trackers which perform this function internally, many programs cannot afford these sensors. The author previously presented a method for identifying stars without a priori attitude knowledge specifically targeted for onboard computers as it minimizes the necessary computer storage. The method has previously been tested with simulated data. This paper provides results of star identification without a priori attitude knowledge using flight data from two 8 by 8 degree charge coupled device star trackers onboard the X-Ray Timing Experiment.
Dissertation Award in Nuclear Physics Recipient: Astromaterials in Neutron Stars
NASA Astrophysics Data System (ADS)
Caplan, Matthew E.
2017-09-01
Stars freeze. As they age and cool white dwarfs and neutron stars crystallize, with remarkable materials forming in their interiors. These `astromaterials' have structures similar to terrestrial crystalline solids and liquid crystals, though they are over a trillion times denser. Notably, because their material properties affect the observable properties of the star, astromaterials must be understood to interpret observations of neutron stars. Thus, astromaterial science can be thought of as an interdisciplinary field, using techniques from material science to study nuclear physics systems with astrophysical relevance. In this talk, I will discuss recent results from simulations of astromaterials and how we use these results to interpret observations of neutron stars in X-ray binaries. In addition, I will discuss how nuclear pasta, in neutron stars, forms structures remarkably similar to biophysical membranes seen in living organisms.
Condon, Joshua E; Jayaraman, Arthi
2017-10-04
Understanding the impact of incorporating new physical and chemical features in oligomeric DNA mimics, termed generally as "oligonucleic acids" (ONAs), on their structure and thermodynamics will be beneficial in designing novel materials for a variety of applications. In this work, we conduct coarse-grained molecular simulations of ONA-star polymer conjugates with varying ONA backbone flexibility, ONA backbone charge, and number of arms in the star polymer at a constant ONA strand volume fraction to elucidate the effect of these design parameters on the thermodynamics and assembly of multi-arm ONA-star polymer conjugates. We quantify the thermo-reversible behavior of the ONA-star polymer conjugates by quantifying the hybridization of the ONA strands in the system as a function of temperature (i.e. melting curve). Additionally, we characterize the assembly of the ONA-star polymer conjugates by tracking cluster formation and percolation as a function of temperature, as well as cluster size distribution at temperatures near the assembly transition region. The key results are as follows. The melting temperature (T m ) of the ONA strands decreases upon going from a neutral to a charged ONA backbone and upon increasing flexibility of the ONA backbone. Similar behavior is seen for the assembly transition temperature (T a ) with varying ONA backbone charge and flexibility. While the number of arms in the ONA-star polymer conjugate has a negligible effect on the ONA T m in these systems, as the number of ONA-star polymer arms increase, the assembly temperature T a increases and local ordering in the assembled state improves. By understanding how factors like ONA backbone charge, backbone flexibility, and ONA-star polymer conjugate architecture impact the behavior of ONA-star polymer conjugate systems, we can better inform how the selection of ONA chemistry will influence resulting ONA-star polymer assembly.
THE PROPERTIES OF DYNAMICALLY EJECTED RUNAWAY AND HYPER-RUNAWAY STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perets, Hagai B.; Subr, Ladislav
2012-06-01
Runaway stars are stars observed to have large peculiar velocities. Two mechanisms are thought to contribute to the ejection of runaway stars, both of which involve binarity (or higher multiplicity). In the binary supernova scenario, a runaway star receives its velocity when its binary massive companion explodes as a supernova (SN). In the alternative dynamical ejection scenario, runaway stars are formed through gravitational interactions between stars and binaries in dense, compact clusters or cluster cores. Here we study the ejection scenario. We make use of extensive N-body simulations of massive clusters, as well as analytic arguments, in order to characterizemore » the expected ejection velocity distribution of runaway stars. We find that the ejection velocity distribution of the fastest runaways (v {approx}> 80 km s{sup -1}) depends on the binary distribution in the cluster, consistent with our analytic toy model, whereas the distribution of lower velocity runaways appears independent of the binaries' properties. For a realistic log constant distribution of binary separations, we find the velocity distribution to follow a simple power law: {Gamma}(v){proportional_to}v{sup -8/3} for the high-velocity runaways and v{sup -3/2} for the low-velocity ones. We calculate the total expected ejection rates of runaway stars from our simulated massive clusters and explore their mass function and their binarity. The mass function of runaway stars is biased toward high masses and strongly depends on their velocity. The binarity of runaways is a decreasing function of their ejection velocity, with no binaries expected to be ejected with v > 150 km s{sup -1}. We also find that hyper-runaways with velocities of hundreds of km s{sup -1} can be dynamically ejected from stellar clusters, but only at very low rates, which cannot account for a significant fraction of the observed population of hyper-velocity stars in the Galactic halo.« less
Optimizing exoplanet transit searches
NASA Astrophysics Data System (ADS)
Herrero, E.; Ribas, I.; Jordi, C.
2013-05-01
Exoplanet searches using the transit technique are nowadays providing a great number of findings. Most exoplanet transit detection programs that are currently underway are focused on large catalogs of stars with no pre-selection. This necessarily makes such surveys quite inefficient, because huge amounts of data are processed for a relatively low transiting planet yield. In this work we investigate a method to increase the efficiency of a targeted exoplanet search with the transit technique by preselecting a subset of candidates from large catalogs of stars. Assuming spin-orbit alignment, this can be done by considering stars that have higher probability to be oriented nearly equator-on (inclination close to 90°). We use activity-rotation velocity relations for low-mass stars to study the dependence of the position in the activity - v sin(i) diagram on the stellar axis inclination. We compose a catalog of G-, K-, M-type main sequence simulated stars using isochrones, an isotropic inclination distribution and empirical relations to obtain their rotation periods and activity indexes. Then the activity-vsini diagram is filled and statistics are applied to trace the areas containing the higher ratio of stars with inclinations above 80°. A similar statistics is applied to stars from real catalogs with log(R'_{HK}) and v sin(i) data to find their probability of being equator-on. We present the method used to generate the simulated star catalog and the subsequent statistics to find the highly inclined stars from real catalogs using the activity-v sin(i) diagram. Several catalogs from the literature are analysed and a subsample of stars with the highest probability of being equator-on is presented. Assuming spin-orbit alignment, the efficiency of an exoplanet transit search in the resulting subsample of probably highly inclined stars is estimated to be two to three times higher than with a global search with no pre-selection.
NASA Astrophysics Data System (ADS)
Kruijssen, J. M. Diederik; Schruba, Andreas; Hygate, Alexander P. S.; Hu, Chia-Yu; Haydon, Daniel T.; Longmore, Steven N.
2018-05-01
The cloud-scale physics of star formation and feedback represent the main uncertainty in galaxy formation studies. Progress is hampered by the limited empirical constraints outside the restricted environment of the Local Group. In particular, the poorly-quantified time evolution of the molecular cloud lifecycle, star formation, and feedback obstructs robust predictions on the scales smaller than the disc scale height that are resolved in modern galaxy formation simulations. We present a new statistical method to derive the evolutionary timeline of molecular clouds and star-forming regions. By quantifying the excess or deficit of the gas-to-stellar flux ratio around peaks of gas or star formation tracer emission, we directly measure the relative rarity of these peaks, which allows us to derive their lifetimes. We present a step-by-step, quantitative description of the method and demonstrate its practical application. The method's accuracy is tested in nearly 300 experiments using simulated galaxy maps, showing that it is capable of constraining the molecular cloud lifetime and feedback time-scale to <0.1 dex precision. Access to the evolutionary timeline provides a variety of additional physical quantities, such as the cloud-scale star formation efficiency, the feedback outflow velocity, the mass loading factor, and the feedback energy or momentum coupling efficiencies to the ambient medium. We show that the results are robust for a wide variety of gas and star formation tracers, spatial resolutions, galaxy inclinations, and galaxy sizes. Finally, we demonstrate that our method can be applied out to high redshift (z≲ 4) with a feasible time investment on current large-scale observatories. This is a major shift from previous studies that constrained the physics of star formation and feedback in the immediate vicinity of the Sun.
NASA Astrophysics Data System (ADS)
Lanzano, Alexander
2016-10-01
Given recent discoveries there is a very real potential for tidally-locked Earth-like planets to exist orbiting M stars. To determine whether these planets may be habitable it is necessary to understand the nature of their atmospheres. In our investigation we simulate the evolution of present-day Earth while placed in tidally-locked orbit (meaning the same side of the planet always faces the star) around an M dwarf star. We are particularly interested in the evolution of the planet's ozone layer and whether it will shield the planet, and therefore life, from harmful radiation.To accomplish the above objectives we use a state-of-the-art 3-D terrestrial model, the Whole Atmosphere Community Climate Model (WACCM), which fully couples chemistry and climate, and therefore allows self-consistent simulations of atmospheric constituents and their effects on a planet's climate, surface radiation and thus habitability. Preliminary results show that this model is stable and that a tidally-locked Earth is protected from harmful UV radiation produced by G stars. The next step shall be to adapt this model for an M star by including its UV and visible spectrum.This investigation will both provide an insight into the potential for habitable exoplanets and further define the nature of the habitable zones for M class stars. We will also be able to narrow the definition of the habitable zones around distant stars, which will help us identify these planets in the future. Furthermore, this project will allow for a more thorough analysis of data from past and future exoplanet observing missions by defining the atmospheric composition of Earth-like planets around a variety of types of stars.
Radiation hydrodynamics of super star cluster formation
NASA Astrophysics Data System (ADS)
Tsang, Benny Tsz Ho; Milos Milosavljevic
2018-01-01
Throughout the history of the Universe, the nuclei of super star clusters represent the most active sites for star formation. The high densities of massive stars within the clusters produce intense radiation that imparts both energy and momentum on the surrounding star-forming gas. Theoretical claims based on idealized geometries have claimed the dominant role of radiation pressure in controlling the star formation activity within the clusters. In order for cluster formation simulations to be reliable, numerical schemes have to be able to model accurately the radiation flows through the gas clumps at the cluster nuclei with high density contrasts. With a hybrid Monte Carlo radiation transport module we developed, we performed 3D radiation hydrodynamical simulations of super star cluster formation in turbulent clouds. Furthermore, our Monte Carlo radiation treatment provides a native capability to produce synthetic observations, which allows us to predict observational indicators and to inform future observations. We found that radiation pressure has definite, but minor effects on limiting the gas supply for star formation, and the final mass of the most massive cluster is about one million solar masses. The ineffective forcing was due to the density variations inside the clusters, i.e. radiation takes the paths of low densities and avoids forcing on dense clumps. Compared to a radiation-free control run, we further found that the presence of radiation amplifies the density variations. The core of the resulting cluster has a high stellar density, about the threshold required for stellar collisions and merging. The very massive star that form from the stellar merging could continue to gain mass from the surrounding gas reservoir that is gravitationally confined by the deep potential of the cluster, seeding the potential formation of a massive black hole.
Lam, Nicholas C K; Fishburn, Steven J; Hammer, Angie R; Petersen, Timothy R; Gerstein, Neal S; Mariano, Edward R
2015-06-01
Achieving the best view of the needle and target anatomy when performing ultrasound-guided interventional procedures requires technical skill, which novices may find difficult to learn. We hypothesized that teaching novice performers to use 4 sequential steps (see, tilt, align, and rotate [STAR] method) to identify the needle under ultrasound guidance is more efficient than training with the commonly described probe movements of align, rotate, and tilt (ART). This study compared 2 instructional methods for transducer manipulation including alignment of a probe and needle by novices during a simulated ultrasound-guided nerve block. Right-handed volunteers between the ages of 18 and 55 years who had no previous ultrasound experience were recruited and randomized to 1 of 2 groups; one group was trained to troubleshoot misalignment with the ART method, and the other was trained with the new STAR maneuver. Participants performed the task, consisting of directing a needle in plane to 3 targets in a standardized gelatin phantom 3 times. The performance assessor and data analyst were blinded to group assignment. Thirty-five participants were recruited. The STAR group was able to complete the task more quickly (P < .001) and visualized the needle in a greater proportion of the procedure time (P = .004) compared to the ART group. All STAR participants were able to complete the task, whereas 41% of ART participants abandoned the task (P = .003). Novices are able to complete a simulated ultrasound-guided nerve block more quickly and efficiently when trained with the 4-step STAR maneuver compared to the ART method. © 2015 by the American Institute of Ultrasound in Medicine.
NASA Astrophysics Data System (ADS)
Hanauske, Matthias; Steinheimer, Jan; Bovard, Luke; Mukherjee, Ayon; Schramm, Stefan; Takami, Kentaro; Papenfort, Jens; Wechselberger, Natascha; Rezzolla, Luciano; Stöcker, Horst
2017-07-01
The underlying open questions in the fields of general relativistic astrophysics and elementary particle and nuclear physics are strongly connected and their results are interdependent. Although the physical systems are quite different, the 4D-simulation of a merger of a binary system of two neutron stars and the properties of the hot and dense matter created in high energy heavy ion collisions, strongly depend on the equation of state of fundamental elementary matter. Neutron star mergers represent optimal astrophysical laboratories to investigate the QCD phase structure using a spectrogram of the post-merger phase of the emitted gravitational waves. These studies can be supplemented by observations from heavy ion collisions to possibly reach a conclusive picture on the QCD phase structure at high density and temperature. As gravitational waves (GWs) emitted from merging neutron star binaries are on the verge of their first detection, it is important to understand the main characteristics of the underlying merging system in order to predict the expected GW signal. Based on numerical-relativity simulations of merging neutron star binaries, the emitted GW and the interior structure of the generated hypermassive neutron stars (HMNS) have been analyzed in detail. This article will focus on the internal and rotational HMNS properties and their connection with the emitted GW signal. Especially, the appearance of the hadon-quark phase transition in the interior region of the HMNS and its conjunction with the spectral properties of the emitted GW will be addressed and confronted with the simulation results of high energy heavy ion collisions.
Simulations of the Neutron Gas in the Inner Crust of Neutron Stars
NASA Astrophysics Data System (ADS)
Vandegriff, Elizabeth; Horowitz, Charles; Caplan, Matthew
2017-09-01
Inside neutron stars, the structures known as `nuclear pasta' are found in the crust. This pasta forms near nuclear density as nucleons arrange in spaghetti- or lasagna-like structures to minimize their energy. We run classical molecular dynamics simulations to visualize the geometry of this pasta and study the distribution of nucleons. In the simulations, we observe that the pasta is embedded in a gas of neutrons, which we call the `sauce'. In this work, we developed two methods for determining the density of neutrons in the gas, one which is accurate at low temperatures and a second which justifies an extrapolation at high temperatures. Running simulations with no Coulomb interactions, we find that the neutron density increases linearly with temperature for every proton fraction we simulated. NSF REU Grant PHY-1460882 at Indiana University.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cranmer, Steven R.; Wilner, David J.; MacGregor, Meredith A.
2013-08-01
Many low-mass pre-main-sequence stars exhibit strong magnetic activity and coronal X-ray emission. Even after the primordial accretion disk has been cleared out, the star's high-energy radiation continues to affect the formation and evolution of dust, planetesimals, and large planets. Young stars with debris disks are thus ideal environments for studying the earliest stages of non-accretion-driven coronae. In this paper we simulate the corona of AU Mic, a nearby active M dwarf with an edge-on debris disk. We apply a self-consistent model of coronal loop heating that was derived from numerical simulations of solar field-line tangling and magnetohydrodynamic turbulence. We alsomore » synthesize the modeled star's X-ray luminosity and thermal radio/millimeter continuum emission. A realistic set of parameter choices for AU Mic produces simulated observations that agree with all existing measurements and upper limits. This coronal model thus represents an alternative explanation for a recently discovered ALMA central emission peak that was suggested to be the result of an inner 'asteroid belt' within 3 AU of the star. However, it is also possible that the central 1.3 mm peak is caused by a combination of active coronal emission and a bright inner source of dusty debris. Additional observations of this source's spatial extent and spectral energy distribution at millimeter and radio wavelengths will better constrain the relative contributions of the proposed mechanisms.« less
Capture of free-floating planets by planetary systems
NASA Astrophysics Data System (ADS)
Goulinski, Nadav; Ribak, Erez N.
2018-01-01
Evidence of exoplanets with orbits that are misaligned with the spin of the host star may suggest that not all bound planets were born in the protoplanetary disc of their current planetary system. Observations have shown that free-floating Jupiter-mass objects can exceed the number of stars in our Galaxy, implying that capture scenarios may not be so rare. To address this issue, we construct a three-dimensional simulation of a three-body scattering between a free-floating planet and a star accompanied by a Jupiter-mass bound planet. We distinguish between three different possible scattering outcomes, where the free-floating planet may get weakly captured after the brief interaction with the binary, remain unbound or 'kick out' the bound planet and replace it. The simulation was performed for different masses of the free-floating planets and stars, as well as different impact parameters, inclination angles and approach velocities. The outcome statistics are used to construct an analytical approximation of the cross-section for capturing a free-floating planet by fitting their dependence on the tested variables. The analytically approximated cross-section is used to predict the capture rate for these kinds of objects, and to estimate that about 1 per cent of all stars are expected to experience a temporary capture of a free-floating planet during their lifetime. Finally, we propose additional physical processes that may increase the capture statistics and whose contribution should be considered in future simulations in order to determine the fate of the temporarily captured planets.
Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes
NASA Astrophysics Data System (ADS)
Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica
2016-04-01
In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.
NASA Astrophysics Data System (ADS)
Yu, Jincheng; Puzia, Thomas H.; Lin, Congping; Zhang, Yiwei
2017-05-01
We compare the existent methods, including the minimum spanning tree based method and the local stellar density based method, in measuring mass segregation of star clusters. We find that the minimum spanning tree method reflects more the compactness, which represents the global spatial distribution of massive stars, while the local stellar density method reflects more the crowdedness, which provides the local gravitational potential information. It is suggested to measure the local and the global mass segregation simultaneously. We also develop a hybrid method that takes both aspects into account. This hybrid method balances the local and the global mass segregation in the sense that the predominant one is either caused by dynamical evolution or purely accidental, especially when such information is unknown a priori. In addition, we test our prescriptions with numerical models and show the impact of binaries in estimating the mass segregation value. As an application, we use these methods on the Orion Nebula Cluster (ONC) observations and the Taurus cluster. We find that the ONC is significantly mass segregated down to the 20th most massive stars. In contrast, the massive stars of the Taurus cluster are sparsely distributed in many different subclusters, showing a low degree of compactness. The massive stars of Taurus are also found to be distributed in the high-density region of the subclusters, showing significant mass segregation at subcluster scales. Meanwhile, we also apply these methods to discuss the possible mechanisms of the dynamical evolution of the simulated substructured star clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Jincheng; Puzia, Thomas H.; Lin, Congping
2017-05-10
We compare the existent methods, including the minimum spanning tree based method and the local stellar density based method, in measuring mass segregation of star clusters. We find that the minimum spanning tree method reflects more the compactness, which represents the global spatial distribution of massive stars, while the local stellar density method reflects more the crowdedness, which provides the local gravitational potential information. It is suggested to measure the local and the global mass segregation simultaneously. We also develop a hybrid method that takes both aspects into account. This hybrid method balances the local and the global mass segregationmore » in the sense that the predominant one is either caused by dynamical evolution or purely accidental, especially when such information is unknown a priori. In addition, we test our prescriptions with numerical models and show the impact of binaries in estimating the mass segregation value. As an application, we use these methods on the Orion Nebula Cluster (ONC) observations and the Taurus cluster. We find that the ONC is significantly mass segregated down to the 20th most massive stars. In contrast, the massive stars of the Taurus cluster are sparsely distributed in many different subclusters, showing a low degree of compactness. The massive stars of Taurus are also found to be distributed in the high-density region of the subclusters, showing significant mass segregation at subcluster scales. Meanwhile, we also apply these methods to discuss the possible mechanisms of the dynamical evolution of the simulated substructured star clusters.« less
NASA Astrophysics Data System (ADS)
Barro, Guillermo; Faber, Sandra M.; Dekel, Avishai; Pacifici, Camilla; Pérez-González, Pablo G.; Toloba, Elisa; Koo, David C.; Trump, Jonathan R.; Inoue, Shigeki; Guo, Yicheng; Liu, Fengshan; Primack, Joel R.; Koekemoer, Anton M.; Brammer, Gabriel; Cava, Antonio; Cardiel, Nicolas; Ceverino, Daniel; Eliche, Carmen; Fang, Jerome J.; Finkelstein, Steven L.; Kocevski, Dale D.; Livermore, Rachael C.; McGrath, Elizabeth
2016-04-01
We present Keck I MOSFIRE spectroscopy in the Y and H bands of GDN-8231, a massive, compact, star-forming galaxy at a redshift of z ˜ 1.7. Its spectrum reveals both Hα and [N II] emission lines and strong Balmer absorption lines. The Hα and Spitzer MIPS 24 μm fluxes are both weak, thus indicating a low star-formation rate of SFR ≲ 5{--}10 {M}⊙ yr-1. This, added to a relatively young age of ˜700 Myr measured from the absorption lines, provides the first direct evidence for a distant galaxy being caught in the act of rapidly shutting down its star formation. Such quenching allows GDN-8231 to become a compact, quiescent galaxy, similar to three other galaxies in our sample, by z ˜ 1.5. Moreover, the color profile of GDN-8231 shows a bluer center, consistent with the predictions of recent simulations for an early phase of inside-out quenching. Its line-of-sight velocity dispersion for the gas, {σ }{{{LOS}}}{{gas}} = 127 ± 32 km s-1, is nearly 40% smaller than that of its stars, {σ }{{{LOS}}}\\star = 215 ± 35 km s-1. High-resolution hydro-simulations of galaxies explain such apparently colder gas kinematics of up to a factor of ˜1.5 with rotating disks being viewed at different inclinations and/or centrally concentrated star-forming regions. A clear prediction is that their compact, quiescent descendants preserve some remnant rotation from their star-forming progenitors.
A 12 μm ISOCAM survey of the ESO-Sculptor field. Data reduction and analysis
NASA Astrophysics Data System (ADS)
Seymour, N.; Rocca-Volmerange, B.; de Lapparent, V.
2007-12-01
We present a detailed reduction of a mid-infrared 12 μm (LW10 filter) ISOCAM open time observation performed on the ESO-Sculptor Survey field (Arnouts et al. 1997, A&AS, 124, 163). A complete catalogue of 142 sources (120 galaxies and 22 stars), detected with high significance (equivalent to 5σ), is presented above an integrated flux density of 0.24 {mJy}. Star/galaxy separation is performed by a detailed study of colour-colour diagrams. The catalogue is complete to 1 {mJy} and, below this flux density, the incompleteness is corrected using two independent methods. The first method uses stars and the second uses optical counterparts of the ISOCAM galaxies; these methods yield consistent results. We also apply an empirical flux density calibration using stars in the field. For each star, the 12 μm flux density is derived by fitting optical colours from a multi-band χ2 to stellar templates (BaSel-2.0) and using empirical optical-IR colour-colour relations. This article is a companion analysis to our 2007 paper (Rocca-Volmerange et al. 2007, A&A, 475, 801) where the 12 μ m faint galaxy counts are presented and analysed per galaxy type with the evolutionary code PÉGASE.3. Based on observations collected at the European Southern Observatory (ESO), La Silla, Chile, and on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of ISAS and NASA. Full Table [see full textsee full textsee full textsee full textsee full textsee full text] is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/475/791
Computer simulating observations of the Lunar physical libration for the Japanese Lunar project ILOM
NASA Astrophysics Data System (ADS)
Petrova, Natalia; Hanada, Hideo
2010-05-01
In the frame of the second stage of the Japanese space mission SELENE-2 (Hanada et al. 2009) the project ILOM (In-situ Lunar Orientation Measurement) planned after 2017years is a kind of instrument for positioning on the Moon. It will be set near the lunar pole and will determine parameters of lunar physical libration by positioning of several tens of stars in the field of view regularly for longer than one year. Presented work is dedicated to analyses of computer simulating future observations. It's proposed that for every star crossing lunar prime meridian its polar distance will be to measure. The methods of optimal star observation are being developed for the future experiment. The equations are constructed to determine libration angles ? (t),ρ(t),σ(t)- on the basis of observed polar distances pobs: (| f1(?,ρ,Iσ,pobs) = 0 |{ f2(?,ρ,Iσ,pobs) = 0 | f3(?,ρ,Iσ,pobs) = 0 |( or f(X) = 0, where ; f = ? f1 ? | f2 | |? f3 |? X = ? ? ? | ρ | |? Iσ |? (1) At the present stage we have developed the software for selection of stars for these future polar observations. Stars were taken from various stellar catalogues, such as the UCAC2-BSS, Hipparcos, Tycho and FK6. The software reduces ICRS coordinates of star to selenographical system at the epoch of observation (Petrova et al., 2009). For example, to the epochs 2017 - 2018 more than 50 stars brighter than m = 12 were selected for the northern pole. In total, these stars give about 600 crossings of the prime meridian during one year. Nevertheless, only a few stars (2-5) may be observed in a vicinity of the one moment. This is not enough to have sufficient sample to exclude various kind of errors. The software includes programmes which can determine the moment of transition of star across the meridian and theoretical values of libration angles at this moments. A serious problem arises when we try to solve equations (1) with the purpose to determine libration angles on the basis of simulated pobs.. Polar distances are calculated using the analytical theory of physical libration Petrova et al. (2008; 2009). We cannot use Newton's method for solution of the equation, because the Jacobian | | || δδfx11 δδfx12 δδf1x3-|| || δδfx2 δδfx2 δδf2x-|| J(X ) = || δf13 δf23 δ3f3-|| = 0. || δx1 δx2 δx3 || We transformed equations to the iteration form xi = φi(X). Used iteration methods have unsatisfactory convergence: inaccuracy in polar distance of 1 milliseconds of arc causes inaccuracy of 0.01arcsec in ρ and in Iσ, and 0.1 arcsec in ?. Results of our computer simulating showed It's necessary to carry out measuring of polar distances of stars in several meridians simultaneously to increase sample of stars. It's necessary to find additional links (relations) between observed parameters and libration angles to have stable mathematical methods to receive solutions for lunar rotation with high accuracy. The research was supported by the Russian-Japanese grant RFFI-JSPS 09-02-92113, (2009-2010) References: Hanada H., Noda H., Kikuchi F. et al., 2009. Different kind of observations of lunar rotation and gravity for SELENE-2. Proc of conf. Astrokazan-2009, August 19 - 26, Kazan, Russia. p. 172-175 Petrova N., Gusev A., Kawano N., Hanada H., 2008. Free librations of the two-layer Moon and the possibilities of their detection. Advances in Space Res., v 42, p. 1398-1404 Petrova N., Gusev A., Hanada H., Ivanova T., Akutina V., 2009. Application of the analytical theory of Lunar physical libration for simulating observations of stars for the future Japanese project ILOM. Proc of conf. Astrokazan-2009, August 19 - 26, Kazan, Russia. p.197 - 201.
Hydrodynamical simulations of the stream-core interaction in the slow merger of massive stars
NASA Astrophysics Data System (ADS)
Ivanova, N.; Podsiadlowski, Ph.; Spruit, H.
2002-08-01
We present detailed simulations of the interaction of a stream emanating from a mass-losing secondary with the core of a massive supergiant in the slow merger of two stars inside a common envelope. The dynamics of the stream can be divided into a ballistic phase, starting at the L1 point, and a hydrodynamical phase, where the stream interacts strongly with the core. Considering the merger of a 1- and 5-Msolar star with a 20-Msolar evolved supergiant, we present two-dimensional hydrodynamical simulations using the PROMETHEUS code to demonstrate how the penetration depth and post-impact conditions depend on the initial properties of the stream material (e.g. entropy, angular momentum, stream width) and the properties of the core (e.g. density structure and rotation rate). Using these results, we present a fitting formula for the entropy generated in the stream-core interaction and a recipe for the determination of the penetration depth based on a modified Bernoulli integral.
r -process nucleosynthesis from matter ejected in binary neutron star mergers
NASA Astrophysics Data System (ADS)
Bovard, Luke; Martin, Dirk; Guercilena, Federico; Arcones, Almudena; Rezzolla, Luciano; Korobkin, Oleg
2017-12-01
When binary systems of neutron stars merge, a very small fraction of their rest mass is ejected, either dynamically or secularly. This material is neutron-rich and its nucleosynthesis provides the astrophysical site for the production of heavy elements in the Universe, together with a kilonova signal confirming neutron-star mergers as the origin of short gamma-ray bursts. We perform full general-relativistic simulations of binary neutron-star mergers employing three different nuclear-physics equations of state (EOSs), considering both equal- and unequal-mass configurations, and adopting a leakage scheme to account for neutrino radiative losses. Using a combination of techniques, we carry out an extensive and systematic study of the hydrodynamical, thermodynamical, and geometrical properties of the matter ejected dynamically, employing the WinNet nuclear-reaction network to recover the relative abundances of heavy elements produced by each configurations. Among the results obtained, three are particularly important. First, we find that, within the sample considered here, both the properties of the dynamical ejecta and the nucleosynthesis yields are robust against variations of the EOS and masses. Second, using a conservative but robust criterion for unbound matter, we find that the amount of ejected mass is ≲10-3 M⊙, hence at least one order of magnitude smaller than what normally assumed in modelling kilonova signals. Finally, using a simplified and gray-opacity model we assess the observability of the infrared kilonova emission finding, that for all binaries the luminosity peaks around ˜1 /2 day in the H -band, reaching a maximum magnitude of -13 , and decreasing rapidly after one day.
Habitability in different Milky Way stellar environments: a stellar interaction dynamical approach.
Jiménez-Torres, Juan J; Pichardo, Bárbara; Lake, George; Segura, Antígona
2013-05-01
Every Galactic environment is characterized by a stellar density and a velocity dispersion. With this information from literature, we simulated flyby encounters for several Galactic regions, numerically calculating stellar trajectories as well as orbits for particles in disks; our aim was to understand the effect of typical stellar flybys on planetary (debris) disks in the Milky Way Galaxy. For the solar neighborhood, we examined nearby stars with known distance, proper motions, and radial velocities. We found occurrence of a disturbing impact to the solar planetary disk within the next 8 Myr to be highly unlikely; perturbations to the Oort cloud seem unlikely as well. Current knowledge of the full phase space of stars in the solar neighborhood, however, is rather poor; thus we cannot rule out the existence of a star that is more likely to approach than those for which we have complete kinematic information. We studied the effect of stellar encounters on planetary orbits within the habitable zones of stars in more crowded stellar environments, such as stellar clusters. We found that in open clusters habitable zones are not readily disrupted; this is true if they evaporate in less than 10(8) yr. For older clusters the results may not be the same. We specifically studied the case of Messier 67, one of the oldest open clusters known, and show the effect of this environment on debris disks. We also considered the conditions in globular clusters, the Galactic nucleus, and the Galactic bulge-bar. We calculated the probability of whether Oort clouds exist in these Galactic environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujibayashi, Sho; Sekiguchi, Yuichiro; Kiuchi, Kenta
We performed general relativistic, long-term, axisymmetric neutrino radiation hydrodynamics simulations for the remnant formed after a binary neutron star merger, which consists of a massive neutron star and a torus surrounding it. As an initial condition, we employ the result derived in a three-dimensional, numerical relativity simulation for the binary neutron star merger. We investigate the properties of neutrino-driven ejecta. Due to the pair-annihilation heating, the dynamics of the neutrino-driven ejecta are significantly modified. The kinetic energy of the ejecta is about two times larger than that in the absence of pair-annihilation heating. This suggests that the pair-annihilation heating playsmore » an important role in the evolution of merger remnants. The relativistic outflow, which is required for driving gamma-ray bursts, is not observed because the specific heating rate around the rotational axis is not sufficiently high, due to the baryon loading caused by the neutrino-driven ejecta from the massive neutron star. We discuss the condition for launching the relativistic outflow and the nucleosynthesis in the ejecta.« less
The quest for the Sun's siblings: an exploratory search in the Hipparcos Catalogue
NASA Astrophysics Data System (ADS)
Brown, Anthony G. A.; Portegies Zwart, Simon F.; Bean, Jennifer
2010-09-01
We describe the results of a search for the remnants of the Sun's birth cluster among stars in the Hipparcos Catalogue. This search is based on the predicted phase-space distribution of the Sun's siblings from simple simulations of the orbits of the cluster stars in a smooth Galactic potential. For stars within 100 pc, the simulations show that it is interesting to examine those that have small space motions relative to the Sun. From amongst the candidate siblings thus selected, there are six stars with ages consistent with that of the Sun. Considering their radial velocities and abundances only one potential candidate, HIP21158, remains, but essentially the result of the search is negative. This is consistent with predictions by Portegies Zwart on the number of siblings near the Sun. We discuss the steps that should be taken in anticipation of the data from the Gaia mission in order to conduct fruitful searches for the Sun's siblings in the future.
The Quest For The Sun's Siblings: An Exploratory Search In The Hipparcos Catalogue
NASA Astrophysics Data System (ADS)
Bean, Jennifer; Brown, A.; Portegies Zwart, S.
2011-01-01
We describe the results of a search for the remnants of the Sun's birth cluster among stars in the Hipparcos Catalogue. This search is based on the predicted phase-space distribution of the Sun's siblings from simple simulations of the orbits of the cluster stars in a smooth Galactic potential. For stars within 100 pc, the simulations show that it is interesting to examine those that have small space motions relative to the Sun. From amongst the candidate siblings thus selected, there are six stars with ages consistent with that of the Sun. Considering their radial velocities and abundances only one potential candidate, HIP21158, remains, but essentially the result of the search is negative. This is consistent with predictions by Portegies Zwart on the number of siblings near the Sun. We discuss the steps that should be taken in anticipation of the data from the Gaia mission in order to conduct fruitful searches for the Sun's siblings in the future.
Design and simulation of EVA tools for first servicing mission of HST
NASA Technical Reports Server (NTRS)
Naik, Dipak; Dehoff, P. H.
1993-01-01
The Hubble Space Telescope (HST) was launched into near-earth orbit by the space shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A space shuttle repair mission in late 1993 will install small corrective mirrors that will restore the full intended optical capability of the HST. The first servicing mission (FSM) will involve considerable extravehicular activity (EVA). It is proposed to design special EVA tools for the FSM. This report includes details of the data acquisition system being developed to test the performance of the various EVA tools in ambient as well as simulated space environment.
From Supernovae to Neutron Stars
NASA Astrophysics Data System (ADS)
Suwa, Yudai
A core-collapse supernova is a generation site of a neutron star as well as one of the largest explosions in the universe. This article gives a brief overview of the studies on supernova explosion mechanism. Basic picture of the explosion mechanism, the method to solve neutrino transfer equation, the impact of the nuclear equation of state on the explosion, and long-term simulation of neutron star evolution from the onset of the explosion are presented.
Electron lithography STAR design guidelines. Part 1: The STAR user design manual
NASA Technical Reports Server (NTRS)
Trotter, J. D.; Newman, W.
1982-01-01
The STAR system developed by NASA enables any user with a logic diagram to design a semicustom digital MOS integrated circuit. The system is comprised of a library of standard logic cells and computer programs to place, route, and display designs implemented with cells from the library. Library cells of the CMOS metal gate and CMOS silicon gate technologies were simulated using SPICE, and the results are shown and compared.
NASA Astrophysics Data System (ADS)
Lèbre, Agnès; Aurière, Michel; Fabas, Nicolas; Gillet, Denis; Josselin, Eric; Mathias, Philippe; Petit, Pascal
2015-10-01
Full Stokes spectropolarimetric observations of a Mira star (χ Cyg) and a RV Tauri star (R Sct) are presented and analyzed comparatively. From their Stokes V data (circular polarization), we report the detection of a weak magnetic field at the surface of these cool and evolved radially pulsating stars. For both stars, we analyse this detection in the framework of their complex atmospheric dynamics, with the possibility that shock waves may imprint an efficient compressive effect on the surface magnetic field. We also report strong Stokes U and Stokes Q signatures associated to metallic lines (as a global trend), those linear polarimetric features appear to be time variable along the pulsating phase. More surprising, in the Stokes U and Stokes Q data, we also detect signatures associated to individual metallic lines (such as Sr i 460.7 nm, Na D2 588.9 nm), that are known (from the solar case) to be easily polarizable in case of a global asymmetry at the photospheric level.
Dysferlin is essential for endocytosis in the sea star oocyte.
Oulhen, Nathalie; Onorato, Thomas M; Ramos, Isabela; Wessel, Gary M
2014-04-01
Dysferlin is a calcium-binding transmembrane protein involved in membrane fusion and membrane repair. In humans, mutations in the dysferlin gene are associated with muscular dystrophy. In this study, we isolated plasma membrane-enriched fractions from full-grown immature oocytes of the sea star, and identified dysferlin by mass spectrometry analysis. The full-length dysferlin sequence is highly conserved between human and the sea star. We learned that in the sea star Patiria miniata, dysferlin RNA and protein are expressed from oogenesis to gastrulation. Interestingly, the protein is highly enriched in the plasma membrane of oocytes. Injection of a morpholino against dysferlin leads to a decrease of endocytosis in oocytes, and to a developmental arrest during gastrulation. These results suggest that dysferlin is critical for normal endocytosis during oogenesis and for embryogenesis in the sea star and that this animal may be a useful model for studying the relationship of dysferlin structure as it relates to its function. Copyright © 2014 Elsevier Inc. All rights reserved.
Dysferlin is essential for endocytosis in the sea star oocyte
Oulhen, Nathalie; Onorato, Thomas M.; Ramos, Isabela; Wessel, Gary M.
2014-01-01
Dysferlin is a calcium-binding transmembrane protein involved in membrane fusion and membrane repair. In humans, mutations in the dysferlin gene are associated with muscular dystrophy. In this study, we isolated plasma membrane-enriched fractions from full-grown immature oocytes of the sea star, and identified dysferlin by mass spectrometry analysis. The full-length dysferlin sequence is highly conserved between human and the sea star. We learned that in the sea star Patiria miniata, dysferlin RNA and protein are expressed from oogenesis to gastrulation. Interestingly, the protein is highly enriched in the plasma membrane of oocytes. Injection of a morpholino against dysferlin leads to a decrease of endocytosis in oocytes, and to a developmental arrest during gastrulation. These results suggest that dysferlin is critical for normal endocytosis during oogenesis and for embryogenesis in the sea star and that this animal may be a useful model for studying the relationship of dysferlin structure as it relates to its function. PMID:24368072
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayward, Christopher C.; Keres, Dusan; Jonsson, Patrik
2011-12-20
We perform three-dimensional dust radiative transfer (RT) calculations on hydrodynamic simulations of isolated and merging disk galaxies in order to quantitatively study the dependence of observed-frame submillimeter (submm) flux density on galaxy properties. We find that submm flux density and star formation rate (SFR) are related in dramatically different ways for quiescently star-forming galaxies and starbursts. Because the stars formed in the merger-induced starburst do not dominate the bolometric luminosity and the rapid drop in dust mass and more compact geometry cause a sharp increase in dust temperature during the burst, starbursts are very inefficient at boosting submm flux densitymore » (e.g., a {approx}> 16 Multiplication-Sign boost in SFR yields a {approx}< 2 Multiplication-Sign boost in submm flux density). Moreover, the ratio of submm flux density to SFR differs significantly between the two modes; thus one cannot assume that the galaxies with highest submm flux density are necessarily those with the highest bolometric luminosity or SFR. These results have important consequences for the bright submillimeter-selected galaxy (SMG) population. Among them are: (1) The SMG population is heterogeneous. In addition to merger-driven starbursts, there is a subpopulation of galaxy pairs, where two disks undergoing a major merger but not yet strongly interacting are blended into one submm source because of the large ({approx}> 15'' or {approx}130 kpc at z = 2) beam of single-dish submm telescopes. (2) SMGs must be very massive (M{sub *} {approx}> 6 Multiplication-Sign 10{sup 10} M{sub Sun }). (3) The infall phase makes the SMG duty cycle a factor of a few greater than what is expected for a merger-driven starburst. Finally, we provide fitting functions for SCUBA and AzTEC submm flux densities as a function of SFR and dust mass and bolometric luminosity and dust mass; these should be useful for calculating submm flux density in semi-analytic models and cosmological simulations when performing full RT is computationally not feasible.« less
The formation and fragmentation of disks around primordial protostars.
Clark, Paul C; Glover, Simon C O; Smith, Rowan J; Greif, Thomas H; Klessen, Ralf S; Bromm, Volker
2011-02-25
The very first stars to form in the universe heralded an end to the cosmic dark ages and introduced new physical processes that shaped early cosmic evolution. Until now, it was thought that these stars lived short, solitary lives, with only one extremely massive star, or possibly a very wide binary system, forming in each dark-matter minihalo. Here we describe numerical simulations that show that these stars were, to the contrary, often members of tight multiple systems. Our results show that the disks that formed around the first young stars were unstable to gravitational fragmentation, possibly producing small binary and higher-order systems that had separations as small as the distance between Earth and the Sun.
A Gamma-Ray Burst Model Via Compressional Heating of Binary Neutron Stars
NASA Astrophysics Data System (ADS)
Salmonson, J. D.; Wilson, J. R.; Mathews, G. J.
1998-12-01
We present a model for gamma-ray bursts based on the compression of neutron stars in close binary systems. General relativistic (GR) simulations of close neutron star binaries have found compression of the neutron stars estimated to produce 1053 ergs of thermal neutrinos on a timescale of seconds. The hot neutron stars will emit neutrino pairs which will partially recombine to form 1051 to 1052 ergs of electron-positron (e^-e^+) pair plasma. GR hydrodynamic computational modeling of the e^-e^+ plasma flow and recombination yield a gamma-ray burst in good agreement with general characteristics (duration ~10 seconds, spectrum peak energy ~100 keV, total energy ~1051 ergs) of many observed gamma-ray bursts.
The Effects of Ram Pressure on the Cold Clouds in the Centers of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Li, Yuan; Ruszkowski, Mateusz; Tremblay, Grant
2018-02-01
We discuss the effect of ram pressure on the cold clouds in the centers of cool-core galaxy clusters, and in particular, how it reduces cloud velocity and sometimes causes an offset between the cold gas and young stars. The velocities of the molecular gas in both observations and our simulations fall in the range of 100–400 km s‑1, which is much lower than expected if they fall from a few tens of kiloparsecs ballistically. If the intracluster medium (ICM) is at rest, the ram pressure of the ICM only slightly reduces the velocity of the clouds. When we assume that the clouds are actually “fluffier” because they are co-moving with a warm-hot layer, the velocity becomes smaller. If we also consider the active galactic nucleus wind in the cluster center by adding a wind profile measured from the simulation, the clouds are further slowed down at small radii, and the resulting velocities are in general agreement with the observations and simulations. Because ram pressure only affects gas but not stars, it can cause a separation between a filament and young stars that formed in the filament as they move through the ICM together. This separation has been observed in Perseus and also exists in our simulations. We show that the star-filament offset, combined with line-of-sight velocity measurements, can help determine the true motion of the cold gas, and thus distinguish between inflows and outflows.
Imprints of feedback in young gasless clusters?
NASA Astrophysics Data System (ADS)
Parker, Richard J.; Dale, James E.
2013-06-01
We present the results of N-body simulations in which we take the masses, positions and velocities of sink particles from five pairs of hydrodynamical simulations of star formation by Dale et al. and evolve them for further 10 Myr. We compare the dynamical evolution of star clusters that formed under the influence of mass-loss driven by photoionization feedback to the evolution of clusters that formed without feedback. We remove any remaining gas and follow the evolution of structure in the clusters (measured by the Q-parameter), half-mass radius, central density, surface density and the fraction of bound stars. There is little discernible difference in the evolution of clusters that formed with feedback compared to those that formed without. The only clear trend is that all clusters which form without feedback in the hydrodynamical simulations lose any initial structure over 10 Myr, whereas some of the clusters which form with feedback retain structure for the duration of the subsequent N-body simulation. This is due to lower initial densities (and hence longer relaxation times) in the clusters from Dale et al. which formed with feedback, which prevents dynamical mixing from erasing substructure. However, several other conditions (such as supervirial initial velocities) also preserve substructure, so at a given epoch one would require knowledge of the initial density and virial state of the cluster in order to determine whether star formation in a cluster has been strongly influenced by feedback.
Introducing CoDa (Cosmic Dawn): Radiation-Hydrodynamics of Galaxy Formation in the Early Universe
NASA Astrophysics Data System (ADS)
Ocvirk, Pierre; Gillet, Nicolas; Shapiro, Paul; Aubert, Dominique; Iliev, Ilian; Romain, Teyssier; Yepes, Gustavo; Choi, Jun-hwan; Sullivan, David; Knebe, Alexander; Gottloeber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda
2015-08-01
CoDa (Cosmic Dawn) is the largest fully coupled radiation hydrodynamics simulation of the reionization of the local Universe to date. It was performed using RAMSES-CUDATON running on 8192 nodes (i.e. 8192 GPUs) on the titan supercomputer at Oak Ridge National Laboratory to simulate a 64 h-1Mpc side box down to z=4.23. In this simulation, reionization proceeds self-consistently, driven by stellar radiation. We compare the simulation's reionization history, ionizing flux density, the cosmic star formation history and the CMB Thompson scattering optical depth with their observational values. Luminosity functions are also in rather good agreement with high redshift observations, although very bright objects (MAB1600 < -21) are overabundant in CoDa. We investigate the evolution of the intergalactic medium, and find that gas filaments present a sheathed structure, with a hot envelope surrounding a cooler core. They are however not able to self-shield, while regions denser than 10^-4.5 H atoms per comoving h^-3cm^3 are. Haloes below M ˜ 3.10^9 M⊙ are severely affected by the expanding, rising UV background: their ISM is quickly photo-heated to temperatures above our star formation threshold and therefore stop forming stars after local reionization has occured. Overall, the haloes between 10^(10-11) M⊙ dominate the star formation budget of the box for most of the Epoch of Reionization. Several additional studies will follow, looking for instance at environmental effects on galaxy properties, and the regimes of accretion.
NASA Astrophysics Data System (ADS)
Dessauges-Zavadsky, Miroslava; Cava, Antonio; Richard, Johan; Schaerer, Daniel; Egami, Eiichi
2015-08-01
Deep and high-resolution imaging has revealed clumpy, rest-frame UV morphologies among z=1-3 galaxies. The majority of these galaxies has been shown to be dominated by ordered disk rotation, which led to the conclusion that the observed giant clumps, resolved on kpc-scales, are generated from disk fragmentation due to gravitational instability. State-of-the-art numerical simulations show that they may occupy a relevant role in galaxy evolution, contributing to the galactic bulge formation. Despite the high resolution attained by the most advanced ground- and space-based facilities, as well as in numerical simulations, the intrinsic typical masses and scale sizes of these star-forming clumps remain unconstrained, since they are barely resolved at z=1-3.Thanks to the amplification and stretching power provided by strong gravitational lensing, we are likely to reach the spatial resolving power for unveiling the physics of these star-forming regions. We report on the study of clumpy star formation observed in the Cosmic Snake, a strongly lensed galaxy at z=1, representative of the typical star-forming population close to the peak of Universe activity. About 20 clumps are identified in the HST images. Benefiting from extreme amplification factors up to 100, they are resolved down to an intrinsic scale of 100 pc, never reached before at z=1.The HST multi-wavelength analysis of these individual star clusters allows us to determine their intrinsic physical properties, showing stellar masses (Ms) from 106 to 108.3 Msun, sizes from 100 to 400 pc, and ages from 106 to 108.5 yr. The masses we find are in line with the new, very high resolution numerical simulations, which also suggest that the massive giant clumps previously observed at high redshift with Ms as high as 109-10 Msun may suffer from low resolution effects, being unresolved conglomerates of less massive star clusters. We also compare our results with those of massive young clusters in nearby galaxies. Our approved ALMA observations will reach the same 100 pc scale, which is essential for the study of associated giant molecular clouds in this galaxy.
Magnetic fields driven by tidal mixing in radiative stars
NASA Astrophysics Data System (ADS)
Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer
2018-04-01
Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.
The dynamical origin of multiple populations in intermediate-age clusters in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Hong, Jongsuk; de Grijs, Richard; Askar, Abbas; Berczik, Peter; Li, Chengyuan; Wang, Long; Deng, Licai; Kouwenhoven, M. B. N.; Giersz, Mirek; Spurzem, Rainer
2017-11-01
Numerical simulations were carried out to study the origin of multiple stellar populations in the intermediate-age clusters NGC 411 and NGC 1806 in the Magellanic Clouds. We performed NBODY6++ simulations based on two different formation scenarios, an ad hoc formation model where second-generation (SG) stars are formed inside a cluster of first-generation (FG) stars using the gas accumulated from the external intergalactic medium and a minor merger model of unequal mass (MSG/MFG ∼ 5-10 per cent) clusters with an age difference of a few hundred million years. We compared our results such as the radial profile of the SG-to-FG number ratio with observations on the assumption that the SG stars in the observations are composed of cluster members, and confirmed that both the ad hoc formation and merger scenarios reproduce the observed radial trend of the SG-to-FG number ratio, which shows less centrally concentrated SG than FG stars. It is difficult to constrain the formation scenario for the multiple populations by only using the spatial distribution of the SG stars. SG stars originating from the merger scenario show a significant velocity anisotropy and rotational features compared to those from the ad hoc formation scenario. Thus, observations aimed at kinematic properties like velocity anisotropy or rotational velocities for SG stars should be obtained to better understand the formation of the multiple populations in these clusters. This is, however, beyond current instrumentation capabilities.
NASA Astrophysics Data System (ADS)
Stevens, Daniel J.; Stassun, Keivan G.; Gaudi, B. Scott
2017-12-01
We present bolometric fluxes and angular diameters for over 1.6 million stars in the Tycho-2 catalog, determined using previously determined empirical color-temperature and color-flux relations. We vet these relations via full fits to the full broadband spectral energy distributions for a subset of benchmark stars and perform quality checks against the large set of stars for which spectroscopically determined parameters are available from LAMOST, RAVE, and/or APOGEE. We then estimate radii for the 355,502 Tycho-2 stars in our sample whose Gaia DR1 parallaxes are precise to ≲ 10 % . For these stars, we achieve effective temperature, bolometric flux, and angular diameter uncertainties of the order of 1%-2% and radius uncertainties of order 8%, and we explore the effect that imposing spectroscopic effective temperature priors has on these uncertainties. These stellar parameters are shown to be reliable for stars with {T}{eff} ≲ 7000 K. The over half a million bolometric fluxes and angular diameters presented here will serve as an immediate trove of empirical stellar radii with the Gaia second data release, at which point effective temperature uncertainties will dominate the radius uncertainties. Already, dwarf, subgiant, and giant populations are readily identifiable in our purely empirical luminosity-effective temperature (theoretical) Hertzsprung-Russell diagrams.
3D Hydrodynamic Simulation of Classical Novae Explosions
NASA Astrophysics Data System (ADS)
Kendrick, Coleman J.
2015-01-01
This project investigates the formation and lifecycle of classical novae and determines how parameters such as: white dwarf mass, star mass and separation affect the evolution of the rotating binary system. These parameters affect the accretion rate, frequency of the nova explosions and light curves. Each particle in the simulation represents a volume of hydrogen gas and are initialized randomly in the outer shell of the companion star. The forces on each particle include: gravity, centrifugal, coriolis, friction, and Langevin. The friction and Langevin forces are used to model the viscosity and internal pressure of the gas. A velocity Verlet method with a one second time step is used to compute velocities and positions of the particles. A new particle recycling method was developed which was critical for computing an accurate and stable accretion rate and keeping the particle count reasonable. I used C++ and OpenCL to create my simulations and ran them on two Nvidia GTX580s. My simulations used up to 1 million particles and required up to 10 hours to complete. My simulation results for novae U Scorpii and DD Circinus are consistent with professional hydrodynamic simulations and observed experimental data (light curves and outburst frequencies). When the white dwarf mass is increased, the time between explosions decreases dramatically. My model was used to make the first prediction for the next outburst of nova DD Circinus. My simulations also show that the companion star blocks the expanding gas shell leading to an asymmetrical expanding shell.
TYCHO: Simulating Exoplanets Within Stellar Clusters
NASA Astrophysics Data System (ADS)
Glaser, Joseph Paul; Thornton, Jonathan; Geller, Aaron M.; McMillan, Stephen
2018-01-01
Recent surveys exploring nearby open clusters have yielded noticeable differences in the planetary population from that seen in the Field. This is surprising, as the two should be indistinguishable given currently accepted theories on how a majority of stars form within the Galaxy. Currently, the existence of this apparent deficit is not fully understood. While detection bias in previous observational surveys certainly contributes to this issue, the dynamical effects of star-star scattering must also be taken into account. However, this effect can only be investigated via computational simulations and current solutions of the multi-scale N-body problem are limited and drastically simplified.To remedy this, we aim to create a physically complete computational solution to explore the role of stellar close encounters and interplanetary interactions in producing the observed exoplanet populations for both open cluster stars and Field stars. To achieve this, TYCHO employs a variety of different computational techniques, including: multiple n-body integration methods; close-encounter handling; Monte Carlo scattering experiments; and a variety of observationally-backed initial condition generators. Herein, we discuss the current state of the code's implantation within the AMUSE framework and its applications towards present exoplanet surveys.
Asymmetric core collapse of rapidly rotating massive star
NASA Astrophysics Data System (ADS)
Gilkis, Avishai
2018-02-01
Non-axisymmetric features are found in the core collapse of a rapidly rotating massive star, which might have important implications for magnetic field amplification and production of a bipolar outflow that can explode the star, as well as for r-process nucleosynthesis and natal kicks. The collapse of an evolved rapidly rotating MZAMS = 54 M⊙ star is followed in three-dimensional hydrodynamic simulations using the FLASH code with neutrino leakage. A rotating proto-neutron star (PNS) forms with a non-zero linear velocity. This can contribute to the natal kick of the remnant compact object. The PNS is surrounded by a turbulent medium, where high shearing is likely to amplify magnetic fields, which in turn can drive a bipolar outflow. Neutron-rich material in the PNS vicinity might induce strong r-process nucleosynthesis. The rapidly rotating PNS possesses a rotational energy of E_rot ≳ 10^{52} erg. Magnetar formation proceeding in a similar fashion will be able to deposit a portion of this energy later on in the supernova ejecta through a spin-down mechanism. These processes can be important for rare supernovae generated by rapidly rotating progenitors, even though a complete explosion is not simulated in the present study.
Towards ab initio extremely metal-poor stars
NASA Astrophysics Data System (ADS)
Ritter, Jeremy S.; Safranek-Shrader, Chalence; Milosavljević, Miloš; Bromm, Volker
2016-12-01
Extremely metal-poor stars have been the focus of much recent attention owing to the expectation that their chemical abundances can shed light on the metal and dust yields of the earliest supernovae. We present our most realistic simulation to date of the astrophysical pathway to the first metal-enriched stars. We simulate the radiative and supernova hydrodynamic feedback of a 60 M⊙ Population III star starting from cosmological initial conditions realizing Gaussian density fluctuations. We follow the gravitational hydrodynamics of the supernova remnant at high spatial resolution through its freely expanding, adiabatic, and radiative phases, until gas, now metal-enriched, has resumed runaway gravitational collapse. Our findings are surprising: while the Population III progenitor exploded with a low energy of 1051 erg and injected an ample metal mass of 6 M⊙, the first cloud to collapse after the supernova explosion is a dense surviving primordial cloud on which the supernova blast wave deposited metals only superficially, in a thin, unresolved layer. The first metal-enriched stars can form at a very low metallicity, of only 2-5 × 10-4 Z⊙, and can inherit the parent cloud's highly elliptical, radially extended orbit in the dark matter gravitational potential.
Featured Image: Making a Rapidly Rotating Black Hole
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-10-01
These stills from a simulation show the evolution (from left to right and top to bottom) of a high-mass X-ray binary over 1.1 days, starting after the star on the right fails to explode as a supernova and then collapses into a black hole. Many high-mass X-ray binaries like the well-known Cygnus X-1, the first source widely accepted to be a black hole host rapidly spinning black holes. Despite our observations of these systems, however, were still not sure how these objects end up with such high rotation speeds. Using simulations like that shown above, a team of scientists led by Aldo Batta (UC Santa Cruz) has demonstrated how a failed supernova explosion can result in such a rapidly spinning black hole. The authors work shows that in a binary where one star attempts to explode as a supernova and fails it doesnt succeed in unbinding the star the large amount of fallback material can interact with the companion star and then accrete onto the black hole, spinning it up in the process. You can read more about the authors simulations and conclusions in the paper below.CitationAldo Batta et al 2017 ApJL 846 L15. doi:10.3847/2041-8213/aa8506
Dynamical Scaling Relations and the Angular Momentum Problem in the FIRE Simulations
NASA Astrophysics Data System (ADS)
Schmitz, Denise; Hopkins, Philip F.; Quataert, Eliot; Keres, Dusan; Faucher-Giguere, Claude-Andre
2015-01-01
Simulations are an extremely important tool with which to study galaxy formation and evolution. However, even state-of-the-art simulations still fail to accurately predict important galaxy properties such as star formation rates and dynamical scaling relations. One possible explanation is the inadequacy of sub-grid models to capture the range of stellar feedback mechanisms which operate below the resolution limit of simulations. FIRE (Feedback in Realistic Environments) is a set of high-resolution cosmological galaxy simulations run using the code GIZMO. It includes more realistic models for various types of feedback including radiation pressure, supernovae, stellar winds, and photoionization and photoelectric heating. Recent FIRE results have demonstrated good agreement with the observed stellar mass-halo mass relation as well as more realistic star formation histories than previous simulations. We investigate the effects of FIRE's improved feedback prescriptions on the simulation "angular momentum problem," i.e., whether FIRE can reproduce observed scaling relations between galaxy stellar mass and rotational/dispersion velocities.
Numerical Simulations of Close and Contact Binary Systems Having Bipolytropic Equation of State
NASA Astrophysics Data System (ADS)
Kadam, Kundan; Clayton, Geoffrey C.; Motl, Patrick M.; Marcello, Dominic; Frank, Juhan
2017-01-01
I present the results of the numerical simulations of the mass transfer in close and contact binary systems with both stars having a bipolytropic (composite polytropic) equation of state. The initial binary systems are obtained by a modifying Hachisu’s self-consistent field technique. Both the stars have fully resolved cores with a molecular weight jump at the core-envelope interface. The initial properties of these simulations are chosen such that they satisfy the mass-radius relation, composition and period of a late W-type contact binary system. The simulations are carried out using two different Eulerian hydrocodes, Flow-ER with a fixed cylindrical grid, and Octo-tiger with an AMR capable cartesian grid. The detailed comparison of the simulations suggests an agreement between the results obtained from the two codes at different resolutions. The set of simulations can be treated as a benchmark, enabling us to reliably simulate mass transfer and merger scenarios of binary systems involving bipolytropic components.
"Observing" the Circumnuclear Stars and Gas in Disk Galaxy Simulations
NASA Astrophysics Data System (ADS)
Cook, Angela; Hicks, Erin K. S.
2018-06-01
We present simulations based on theoretical models of common disk processes designed to represent potential inflow observed within the central 500 pc of local Seyfert galaxies. Mock observations of these n-body plus smoothed particle hydrodynamical simulations provide the conceptual framework in which to identify the driving inflow mechanism, for example nuclear bars, and to quantify to the inflow based on observable properties. From these mock observations the azimuthal average of the flux distribution, velocity dispersion, and velocity of both the stars and interstellar medium on scales of 50pc have been measured at a range of inclinations angles. A comparison of the simulated disk galaxies with these observed azimuthal averages in 40 Seyfert galaxies measured as part of the KONA (Keck OSIRIS Nearby AGN) survey will be presented.
NASA Technical Reports Server (NTRS)
Ogletree, G.; Coccoli, J.; Mckern, R.; Smith, M.; White, R.
1972-01-01
The results of analytical and simulation studies of the stellar-inertial measurement system (SIMS) for an earth observation satellite are presented. Subsystem design analyses and sensor design trades are reported. Three candidate systems are considered: (1) structure-mounted gyros with structure-mounted star mapper, (2) structure-mounted gyros with gimbaled star tracker, and (3) gimbaled gyros with structure-mounted star mapper. The purpose of the study is to facilitate the decisions pertaining to gimbaled versus structure-mounted gyros and star sensors, and combinations of systems suitable for the EOS satellite.
Effects of stellar evolution and ionizing radiation on the environments of massive stars
NASA Astrophysics Data System (ADS)
Mackey, J.; Langer, N.; Mohamed, S.; Gvaramadze, V. V.; Neilson, H. R.; Meyer, D. M.-A.
2014-09-01
We discuss two important effects for the astrospheres of runaway stars: the propagation of ionizing photons far beyond the astropause, and the rapid evolution of massive stars (and their winds) near the end of their lives. Hot stars emit ionizing photons with associated photoheating that has a significant dynamical effect on their surroundings. 3-D simulations show that H ii regions around runaway O stars drive expanding conical shells and leave underdense wakes in the medium they pass through. For late O stars this feedback to the interstellar medium is more important than that from stellar winds. Late in life, O stars evolve to cool red supergiants more rapidly than their environment can react, producing transient circumstellar structures such as double bow shocks. This provides an explanation for the bow shock and linear bar-shaped structure observed around Betelgeuse.
RNAV STAR Procedural Adherence
NASA Technical Reports Server (NTRS)
Matthews, Bryan L.; Stewart, Michael J.
2017-01-01
Flight crews and air traffic controllers have reported many safety concerns regarding area navigation standard terminal arrival routes (RNAV STARs). However, our information sources to quantify these issues are limited to subjective reporting and time consuming case-by-case investigations. This work is a preliminary study into the objective performance of instrument procedures and provides a framework to track procedural concepts and assess design functionality. We created a tool and analysis methods for gauging aircraft adherence as it relates to RNAV STARs. This information is vital for comprehensive understanding of how our air traffic behaves. In this exploratory archival study, we mined the performance of 24 major US airports over the preceding three years. Overlaying radar track data on top of RNAV STAR routes provided a comparison between aircraft flight paths and the waypoint positions and altitude restrictions. NASA Ames Supercomputing resources were utilized to perform the data mining and processing. We assessed STARs by lateral transition path (full-lateral), vertical restrictions (full-lateralfull-vertical), and skipped waypoints (skips). In addition, we graphed aircraft altitudes relative to the altitude restrictions and their occurrence rates. Full-lateral adherence was generally greater than Full-lateralfull-vertical, but the difference between the rates was not always consistent. Full-lateralfull-vertical adherence medians of the 2016 procedures ranged from 0 in KDEN (Denver) to 21 in KMEM (Memphis). Waypoint skips ranged from 0 to nearly 100 for specific waypoints. Altitudes restrictions were sometimes missed by systematic amounts in 1000 ft. increments from the restriction, creating multi-modal distributions. Other times, altitude misses looked to be more normally distributed around the restriction. This tool may aid in providing acceptability metrics as well as risk assessment information.
NASA Astrophysics Data System (ADS)
Vermeire, B. C.; Witherden, F. D.; Vincent, P. E.
2017-04-01
First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier-Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor-Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.