Measurement of the entanglement of two superconducting qubits via state tomography.
Steffen, Matthias; Ansmann, M; Bialczak, Radoslaw C; Katz, N; Lucero, Erik; McDermott, R; Neeley, Matthew; Weig, E M; Cleland, A N; Martinis, John M
2006-09-08
Demonstration of quantum entanglement, a key resource in quantum computation arising from a nonclassical correlation of states, requires complete measurement of all states in varying bases. By using simultaneous measurement and state tomography, we demonstrated entanglement between two solid-state qubits. Single qubit operations and capacitive coupling between two super-conducting phase qubits were used to generate a Bell-type state. Full two-qubit tomography yielded a density matrix showing an entangled state with fidelity up to 87%. Our results demonstrate a high degree of unitary control of the system, indicating that larger implementations are within reach.
Resch, K J; Walther, P; Zeilinger, A
2005-02-25
We have performed the first experimental tomographic reconstruction of a three-photon polarization state. Quantum state tomography is a powerful tool for fully describing the density matrix of a quantum system. We measured 64 three-photon polarization correlations and used a "maximum-likelihood" reconstruction method to reconstruct the Greenberger-Horne-Zeilinger state. The entanglement class has been characterized using an entanglement witness operator and the maximum predicted values for the Mermin inequality were extracted.
(Full field) optical coherence tomography and applications
NASA Astrophysics Data System (ADS)
Buchroithner, Boris; Hannesschläger, Günther; Leiss-Holzinger, Elisabeth; Prylepa, Andrii; Heise, Bettina
2018-03-01
This paper illustrates specific features and use of optical coherence tomography (OCT) in the raster-scanning and in comparison in the full field version of this imaging technique. Cases for nondestructive testing are discussed alongside other application schemes. In particular monitoring time-dependent processes and probing of birefringent specimens are considered here. In the context of polymer testing birefringence mapping may often provide information about internal strain and stress states. Recent results obtained with conventional raster-scanning OCT systems, with (dual and single-shot) full field OCT configurations, and with polarization-sensitive versions of (full field) OCT are presented here.
Baur, M; Fedorov, A; Steffen, L; Filipp, S; da Silva, M P; Wallraff, A
2012-01-27
Teleportation of a quantum state may be used for distributing entanglement between distant qubits in quantum communication and for quantum computation. Here we demonstrate the implementation of a teleportation protocol, up to the single-shot measurement step, with superconducting qubits coupled to a microwave resonator. Using full quantum state tomography and evaluating an entanglement witness, we show that the protocol generates a genuine tripartite entangled state of all three qubits. Calculating the projection of the measured density matrix onto the basis states of two qubits allows us to reconstruct the teleported state. Repeating this procedure for a complete set of input states we find an average output state fidelity of 86%.
NASA Astrophysics Data System (ADS)
Li, Qingyun; Karnowski, Karol; Villiger, Martin; Sampson, David D.
2017-04-01
A fibre-based full-range polarisation-sensitive optical coherence tomography system is developed to enable complete capture of the structural and birefringence properties of the anterior segment of the human eye in a single acquisition. The system uses a wavelength swept source centered at 1.3 μm, passively depth-encoded, orthogonal polarisation states in the illumination path and polarisation-diversity detection. Off-pivot galvanometer scanning is used to extend the imaging range and compensate for sensitivity drop-off. A Mueller matrix-based method is used to analyse data. We demonstrate the performance of the system and discuss issues relating to its optimisation.
Tomographic quantum cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Yeong Cherng; Kaszlikowski, Dagomir; Englert, Berthold-Georg
2003-08-01
We present a protocol for quantum cryptography in which the data obtained for mismatched bases are used in full for the purpose of quantum state tomography. Eavesdropping on the quantum channel is seriously impeded by requiring that the outcome of the tomography is consistent with unbiased noise in the channel. We study the incoherent eavesdropping attacks that are still permissible and establish under which conditions a secure cryptographic key can be generated. The whole analysis is carried out for channels that transmit quantum systems of any finite dimension.
Noninformative prior in the quantum statistical model of pure states
NASA Astrophysics Data System (ADS)
Tanaka, Fuyuhiko
2012-06-01
In the present paper, we consider a suitable definition of a noninformative prior on the quantum statistical model of pure states. While the full pure-states model is invariant under unitary rotation and admits the Haar measure, restricted models, which we often see in quantum channel estimation and quantum process tomography, have less symmetry and no compelling rationale for any choice. We adopt a game-theoretic approach that is applicable to classical Bayesian statistics and yields a noninformative prior for a general class of probability distributions. We define the quantum detection game and show that there exist noninformative priors for a general class of a pure-states model. Theoretically, it gives one of the ways that we represent ignorance on the given quantum system with partial information. Practically, our method proposes a default distribution on the model in order to use the Bayesian technique in the quantum-state tomography with a small sample.
On-chip quantum tomography of mechanical nanoscale oscillators with guided Rydberg atoms
NASA Astrophysics Data System (ADS)
Sanz-Mora, A.; Wüster, S.; Rost, J.-M.
2017-07-01
Nanomechanical oscillators as well as Rydberg-atomic waveguides hosted on microfabricated chip surfaces hold promise to become pillars of future quantum technologies. In a hybrid platform with both, we show that beams of Rydberg atoms in waveguides can quantum coherently interrogate and manipulate nanomechanical elements, allowing full quantum state tomography. Central to the tomography are quantum nondemolition measurements using the Rydberg atoms as probes. Quantum coherent displacement of the oscillator is also made possible by driving the atoms with external fields while they interact with the oscillator. We numerically demonstrate the feasibility of this fully integrated on-chip control and read-out suite for quantum nanomechanics, taking into account noise and error sources.
Tu, Yiyou; Plotnikov, Elizaveta Y; Seidman, David N
2015-04-01
This study investigates the effects of the charge-state ratio of evaporated ions on the accuracy of local-electrode atom-probe (LEAP) tomographic compositional and structural analyses, which employs a picosecond ultraviolet pulsed laser. Experimental results demonstrate that the charge-state ratio is a better indicator of the best atom-probe tomography (APT) experimental conditions compared with laser pulse energy. The thermal tails in the mass spectra decrease significantly, and the mass resolving power (m/Δm) increases by 87.5 and 185.7% at full-width half-maximum and full-width tenth-maximum, respectively, as the laser pulse energy is increased from 5 to 30 pJ/pulse. The measured composition of this alloy depends on the charge-state ratio of the evaporated ions, and the most accurate composition is obtained when Ni2+/Ni+ is in the range of 0.3-20. The γ(f.c.c.)/γ'(L12) interface is quantitatively more diffuse when determined from the measured concentration profiles for higher laser pulse energies. Conclusions of the APT compositional and structural analyses utilizing the same suitable charge-state ratio are more comparable than those collected with the same laser pulse energy.
Neural-network quantum state tomography
NASA Astrophysics Data System (ADS)
Torlai, Giacomo; Mazzola, Guglielmo; Carrasquilla, Juan; Troyer, Matthias; Melko, Roger; Carleo, Giuseppe
2018-05-01
The experimental realization of increasingly complex synthetic quantum systems calls for the development of general theoretical methods to validate and fully exploit quantum resources. Quantum state tomography (QST) aims to reconstruct the full quantum state from simple measurements, and therefore provides a key tool to obtain reliable analytics1-3. However, exact brute-force approaches to QST place a high demand on computational resources, making them unfeasible for anything except small systems4,5. Here we show how machine learning techniques can be used to perform QST of highly entangled states with more than a hundred qubits, to a high degree of accuracy. We demonstrate that machine learning allows one to reconstruct traditionally challenging many-body quantities—such as the entanglement entropy—from simple, experimentally accessible measurements. This approach can benefit existing and future generations of devices ranging from quantum computers to ultracold-atom quantum simulators6-8.
Inoue, R; Yonehara, T; Miyamoto, Y; Koashi, M; Kozuma, M
2009-09-11
Three-dimensional entanglement of orbital angular momentum states of an atomic qutrit and a single photon qutrit has been observed. Their full state was reconstructed using quantum state tomography. The fidelity to the maximally entangled state of Schmidt rank 3 exceeds the threshold 2/3. This result confirms that the density matrix cannot be decomposed into an ensemble of pure states of Schmidt rank 1 or 2. That is, the Schmidt number of the density matrix must be equal to or greater than 3.
Underlying Information Technology Tailored Quantum Error Correction
2006-07-28
typically constructed by using an optical beam splitter . • We used a decoherence-free-subspace encoding to reduce the sensitivity of an optical Deutsch...simplification of design constraints in solid state QC (incl. quantum dots and superconducting qubits), hybrid quantum error correction and prevention methods...process tomography on one- and two-photon polarisation states, from full and partial data "• Accomplished complete two-photon QPT. "• Discovered surprising
Tran, Erin E H; Simmons, James A; Bartesaghi, Alberto; Shoemaker, Charles J; Nelson, Elizabeth; White, Judith M; Subramaniam, Sriram
2014-09-01
The Ebola virus glycoprotein mucin-like domain (MLD) is implicated in Ebola virus cell entry and immune evasion. Using cryo-electron tomography of Ebola virus-like particles, we determined a three-dimensional structure for the full-length glycoprotein in a near-native state and compared it to that of a glycoprotein lacking the MLD. Our results, which show that the MLD is located at the apex and the sides of each glycoprotein monomer, provide a structural template for analysis of MLD function. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
In vivo rat deep brain imaging using photoacoustic computed tomography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Lin, Li; Li, Lei; Zhu, Liren; Hu, Peng; Wang, Lihong V.
2017-03-01
The brain has been likened to a great stretch of unknown territory consisting of a number of unexplored continents. Small animal brain imaging plays an important role charting that territory. By using 1064 nm illumination from the side, we imaged the full coronal depth of rat brains in vivo. The experiment was performed using a real-time full-ring-array photoacoustic computed tomography (PACT) imaging system, which achieved an imaging depth of 11 mm and a 100 μm radial resolution. Because of the fast imaging speed of the full-ring-array PACT system, no animal motion artifact was induced. The frame rate of the system was limited by the laser repetition rate (50 Hz). In addition to anatomical imaging of the blood vessels in the brain, we continuously monitored correlations between the two brain hemispheres in one of the coronal planes. The resting states in the coronal plane were measured before and after stroke ligation surgery at a neck artery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blume-Kohout, Robin J.; Gamble, John King; Nielsen, Erik
Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography suffers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. Wemore » describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more effectively detect and characterize quantum noise using carefully tailored ensembles of input states.« less
Remote preparation of an atomic quantum memory.
Rosenfeld, Wenjamin; Berner, Stefan; Volz, Jürgen; Weber, Markus; Weinfurter, Harald
2007-02-02
Storage and distribution of quantum information are key elements of quantum information processing and future quantum communication networks. Here, using atom-photon entanglement as the main physical resource, we experimentally demonstrate the preparation of a distant atomic quantum memory. Applying a quantum teleportation protocol on a locally prepared state of a photonic qubit, we realized this so-called remote state preparation on a single, optically trapped 87Rb atom. We evaluated the performance of this scheme by the full tomography of the prepared atomic state, reaching an average fidelity of 82%.
Four modes of optical parametric operation for squeezed state generation
NASA Astrophysics Data System (ADS)
Andersen, U. L.; Buchler, B. C.; Lam, P. K.; Wu, J. W.; Gao, J. R.; Bachor, H.-A.
2003-11-01
We report a versatile instrument, based on a monolithic optical parametric amplifier, which reliably generates four different types of squeezed light. We obtained vacuum squeezing, low power amplitude squeezing, phase squeezing and bright amplitude squeezing. We show a complete analysis of this light, including a full quantum state tomography. In addition we demonstrate the direct detection of the squeezed state statistics without the aid of a spectrum analyser. This technique makes the nonclassical properties directly visible and allows complete measurement of the statistical moments of the squeezed quadrature.
Quantum State Tomography via Reduced Density Matrices.
Xin, Tao; Lu, Dawei; Klassen, Joel; Yu, Nengkun; Ji, Zhengfeng; Chen, Jianxin; Ma, Xian; Long, Guilu; Zeng, Bei; Laflamme, Raymond
2017-01-13
Quantum state tomography via local measurements is an efficient tool for characterizing quantum states. However, it requires that the original global state be uniquely determined (UD) by its local reduced density matrices (RDMs). In this work, we demonstrate for the first time a class of states that are UD by their RDMs under the assumption that the global state is pure, but fail to be UD in the absence of that assumption. This discovery allows us to classify quantum states according to their UD properties, with the requirement that each class be treated distinctly in the practice of simplifying quantum state tomography. Additionally, we experimentally test the feasibility and stability of performing quantum state tomography via the measurement of local RDMs for each class. These theoretical and experimental results demonstrate the advantages and possible pitfalls of quantum state tomography with local measurements.
Direct state tomography using continuous variable measuring device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xuanmin, E-mail: zhuxuanmin@xidian.edu.cn; Wei, Qun
Compared with the conventional quantum state tomography (QST), the efficiency of the direct state tomography (DST) using weak value is very low. However, DST is easily manipulated in experiments. We modify the direct state tomography by using coupling-deformed observables. The modified direct state measurement is valid for arbitrarily large measurement strength. The optimal measurement strengths are obtained to attain the highest efficiency. The efficiency of DST is significantly improved in the modified strategy, and the reconstructed state has no inherent bias. The state reconstruction strategy investigated in this paper might be useful in actual experiments.
Multi-Grid and Resolution Full-Wave Tomography and Moment Tensor Inversion (Postprint)
2012-06-04
Denver: University of Colorado. Chen, P., L. Zhao, and T.H. Jordan (2007). Full 3D tomography for crustal structure of the Los Angeles Region, Bull...M.J.R. Wortel, and W. Spakman (2006). Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions, J. Geophys
Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography.
Grieve, Kate; Mouslim, Karima; Assayag, Osnath; Dalimier, Eugénie; Harms, Fabrice; Bruhat, Alexis; Boccara, Claude; Antoine, Martine
2016-04-01
Current techniques for the intraoperative analysis of sentinel lymph nodes during breast cancer surgery present drawbacks such as time and tissue consumption. Full-field optical coherence tomography is a novel noninvasive, high-resolution, fast imaging technique. This study investigated the use of full-field optical coherence tomography as an alternative technique for the intraoperative analysis of sentinel lymph nodes. Seventy-one axillary lymph nodes from 38 patients at Tenon Hospital were imaged minutes after excision with full-field optical coherence tomography in the pathology laboratory, before being handled for histological analysis. A pathologist performed a blind diagnosis (benign/malignant), based on the full-field optical coherence tomography images alone, which resulted in a sensitivity of 92% and a specificity of 83% (n = 65 samples). Regular feedback was given during the blind diagnosis, with thorough analysis of the images, such that features of normal and suspect nodes were identified in the images and compared with histology. A nonmedically trained imaging expert also performed a blind diagnosis aided by the reading criteria defined by the pathologist, which resulted in 85% sensitivity and 90% specificity (n = 71 samples). The number of false positives of the pathologist was reduced by 3 in a second blind reading a few months later. These results indicate that following adequate training, full-field optical coherence tomography can be an effective noninvasive diagnostic tool for extemporaneous sentinel node biopsy qualification. © The Author(s) 2015.
Full moment tensor and source location inversion based on full waveform adjoint method
NASA Astrophysics Data System (ADS)
Morency, C.
2012-12-01
The development of high-performance computing and numerical techniques enabled global and regional tomography to reach high levels of precision, and seismic adjoint tomography has become a state-of-the-art tomographic technique. The method was successfully used for crustal tomography of Southern California (Tape et al., 2009) and Europe (Zhu et al., 2012). Here, I will focus on the determination of source parameters (full moment tensor and location) based on the same approach (Kim et al, 2011). The method relies on full wave simulations and takes advantage of the misfit between observed and synthetic seismograms. An adjoint wavefield is calculated by back-propagating the difference between observed and synthetics from the receivers to the source. The interaction between this adjoint wavefield and the regular forward wavefield helps define Frechet derivatives of the source parameters, that is, the sensitivity of the misfit with respect to the source parameters. Source parameters are then recovered by minimizing the misfit based on a conjugate gradient algorithm using the Frechet derivatives. First, I will demonstrate the method on synthetic cases before tackling events recorded at the Geysers. The velocity model used at the Geysers is based on the USGS 3D velocity model. Waveform datasets come from the Northern California Earthquake Data Center. Finally, I will discuss strategies to ultimately use this method to characterize smaller events for microseismic and induced seismicity monitoring. References: - Tape, C., Q. Liu, A. Maggi, and J. Tromp, 2009, Adjoint tomography of the Southern California crust: Science, 325, 988992. - Zhu, H., Bozdag, E., Peter, D., and Tromp, J., 2012, Structure of the European upper mantle revealed by adjoint method: Nature Geoscience, 5, 493-498. - Kim, Y., Q. Liu, and J. Tromp, 2011, Adjoint centroid-moment tensor inversions: Geophys. J. Int., 186, 264278. Prepared by LLNL under Contract DE-AC52-07NA27344.
Efficient tomography of a quantum many-body system
NASA Astrophysics Data System (ADS)
Lanyon, B. P.; Maier, C.; Holzäpfel, M.; Baumgratz, T.; Hempel, C.; Jurcevic, P.; Dhand, I.; Buyskikh, A. S.; Daley, A. J.; Cramer, M.; Plenio, M. B.; Blatt, R.; Roos, C. F.
2017-12-01
Quantum state tomography is the standard technique for estimating the quantum state of small systems. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states. Here we demonstrate matrix product state tomography, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.
Enhancing multi-step quantum state tomography by PhaseLift
NASA Astrophysics Data System (ADS)
Lu, Yiping; Zhao, Qing
2017-09-01
Multi-photon system has been studied by many groups, however the biggest challenge faced is the number of copies of an unknown state are limited and far from detecting quantum entanglement. The difficulty to prepare copies of the state is even more serious for the quantum state tomography. One possible way to solve this problem is to use adaptive quantum state tomography, which means to get a preliminary density matrix in the first step and revise it in the second step. In order to improve the performance of adaptive quantum state tomography, we develop a new distribution scheme of samples and extend it to three steps, that is to correct it once again based on the density matrix obtained in the traditional adaptive quantum state tomography. Our numerical results show that the mean square error of the reconstructed density matrix by our new method is improved to the level from 10-4 to 10-9 for several tested states. In addition, PhaseLift is also applied to reduce the required storage space of measurement operator.
Zhong, Jianguang; Tao, Aizhu; Xu, Zhe; Jiang, Hong; Shao, Yilei; Zhang, Huicheng; Liu, Che; Wang, Jianhua
2014-01-01
PURPOSE To investigate changes of whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography (UL-OCT). DESIGN Prospective, observational case series. METHODS Twenty-one adult subjects were enrolled. Using UL-OCT, the left eye of each subject was imaged with relaxed (0 D) and accommodative stimuli (+6 D). Full eye biometry included central corneal thickness (CCT), anterior chamber depth (ACD), lens thickness, vitreous length and axial length (AL). RESULTS During accommodation (+6 D), the axial biometry of the whole eye changed significantly. Compared to the rest state, ACD at the accommodative state decreased significantly from 3.128 ± 0.305 mm to 2.961 ± 0.298 mm (paired t-test, P < 0.001). The lens thickness increased significantly from 3.723 ± 0.237 mm to 3.963 ± 0.234 mm (P < 0.001). The vitreous length decreased significantly from 17.129 ± 0.864 mm to 17.057± 0.848 mm (P < 0.001). AL was 24.519 ± 0.917 mm at the rest state and increased to 24.545±0.915 mm with +6 D accommodation stimulus. The elongated AL of 26.1 ± 13.4 μm between the rest and accommodative states was significant (P < 0.001). CONCLUSIONS During accommodation, whole eye axial biometry changed, including a decrease in ACD and vitreous length, and an increase in lens thickness and AL. UL-OCT provides an alternative method that is suitable for full eye biometry during accommodation. PMID:24487051
Self-testing through EPR-steering
NASA Astrophysics Data System (ADS)
Šupić, Ivan; Hoban, Matty J.
2016-07-01
The verification of quantum devices is an important aspect of quantum information, especially with the emergence of more advanced experimental implementations of quantum computation and secure communication. Within this, the theory of device-independent robust self-testing via Bell tests has reached a level of maturity now that many quantum states and measurements can be verified without direct access to the quantum systems: interaction with the devices is solely classical. However, the requirements for this robust level of verification are daunting and require high levels of experimental accuracy. In this paper we discuss the possibility of self-testing where we only have direct access to one part of the quantum device. This motivates the study of self-testing via EPR-steering, an intermediate form of entanglement verification between full state tomography and Bell tests. Quantum non-locality implies EPR-steering so results in the former can apply in the latter, but we ask what advantages may be gleaned from the latter over the former given that one can do partial state tomography? We show that in the case of self-testing a maximally entangled two-qubit state, or ebit, EPR-steering allows for simpler analysis and better error tolerance than in the case of full device-independence. On the other hand, this improvement is only a constant improvement and (up to constants) is the best one can hope for. Finally, we indicate that the main advantage in self-testing based on EPR-steering could be in the case of self-testing multi-partite quantum states and measurements. For example, it may be easier to establish a tensor product structure for a particular party’s Hilbert space even if we do not have access to their part of the global quantum system.
Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.
Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A
2014-07-03
The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).
Observation of entanglement of a single photon with a trapped atom.
Volz, Jürgen; Weber, Markus; Schlenk, Daniel; Rosenfeld, Wenjamin; Vrana, Johannes; Saucke, Karen; Kurtsiefer, Christian; Weinfurter, Harald
2006-01-27
We report the observation of entanglement between a single trapped atom and a single photon at a wavelength suitable for low-loss communication over large distances, thereby achieving a crucial step towards long range quantum networks. To verify the entanglement, we introduce a single atom state analysis. This technique is used for full state tomography of the atom-photon qubit pair. The detection efficiency and the entanglement fidelity are high enough to allow in a next step the generation of entangled atoms at large distances, ready for a final loophole-free Bell experiment.
NASA Astrophysics Data System (ADS)
Granade, Christopher; Combes, Joshua; Cory, D. G.
2016-03-01
In recent years, Bayesian methods have been proposed as a solution to a wide range of issues in quantum state and process tomography. State-of-the-art Bayesian tomography solutions suffer from three problems: numerical intractability, a lack of informative prior distributions, and an inability to track time-dependent processes. Here, we address all three problems. First, we use modern statistical methods, as pioneered by Huszár and Houlsby (2012 Phys. Rev. A 85 052120) and by Ferrie (2014 New J. Phys. 16 093035), to make Bayesian tomography numerically tractable. Our approach allows for practical computation of Bayesian point and region estimators for quantum states and channels. Second, we propose the first priors on quantum states and channels that allow for including useful experimental insight. Finally, we develop a method that allows tracking of time-dependent states and estimates the drift and diffusion processes affecting a state. We provide source code and animated visual examples for our methods.
Alternative method of quantum state tomography toward a typical target via a weak-value measurement
NASA Astrophysics Data System (ADS)
Chen, Xi; Dai, Hong-Yi; Yang, Le; Zhang, Ming
2018-03-01
There is usually a limitation of weak interaction on the application of weak-value measurement. This limitation dominates the performance of the quantum state tomography toward a typical target in the finite and high-dimensional complex-valued superposition of its basis states, especially when the compressive sensing technique is also employed. Here we propose an alternative method of quantum state tomography, presented as a general model, toward such typical target via weak-value measurement to overcome such limitation. In this model the pointer for the weak-value measurement is a qubit, and the target-pointer coupling interaction is no longer needed within the weak interaction limitation, meanwhile this interaction under the compressive sensing can be described with the Taylor series of the unitary evolution operator. The postselection state at the target is the equal superposition of all basis states, and the pointer readouts are gathered under multiple Pauli operator measurements. The reconstructed quantum state is generated from an optimization algorithm of total variation augmented Lagrangian alternating direction algorithm. Furthermore, we demonstrate an example of this general model for the quantum state tomography toward the planar laser-energy distribution and discuss the relations among some parameters at both our general model and the original first-order approximate model for this tomography.
NASA Astrophysics Data System (ADS)
Palittapongarnpim, Pantita; Sanders, Barry C.
2018-05-01
Quantum tomography infers quantum states from measurement data, but it becomes infeasible for large systems. Machine learning enables tomography of highly entangled many-body states and suggests a new powerful approach to this problem.
Center-of-Mass Tomography and Wigner Function for Multimode Photon States
NASA Astrophysics Data System (ADS)
Dudinets, Ivan V.; Man'ko, Vladimir I.
2018-06-01
Tomographic probability representation of multimode electromagnetic field states in the scheme of center-of-mass tomography is reviewed. Both connection of the field state Wigner function and observable Weyl symbols with the center-of-mass tomograms as well as connection of the Grönewold kernel with the center-of-mass tomographic kernel determining the noncommutative product of the tomograms are obtained. The dual center-of-mass tomogram of the photon states are constructed and the dual tomographic kernel is obtained. The models of other generalized center-of-mass tomographies are discussed. Example of two-mode even and odd Schrödinger cat states is presented in details.
Scalable Creation of Long-Lived Multipartite Entanglement
NASA Astrophysics Data System (ADS)
Kaufmann, H.; Ruster, T.; Schmiegelow, C. T.; Luda, M. A.; Kaushal, V.; Schulz, J.; von Lindenfels, D.; Schmidt-Kaler, F.; Poschinger, U. G.
2017-10-01
We demonstrate the deterministic generation of multipartite entanglement based on scalable methods. Four qubits are encoded in 40Ca+, stored in a microstructured segmented Paul trap. These qubits are sequentially entangled by laser-driven pairwise gate operations. Between these, the qubit register is dynamically reconfigured via ion shuttling operations, where ion crystals are separated and merged, and ions are moved in and out of a fixed laser interaction zone. A sequence consisting of three pairwise entangling gates yields a four-ion Greenberger-Horne-Zeilinger state |ψ ⟩=(1 /√{2 })(|0000 ⟩+|1111 ⟩) , and full quantum state tomography reveals a state fidelity of 94.4(3)%. We analyze the decoherence of this state and employ dynamic decoupling on the spatially distributed constituents to maintain 69(5)% coherence at a storage time of 1.1 sec.
D'Ariano, G M; Lo Presti, P
2001-05-07
Quantum operations describe any state change allowed in quantum mechanics, including the evolution of an open system or the state change due to a measurement. We present a general method based on quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. As input the method needs only a single entangled state. The feasibility of the technique for the electromagnetic field is shown, and the experimental setup is illustrated based on homodyne tomography of a twin beam.
Quantum State Tomography via Linear Regression Estimation
Qi, Bo; Hou, Zhibo; Li, Li; Dong, Daoyi; Xiang, Guoyong; Guo, Guangcan
2013-01-01
A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed to estimate the unknown parameters. An asymptotic mean squared error (MSE) upper bound for all possible states to be estimated is given analytically, which depends explicitly upon the involved measurement bases. This analytical MSE upper bound can guide one to choose optimal measurement sets. The computational complexity of LRE is O(d4) where d is the dimension of the quantum state. Numerical examples show that LRE is much faster than maximum-likelihood estimation for quantum state tomography. PMID:24336519
Quadruple Axis Neutron Computed Tomography
NASA Astrophysics Data System (ADS)
Schillinger, Burkhard; Bausenwein, Dominik
Neutron computed tomography takes more time for a full tomography than X-rays or Synchrotron radiation, because the source intensity is limited. Most neutron imaging detectors have a square field of view, so if tomography of elongated, narrow samples, e.g. fuel rods, sword blades is recorded, much of the detector area is wasted. Using multiple rotation axes, several samples can be placed inside the field of view, and multiple tomographies can be recorded at the same time by later splitting the recorded images into separate tomography data sets. We describe a new multiple-axis setup using four independent miniaturized rotation tables.
Demonstration of entanglement of electrostatically coupled singlet-triplet qubits.
Shulman, M D; Dial, O E; Harvey, S P; Bluhm, H; Umansky, V; Yacoby, A
2012-04-13
Quantum computers have the potential to solve certain problems faster than classical computers. To exploit their power, it is necessary to perform interqubit operations and generate entangled states. Spin qubits are a promising candidate for implementing a quantum processor because of their potential for scalability and miniaturization. However, their weak interactions with the environment, which lead to their long coherence times, make interqubit operations challenging. We performed a controlled two-qubit operation between singlet-triplet qubits using a dynamically decoupled sequence that maintains the two-qubit coupling while decoupling each qubit from its fluctuating environment. Using state tomography, we measured the full density matrix of the system and determined the concurrence and the fidelity of the generated state, providing proof of entanglement.
Photon-photon entanglement with a single trapped atom.
Weber, B; Specht, H P; Müller, T; Bochmann, J; Mücke, M; Moehring, D L; Rempe, G
2009-01-23
An experiment is performed where a single rubidium atom trapped within a high-finesse optical cavity emits two independently triggered entangled photons. The entanglement is mediated by the atom and is characterized both by a Bell inequality violation of S=2.5, as well as full quantum-state tomography, resulting in a fidelity exceeding F=90%. The combination of cavity-QED and trapped atom techniques makes our protocol inherently deterministic--an essential step for the generation of scalable entanglement between the nodes of a distributed quantum network.
NASA Astrophysics Data System (ADS)
Li, Lei; Zhang, Pengfei; Wang, Lihong V.
2018-02-01
Photoacoustic computed tomography (PACT) is a non-invasive imaging technique offering high contrast, high resolution, and deep penetration in biological tissues. We report a photoacoustic computed tomography (PACT) system equipped with a high frequency linear array for anatomical and functional imaging of the mouse whole brain. The linear array was rotationally scanned in the coronal plane to achieve the full-view coverage. We investigated spontaneous neural activities in the deep brain by monitoring the hemodynamics and observed strong interhemispherical correlations between contralateral regions, both in the cortical layer and in the deep regions.
Compressed Sensing Quantum Process Tomography for Superconducting Quantum Gates
NASA Astrophysics Data System (ADS)
Rodionov, Andrey
An important challenge in quantum information science and quantum computing is the experimental realization of high-fidelity quantum operations on multi-qubit systems. Quantum process tomography (QPT) is a procedure devised to fully characterize a quantum operation. We first present the results of the estimation of the process matrix for superconducting multi-qubit quantum gates using the full data set employing various methods: linear inversion, maximum likelihood, and least-squares. To alleviate the problem of exponential resource scaling needed to characterize a multi-qubit system, we next investigate a compressed sensing (CS) method for QPT of two-qubit and three-qubit quantum gates. Using experimental data for two-qubit controlled-Z gates, taken with both Xmon and superconducting phase qubits, we obtain estimates for the process matrices with reasonably high fidelities compared to full QPT, despite using significantly reduced sets of initial states and measurement configurations. We show that the CS method still works when the amount of data is so small that the standard QPT would have an underdetermined system of equations. We also apply the CS method to the analysis of the three-qubit Toffoli gate with simulated noise, and similarly show that the method works well for a substantially reduced set of data. For the CS calculations we use two different bases in which the process matrix is approximately sparse (the Pauli-error basis and the singular value decomposition basis), and show that the resulting estimates of the process matrices match with reasonably high fidelity. For both two-qubit and three-qubit gates, we characterize the quantum process by its process matrix and average state fidelity, as well as by the corresponding standard deviation defined via the variation of the state fidelity for different initial states. We calculate the standard deviation of the average state fidelity both analytically and numerically, using a Monte Carlo method. Overall, we show that CS QPT offers a significant reduction in the needed amount of experimental data for two-qubit and three-qubit quantum gates.
The Collaborative Seismic Earth Model Project
NASA Astrophysics Data System (ADS)
Fichtner, A.; van Herwaarden, D. P.; Afanasiev, M.
2017-12-01
We present the first generation of the Collaborative Seismic Earth Model (CSEM). This effort is intended to address grand challenges in tomography that currently inhibit imaging the Earth's interior across the seismically accessible scales: [1] For decades to come, computational resources will remain insufficient for the exploitation of the full observable seismic bandwidth. [2] With the man power of individual research groups, only small fractions of available waveform data can be incorporated into seismic tomographies. [3] The limited incorporation of prior knowledge on 3D structure leads to slow progress and inefficient use of resources. The CSEM is a multi-scale model of global 3D Earth structure that evolves continuously through successive regional refinements. Taking the current state of the CSEM as initial model, these refinements are contributed by external collaborators, and used to advance the CSEM to the next state. This mode of operation allows the CSEM to [1] harness the distributed man and computing power of the community, [2] to make consistent use of prior knowledge, and [3] to combine different tomographic techniques, needed to cover the seismic data bandwidth. Furthermore, the CSEM has the potential to serve as a unified and accessible representation of tomographic Earth models. Generation 1 comprises around 15 regional tomographic refinements, computed with full-waveform inversion. These include continental-scale mantle models of North America, Australasia, Europe and the South Atlantic, as well as detailed regional models of the crust beneath the Iberian Peninsula and western Turkey. A global-scale full-waveform inversion ensures that regional refinements are consistent with whole-Earth structure. This first generation will serve as the basis for further automation and methodological improvements concerning validation and uncertainty quantification.
Larson, Natalie M.; Zok, Frank W.
2017-12-27
In-situ X-ray computed tomography during axial impregnation of unidirectional fiber beds is used to study coupled effects of fluid velocity, fiber movement and preferred flow channeling on permeability. Here, in order to interpret the experimental measurements, a new computational tool for predicting axial permeability of very large 2D arrays of non-uniformly packed fibers is developed. The results show that, when the impregnation velocity is high, full saturation is attained behind the flow front and the fibers rearrange into a less uniform configuration with higher permeability. In contrast, when the velocity is low, fluid flows preferentially in the narrowest channels betweenmore » fibers, yielding unsaturated permeabilities that are lower than those in the saturated state. Lastly, these insights combined with a new computational tool will enable improved prediction of permeability, ultimately for use in optimization of composite manufacturing via liquid impregnation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Natalie M.; Zok, Frank W.
In-situ X-ray computed tomography during axial impregnation of unidirectional fiber beds is used to study coupled effects of fluid velocity, fiber movement and preferred flow channeling on permeability. Here, in order to interpret the experimental measurements, a new computational tool for predicting axial permeability of very large 2D arrays of non-uniformly packed fibers is developed. The results show that, when the impregnation velocity is high, full saturation is attained behind the flow front and the fibers rearrange into a less uniform configuration with higher permeability. In contrast, when the velocity is low, fluid flows preferentially in the narrowest channels betweenmore » fibers, yielding unsaturated permeabilities that are lower than those in the saturated state. Lastly, these insights combined with a new computational tool will enable improved prediction of permeability, ultimately for use in optimization of composite manufacturing via liquid impregnation.« less
Experimental Machine Learning of Quantum States
NASA Astrophysics Data System (ADS)
Gao, Jun; Qiao, Lu-Feng; Jiao, Zhi-Qiang; Ma, Yue-Chi; Hu, Cheng-Qiu; Ren, Ruo-Jing; Yang, Ai-Lin; Tang, Hao; Yung, Man-Hong; Jin, Xian-Min
2018-06-01
Quantum information technologies provide promising applications in communication and computation, while machine learning has become a powerful technique for extracting meaningful structures in "big data." A crossover between quantum information and machine learning represents a new interdisciplinary area stimulating progress in both fields. Traditionally, a quantum state is characterized by quantum-state tomography, which is a resource-consuming process when scaled up. Here we experimentally demonstrate a machine-learning approach to construct a quantum-state classifier for identifying the separability of quantum states. We show that it is possible to experimentally train an artificial neural network to efficiently learn and classify quantum states, without the need of obtaining the full information of the states. We also show how adding a hidden layer of neurons to the neural network can significantly boost the performance of the state classifier. These results shed new light on how classification of quantum states can be achieved with limited resources, and represent a step towards machine-learning-based applications in quantum information processing.
Scalable Creation of Long-Lived Multipartite Entanglement.
Kaufmann, H; Ruster, T; Schmiegelow, C T; Luda, M A; Kaushal, V; Schulz, J; von Lindenfels, D; Schmidt-Kaler, F; Poschinger, U G
2017-10-13
We demonstrate the deterministic generation of multipartite entanglement based on scalable methods. Four qubits are encoded in ^{40}Ca^{+}, stored in a microstructured segmented Paul trap. These qubits are sequentially entangled by laser-driven pairwise gate operations. Between these, the qubit register is dynamically reconfigured via ion shuttling operations, where ion crystals are separated and merged, and ions are moved in and out of a fixed laser interaction zone. A sequence consisting of three pairwise entangling gates yields a four-ion Greenberger-Horne-Zeilinger state |ψ⟩=(1/sqrt[2])(|0000⟩+|1111⟩), and full quantum state tomography reveals a state fidelity of 94.4(3)%. We analyze the decoherence of this state and employ dynamic decoupling on the spatially distributed constituents to maintain 69(5)% coherence at a storage time of 1.1 sec.
Positron Computed Tomography: Current State, Clinical Results and Future Trends
DOE R&D Accomplishments Database
Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.
1980-09-01
An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)
Behavior of the maximum likelihood in quantum state tomography
NASA Astrophysics Data System (ADS)
Scholten, Travis L.; Blume-Kohout, Robin
2018-02-01
Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) should not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.
Behavior of the maximum likelihood in quantum state tomography
Blume-Kohout, Robin J; Scholten, Travis L.
2018-02-22
Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less
Behavior of the maximum likelihood in quantum state tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blume-Kohout, Robin J; Scholten, Travis L.
Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less
Applying LED in full-field optical coherence tomography for gastrointestinal endoscopy
NASA Astrophysics Data System (ADS)
Yang, Bor-Wen; Wang, Yu-Yen; Juan, Yu-Shan; Hsu, Sheng-Jie
2015-08-01
Optical coherence tomography (OCT) has become an important medical imaging technology due to its non-invasiveness and high resolution. Full-field optical coherence tomography (FF-OCT) is a scanning scheme especially suitable for en face imaging as it employs a CMOS/CCD device for parallel pixels processing. FF-OCT can also be applied to high-speed endoscopic imaging. Applying cylindrical scanning and a right-angle prism, we successfully obtained a 360° tomography of the inner wall of an intestinal cavity through an FF-OCT system with an LED source. The 10-μm scale resolution enables the early detection of gastrointestinal lesions, which can increase detection rates for esophageal, stomach, or vaginal cancer. All devices used in this system can be integrated by MOEMS technology to contribute to the studies of gastrointestinal medicine and advanced endoscopy technology.
Yuan, Fu-song; Sun, Yu-chun; Xie, Xiao-yan; Wang, Yong; Lv, Pei-jun
2013-12-18
To quantitatively evaluate the artifacts appearance of eight kinds of common dental restorative materials, such as zirconia. For the full-crown tooth preparation of mandibular first molar, eight kinds of full-crowns, such as zirconia all-ceramic crown, glass ceramic crown, ceramage crown, Au-Pt based porcelain-fused-metal (PFM) crown, Pure Titanium PFM crown, Co-Cr PFM crown, Ni-Cr PFM crown, and Au-Pd metal crown were fabricated. And natural teeth in vitro were used as controls. These full-crown and natural teeth in vitro were mounted an ultraviolet-curable resin fixed plate. High resolution cone beam computed tomography (CBCT) was used to scan all of the crowns and natural teeth in vitro, and their DICOM data were imported into software MIMICS 10.0. Then, the number of stripes and the maximum diameters of artifacts around the full-crowns were evaluated quantitatively in two-dimensional tomography images. In the two-dimensional tomography images,the artifacts did not appear around the natural teeth in vitro, glass ceramic crown, and ceramage crown. But thr artifacts appeared around the zirconia all-ceramic and metal crown. The number of stripes of artifacts was five to nine per one crown. The maximum diameters of the artifacts were 2.4 to 2.6 cm and 2.2 to 2.7 cm. In the two-dimensional tomography images of CBCT, stripe-like and radical artifacts were caused around the zirconia all-ceramic crown and metal based porcelain-fused-metal crowns. These artifacts could lower the imaging quality of the full crown shape greatly. The artifact was not caused around the natural teeth in vitro, glass ceramic crown, and ceramage crown.
Separation of Migration and Tomography Modes of Full-Waveform Inversion in the Plane Wave Domain
NASA Astrophysics Data System (ADS)
Yao, Gang; da Silva, Nuno V.; Warner, Michael; Kalinicheva, Tatiana
2018-02-01
Full-waveform inversion (FWI) includes both migration and tomography modes. The migration mode acts like a nonlinear least squares migration to map model interfaces with reflections, while the tomography mode behaves as tomography to build a background velocity model. The migration mode is the main response of inverting reflections, while the tomography mode exists in response to inverting both the reflections and refractions. To emphasize one of the two modes in FWI, especially for inverting reflections, the separation of the two modes in the gradient of FWI is required. Here we present a new method to achieve this separation with an angle-dependent filtering technique in the plane wave domain. We first transform the source and residual wavefields into the plane wave domain with the Fourier transform and then decompose them into the migration and tomography components using the opening angles between the transformed source and residual plane waves. The opening angles close to 180° contribute to the tomography component, while the others correspond to the migration component. We find that this approach is very effective and robust even when the medium is relatively complicated with strong lateral heterogeneities, highly dipping reflectors, and strong anisotropy. This is well demonstrated by theoretical analysis and numerical tests with a synthetic data set and a field data set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaparpalvi, Ravindra, E-mail: ryaparpa@montefiore.org; Mehta, Keyur J.; Bernstein, Michael B.
Purpose: To evaluate, in a gynecologic cancer setting, changes in bowel position, dose-volume parameters, and biological indices that arise between full-bladder (FB) and empty-bladder (EB) treatment situations; and to evaluate, using cone beam computed tomography (CT), the validity of FB treatment presumption. Methods and Materials: Seventeen gynecologic cancer patients were retrospectively analyzed. Empty-bladder and FB CTs were obtained. Full-bladder CTs were used for planning and dose optimization. Patients were given FB instructions for treatment. For the study purpose, bowel was contoured on the EB CTs for all patients. Bowel position and volume changes between FB and EB states were determined.more » Full-bladder plans were applied on EB CTs for determining bowel dose-volume changes in EB state. Biological indices (generalized equivalent uniform dose and normal tissue complication probability) were calculated and compared between FB and EB. Weekly cone beam CT data were available in 6 patients to assess bladder volume at treatment. Results: Average (±SD) planned bladder volume was 299.7 ± 68.5 cm{sup 3}. Median bowel shift in the craniocaudal direction between FB and EB was 12.5 mm (range, 3-30 mm), and corresponding increase in exposed bowel volume was 151.3 cm{sup 3} (range, 74.3-251.4 cm{sup 3}). Absolute bowel volumes receiving 45 Gy were higher for EB compared with FB (mean 328.0 ± 174.8 vs 176.0 ± 87.5 cm{sup 3}; P=.0038). Bowel normal tissue complication probability increased 1.5× to 23.5× when FB planned treatments were applied in the EB state. For the study, the mean percentage value of relative bladder volume at treatment was 32%. Conclusions: Full-bladder planning does not necessarily translate into FB treatments, with a patient tendency toward EB. Given the uncertainty in daily control over bladder volume for treatment, we strongly recommend a “planning-at-risk volume bowel” (PRV{sub B}owel) concept to account for bowel motion between FB and EB that can be tailored for the individual patient.« less
Quantum Tomography via Compressed Sensing: Error Bounds, Sample Complexity and Efficient Estimators
2012-09-27
particular, we require no entangling gates or ancillary systems for the procedure. In contrast with [19], our method is not restricted to processes that are...of states, such as those recently developed for use with permutation-invariant states [60], matrix product states [61] or multi-scale entangled states...process tomography: first prepare the Jamiołkowski state ρE (by adjoining an ancilla, preparing the maximally entangled state |ψ0, and applying E); then
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinelli, C.; Di Nepi, G.; De Martini, F.
2004-08-01
A parametric source of polarization-entangled photon pairs with striking spatial characteristics is reported. The distribution of the output electromagnetic k modes excited by spontaneous parametric down-conversion and coupled to the output detectors can be very broad. Using these states realized over a full entanglement ring output distribution, the nonlocal properties of the generated entanglement have been tested by standard Bell measurements and by Ou-Mandel interferometry. A 'mode-patchwork' technique based on the quantum superposition principle is adopted to synthesize in a straightforward and reliable way any kind of mixed state, of large conceptual and technological interest in modern quantum information. Tunablemore » Werner states and maximally entangled mixed states have indeed been created by this technique and investigated by quantum tomography. A study of the entropic and nonlocal properties of these states has been undertaken experimentally and theoretically, by a unifying variational approach.« less
2012-09-27
we require no entangling gates or ancillary systems for the procedure. In contrast with [19], our method is not restricted to processes that are...states, such as those recently developed for use with permutation-invariant states [60], matrix product states [61] or multi-scale entangled states [62...by adjoining an ancilla, preparing the maximally entangled state |ψ0〉, and applying E); then do compressed quantum state tomography on ρE ; see
Neuroimaging of the Injured Pediatric Brain: Methods and New Lessons.
Dennis, Emily L; Babikian, Talin; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F
2018-02-01
Traumatic brain injury (TBI) is a significant public health problem in the United States, especially for children and adolescents. Current epidemiological data estimate over 600,000 patients younger than 20 years are treated for TBI in emergency rooms annually. While many patients experience a full recovery, for others there can be long-lasting cognitive, neurological, psychological, and behavioral disruptions. TBI in youth can disrupt ongoing brain development and create added family stress during a formative period. The neuroimaging methods used to assess brain injury improve each year, providing researchers a more detailed characterization of the injury and recovery process. In this review, we cover current imaging methods used to quantify brain disruption post-injury, including structural magnetic resonance imaging (MRI), diffusion MRI, functional MRI, resting state fMRI, and magnetic resonance spectroscopy (MRS), with brief coverage of other methods, including electroencephalography (EEG), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). We include studies focusing on pediatric moderate-severe TBI from 2 months post-injury and beyond. While the morbidity of pediatric TBI is considerable, continuing advances in imaging methods have the potential to identify new treatment targets that can lead to significant improvements in outcome.
Fragmentation modeling of a resin bonded sand
NASA Astrophysics Data System (ADS)
Hilth, William; Ryckelynck, David
2017-06-01
Cemented sands exhibit a complex mechanical behavior that can lead to sophisticated models, with numerous parameters without real physical meaning. However, using a rather simple generalized critical state bonded soil model has proven to be a relevant compromise between an easy calibration and good results. The constitutive model formulation considers a non-associated elasto-plastic formulation within the critical state framework. The calibration procedure, using standard laboratory tests, is complemented by the study of an uniaxial compression test observed by tomography. Using finite elements simulations, this test is simulated considering a non-homogeneous 3D media. The tomography of compression sample gives access to 3D displacement fields by using image correlation techniques. Unfortunately these fields have missing experimental data because of the low resolution of correlations for low displacement magnitudes. We propose a recovery method that reconstructs 3D full displacement fields and 2D boundary displacement fields. These fields are mandatory for the calibration of the constitutive parameters by using 3D finite element simulations. The proposed recovery technique is based on a singular value decomposition of available experimental data. This calibration protocol enables an accurate prediction of the fragmentation of the specimen.
ODTbrain: a Python library for full-view, dense diffraction tomography.
Müller, Paul; Schürmann, Mirjam; Guck, Jochen
2015-11-04
Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language.
Fingerprint imaging from the inside of a finger with full-field optical coherence tomography
Auksorius, Egidijus; Boccara, A. Claude
2015-01-01
Imaging below fingertip surface might be a useful alternative to the traditional fingerprint sensing since the internal finger features are more reliable than the external ones. One of the most promising subsurface imaging technique is optical coherence tomography (OCT), which, however, has to acquire 3-D data even when a single en face image is required. This makes OCT inherently slow for en face imaging and produce unnecessary large data sets. Here we demonstrate that full-field optical coherence tomography (FF-OCT) can be used to produce en face images of sweat pores and internal fingerprints, which can be used for the identification purposes. PMID:26601009
Frozen Gaussian approximation for 3D seismic tomography
NASA Astrophysics Data System (ADS)
Chai, Lihui; Tong, Ping; Yang, Xu
2018-05-01
Three-dimensional (3D) wave-equation-based seismic tomography is computationally challenging in large scales and high-frequency regime. In this paper, we apply the frozen Gaussian approximation (FGA) method to compute 3D sensitivity kernels and seismic tomography of high-frequency. Rather than standard ray theory used in seismic inversion (e.g. Kirchhoff migration and Gaussian beam migration), FGA is used to compute the 3D high-frequency sensitivity kernels for travel-time or full waveform inversions. Specifically, we reformulate the equations of the forward and adjoint wavefields for the purpose of convenience to apply FGA, and with this reformulation, one can efficiently compute the Green’s functions whose convolutions with source time function produce wavefields needed for the construction of 3D kernels. Moreover, a fast summation method is proposed based on local fast Fourier transform which greatly improves the speed of reconstruction as the last step of FGA algorithm. We apply FGA to both the travel-time adjoint tomography and full waveform inversion (FWI) on synthetic crosswell seismic data with dominant frequencies as high as those of real crosswell data, and confirm again that FWI requires a more sophisticated initial velocity model for the convergence than travel-time adjoint tomography. We also numerically test the accuracy of applying FGA to local earthquake tomography. This study paves the way to directly apply wave-equation-based seismic tomography methods into real data around their dominant frequencies.
Experimental demonstration of real-time adaptive one-qubit quantum-state tomography
NASA Astrophysics Data System (ADS)
Yin, Qi; Li, Li; Xiang, Xiao; Xiang, Guo-Yong; Li, Chuang-Feng; Guo, Guang-Can
2017-01-01
Quantum-state tomography plays a pivotal role in quantum computation and information processing. To improve the accuracy in estimating an unknown state, carefully designed measurement schemes, such as adopting an adaptive strategy, are necessarily needed, which have gained great interest recently. In this work, based on the proposal of Sugiyama et al. [Phys. Rev. A 85, 052107 (2012)], 10.1103/PhysRevA.85.052107, we experimentally realize an adaptive quantum-state tomography for one qubit in an optical system. Since this scheme gives an analytical solution to the optimal measurement basis problem, our experiment is updated in real time and the infidelity between the real state and the estimated state is tracked with the detected photons. We observe an almost 1 /N scaling rule of averaged infidelity against the overall number of photons, N , in our experiment, which outperforms 1 /√{N } of nonadaptive schemes.
X-ray tomography using the full complex index of refraction.
Nielsen, M S; Lauridsen, T; Thomsen, M; Jensen, T H; Bech, M; Christensen, L B; Olsen, E V; Hviid, M; Feidenhans'l, R; Pfeiffer, F
2012-10-07
We report on x-ray tomography using the full complex index of refraction recorded with a grating-based x-ray phase-contrast setup. Combining simultaneous absorption and phase-contrast information, the distribution of the full complex index of refraction is determined and depicted in a bivariate graph. A simple multivariable threshold segmentation can be applied offering higher accuracy than with a single-variable threshold segmentation as well as new possibilities for the partial volume analysis and edge detection. It is particularly beneficial for low-contrast systems. In this paper, this concept is demonstrated by experimental results.
Equally sloped tomography based X-ray full-field nano-CT at Shanghai Synchrotron Radiation Facility
NASA Astrophysics Data System (ADS)
Wang, Yudan; Ren, Yuqi; Zhou, Guangzhao; Du, Guohao; Xie, Honglan; Deng, Biao; Xiao, Tiqiao
2018-07-01
X-ray full-field nano-computed tomography (nano-CT) has non-destructive three-dimensional imaging capabilities with high spatial resolution, and has been widely applied to investigate morphology and structures in various areas. Conventional tomography reconstructs a 3D object from a large number of equal-angle projections. For nano-CT, it takes long collecting time due to the large projection numbers and long exposure time. Here, equally-sloped tomography (EST) based nano-CT was implemented and constructed on X-ray imaging beamline at the Shanghai Synchrotron Radiation Facility (SSRF) to overcome or alleviate these difficulties. Preliminary results show that hard TXM with the spatial resolution of 100 nm and the EST-based nano-CT with the ability of 3D nano non-destructive characterization have been realized. This technique promotes hard X-ray imaging capability to nano scales at SSRF and could have applications in many fields including nanomaterials, new energy and life sciences. The study will be helpful for the construction of the new full field X-ray nano-imaging beamline with the spatial resolution of 20 nm at SSRF phase II project.
A Comparison of Ultrasound Tomography Methods in Circular Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leach, R R; Azevedo, S G; Berryman, J G
2002-01-24
Extremely high quality data was acquired using an experimental ultrasound scanner developed at Lawrence Livermore National Laboratory using a 2D ring geometry with up to 720 transmitter/receiver transducer positions. This unique geometry allows reflection and transmission modes and transmission imaging and quantification of a 3D volume using 2D slice data. Standard image reconstruction methods were applied to the data including straight-ray filtered back projection, reflection tomography, and diffraction tomography. Newer approaches were also tested such as full wave, full wave adjoint method, bent-ray filtered back projection, and full-aperture tomography. A variety of data sets were collected including a formalin-fixed humanmore » breast tissue sample, a commercial ultrasound complex breast phantom, and cylindrical objects with and without inclusions. The resulting reconstruction quality of the images ranges from poor to excellent. The method and results of this study are described including like-data reconstructions produced by different algorithms with side-by-side image comparisons. Comparisons to medical B-scan and x-ray CT scan images are also shown. Reconstruction methods with respect to image quality using resolution, noise, and quantitative accuracy, and computational efficiency metrics will also be discussed.« less
Minimax Quantum Tomography: Estimators and Relative Entropy Bounds.
Ferrie, Christopher; Blume-Kohout, Robin
2016-03-04
A minimax estimator has the minimum possible error ("risk") in the worst case. We construct the first minimax estimators for quantum state tomography with relative entropy risk. The minimax risk of nonadaptive tomography scales as O(1/sqrt[N])-in contrast to that of classical probability estimation, which is O(1/N)-where N is the number of copies of the quantum state used. We trace this deficiency to sampling mismatch: future observations that determine risk may come from a different sample space than the past data that determine the estimate. This makes minimax estimators very biased, and we propose a computationally tractable alternative with similar behavior in the worst case, but superior accuracy on most states.
Teleseismic tomography for imaging Earth's upper mantle
NASA Astrophysics Data System (ADS)
Aktas, Kadircan
Teleseismic tomography is an important imaging tool in earthquake seismology, used to characterize lithospheric structure beneath a region of interest. In this study I investigate three different tomographic techniques applied to real and synthetic teleseismic data, with the aim of imaging the velocity structure of the upper mantle. First, by applying well established traveltime tomographic techniques to teleseismic data from southern Ontario, I obtained high-resolution images of the upper mantle beneath the lower Great Lakes. Two salient features of the 3D models are: (1) a patchy, NNW-trending low-velocity region, and (2) a linear, NE-striking high-velocity anomaly. I interpret the high-velocity anomaly as a possible relict slab associated with ca. 1.25 Ga subduction, whereas the low-velocity anomaly is interpreted as a zone of alteration and metasomatism associated with the ascent of magmas that produced the Late Cretaceous Monteregian plutons. The next part of the thesis is concerned with adaptation of existing full-waveform tomographic techniques for application to teleseismic body-wave observations. The method used here is intended to be complementary to traveltime tomography, and to take advantage of efficient frequency-domain methodologies that have been developed for inverting large controlled-source datasets. Existing full-waveform acoustic modelling and inversion codes have been modified to handle plane waves impinging from the base of the lithospheric model at a known incidence angle. A processing protocol has been developed to prepare teleseismic observations for the inversion algorithm. To assess the validity of the acoustic approximation, the processing procedure and modelling-inversion algorithm were tested using synthetic seismograms computed using an elastic Kirchhoff integral method. These tests were performed to evaluate the ability of the frequency-domain full-waveform inversion algorithm to recover topographic variations of the Moho under a variety of realistic scenarios. Results show that frequency-domain full-waveform tomography is generally successful in recovering both sharp and discontinuous features. Thirdly, I developed a new method for creating an initial background velocity model for the inversion algorithm, which is sufficiently close to the true model so that convergence is likely to be achieved. I adapted a method named Deformable Layer Tomography (DLT), which adjusts interfaces between layers rather than velocities within cells. I applied this method to a simple model comprising a single uniform crustal layer and a constant-velocity mantle, separated by an irregular Moho interface. A series of tests was performed to evaluate the sensitivity of the DLT algorithm; the results show that my algorithm produces useful results within a realistic range of incident-wave obliquity, incidence angle and signal-to-noise level. Keywords. Teleseismic tomography, full waveform tomography, deformable layer tomography, lower Great Lakes, crust and upper mantle.
A fast atlas-guided high density diffuse optical tomography system for brain imaging
NASA Astrophysics Data System (ADS)
Dai, Xianjin; Zhang, Tao; Yang, Hao; Jiang, Huabei
2017-02-01
Near infrared spectroscopy (NIRS) is an emerging functional brain imaging tool capable of assessing cerebral concentrations of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) during brain activation noninvasively. As an extension of NIRS, diffuse optical tomography (DOT) not only shares the merits of providing continuous readings of cerebral oxygenation, but also has the ability to provide spatial resolution in the millimeter scale. Based on the scattering and absorption properties of nonionizing near-infrared light in biological tissue, DOT has been successfully applied in the imaging of breast tumors, osteoarthritis and cortex activations. Here, we present a state-of-art fast high density DOT system suitable for brain imaging. It can achieve up to a 21 Hz sampling rate for a full set of two-wavelength data for 3-D DOT brain image reconstruction. The system was validated using tissue-mimicking brain-model phantom. Then, experiments on healthy subjects were conducted to demonstrate the capability of the system.
Quantum systems as embarrassed colleagues: what do tax evasion and state tomography have in common?
NASA Astrophysics Data System (ADS)
Ferrie, Chris; Blume-Kohout, Robin
2011-03-01
Quantum state estimation (a.k.a. ``tomography'') plays a key role in designing quantum information processors. As a problem, it resembles probability estimation - e.g. for classical coins or dice - but with some subtle and important discrepancies. We demonstrate an improved classical analogue that captures many of these differences: the ``noisy coin.'' Observations on noisy coins are unreliable - much like soliciting sensitive information such as ones tax preparation habits. So, like a quantum system, it cannot be sampled directly. Unlike standard coins or dice, whose worst-case estimation risk scales as 1 / N for all states, noisy coins (and quantum states) have a worst-case risk that scales as 1 /√{ N } and is overwhelmingly dominated by nearly-pure states. The resulting optimal estimation strategies for noisy coins are surprising and counterintuitive. We demonstrate some important consequences for quantum state estimation - in particular, that adaptive tomography can recover the 1 / N risk scaling of classical probability estimation.
State Waste Discharge Permit Application: Electric resistance tomography testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-04-01
This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the arealmore » extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.« less
NASA Astrophysics Data System (ADS)
Ponomarev, A. A.; Mamadaliev, R. A.; Semenova, T. V.
2016-10-01
The article presents a brief overview of the current state of computed tomography in the sphere of oil and gas production in Russia and in the world. Operation of computed microtomograph Skyscan 1172 is also provided, as well as personal examples of its application in solving geological problems.
Sutton, J A; Clauss, R P
2017-01-01
During 15 years, 23 clinical reports and 6 studies have demonstrated associations between sub-sedative doses of zolpidem and recoveries from brain damage due to strokes, trauma and hypoxia. Clinical findings include unexpected awakenings from vegetative states and regressions of stroke symptoms after dosing that disappear during elimination and reappear on repeat dosing. Initially single-photon emission computed tomography scans showed improved perfusion within, around and distant from infarctions. Then positron emission tomography scans and electroencephalography detected renewed metabolic and neuronal activity. Placebo or a similar, gamma-aminobutyric acid (GABA)-ergic, sedative zopiclone has no such effect. The effect appears only several months after the injury, reflecting recent evidence in mice of substantial differences between the states of GABA receptors in acute and chronic repair phases of recovery. Zolpidem's good safety record and rapid absorption further indicate a need for more clinical trials. List of acronyms: BOLD, Blood-Oxygen-Level Dependent contrast imaging in MRI; CRS, Coma Recovery Scale; CRS-R, Coma Recovery Scale Revised; CSI, Cerebral State Index; CSM, Cerebral State Monitor; DOC, Disorder of Consciousness; EEG, Electro Encephalography; FDG-PET, FluoroDeoxyGlucose-Positron Emission Tomography; FTD, Frontotemporal dementia; GABA, Gamma-Aminobutyric Acid; MCS, Minimally Conscious State; M-EEG, Magneto-Encephalography; MRI, Magnetic Resonance Image; MSN, Median Spiny Neurones; PET, Positron Emission Tomography; PVS, Persistent Vegetative Sate; RLAC, Rancho Los Amigos Cognitive scores; SPECT, Single-photon emission computed tomography; TFES, Tinetti Falls Efficacy Scale; 99mTc HMPAO, Technetium hexamethylpropyleneamine oxime.
Robustness of raw quantum tomography
NASA Astrophysics Data System (ADS)
Asorey, M.; Facchi, P.; Florio, G.; Man'ko, V. I.; Marmo, G.; Pascazio, S.; Sudarshan, E. C. G.
2011-01-01
We scrutinize the effects of non-ideal data acquisition on the tomograms of quantum states. The presence of a weight function, schematizing the effects of a finite window or equivalently noise, only affects the state reconstruction procedure by a normalization constant. The results are extended to a discrete mesh and show that quantum tomography is robust under incomplete and approximate knowledge of tomograms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blume-Kohout, Robin J; Scholten, Travis L.
Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less
Minimax Quantum Tomography: Estimators and Relative Entropy Bounds
Ferrie, Christopher; Blume-Kohout, Robin
2016-03-04
A minimax estimator has the minimum possible error (“risk”) in the worst case. Here we construct the first minimax estimators for quantum state tomography with relative entropy risk. The minimax risk of nonadaptive tomography scales as O (1/more » $$\\sqrt{N}$$ ) —in contrast to that of classical probability estimation, which is O (1/N) —where N is the number of copies of the quantum state used. We trace this deficiency to sampling mismatch: future observations that determine risk may come from a different sample space than the past data that determine the estimate. Lastly, this makes minimax estimators very biased, and we propose a computationally tractable alternative with similar behavior in the worst case, but superior accuracy on most states.« less
Optimal estimation of entanglement in optical qubit systems
NASA Astrophysics Data System (ADS)
Brida, Giorgio; Degiovanni, Ivo P.; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G. A.; Shurupov, Alexander P.
2011-05-01
We address the experimental determination of entanglement for systems made of a pair of polarization qubits. We exploit quantum estimation theory to derive optimal estimators, which are then implemented to achieve ultimate bound to precision. In particular, we present a set of experiments aimed at measuring the amount of entanglement for states belonging to different families of pure and mixed two-qubit two-photon states. Our scheme is based on visibility measurements of quantum correlations and achieves the ultimate precision allowed by quantum mechanics in the limit of Poissonian distribution of coincidence counts. Although optimal estimation of entanglement does not require the full tomography of the states we have also performed state reconstruction using two different sets of tomographic projectors and explicitly shown that they provide a less precise determination of entanglement. The use of optimal estimators also allows us to compare and statistically assess the different noise models used to describe decoherence effects occurring in the generation of entanglement.
NASA Astrophysics Data System (ADS)
Goyal, Sandeep K.; Singh, Rajeev; Ghosh, Sibasish
2016-01-01
Mixed states of a quantum system, represented by density operators, can be decomposed as a statistical mixture of pure states in a number of ways where each decomposition can be viewed as a different preparation recipe. However the fact that the density matrix contains full information about the ensemble makes it impossible to estimate the preparation basis for the quantum system. Here we present a measurement scheme to (seemingly) improve the performance of unsharp measurements. We argue that in some situations this scheme is capable of providing statistics from a single copy of the quantum system, thus making it possible to perform state tomography from a single copy. One of the by-products of the scheme is a way to distinguish between different preparation methods used to prepare the state of the quantum system. However, our numerical simulations disagree with our intuitive predictions. We show that a counterintuitive property of a biased classical random walk is responsible for the proposed mechanism not working.
Data and Workflow Management Challenges in Global Adjoint Tomography
NASA Astrophysics Data System (ADS)
Lei, W.; Ruan, Y.; Smith, J. A.; Modrak, R. T.; Orsvuran, R.; Krischer, L.; Chen, Y.; Balasubramanian, V.; Hill, J.; Turilli, M.; Bozdag, E.; Lefebvre, M. P.; Jha, S.; Tromp, J.
2017-12-01
It is crucial to take the complete physics of wave propagation into account in seismic tomography to further improve the resolution of tomographic images. The adjoint method is an efficient way of incorporating 3D wave simulations in seismic tomography. However, global adjoint tomography is computationally expensive, requiring thousands of wavefield simulations and massive data processing. Through our collaboration with the Oak Ridge National Laboratory (ORNL) computing group and an allocation on Titan, ORNL's GPU-accelerated supercomputer, we are now performing our global inversions by assimilating waveform data from over 1,000 earthquakes. The first challenge we encountered is dealing with the sheer amount of seismic data. Data processing based on conventional data formats and processing tools (such as SAC), which are not designed for parallel systems, becomes our major bottleneck. To facilitate the data processing procedures, we designed the Adaptive Seismic Data Format (ASDF) and developed a set of Python-based processing tools to replace legacy FORTRAN-based software. These tools greatly enhance reproducibility and accountability while taking full advantage of highly parallel system and showing superior scaling on modern computational platforms. The second challenge is that the data processing workflow contains more than 10 sub-procedures, making it delicate to handle and prone to human mistakes. To reduce human intervention as much as possible, we are developing a framework specifically designed for seismic inversion based on the state-of-the art workflow management research, specifically the Ensemble Toolkit (EnTK), in collaboration with the RADICAL team from Rutgers University. Using the initial developments of the EnTK, we are able to utilize the full computing power of the data processing cluster RHEA at ORNL while keeping human interaction to a minimum and greatly reducing the data processing time. Thanks to all the improvements, we are now able to perform iterations fast enough on more than a 1,000 earthquakes dataset. Starting from model GLAD-M15 (Bozdag et al., 2016), an elastic 3D model with a transversely isotropic upper mantle, we have successfully performed 5 iterations. Our goal is to finish 10 iterations, i.e., generating GLAD M25* by the end of this year.
NASA Astrophysics Data System (ADS)
Dubey, Satish Kumar; Singh Mehta, Dalip; Anand, Arun; Shakher, Chandra
2008-01-01
We demonstrate simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography (OCT). The swept-source OCT system comprises a superluminescent diode (SLD) as broad-band light source, an acousto-optic tunable filter (AOTF) as frequency tuning device, and a compact, nearly common-path interferometer. Both the amplitude and the phase map of the interference fringe signal are reconstructed. Optical sectioning of the latent fingerprint sample is obtained by selective Fourier filtering and the topography is retrieved from the phase map. Interferometry, selective filtering, low coherence and hence better resolution are some of the advantages of the proposed system over the conventional fingerprint detection techniques. The present technique is non-invasive in nature and does not require any physical or chemical processing. Therefore, the quality of the sample does not alter and hence the same fingerprint can be used for other types of forensic test. Exploitation of low-coherence interferometry for fingerprint detection itself provides an edge over other existing techniques as fingerprints can even be lifted from low-reflecting surfaces. The proposed system is very economical and compact.
Quantum control and quantum tomography on neutral atom qudits
NASA Astrophysics Data System (ADS)
Sosa Martinez, Hector
Neutral atom systems are an appealing platform for the development and testing of quantum control and measurement techniques. This dissertation presents experimental investigations of control and measurement tools using as a testbed the 16-dimensional hyperfine manifold associated with the electronic ground state of cesium atoms. On the control side, we present an experimental realization of a protocol to implement robust unitary transformations in the presence of static and dynamic perturbations. We also present an experimental realization of inhomogeneous quantum control. Specifically, we demonstrate our ability to perform two different unitary transformations on atoms that see different light shifts from an optical addressing field. On the measurement side, we present experimental realizations of quantum state and process tomography. The state tomography project encompasses a comprehensive evaluation of several measurement strategies and state estimation algorithms. Our experimental results show that in the presence of experimental imperfections, there is a clear tradeoff between accuracy, efficiency and robustness in the reconstruction. The process tomography project involves an experimental demonstration of efficient reconstruction by using a set of intelligent probe states. Experimental results show that we are able to reconstruct unitary maps in Hilbert spaces with dimension ranging from d=4 to d=16. To the best of our knowledge, this is the first time that a unitary process in d=16 is successfully reconstructed in the laboratory.
Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits.
Chow, Jerry M; Gambetta, Jay M; Córcoles, A D; Merkel, Seth T; Smolin, John A; Rigetti, Chad; Poletto, S; Keefe, George A; Rothwell, Mary B; Rozen, J R; Ketchen, Mark B; Steffen, M
2012-08-10
We use quantum process tomography to characterize a full universal set of all-microwave gates on two superconducting single-frequency single-junction transmon qubits. All extracted gate fidelities, including those for Clifford group generators, single-qubit π/4 and π/8 rotations, and a two-qubit controlled-not, exceed 95% (98%), without (with) subtracting state preparation and measurement errors. Furthermore, we introduce a process map representation in the Pauli basis which is visually efficient and informative. This high-fidelity gate set serves as a critical building block towards scalable architectures of superconducting qubits for error correction schemes and pushes up on the known limits of quantum gate characterization.
Efficient continuous-variable state tomography using Padua points
NASA Astrophysics Data System (ADS)
Landon-Cardinal, Olivier; Govia, Luke C. G.; Clerk, Aashish A.
Further development of quantum technologies calls for efficient characterization methods for quantum systems. While recent work has focused on discrete systems of qubits, much remains to be done for continuous-variable systems such as a microwave mode in a cavity. We introduce a novel technique to reconstruct the full Husimi Q or Wigner function from measurements done at the Padua points in phase space, the optimal sampling points for interpolation in 2D. Our technique not only reduces the number of experimental measurements, but remarkably, also allows for the direct estimation of any density matrix element in the Fock basis, including off-diagonal elements. OLC acknowledges financial support from NSERC.
Universal Quantum Gate Set Approaching Fault-Tolerant Thresholds with Superconducting Qubits
NASA Astrophysics Data System (ADS)
Chow, Jerry M.; Gambetta, Jay M.; Córcoles, A. D.; Merkel, Seth T.; Smolin, John A.; Rigetti, Chad; Poletto, S.; Keefe, George A.; Rothwell, Mary B.; Rozen, J. R.; Ketchen, Mark B.; Steffen, M.
2012-08-01
We use quantum process tomography to characterize a full universal set of all-microwave gates on two superconducting single-frequency single-junction transmon qubits. All extracted gate fidelities, including those for Clifford group generators, single-qubit π/4 and π/8 rotations, and a two-qubit controlled-not, exceed 95% (98%), without (with) subtracting state preparation and measurement errors. Furthermore, we introduce a process map representation in the Pauli basis which is visually efficient and informative. This high-fidelity gate set serves as a critical building block towards scalable architectures of superconducting qubits for error correction schemes and pushes up on the known limits of quantum gate characterization.
Application of Neutron Tomography in Culture Heritage research.
Mongy, T
2014-02-01
Neutron Tomography (NT) investigation of Culture Heritages (CH) is an efficient tool for understanding the culture of ancient civilizations. Neutron imaging (NI) is a-state-of-the-art non-destructive tool in the area of CH and plays an important role in the modern archeology. The NI technology can be widely utilized in the field of elemental analysis. At Egypt Second Research Reactor (ETRR-2), a collimated Neutron Radiography (NR) beam is employed for neutron imaging purposes. A digital CCD camera is utilized for recording the beam attenuation in the sample. This helps for the detection of hidden objects and characterization of material properties. Research activity can be extended to use computer software for quantitative neutron measurement. Development of image processing algorithms can be used to obtain high quality images. In this work, full description of ETRR-2 was introduced with up to date neutron imaging system as well. Tomographic investigation of a clay forged artifact represents CH object was studied by neutron imaging methods in order to obtain some hidden information and highlight some attractive quantitative measurements. Computer software was used for imaging processing and enhancement. Also the Astra Image 3.0 Pro software was employed for high precise measurements and imaging enhancement using advanced algorithms. This work increased the effective utilization of the ETRR-2 Neutron Radiography/Tomography (NR/T) technique in Culture Heritages activities. © 2013 Elsevier Ltd. All rights reserved.
Practical characterization of quantum devices without tomography
NASA Astrophysics Data System (ADS)
Landon-Cardinal, Olivier; Flammia, Steven; Silva, Marcus; Liu, Yi-Kai; Poulin, David
2012-02-01
Quantum tomography is the main method used to assess the quality of quantum information processing devices, but its complexity presents a major obstacle for the characterization of even moderately large systems. Part of the reason for this complexity is that tomography generates much more information than is usually sought. Taking a more targeted approach, we develop schemes that enable (i) estimating the ?delity of an experiment to a theoretical ideal description, (ii) learning which description within a reduced subset best matches the experimental data. Both these approaches yield a signi?cant reduction in resources compared to tomography. In particular, we show how to estimate the ?delity between a predicted pure state and an arbitrary experimental state using only a constant number of Pauli expectation values selected at random according to an importance-weighting rule. In addition, we propose methods for certifying quantum circuits and learning continuous-time quantum dynamics that are described by local Hamiltonians or Lindbladians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalyanov, A L; Lychagov, V V; Smirnov, I V
2013-08-31
The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)
Thali, Michael J; Schweitzer, Wolf; Yen, Kathrin; Vock, Peter; Ozdoba, Christoph; Spielvogel, Elke; Dirnhofer, Richard
2003-03-01
The goal of this study was the full-body documentation of a gunshot wound victim with multislice helical computed tomography for subsequent comparison with the findings of the standard forensic autopsy. Complete volume data of the head, neck, and trunk were acquired by use of two acquisitions of less than 1 minute of total scanning time. Subsequent two-dimensional multiplanar reformations and three-dimensional shaded surface display reconstructions helped document the gunshot-created skull fractures and brain injuries, including the wound track, and the intracerebral bone fragments. Computed tomography also demonstrated intracardiac air embolism and pulmonary aspiration of blood resulting from bullet wound-related trauma. The "digital autopsy," even when postprocessing time was added, was more rapid than the classic forensic autopsy and, based on the nondestructive approach, offered certain advantages in comparison with the forensic autopsy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guanglei, E-mail: guangleizhang@bjtu.edu.cn; Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044; Pu, Huangsheng
2015-02-23
Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but alsomore » make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.« less
Time-marching multi-grid seismic tomography
NASA Astrophysics Data System (ADS)
Tong, P.; Yang, D.; Liu, Q.
2016-12-01
From the classic ray-based traveltime tomography to the state-of-the-art full waveform inversion, because of the nonlinearity of seismic inverse problems, a good starting model is essential for preventing the convergence of the objective function toward local minima. With a focus on building high-accuracy starting models, we propose the so-called time-marching multi-grid seismic tomography method in this study. The new seismic tomography scheme consists of a temporal time-marching approach and a spatial multi-grid strategy. We first divide the recording period of seismic data into a series of time windows. Sequentially, the subsurface properties in each time window are iteratively updated starting from the final model of the previous time window. There are at least two advantages of the time-marching approach: (1) the information included in the seismic data of previous time windows has been explored to build the starting models of later time windows; (2) seismic data of later time windows could provide extra information to refine the subsurface images. Within each time window, we use a multi-grid method to decompose the scale of the inverse problem. Specifically, the unknowns of the inverse problem are sampled on a coarse mesh to capture the macro-scale structure of the subsurface at the beginning. Because of the low dimensionality, it is much easier to reach the global minimum on a coarse mesh. After that, finer meshes are introduced to recover the micro-scale properties. That is to say, the subsurface model is iteratively updated on multi-grid in every time window. We expect that high-accuracy starting models should be generated for the second and later time windows. We will test this time-marching multi-grid method by using our newly developed eikonal-based traveltime tomography software package tomoQuake. Real application results in the 2016 Kumamoto earthquake (Mw 7.0) region in Japan will be demonstrated.
Quantification of Dynamic [18F]FDG Pet Studies in Acute Lung Injury.
Grecchi, Elisabetta; Veronese, Mattia; Moresco, Rosa Maria; Bellani, Giacomo; Pesenti, Antonio; Messa, Cristina; Bertoldo, Alessandra
2016-02-01
This work aims to investigate lung glucose metabolism using 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) positron emission tomography (PET) imaging in acute lung injury (ALI) patients. Eleven ALI patients and five healthy controls underwent a dynamic [(18)F]FDG PET/X-ray computed tomography (CT) scan. The standardized uptake values (SUV) and three different methods for the quantification of glucose metabolism (i.e., ratio, Patlak, and spectral analysis iterative filter, SAIF) were applied both at the region and the voxel levels. SUV reported a lower correlation than the ratio with the net tracer uptake. Patlak and SAIF analyses did not show any significant spatial or quantitative (R(2) > 0.80) difference. The additional information provided by SAIF showed that in lung inflammation, elevated tracer uptake is coupled with abnormal tracer exchanges within and between lung tissue compartments. Full kinetic modeling provides a multi-parametric description of glucose metabolism in the lungs. This allows characterizing the spatial distribution of lung inflammation as well as returning the functional state of the tissues.
NASA Astrophysics Data System (ADS)
Beshears, Ronald D.; Hediger, Lisa H.
1994-10-01
The Advanced Computed Tomography Inspection System (ACTIS) was developed by the Marshall Space Flight Center to support in-house solid propulsion test programs. ACTIS represents a significant advance in state-of-the-art inspection systems. Its flexibility and superior technical performance have made ACTIS very popular, both within and outside the aerospace community. Through Technology Utilization efforts, ACTIS has been applied to inspection problems in commercial aerospace, lumber, automotive, and nuclear waste disposal industries. ACTIS has even been used to inspect items of historical interest. ACTIS has consistently produced valuable results, providing information which was unattainable through conventional inspection methods. Although many successes have already been demonstrated, the full potential of ACTIS has not yet been realized. It is currently being applied in the commercial aerospace industry by Boeing Aerospace Company. Smaller systems, based on ACTIS technology are becoming increasingly available. This technology has much to offer small businesses and industry, especially in identifying design and process problems early in the product development cycle to prevent defects. Several options are available to businesses interested in pursuing this technology.
NASA Technical Reports Server (NTRS)
Hediger, Lisa H.
1991-01-01
The Advanced Computed Tomography Inspection System (ACTIS) was developed by NASA Marshall to support solid propulsion test programs. ACTIS represents a significant advance in state-of-the-art inspection systems. Its flexibility and superior technical performance have made ACTIS very popular, both within and outside the aerospace community. Through technology utilization efforts, ACTIS has been applied to inspection problems in commercial aerospace, lumber, automotive, and nuclear waste disposal industries. ACTIS has been used to inspect items of historical interest. ACTIS has consistently produced valuable results, providing information which was unattainable through conventional inspection methods. Although many successes have already been shown, the full potential of ACTIS has not yet been realized. It is currently being applied in the commercial aerospace industry by Boeing. Smaller systems, based on ACTIS technology, are becoming increasingly available. This technology has much to offer the small business and industry, especially in identifying design and process problems early in the product development cycle to prevent defects. Several options are available to businesses interested in this technology.
A statistical-based approach for acoustic tomography of the atmosphere.
Kolouri, Soheil; Azimi-Sadjadi, Mahmood R; Ziemann, Astrid
2014-01-01
Acoustic travel-time tomography of the atmosphere is a nonlinear inverse problem which attempts to reconstruct temperature and wind velocity fields in the atmospheric surface layer using the dependence of sound speed on temperature and wind velocity fields along the propagation path. This paper presents a statistical-based acoustic travel-time tomography algorithm based on dual state-parameter unscented Kalman filter (UKF) which is capable of reconstructing and tracking, in time, temperature, and wind velocity fields (state variables) as well as the dynamic model parameters within a specified investigation area. An adaptive 3-D spatial-temporal autoregressive model is used to capture the state evolution in the UKF. The observations used in the dual state-parameter UKF process consist of the acoustic time of arrivals measured for every pair of transmitter/receiver nodes deployed in the investigation area. The proposed method is then applied to the data set collected at the Meteorological Observatory Lindenberg, Germany, as part of the STINHO experiment, and the reconstruction results are presented.
Quantum tomography enhanced through parametric amplification
NASA Astrophysics Data System (ADS)
Knyazev, E.; Spasibko, K. Yu; Chekhova, M. V.; Khalili, F. Ya
2018-01-01
Quantum tomography is the standard method of reconstructing the Wigner function of quantum states of light by means of balanced homodyne detection. The reconstruction quality strongly depends on the photodetectors quantum efficiency and other losses in the measurement setup. In this article we analyze in detail a protocol of enhanced quantum tomography, proposed by Leonhardt and Paul [1] which allows one to reduce the degrading effect of detection losses. It is based on phase-sensitive parametric amplification, with the phase of the amplified quadrature being scanned synchronously with the local oscillator phase. Although with sufficiently strong amplification the protocol enables overcoming any detection inefficiency, it was so far not implemented in the experiment, probably due to the losses in the amplifier. Here we discuss a possible proof-of-principle experiment with a traveling-wave parametric amplifier. We show that with the state-of-the-art optical elements, the protocol enables high fidelity tomographic reconstruction of bright non-classical states of light. We consider two examples: bright squeezed vacuum and squeezed single-photon state, with the latter being a non-Gaussian state and both strongly affected by the losses.
Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities
Bohling, Geoffrey C.; Zhan, Xiaoyong; Butler, James J.; Zheng, Li
2002-01-01
Hydraulic tomography, a procedure involving the performance of a suite of pumping tests in a tomographic format, provides information about variations in hydraulic conductivity at a level of detail not obtainable with traditional well tests. However, analysis of transient data from such a suite of pumping tests represents a substantial computational burden. Although steady state responses can be analyzed to reduce this computational burden significantly, the time required to reach steady state will often be too long for practical applications of the tomography concept. In addition, uncertainty regarding the mechanisms driving the system to steady state can propagate to adversely impact the resulting hydraulic conductivity estimates. These disadvantages of a steady state analysis can be overcome by exploiting the simplifications possible under the steady shape flow regime. At steady shape conditions, drawdown varies with time but the hydraulic gradient does not. Thus transient data can be analyzed with the computational efficiency of a steady state model. In this study, we demonstrate the value of the steady shape concept for inversion of hydraulic tomography data and investigate its robustness with respect to improperly specified boundary conditions.
Quantum Tomography Protocols with Positivity are Compressed Sensing Protocols (Open Access)
2015-12-08
ARTICLE OPEN Quantum tomography protocols with positivity are compressed sensing protocols Amir Kalev1, Robert L Kosut2 and Ivan H Deutsch1...Characterising complex quantum systems is a vital task in quantum information science. Quantum tomography, the standard tool used for this purpose, uses a well...designed measurement record to reconstruct quantum states and processes. It is, however, notoriously inefficient. Recently, the classical signal
Optimal Verification of Entangled States with Local Measurements
NASA Astrophysics Data System (ADS)
Pallister, Sam; Linden, Noah; Montanaro, Ashley
2018-04-01
Consider the task of verifying that a given quantum device, designed to produce a particular entangled state, does indeed produce that state. One natural approach would be to characterize the output state by quantum state tomography, or alternatively, to perform some kind of Bell test, tailored to the state of interest. We show here that neither approach is optimal among local verification strategies for 2-qubit states. We find the optimal strategy in this case and show that quadratically fewer total measurements are needed to verify to within a given fidelity than in published results for quantum state tomography, Bell test, or fidelity estimation protocols. We also give efficient verification protocols for any stabilizer state. Additionally, we show that requiring that the strategy be constructed from local, nonadaptive, and noncollective measurements only incurs a constant-factor penalty over a strategy without these restrictions.
Micro-CT at the imaging beamline P05 at PETRA III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilde, Fabian, E-mail: fabian.wilde@hzg.de; Ogurreck, Malte; Greving, Imke
2016-07-27
The Imaging Beamline (IBL) P05 is operated by the Helmholtz-Zentrum Geesthacht and located at the DESY storage ring PETRA III. IBL is dedicated to X-ray full field imaging and consists of two experimental end stations. A micro tomography end station equipped for spatial resolutions down to 1 µm and a nano tomography end station for spatial resolutions down to 100 nm. The micro tomography end station is in user operation since 2013 and offers imaging with absorption contrast, phase enhanced absorption contrast and phase contrast methods. We report here on the current status and developments of the micro tomography endmore » station including technical descriptions and show examples of research performed at P05.« less
2016-10-13
enielse@sandia.gov and a.morello@unsw.edu.au Keywords: quantum computing , silicon, tomography Supplementarymaterial for this article is available online...Abstract State of the art qubit systems are reaching the gatefidelities required for scalable quantum computation architectures. Further improvements in...and addressedwhen the qubit is usedwithin a fault-tolerant quantum computation scheme. 1. Introduction One of themain challenges in the physical
Xia, Jun; Huang, Chao; Maslov, Konstantin; Anastasio, Mark A; Wang, Lihong V
2013-08-15
Photoacoustic computed tomography (PACT) is a hybrid technique that combines optical excitation and ultrasonic detection to provide high-resolution images in deep tissues. In the image reconstruction, a constant speed of sound (SOS) is normally assumed. This assumption, however, is often not strictly satisfied in deep tissue imaging, due to acoustic heterogeneities within the object and between the object and the coupling medium. If these heterogeneities are not accounted for, they will cause distortions and artifacts in the reconstructed images. In this Letter, we incorporated ultrasonic computed tomography (USCT), which measures the SOS distribution within the object, into our full-ring array PACT system. Without the need for ultrasonic transmitting electronics, USCT was performed using the same laser beam as for PACT measurement. By scanning the laser beam on the array surface, we can sequentially fire different elements. As a first demonstration of the system, we studied the effect of acoustic heterogeneities on photoacoustic vascular imaging. We verified that constant SOS is a reasonable approximation when the SOS variation is small. When the variation is large, distortion will be observed in the periphery of the object, especially in the tangential direction.
Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo.
Xia, Jun; Chatni, Muhammad R; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V
2012-05-01
We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.
Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo
NASA Astrophysics Data System (ADS)
Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V.
2012-05-01
We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.
Detection of sinkholes or anomalies using full seismic wave fields.
DOT National Transportation Integrated Search
2013-04-01
This research presents an application of two-dimensional (2-D) time-domain waveform tomography for detection of embedded sinkholes and anomalies. The measured seismic surface wave fields were inverted using a full waveform inversion (FWI) technique, ...
APPLICATION OF COMPUTER AIDED TOMOGRAPHY (CAT) TO THE STUDY OF MARINE BENTIC COMMUNITIES
Sediment cores were imaged using a Computer-Aided Tomography (CT) scanner at Massachusetts General Hospital, Boston, Massachusetts, United States. Procedures were developed, using the attenuation of X-rays, to differentiate between sediment and the water contained in macrobenthic...
Spontaneous closure of macular hole in a patient with x-linked juvenile retinoschisis.
Gao, Hua; Province, William D; Peracha, Mohammed O
2010-01-01
To observe macular hole in a patient with juvenile retinoschisis. A 4-year-old boy with X-linked juvenile retinoschisis was examined and followed-up for 2 years. Optical coherence tomography was used to study his maculae. A full-thickness macular hole was detected by clinical examination and optical coherence tomography. Spontaneous closure of the macular hole was noticed and confirmed by optical coherence tomography 2 years later with visual improvement. Macular hole in patients with juvenile retinoschisis should be observed for at least a short period of time before a surgical repair is considered.
NASA Astrophysics Data System (ADS)
Blume-Kohout, Robin
2014-03-01
Quantum information technology is built on (1) physical qubits and (2) precise, accurate quantum logic gates that transform their states. Developing quantum logic gates requires good characterization - both in the development phase, where we need to identify a device's flaws so as to fix them, and in the production phase, where we need to make sure that the device works within specs and predict residual error rates and types. This task falls to quantum state and process tomography. But until recently, protocols for tomography relied on a pre-existing and perfectly calibrated reference frame comprising the measurements (and, for process tomography, input states) used to characterize the device. In practice, these measurements are neither independent nor perfectly known - they are usually implemented via exactly the same gates that we are trying to characterize! In the past year, several partial solutions to this self-consistency problem have been proposed. I will present a framework (gate set tomography, or GST) that addresses and resolves this problem, by self-consistently characterizing an entire set of quantum logic gates on a black-box quantum device. In particular, it contains an explicit closed-form protocol for linear-inversion gate set tomography (LGST), which is immune to both calibration error and technical pathologies like local maxima of the likelihood (which plagued earlier methods). GST also demonstrates significant (multiple orders of magnitude) improvements in efficiency over standard tomography by using data derived from long sequences of gates (much like randomized benchmarking). GST has now been applied to qubit devices in multiple technologies. I will present and discuss results of GST experiments in technologies including a single trapped-ion qubit and a silicon quantum dot qubit. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL850.
Optimized tomography of continuous variable systems using excitation counting
NASA Astrophysics Data System (ADS)
Shen, Chao; Heeres, Reinier W.; Reinhold, Philip; Jiang, Luyao; Liu, Yi-Kai; Schoelkopf, Robert J.; Jiang, Liang
2016-11-01
We propose a systematic procedure to optimize quantum state tomography protocols for continuous variable systems based on excitation counting preceded by a displacement operation. Compared with conventional tomography based on Husimi or Wigner function measurement, the excitation counting approach can significantly reduce the number of measurement settings. We investigate both informational completeness and robustness, and provide a bound of reconstruction error involving the condition number of the sensing map. We also identify the measurement settings that optimize this error bound, and demonstrate that the improved reconstruction robustness can lead to an order-of-magnitude reduction of estimation error with given resources. This optimization procedure is general and can incorporate prior information of the unknown state to further simplify the protocol.
Full Three-Dimensional Tomography Experiments in the Western Pacific Region
NASA Astrophysics Data System (ADS)
Zhao, L.; Chen, L.; Jordan, T. H.
2001-12-01
Two decades of seismic tomography studies have yielded earth models with three-dimensional (3-D) velocity heterogeneities in the mantle on both global and regional scales. With the continuing improvements in inversion techniques, station coverage and computational facilities, seismic tomography has reached a stage at which higher resolution to the structure can only be achieved reliably by employing accurate descriptions between observables and structural parameters, especially in the upper mantle. With this in mind, we have conducted a tomography experiment for the mantle structure beneath the Western Pacific with a full 3-D approach: imaging the 3-D structure using true 3-D Fréchet kernels. In our experiment, we use nearly 20,000 delay times measured at eight discrete frequencies between 10mHz and 45mHz from three-component regional {S} waves, including its multiple reflections from the surface and the CMB. The 3-D Fréchet kernels for these delay times are computed by a normal-mode approach (Zhao, Jordan & Chapman 2000) in which coupling between each pair of modes is accounted for with the exception of cross coupling between spheroidal and toroidal modes. The algorithm is implemented with MPI on the 192-node (and expanding) dual-processor Linux-PC cluster at the University of Southern California. The 3-D radially anisotropic shear-speed model is obtained through a Gaussian-Bayesian inversion. A full description of features in our model will be given in a separate presentation (Chen, Zhao & Jordan, this meeting). Here we discuss in detail the issues related to the calculation of a large number of coupled-mode 3-D kernels for the frequency-dependent delay times and their inversion. We also examine the efficacy of this full 3-D approach in regional high-resolution tomography studies by comparing the results with those in our previous work in which the 3-D structure was obtained by inverting the same delay-time measurements but using computationally more efficient 2-D Fréchet kernels approximated from 3-D by an asymptotic stationary-phase integration across the great-circle plane.
10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit
NASA Astrophysics Data System (ADS)
Song, Chao; Xu, Kai; Liu, Wuxin; Yang, Chui-ping; Zheng, Shi-Biao; Deng, Hui; Xie, Qiwei; Huang, Keqiang; Guo, Qiujiang; Zhang, Libo; Zhang, Pengfei; Xu, Da; Zheng, Dongning; Zhu, Xiaobo; Wang, H.; Chen, Y.-A.; Lu, C.-Y.; Han, Siyuan; Pan, Jian-Wei
2017-11-01
Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to ten qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is probed by quantum state tomography, with a fidelity of 0.668 ±0.025 . Our results demonstrate the largest entanglement created so far in solid-state architectures and pave the way to large-scale quantum computation.
10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit.
Song, Chao; Xu, Kai; Liu, Wuxin; Yang, Chui-Ping; Zheng, Shi-Biao; Deng, Hui; Xie, Qiwei; Huang, Keqiang; Guo, Qiujiang; Zhang, Libo; Zhang, Pengfei; Xu, Da; Zheng, Dongning; Zhu, Xiaobo; Wang, H; Chen, Y-A; Lu, C-Y; Han, Siyuan; Pan, Jian-Wei
2017-11-03
Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to ten qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is probed by quantum state tomography, with a fidelity of 0.668±0.025. Our results demonstrate the largest entanglement created so far in solid-state architectures and pave the way to large-scale quantum computation.
Tomography of quantum detectors
NASA Astrophysics Data System (ADS)
Lundeen, J. S.; Feito, A.; Coldenstrodt-Ronge, H.; Pregnell, K. L.; Silberhorn, Ch.; Ralph, T. C.; Eisert, J.; Plenio, M. B.; Walmsley, I. A.
2009-01-01
Measurement connects the world of quantum phenomena to the world of classical events. It has both a passive role-in observing quantum systems-and an active one, in preparing quantum states and controlling them. In view of the central status of measurement in quantum mechanics, it is surprising that there is no general recipe for designing a detector that measures a given observable. Compounding this, the characterization of existing detectors is typically based on partial calibrations or elaborate models. Thus, experimental specification (that is, tomography) of a detector is of fundamental and practical importance. Here, we present the realization of quantum detector tomography. We identify the positive-operator-valued measure describing the detector, with no ancillary assumptions. This result completes the triad, state, process and detector tomography, required to fully specify an experiment. We characterize an avalanche photodiode and a photon-number-resolving detector capable of detecting up to eight photons. This creates a new set of tools for accurately detecting and preparing non-classical light.
Generation of maximally entangled states and coherent control in quantum dot microlenses
NASA Astrophysics Data System (ADS)
Bounouar, Samir; de la Haye, Christoph; Strauß, Max; Schnauber, Peter; Thoma, Alexander; Gschrey, Manuel; Schulze, Jan-Hindrik; Strittmatter, André; Rodt, Sven; Reitzenstein, Stephan
2018-04-01
The integration of entangled photon emitters in nanophotonic structures designed for the broadband enhancement of photon extraction is a major challenge for quantum information technologies. We study the potential of quantum dot (QD) microlenses as efficient emitters of maximally entangled photons. For this purpose, we perform quantum tomography measurements on InGaAs QDs integrated deterministically into microlenses. Even though the studied QDs show non-zero excitonic fine-structure splitting (FSS), polarization entanglement can be prepared with a fidelity close to unity. The quality of the measured entanglement is only dependent on the temporal resolution of the applied single-photon detectors compared to the period of the excitonic phase precession imposed by the FSS. Interestingly, entanglement is kept along the full excitonic wave-packet and is not affected by decoherence. Furthermore, coherent control of the upper biexcitonic state is demonstrated.
Integrated photonic quantum gates for polarization qubits.
Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sansoni, Linda; Bongioanni, Irene; Sciarrino, Fabio; Vallone, Giuseppe; Mataloni, Paolo
2011-11-29
The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. However, the technology for handling polarization-encoded qubits, the most commonly adopted approach, is still missing in quantum optical circuits. Here we demonstrate the first integrated photonic controlled-NOT (CNOT) gate for polarization-encoded qubits. This result has been enabled by the integration, based on femtosecond laser waveguide writing, of partially polarizing beam splitters on a glass chip. We characterize the logical truth table of the quantum gate demonstrating its high fidelity to the expected one. In addition, we show the ability of this gate to transform separable states into entangled ones and vice versa. Finally, the full accessibility of our device is exploited to carry out a complete characterization of the CNOT gate through a quantum process tomography.
Physical And Medical Attributes Of Six Contemporary Noninvasive Imaging Techniques
NASA Astrophysics Data System (ADS)
Budinger, Thomas F.
1981-11-01
Digital subtraction angiography(DSA)is compared to five other noninvasive imaging methods with respect to physical attributes and medical applications. 1) Digital subtraction angiography measures flow channel (vessel) anatomy and vascular leaks in regions where signals from under and overlying vascular pools do not conflict in strength with the vessel or tissue of interest. 2) X-ray computed tomography, in principle, can separate the under and overlying signals, yet presently it is limited in speed, axial coverage, and computational burden for tasks DSA can efficiently perform. Possible exceptions are the dynamic spatial reconstructor (DSR) of Mayo Clinic and the system under construction at the University of California, San Francisco. 3) Heavy ion imaging measures electron density and is less sensitive to injected contrast than x-ray imaging which has the advantage of the photoelectric effect. A unique attribute of heavy ion imaging is its potential for treatment planning and the fact that beam hardening is not a physical problem. 4) Ultrasound detects surfaces, bulk tissue characteristics, and blood velocity. Doppler ultrasound competes with DSA in some regions of the body and generally involves less equipment and patient procedures. Ultrasound vessel imaging and range-gated Doppler have limitations due to sound absorption by atheromatous tissue and available imaging windows. 5) Emission tomography measures receptor site distribution, metabolism, permeability, and tissue perfusion. Resolution is limited to 7mm full width half maximum (FWHM) in the near future, and extraction of metabolic and perfusion information usually requires kinetic analyses with statistically poor data. The ability of positron tomography to measure metabolism (sugar, fatty acid, and oxygen utilization) and the ability to measure tissue perfusion with single photon tomography (17 mm FWHM) or PET (7 mm FWHM) using non-cyclotron produced radionuclides are the major unique features of emission tomography. 6) Nuclear magnetic resonance procedures measure the concentration of some nuclei (e.g., 1H, 23Na, 32P) as well as their chemical state and the local physical-chemical environment of the resolution volume. Velocity and diffusion are also potential measurements. Two unique capabilities of contemporary interest are the ability to image the spatial distribu-tion of relaxation parameters which give information about the local tissue characteristics, and the ability of NMR spectroscopy to sample (not image) the energy state of phosphorous in selected regions of the body. A third attribute of importance is that possible tissue heating seems to be the only hazard and this can be controlled.
Intelligent earthquake data processing for global adjoint tomography
NASA Astrophysics Data System (ADS)
Chen, Y.; Hill, J.; Li, T.; Lei, W.; Ruan, Y.; Lefebvre, M. P.; Tromp, J.
2016-12-01
Due to the increased computational capability afforded by modern and future computing architectures, the seismology community is demanding a more comprehensive understanding of the full waveform information from the recorded earthquake seismograms. Global waveform tomography is a complex workflow that matches observed seismic data with synthesized seismograms by iteratively updating the earth model parameters based on the adjoint state method. This methodology allows us to compute a very accurate model of the earth's interior. The synthetic data is simulated by solving the wave equation in the entire globe using a spectral-element method. In order to ensure the inversion accuracy and stability, both the synthesized and observed seismograms must be carefully pre-processed. Because the scale of the inversion problem is extremely large and there is a very large volume of data to both be read and written, an efficient and reliable pre-processing workflow must be developed. We are investigating intelligent algorithms based on a machine-learning (ML) framework that will automatically tune parameters for the data processing chain. One straightforward application of ML in data processing is to classify all possible misfit calculation windows into usable and unusable ones, based on some intelligent ML models such as neural network, support vector machine or principle component analysis. The intelligent earthquake data processing framework will enable the seismology community to compute the global waveform tomography using seismic data from an arbitrarily large number of earthquake events in the fastest, most efficient way.
HT2DINV: A 2D forward and inverse code for steady-state and transient hydraulic tomography problems
NASA Astrophysics Data System (ADS)
Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.
2015-12-01
Hydraulic tomography is a technique used to characterize the spatial heterogeneities of storativity and transmissivity fields. The responses of an aquifer to a source of hydraulic stimulations are used to recover the features of the estimated fields using inverse techniques. We developed a 2D free source Matlab package for performing hydraulic tomography analysis in steady state and transient regimes. The package uses the finite elements method to solve the ground water flow equation for simple or complex geometries accounting for the anisotropy of the material properties. The inverse problem is based on implementing the geostatistical quasi-linear approach of Kitanidis combined with the adjoint-state method to compute the required sensitivity matrices. For undetermined inverse problems, the adjoint-state method provides a faster and more accurate approach for the evaluation of sensitivity matrices compared with the finite differences method. Our methodology is organized in a way that permits the end-user to activate parallel computing in order to reduce the computational burden. Three case studies are investigated demonstrating the robustness and efficiency of our approach for inverting hydraulic parameters.
Quantum Plasmonics: Quantum Information at the Nanoscale
2016-11-06
journal. In total this project has thus far resulted in six journal articles. We are currently writing up an additional work, on direct quantum tomography...resulted in six journal articles. We are currently writing up an additional work, on direct quantum tomography on state entanglement in quantum
Rotational imaging optical coherence tomography for full-body mouse embryonic imaging
Wu, Chen; Sudheendran, Narendran; Singh, Manmohan; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.
2016-01-01
Abstract. Optical coherence tomography (OCT) has been widely used to study mammalian embryonic development with the advantages of high spatial and temporal resolutions and without the need for any contrast enhancement probes. However, the limited imaging depth of traditional OCT might prohibit visualization of the full embryonic body. To overcome this limitation, we have developed a new methodology to enhance the imaging range of OCT in embryonic day (E) 9.5 and 10.5 mouse embryos using rotational imaging. Rotational imaging OCT (RI-OCT) enables full-body imaging of mouse embryos by performing multiangle imaging. A series of postprocessing procedures was performed on each cross-section image, resulting in the final composited image. The results demonstrate that RI-OCT is able to improve the visualization of internal mouse embryo structures as compared to conventional OCT. PMID:26848543
Quantum State Tomography of a Fiber-Based Source of Polarization-Entangled Photon Pairs
2007-12-20
Processing 175−179 (IEEE, Bangalore, 1984). 4. A. K. Ekert, “ Quantum cryptography based on Bell’s theorem ,” Phys. Rev. Lett. 67, 661–663 (1991). 5...NUMBERS Quantum State Tomography of a Fiber- Based Source of MURI Center for Photonic Quantum Information Systems: AROIARDA Program Polarization...Computer Society Press, Los Alamitos, 1996). 7. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “ Quantum cryptography ,” Rev. Mod. Phys. 74, 145
NASA Astrophysics Data System (ADS)
Wei, T. B.; Chen, Y. L.; Lin, H. R.; Huang, S. Y.; Yeh, T. C. J.; Wen, J. C.
2016-12-01
In the groundwater study, it estimated the heterogeneous spatial distribution of hydraulic Properties, there were many scholars use to hydraulic tomography (HT) from field site pumping tests to estimate inverse of heterogeneous spatial distribution of hydraulic Properties, to prove the most of most field site aquifer was heterogeneous hydrogeological parameters spatial distribution field. Many scholars had proposed a method of hydraulic tomography to estimate heterogeneous spatial distribution of hydraulic Properties of aquifer, the Huang et al. [2011] was used the non-redundant verification analysis of pumping wells changed, observation wells fixed on the inverse and the forward, to reflect the feasibility of the heterogeneous spatial distribution of hydraulic Properties of field site aquifer of the non-redundant verification analysis on steady-state model.From post literature, finding only in steady state, non-redundant verification analysis of pumping well changed location and observation wells fixed location for inverse and forward. But the studies had not yet pumping wells fixed or changed location, and observation wells fixed location for redundant verification or observation wells change location for non-redundant verification of the various combinations may to explore of influences of hydraulic tomography method. In this study, it carried out redundant verification method and non-redundant verification method for forward to influences of hydraulic tomography method in transient. And it discuss above mentioned in NYUST campus sites the actual case, to prove the effectiveness of hydraulic tomography methods, and confirmed the feasibility on inverse and forward analysis from analysis results.Keywords: Hydraulic Tomography, Redundant Verification, Heterogeneous, Inverse, Forward
NASA Astrophysics Data System (ADS)
Ciardelli, C.; Assumpcao, M.
2017-12-01
In the last years, the ray coverage in the South American continent has greatly improved thanks to the increasing number of seismographic stations. A major contribution came from the recently installed Brazilian Seismographic Network.On the other hand, more advanced tomographic methods like full-waveform tomography have been developed and are gradually becoming more extensively used due to the exponential growth in computers processing power, allowing for more and more information to be extracted from the seismograms. In this work, we are using all the available seismographic data acquired in the period of 2011 to 2016 for the South American and surrounding oceans region, including the new data provided by the recently deployed stations to perform a full-waveform tomography in the area. Our goal is that this new velocity model will provide a more accurate and detailed picture of the mantle structures beneath the region, better constraining our geodynamical interpretations. A total of 161 earthquakes with magnitudes in the range of 6.0-7.0 Mw were found in the Centroid Moment Tensor solutions from the global catalog (Dziewonski, Chou and Woodhouse, 1981; Ekström, Nettles and Dziewonski, 2012). The CMTs were used to model the earthquakes propagation using SPECFEM3D Global software (Komatitsch and Tromp, 2000) with S362wmani, a global S wave velocity model developed by Kustowski et al. (2006) as starting model and 96 events were chosen to be used in the tomography, based on their better initial misfits and ray coverage. Results of the first iterations will be presented.
Achieving quantum precision limit in adaptive qubit state tomography
NASA Astrophysics Data System (ADS)
Hou, Zhibo; Zhu, Huangjun; Xiang, Guo-Yong; Li, Chuan-Feng; Guo, Guang-Can
2016-02-01
The precision limit in quantum state tomography is of great interest not only to practical applications but also to foundational studies. However, little is known about this subject in the multiparameter setting even theoretically due to the subtle information trade-off among incompatible observables. In the case of a qubit, the theoretic precision limit was determined by Hayashi as well as Gill and Massar, but attaining the precision limit in experiments has remained a challenging task. Here we report the first experiment that achieves this precision limit in adaptive quantum state tomography on optical polarisation qubits. The two-step adaptive strategy used in our experiment is very easy to implement in practice. Yet it is surprisingly powerful in optimising most figures of merit of practical interest. Our study may have significant implications for multiparameter quantum estimation problems, such as quantum metrology. Meanwhile, it may promote our understanding about the complementarity principle and uncertainty relations from the information theoretic perspective.
NASA Astrophysics Data System (ADS)
Teles, João; Auccaise, Ruben; Rivera-Ascona, Christian; Araujo-Ferreira, Arthur G.; Andreeta, José P.; Bonagamba, Tito J.
2018-07-01
Recently, we reported an experimental implementation of quantum information processing (QIP) by nuclear quadrupole resonance (NQR). In this work, we present the first quantum state tomography (QST) experimental implementation in the NQR QIP context. Two approaches are proposed, employing coherence selection by temporal and spatial averaging. Conditions for reduction in the number of cycling steps are analyzed, which can be helpful for larger spin systems. The QST method was applied to the study of spin coherent states, where the alignment-to-orientation phenomenon and the evolution of squeezed spin states show the effect of the nonlinear quadrupole interaction intrinsic to the NQR system. The quantum operations were implemented using a single-crystal sample of KClO3 and observing ^{35}Cl nuclei, which posses spin 3/2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Cecilia C.; Theoretische Physik, Universitaet des Saarlandes, D-66041 Saarbruecken; Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra
2010-06-15
We present in a unified manner the existing methods for scalable partial quantum process tomography. We focus on two main approaches: the one presented in Bendersky et al. [Phys. Rev. Lett. 100, 190403 (2008)] and the ones described, respectively, in Emerson et al. [Science 317, 1893 (2007)] and Lopez et al. [Phys. Rev. A 79, 042328 (2009)], which can be combined together. The methods share an essential feature: They are based on the idea that the tomography of a quantum map can be efficiently performed by studying certain properties of a twirling of such a map. From this perspective, inmore » this paper we present extensions, improvements, and comparative analyses of the scalable methods for partial quantum process tomography. We also clarify the significance of the extracted information, and we introduce interesting and useful properties of the {chi}-matrix representation of quantum maps that can be used to establish a clearer path toward achieving full tomography of quantum processes in a scalable way.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aigner, M., E-mail: michael.aigner@jku.at; Köpplmayr, T., E-mail: thomas.koepplmayr@jku.at, E-mail: Christian.lang@jku.at; Lang, C., E-mail: thomas.koepplmayr@jku.at, E-mail: Christian.lang@jku.at
2014-05-15
We report on the flow characteristics of glass-fiber-reinforced polymers in elongational rheometry. Unlike polymers with geometrically isotropic fillers, glass-fiber-reinforced polymers exhibit flow behavior and rheology that depend heavily on the orientation, the length distribution and the content of the fibers. One of the primary objectives of this study was to determine the effect of fiber orientation, concentration and distribution on the entrance pressure drop by means of optical coherence tomography (OCT), full-field optical coherence microscopy (FF-OCM), and X-ray computed tomography (X-CT). Both pressure drop and melt flow were analyzed using a special elongation die (Thermo Scientific X-Die [3]) for inlinemore » measurements. Samples with a variety of fiber volume fractions, fiber lengths and processing temperatures were measured.« less
Kwon, Oh-Hoon; Zewail, Ahmed H
2010-06-25
Electron tomography provides three-dimensional (3D) imaging of noncrystalline and crystalline equilibrium structures, as well as elemental volume composition, of materials and biological specimens, including those of viruses and cells. We report the development of 4D electron tomography by integrating the fourth dimension (time resolution) with the 3D spatial resolution obtained from a complete tilt series of 2D projections of an object. The different time frames of tomograms constitute a movie of the object in motion, thus enabling studies of nonequilibrium structures and transient processes. The method was demonstrated using carbon nanotubes of a bracelet-like ring structure for which 4D tomograms display different modes of motion, such as breathing and wiggling, with resonance frequencies up to 30 megahertz. Applications can now make use of the full space-time range with the nanometer-femtosecond resolution of ultrafast electron tomography.
NASA Astrophysics Data System (ADS)
Kwon, Oh-Hoon; Zewail, Ahmed H.
2010-06-01
Electron tomography provides three-dimensional (3D) imaging of noncrystalline and crystalline equilibrium structures, as well as elemental volume composition, of materials and biological specimens, including those of viruses and cells. We report the development of 4D electron tomography by integrating the fourth dimension (time resolution) with the 3D spatial resolution obtained from a complete tilt series of 2D projections of an object. The different time frames of tomograms constitute a movie of the object in motion, thus enabling studies of nonequilibrium structures and transient processes. The method was demonstrated using carbon nanotubes of a bracelet-like ring structure for which 4D tomograms display different modes of motion, such as breathing and wiggling, with resonance frequencies up to 30 megahertz. Applications can now make use of the full space-time range with the nanometer-femtosecond resolution of ultrafast electron tomography.
Speckle noise reduction for optical coherence tomography based on adaptive 2D dictionary
NASA Astrophysics Data System (ADS)
Lv, Hongli; Fu, Shujun; Zhang, Caiming; Zhai, Lin
2018-05-01
As a high-resolution biomedical imaging modality, optical coherence tomography (OCT) is widely used in medical sciences. However, OCT images often suffer from speckle noise, which can mask some important image information, and thus reduce the accuracy of clinical diagnosis. Taking full advantage of nonlocal self-similarity and adaptive 2D-dictionary-based sparse representation, in this work, a speckle noise reduction algorithm is proposed for despeckling OCT images. To reduce speckle noise while preserving local image features, similar nonlocal patches are first extracted from the noisy image and put into groups using a gamma- distribution-based block matching method. An adaptive 2D dictionary is then learned for each patch group. Unlike traditional vector-based sparse coding, we express each image patch by the linear combination of a few matrices. This image-to-matrix method can exploit the local correlation between pixels. Since each image patch might belong to several groups, the despeckled OCT image is finally obtained by aggregating all filtered image patches. The experimental results demonstrate the superior performance of the proposed method over other state-of-the-art despeckling methods, in terms of objective metrics and visual inspection.
Large area full-field optical coherence tomography using white light source
NASA Astrophysics Data System (ADS)
Chang, Shoude; Mao, Youxin; Sherif, Sherif; Flueraru, Costel
2007-06-01
Optical coherence tomography (OCT) is an emerging technology for high-resolution cross-sectional imaging of 3D structures. Not only could OCT extract the internal features of an object, but it could acquire the 3D profile of an object as well. Hence it has huge potentials for industrial applications. Owing to non-scanning along the X-Y axis, full-field OCT could be the simplest and most economic imaging system, especially for applications where the speed is critical. For an OCT system, the performance and cost basically depends on the light source being used. The broader the source bandwidth, the finer of the depth resolution that could be reached; the more power of the source, the better signal-to-noise ratio and the deeper of penetration the system achieves. A typical SLD (Superluminescent Diode) light source has a bandwidth of 15 nm and 10 mW optical power at a price around 6,000. However, a Halogen bulb having 50W power and 200nm bandwidth only costs less than 10. The design and implementation of a large-area, full-field OCT system using Halogen white-light source is described in the paper. The experimental results obtained from 3D shaping and multiple-layer tomographies are also presented.
In vivo and ex vivo imaging with ultrahigh resolution full-field OCT
NASA Astrophysics Data System (ADS)
Grieve, Kate; Moneron, Gael; Schwartz, Wilfrid; Boccara, Albert C.; Dubois, Arnaud
2005-08-01
Imaging of in vivo and ex vivo biological samples using full-field optical coherence tomography is demonstrated. Three variations on the original full-field optical coherence tomography instrument are presented, and evaluated in terms of performance. The instruments are based on the Linnik interferometer illuminated by a white light source. Images in the en face orientation are obtained in real-time without scanning by using a two-dimensional parallel detector array. An isotropic resolution capability better than 1 μm is achieved thanks to the use of a broad spectrum source and high numerical aperture microscope objectives. Detection sensitivity up to 90 dB is demonstrated. Image acquisition times as short as 10 μs per en face image are possible. A variety of in vivo and ex vivo imaging applications is explored, particularly in the fields of embryology, ophthalmology and botany.
NASA Astrophysics Data System (ADS)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. We analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
Tomography and generative training with quantum Boltzmann machines
NASA Astrophysics Data System (ADS)
Kieferová, Mária; Wiebe, Nathan
2017-12-01
The promise of quantum neural nets, which utilize quantum effects to model complex data sets, has made their development an aspirational goal for quantum machine learning and quantum computing in general. Here we provide methods of training quantum Boltzmann machines. Our work generalizes existing methods and provides additional approaches for training quantum neural networks that compare favorably to existing methods. We further demonstrate that quantum Boltzmann machines enable a form of partial quantum state tomography that further provides a generative model for the input quantum state. Classical Boltzmann machines are incapable of this. This verifies the long-conjectured connection between tomography and quantum machine learning. Finally, we prove that classical computers cannot simulate our training process in general unless BQP=BPP , provide lower bounds on the complexity of the training procedures and numerically investigate training for small nonstoquastic Hamiltonians.
Database tomography for commercial application
NASA Technical Reports Server (NTRS)
Kostoff, Ronald N.; Eberhart, Henry J.
1994-01-01
Database tomography is a method for extracting themes and their relationships from text. The algorithms, employed begin with word frequency and word proximity analysis and build upon these results. When the word 'database' is used, think of medical or police records, patents, journals, or papers, etc. (any text information that can be computer stored). Database tomography features a full text, user interactive technique enabling the user to identify areas of interest, establish relationships, and map trends for a deeper understanding of an area of interest. Database tomography concepts and applications have been reported in journals and presented at conferences. One important feature of the database tomography algorithm is that it can be used on a database of any size, and will facilitate the users ability to understand the volume of content therein. While employing the process to identify research opportunities it became obvious that this promising technology has potential applications for business, science, engineering, law, and academe. Examples include evaluating marketing trends, strategies, relationships and associations. Also, the database tomography process would be a powerful component in the area of competitive intelligence, national security intelligence and patent analysis. User interests and involvement cannot be overemphasized.
Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.
Asghar, Z; Requena, G; Sket, F
2015-07-01
The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Allner, S; Koehler, T; Fehringer, A; Birnbacher, L; Willner, M; Pfeiffer, F; Noël, P B
2016-05-21
The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields.
Near-Infrared Fluorescence-Enhanced Optical Tomography
2016-01-01
Fluorescence-enhanced optical imaging using near-infrared (NIR) light developed for in vivo molecular targeting and reporting of cancer provides promising opportunities for diagnostic imaging. The current state of the art of NIR fluorescence-enhanced optical tomography is reviewed in the context of the principle of fluorescence, the different measurement schemes employed, and the mathematical tools established to tomographically reconstruct the fluorescence optical properties in various tissue domains. Finally, we discuss the recent advances in forward modeling and distributed memory parallel computation to provide robust, accurate, and fast fluorescence-enhanced optical tomography. PMID:27803924
Near-Infrared Fluorescence-Enhanced Optical Tomography.
Zhu, Banghe; Godavarty, Anuradha
2016-01-01
Fluorescence-enhanced optical imaging using near-infrared (NIR) light developed for in vivo molecular targeting and reporting of cancer provides promising opportunities for diagnostic imaging. The current state of the art of NIR fluorescence-enhanced optical tomography is reviewed in the context of the principle of fluorescence, the different measurement schemes employed, and the mathematical tools established to tomographically reconstruct the fluorescence optical properties in various tissue domains. Finally, we discuss the recent advances in forward modeling and distributed memory parallel computation to provide robust, accurate, and fast fluorescence-enhanced optical tomography.
Improving chemical species tomography of turbulent flows using covariance estimation.
Grauer, Samuel J; Hadwin, Paul J; Daun, Kyle J
2017-05-01
Chemical species tomography (CST) experiments can be divided into limited-data and full-rank cases. Both require solving ill-posed inverse problems, and thus the measurement data must be supplemented with prior information to carry out reconstructions. The Bayesian framework formalizes the role of additive information, expressed as the mean and covariance of a joint-normal prior probability density function. We present techniques for estimating the spatial covariance of a flow under limited-data and full-rank conditions. Our results show that incorporating a covariance estimate into CST reconstruction via a Bayesian prior increases the accuracy of instantaneous estimates. Improvements are especially dramatic in real-time limited-data CST, which is directly applicable to many industrially relevant experiments.
In vivo high resolution human corneal imaging using full-field optical coherence tomography.
Mazlin, Viacheslav; Xiao, Peng; Dalimier, Eugénie; Grieve, Kate; Irsch, Kristina; Sahel, José-Alain; Fink, Mathias; Boccara, A Claude
2018-02-01
We present the first full-field optical coherence tomography (FFOCT) device capable of in vivo imaging of the human cornea. We obtained images of the epithelial structures, Bowman's layer, sub-basal nerve plexus (SNP), anterior and posterior stromal keratocytes, stromal nerves, Descemet's membrane and endothelial cells with visible nuclei. Images were acquired with a high lateral resolution of 1.7 µm and relatively large field-of-view of 1.26 mm x 1.26 mm - a combination, which, to the best of our knowledge, has not been possible with other in vivo human eye imaging methods. The latter together with a contactless operation, make FFOCT a promising candidate for becoming a new tool in ophthalmic diagnostics.
Haberfehlner, Georg; Thaler, Philipp; Knez, Daniel; Volk, Alexander; Hofer, Ferdinand; Ernst, Wolfgang E.; Kothleitner, Gerald
2015-01-01
Structure, shape and composition are the basic parameters responsible for properties of nanoscale materials, distinguishing them from their bulk counterparts. To reveal these in three dimensions at the nanoscale, electron tomography is a powerful tool. Advancing electron tomography to atomic resolution in an aberration-corrected transmission electron microscope remains challenging and has been demonstrated only a few times using strong constraints or extensive filtering. Here we demonstrate atomic resolution electron tomography on silver/gold core/shell nanoclusters grown in superfluid helium nanodroplets. We reveal morphology and composition of a cluster identifying gold- and silver-rich regions in three dimensions and we estimate atomic positions without using any prior information and with minimal filtering. The ability to get full three-dimensional information down to the atomic scale allows understanding the growth and deposition process of the nanoclusters and demonstrates an approach that may be generally applicable to all types of nanoscale materials. PMID:26508471
A cylindrical specimen holder for electron cryo-tomography
Palmer, Colin M.; Löwe, Jan
2014-01-01
The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the “missing wedge” problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. PMID:24275523
Investigation of the reconstruction accuracy of guided wave tomography using full waveform inversion
NASA Astrophysics Data System (ADS)
Rao, Jing; Ratassepp, Madis; Fan, Zheng
2017-07-01
Guided wave tomography is a promising tool to accurately determine the remaining wall thicknesses of corrosion damages, which are among the major concerns for many industries. Full Waveform Inversion (FWI) algorithm is an attractive guided wave tomography method, which uses a numerical forward model to predict the waveform of guided waves when propagating through corrosion defects, and an inverse model to reconstruct the thickness map from the ultrasonic signals captured by transducers around the defect. This paper discusses the reconstruction accuracy of the FWI algorithm on plate-like structures by using simulations as well as experiments. It was shown that this algorithm can obtain a resolution of around 0.7 wavelengths for defects with smooth depth variations from the acoustic modeling data, and about 1.5-2 wavelengths from the elastic modeling data. Further analysis showed that the reconstruction accuracy is also dependent on the shape of the defect. It was demonstrated that the algorithm maintains the accuracy in the case of multiple defects compared to conventional algorithms based on Born approximation.
Study of Tomography Of Nephrolithiasis Evaluation (STONE): methodology, approach and rationale.
Valencia, Victoria; Moghadassi, Michelle; Kriesel, Dana R; Cummings, Steve; Smith-Bindman, Rebecca
2014-05-01
Urolithiasis (kidney stones) is a common reason for Emergency Department (ED) visits, accounting for nearly 1% of all visits in the United States. Computed tomography (CT) has become the most common imaging test for these patients but there are few comparative effectiveness data to support its use in comparison to ultrasound. This paper describes the rationale and methods of STONE (Study of Tomography Of Nephrolithiasis Evaluation), a pragmatic randomized comparative effectiveness trial comparing different imaging strategies for patients with suspected urolithiasis. STONE is a multi-center, non-blinded pragmatic randomized comparative effectiveness trial of patients between ages 18 and 75 with suspected nephrolithiasis seen in an ED setting. Patients were randomized to one of three initial imaging examinations: point-of-care ultrasound, ultrasound performed by a radiologist or CT. Participants then received diagnosis and treatment per usual care. The primary aim is to compare the rate of severe SAEs (Serious Adverse Events) between the three arms. In addition, a broad range of secondary outcomes was assessed at baseline and regularly for six months post-baseline using phone, email and mail questionnaires. Excluding 17 patients who withdrew after randomization, a total of 2759 patients were randomized and completed a baseline questionnaire (n=908, 893 and 958 in the point-of-care ultrasound, radiology ultrasound and radiology CT arms, respectively). Follow-up is complete, and full or partial outcomes were assessed on over 90% of participants. The detailed methodology of STONE will provide a roadmap for comparative effectiveness studies of diagnostic imaging conducted in an ED setting. Published by Elsevier Inc.
Optimal surveys for weak-lensing tomography
NASA Astrophysics Data System (ADS)
Amara, Adam; Réfrégier, Alexandre
2007-11-01
Weak-lensing surveys provide a powerful probe of dark energy through the measurement of the mass distribution of the local Universe. A number of ground-based and space-based surveys are being planned for this purpose. Here, we study the optimal strategy for these future surveys using the joint constraints on the equation-of-state parameter wn and its evolution wa as a figure of merit by considering power spectrum tomography. For this purpose, we first consider an `ideal' survey which is both wide and deep and exempt from systematics. We find that such a survey has great potential for dark energy studies, reaching 1σ precisions of 1 and 10 per cent on the two parameters, respectively. We then study the relative impact of various limitations by degrading this ideal survey. In particular, we consider the effect of sky coverage, survey depth, shape measurement systematics, photometric redshift systematics and uncertainties in the non-linear power spectrum predictions. We find that, for a given observing time, it is always advantageous to choose a wide rather than a deep survey geometry. We also find that the dark energy constraints from power spectrum tomography are robust to photometric redshift errors and catastrophic failures, if a spectroscopic calibration sample of 104-105 galaxies are available. The impact of these systematics is small compared to the limitations that come from potential uncertainties in the power spectrum, due to shear measurement and theoretical errors. To help the planning of future surveys, we summarize our results with comprehensive scaling relations which avoid the need for full Fisher matrix calculations.
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; ...
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
Pasricha, Neel D; Bhullar, Paramjit K; Shieh, Christine; Carrasco-Zevallos, Oscar M; Keller, Brenton; Izatt, Joseph A; Toth, Cynthia A; Freedman, Sharon F; Kuo, Anthony N
2017-02-14
The authors report the use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT), capable of live four-dimensional (three-dimensional across time) intraoperative imaging, to directly visualize suture depth during lateral rectus resection. Key surgical steps visualized in this report included needle depth during partial and full-thickness muscle passes along with scleral passes. [J Pediatr Ophthalmol Strabismus. 2017;54:e1-e5.]. Copyright 2017, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Gärttner, Martin; Bohnet, Justin G.; Safavi-Naini, Arghavan; Wall, Michael L.; Bollinger, John J.; Rey, Ana Maria
2017-08-01
Controllable arrays of ions and ultracold atoms can simulate complex many-body phenomena and may provide insights into unsolved problems in modern science. To this end, experimentally feasible protocols for quantifying the buildup of quantum correlations and coherence are needed, as performing full state tomography does not scale favourably with the number of particles. Here we develop and experimentally demonstrate such a protocol, which uses time reversal of the many-body dynamics to measure out-of-time-order correlation functions (OTOCs) in a long-range Ising spin quantum simulator with more than 100 ions in a Penning trap. By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the buildup of up to 8-body correlations. Future applications of this protocol could enable studies of many-body localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems.
Fidelity Witnesses for Fermionic Quantum Simulations
NASA Astrophysics Data System (ADS)
Gluza, M.; Kliesch, M.; Eisert, J.; Aolita, L.
2018-05-01
The experimental interest and developments in quantum spin-1 /2 chains has increased uninterruptedly over the past decade. In many instances, the target quantum simulation belongs to the broader class of noninteracting fermionic models, constituting an important benchmark. In spite of this class being analytically efficiently tractable, no direct certification tool has yet been reported for it. In fact, in experiments, certification has almost exclusively relied on notions of quantum state tomography scaling very unfavorably with the system size. Here, we develop experimentally friendly fidelity witnesses for all pure fermionic Gaussian target states. Their expectation value yields a tight lower bound to the fidelity and can be measured efficiently. We derive witnesses in full generality in the Majorana-fermion representation and apply them to experimentally relevant spin-1 /2 chains. Among others, we show how to efficiently certify strongly out-of-equilibrium dynamics in critical Ising chains. At the heart of the measurement scheme is a variant of importance sampling specially tailored to overlaps between covariance matrices. The method is shown to be robust against finite experimental-state infidelities.
In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms.
Zeitler, J Axel; Gladden, Lynn F
2009-01-01
Tomographic imaging techniques offer new prospects for a better understanding of the quality, performance and release mechanisms of pharmaceutical solid dosage forms. It is only over the last fifteen years that tomography has been applied for the in-vitro characterisation of dosage forms. This review aims to introduce the concept of tomography in a pharmaceutical context, and describes the current state-of-the-art of the four most promising techniques: X-ray computed microtomography, magnetic resonance imaging, terahertz imaging and optical coherence tomography. The basic working principles of the techniques are introduced and the current pharmaceutical applications of the technologies are discussed, together with a comparison of their specific strengths and weaknesses. Possible future developments in these fields are also discussed.
Observing Resonant Entanglement Dynamics in Circuit QED
NASA Astrophysics Data System (ADS)
Mlynek, J. A.; Abdumalikov, A. A.; Fink, J. M.; Steffen, L.; Lang, C.; van Loo, A. F.; Wallraff, A.
2012-02-01
We study the resonant interaction of up to three two-level systems and a single mode of an electromagnetic field in a circuit QED setup. Our investigation is focused on how a single excitation is dynamically shared in this fourpartite system. The underlying theory of the experiment is governed by the Tavis-Cummings-model, which on resonance predicts dynamics known as vacuum Rabi oscillations. The resonant situation has already been studied spectroscopically with three qubits [1] and time resolved measurements have been carried out in a tripartite system [2]. Here we are able to observe the coherent oscillations and their √N- enhancement by tracking the populations of all three qubits and the resonator. Full quantum state tomography is used to verify that the dynamics generates the maximally entangled 3-qubit W-state when the cavity state factorizes. The √N-speed-up offers the possibility to create W-states within a few ns with a fidelity of 75%. We compare the resonant collective method to an approach, which achieves entanglement by sequentially tuning qubits into resonance with the cavity.[4pt] [1] J. M. Fink, Physical Review Letters 103, 083601 (2009)[0pt] [2] F. Altomare, Nature Physics 6, 777--781 (2010)
Virtopsy: postmortem imaging of laryngeal foreign bodies.
Oesterhelweg, Lars; Bolliger, Stephan A; Thali, Michael J; Ross, Steffen
2009-05-01
Death from corpora aliena in the larynx is a well-known entity in forensic pathology. The correct diagnosis of this cause of death is difficult without an autopsy, and misdiagnoses by external examination alone are common. To determine the postmortem usefulness of modern imaging techniques in the diagnosis of foreign bodies in the larynx, multislice computed tomography, magnetic resonance imaging, and postmortem full-body computed tomography-angiography were performed. Three decedents with a suspected foreign body in the larynx underwent the 3 different imaging techniques before medicolegal autopsy. Multislice computed tomography has a high diagnostic value in the noninvasive localization of a foreign body and abnormalities in the larynx. The differentiation between neoplasm or soft foreign bodies (eg, food) is possible, but difficult, by unenhanced multislice computed tomography. By magnetic resonance imaging, the discrimination of the soft tissue structures and soft foreign bodies is much easier. In addition to the postmortem multislice computed tomography, the combination with postmortem angiography will increase the diagnostic value. Postmortem, cross-sectional imaging methods are highly valuable procedures for the noninvasive detection of corpora aliena in the larynx.
Tomography of a simply magnetized toroidal plasma
NASA Astrophysics Data System (ADS)
Ruggero, BARNI; Stefano, CALDIROLA; Luca, FATTORINI; Claudia, RICCARDI
2018-02-01
Optical emission spectroscopy is a passive diagnostic technique, which does not perturb the plasma state. In particular, in a hydrogen plasma, Balmer-alpha (H α ) emission can be easily measured in the visible range along a line of sight from outside the plasma vessel. Other emission lines in the visible spectral range from hydrogen atoms and molecules can be exploited too, in order to gather complementary pieces of information on the plasma state. Tomography allows us to capture bi-dimensional structures. We propose to adopt an emission spectroscopy tomography for studying the transverse profiles of magnetized plasmas when Abel inversion is not exploitable. An experimental campaign was carried out at the Thorello device, a simple magnetized torus. The characteristics of the profile extraction method, which we implemented for this purpose are discussed, together with a few results concerning the plasma profiles in a simply magnetized torus configuration.
3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography
Nicastro, Daniela; McIntosh, J. Richard; Baumeister, Wolfgang
2005-01-01
We have used cryo-electron tomography to investigate the 3D structure and macromolecular organization of intact, frozen-hydrated sea urchin sperm flagella in a quiescent state. The tomographic reconstructions provide information at a resolution better than 6 nm about the in situ arrangements of macromolecules that are key for flagellar motility. We have visualized the heptameric rings of the motor domains in the outer dynein arm complex and determined that they lie parallel to the plane that contains the axes of neighboring flagellar microtubules. Both the material associated with the central pair of microtubules and the radial spokes display a plane of symmetry that helps to explain the planar beat pattern of these flagella. Cryo-electron tomography has proven to be a powerful technique for helping us understand the relationships between flagellar structure and function and the design of macromolecular machines in situ. PMID:16246999
Li, Hui; Jin, Dan; Qiao, Fang; Chen, Jianchang; Gong, Jianping
Computed tomography coronary angiography, a key method for obtaining coronary artery images, is widely used to screen for coronary artery diseases due to its noninvasive nature. In China, 64-slice computed tomography systems are now the most common models. As factors that directly affect computed tomography performance, heart rate and rhythm control are regulated by the autonomic nervous system and are highly related to the emotional state of the patient. The aim of this prospective study is to use a pre-computed tomography scan Self-Rating Anxiety Scale assessment to analyze the effects of tension and anxiety on computed tomography coronary angiography success. Subjects aged 18-85 years who were planned to undergo computed tomography coronary angiography were enrolled; 1 to 2 h before the computed tomography scan, basic patient data (gender, age, heart rate at rest, and family history) and Self-Rating Anxiety Scale score were obtained. The same group of imaging department doctors, technicians, and nurses performed computed tomography coronary angiography for all the enrolled subjects and observed whether those subjects could finish the computed tomography coronary angiography scan and provide clear, diagnostically valuable images. Participants were divided into successful (obtained diagnostically useful coronary images) and unsuccessful groups. Basic data and Self-Rating Anxiety Scale scores were compared between the groups. The Self-Rating Anxiety Scale standard score of the successful group was lower than that of the unsuccessful group (P = 0.001). As the Self-Rating Anxiety Scale standard score rose, the success rate of computed tomography coronary angiography decreased. The Self-Rating Anxiety Scale score has a negative relationship with computed tomography coronary angiography success. Anxiety can be a disadvantage in computed tomography coronary angiography examination. The pre-computed tomography coronary angiography scan Self-Rating Anxiety Scale score may be a useful tool for assessing whether a computed tomography coronary angiography scan will be successful or not. © The Author(s) 2015.
Meaney, Paul M.; Fox, Colleen J.; Geimer, Shireen D.; Paulsen, Keith D.
2016-01-01
We examine the broadband behavior of complex electrical properties of glycerin and water mixtures over the frequency range of 0.1 – 25.0 GHz, especially as they relate to using these liquids as coupling media for microwave tomographic imaging. Their combination is unique in that they are mutually miscible over the full range of concentrations which allows them to be tailored to dielectric property matching for biological tissues. While the resultant mixture properties are partially driven by differences in the inherent low frequency permittivity of each constituent, relaxation frequency shifts play a disproportionately larger role in increasing the permittivity dispersion while also dramatically increasing the effective conductivity over the frequency range of 1 to 3 GHz. For the full range of mixture ratios, the relaxation frequency shifts from 17.5 GHz for 0% glycerin to less than 0.1 GHz for 100% glycerin. Of particular interest is the fact that the conductivity stays above 1.0 S/m over the 1–3 GHz range for glycerin mixture ratios (70–90% glycerin) we use for microwave breast tomography. The high level of attenuation is critical for suppressing unwanted multipath signals. This paper presents a full characterization of these liquids along with a discussion of their benefits and limitations in the context of microwave tomography. PMID:28507391
NASA Astrophysics Data System (ADS)
Wiskin, James; Klock, John; Iuanow, Elaine; Borup, Dave T.; Terry, Robin; Malik, Bilal H.; Lenox, Mark
2017-03-01
There has been a great deal of research into ultrasound tomography for breast imaging over the past 35 years. Few successful attempts have been made to reconstruct high-resolution images using transmission ultrasound. To this end, advances have been made in 2D and 3D algorithms that utilize either time of arrival or full wave data to reconstruct images with high spatial and contrast resolution suitable for clinical interpretation. The highest resolution and quantitative accuracy result from inverse scattering applied to full wave data in 3D. However, this has been prohibitively computationally expensive, meaning that full inverse scattering ultrasound tomography has not been considered clinically viable. Here we show the results of applying a nonlinear inverse scattering algorithm to 3D data in a clinically useful time frame. This method yields Quantitative Transmission (QT) ultrasound images with high spatial and contrast resolution. We reconstruct sound speeds for various 2D and 3D phantoms and verify these values with independent measurements. The data are fully 3D as is the reconstruction algorithm, with no 2D approximations. We show that 2D reconstruction algorithms can introduce artifacts into the QT breast image which are avoided by using a full 3D algorithm and data. We show high resolution gross and microscopic anatomic correlations comparing cadaveric breast QT images with MRI to establish imaging capability and accuracy. Finally, we show reconstructions of data from volunteers, as well as an objective visual grading analysis to confirm clinical imaging capability and accuracy.
Wigner tomography of multispin quantum states
NASA Astrophysics Data System (ADS)
Leiner, David; Zeier, Robert; Glaser, Steffen J.
2017-12-01
We study the tomography of multispin quantum states in the context of finite-dimensional Wigner representations. An arbitrary operator can be completely characterized and visualized using multiple shapes assembled from linear combinations of spherical harmonics [A. Garon, R. Zeier, and S. J. Glaser, Phys. Rev. A 91, 042122 (2015), 10.1103/PhysRevA.91.042122]. We develop a general methodology to experimentally recover these shapes by measuring expectation values of rotated axial spherical tensor operators and provide an interpretation in terms of fictitious multipole potentials. Our approach is experimentally demonstrated for quantum systems consisting of up to three spins using nuclear magnetic resonance spectroscopy.
Practical adaptive quantum tomography
NASA Astrophysics Data System (ADS)
Granade, Christopher; Ferrie, Christopher; Flammia, Steven T.
2017-11-01
We introduce a fast and accurate heuristic for adaptive tomography that addresses many of the limitations of prior methods. Previous approaches were either too computationally intensive or tailored to handle special cases such as single qubits or pure states. By contrast, our approach combines the efficiency of online optimization with generally applicable and well-motivated data-processing techniques. We numerically demonstrate these advantages in several scenarios including mixed states, higher-dimensional systems, and restricted measurements. http://cgranade.com complete data and source code for this work are available online [1], and can be previewed at https://goo.gl/koiWxR.
Multiphoton Scattering Tomography with Coherent States.
Ramos, Tomás; García-Ripoll, Juan José
2017-10-13
In this work we develop an experimental procedure to interrogate the single- and multiphoton scattering matrices of an unknown quantum system interacting with propagating photons. Our proposal requires coherent state laser or microwave inputs and homodyne detection at the scatterer's output, and provides simultaneous information about multiple-elastic and inelastic-segments of the scattering matrix. The method is resilient to detector noise and its errors can be made arbitrarily small by combining experiments at various laser powers. Finally, we show that the tomography of scattering has to be performed using pulsed lasers to efficiently gather information about the nonlinear processes in the scatterer.
Laser interference fringe tomography: a novel 3D imaging technique for pathology
NASA Astrophysics Data System (ADS)
Kazemzadeh, Farnoud; Haylock, Thomas M.; Chifman, Lev M.; Hajian, Arsen R.; Behr, Bradford B.; Cenko, Andrew T.; Meade, Jeff T.; Hendrikse, Jan
2011-03-01
Laser interference fringe tomography (LIFT) is within the class of optical imaging devices designed for in vivo and ex vivo medical imaging applications. LIFT is a very simple and cost-effective three-dimensional imaging device with performance rivaling some of the leading three-dimensional imaging devices used for histology. Like optical coherence tomography (OCT), it measures the reflectivity as a function of depth within a sample and is capable of producing three-dimensional images from optically scattering media. LIFT has the potential capability to produce high spectral resolution, full-color images. The optical design of LIFT along with the planned iterations for improvements and miniaturization are presented and discussed in addition to the theoretical concepts and preliminary imaging results of the device.
Seismic imaging: From classical to adjoint tomography
NASA Astrophysics Data System (ADS)
Liu, Q.; Gu, Y. J.
2012-09-01
Seismic tomography has been a vital tool in probing the Earth's internal structure and enhancing our knowledge of dynamical processes in the Earth's crust and mantle. While various tomographic techniques differ in data types utilized (e.g., body vs. surface waves), data sensitivity (ray vs. finite-frequency approximations), and choices of model parameterization and regularization, most global mantle tomographic models agree well at long wavelengths, owing to the presence and typical dimensions of cold subducted oceanic lithospheres and hot, ascending mantle plumes (e.g., in central Pacific and Africa). Structures at relatively small length scales remain controversial, though, as will be discussed in this paper, they are becoming increasingly resolvable with the fast expanding global and regional seismic networks and improved forward modeling and inversion techniques. This review paper aims to provide an overview of classical tomography methods, key debates pertaining to the resolution of mantle tomographic models, as well as to highlight recent theoretical and computational advances in forward-modeling methods that spearheaded the developments in accurate computation of sensitivity kernels and adjoint tomography. The first part of the paper is devoted to traditional traveltime and waveform tomography. While these approaches established a firm foundation for global and regional seismic tomography, data coverage and the use of approximate sensitivity kernels remained as key limiting factors in the resolution of the targeted structures. In comparison to classical tomography, adjoint tomography takes advantage of full 3D numerical simulations in forward modeling and, in many ways, revolutionizes the seismic imaging of heterogeneous structures with strong velocity contrasts. For this reason, this review provides details of the implementation, resolution and potential challenges of adjoint tomography. Further discussions of techniques that are presently popular in seismic array analysis, such as noise correlation functions, receiver functions, inverse scattering imaging, and the adaptation of adjoint tomography to these different datasets highlight the promising future of seismic tomography.
NASA Astrophysics Data System (ADS)
Tabia, Gelo Noel M.
2012-12-01
It is crucial for various quantum information processing tasks that the state of a quantum system can be determined reliably and efficiently from general quantum measurements. One important class of measurements for this purpose is symmetric informationally complete positive operator-valued measurements (SIC-POVMs). SIC-POVMs have the advantage of providing an unbiased estimator for the quantum state with the minimal number of outcomes needed for full tomography. By virtue of Naimark's dilation theorem, any POVM can always be realized with a suitable coupling between the system and an auxiliary system and by performing a projective measurement on the joint system. In practice, finding the appropriate coupling is rather nontrivial. Here we propose an experimental design for directly implementing SIC-POVMs using multiport devices and path-encoded qubits and qutrits, the utility of which has recently been demonstrated by several experimental groups around the world. Furthermore, we describe how these multiports can be attained in practice with an integrated photonic system composed of nested linear optical elements.
Studying topology and dynamical phase transitions with ultracold quantum gases in optical lattices
NASA Astrophysics Data System (ADS)
Sengstock, Klaus
Topological properties lie at the heart of many fascinating phenomena in solid-state systems such as quantum Hall systems or Chern insulators. The topology of the bands can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Using fermionic ultracold atoms in a hexagonal optical lattice, we engineered the Berry curvature of the Bloch bands using resonant driving and show a full momentum-resolved state tomography from which we obtain the Berry curvature and Chern number. Furthermore, we study the time-evolution of the many-body wavefunction after a sudden quench of the lattce parameters and observe the appearance, movement, and annihilation of vortices in reciprocal space. We identify their number as a dynamical topological order parameter, which suddenly changes its value at critical times. Our measurements constitute the first observation of a so called dynamical topological phase transition`, which we show to be a fruitful concept for the understanding of quantum dynamics far from equilibrium
Comprehensive Digital Imaging Network Project At Georgetown University Hospital
NASA Astrophysics Data System (ADS)
Mun, Seong K.; Stauffer, Douglas; Zeman, Robert; Benson, Harold; Wang, Paul; Allman, Robert
1987-10-01
The radiology practice is going through rapid changes due to the introduction of state-of-the-art computed based technologies. For the last twenty years we have witnessed the introduction of many new medical diagnostic imaging systems such as x-ray computed tomo-graphy, digital subtraction angiography (DSA), computerized nuclear medicine, single pho-ton emission computed tomography (SPECT), positron emission tomography (PET) and more re-cently, computerized digital radiography and nuclear magnetic resonance imaging (MRI). Other than the imaging systems, there has been a steady introduction of computed based information systems for radiology departments and hospitals.
Seismic Tomography and the Development of a State Velocity Profile
NASA Astrophysics Data System (ADS)
Marsh, S. J.; Nakata, N.
2017-12-01
Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.
NASA Astrophysics Data System (ADS)
Kredzinski, Lukasz; Connelly, Michael J.
2012-06-01
Full-field Optical coherence tomography is an en-face interferometric imaging technology capable of carrying out high resolution cross-sectional imaging of the internal microstructure of an examined specimen in a non-invasive manner. The presented system is based on competitively priced optical components available at the main optical communications band located in the 1550 nm region. It consists of a superluminescent diode and an anti-stokes imaging device. The single mode fibre coupled SLD was connected to a multi-mode fibre inserted into a mode scrambler to obtain spatially incoherent illumination, suitable for OCT wide-field modality in terms of crosstalk suppression and image enhancement. This relatively inexpensive system with moderate resolution of approximately 24um x 12um (axial x lateral) was constructed to perform a 3D cross sectional imaging of a human tooth. To our knowledge this is the first 1550 nm full-field OCT system reported.
Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair.
De Greve, Kristiaan; McMahon, Peter L; Yu, Leo; Pelc, Jason S; Jones, Cody; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa
2013-01-01
Entanglement between stationary quantum memories and photonic qubits is crucial for future quantum communication networks. Although high-fidelity spin-photon entanglement was demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively parallel, scalable networks are most realistically conceivable, entanglement fidelities are typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled pairs from lower-fidelity precursors can act as a remedy, but the required overhead scales unfavourably with the initial entanglement fidelity. With spin-photon entanglement as a crucial building block for entangling quantum network nodes, obtaining high-fidelity entangled pairs becomes imperative for practical realization of such networks. Here we report the first results of complete state tomography of a solid-state spin-photon-polarization-entangled qubit pair, using a single electron-charged indium arsenide quantum dot. We demonstrate record-high fidelity in the solid-state of well over 90%, and the first (99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement distribution in solid-state quantum repeater networks.
Experimental adaptive quantum tomography of two-qubit states
NASA Astrophysics Data System (ADS)
Struchalin, G. I.; Pogorelov, I. A.; Straupe, S. S.; Kravtsov, K. S.; Radchenko, I. V.; Kulik, S. P.
2016-01-01
We report an experimental realization of adaptive Bayesian quantum state tomography for two-qubit states. Our implementation is based on the adaptive experimental design strategy proposed in the work by Huszár and Houlsby [F. Huszár and N. M. T. Houlsby, Phys. Rev. A 85, 052120 (2012)., 10.1103/PhysRevA.85.052120] and provides an optimal measurement approach in terms of the information gain. We address the practical questions which one faces in any experimental application: the influence of technical noise and the behavior of the tomographic algorithm for an easy-to-implement class of factorized measurements. In an experiment with polarization states of entangled photon pairs, we observe a lower instrumental noise floor and superior reconstruction accuracy for nearly pure states of the adaptive protocol compared to a nonadaptive protocol. At the same time, we show that for the mixed states, the restriction to factorized measurements results in no advantage for adaptive measurements, so general measurements have to be used.
2015-01-01
The design and execution of consolidation treatment of settled foundations by means of injection of polyurethane expanding resins require a proper investigation of the state of the foundation soil, in order to better identify anomalies responsible for the instability. To monitor the injection process, a procedure has been developed, which involves, in combination with traditional geotechnical tests, the application of a noninvasive, geophysical technique based on the electrical resistivity, which is strongly sensitive to presence of water or voids. Three-dimensional electrical resistivity tomography is a useful tool to produce effective 3D images of the foundation soils before, during, and after the injections. The achieved information allows designing the consolidation scheme and monitoring its effects on the treated volumes in real time. To better understand the complex processes induced by the treatment and to learn how variations of resistivity accompany increase of stiffness, an experiment was carried out in a full-scale test site. Injections of polyurethane expanding resin were performed as in real worksite conditions. Results confirm that the experimented approach by means of 3D resistivity imaging allows a reliable procedure of consolidation, and geotechnical tests demonstrate the increase of mechanical stiffness. PMID:26167521
Advanced measurement techniques to characterize thermo-mechanical aspects of solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Malzbender, J.; Steinbrech, R. W.
Advanced characterization methods have been used to analyze the thermo-mechanical behaviour of solid oxide fuel cells in a model stack. The primarily experimental work included contacting studies, sealing of a model stack, thermal and re-oxidation cycling. Also an attempt was made to correlate cell fracture in the stack with pore sizes determined from computer tomography. The contacting studies were carried out using pressure sensitive foils. The load to achieve full contact on anode and cathode side of the cell was assessed and applied in the subsequent model stack test. The stack experiment permitted a detailed analysis of stack compaction during sealing. During steady state operation thermal and re-oxidation cycling the changes in open cell voltage and acoustic emissions were monitored. Significant softening of the sealant material was observed at low temperatures. Heating in the thermal cycling loop of the stack appeared to be less critical than the cooling. Re-oxidation cycling led to significant damage if a critical re-oxidation time was exceeded. Microstructural studies permitted further insight into the re-oxidation mechanism. Finally, the maximum defect size in the cell was determined by computer tomography. A limit of maximum anode stress was estimated and the result correlated this with the failure strength observed during the model stack testing.
Computed Tomography Scanner Productivity and Entry-Level Models in the Global Market
Almeida, R. M. V. R.
2017-01-01
Objective This study evaluated the productivity of computed tomography (CT) models and characterized their simplest (entry-level) models' supply in the world market. Methods CT exam times were measured in eight health facilities in the state of Rio de Janeiro, Brazil. Exams were divided into six stages: (1) arrival of patient records to the examination room; (2) patient arrival; (3) patient positioning; (4) data input prior to exam; (5) image acquisition; and (6) patient departure. CT exam productivity was calculated by dividing the total weekly working time by the total exam time for each model. Additionally, an internet search identified full-body CT manufacturers and their offered entry-level models. Results The time durations of 111 CT exams were obtained. Differences among average exam times were not large, and they were mainly due to stages not directly related to data acquisition or image reconstruction. The survey identified that most manufacturers offer 2- to 4-slice models for Asia, South America, and Africa, and one offers single-slice models (Asia). In the USA, two manufacturers offer models below 16-slice. Conclusion Productivity gains are not linearly related to “slice” number. It is suggested that the use of “shareable platforms” could make CTs cheaper, increasing their availability. PMID:29093804
A Clinical Evaluation of Cone Beam Computed Tomography
2015-06-01
the extent of dental caries . The radiographic image is essential to successfully diagnose pathosis of odontogenic and non-odontogenic origin. The...A CLINICAL EVALUATION OF CONE BEAM COMPUTED TOMOGRAPHY by Thomas Patrick Cairnll, D.D.S. Commander, Dental Corps United States Navy A thesis...submitted to the Faculty of the Endodontics Graduate Program Naval Postgraduate Dental School Uniformed Services University of the Health Sciences in
Benign familial fleck retina: multimodal imaging including optical coherence tomography angiography.
Garcia, Jose Mauricio Botto de Barros; Isaac, David Leonardo Cruvinel; Sardeiro, Tainara; Aquino, Érika; Avila, Marcos
2017-01-01
This report presents multimodal imaging of a 27-year-old woman diagnosed with benign familial fleck retina (OMIM 228980), an uncommon disorder. Fundus photographs revealed retinal flecks that affected her post-equatorial retina but spared the macular area. Fundus autofluorescence and infrared imaging demonstrated a symmetrical pattern of yellow-white fleck lesions that affected both eyes. Her full-field electroretinogram and electrooculogram were normal. An optical coherence tomography B-scan was performed for both eyes, revealing increased thickness of the retinal pigmented epithelium leading to multiple small pigmented epithelium detachments. The outer retina remained intact in both eyes. Spectral-domain optical coherence tomography angiography with split-spectrum amplitude decorrelation algorithm and 3 × 3 mm structural en face optical coherence tomography did not show macular lesions. Benign familial fleck retina belongs to a heterogenous group of so-called flecked retina syndromes, and should be considered in patients with yellowish-white retinal lesions without involvement of the macula.
The significance of pulmonary nodule in breast cancer patients.
Daglar, Gul; Yuksek, Yunus Nadi; Gozalan, Ugur; Tutuncu, Tanju; Kama, Nuri Aydin
2010-01-01
Pulmonary nodule in patients with breast cancer is a difficult problem and constitutes a therapeutic challenge. This study questioned the significance of solitary pulmonary nodule in breast cancer patients and compared the survival with patients who had normal thorax tomography. There were 58 breast cancer patients included in the study. From these, 28 patients had normal preoperative tomography (group 1), and 30 patients had pulmonary nodule less than 1 cm on thorax tomography (group 2). Chi-square and Fisher tests were used for comparisons and Kaplan-Meier test for survival. Stage, tumour size, treatment, histology, lymph node involvement, adjuvant therapy, were similar in both groups. We did not find a significant difference in disease-free and overall survival rates, between two groups. For the nodules that show benign properties at tomography, there is no need to do further investigation and no need to change treatment plan in breast cancer patients (Tab. 2, Fig. 2, Ref. 12). Full Text (Free, PDF) www.bmj.sk.
A cylindrical specimen holder for electron cryo-tomography.
Palmer, Colin M; Löwe, Jan
2014-02-01
The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the "missing wedge" problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stagner, L.; Heidbrink, W. W.
2017-10-01
Due to the complicated nature of the fast-ion distribution function, diagnostic velocity-space weight functions are used to analyze experimental data. In a technique known as Velocity-space Tomography (VST), velocity-space weight functions are combined with experimental measurements to create a system of linear equations that can be solved. However, VST (which by definition ignores spatial dependencies) is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostics. In this work we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e. Orbit Tomography. Examples of orbit weights functions for different diagnostics and reconstructions of fast-ion distributions are shown for DIII-D experiments. This work was supported by the U.S. Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698.
Use of borehole radar tomography to monitor steam injection in fractured limestone
Gregoire, C.; Joesten, P.K.
2006-01-01
Borehole radar tomography was used as part of a pilot study to monitor steam-enhanced remediation of a fractured limestone contaminated with volatile organic compounds at the former Loring Air Force Base, Maine, USA. Radar tomography data were collected using 100-MHz electric-dipole antennae before and during steam injection to evaluate whether cross-hole radar methods could detect changes in medium properties resulting from the steam injection. Cross-hole levelrun profiles, in which transmitting and receiving antennae are positioned at a common depth, were made before and after the collection of each full tomography data set to check the stability of the radar instruments. Before tomographic inversion, the levelrun profiles were used to calibrate the radar tomography data to compensate for changes in traveltime and antenna power caused by instrument drift. Observed changes in cross-hole radar traveltime and attenuation before and during steam injection were small. Slowness- and attenuation-difference tomograms indicate small increases in radar slowness and attenuation at depths greater than about 22 m below the surface, consistent with increases in water temperature observed in the boreholes used for the tomography. Based on theoretical modelling results, increases in slowness and attenuation are interpreted as delineating zones where steam injection heating increased the electrical conductivity of the limestone matrix and fluid. The results of this study show the potential of cross-hole radar tomography methods to monitor the effects of steam-induced heating in fractured rock environments. ?? 2006 European Association of Geoscientists & Engineers.
Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography.
Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong; Liu, Yijin; Grey, Clare P; Strobridge, Fiona C; Tyliszczak, Tolek; Celestre, Rich; Denes, Peter; Joseph, John; Krishnan, Harinarayan; Maia, Filipe R N C; Kilcoyne, A L David; Marchesini, Stefano; Leite, Talita Perciano Costa; Warwick, Tony; Padmore, Howard; Cabana, Jordi; Shapiro, David A
2018-03-02
Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a set of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.
Six-dimensional real and reciprocal space small-angle X-ray scattering tomography
NASA Astrophysics Data System (ADS)
Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz
2015-11-01
When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres—for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.
Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.
Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz
2015-11-19
When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.
Chirp optical coherence tomography of layered scattering media.
Haberland, U H; Blazek, V; Schmitt, H J
1998-07-01
A new noninvasive technique that reveals cross sectional images of scattering media is presented. It is based on a continuous wave frequency modulated radar, but uses a tunable laser in the near infrared. As the full width at half maximum resolution of 16 μm is demonstrated with an external cavity laser, the chirp optical coherence tomography becomes an alternative to conventional short coherence tomography with the advantage of a simplified optical setup. The analysis of two-layer solid phantoms shows that the backscattered light gets stronger with decreasing anisotropic factor and increasing scattering coefficient, as predicted by Monte Carlo simulations. By introducing a two-phase chirp sequence, the combination of lateral resolved perfusion and depth resolved structure is shown. © 1998 Society of Photo-Optical Instrumentation Engineers.
Agarwal, Aniruddha; Singh, Ramandeep; Kumar, Abiraj; Dogra, Mangat R; Gupta, Amod
2017-01-01
To report a case of bilateral retinopathy associated with subacute sclerosing panencephalitis. History and clinical examination, fluorescein angiography, and optical coherence tomography. We report a rare case of unilateral, followed by bilateral retinopathy, subretinal fluid, and vasculopathy in a young boy. History of missed measles vaccination, behavioral and neurologic symptoms, and electroencephalogram suggested a diagnosis of subacute sclerosing panencephalitis. Retinal imaging using optical coherence tomography was performed to document changes in the retinal microstructure through the natural course of the disease. Within 8 weeks, the changes progressed to retinal atrophy in both eyes. The progressive course of retinitis associated with subacute sclerosing panencephalitis can be monitored on optical coherence tomography. Retinitis is subacute sclerosing panencephalitis rapidly progressive from the acute stage to the stage of atrophy, involving full thickness of the retina.
NASA Astrophysics Data System (ADS)
Kang, DongYel; Wang, Alex; Volgger, Veronika; Chen, Zhongping; Wong, Brian J. F.
2015-07-01
Detection of an early stage of subglottic edema is vital for airway management and prevention of stenosis, a life-threatening condition in critically ill neonates. As an observer for the task of diagnosing edema in vivo, we investigated spatiotemporal correlation (STC) of full-range optical coherence tomography (OCT) images acquired in the rabbit airway with experimentally simulated edema. Operating the STC observer on OCT images generates STC coefficients as test statistics for the statistical decision task. Resulting from this, the receiver operating characteristic (ROC) curves for the diagnosis of airway edema with full-range OCT in-vivo images were extracted and areas under ROC curves were calculated. These statistically quantified results demonstrated the potential clinical feasibility of the STC method as a means to identify early airway edema.
NASA Astrophysics Data System (ADS)
Singla, Neeru; Dubey, Kavita; Srivastava, Vishal; Ahmad, Azeem; Mehta, D. S.
2018-02-01
We developed an automated high-resolution full-field spatial coherence tomography (FF-SCT) microscope for quantitative phase imaging that is based on the spatial, rather than the temporal, coherence gating. The Red and Green color laser light was used for finding the quantitative phase images of unstained human red blood cells (RBCs). This study uses morphological parameters of unstained RBCs phase images to distinguish between normal and infected cells. We recorded the single interferogram by a FF-SCT microscope for red and green color wavelength and average the two phase images to further reduced the noise artifacts. In order to characterize anemia infected from normal cells different morphological features were extracted and these features were used to train machine learning ensemble model to classify RBCs with high accuracy.
How noise affects quantum detector tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Q., E-mail: wang@physics.leidenuniv.nl; Renema, J. J.; Exter, M. P.van
2015-10-07
We determine the full photon number response of a NbN superconducting nanowire single photon detector via quantum detector tomography, and the results show the separation of linear, effective absorption efficiency from the internal detection efficiencies. In addition, we demonstrate an error budget for the complete quantum characterization of the detector. We find that for short times, the dominant noise source is shot noise, while laser power fluctuations limit the accuracy for longer timescales. The combined standard uncertainty of the internal detection efficiency derived from our measurements is about 2%.
Automated method for structural segmentation of nasal airways based on cone beam computed tomography
NASA Astrophysics Data System (ADS)
Tymkovych, Maksym Yu.; Avrunin, Oleg G.; Paliy, Victor G.; Filzow, Maksim; Gryshkov, Oleksandr; Glasmacher, Birgit; Omiotek, Zbigniew; DzierŻak, RóŻa; Smailova, Saule; Kozbekova, Ainur
2017-08-01
The work is dedicated to the segmentation problem of human nasal airways using Cone Beam Computed Tomography. During research, we propose a specialized approach of structured segmentation of nasal airways. That approach use spatial information, symmetrisation of the structures. The proposed stages can be used for construction a virtual three dimensional model of nasal airways and for production full-scale personalized atlases. During research we build the virtual model of nasal airways, which can be used for construction specialized medical atlases and aerodynamics researches.
Full-waveform seismic tomography of the Vrancea, Romania, subduction region
NASA Astrophysics Data System (ADS)
Baron, Julie; Morelli, Andrea
2017-12-01
The Vrancea region is one of the few locations of deep seismicity in Europe. Seismic tomography has been able to map lithospheric downwelling, but has not been able yet to clearly discriminate between competing geodynamic interpretations of the geological and geophysical evidence available. We study the seismic structure of the Vrancea subduction zone, using adjoint-based, full-waveform tomography to map the 3D vP and vS structure in detail. We use the database that was built during the CALIXTO (Carpathian Arc Lithosphere X-Tomography) temporary experiment, restricted to the broadband sensors and local intermediate-depth events. We fit waveforms with a cross-correlation misfit criterion in separate time windows around the expected P and S arrivals, and perform 17 iterations of vP and vS model updates (altogether, requiring about 16 million CPU hours) before reaching stable convergence. Among other features, our resulting model shows a nearly vertical, high-velocity body, that overlaps with the distribution of seismicity in its northeastern part. In its southwestern part, a slab appears to dip less steeply to the NW, and is suggestive of ongoing - or recently concluded - subduction geodynamic processes. Joint inversion for vP and vS allow us to address the vP/vS ratio distribution, that marks high vP/vS in the crust beneath the Focsani sedimentary basin - possibly due to high fluid pressure - and a low vP/vS edge along the lower plane of the subducting lithosphere, that in other similar environment has been attributed to dehydration of serpentine in the slab. In spite of the restricted amount of data available, and limitations on the usable frequency pass-band, full-waveform inversion reveals its potential to improve the general quality of imaging with respect to other tomographic techniques - although at a sensible cost in terms of computing resources. Our study also shows that re-analysis of legacy data sets with up-to-date techniques may bring new, useful, information.
A Clinical Evaluation Of Cone Beam Computed Tomography
2016-06-01
A CLINICAL EVALUATION OF CONE BEAM COMPUTED TOMOGRAPHY by Bryan James Behm, D.D.S. Lieutenant, Dental Corps United States Navy A thesis...submitted to the Faculty of the Endodontic Graduate Program Naval Postgraduate Dental School Uniformed Services University of the Health Sciences in...partial fulfillment of the requirements for the degree of Master of Science in Oral Biology June 2016 Naval Postgraduate Dental School Unif01med
NASA Technical Reports Server (NTRS)
Bencic, Timothy J.; Fagan, Amy; Van Zante, Judith F.; Kirkegaard, Jonathan P.; Rohler, David P.; Maniyedath, Arjun; Izen, Steven H.
2013-01-01
A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe.
Ambient noise adjoint tomography for a linear array in North China
NASA Astrophysics Data System (ADS)
Zhang, C.; Yao, H.; Liu, Q.; Yuan, Y. O.; Zhang, P.; Feng, J.; Fang, L.
2017-12-01
Ambient noise tomography based on dispersion data and ray theory has been widely utilized for imaging crustal structures. In order to improve the inversion accuracy, ambient noise tomography based on the 3D adjoint approach or full waveform inversion has been developed recently, however, the computational cost is tremendous. In this study we present 2D ambient noise adjoint tomography for a linear array in north China with significant computational efficiency compared to 3D ambient noise adjoint tomography. During the preprocessing, we first convert the observed data in 3D media, i.e., surface-wave empirical Green's functions (EGFs) from ambient noise cross-correlation, to the reconstructed EGFs in 2D media using a 3D/2D transformation scheme. Different from the conventional steps of measuring phase dispersion, the 2D adjoint tomography refines 2D shear wave speeds along the profile directly from the reconstructed Rayleigh wave EGFs in the period band 6-35s. With the 2D initial model extracted from the 3D model from traditional ambient noise tomography, adjoint tomography updates the model by minimizing the frequency-dependent Rayleigh wave traveltime misfits between the reconstructed EGFs and synthetic Green function (SGFs) in 2D media generated by the spectral-element method (SEM), with a preconditioned conjugate gradient method. The multitaper traveltime difference measurement is applied in four period bands during the inversion: 20-35s, 15-30s, 10-20s and 6-15s. The recovered model shows more detailed crustal structures with pronounced low velocity anomaly in the mid-lower crust beneath the junction of Taihang Mountains and Yin-Yan Mountains compared with the initial model. This low velocity structure may imply the possible intense crust-mantle interactions, probably associated with the magmatic underplating during the Mesozoic to Cenozoic evolution of the region. To our knowledge, it's first time that ambient noise adjoint tomography is implemented in 2D media. Considering the intensive computational cost and storage of 3D adjoint tomography, this 2D ambient noise adjoint tomography has potential advantages to get high-resolution 2D crustal structures with limited computational resource.
Limited angle breast ultrasound tomography with a priori information and artifact removal
NASA Astrophysics Data System (ADS)
Jintamethasawat, Rungroj; Zhu, Yunhao; Kripfgans, Oliver D.; Yuan, Jie; Goodsitt, Mitchell M.; Carson, Paul L.
2017-03-01
In B-mode images from dual-sided ultrasound, it has been shown that by delineating structures suspected of being relatively homogeneous, one can enhance limited angle tomography to produce speed of sound images in the same view as X-ray Digital Breast Tomography (DBT). This could allow better breast cancer detection and discrimination, as well as improved registration of the ultrasound and X-ray images, because of the similarity of SOS and X-ray contrast in the breast. However, this speed of sound reconstruction method relies strongly on B-mode or other reflection mode segmentation. If that information is limited or incorrect, artifacts will appear in the reconstructed images. Therefore, the iterative speed of sound reconstruction algorithm has been modified in a manner of simultaneously utilizing the image segmentations and removing most artifacts. The first step of incorporating a priori information is solved by any nonlinearnonconvex optimization method while artifact removal is accomplished by employing the fast split Bregman method to perform total-variation (TV) regularization for image denoising. The proposed method was demonstrated in simplified simulations of our dual-sided ultrasound scanner. To speed these computations two opposed 40-element ultrasound linear arrays with 0.5 MHz center frequency were simulated for imaging objects in a uniform background. The proposed speed of sound reconstruction method worked well with both bent-ray and full-wave inversion methods. This is also the first demonstration of successful full-wave medical ultrasound tomography in the limited angle geometry. Presented results lend credibility to a possible translation of this method to clinical breast imaging.
Hyperspectral tomography based on multi-mode absorption spectroscopy (MUMAS)
NASA Astrophysics Data System (ADS)
Dai, Jinghang; O'Hagan, Seamus; Liu, Hecong; Cai, Weiwei; Ewart, Paul
2017-10-01
This paper demonstrates a hyperspectral tomographic technique that can recover the temperature and concentration field of gas flows based on multi-mode absorption spectroscopy (MUMAS). This method relies on the recently proposed concept of nonlinear tomography, which can take full advantage of the nonlinear dependency of MUMAS signals on temperature and enables 2D spatial resolution of MUMAS which is naturally a line-of-sight technique. The principles of MUMAS and nonlinear tomography, as well as the mathematical formulation of the inversion problem, are introduced. Proof-of-concept numerical demonstrations are presented using representative flame phantoms and assuming typical laser parameters. The results show that faithful reconstruction of temperature distribution is achievable when a signal-to-noise ratio of 20 is assumed. This method can potentially be extended to simultaneously reconstructing distributions of temperature and the concentration of multiple flame species.
3D radar wavefield tomography of comet interiors
NASA Astrophysics Data System (ADS)
Sava, Paul; Asphaug, Erik
2018-04-01
Answering fundamental questions about the origin and evolution of small planetary bodies hinges on our ability to image their surface and interior structure in detail and at high resolution. The interior structure is not easily accessible without systematic imaging using, e.g., radar transmission and reflection data from multiple viewpoints, as in medical tomography. Radar tomography can be performed using methodology adapted from terrestrial exploration seismology. Our feasibility study primarily focuses on full wavefield methods that facilitate high quality imaging of small body interiors. We consider the case of a monostatic system (co-located transmitters and receivers) operated in various frequency bands between 5 and 15 MHz, from a spacecraft in slow polar orbit around a spinning comet nucleus. Using realistic numerical experiments, we demonstrate that wavefield techniques can generate high resolution tomograms of comets nuclei with arbitrary shape and complex interior properties.
Wave-equation migration velocity inversion using passive seismic sources
NASA Astrophysics Data System (ADS)
Witten, B.; Shragge, J. C.
2015-12-01
Seismic monitoring at injection sites (e.g., CO2 sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits the fact that the P- and S-wave arrivals originate at the same time and location in the subsurface. We generate image volumes by back-propagating P- and S-wave data through initial Earth models and then applying a correlation-based extended-imaging condition. Energy focusing away from zero lag in the extended image volume is used as a (penalized) residual in an adjoint-state tomography scheme to update the P- and S-wave velocity models. We use an acousto-elastic approximation to greatly reduce the computational cost. Because the method requires neither an initial source location or origin time estimate nor picking of arrivals, it is suitable for low signal-to-noise datasets, such as microseismic data. Synthetic results show that with a realistic distribution of microseismic sources, P- and S-velocity perturbations can be recovered. Although demonstrated at an oil and gas reservoir scale, the technique can be applied to problems of all scales from geologic core samples to global seismology.
Elastic Velocity Updating through Image-Domain Tomographic Inversion of Passive Seismic Data
NASA Astrophysics Data System (ADS)
Witten, B.; Shragge, J. C.
2014-12-01
Seismic monitoring at injection sites (e.g., CO2sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits images of the earthquake source using various imaging conditions based upon the P- and S-wavefield data. We generate image volumes by back propagating data through initial models and then applying a correlation-based imaging condition. We use the P-wavefield autocorrelation, S-wavefield autocorrelation, and P-S wavefield cross-correlation images. Inconsistencies in the images form the residuals, which are used to update the P- and S-wave velocity models through adjoint-state tomography. Because the image volumes are constructed from all trace data, the signal-to-noise in this space is increased when compared to the individual traces. Moreover, it eliminates the need for picking and does not require any estimation of the source location and timing. Initial tests show that with reasonable source distribution and acquisition array, velocity anomalies can be recovered. Future tests will apply this methodology to other scales from laboratory to global.
Traumatic hemorrhage of occult phaeochromocytoma in a patient with septic shock
Moazzam, Mohammad Shahnawaz; Ahmed, Syed Moied; Bano, Shahjahan
2010-01-01
Phaeochromocytoma can have a variety of presentations; however, traumatic hemorrhage into a phaeochromocytoma is a very rare presentation. Diagnosing and managing a critically ill, septic patient with a Phaeochromocytoma can be very challenging. We report a case of 53 years old man with a previously undiagnosed Phaeochromocytoma, who presented initially with bowel perforation following an assault. Following a laparotomy for bowel resection and anastomosis, whilst on the intensive care unit, he developed paroxysmal severe hypertension overlying septic shock. Phaeochromocytoma was confirmed using a computed tomography scan and urinary assay of metanephrine and catecholamines. We managed the haemodynamic instability using labetalol and noradrenaline infusions. As his septic state improved he was convention therapy and following control of his symptoms over the next few weeks, he underwent an uncomplicated right sided adrenalectomy. He made a full recovery. PMID:20930983
Limited-angle tomography for analyzer-based phase-contrast X-ray imaging
Majidi, Keivan; Wernick, Miles N; Li, Jun; Muehleman, Carol; Brankov, Jovan G
2014-01-01
Multiple-Image Radiography (MIR) is an analyzer-based phase-contrast X-ray imaging method (ABI), which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT-MIR only if one considers volumetric images near the central plane and not the whole volume. PMID:24898008
Limited-angle tomography for analyzer-based phase-contrast x-ray imaging
NASA Astrophysics Data System (ADS)
Majidi, Keivan; Wernick, Miles N.; Li, Jun; Muehleman, Carol; Brankov, Jovan G.
2014-07-01
Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT-MIR only if one considers volumetric images near the central plane and not the whole volume.
Fast detection of vascular plaque in optical coherence tomography images using a reduced feature set
NASA Astrophysics Data System (ADS)
Prakash, Ammu; Ocana Macias, Mariano; Hewko, Mark; Sowa, Michael; Sherif, Sherif
2018-03-01
Optical coherence tomography (OCT) images are capable of detecting vascular plaque by using the full set of 26 Haralick textural features and a standard K-means clustering algorithm. However, the use of the full set of 26 textural features is computationally expensive and may not be feasible for real time implementation. In this work, we identified a reduced set of 3 textural feature which characterizes vascular plaque and used a generalized Fuzzy C-means clustering algorithm. Our work involves three steps: 1) the reduction of a full set 26 textural feature to a reduced set of 3 textural features by using genetic algorithm (GA) optimization method 2) the implementation of an unsupervised generalized clustering algorithm (Fuzzy C-means) on the reduced feature space, and 3) the validation of our results using histology and actual photographic images of vascular plaque. Our results show an excellent match with histology and actual photographic images of vascular tissue. Therefore, our results could provide an efficient pre-clinical tool for the detection of vascular plaque in real time OCT imaging.
Meirer, Florian; Morris, Darius T.; Kalirai, Sam; ...
2015-01-02
Full-field transmission X-ray microscopy has been used to determine the 3D structure of a whole individual fluid catalytic cracking (FCC) particle at high spatial resolution and in a fast, noninvasive manner, maintaining the full integrity of the particle. Using X-ray absorption mosaic imaging to combine multiple fields of view, computed tomography was performed to visualize the macropore structure of the catalyst and its availability for mass transport. We mapped the relative spatial distributions of Ni and Fe using multiple-energy tomography at the respective X-ray absorption K-edges and correlated these distributions with porosity and permeability of an equilibrated catalyst (E-cat) particle.more » Both metals were found to accumulate in outer layers of the particle, effectively decreasing porosity by clogging of pores and eventually restricting access into the FCC particle.« less
Endoscopic Full-Field Swept-Source Optical Coherence Tomography Neuroimaging System
NASA Astrophysics Data System (ADS)
Felts Almog, Ilan
Optical Coherence Tomography (OCT) has the capability to differentiate brain elements with intrinsic contrast and at a resolution an order-of-magnitude higher than other imaging modalities. This thesis investigates the feasibility of OCT for neuroimaging applied to neurosurgical guidance. We present, to our knowledge, the first Full-Field Swept-Source OCT system operating near a wavelength of 1310 nm, achieving a transverse imaging resolution of 6.5 mum, an axial resolution of 14 mum in tissue and a field of view of 270 mum x 180 mum x 400 mum. Imaging experiments were performed on rat brain tissues ex vivo, human cortical tissue ex vivo, and rats in vivo. A multi-level threshold metric applied on the intensity of the images led to a plausible correlation between the observed density and location in the brain. The proof-of-concept OCT system can be improved and miniaturized for clinical use.
Safrani, Avner; Abdulhalim, Ibrahim
2011-06-20
Longitudinal spatial coherence (LSC) is determined by the spatial frequency content of an optical beam. The use of lenses with a high numerical aperture (NA) in full-field optical coherence tomography and a narrowband light source makes the LSC length much shorter than the temporal coherence length, hence suggesting that high-resolution 3D images of biological and multilayered samples can be obtained based on the low LSC. A simplified model is derived, supported by experimental results, which describes the expected interference output signal of multilayered samples when high-NA lenses are used together with a narrowband light source. An expression for the correction factor for the layer thickness determination is found valid for high-NA objectives. Additionally, the method was applied to a strongly scattering layer, demonstrating the potential of this method for high-resolution imaging of scattering media.
Qualitative investigation of fresh human scalp hair with full-field optical coherence tomography
NASA Astrophysics Data System (ADS)
Choi, Woo June; Pi, Long-Quan; Min, Gihyeon; Lee, Won-Soo; Lee, Byeong Ha
2012-03-01
We have investigated depth-resolved cellular structures of unmodified fresh human scalp hairs with ultrahigh-resolution full-field optical coherence tomography (FF-OCT). The Linnik-type white light interference microscope has been home-implemented to observe the micro-internal layers of human hairs in their natural environment. In hair shafts, FF-OCT has qualitatively revealed the cellular hair compartments of cuticle and cortex layers involved in keratin filaments and melanin granules. No significant difference between black and white hair shafts was observed except for absence of only the melanin granules in the white hair, reflecting that the density of the melanin granules directly affects the hair color. Anatomical description of plucked hair bulbs was also obtained with the FF-OCT in three-dimensions. We expect this approach will be useful for evaluating cellular alteration of natural hairs on cosmetic assessment or diagnosis of hair diseases.
X-ray mosaic nanotomography of large microorganisms.
Mokso, R; Quaroni, L; Marone, F; Irvine, S; Vila-Comamala, J; Blanke, A; Stampanoni, M
2012-02-01
Full-field X-ray microscopy is a valuable tool for 3D observation of biological systems. In the soft X-ray domain organelles can be visualized in individual cells while hard X-ray microscopes excel in imaging of larger complex biological tissue. The field of view of these instruments is typically 10(3) times the spatial resolution. We exploit the assets of the hard X-ray sub-micrometer imaging and extend the standard approach by widening the effective field of view to match the size of the sample. We show that global tomography of biological systems exceeding several times the field of view is feasible also at the nanoscale with moderate radiation dose. We address the performance issues and limitations of the TOMCAT full-field microscope and more generally for Zernike phase contrast imaging. Two biologically relevant systems were investigated. The first being the largest known bacteria (Thiomargarita namibiensis), the second is a small myriapod species (Pauropoda sp.). Both examples illustrate the capacity of the unique, structured condenser based broad-band full-field microscope to access the 3D structural details of biological systems at the nanoscale while avoiding complicated sample preparation, or even keeping the sample environment close to the natural state. Copyright © 2012 Elsevier Inc. All rights reserved.
Action-angle formulation of generalized, orbit-based, fast-ion diagnostic weight functions
NASA Astrophysics Data System (ADS)
Stagner, L.; Heidbrink, W. W.
2017-09-01
Due to the usually complicated and anisotropic nature of the fast-ion distribution function, diagnostic velocity-space weight functions, which indicate the sensitivity of a diagnostic to different fast-ion velocities, are used to facilitate the analysis of experimental data. Additionally, when velocity-space weight functions are discretized, a linear equation relating the fast-ion density and the expected diagnostic signal is formed. In a technique known as velocity-space tomography, many measurements can be combined to create an ill-conditioned system of linear equations that can be solved using various computational methods. However, when velocity-space weight functions (which by definition ignore spatial dependencies) are used, velocity-space tomography is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostic measurements. In this work, we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e., orbit tomography. In depth derivations of orbit weight functions for the neutron, neutral particle analyzer, and fast-ion D-α diagnostics are also shown.
Michalewska, Zofia; Nawrocki, Jerzy
2018-04-30
To describe morphology of retinal and choroidal vessels in swept-source optical coherence tomography angiography before and after vitrectomy with the temporal inverted internal limiting membrane (ILM) flap technique for full-thickness macular holes. Prospective, observational study of 36 eyes of 33 patients with full-thickness macular holes swept-source optical coherence tomography angiography was performed in patients before and 1 month after vitrectomy. Vitrectomy with the temporal inverted ILM flap technique was performed. In this method, ILM is peeled only at one side of the fovea. An ILM flap is created to cover the macular hole. Comparison of retina vasculature in the areas of ILM peeling vs. no ILM peeling at 1 and 3 months after successful vitrectomy was performed. The study demonstrated lower density of vessels in the deep retinal plexus in the area where ILM was peeled as compared to the rest of the fovea. Visual acuity and central retinal thickness 1 month after surgery correlates with fovea avascular zone diameter in deep retinal layers at the same time point (P = 0.001). This study confirmed that ILM peeling might alter blood flow in deep retinal vessels below the peeling area in the early postoperative period. The area of the fovea avascular zone corresponds to functional results at the same time point.
Blom, Philip Stephen; Marcillo, Omar Eduardo
2016-12-05
A method is developed to apply acoustic tomography methods to a localized network of infrasound arrays with intention of monitoring the atmosphere state in the region around the network using non-local sources without requiring knowledge of the precise source location or non-local atmosphere state. Closely spaced arrays provide a means to estimate phase velocities of signals that can provide limiting bounds on certain characteristics of the atmosphere. Larger spacing between such clusters provide a means to estimate celerity from propagation times along multiple unique stratospherically or thermospherically ducted propagation paths and compute more precise estimates of the atmosphere state. Inmore » order to avoid the commonly encountered complex, multimodal distributions for parametric atmosphere descriptions and to maximize the computational efficiency of the method, an optimal parametrization framework is constructed. This framework identifies the ideal combination of parameters for tomography studies in specific regions of the atmosphere and statistical model selection analysis shows that high quality corrections to the middle atmosphere winds can be obtained using as few as three parameters. Lastly, comparison of the resulting estimates for synthetic data sets shows qualitative agreement between the middle atmosphere winds and those estimated from infrasonic traveltime observations.« less
EEL spectroscopic tomography: towards a new dimension in nanomaterials analysis.
Yedra, Lluís; Eljarrat, Alberto; Arenal, Raúl; Pellicer, Eva; Cabo, Moisés; López-Ortega, Alberto; Estrader, Marta; Sort, Jordi; Baró, Maria Dolors; Estradé, Sònia; Peiró, Francesca
2012-11-01
Electron tomography is a widely spread technique for recovering the three dimensional (3D) shape of nanostructured materials. Using a spectroscopic signal to achieve a reconstruction adds a fourth chemical dimension to the 3D structure. Up to date, energy filtering of the images in the transmission electron microscope (EFTEM) is the usual spectroscopic method even if most of the information in the spectrum is lost. Unlike EFTEM tomography, the use of electron energy-loss spectroscopy (EELS) spectrum images (SI) for tomographic reconstruction retains all chemical information, and the possibilities of this new approach still remain to be fully exploited. In this article we prove the feasibility of EEL spectroscopic tomography at low voltages (80 kV) and short acquisition times from data acquired using an aberration corrected instrument and data treatment by Multivariate Analysis (MVA), applied to Fe(x)Co((3-x))O(4)@Co(3)O(4) mesoporous materials. This approach provides a new scope into materials; the recovery of full EELS signal in 3D. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Harms, F.; Dalimier, E.; Vermeulen, P.; Fragola, A.; Boccara, A. C.
2012-03-01
Optical Coherence Tomography (OCT) is an efficient technique for in-depth optical biopsy of biological tissues, relying on interferometric selection of ballistic photons. Full-Field Optical Coherence Tomography (FF-OCT) is an alternative approach to Fourier-domain OCT (spectral or swept-source), allowing parallel acquisition of en-face optical sections. Using medium numerical aperture objective, it is possible to reach an isotropic resolution of about 1x1x1 ìm. After stitching a grid of acquired images, FF-OCT gives access to the architecture of the tissue, for both macroscopic and microscopic structures, in a non-invasive process, which makes the technique particularly suitable for applications in pathology. Here we report a multimodal approach to FF-OCT, combining two Full-Field techniques for collecting a backscattered endogeneous OCT image and a fluorescence exogeneous image in parallel. Considering pathological diagnosis of cancer, visualization of cell nuclei is of paramount importance. OCT images, even for the highest resolution, usually fail to identify individual nuclei due to the nature of the optical contrast used. We have built a multimodal optical microscope based on the combination of FF-OCT and Structured Illumination Microscopy (SIM). We used x30 immersion objectives, with a numerical aperture of 1.05, allowing for sub-micron transverse resolution. Fluorescent staining of nuclei was obtained using specific fluorescent dyes such as acridine orange. We present multimodal images of healthy and pathological skin tissue at various scales. This instrumental development paves the way for improvements of standard pathology procedures, as a faster, non sacrificial, operator independent digital optical method compared to frozen sections.
High-resolution imaging of biological tissue with full-field optical coherence tomography
NASA Astrophysics Data System (ADS)
Zhu, Yue; Gao, Wanrong
2015-03-01
A new full-field optical coherence tomography system with high-resolution has been developed for imaging of cells and tissues. Compared with other FF-OCT (Full-field optical coherence tomography, FF-OCT) systems illuminated with optical fiber bundle, the improved Köhler illumination arrangement with a halogen lamp was used in the proposed FF-OCT system. High numerical aperture microscopic objectives were used for imaging and a piezoelectric ceramic transducer (PZT) was used for phase-shifting. En-face tomographic images can be obtained by applying the five-step phase-shifting algorithm to a series of interferometric images which are recorded by a smart camera. Three-dimensional images can be generated from these tomographic images. Imaging of the chip of Intel Pentium 4 processor demonstrated the ultrahigh resolution of the system (lateral resolution is 0.8μm ), which approaches the theoretical resolution 0.7 μm× 0.5 μm (lateral × axial). En-face images of cells of onion show an excellent performance of the system in generating en-face images of biological tissues. Then, unstained pig stomach was imaged as a tissue and gastric pits could be easily recognized using FF-OCT system. Our study provides evidence for the potential ability of FFOCT in identifying gastric pits from pig stomach tissue. Finally, label-free and unstained ex vivo human liver tissues from both normal and tumor were imaged with this FFOCT system. The results show that the setup has the potential for medical diagnosis applications such liver cancer diagnosis.
Multidetector computed tomography diagnosis of gastric volvulus through the foramen of Morgagni.
Lecouvet, S; Coulier, B; Pierard, F; Gogoase, M; Coppens, J P; Van Hoof, M
2014-01-01
Morgagni hernia is considered to be the rarest form of all diaphragmatic hernias. It develops through a congenital defect in the retrosternal area. Usually asymptomatic, this entity can lead to life-threatening complications such as incarceration, strangulation or volvulus of the herniated viscus. We hereby report a rare case of organoaxial gastric volvulus producing through the foramen of Morgagni in a 78-year-old woman. The full diagnosis was made by upper gastro-intestinal series and multidetector computed tomography (MDCT). The basic anatomy, physiopathology, diagnostic methods, complications and surgical treatment of Morgagni hernia are briefly reviewed.
Photoacoustic tomography using a Michelson interferometer with quadrature phase detection
NASA Astrophysics Data System (ADS)
Speirs, Rory W.; Bishop, Alexis I.
2013-07-01
We present a pressure sensor based on a Michelson interferometer, for use in photoacoustic tomography. Quadrature phase detection is employed allowing measurement at any point on the mirror surface without having to retune the interferometer, as is typically required by Fabry-Perot type detectors. This opens the door to rapid full surface detection, which is necessary for clinical applications. Theory relating acoustic pressure to detected acoustic particle displacements is used to calculate the detector sensitivity, which is validated with measurement. Proof-of-concept tomographic images of blood vessel phantoms have been taken with sub-millimeter resolution at depths of several millimeters.
Label-free evanescent microscopy for membrane nano-tomography in living cells.
Bon, Pierre; Barroca, Thomas; Lévèque-Fort, Sandrine; Fort, Emmanuel
2014-11-01
We show that through-the-objective evanescent microscopy (epi-EM) is a powerful technique to image membranes in living cells. Readily implementable on a standard inverted microscope, this technique enables full-field and real-time tracking of membrane processes without labeling and thus signal fading. In addition, we demonstrate that the membrane/interface distance can be retrieved with 10 nm precision using a multilayer Fresnel model. We apply this nano-axial tomography of living cell membranes to retrieve quantitative information on membrane invagination dynamics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography
Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong; ...
2018-03-02
Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here in this paper, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a setmore » of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.« less
Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong
Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here in this paper, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a setmore » of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.« less
Dynamic studies of small animals with a four-color diffuse optical tomography imager
NASA Astrophysics Data System (ADS)
Schmitz, Christoph H.; Graber, Harry L.; Pei, Yaling; Farber, Mark; Stewart, Mark; Levina, Rita D.; Levin, Mikhail B.; Xu, Yong; Barbour, Randall L.
2005-09-01
We present newly developed instrumentation for full-tomographic four-wavelength, continuous wave, diffuse optical tomography (DOT) imaging on small animals. A small-animal imaging stage was constructed, from materials compatible with in-magnet studies, which offers stereotaxic fixation of the animal and precise, stable probe positioning. Instrument performance, based on calibration and phantom studies, demonstrates excellent long-term signal stability. DOT measurements of the functional rat brain response to electric paw stimulation are presented, and these demonstrate high data quality and excellent sensitivity to hemodynamic changes. A general linear model analysis on individual trials is used to localize and quantify the occurrence of functional behavior associated with the different hemoglobin state responses. Statistical evaluation of outcomes of individual trials is employed to identify significant regional response variations for different stimulation sites. Image results reveal a diffuse cortical response and a strong reaction of the thalamus, both indicative of activation of pain pathways by the stimulation. In addition, a weaker lateralized functional component is observed in the brain response, suggesting presence of motor activation. An important outcome of the experiment is that it shows that reactions to individual provocations can be monitored, without having to resort to signal averaging. Thus the described technology may be useful for studies of long-term trends in hemodynamic response, as would occur, for example, in behavioral studies involving freely moving animals.
NASA Astrophysics Data System (ADS)
Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.
2015-12-01
We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.
Optical coherence tomography for imaging the middle and inner ears: A technical review
NASA Astrophysics Data System (ADS)
Ramier, Antoine; Rosowski, John J.; Yun, Seok-Hyun
2018-05-01
Optical coherence tomography (OCT), a minimally-invasive, high-speed, high resolution imaging modality, is becoming increasingly popular in the field of hearing research and otology. This review describes the history and state of the art of OCT for applications to understanding the mechanics of hearing and visualizing pathologies in the middle and inner ears. We will also discuss some of the recent developments that may accelerate the adoption of OCT to this field.
[Correction of light refraction and reflection in medical transmission optical tomography].
Tereshchenko, S A; Potapov, D A
2002-01-01
The effects of light refraction and reflection on the quality of image reconstruction in medical transmission optical tomography of high-scattering media are considered. It has been first noted that light refraction not only distorts the geometric scheme of measurements, but may lead to the appearance of object areas that cannot be scanned. Some ways of decreasing the effect of refraction on the reconstruction of spatial distribution of the extinction coefficient are stated.
PET/CT-guided interventions: Indications, advantages, disadvantages and the state of the art.
Cazzato, Roberto Luigi; Garnon, Julien; Shaygi, Behnam; Koch, Guillaume; Tsoumakidou, Georgia; Caudrelier, Jean; Addeo, Pietro; Bachellier, Philippe; Namer, Izzie Jacques; Gangi, Afshin
2018-02-01
Positron emission tomography/computed tomography (PET/CT) represents an emerging imaging guidance modality that has been applied to successfully guide percutaneous procedures such as biopsies and tumour ablations. The aim of the present narrative review is to report the indications, advantages and disadvantages of PET/CT-guided procedures in the field of interventional oncology and to briefly describe the experience gained with this new emerging technique while performing biopsies and tumor ablations.
Comment on "Optical-fiber-based Mueller optical coherence tomography".
Park, B Hyle; Pierce, Mark C; de Boer, Johannes F
2004-12-15
We comment on the recent Letter by Jiao et al. [Opt. Lett. 28, 1206 (2003)] in which a polarization-sensitive optical coherence tomography system was presented. Interrogating a sample with two orthogonal incident polarization states cannot always recover birefringence correctly. A previously presented fiber-based polarization-sensitive system was inaccurately characterized, and its method of eliminating the polarization distortion caused by single-mode optical fiber was presented earlier by Saxer et al. [Opt. Lett. 25, 1355 (2000)].
NASA Astrophysics Data System (ADS)
Bostaph, Ekaterina
This research aimed to study the potential for breaking through object size limitations of current X-ray computed tomography (CT) systems by implementing a limited angle scanning technique. CT stands out among other industrial nondestructive inspection (NDI) methods due to its unique ability to perform 3D volumetric inspection, unmatched micro-focus resolution, and objectivity that allows for automated result interpretation. This work attempts to advance NDI technique to enable microstructural material characterization and structural diagnostics of composite structures, where object sizes often prohibit the application of full 360° CT. Even in situations where the objects can be accommodated within existing micro-CT configuration, achieving sufficient magnification along with full rotation may not be viable. An effort was therefore made to achieve high-resolution scans from projection datasets with limited angular coverage (less than 180°) by developing effective reconstruction algorithms in conjunction with robust scan acquisition procedures. Internal features of inspected objects barely distinguishable in a 2D X-ray radiograph can be enhanced by additional projections that are reconstructed to a stack of slices, dramatically improving depth perception, a technique referred to as digital tomosynthesis. Building on the success of state-of-the-art medical tomosynthesis systems, this work sought to explore the feasibility of this technique for composite structures in aerospace applications. The challenge lies in the fact that the slices generated in medical tomosynthesis are too thick for relevant industrial applications. In order to adapt this concept to composite structures, reconstruction algorithms were expanded by implementation of optimized iterative stochastic methods (capable of reducing noise and refining scan quality) which resulted in better depth perception. The optimal scan acquisition procedure paired with the improved reconstruction algorithm facilitated higher in-plane and depth resolution compared to the clinical application. The developed limited angle tomography technique was demonstrated to be able to detect practically significant manufacturing defects (voids) and structural damage (delaminations) critical to structural integrity of composite parts. Keeping in mind the intended real-world aerospace applications where objects often have virtually unlimited in-plane dimensions, the developed technique of partial scanning could potentially extend the versatility of CT-based inspection and enable game changing NDI systems.
Using quantum process tomography to characterize decoherence in an analog electronic device
NASA Astrophysics Data System (ADS)
Ostrove, Corey; La Cour, Brian; Lanham, Andrew; Ott, Granville
The mathematical structure of a universal gate-based quantum computer can be emulated faithfully on a classical electronic device using analog signals to represent a multi-qubit state. We describe a prototype device capable of performing a programmable sequence of single-qubit and controlled two-qubit gate operations on a pair of voltage signals representing the real and imaginary parts of a two-qubit quantum state. Analog filters and true-RMS voltage measurements are used to perform unitary and measurement gate operations. We characterize the degradation of the represented quantum state with successive gate operations by formally performing quantum process tomography to estimate the equivalent decoherence channel. Experimental measurements indicate that the performance of the device may be accurately modeled as an equivalent quantum operation closely resembling a depolarizing channel with a fidelity of over 99%. This work was supported by the Office of Naval Research under Grant No. N00014-14-1-0323.
Characterizing quantum channels with non-separable states of classical light
NASA Astrophysics Data System (ADS)
Ndagano, Bienvenu; Perez-Garcia, Benjamin; Roux, Filippus S.; McLaren, Melanie; Rosales-Guzman, Carmelo; Zhang, Yingwen; Mouane, Othmane; Hernandez-Aranda, Raul I.; Konrad, Thomas; Forbes, Andrew
2017-04-01
High-dimensional entanglement with spatial modes of light promises increased security and information capacity over quantum channels. Unfortunately, entanglement decays due to perturbations, corrupting quantum links that cannot be repaired without performing quantum tomography on the channel. Paradoxically, the channel tomography itself is not possible without a working link. Here we overcome this problem with a robust approach to characterize quantum channels by means of classical light. Using free-space communication in a turbulent atmosphere as an example, we show that the state evolution of classically entangled degrees of freedom is equivalent to that of quantum entangled photons, thus providing new physical insights into the notion of classical entanglement. The analysis of quantum channels by means of classical light in real time unravels stochastic dynamics in terms of pure state trajectories, and thus enables precise quantum error correction in short- and long-haul optical communication, in both free space and fibre.
NASA Astrophysics Data System (ADS)
Krauter, J.; Boettcher, T.; Körner, K.; Gronle, M.; Osten, W.; Passilly, N.; Froehly, L.; Perrin, S.; Gorecki, C.
2015-05-01
The EU-funded project VIAMOS1 proposes an optical coherence tomography system (OCT) for skin cancer detection, which combines full-field and full-range swept-source OCT in a multi-channel sensor for parallel detection. One of the project objectives is the development of new fabrication technologies for micro-optics, which makes it compatible to Micro-Opto-Electromechanical System technology (MOEMS). The basic system concept is a wafer-based Mirau interferometer array with an actuated reference mirror, which enables phase shifted interferogram detection and therefore reconstruction of the complex phase information, resulting in a higher measurement range with reduced image artifacts. This paper presents an experimental one-channel on-bench OCT system with bulk optics, which serves as a proof-of-concept setup for the final VIAMOS micro-system. It is based on a Linnik interferometer with a wavelength tuning light source and a camera for parallel A-Scan detection. Phase shifting interferometry techniques (PSI) are used for the suppression of the complex conjugate artifact, whose suppression reaches 36 dB. The sensitivity of the system is constant over the full-field with a mean value of 97 dB. OCT images are presented of a thin membrane microlens and a biological tissue (onion) as a preliminary demonstration.
NASA Astrophysics Data System (ADS)
Keskinen, Johanna; Looms, Majken C.; Nielsen, Lars; Klotzsche, Anja; van der Kruk, Jan; Moreau, Julien; Stemmerik, Lars; Holliger, Klaus
2015-04-01
Chalk is an important reservoir rock for hydrocarbons and for groundwater resources for many major cities. Therefore, this rock type has been extensively investigated using both geological and geophysical methods. Many applications of crosshole GPR tomography rely on the ray approximation and corresponding inversions of first break traveltimes and/or maximum first-cycle amplitudes. Due to the inherent limitations associated with such approaches, the resulting models tend to be overly smooth and cannot adequately capture the small-scale heterogeneities. In contrast, the full-waveform inversion uses all the information contained in the data and is able to provide significantly improved images. Here, we apply full-waveform inversion to crosshole GPR data to image strong heterogeneity of the chalk related to changes in lithology and porosity. We have collected a crosshole tomography dataset in an old chalk quarry in Eastern Denmark. Based on core data (including plug samples and televiewer logging data) collected in our four ~15-m-deep boreholes and results from previous related studies, it is apparent that the studied chalk is strongly heterogeneous. The upper ~7 m consist of variable coarse-grained chalk layers with numerous flint nodules. The lower half of the studied section appears to be finer-grained and contains less flint. However, still significant porosity variations are also detected in the lower half. In general, the water-saturated (watertable depth ~2 m) chalk is characterized by high porosities, and thus low velocities and high attenuation, while the flint is essentially non-porous and has correspondingly high velocities and low attenuation. Together these characteristics form a strongly heterogeneous medium, which is challenging for the full-waveform inversion to recover. Here, we address the importance of (i) adequate starting models, both in terms of the dielectric permittivity and the electrical conductivity, (ii) the estimation of the source wavelet, (iii) and the effects of data sampling density when imaging this rock type. Moreover, we discuss the resolution of the bedding recovered by the full-waveform approach. Our results show that with proper estimates of the above-mentioned prior parameters, crosshole GPR full-waveform tomography provides high-resolution images capturing a high degree of variability that standard methods cannot resolve in chalk. This in turn makes crosshole full-waveform inversion a promising tool to support time-lapse flow modelling.
High-speed upper-airway imaging using full-range optical coherence tomography
NASA Astrophysics Data System (ADS)
Jing, Joseph; Zhang, Jun; Loy, Anthony Chin; Wong, Brian J. F.; Chen, Zhongping
2012-11-01
Obstruction in the upper airway can often cause reductions in breathing or gas exchange efficiency and lead to rest disorders such as sleep apnea. Imaging diagnosis of the obstruction region has been accomplished using computed tomography (CT) and magnetic resonance imaging (MRI). However CT requires the use of ionizing radiation, and MRI typically requires sedation of the patient to prevent motion artifacts. Long-range optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images with high resolution and without the use of ionizing radiation. In this paper, we present work on the development of a long-range OCT endoscopic probe with 1.2 mm OD and 20 mm working distance used in conjunction with a modified Fourier domain swept source OCT system to acquire structural and anatomical datasets of the human airway. Imaging from the bottom of the larynx to the end of the nasal cavity is completed within 40 s.
A scheme of quantum state discrimination over specified states via weak-value measurement
NASA Astrophysics Data System (ADS)
Chen, Xi; Dai, Hong-Yi; Liu, Bo-Yang; Zhang, Ming
2018-04-01
The commonly adopted projective measurements are invalid in the specified task of quantum state discrimination when the discriminated states are superposition of planar-position basis states whose complex-number probability amplitudes have the same magnitude but different phases. Therefore we propose a corresponding scheme via weak-value measurement and examine the feasibility of this scheme. Furthermore, the role of the weak-value measurement in quantum state discrimination is analyzed and compared with one in quantum state tomography in this Letter.
Tomography of a displacement photon counter for discrimination of single-rail optical qubits
NASA Astrophysics Data System (ADS)
Izumi, Shuro; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.
2018-04-01
We investigate the performance of a detection strategy composed of a displacement operation and a photon counter, which is known as a beneficial tool in optical coherent communications, to the quantum state discrimination of the two superpositions of vacuum and single photon states corresponding to the {\\hat{σ }}x eigenstates in the single-rail encoding of photonic qubits. We experimentally characterize the detection strategy in vacuum-single photon two-dimensional space using quantum detector tomography and evaluate the achievable discrimination error probability from the reconstructed measurement operators. We furthermore derive the minimum error rate obtainable with Gaussian transformations and homodyne detection. Our proof-of-principle experiment shows that the proposed scheme can achieve a discrimination error surpassing homodyne detection.
NASA Astrophysics Data System (ADS)
Yatsishina, E. B.; Kovalchuk, M. V.; Loshak, M. D.; Vasilyev, S. V.; Vasilieva, O. A.; Dyuzheva, O. P.; Pojidaev, V. M.; Ushakov, V. L.
2018-05-01
Nine ancient Egyptian mummies (dated preliminarily to the period from the 1st mill. BCE to the first centuries CE) from the collection of the State Pushkin Museum of Fine Arts have been studied at the National Research Centre "Kurchatov Institute" (NRC KI) on the base of the complex of NBICS technologies. Tomographic scanning is performed using a magneto-resonance tomograph (3 T) and a hybrid positron emission tomography/computed tomography (PET-CT) scanner. Three-dimensional reconstructions of mummies and their anthropological measurements are carried out. Some medical conclusions are drawn based on the tomographic data. In addition, the embalming composition and tissue of one of the mummies are preliminarily analyzed.
Berkson, Burton M; Calvo Riera, Francisco
2017-12-01
In this case report, we describe the treatment of a 64-year-old male patient diagnosed with metastatic renal cell carcinoma (RCC) in June of 2008. In spite of a left nephrectomy and the standard oncological protocols, the patient developed a solitary left lung metastasis that continued to grow. He was informed that given his diagnosis and poor response to conventional therapy, any further treatment would, at best, be palliative. The patient arrived at the Integrative Medical Center of New Mexico in August of 2010. He was in very poor health, weak, and cachectic. An integrative program-developed by one of the authors using intravenous (IV) α-lipoic acid, IV vitamin C, low-dose naltrexone, and hydroxycitrate, and a healthy life style program-was initiated. From August 2010 to August 2015, the patient's RCC with left lung metastasis was followed closely using computed tomography and positron emission tomography/computed tomography imaging. His most recent positron emission tomography scan demonstrated no residual increased glucose uptake in his left lung. After only a few treatments of IV α-lipoic acid and IV vitamin C, his symptoms began to improve, and the patient regained his baseline weight. His energy and outlook improved, and he returned to work. The patient had stable disease with disappearance of the signs and symptoms of stage IV RCC, a full 9 years following diagnosis, with a gentle integrative program, which is essentially free of side effects. As of November 2017 the patient feels well and is working at his full-time job.
NASA Astrophysics Data System (ADS)
Luo, Shouhua; Shen, Tao; Sun, Yi; Li, Jing; Li, Guang; Tang, Xiangyang
2018-04-01
In high resolution (microscopic) CT applications, the scan field of view should cover the entire specimen or sample to allow complete data acquisition and image reconstruction. However, truncation may occur in projection data and results in artifacts in reconstructed images. In this study, we propose a low resolution image constrained reconstruction algorithm (LRICR) for interior tomography in microscopic CT at high resolution. In general, the multi-resolution acquisition based methods can be employed to solve the data truncation problem if the project data acquired at low resolution are utilized to fill up the truncated projection data acquired at high resolution. However, most existing methods place quite strict restrictions on the data acquisition geometry, which greatly limits their utility in practice. In the proposed LRICR algorithm, full and partial data acquisition (scan) at low and high resolutions, respectively, are carried out. Using the image reconstructed from sparse projection data acquired at low resolution as the prior, a microscopic image at high resolution is reconstructed from the truncated projection data acquired at high resolution. Two synthesized digital phantoms, a raw bamboo culm and a specimen of mouse femur, were utilized to evaluate and verify performance of the proposed LRICR algorithm. Compared with the conventional TV minimization based algorithm and the multi-resolution scout-reconstruction algorithm, the proposed LRICR algorithm shows significant improvement in reduction of the artifacts caused by data truncation, providing a practical solution for high quality and reliable interior tomography in microscopic CT applications. The proposed LRICR algorithm outperforms the multi-resolution scout-reconstruction method and the TV minimization based reconstruction for interior tomography in microscopic CT.
NASA Astrophysics Data System (ADS)
Bartkiewicz, Karol; Lemr, Karel; Černoch, Antonín; Miranowicz, Adam
2017-03-01
We propose and experimentally implement an efficient procedure based on entanglement swapping to determine the Bell nonlocality measure of Horodecki et al. [Phys. Lett. A 200, 340 (1995), 10.1016/0375-9601(95)00214-N] and the fully entangled fraction of Bennett et al. [Phys. Rev. A 54, 3824 (1996), 10.1103/PhysRevA.54.3824] of an arbitrary two-qubit polarization-encoded state. The nonlocality measure corresponds to the amount of the violation of the Clauser-Horne-Shimony-Holt (CHSH) optimized over all measurement settings. By using simultaneously two copies of a given state, we measure directly only six parameters. This is an experimental determination of these quantities without quantum state tomography or continuous monitoring of all measurement bases in the usual CHSH inequality tests. We analyze how well the measured degrees of Bell nonlocality and other entanglement witnesses (including the fully entangled fraction and a nonlinear entropic witness) of an arbitrary two-qubit state can estimate its entanglement. In particular, we measure these witnesses and estimate the negativity of various two-qubit Werner states. Our approach could especially be useful for quantum communication protocols based on entanglement swapping.
NASA Technical Reports Server (NTRS)
1998-01-01
Bio-Imaging Research, Inc., has been included in Spinoff 1990 and 1993 with spinoffs from their ACTIS (Advanced Computed Tomography Inspection System) product developed under a Marshall Space Flight Center SBIR (Small Business Innovative Research) contract. The latest application is for noninvasive nuclear waste drum inspection. With the ACTIS CT (computed tomography, CATScan) scanner, radioactive waste is examined to prove that they do not contain one-half percent free liquid or that the drum wall has lost integrity before being moved across state lines or before being permanently disposed.
Neurologic applications of positron emission tomography.
Lenzi, G L; Pantano, P
1984-11-01
The impact of computerized neuroimaging in the neurologic sciences has been so dramatic that it has completely changed our approach to the individual patient. Further changes may be expected from the newborn positron emission tomography (PET) and nuclear magnetic resonance (NMR) in order to help the reader digest a large bulk of data and fully realize the present state of the art of PET, the authors have shaped this review mainly on results rather than on methods and on published reports rather than on future potential.
NASA Astrophysics Data System (ADS)
Chen, Siyu; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin
2016-10-01
X-ray computed tomography (CT) has been extensively applied in industrial non-destructive testing (NDT). However, in practical applications, the X-ray beam polychromaticity often results in beam hardening problems for image reconstruction. The beam hardening artifacts, which manifested as cupping, streaks and flares, not only debase the image quality, but also disturb the subsequent analyses. Unfortunately, conventional CT scanning requires that the scanned object is completely covered by the field of view (FOV), the state-of-art beam hardening correction methods only consider the ideal scanning configuration, and often suffer problems for interior tomography due to the projection truncation. Aiming at this problem, this paper proposed a beam hardening correction method based on radon inversion transform for interior tomography. Experimental results show that, compared to the conventional correction algorithms, the proposed approach has achieved excellent performance in both beam hardening artifacts reduction and truncation artifacts suppression. Therefore, the presented method has vitally theoretic and practicable meaning in artifacts correction of industrial CT.
Stress Computed Tomography Myocardial Perfusion Imaging: A New Topic in Cardiology.
Seitun, Sara; Castiglione Morelli, Margherita; Budaj, Irilda; Boccalini, Sara; Galletto Pregliasco, Athena; Valbusa, Alberto; Cademartiri, Filippo; Ferro, Carlo
2016-02-01
Since its introduction about 15 years ago, coronary computed tomography angiography has become today the most accurate clinical instrument for noninvasive assessment of coronary atherosclerosis. Important technical developments have led to a continuous stream of new clinical applications together with a significant reduction in radiation dose exposure. Latest generation computed tomography scanners (≥ 64 slices) allow the possibility of performing static or dynamic perfusion imaging during stress by using coronary vasodilator agents (adenosine, dipyridamole, or regadenoson), combining both functional and anatomical information in the same examination. In this article, the emerging role and state-of-the-art of myocardial computed tomography perfusion imaging are reviewed and are illustrated by clinical cases from our experience with a second-generation dual-source 128-slice scanner (Somatom Definition Flash, Siemens; Erlangen, Germany). Technical aspects, data analysis, diagnostic accuracy, radiation dose and future prospects are reviewed. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Data analysis in emission tomography using emission-count posteriors
NASA Astrophysics Data System (ADS)
Sitek, Arkadiusz
2012-11-01
A novel approach to the analysis of emission tomography data using the posterior probability of the number of emissions per voxel (emission count) conditioned on acquired tomographic data is explored. The posterior is derived from the prior and the Poisson likelihood of the emission-count data by marginalizing voxel activities. Based on emission-count posteriors, examples of Bayesian analysis including estimation and classification tasks in emission tomography are provided. The application of the method to computer simulations of 2D tomography is demonstrated. In particular, the minimum-mean-square-error point estimator of the emission count is demonstrated. The process of finding this estimator can be considered as a tomographic image reconstruction technique since the estimates of the number of emissions per voxel divided by voxel sensitivities and acquisition time are the estimates of the voxel activities. As an example of a classification task, a hypothesis stating that some region of interest (ROI) emitted at least or at most r-times the number of events in some other ROI is tested. The ROIs are specified by the user. The analysis described in this work provides new quantitative statistical measures that can be used in decision making in diagnostic imaging using emission tomography.
Integration of Geophysical Methods By A Generalised Probability Tomography Approach
NASA Astrophysics Data System (ADS)
Mauriello, P.; Patella, D.
In modern science, the propensity interpretative approach stands on the assumption that any physical system consists of two kinds of reality: actual and potential. Also geophysical data systems have potentialities that extend far beyond the few actual models normally attributed to them. Indeed, any geophysical data set is in itself quite inherently ambiguous. Classical deterministic inversion, including tomography, usu- ally forces a measured data set to collapse into a few rather subjective models based on some available a priori information. Classical interpretation is thus an intrinsically limited approach requiring a very deep logical extension. We think that a way to high- light a system full potentiality is to introduce probability as the leading paradigm in dealing with field data systems. Probability tomography has been recently introduced as a completely new approach to data interpretation. Probability tomography has been originally formulated for the self-potential method. It has been then extended to geo- electric, natural source electromagnetic induction, gravity and magnetic methods. Fol- lowing the same rationale, in this paper we generalize the probability tomography the- ory to a generic geophysical anomaly vector field, including the treatment for scalar fields as a particular case. This generalization makes then possible to address for the first time the problem of the integration of different methods by a conjoint probabil- ity tomography imaging procedure. The aim is to infer the existence of an unknown buried object through the analysis of an ad hoc occurrence probability function, blend- ing the physical messages brought forth by a set of singularly observed anomalies.
Labriola, Leanne T; Legarreta, Andrew D; Legarreta, John E; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S
2016-01-01
To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease.
Full-field optical coherence tomography used for security and document identity
NASA Astrophysics Data System (ADS)
Chang, Shoude; Mao, Youxin; Sherif, Sherif; Flueraru, Costel
2006-09-01
The optical coherence tomography (OCT) is an emerging technology for high-resolution cross-sectional imaging of 3D structures. In the past years, OCT systems have been used mainly for medical, especially ophthalmological diagnostics. Concerning the nature of OCT system being capable to explore the internal features of an object, we apply the OCT technology to directly retrieve the 2D information pre-stored in a multiple-layer information carrier. The standard depth-resolution of an OCT system is at micrometer level. If a 20mm by 20mm sampling area with a 1024 x 1024 CCD array is used in the OCT system having 10 μm, an information carrier having a volume of 20mm x 20mm x 2mm could contain 200 Mega-pixel images. Because of its tiny size and large information volume, the information carrier, with its OCT retrieving system, will have potential applications in documents security and object identification. In addition, as the information carrier can be made by low-scattering transparent material, the signal/noise ratio will be improved dramatically. As a consequence, the specific hardware and complicated software can also be greatly simplified. Owing to non-scanning along X-Y axis, the full-field OCT could be the simplest and most economic imaging system for extracting information from such a multilayer information carrier. In this paper, deign and implementation of a full-field OCT system is described and the related algorithms are introduced. In our experiments, a four layers information carrier is used, which contains 4 layers of image pattern, two text images and two fingerprint images. The extracted tomography images of each layer are also provided.
Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.
2016-01-01
Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in-vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43~73%) without sacrificing CT number accuracy or spatial resolution. PMID:27551878
de-Azevedo-Vaz, Sergio Lins; Vasconcelos, Karla de Faria; Neves, Frederico Sampaio; Melo, Saulo Leonardo Sousa; Campos, Paulo Sérgio Flores; Haiter-Neto, Francisco
2013-01-01
To assess the accuracy of cone-beam computed tomography (CBCT) in periimplant fenestration and dehiscence detection, and to determine the effects of 2 voxel sizes and scan modes. One hundred titanium implants were placed in bovine ribs in which periimplant fenestration and dehiscence were simulated. CBCT images were acquired with the use of 3 protocols of the i-CAT NG unit: A) 0.2 mm voxel size half-scan (180°); B) 0.2 mm voxel size full-scan (360°); and C) 0.12 mm voxel size full scan (360°). Receiver operating characteristic curves and diagnostic values were obtained. The Az values were compared with the use of analysis of variance. The Az value for dehiscence in protocol A was significantly lower than those of B or C (P < .01). They did not statistically differ for fenestration (P > .05). Protocol B yielded the highest values. The voxel sizes did not affect fenestration and dehiscence detection, and for dehiscence full-scan performed better than half-scan. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.
2016-09-01
Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.
Gluon tomography from deeply virtual Compton scattering at small x
Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng
2017-06-29
We present a full evaluation of the deeply virtual Compton scattering cross section in the dipole framework in the small-x region. The result features the cosφ and cos2φ azimuthal angular correlations, which have been missing in previous studies based on the dipole model. In particular, the cos2φ term is generated by the elliptic gluon Wigner distribution of which the measurement at the planned electron-ion collider provides important information about the gluon tomography at small x. Here, we also show the consistency with the standard collinear factorization approach based on the quark and gluon generalized parton distributions.
Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm
NASA Astrophysics Data System (ADS)
Zawadzki, Robert J.; Leisser, Christoph; Leitgeb, Rainer; Pircher, Michael; Fercher, Adolf F.
2003-10-01
We built an optical coherence tomography (OCT) system with a rapid scanning optical delay (RSOD) line, which allows probing full axial eye length. The system produces Three-dimensional (3D) data sets that are used to generate 3D tomograms of the model eye. The raw tomographic data were processed by an algorithm, which is based on Snell"s law to correct the interface positions. The Zernike polynomials representation of the interfaces allows quantitative wave aberration measurements. 3D images of our results are presented to illustrate the capabilities of the system and the algorithm performance. The system allows us to measure intra-ocular distances.
Generalized Hofmann quantum process fidelity bounds for quantum filters
NASA Astrophysics Data System (ADS)
Sedlák, Michal; Fiurášek, Jaromír
2016-04-01
We propose and investigate bounds on the quantum process fidelity of quantum filters, i.e., probabilistic quantum operations represented by a single Kraus operator K . These bounds generalize the Hofmann bounds on the quantum process fidelity of unitary operations [H. F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005), 10.1103/PhysRevLett.94.160504] and are based on probing the quantum filter with pure states forming two mutually unbiased bases. Determination of these bounds therefore requires far fewer measurements than full quantum process tomography. We find that it is particularly suitable to construct one of the probe bases from the right eigenstates of K , because in this case the bounds are tight in the sense that if the actual filter coincides with the ideal one, then both the lower and the upper bounds are equal to 1. We theoretically investigate the application of these bounds to a two-qubit optical quantum filter formed by the interference of two photons on a partially polarizing beam splitter. For an experimentally convenient choice of factorized input states and measurements we study the tightness of the bounds. We show that more stringent bounds can be obtained by more sophisticated processing of the data using convex optimization and we compare our methods for different choices of the input probe states.
Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru
The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99m Tc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.
Exemplar-based inpainting as a solution to the missing wedge problem in electron tomography.
Trampert, Patrick; Wang, Wu; Chen, Delei; Ravelli, Raimond B G; Dahmen, Tim; Peters, Peter J; Kübel, Christian; Slusallek, Philipp
2018-04-21
A new method for dealing with incomplete projection sets in electron tomography is proposed. The approach is inspired by exemplar-based inpainting techniques in image processing and heuristically generates data for missing projection directions. The method has been extended to work on three dimensional data. In general, electron tomography reconstructions suffer from elongation artifacts along the beam direction. These artifacts can be seen in the corresponding Fourier domain as a missing wedge. The new method synthetically generates projections for these missing directions with the help of a dictionary based approach that is able to convey both structure and texture at the same time. It constitutes a preprocessing step that can be combined with any tomographic reconstruction algorithm. The new algorithm was applied to phantom data, to a real electron tomography data set taken from a catalyst, as well as to a real dataset containing solely colloidal gold particles. Visually, the synthetic projections, reconstructions, and corresponding Fourier power spectra showed a decrease of the typical missing wedge artifacts. Quantitatively, the inpainting method is capable to reduce missing wedge artifacts and improves tomogram quality with respect to full width half maximum measurements. Copyright © 2018. Published by Elsevier B.V.
Preliminary Analysis of Double Shell Tomography Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pascucci, V
2009-01-16
In this project we have collaborated with LLNL scientists Dr. Peer-Timo Bremer while performing our research work on algorithmic solutions for geometric processing, image segmentation and data streaming. The main deliverable has been a 3D viewer for high-resolution imaging data with particular focus on the presentation of orthogonal slices of the double shell tomography dataset. Basic probing capabilities allow querying single voxels in the data to study in detail the information presented to the user and compensate for the intrinsic filtering and imprecision due to visualization based on colormaps. On the algorithmic front we have studied the possibility of usingmore » of non-local means filtering algorithm to achieve noise removal from tomography data. In particular we have developed a prototype that implements an accelerated version of the algorithm that may be able to take advantage of the multi-resolution sub-sampling of the ViSUS format. We have achieved promising results. Future plans include the full integration of the non-local means algorithm in the ViSUS frameworks and testing if the accelerated method will scale properly from 2D images to 3D tomography data.« less
Quantum state tomography and fidelity estimation via Phaselift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yiping; Liu, Huan; Zhao, Qing, E-mail: qzhaoyuping@bit.edu.cn
Experiments of multi-photon entanglement have been performed by several groups. Obviously, an increase on the photon number for fidelity estimation and quantum state tomography causes a dramatic increase in the elements of the positive operator valued measures (POVMs), which results in a great consumption of time in measurements. In practice, we wish to obtain a good estimation of fidelity and quantum states through as few measurements as possible for multi-photon entanglement. Phaselift provides such a chance to estimate fidelity for entangling states based on less data. In this paper, we would like to show how the Phaselift works for sixmore » qubits in comparison to the data given by Pan’s group, i.e., we use a fraction of the data as input to estimate the rest of the data through the obtained density matrix, and thus goes beyond the simple fidelity analysis. The fidelity bound is also provided for general Schrödinger Cat state. Based on the fidelity bound, we propose an optimal measurement approach which could both reduce the copies and keep the fidelity bound gap small. The results demonstrate that the Phaselift can help decrease the measured elements of POVMs for six qubits. Our conclusion is based on the prior knowledge that a pure state is the target state prepared by experiments.« less
NASA Astrophysics Data System (ADS)
Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.
2018-04-01
The method of Doppler color mapping of one specific (previously chosen) velocity in a turbulent flow inside biological tissues using optical coherence tomography is described. The key features of the presented method are: the raw data are separated into three parts, corresponding to the unmoving biological tissue, the positively and negatively directed biological fluid flows; the further independent signal processing procedure yields the structure image and two images of the chosen velocity, which are then normalised, encoded and joined. The described method can be used to obtain in real time the anatomical maps of the chosen velocities in normal and pathological states. The described method can be applied not only in optical coherence tomography, but also in endoscopic and Doppler ultrasonic medical imaging systems.
NASA Astrophysics Data System (ADS)
Peresunko, A. P.; Zavadovskya, I. G.
2004-06-01
The paper deals with the studying of prognostic possibilities of determining the orientation structure of endometrial strome in the normal state and hiperplasia. The laser diagnostic of endometrial state is based on the principles of optical changes of laser radiation during its passing through the histological sample with the following investigation of its wavelet coefficients.
Full-field optical coherence tomography image restoration based on Hilbert transformation
NASA Astrophysics Data System (ADS)
Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha
2007-02-01
We propose the envelope detection method that is based on Hilbert transform for image restoration in full-filed optical coherence tomography (FF-OCT). The FF-OCT system presenting a high-axial resolution of 0.9 μm was implemented with a Kohler illuminator based on Linnik interferometer configuration. A 250 W customized quartz tungsten halogen lamp was used as a broadband light source and a CCD camera was used as a 2-dimentional detector array. The proposed image restoration method for FF-OCT requires only single phase-shifting. By using both the original and the phase-shifted images, we could remove the offset and the background signals from the interference fringe images. The desired coherent envelope image was obtained by applying Hilbert transform. With the proposed image restoration method, we demonstrate en-face imaging performance of the implemented FF-OCT system by presenting a tilted mirror surface, an integrated circuit chip, and a piece of onion epithelium.
NASA Astrophysics Data System (ADS)
Huang, Yong; Zhang, Kang; Yi, WonJin; Kang, Jin U.
2012-01-01
Frequent monitoring of gingival sulcus will provide valuable information for judging the presence and severity of periodontal disease. Optical coherence tomography, as a 3D high resolution high speed imaging modality is able to provide information for pocket depth, gum contour, gum texture, gum recession simultaneously. A handheld forward-viewing miniature resonant fiber-scanning probe was developed for in-vivo gingival sulcus imaging. The fiber cantilever driven by magnetic force vibrates at resonant frequency. A synchronized linear phase-modulation was applied in the reference arm by the galvanometer-driven reference mirror. Full-range, complex-conjugate-free, real-time endoscopic SD-OCT was achieved by accelerating the data process using graphics processing unit. Preliminary results showed a real-time in-vivo imaging at 33 fps with an imaging range of lateral 2 mm by depth 3 mm. Gap between the tooth and gum area was clearly visualized. Further quantification analysis of the gingival sulcus will be performed on the image acquired.
Image restoration method based on Hilbert transform for full-field optical coherence tomography
NASA Astrophysics Data System (ADS)
Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha
2008-01-01
A full-field optical coherence tomography (FF-OCT) system utilizing a simple but novel image restoration method suitable for a high-speed system is demonstrated. An en-face image is retrieved from only two phase-shifted interference fringe images through using the mathematical Hilbert transform. With a thermal light source, a high-resolution FF-OCT system having axial and transverse resolutions of 1 and 2.2 μm, respectively, was implemented. The feasibility of the proposed scheme is confirmed by presenting the obtained en-face images of biological samples such as a piece of garlic and a gold beetle. The proposed method is robust to the error in the amount of the phase shift and does not leave residual fringes. The use of just two interference images and the strong immunity to phase errors provide great advantages in the imaging speed and the system design flexibility of a high-speed high-resolution FF-OCT system.
Numerical correction of distorted images in full-field optical coherence tomography
NASA Astrophysics Data System (ADS)
Min, Gihyeon; Kim, Ju Wan; Choi, Woo June; Lee, Byeong Ha
2012-03-01
We propose a numerical method which can numerically correct the distorted en face images obtained with a full field optical coherence tomography (FF-OCT) system. It is shown that the FF-OCT image of the deep region of a biological sample is easily blurred or degraded because the sample has a refractive index (RI) much higher than its surrounding medium in general. It is analyzed that the focal plane of the imaging system is segregated from the imaging plane of the coherence-gated system due to the RI mismatch. This image-blurring phenomenon is experimentally confirmed by imaging the chrome pattern of a resolution test target through its glass substrate in water. Moreover, we demonstrate that the blurred image can be appreciably corrected by using the numerical correction process based on the Fresnel-Kirchhoff diffraction theory. The proposed correction method is applied to enhance the image of a human hair, which permits the distinct identification of the melanin granules inside the cortex layer of the hair shaft.
NASA Astrophysics Data System (ADS)
Xia, Jun; Chatni, Muhammad; Maslov, Konstantin; Wang, Lihong V.
2013-03-01
Due to the wide use of animals for human disease studies, small animal whole-body imaging plays an increasingly important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose metabolic information, leading to higher costs of building dual-modality systems. Even with image coregistration, the spatial resolution of the metabolic imaging modality is not improved. We present a ring-shaped confocal photoacoustic computed tomography (RC-PACT) system that can provide both assessments in a single modality. Utilizing the novel design of confocal full-ring light delivery and ultrasound transducer array detection, RC-PACT provides full-view cross-sectional imaging with high spatial resolution. Scanning along the orthogonal direction provides three-dimensional imaging. While the mouse anatomy was imaged with endogenous hemoglobin contrast, the glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. Through mouse tumor models, we demonstrate that RC-PACT may be a paradigm shifting imaging method for preclinical research.
Hard X-ray Full Field Nano-imaging of Bone and Nanowires at SSRL
NASA Astrophysics Data System (ADS)
Andrews, Joy C.; Pianetta, Piero; Meirer, Florian; Chen, Jie; Almeida, Eduardo; van der Meulen, Marjolein C. H.; Alwood, Joshua S.; Lee, Cathy; Zhu, Jia; Cui, Yi
2010-06-01
A hard X-ray full field microscope from Xradia Inc. has been installed at SSRL on a 54-pole wiggler end station at beam line 6-2. It has been optimized to operate from 5-14 keV with resolution as high as 30 nm. High quality images are achieved using a vertical beam stabilizer and condenser scanner with high efficiency zone plates with 30 nm outermost zone width. The microscope has been used in Zernike phase contrast, available at 5.4 keV and 8 keV, as well as absorption contrast to image a variety of biological, environmental and materials samples. Calibration of the X-ray attenuation with crystalline apatite enabled quantification of bone density of plate-like and rod-like regions of mouse bone trabecula. 3D tomography of individual lacuna revealed the surrounding cell canaliculi and processes. 3D tomography of chiral branched PbSe nanowires showed orthogonal branches around a central nanowire.
Hard X-ray Full Field Nano-imaging of Bone and Nanowires at SSRL.
Andrews, Joy C; Pianetta, Piero; Meirer, Florian; Chen, Jie; Almeida, Eduardo; van der Meulen, Marjolein C H; Alwood, Joshua S; Lee, Cathy; Zhu, Jia; Cui, Yi
2010-06-23
A hard X-ray full field microscope from Xradia Inc. has been installed at SSRL on a 54-pole wiggler end station at beam line 6-2. It has been optimized to operate from 5-14 keV with resolution as high as 30 nm. High quality images are achieved using a vertical beam stabilizer and condenser scanner with high efficiency zone plates with 30 nm outermost zone width. The microscope has been used in Zernike phase contrast, available at 5.4 keV and 8 keV, as well as absorption contrast to image a variety of biological, environmental and materials samples. Calibration of the X-ray attenuation with crystalline apatite enabled quantification of bone density of plate-like and rod-like regions of mouse bone trabecula. 3D tomography of individual lacuna revealed the surrounding cell canaliculi and processes. 3D tomography of chiral branched PbSe nanowires showed orthogonal branches around a central nanowire.
Operational quantification of continuous-variable correlations.
Rodó, Carles; Adesso, Gerardo; Sanpera, Anna
2008-03-21
We quantify correlations (quantum and/or classical) between two continuous-variable modes as the maximal number of correlated bits extracted via local quadrature measurements. On Gaussian states, such "bit quadrature correlations" majorize entanglement, reducing to an entanglement monotone for pure states. For non-Gaussian states, such as photonic Bell states, photon-subtracted states, and mixtures of Gaussian states, the bit correlations are shown to be a monotonic function of the negativity. This quantification yields a feasible, operational way to measure non-Gaussian entanglement in current experiments by means of direct homodyne detection, without a complete state tomography.
Incidental renal tumours on low-dose CT lung cancer screening exams.
Pinsky, Paul F; Dunn, Barbara; Gierada, David; Nath, P Hrudaya; Munden, Reginald; Berland, Lincoln; Kramer, Barnett S
2017-06-01
Introduction Renal cancer incidence has increased markedly in the United States in recent decades, largely due to incidentally detected tumours from computed tomography imaging. Here, we analyze the potential for low-dose computed tomography lung cancer screening to detect renal cancer. Methods The National Lung Screening Trial randomized subjects to three annual screens with either low-dose computed tomography or chest X-ray. Eligibility criteria included 30 + pack-years, current smoking or quit within 15 years, and age 55-74. Subjects were followed for seven years. Low-dose computed tomography screening forms collected information on lung cancer and non-lung cancer abnormalities, including abnormalities below the diaphragm. A reader study was performed on a sample of National Lung Screening Trial low-dose computed tomography images assessing presence of abnormalities below the diaphragms and abnormalities suspicious for renal cancer. Results There were 26,722 and 26,732 subjects enrolled in the low-dose computed tomography and chest X-ray arms, respectively, and there were 104 and 85 renal cancer cases diagnosed, respectively (relative risk = 1.22, 95% CI: 0.9-1.5). From 75,126 low-dose computed tomography screens, there were 46 renal cancer diagnoses within one year. Abnormalities below the diaphragm rates were 39.1% in screens with renal cancer versus 4.1% in screens without (P < 0.001). Cases with abnormalities below the diaphragms had shorter median time to diagnosis than those without (71 vs. 160 days, P = 0.004). In the reader study, 64% of renal cancer cases versus 13% of non-cases had abnormalities below the diaphragms; 55% of cases and 0.8% of non-cases had a finding suspicious for renal cancer (P < 0.001). Conclusion Low-dose computed tomography screens can potentially detect renal cancers. The benefits to harms tradeoff of incidental detection of renal tumours on low-dose computed tomography is unknown.
Quantum magnetism in different AMO systems.
NASA Astrophysics Data System (ADS)
Rey, Ana Maria
One of the most important goals of modern quantum sciences is to learn how to control and entangle many-body systems and use them to make powerful and improved quantum devices, materials and technologies. However, since performing full state tomography does not scale favorably with the number of particles, as the size of quantum systems grow, it becomes extremely challenging to identify, and quantify the buildup of quantum correlations and coherence. In this talk I will report on a protocol that we have developed and experimentally demonstrated in a trapped ion quantum magnet in a Penning trap, which can perform quantum simulations of Ising spin models. In those experiments strong spin-spin interactions can be engineered through optical dipole forces that excite phonons of the crystals. The number of ions can be varied from tens to hundreds with high fidelity control. The protocol uses time reversal of the many-body dynamics, to measure out-of-time-order correlation functions (OTOCs). By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the build-up of up to 8-body correlations. We also use the protocol and comparisons to a full solution of the master equation to investigate the impact of spin-motion entanglement and decoherence in the quantum dynamics. Future applications of this protocol could enable studies of manybody localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems. Supported by NSF-PHY-1521080, JILA-NSF PFC-1125844, ARO and AFOSR-MURI.
Full field image reconstruction is suitable for high-pitch dual-source computed tomography.
Mahnken, Andreas H; Allmendinger, Thomas; Sedlmair, Martin; Tamm, Miriam; Reinartz, Sebastian D; Flohr, Thomas
2012-11-01
The field of view (FOV) in high-pitch dual-source computed tomography (DSCT) is limited by the size of the second detector. The goal of this study was to develop and evaluate a full FOV image reconstruction technique for high-pitch DSCT. For reconstruction beyond the FOV of the second detector, raw data of the second system were extended to the full dimensions of the first system, using the partly existing data of the first system in combination with a very smooth transition weight function. During the weighted filtered backprojection, the data of the second system were applied with an additional weighting factor. This method was tested for different pitch values from 1.5 to 3.5 on a simulated phantom and on 25 high-pitch DSCT data sets acquired at pitch values of 1.6, 2.0, 2.5, 2.8, and 3.0. Images were reconstructed with FOV sizes of 260 × 260 and 500 × 500 mm. Image quality was assessed by 2 radiologists using a 5-point Likert scale and analyzed with repeated-measure analysis of variance. In phantom and patient data, full FOV image quality depended on pitch. Where complete projection data from both tube-detector systems were available, image quality was unaffected by pitch changes. Full FOV image quality was not compromised at pitch values of 1.6 and remained fully diagnostic up to a pitch of 2.0. At higher pitch values, there was an increasing difference in image quality between limited and full FOV images (P = 0.0097). With this new image reconstruction technique, full FOV image reconstruction can be used up to a pitch of 2.0.
Single-shot quantum state estimation via a continuous measurement in the strong backaction regime
NASA Astrophysics Data System (ADS)
Cook, Robert L.; Riofrío, Carlos A.; Deutsch, Ivan H.
2014-09-01
We study quantum tomography based on a stochastic continuous-time measurement record obtained from a probe field collectively interacting with an ensemble of identically prepared systems. In comparison to previous studies, we consider here the case in which the measurement-induced backaction has a non-negligible effect on the dynamical evolution of the ensemble. We formulate a maximum likelihood estimate for the initial quantum state given only a single instance of the continuous diffusive measurement record. We apply our estimator to the simplest problem: state tomography of a single pure qubit, which, during the course of the measurement, is also subjected to dynamical control. We identify a regime where the many-body system is well approximated at all times by a separable pure spin coherent state, whose Bloch vector undergoes a conditional stochastic evolution. We simulate the results of our estimator and show that we can achieve close to the upper bound of fidelity set by the optimal generalized measurement. This estimate is compared to, and significantly outperforms, an equivalent estimator that ignores measurement backaction.
NASA Astrophysics Data System (ADS)
Suess, Daniel; Rudnicki, Łukasz; maciel, Thiago O.; Gross, David
2017-09-01
The outcomes of quantum mechanical measurements are inherently random. It is therefore necessary to develop stringent methods for quantifying the degree of statistical uncertainty about the results of quantum experiments. For the particularly relevant task of quantum state tomography, it has been shown that a significant reduction in uncertainty can be achieved by taking the positivity of quantum states into account. However—the large number of partial results and heuristics notwithstanding—no efficient general algorithm is known that produces an optimal uncertainty region from experimental data, while making use of the prior constraint of positivity. Here, we provide a precise formulation of this problem and show that the general case is NP-hard. Our result leaves room for the existence of efficient approximate solutions, and therefore does not in itself imply that the practical task of quantum uncertainty quantification is intractable. However, it does show that there exists a non-trivial trade-off between optimality and computational efficiency for error regions. We prove two versions of the result: one for frequentist and one for Bayesian statistics.
X-ray computed tomography applied to investigate ancient manuscripts
NASA Astrophysics Data System (ADS)
Bettuzzi, Matteo; Albertin, Fauzia; Brancaccio, Rosa; Casali, Franco; Pia Morigi, Maria; Peccenini, Eva
2017-03-01
I will describe in this paper the first results of a series of X-ray tomography applications, with different system setups, running on some ancient manuscripts containing iron-gall ink. The purpose is to verify the optimum measurement conditions with a laboratory instrumentation -that is also in fact portable- in order to recognize the text from the inside of the documents, without opening them. This becomes possible by exploiting the X-rays absorption contrast of iron-based ink and the three-dimensional reconstruction potential provided by computed tomography that overcomes problems that appear in simple radiograph practice. This work is part of a larger project of EPFL (Ecole Polytechnique Fédérale de Lausanne, Switzerland), the "Venice Time Machine" project (EPEL, Digital Heritage Venice, http://dhvenice.eu/, 2015) aimed at digitizing, transcribing and sharing in an open database all the information of the State Archives of Venice, exploiting traditional digitization technologies and innovative methods of acquisition. In this first measurement campaign I investigated a manuscript of the seventeenth century made of a folded sheet; a couple of unopened ancient wills kept in the State Archives in Venice and a handwritten book of several hundred pages of notes of Physics of the nineteenth century.
Optical coherence tomography of dental structures
NASA Astrophysics Data System (ADS)
Baumgartner, Angela; Hitzenberger, Christoph K.; Dichtl, Sabine; Sattmann, Harald; Moritz, Andreas; Sperr, Wolfgang; Fercher, Adolf F.
1998-04-01
In the past ten years Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) have been successfully developed for high precision biometry and tomography of biological tissues. OCT employs the partial coherence properties of a superluminescent diode and the Doppler principle yielding resolution and precision figures of the order of a few microns. Presently, the main application fields of this technique are biometry and imaging of ocular structures in vivo, as well as its clinical use in dermatology and endoscopic applications. This well established length measuring and imaging technique has now been applied to dentistry. First in vitro OCT images of the cemento (dentine) enamel junction of extracted sound and decayed human teeth have been recorded. These images distinguish dentine and enamel structures that are important for assessing enamel thickness and diagnosing caries. Individual optical A-Scans show that the penetration depth into enamel is considerably larger than into dentine. First polarization sensitive OCT recordings show localized changes of the polarization state of the light backscattered by dental material. Two-dimensional maps of the magnitude of the interference intensity and of the total phase difference between two orthogonal polarization states as a function of depth can reveal important structural information.
Quantum tomography of near-unitary processes in high-dimensional quantum systems
NASA Astrophysics Data System (ADS)
Lysne, Nathan; Sosa Martinez, Hector; Jessen, Poul; Baldwin, Charles; Kalev, Amir; Deutsch, Ivan
2016-05-01
Quantum Tomography (QT) is often considered the ideal tool for experimental debugging of quantum devices, capable of delivering complete information about quantum states (QST) or processes (QPT). In practice, the protocols used for QT are resource intensive and scale poorly with system size. In this situation, a well behaved model system with access to large state spaces (qudits) can serve as a useful platform for examining the tradeoffs between resource cost and accuracy inherent in QT. In past years we have developed one such experimental testbed, consisting of the electron-nuclear spins in the electronic ground state of individual Cs atoms. Our available toolkit includes high fidelity state preparation, complete unitary control, arbitrary orthogonal measurements, and accurate and efficient QST in Hilbert space dimensions up to d = 16. Using these tools, we have recently completed a comprehensive study of QPT in 4, 7 and 16 dimensions. Our results show that QPT of near-unitary processes is quite feasible if one chooses optimal input states and efficient QST on the outputs. We further show that for unitary processes in high dimensional spaces, one can use informationally incomplete QPT to achieve high-fidelity process reconstruction (90% in d = 16) with greatly reduced resource requirements.
NASA Astrophysics Data System (ADS)
Bartkiewicz, Karol; Chimczak, Grzegorz; Lemr, Karel
2017-02-01
We describe a direct method for experimental determination of the negativity of an arbitrary two-qubit state with 11 measurements performed on multiple copies of the two-qubit system. Our method is based on the experimentally accessible sequences of singlet projections performed on up to four qubit pairs. In particular, our method permits the application of the Peres-Horodecki separability criterion to an arbitrary two-qubit state. We explicitly demonstrate that measuring entanglement in terms of negativity requires three measurements more than detecting two-qubit entanglement. The reported minimal set of interferometric measurements provides a complete description of bipartite quantum entanglement in terms of two-photon interference. This set is smaller than the set of 15 measurements needed to perform a complete quantum state tomography of an arbitrary two-qubit system. Finally, we demonstrate that the set of nine Makhlin's invariants needed to express the negativity can be measured by performing 13 multicopy projections. We demonstrate both that these invariants are a useful theoretical concept for designing specialized quantum interferometers and that their direct measurement within the framework of linear optics does not require performing complete quantum state tomography.
NASA Astrophysics Data System (ADS)
Zhang, Siyuan; Li, Liang; Li, Ruizhe; Chen, Zhiqiang
2017-11-01
We present the design concept and initial simulations for a polychromatic full-field fan-beam x-ray fluorescence computed tomography (XFCT) device with pinhole collimators and linear-array photon counting detectors. The phantom is irradiated by a fan-beam polychromatic x-ray source filtered by copper. Fluorescent photons are stimulated and then collected by two linear-array photon counting detectors with pinhole collimators. The Compton scatter correction and the attenuation correction are applied in the data processing, and the maximum-likelihood expectation maximization algorithm is applied for the image reconstruction of XFCT. The physical modeling of the XFCT imaging system was described, and a set of rapid Monte Carlo simulations was carried out to examine the feasibility and sensitivity of the XFCT system. Different concentrations of gadolinium (Gd) and gold (Au) solutions were used as contrast agents in simulations. Results show that 0.04% of Gd and 0.065% of Au can be well reconstructed with the full scan time set at 6 min. Compared with using the XFCT system with a pencil-beam source or a single-pixel detector, using a full-field fan-beam XFCT device with linear-array detectors results in significant scanning time reduction and may satisfy requirements of rapid imaging, such as in vivo imaging experiments.
Fariña-Sarasqueta, Arantza; de Haan, Lorraine M.; Eggermont, Jeroen; Bonsing, Bert A.; Morreau, Hans; Lelieveldt, Boudewijn P. F.; van de Velde, Cornelis J. H.; Vahrmeijer, Alexander L.; Dijkstra, Jouke
2017-01-01
Background Pancreatic cancer is the fourth leading cause of cancer-related mortality in the United States. The minority of patients can undergo curative-intended surgical therapy due to progressive disease stage at time of diagnosis. Nonetheless, tumor involvement of surgical margins is seen in up to 70% of resections, being a strong negative prognostic factor. Real-time intraoperative imaging modalities may aid surgeons to obtain tumor-free resection margins. Full-field optical coherence tomography (FF-OCT) is a promising diagnostic tool using high-resolution white-light interference microscopy without tissue processing. Therefore, we composed an atlas of FF-OCT images of malignant and benign pancreatic tissue, and investigated the accuracy with which the pathologists could distinguish these. Materials and methods One hundred FF-OCT images were collected from specimens of 29 patients who underwent pancreatic resection for various indications between 2014 and 2016. One experienced gastrointestinal pathologist and one pathologist in training scored independently the FF-OCT images as malignant or benign blinded to the final pathology conclusion. Results were compared to those obtained with standard hematoxylin and eosin (H&E) slides. Results Overall, combined test characteristics of both pathologists showed a sensitivity of 72%, specificity of 74%, positive predictive value of 69%, negative predictive value of 79% and an overall accuracy of 73%. In the subset of pancreatic ductal adenocarcinoma patients, 97% of the FF-OCT images (n = 35) were interpreted as tumor by at least one pathologist. Moreover, normal pancreatic tissue was recognised in all cases by at least one pathologist. However, atrophy and fibrosis, serous cystadenoma and neuroendocrine tumors were more often wrongly scored, in 63%, 100% and 25% respectively. Conclusion FF-OCT could distinguish normal pancreatic tissue from pathologic pancreatic tissue in both processed as non-processed specimens using architectural features. The accuracy in pancreatic ductal adenocarcinoma is promising and warrants further evaluation using improved assessment criteria. PMID:28414765
Cryo-electron tomography of bacterial viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero-Ferreira, Ricardo C.; Wright, Elizabeth R., E-mail: erwrigh@emory.edu
2013-01-05
Bacteriophage particles contain both simple and complex macromolecular assemblages and machines that enable them to regulate the infection process under diverse environmental conditions with a broad range of bacterial hosts. Recent developments in cryo-electron tomography (cryo-ET) make it possible to observe the interactions of bacteriophages with their host cells under native-state conditions at unprecedented resolution and in three-dimensions. This review describes the application of cryo-ET to studies of bacteriophage attachment, genome ejection, assembly and egress. Current topics of investigation and future directions in the field are also discussed.
Computed tomography for non-destructive evaluation of composites: Applications and correlations
NASA Technical Reports Server (NTRS)
Goldberg, B.; Hediger, L.; Noel, E.
1985-01-01
The state-of-the-art fabrication techniques for composite materials are such that stringent species-specific acceptance criteria must be generated to insure product reliability. Non-destructive evaluation techniques including computed tomography (CT), X-ray radiography (RT), and ultrasonic scanning (UT) are investigated and compared to determine their applicability and limitations to graphite epoxy, carbon-carbon, and carbon-phenolic materials. While the techniques appear complementary, CT is shown to provide significant, heretofore unattainable data. Finally, a correlation of NDE techniques to destructive analysis is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Erik; Blume-Kohout, Robin; Rudinger, Kenneth
PyGSTi is an implementation of Gate Set Tomography in the python programming language. Gate Set Tomography (GST) is a theory and protocol for simultaneously estimating the state preparation, gate operations, and measurement effects of a physical system of one or many quantum bits (qubits). These estimates are based entirely on the statistics of experimental measurements, and their interpretation and analysis can provide a detailed understanding of the types of errors/imperfections in the physical system. In this way, GST provides not only a means of certifying the "goodness" of qubits but also a means of debugging (i.e. improving) them.
Two-Wavelength Multi-Gigahertz Frequency Comb-Based Interferometry for Full-Field Profilometry
NASA Astrophysics Data System (ADS)
Choi, Samuel; Kashiwagi, Ken; Kojima, Shuto; Kasuya, Yosuke; Kurokawa, Takashi
2013-10-01
The multi-gigahertz frequency comb-based interferometer exhibits only the interference amplitude peak without the phase fringes, which can produce a rapid axial scan for full-field profilometry and tomography. Despite huge technical advantages, there remain problems that the interference intensity undulations occurred depending on the interference phase. To avoid such problems, we propose a compensation technique of the interference signals using two frequency combs with slightly varied center wavelengths. The compensated full-field surface profile measurements of cover glass and onion skin were demonstrated experimentally to verify the advantages of the proposed method.
Full 3D Microwave Tomography enhanced GPR surveys: a case study
NASA Astrophysics Data System (ADS)
Catapano, Ilaria; Soldovieri, Francesco; Affinito, Antonio; Hugenschmidt, Johannes
2014-05-01
Ground Penetrating Radar (GPR) systems are well assessed non-invasive diagnostic tools capable of providing high resolution images of the inner structure of the probed spatial region. Owing to this capability, GPR systems are nowadays more and more considered in the frame of civil engineering surveys since they may give information on constructive details as well as on the aging and risk factors affecting the healthiness of an infrastructure. In this frame, accurate, reliable and easily interpretable images of the probed scenarios are mandatory in order to support the management of maintenance works and assure the safety of structures. Such a requirement motivates the use of different and sophisticated data processing approaches in order to compare more than one image of the same scene, thus improving the reliability and objectiveness of the GPR survey results. Among GPR data processing procedures, Microwave Tomography approaches based on the Born approximation face the imaging as the solution of a linear inverse problem, which is solved by using the Truncated Singular Value Decomposition as a regularized inversion scheme [1]. So far, an approach exploiting a 2D scalar model of the scattering phenomenon have been adopted to process GPR data gathered along a single scan. In this case, 3D images are obtained by interpolating 2D reconstructions (this is referred commonly as pseudo 3D imaging). Such an imaging approach have provided valuable results in several real cases dealing with not only surveys for civil engineering but also archeological prospection, subservice monitoring, security surveys and so on [1-4]. These encouraging results have motivated the development of a full 3D Microwave Tomography approach capable of accounting for the vectorial nature of the wave propagation. The reconstruction capabilities of this novel approach have been assessed mainly against experimental data collected in laboratory controlled conditions. The obtained results corroborate that, the use of a full 3D scattering model allows an improved estimation of the objects shape and size with respect to pseudo 3D imaging [5]. In this communication, the performance offered by the full 3D imaging approach is investigated by using a dataset from infrastructure inspection. Since the collapse of a car park in Switzerland killing 7 firemen, "punching", where a pile remains upright but the ceiling carried by the pile falls down, is considered a serious problem The 3D tomography approach was applied to a dataset acquired in a car park in the vicinity of piles. Such datasets can be used for an assessment of the safety of such structures and can therefore be considered as relevant test cases for innovative data processing and inversion strategies. REFERENCES [1] F. Soldovieri, J. Hugenschmidt, R. Persico and G. Leone, "A linear inverse scattering algorithm for realistic GPR applications, Near Surf. Geophys., vol. 5, pp.29-42, 2007. [2] I. Catapano, L. Crocco R. Di Napoli, F. Soldovieri, A. Brancaccio, F. Pesando, A. Aiello, "Microwave tomography enhanced GPR surveys in Centaur's Domus, Regio VI of Pompeii, Italy", J. Geophys. Eng., vol.9, S92-S99, 2012. [3] I. Catapano, R. Di Napoli, F. Soldovieri, M. Bavusi, A. Loperte, J. Dumoulin, Structural monitoring via microwave tomography-enhanced GPR: the Montagnole test site, J. Geophys. Eng., vol. 9, S100-S107, 2012 [4] J. Hugenschmidt, A. Kalogeropoulos, F. Soldovieri, G. Prisco (2010) Processing Strategies for high-resolution GPR Concrete Inspections, NDT & E International, Volume 43, Issue 4: 334-342. [5] I. Catapano, A. Affinito, G. Gennarelli, F. di Maio, A. Loperte, F. Soldovieri, Full three-dimensional imaging via ground penetrating radar: assessment in controlled conditions and on field for archaeological prospecting, Appl. Phys. A: Materials Science and Processing, pp. 1-8, Article in Press
NASA Astrophysics Data System (ADS)
Liu, Yinyan; Deng, Yuchi; Zhang, Maomao; Yu, Peining; Li, Yi
2017-09-01
Oil-water two-phase flows are commonly found in the production processes of the petroleum industry. Accurate online measurement of flow rates is crucial to ensure the safety and efficiency of oil exploration and production. A research team from Tsinghua University has developed an experimental apparatus for multiphase flow measurement based on an electrical capacitance tomography (ECT) sensor, an electrical resistance tomography (ERT) sensor, and a venturi tube. This work presents the phase fraction and flow rate measurements of oil-water two-phase flows based on the developed apparatus. Full-range phase fraction can be obtained by the combination of the ECT sensor and the ERT sensor. By data fusion of differential pressures measured by venturi tube and the phase fraction, the total flow rate and single-phase flow rate can be calculated. Dynamic experiments were conducted on the multiphase flow loop in horizontal and vertical pipelines and at various flow rates.
Influence of anatomical location on CT numbers in cone beam computed tomography.
Oliveira, Matheus L; Tosoni, Guilherme M; Lindsey, David H; Mendoza, Kristopher; Tetradis, Sotirios; Mallya, Sanjay M
2013-04-01
To assess the influence of anatomical location on computed tomography (CT) numbers in mid- and full field of view (FOV) cone beam computed tomography (CBCT) scans. Polypropylene tubes with varying concentrations of dipotassium hydrogen phosphate (K₂HPO₄) solutions (50-1200 mg/mL) were imaged within the incisor, premolar, and molar dental sockets of a human skull phantom. CBCT scans were acquired using the NewTom 3G and NewTom 5G units. The CT numbers of the K₂HPO₄ phantoms were measured, and the relationship between CT numbers and K₂HPO₄ concentration was examined. The measured CT numbers of the K₂HPO₄ phantoms were compared between anatomical sites. At all six anatomical locations, there was a strong linear relationship between CT numbers and K₂HPO₄ concentration (R(2)>0.93). However, the absolute CT numbers varied considerably with the anatomical location. The relationship between CT numbers and object density is not uniform through the dental arch on CBCT scans. Copyright © 2013 Elsevier Inc. All rights reserved.
Optimizing the choice of spin-squeezed states for detecting and characterizing quantum processes
Rozema, Lee A.; Mahler, Dylan H.; Blume-Kohout, Robin; ...
2014-11-07
Quantum metrology uses quantum states with no classical counterpart to measure a physical quantity with extraordinary sensitivity or precision. Most such schemes characterize a dynamical process by probing it with a specially designed quantum state. The success of such a scheme usually relies on the process belonging to a particular one-parameter family. If this assumption is violated, or if the goal is to measure more than one parameter, a different quantum state may perform better. In the most extreme case, we know nothing about the process and wish to learn everything. This requires quantum process tomography, which demands an informationallymore » complete set of probe states. It is very convenient if this set is group covariant—i.e., each element is generated by applying an element of the quantum system’s natural symmetry group to a single fixed fiducial state. In this paper, we consider metrology with 2-photon (“biphoton”) states and report experimental studies of different states’ sensitivity to small, unknown collective SU( 2) rotations [“ SU( 2) jitter”]. Maximally entangled N00 N states are the most sensitive detectors of such a rotation, yet they are also among the worst at fully characterizing an a priori unknown process. We identify (and confirm experimentally) the best SU( 2)-covariant set for process tomography; these states are all less entangled than the N00 N state, and are characterized by the fact that they form a 2-design.« less
NASA Astrophysics Data System (ADS)
König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J.; Elsner, Peter; Kaatz, Martin
2010-02-01
The first clinical trial of optical coherence tomography (OCT) combined with multiphoton tomography (MPT) and dermoscopy is reported. State-of-the-art (i) OCT systems for dermatology (e.g. multibeam swept source OCT), (ii) the femtosecond laser multiphoton tomograph DermaInspectTM, and (iii) digital dermoscopes were applied to 47 patients with a diversity of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases. Dermoscopy, also called 'epiluminescent microscopy', provides two-dimensional color images of the skin surface. OCT imaging is based on the detection of optical reflections within the tissue measured interferometrically whereas nonlinear excitation of endogenous fluorophores and the second harmonic generation are the bases of MPT images. OCT cross sectional "wide field" image provides a typical field of view of 5 x 2 mm2 and offers fast information on the depth and the volume of the investigated lesion. In comparison, multiphoton tomography presents 0.36 x 0.36 mm2 horizontal or diagonal sections of the region of interest within seconds with submicron resolution and down to a tissue depth of 200 μm. The combination of OCT and MPT provides a synergistic optical imaging modality for early detection of skin cancer and other skin diseases.
König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J; Elsner, Peter; Kaatz, Martin
2009-07-01
We report on the first clinical study based on optical coherence tomography (OCT) in combination with multiphoton tomography (MPT) and dermoscopy. 47 patients with a variety of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art OCT systems for dermatology including multibeam swept source OCT, (ii) the femtosecond laser multiphoton tomograph, and (iii) dermoscopes. Dermoscopy provides two-dimensional color images of the skin surface. OCT images reflect modifications of the intratissue refractive index whereas MPT is based on nonlinear excitation of endogenous fluorophores and second harmonic generation. A stack of cross-sectional OCT "wide field" images with a typical field of view of 5 x 2 mm(2) gave fast information on the depth and the volume of the lesion. Multiphoton tomography provided 0.36 x 0.36 mm(2) horizontal/diagonal optical sections within seconds of a particular region of interest with superior submicron resolution down to a tissue depth of 200 mum. The combination of OCT and MPT provides a unique powerful optical imaging modality for early detection of skin cancer and other skin diseases as well as for the evaluation of the efficiency of treatments.
Dalbeth, Nicola; Doyle, Anthony J
2012-12-01
The diverse clinical states and sites of pathology in gout provide challenges when considering the features apparent on imaging. Ideally, an imaging modality should capture all aspects of disease including monosodium urate crystal deposition, acute inflammation, tophus, tissue remodelling and complications of disease. The modalities used in gout include conventional radiography, ultrasonography, magnetic resonance imaging, computed tomography and dual-energy computed tomography. This review discusses the role of each of these imaging modalities in gout, focussing on the imaging characteristics, role in gout diagnosis and role for disease monitoring. Ultrasonography and dual-energy computed tomography are particularly promising methods for both non-invasive diagnosis and monitoring of disease. The observation that ultrasonographic appearances of monosodium urate crystal deposition can be observed in patients with hyperuricaemia but no other clinical features of gout raises important questions about disease definitions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gate Set Tomography on a trapped ion qubit
NASA Astrophysics Data System (ADS)
Nielsen, Erik; Blume-Kohout, Robin; Gamble, John; Rundinger, Kenneth; Mizrahi, Jonathan; Sterk, Johathan; Maunz, Peter
2015-03-01
We present enhancements to gate-set tomography (GST), which is a framework in which an entire set of quantum logic gates (including preparation and measurement) can be fully characterized without need for pre-calibrated operations. Our new method, ``extended Linear GST'' (eLGST) uses fast, reliable analysis of structured long gate sequences to deliver tomographic precision at the Heisenberg limit with GST's calibration-free framework. We demonstrate this precision on a trapped-ion qubit, and show significant (orders of magnitude) advantage over both standard process tomography and randomized benchmarking. This work was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Ionospheric tomography using ADS-B signals
NASA Astrophysics Data System (ADS)
Cushley, A. C.; Noël, J.-M.
2014-07-01
Numerical modeling has demonstrated that Automatic Dependent Surveillance Broadcast (ADS-B) signals can be used to reconstruct two-dimensional (2-D) electron density maps of the ionosphere using techniques for computerized tomography. Ray tracing techniques were used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modeled Faraday rotation was computed and converted to total electron content (TEC) along the raypaths. The resulting TEC was used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique. This study concentrated on reconstructing mesoscale structures 25-100 km in horizontal extent. The primary scientific interest of this study was to show that ADS-B signals can be used as a new source of data for CIT to image the ionosphere and to obtain a better understanding of magneto-ionic wave propagation.
Walther, Paul; Schmid, Eberhard; Höhn, Katharina
2013-01-01
Using an electron microscope's scanning transmission mode (STEM) for collection of tomographic datasets is advantageous compared to bright field transmission electron microscopic (TEM). For image formation, inelastic scattering does not cause chromatic aberration, since in STEM mode no image forming lenses are used after the beam has passed the sample, in contrast to regular TEM. Therefore, thicker samples can be imaged. It has been experimentally demonstrated that STEM is superior to TEM and energy filtered TEM for tomography of samples as thick as 1 μm. Even when using the best electron microscope, adequate sample preparation is the key for interpretable results. We adapted protocols for high-pressure freezing of cultivated cells from a physiological state. In this chapter, we describe optimized high-pressure freezing and freeze substitution protocols for STEM tomography in order to obtain high membrane contrast.
Rapid in vivo vertical tissue sectioning by multiphoton tomography
NASA Astrophysics Data System (ADS)
Batista, Ana; Breunig, Hans Georg; König, Karsten
2018-02-01
A conventional tool in the pathological field is histology which involves the analysis of thin sections of tissue in which specific cellular structures are stained with different dyes. The process to obtain these stained tissue sections is time consuming and invasive as it requires tissue removal, fixation, sectioning, and staining. Moreover, imaging of live tissue is not possible. We demonstrate that multiphoton tomography can provide within seconds, non-invasive, label-free, vertical images of live tissue which are in quality similar to conventional light micrographs of histologic stained specimen. In contrast to conventional setups based on laser scanning which image horizontally sections, the vertical in vivo images are directly recorded by combined line scanning and timed adjustments of the height of the focusing optics. In addition, multiphoton tomography provides autofluorescence lifetimes which can be used to determine the metabolic states of cells.
Modeling the Relationship Between Porosity and Permeability During Oxidation of Ablative Materials
NASA Technical Reports Server (NTRS)
Thornton, John M.; Panerai, Francesco; Ferguson, Joseph C.; Borner, Arnaud; Mansour, Nagi N.
2017-01-01
The ablative materials used in thermal protection systems (TPS) undergo oxidation during atmospheric entry which leads to an in-depth change in both permeability and porosity. These properties have a significant affect on heat transfer in a TPS during entry. X-ray micro-tomography has provided 3D images capturing the micro-structure of TPS materials. In this study, we use micro-tomography based simulations to create high-fidelity models relating permeability to porosity during oxidation of FiberForm, the carbon fiber preform of the Phenolic Impregnated Carbon Ablator (PICA) often used as a TPS material. The goal of this study is to inform full-scale models and reduce uncertainty in TPS modeling.
Biosensor Technologies for Augmented Brain-Computer Interfaces in the Next Decades
2012-05-13
Research Triangle Park, NC 27709-2211 Augmented brain–computer interface (ABCI);biosensor; cognitive-state monitoring; electroencephalogram( EEG ); human...biosensor; cognitive-state monitoring; electroencephalogram ( EEG ); human brain imaging Manuscript received November 28, 2011; accepted December 20...magnetic reso- nance imaging (fMRI) [1], positron emission tomography (PET) [2], electroencephalograms ( EEGs ) and optical brain imaging techniques (i.e
Higher-dimensional phase imaging
NASA Astrophysics Data System (ADS)
Huntley, Jonathan M.
2010-04-01
Traditional full-field interferometric techniques (speckle, moiré, holography etc) provide 2-D phase images, which encode the surface deformation state of the object under test. Over the past 15 years, the use of additional spatial or temporal dimensions has been investigated by a number of research groups. Early examples include the measurement of 3-D surface profiles by temporally-varying projected fringe patterns, and dynamic speckle interferometry. More recently (the past 5 years) a family of related techniques (Wavelength Scanning Interferometry, Phase Contrast Spectral Optical Coherence Tomography (OCT), and Tilt Scanning Interferometry) has emerged that provides the volume deformation state of the object. The techniques can be thought of as a marriage between the phase sensing capabilities of Phase Shifting Interferometry and the depth-sensing capabilities of OCT. Finally, in the past 12 months a technique called Hyperspectral Interferometry has been proposed in which absolute optical path distributions are obtained in a single shot through the spectral decomposition of a white light interferogram, and for which the additional dimension therefore corresponds to the illumination wavenumber. An overview of these developments, and the related issue of robust phase unwrapping of noisy 3-D wrapped phase volumes, is presented in this paper.
Nanomaterial datasets to advance tomography in scanning transmission electron microscopy
Levin, Barnaby D. A.; Padgett, Elliot; Chen, Chien-Chun; ...
2016-06-07
Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co 2 P nanocrystal, platinum nanoparticles on a carbonmore » nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.« less
Nanomaterial datasets to advance tomography in scanning transmission electron microscopy.
Levin, Barnaby D A; Padgett, Elliot; Chen, Chien-Chun; Scott, M C; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D; Robinson, Richard D; Ercius, Peter; Kourkoutis, Lena F; Miao, Jianwei; Muller, David A; Hovden, Robert
2016-06-07
Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.
Nanomaterial datasets to advance tomography in scanning transmission electron microscopy
Levin, Barnaby D.A.; Padgett, Elliot; Chen, Chien-Chun; Scott, M.C.; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D.; Robinson, Richard D.; Ercius, Peter; Kourkoutis, Lena F.; Miao, Jianwei; Muller, David A.; Hovden, Robert
2016-01-01
Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data. PMID:27272459
Nonseparable Werner states in spontaneous parametric down-conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caminati, Marco; De Martini, Francesco; Perris, Riccardo
2006-03-15
The multiphoton states generated by high-gain spontaneous parametric down-conversion (SPDC) in the presence of large losses are investigated theoretically and experimentally. The explicit form for the two-photon output state has been found to exhibit a Werner structure very resilient to losses for any value of the nonlinear gain parameter g. The theoretical results are found to be in agreement with experimental data obtained by 'entanglement witness' methods and by the quantum tomography of the state generated by a high-g SPDC.
Bayesian tomography by interacting Markov chains
NASA Astrophysics Data System (ADS)
Romary, T.
2017-12-01
In seismic tomography, we seek to determine the velocity of the undergound from noisy first arrival travel time observations. In most situations, this is an ill posed inverse problem that admits several unperfect solutions. Given an a priori distribution over the parameters of the velocity model, the Bayesian formulation allows to state this problem as a probabilistic one, with a solution under the form of a posterior distribution. The posterior distribution is generally high dimensional and may exhibit multimodality. Moreover, as it is known only up to a constant, the only sensible way to addressthis problem is to try to generate simulations from the posterior. The natural tools to perform these simulations are Monte Carlo Markov chains (MCMC). Classical implementations of MCMC algorithms generally suffer from slow mixing: the generated states are slow to enter the stationary regime, that is to fit the observations, and when one mode of the posterior is eventually identified, it may become difficult to visit others. Using a varying temperature parameter relaxing the constraint on the data may help to enter the stationary regime. Besides, the sequential nature of MCMC makes them ill fitted toparallel implementation. Running a large number of chains in parallel may be suboptimal as the information gathered by each chain is not mutualized. Parallel tempering (PT) can be seen as a first attempt to make parallel chains at different temperatures communicate but only exchange information between current states. In this talk, I will show that PT actually belongs to a general class of interacting Markov chains algorithm. I will also show that this class enables to design interacting schemes that can take advantage of the whole history of the chain, by authorizing exchanges toward already visited states. The algorithms will be illustrated with toy examples and an application to first arrival traveltime tomography.
Pengpen, T; Soleimani, M
2015-06-13
Cone beam computed tomography (CBCT) is an imaging modality that has been used in image-guided radiation therapy (IGRT). For applications such as lung radiation therapy, CBCT images are greatly affected by the motion artefacts. This is mainly due to low temporal resolution of CBCT. Recently, a dual modality of electrical impedance tomography (EIT) and CBCT has been proposed, in which the high temporal resolution EIT imaging system provides motion data to a motion-compensated algebraic reconstruction technique (ART)-based CBCT reconstruction software. High computational time associated with ART and indeed other variations of ART make it less practical for real applications. This paper develops a motion-compensated conjugate gradient least-squares (CGLS) algorithm for CBCT. A motion-compensated CGLS offers several advantages over ART-based methods, including possibilities for explicit regularization, rapid convergence and parallel computations. This paper for the first time demonstrates motion-compensated CBCT reconstruction using CGLS and reconstruction results are shown in limited data CBCT considering only a quarter of the full dataset. The proposed algorithm is tested using simulated motion data in generic motion-compensated CBCT as well as measured EIT data in dual EIT-CBCT imaging. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Lu, Yu; Li, Zhongliang; Nan, Nan; Bu, Yang; Liu, Xuebo; Xu, Xiangdong; Wang, Xuan; Sasaki, Osami; Wang, Xiangzhao
2018-03-26
Optical coherent tomography (OCT) has enabled clinical applications ranging from ophthalmology to cardiology that revolutionized in vivo medical diagnostics in the last few decades, and a variety of endoscopic probes have been developed in order to meet the needs of various endoscopic OCT imaging. We propose a passive driven intravascular optical coherent tomography (IV-OCT) probe in this paper. Instead of using any electrically driven scanning device, the probe makes use of the kinetic energy of the fluid that flushes away the blood during the intravascular optical coherence tomography imaging. The probe converts it into the rotational kinetic energy of the propeller, and the rotation of the rectangular prism mounted on the propeller shaft enables the scanning of the beam. The probe is low cost, and enables unobstructed stable circumferential scanning over 360 deg. The experimental results show that the probe scanning speed can exceed 100 rotations per second (rps). Spectral-domain OCT imaging of a phantom and porcine cardiac artery are demonstrated with axial resolution of 13.6 μm, lateral resolution of 22 μm, and sensitivity of 101.7 dB. We present technically the passively driven IV-OCT probe in full detail and discuss how to optimize the probe in further.
Hwang, John C; Kim, David Y; Chou, Chai Lin; Tsang, Stephen H
2010-01-01
The purpose of this study was to describe fundus autofluorescence (FAF), optical coherence tomography, and electroretinogram findings in choroidal sclerosis. This is a retrospective case series. Eight eyes of four patients with choroidal sclerosis were evaluated with FAF, optical coherence tomography, and electroretinogram testing. In all eight eyes, FAF imaging showed hypofluorescent placoid lesions corresponding to areas of chorioretinal atrophy seen on stereo biomicroscopy. Prominent hyperfluorescent linear markings underlying regions of atrophic disease were observed in all eyes, likely representative of normal choroidal vessel autofluorescence. In two eyes, FAF showed punctate hypofluorescent lesions in the fovea that were not visualized on biomicroscopy. In one eye, FAF identified a central island of preserved retinal pigment epithelium that was not realized on ophthalmoscopic examination. Optical coherence imaging was significant for loss of choroidal fine tubular structures, retinal pigment epithelium, and outer nuclear layer in regions of chorioretinal atrophy. Full-field electroretinogram testing showed generalized rod-cone dysfunction in all patients with a lower B- to A-wave ratio in two patients. Fundus autofluorescence and optical coherence tomography are nonin-vasive diagnostic adjuncts that can aid in the diagnosis of choroidal sclerosis. Fundus autofluorescence may be a more sensitive marker of disease extent and progression than clinical examination alone. Electroretinogram testing can result in an electronegative maximal response.
Comparison of digital intraoral scanners by single-image capture system and full-color movie system.
Yamamoto, Meguru; Kataoka, Yu; Manabe, Atsufumi
2017-01-01
The use of dental computer-aided design/computer-aided manufacturing (CAD/CAM) restoration is rapidly increasing. This study was performed to evaluate the marginal and internal cement thickness and the adhesive gap of internal cavities comprising CAD/CAM materials using two digital impression acquisition methods and micro-computed tomography. Images obtained by a single-image acquisition system (Bluecam Ver. 4.0) and a full-color video acquisition system (Omnicam Ver. 4.2) were divided into the BL and OM groups, respectively. Silicone impressions were prepared from an ISO-standard metal mold, and CEREC Stone BC and New Fuji Rock IMP were used to create working models (n=20) in the BL and OM groups (n=10 per group), respectively. Individual inlays were designed in a conventional manner using designated software, and all restorations were prepared using CEREC inLab MC XL. These were assembled with the corresponding working models used for measurement, and the level of fit was examined by three-dimensional analysis based on micro-computed tomography. Significant differences in the marginal and internal cement thickness and adhesive gap spacing were found between the OM and BL groups. The full-color movie capture system appears to be a more optimal restoration system than the single-image capture system.
Evaluation of Aortic Valve Replacement via the Right Parasternal Approach without Rib Removal
Hattori, Koji; Kato, Yasuyuki; Motoki, Manabu; Takahashi, Yosuke; Nishimura, Shinsuke; Shibata, Toshihiko
2014-01-01
Background: Although right parasternal approach (RPA) decreases the incidence of mediastinal infection, this approach is associated with lung hernia and flail chest. Our RPA employs thoracotomy with bending rib cartilages and wound closure performed by repositioning the ribs with underlying sheet reinforcement. Methods: We evaluated 16 patients who underwent aortic valve replacement via the RPA from January 2010 to August 2013. We compared outcomes of 15 male patients had the RPA with 30 male patients had full median sternotomy. Results: One patient with a history of radical breast cancer treatment underwent RPA with concomitant right coronary artery bypass grafting. No hospital deaths occurred. Four patients developed hospital-associated morbidity (re-exploration for bleeding, prolonged ventilation, cardiac tamponade, and perioperative myocardial infarction). There were no conversions to full median sternotomy, mediastinal infections, and lung hernias. Preoperative computed tomography showed that the distance from the right sternal border to the aortic root was significantly associated with operation times. With RPA, there was no significant difference in outcomes, despite significantly longer operation times compared with full median sternotomy. Conclusion: Our RPA provides satisfactory outcomes without lung hernia, especially in patients unsuitable for sternotomy. Preoperative computed tomography is useful for identifying appropriate candidates for the RPA. PMID:25167927
Hybrid quantum logic and a test of Bell's inequality using two different atomic isotopes.
Ballance, C J; Schäfer, V M; Home, J P; Szwer, D J; Webster, S C; Allcock, D T C; Linke, N M; Harty, T P; Aude Craik, D P L; Stacey, D N; Steane, A M; Lucas, D M
2015-12-17
Entanglement is one of the most fundamental properties of quantum mechanics, and is the key resource for quantum information processing (QIP). Bipartite entangled states of identical particles have been generated and studied in several experiments, and post-selected or heralded entangled states involving pairs of photons, single photons and single atoms, or different nuclei in the solid state, have also been produced. Here we use a deterministic quantum logic gate to generate a 'hybrid' entangled state of two trapped-ion qubits held in different isotopes of calcium, perform full tomography of the state produced, and make a test of Bell's inequality with non-identical atoms. We use a laser-driven two-qubit gate, whose mechanism is insensitive to the qubits' energy splittings, to produce a maximally entangled state of one (40)Ca(+) qubit and one (43)Ca(+) qubit, held 3.5 micrometres apart in the same ion trap, with 99.8 ± 0.6 per cent fidelity. We test the CHSH (Clauser-Horne-Shimony-Holt) version of Bell's inequality for this novel entangled state and find that it is violated by 15 standard deviations; in this test, we close the detection loophole but not the locality loophole. Mixed-species quantum logic is a powerful technique for the construction of a quantum computer based on trapped ions, as it allows protection of memory qubits while other qubits undergo logic operations or are used as photonic interfaces to other processing units. The entangling gate mechanism used here can also be applied to qubits stored in different atomic elements; this would allow both memory and logic gate errors caused by photon scattering to be reduced below the levels required for fault-tolerant quantum error correction, which is an essential prerequisite for general-purpose quantum computing.
Reducing disk storage of full-3D seismic waveform tomography (F3DT) through lossy online compression
NASA Astrophysics Data System (ADS)
Lindstrom, Peter; Chen, Po; Lee, En-Jui
2016-08-01
Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithm into our F3DT-SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.
Reducing Disk Storage of Full-3D Seismic Waveform Tomography (F3DT) Through Lossy Online Compression
Lindstrom, Peter; Chen, Po; Lee, En-Jui
2016-05-05
Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithmmore » into our F3DT SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.« less
NASA Astrophysics Data System (ADS)
Kultavewuti, Pisek
Polarization-entangled photon pair states (PESs) are indispensable in several quantum protocols that should be implemented in an integrated photonic circuit for realizing a practical quantum technology. Preparing such states in integrated waveguides is in fact a challenge due to polarization mode dispersion. Unlike other conventional ways that are plagued with complications in fabrication or in state generation, in this thesis, the scheme based on parallel spontaneous four-wave mixing processes of two polarization waveguide modes is thoroughly studied in theory and experimentation for the polarization entanglement generation. The scheme in fact needs the modal dispersion, contradictory to the general perception, as revealed by a full quantum mechanical framework. The proper modal dispersion balances the effects of temporal walk-off and state factorizability. The study also shows that the popular standard platform such as a silicon-on-insulator wafer is far from suitable to implement the proposed simple generation technique. Proven by the quantum state tomography, the technique produces a highly-entangled state with a maximum concurrence of 0.97 +/- 0:01 from AlGaAs waveguides. In addition, the devices directly generated Bell states with an observed fidelity of 0.92 +/- 0:01 without any post-generation compensating steps. Novel suspended device structures, including their components, are then investigated numerically and experimentally characterized in pursuit of finding the geometry with the optimal dispersion property. The 700 nm x 1100 nm suspended rectangular waveguide is identified as the best geometry with a predicted maximum concurrence of 0.976 and a generation bandwidth of 3.3 THz. The suspended waveguide fabrication procedure adds about 15 dB/cm and 10 dB/cm of propagation loss to the TE and TM mode respectively, on top of the loss in corresponding full-cladding waveguides. Bridges, which structurally support the suspended waveguides, are optimized using the particle swarm algorithm to maximize the power transmission, and they were experimentally verified. This work greatly simplifies the generation of the PES and identifies a novel device structure suitable for such the PES generation. In combination with the reported promising advances in interferometric components and single photon detectors implemented in AlGaAs, the result of this thesis represents a step toward realizing a complete integrated quantum photonic circuit empowered by polarization-based protocols.
NASA Astrophysics Data System (ADS)
Esker, A.; Pavlis, G. L.
2017-12-01
We assembled all available seismic tomography models distributed through the IRIS DMC and other sources. We combined these images with our own results using 3D plane wave migration of P to S conversion data derived from the USArray data set and other broadband seismic stations in the lower 48 states. All the tomography models were converted into SEGY format and interpolated onto a regular grid in a UTM reference frame. That innovation makes joint interpretation feasible using a seismic interpretation software (Petrel) because we treat both the tomography models and scattered wave image results as if they were 3D seismic reflection data. The careful designed interface of a modern exploration package makes exploring a range of interpretation packages much faster and allowed us to produce a more comprehensive interpretation of all available data. The tomography models are nearly an order of magnitude smoother than the scattered wave images, so we use the tomography models as a cross-validation in interpretation unless the scattered wave images are ambiguous. The focus of this study is testing a conjecture in an earlier paper (Pavlis, 2011) for the presence of a single continuous horizon interpreted as the top of the Farallon Slab. As in the previous paper we constrained the western edge of this surface with the location of Cascadia trench as well as a virtual edge from a back projection of the Mendocino triple junction using Pacific-North America motion over the past 30 Ma. We also simulated crustal multiple effects on the plane wave migration results using crustal geometry estimates produced by the Earthscope Automated Receiver Survey (EARS). This confirmed the scattered wave images were not reliable in the upper mantle at depths shallower than 200 km due to contamination by crustal multiples. Most tomography models show a steep dip in the slab immediately east of the volcanic arc and our surface follows the average geometry defined by a visual comparison of all the models. In eastern Oregon and northern Nevada the tomography models consistently show a general flattening of the slab over the 410 km discontinuity. A consistent horizon is observed in the most recent plane wave imaging and at we use that horizon to define the top of slab there. Our interpretations also confirmed a sharp increase in dip of the slab in eastern Wyoming and Montana.
Directly Measuring the Degree of Quantum Coherence using Interference Fringes
NASA Astrophysics Data System (ADS)
Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can
2017-01-01
Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior—the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l1 norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.
Directly Measuring the Degree of Quantum Coherence using Interference Fringes.
Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can
2017-01-13
Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior-the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l_{1} norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.
A matched-peak inversion approach for ocean acoustic travel-time tomography
Skarsoulis
2000-03-01
A new approach for the inversion of travel-time data is proposed, based on the matching between model arrivals and observed peaks. Using the linearized model relations between sound-speed and arrival-time perturbations about a set of background states, arrival times and associated errors are calculated on a fine grid of model states discretizing the sound-speed parameter space. Each model state can explain (identify) a number of observed peaks in a particular reception lying within the uncertainty intervals of the corresponding predicted arrival times. The model states that explain the maximum number of observed peaks are considered as the more likely parametric descriptions of the reception; these model states can be described in terms of mean values and variances providing a statistical answer (matched-peak solution) to the inversion problem. A basic feature of the matched-peak inversion approach is that each reception can be treated independently, i.e., no constraints are posed from previous-reception identification or inversion results. Accordingly, there is no need for initialization of the inversion procedure and, furthermore, discontinuous travel-time data can be treated. The matched-peak inversion method is demonstrated by application to 9-month-long travel-time data from the Thetis-2 tomography experiment in the western Mediterranean sea.
Endoscopic Optical Coherence Tomography for Clinical Gastroenterology
Tsai, Tsung-Han; Fujimoto, James G.; Mashimo, Hiroshi
2014-01-01
Optical coherence tomography (OCT) is a real-time optical imaging technique that is similar in principle to ultrasonography, but employs light instead of sound waves and allows depth-resolved images with near-microscopic resolution. Endoscopic OCT allows the evaluation of broad-field and subsurface areas and can be used ancillary to standard endoscopy, narrow band imaging, chromoendoscopy, magnification endoscopy, and confocal endomicroscopy. This review article will provide an overview of the clinical utility of endoscopic OCT in the gastrointestinal tract and of recent achievements using state-of-the-art endoscopic 3D-OCT imaging systems. PMID:26852678
Polarization sensitive optical coherence tomography – a review [Invited
de Boer, Johannes F.; Hitzenberger, Christoph K.; Yasuno, Yoshiaki
2017-01-01
Optical coherence tomography (OCT) is now a well-established modality for high-resolution cross-sectional and three-dimensional imaging of transparent and translucent samples and tissues. Conventional, intensity based OCT, however, does not provide a tissue-specific contrast, causing an ambiguity with image interpretation in several cases. Polarization sensitive (PS) OCT draws advantage from the fact that several materials and tissues can change the light’s polarization state, adding an additional contrast channel and providing quantitative information. In this paper, we review basic and advanced methods of PS-OCT and demonstrate its use in selected biomedical applications. PMID:28663869
Positron Emission Tomography (PET)
DOE R&D Accomplishments Database
Welch, M. J.
1990-01-01
Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.
Use of PET/CT scanning in cancer patients: technical and practical considerations
2005-01-01
This overview of the oncologic applications of positron emission tomography (PET) focuses on the technical aspects and clinical applications of a newer technique: the combination of a PET scanner and a computed tomography (CT) scanner in a single (PET/CT) device. Examples illustrate how PET/CT contributes to patient care and improves upon the previous state-of-the-art method of comparing a PET scan with a separate CT scan. Finally, the author presents some of the results from studies of PET/CT imaging that are beginning to appear in the literature. PMID:16252023
Doppler imaging with dual-detection full-range frequency domain optical coherence tomography
Meemon, Panomsak; Lee, Kye-Sung; Rolland, Jannick P.
2010-01-01
Most of full-range techniques for Frequency Domain Optical Coherence Tomography (FD-OCT) reported to date utilize the phase relation between consecutive axial lines to reconstruct a complex interference signal and hence may exhibit degradation in either mirror image suppression performance or detectable velocity dynamic range or both when monitoring a moving sample such as flow activity. We have previously reported a technique of mirror image removal by simultaneous detection of the quadrature components of a complex spectral interference called a Dual-Detection Frequency Domain OCT (DD-FD-OCT) [Opt. Lett. 35, 1058-1060 (2010)]. The technique enables full range imaging without any loss of acquisition speed and is intrinsically less sensitive to phase errors generated by involuntary movements of the subject. In this paper, we demonstrate the application of the DD-FD-OCT to a phase-resolved Doppler imaging without degradation in either mirror image suppression performance or detectable velocity dynamic range that were observed in other full-range Doppler methods. In order to accommodate for Doppler imaging, we have developed a fiber-based DD-FD-OCT that more efficiently utilizes the source power compared with the previous free-space DD-FD-OCT. In addition, the velocity sensitivity of the phase-resolved DD-FD-OCT was investigated, and the relation between the measured Doppler phase shift and set flow velocity of a flow phantom was verified. Finally, we demonstrate the Doppler imaging using the DD-FD-OCT in a biological sample. PMID:21258488
Li, Lin; Cazzell, Mary; Babawale, Olajide; Liu, Hanli
2016-10-01
Atlas-guided diffuse optical tomography (atlas-DOT) is a computational means to image changes in cortical hemodynamic signals during human brain activities. Graph theory analysis (GTA) is a network analysis tool commonly used in functional neuroimaging to study brain networks. Atlas-DOT has not been analyzed with GTA to derive large-scale brain connectivity/networks based on near-infrared spectroscopy (NIRS) measurements. We introduced an automated voxel classification (AVC) method that facilitated the use of GTA with atlas-DOT images by grouping unequal-sized finite element voxels into anatomically meaningful regions of interest within the human brain. The overall approach included volume segmentation, AVC, and cross-correlation. To demonstrate the usefulness of AVC, we applied reproducibility analysis to resting-state functional connectivity measurements conducted from 15 young adults in a two-week period. We also quantified and compared changes in several brain network metrics between young and older adults, which were in agreement with those reported by a previous positron emission tomography study. Overall, this study demonstrated that AVC is a useful means for facilitating integration or combination of atlas-DOT with GTA and thus for quantifying NIRS-based, voxel-wise resting-state functional brain networks.
Computed tomography angiography in acute stroke (revisiting the 4Ps of imaging).
Varadharajan, Shriram; Saini, Jitender; Acharya, Ullas V; Gupta, Arun Kumar
2016-02-01
Imaging in acute stroke has traditionally focussed on the 4Ps-parenchyma, pipes, perfusion, and penumbra-and has increasingly relied upon advanced techniques including magnetic resonance imaging to evaluate such patients. However, as per European Magnetic Resonance Forum estimates, the availability of magnetic resonance imaging scanners for the general population in India (0.5 per million inhabitants) is quite low as compared to Europe (11 per million) and United States (35 per million), with most of them only present in urban cities. On the other hand, computed tomography (CT) is more widely available and has reduced scanning duration. Computed tomography angiography of cervical and intracranial vessels is relatively simpler to perform with extended coverage and can provide all pertinent information required in such patients. This imaging review will discuss relevant imaging findings on CT angiography in patients with acute ischemic stroke through illustrated cases. Copyright © 2015 Elsevier Inc. All rights reserved.
Myocardial perfusion imaging: Lessons learned and work to be done-update.
Iskandrian, Ami E; Dilsizian, Vasken; Garcia, Ernest V; Beanlands, Rob S; Cerqueira, Manuel; Soman, Prem; Berman, Daniel S; Cuocolo, Alberto; Einstein, Andrew J; Morgan, Charity J; Hage, Fadi G; Schelbert, Heinrich R; Bax, Jeroen J; Wu, Joseph C; Shaw, Leslee J; Sadeghi, Mehran M; Tamaki, Nagara; Kaufmann, Philipp A; Gropler, Robert; Dorbala, Sharmila; Van Decker, William
2018-02-01
As the second term of our commitment to Journal begins, we, the editors, would like to reflect on a few topics that have relevance today. These include prognostication and paradigm shifts; Serial testing: How to handle data? Is the change in perfusion predictive of outcome and which one? Ischemia-guided therapy: fractional flow reserve vs perfusion vs myocardial blood flow; positron emission tomography (PET) imaging using Rubidium-82 vs N-13 ammonia vs F-18 Flurpiridaz; How to differentiate microvascular disease from 3-vessel disease by PET? The imaging scene outside the United States, what are the differences and similarities? Radiation exposure; Special issues with the new cameras? Is attenuation correction needed? Are there normal databases and are these specific to each camera system? And finally, hybrid imaging with single-photon emission tomography or PET combined with computed tomography angiography or coronary calcium score. We hope these topics are of interest to our readers.
Furenlid, Lars R.; Barrett, Harrison H.; Barber, H. Bradford; Clarkson, Eric W.; Kupinski, Matthew A.; Liu, Zhonglin; Stevenson, Gail D.; Woolfenden, James M.
2015-01-01
During the past two decades, researchers at the University of Arizona’s Center for Gamma-Ray Imaging (CGRI) have explored a variety of approaches to gamma-ray detection, including scintillation cameras, solid-state detectors, and hybrids such as the intensified Quantum Imaging Device (iQID) configuration where a scintillator is followed by optical gain and a fast CCD or CMOS camera. We have combined these detectors with a variety of collimation schemes, including single and multiple pinholes, parallel-hole collimators, synthetic apertures, and anamorphic crossed slits, to build a large number of preclinical molecular-imaging systems that perform Single-Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), and X-Ray Computed Tomography (CT). In this paper, we discuss the themes and methods we have developed over the years to record and fully use the information content carried by every detected gamma-ray photon. PMID:26236069
NASA Astrophysics Data System (ADS)
Gaikwad, Akshay; Rehal, Diksha; Singh, Amandeep; Arvind, Dorai, Kavita
2018-02-01
We present the NMR implementation of a scheme for selective and efficient quantum process tomography without ancilla. We generalize this scheme such that it can be implemented efficiently using only a set of measurements involving product operators. The method allows us to estimate any element of the quantum process matrix to a desired precision, provided a set of quantum states can be prepared efficiently. Our modified technique requires fewer experimental resources as compared to the standard implementation of selective and efficient quantum process tomography, as it exploits the special nature of NMR measurements to allow us to compute specific elements of the process matrix by a restrictive set of subsystem measurements. To demonstrate the efficacy of our scheme, we experimentally tomograph the processes corresponding to "no operation," a controlled-NOT (CNOT), and a controlled-Hadamard gate on a two-qubit NMR quantum information processor, with high fidelities.
Application of fermionic marginal constraints to hybrid quantum algorithms
NASA Astrophysics Data System (ADS)
Rubin, Nicholas C.; Babbush, Ryan; McClean, Jarrod
2018-05-01
Many quantum algorithms, including recently proposed hybrid classical/quantum algorithms, make use of restricted tomography of the quantum state that measures the reduced density matrices, or marginals, of the full state. The most straightforward approach to this algorithmic step estimates each component of the marginal independently without making use of the algebraic and geometric structure of the marginals. Within the field of quantum chemistry, this structure is termed the fermionic n-representability conditions, and is supported by a vast amount of literature on both theoretical and practical results related to their approximations. In this work, we introduce these conditions in the language of quantum computation, and utilize them to develop several techniques to accelerate and improve practical applications for quantum chemistry on quantum computers. As a general result, we demonstrate how these marginals concentrate to diagonal quantities when measured on random quantum states. We also show that one can use fermionic n-representability conditions to reduce the total number of measurements required by more than an order of magnitude for medium sized systems in chemistry. As a practical demonstration, we simulate an efficient restoration of the physicality of energy curves for the dilation of a four qubit diatomic hydrogen system in the presence of three distinct one qubit error channels, providing evidence these techniques are useful for pre-fault tolerant quantum chemistry experiments.
Watanabe, Yuuki; Maeno, Seiya; Aoshima, Kenji; Hasegawa, Haruyuki; Koseki, Hitoshi
2010-09-01
The real-time display of full-range, 2048?axial pixelx1024?lateral pixel, Fourier-domain optical-coherence tomography (FD-OCT) images is demonstrated. The required speed was achieved by using dual graphic processing units (GPUs) with many stream processors to realize highly parallel processing. We used a zero-filling technique, including a forward Fourier transform, a zero padding to increase the axial data-array size to 8192, an inverse-Fourier transform back to the spectral domain, a linear interpolation from wavelength to wavenumber, a lateral Hilbert transform to obtain the complex spectrum, a Fourier transform to obtain the axial profiles, and a log scaling. The data-transfer time of the frame grabber was 15.73?ms, and the processing time, which includes the data transfer between the GPU memory and the host computer, was 14.75?ms, for a total time shorter than the 36.70?ms frame-interval time using a line-scan CCD camera operated at 27.9?kHz. That is, our OCT system achieved a processed-image display rate of 27.23 frames/s.
NDE application of ultrasonic tomography to a full-scale concrete structure.
Choi, Hajin; Popovics, John S
2015-06-01
Newly developed ultrasonic imaging technology for large concrete elements, based on tomographic reconstruction, is presented. The developed 3-D internal images (velocity tomograms) are used to detect internal defects (polystyrene foam and pre-cracked concrete prisms) that represent structural damage within a large steel reinforced concrete element. A hybrid air-coupled/contact transducer system is deployed. Electrostatic air-coupled transducers are used to generate ultrasonic energy and contact accelerometers are attached on the opposing side of the concrete element to detect the ultrasonic pulses. The developed hybrid testing setup enables collection of a large amount of high-quality, through-thickness ultrasonic data without surface preparation to the concrete. The algebraic reconstruction technique is used to reconstruct p-wave velocity tomograms from the obtained time signal data. A comparison with a one-sided ultrasonic imaging method is presented for the same specimen. Through-thickness tomography shows some benefit over one-sided imaging for highly reinforced concrete elements. The results demonstrate that the proposed through-thickness ultrasonic technique shows great potential for evaluation of full-scale concrete structures in the field.
NASA Astrophysics Data System (ADS)
Lee, En-Jui; Chen, Po
2017-04-01
More precise spatial descriptions of fault systems play an essential role in tectonic interpretations, deformation modeling, and seismic hazard assessments. The recent developed full-3D waveform tomography techniques provide high-resolution images and are able to image the material property differences across faults to assist the understanding of fault systems. In the updated seismic velocity model for Southern California, CVM-S4.26, many velocity gradients show consistency with surface geology and major faults defined in the Community Fault Model (CFM) (Plesch et al. 2007), which was constructed by using various geological and geophysical observations. In addition to faults in CFM, CVM-S4.26 reveals a velocity reversal mainly beneath the San Gabriel Mountain and Western Mojave Desert regions, which is correlated with the detachment structure that has also been found in other independent studies. The high-resolution tomographic images of CVM-S4.26 could assist the understanding of fault systems in Southern California and therefore benefit the development of fault models as well as other applications, such as seismic hazard analysis, tectonic reconstructions, and crustal deformation modeling.
NASA Astrophysics Data System (ADS)
Omidi, Parsa; Diop, Mamadou; Carson, Jeffrey; Nasiriavanaki, Mohammadreza
2017-03-01
Linear-array-based photoacoustic computed tomography is a popular methodology for deep and high resolution imaging. However, issues such as phase aberration, side-lobe effects, and propagation limitations deteriorate the resolution. The effect of phase aberration due to acoustic attenuation and constant assumption of the speed of sound (SoS) can be reduced by applying an adaptive weighting method such as the coherence factor (CF). Utilizing an adaptive beamforming algorithm such as the minimum variance (MV) can improve the resolution at the focal point by eliminating the side-lobes. Moreover, invisibility of directional objects emitting parallel to the detection plane, such as vessels and other absorbing structures stretched in the direction perpendicular to the detection plane can degrade resolution. In this study, we propose a full-view array level weighting algorithm in which different weighs are assigned to different positions of the linear array based on an orientation algorithm which uses the histogram of oriented gradient (HOG). Simulation results obtained from a synthetic phantom show the superior performance of the proposed method over the existing reconstruction methods.
Cranial computed tomography and real-time sonography in full-term neonates and infants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegel, M.J.; Patel, J.; Gado, M.H.
1983-10-01
The results of cranial ultrasonography (US) and computed tomography (CT) were compared in 52 full-term neonates and young infants. The chief indications for examination included: increasing head size, dysmorphic features, myelomeningocele, inflammatory disease, and asphyxia. Disorders detected included hydrocephalus, parenchymal abnormalities, intracranial hemorrhage, extraparenchymal fluid collections, and vascular and other developmental malformations. CT and US essentially were equivalent in detecting hydrocephalus, moderate to large intraventricular hemorrhages or subdural collections, and large focal parenchymal lesions, although CT was somewhat better in determining the level and cause of obstruction in patients with hydrocephalus and characterizing parenchymal abnormalities. CT was more sensitive thanmore » ultrasound in detecting subarachnoid hemorrhage (100% vs. 0%), diffuse parenchymal abnormality (100% vs. 33%), and small intraventricular hemorrhages (100% vs. 0%) but these lesions often were not clinically significant. The results suggest that US should be used as the primary neuroradiological examination in term infants; CT probably should be reserved for further investigation after US in those patients with a history of hypoxia and progressive clinical deterioration.« less
Volumetric full-range magnetomotive optical coherence tomography
Ahmad, Adeel; Kim, Jongsik; Shemonski, Nathan D.; Marjanovic, Marina; Boppart, Stephen A.
2014-01-01
Abstract. Magnetomotive optical coherence tomography (MM-OCT) can be utilized to spatially localize the presence of magnetic particles within tissues or organs. These magnetic particle-containing regions are detected by using the capability of OCT to measure small-scale displacements induced by the activation of an external electromagnet coil typically driven by a harmonic excitation signal. The constraints imposed by the scanning schemes employed and tissue viscoelastic properties limit the speed at which conventional MM-OCT data can be acquired. Realizing that electromagnet coils can be designed to exert MM force on relatively large tissue volumes (comparable or larger than typical OCT imaging fields of view), we show that an order-of-magnitude improvement in three-dimensional (3-D) MM-OCT imaging speed can be achieved by rapid acquisition of a volumetric scan during the activation of the coil. Furthermore, we show volumetric (3-D) MM-OCT imaging over a large imaging depth range by combining this volumetric scan scheme with full-range OCT. Results with tissue equivalent phantoms and a biological tissue are shown to demonstrate this technique. PMID:25472770
Zhang, Jinke; Williams, Bryan M; Lawman, Samuel; Atkinson, David; Zhang, Zijian; Shen, Yaochun; Zheng, Yalin
2017-08-07
Automotive coating systems are designed to protect vehicle bodies from corrosion and enhance their aesthetic value. The number, size and orientation of small metallic flakes in the base coat of the paint has a significant effect on the appearance of automotive bodies. It is important for quality assurance (QA) to be able to measure the properties of these small flakes, which are approximately 10μm in radius, yet current QA techniques are limited to measuring layer thickness. We design and develop a time-domain (TD) full-field (FF) optical coherence tomography (OCT) system to scan automotive panels volumetrically, non-destructively and without contact. We develop and integrate a segmentation method to automatically distinguish flakes and allow measurement of their properties. We test our integrated system on nine sections of five panels and demonstrate that this integrated approach can characterise small flakes in automotive coating systems in 3D, calculating the number, size and orientation accurately and consistently. This has the potential to significantly impact QA testing in the automotive industry.
NASA Astrophysics Data System (ADS)
Kredzinski, Lukasz; Connelly, Michael J.
2011-06-01
Optical Coherence Tomography (OCT) is a promising non-invasive imaging technology capable of carrying out 3D high-resolution cross-sectional images of the internal microstructure of examined material. However, almost all of these systems are expensive, requiring the use of complex optical setups, expensive light sources and complicated scanning of the sample under test. In addition most of these systems have not taken advantage of the competitively priced optical components available at wavelength within the main optical communications band located in the 1550 nm region. A comparatively simple and inexpensive full-field OCT system (FF-OCT), based on a superluminescent diode (SLD) light source and anti-stokes imaging device was constructed, to perform 3D cross-sectional imaging. This kind of inexpensive setup with moderate resolution could be easily applicable in low-level biomedical and industrial diagnostics. This paper involves calibration of the system and determines its suitability for imaging structures of biological tissues such as teeth, which has low absorption at 1550 nm.
Simultaneous Neutron and X-ray Tomography for Quantitative analysis of Geological Samples
NASA Astrophysics Data System (ADS)
LaManna, J.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.
2016-12-01
Multiphase flow is a critical area of research for shale gas, oil recovery, underground CO2 sequestration, geothermal power, and aquifer management. It is critical to understand the porous structure of the geological formations in addition to the fluid/pore and fluid/fluid interactions. Difficulties for analyzing flow characteristics of rock cores are in obtaining 3D distribution information on the fluid flow and maintaining the cores in a state for other analysis methods. Two powerful non-destructive methods for obtaining 3D structural and compositional information are X-ray and neutron tomography. X-ray tomography produces information on density and structure while neutrons excel at acquiring the liquid phase and produces compositional information. These two methods can offer strong complementary information but are typically conducted at separate times and often at different facilities. This poses issues for obtaining dynamic and stochastic information as the sample will change between analysis modes. To address this, NIST has developed a system that allows for multimodal, simultaneous tomography using thermal neutrons and X-rays by placing a 90 keVp micro-focus X-ray tube 90° to the neutron beam. High pressure core holders that simulate underground conditions have been developed to facilitate simultaneous tomography. These cells allow for the control of confining pressure, axial load, temperature, and fluid flow through the core. This talk will give an overview the simultaneous neutron and x-ray tomography capabilities at NIST, the benefits of multimodal imaging, environmental equipment for geology studies, and several case studies that have been conducted at NIST.
FIB-SEM cathodoluminescence tomography: practical and theoretical considerations.
De Winter, D A M; Lebbink, M N; Wiggers De Vries, D F; Post, J A; Drury, M R
2011-09-01
Focused ion beam-scanning electron microscope (FIB-SEM) tomography is a powerful application in obtaining three-dimensional (3D) information. The FIB creates a cross section and subsequently removes thin slices. The SEM takes images using secondary or backscattered electrons, or maps every slice using X-rays and/or electron backscatter diffraction patterns. The objective of this study is to assess the possibilities of combining FIB-SEM tomography with cathodoluminescence (CL) imaging. The intensity of CL emission is related to variations in defect or impurity concentrations. A potential problem with FIB-SEM CL tomography is that ion milling may change the defect state of the material and the CL emission. In addition the conventional tilted sample geometry used in FIB-SEM tomography is not compatible with conventional CL detectors. Here we examine the influence of the FIB on CL emission in natural diamond and the feasibility of FIB-SEM CL tomography. A systematic investigation establishes that the ion beam influences CL emission of diamond, with a dependency on both the ion beam and electron beam acceleration voltage. CL emission in natural diamond is enhanced particularly at low ion beam and electron beam voltages. This enhancement of the CL emission can be partly explained by an increase in surface defects induced by ion milling. CL emission enhancement could be used to improve the CL image quality. To conduct FIB-SEM CL tomography, a recently developed novel specimen geometry is adopted to enable sequential ion milling and CL imaging on an untilted sample. We show that CL imaging can be manually combined with FIB-SEM tomography with a modified protocol for 3D microstructure reconstruction. In principle, automated FIB-SEM CL tomography should be feasible, provided that dedicated CL detectors are developed that allow subsequent milling and CL imaging without manual intervention, as the current CL detector needs to be manually retracted before a slice can be milled. Due to the required high electron beam acceleration voltage for CL emission, the resolution for FIB-SEM CL tomography is currently limited to several hundreds of nm in XY and up to 650 nm in Z for diamonds. Opaque materials are likely to have an improved Z resolution, as CL emission generated deeper in the material is not able to escape from it. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
Quantitative Tomography for Continuous Variable Quantum Systems
NASA Astrophysics Data System (ADS)
Landon-Cardinal, Olivier; Govia, Luke C. G.; Clerk, Aashish A.
2018-03-01
We present a continuous variable tomography scheme that reconstructs the Husimi Q function (Wigner function) by Lagrange interpolation, using measurements of the Q function (Wigner function) at the Padua points, conjectured to be optimal sampling points for two dimensional reconstruction. Our approach drastically reduces the number of measurements required compared to using equidistant points on a regular grid, although reanalysis of such experiments is possible. The reconstruction algorithm produces a reconstructed function with exponentially decreasing error and quasilinear runtime in the number of Padua points. Moreover, using the interpolating polynomial of the Q function, we present a technique to directly estimate the density matrix elements of the continuous variable state, with only a linear propagation of input measurement error. Furthermore, we derive a state-independent analytical bound on this error, such that our estimate of the density matrix is accompanied by a measure of its uncertainty.
NASA Astrophysics Data System (ADS)
Maciel, Thiago O.; Vianna, Reinaldo O.; Sarthour, Roberto S.; Oliveira, Ivan S.
2015-11-01
We reconstruct the time dependent quantum map corresponding to the relaxation process of a two-spin system in liquid-state NMR at room temperature. By means of quantum tomography techniques that handle informational incomplete data, we show how to properly post-process and normalize the measurements data for the simulation of quantum information processing, overcoming the unknown number of molecules prepared in a non-equilibrium magnetization state (Nj) by an initial sequence of radiofrequency pulses. From the reconstructed quantum map, we infer both longitudinal (T1) and transversal (T2) relaxation times, and introduce the J-coupling relaxation times ({T}1J,{T}2J), which are relevant for quantum information processing simulations. We show that the map associated to the relaxation process cannot be assumed approximated unital and trace-preserving for times greater than {T}2J.
Deterministic realization of collective measurements via photonic quantum walks.
Hou, Zhibo; Tang, Jun-Feng; Shang, Jiangwei; Zhu, Huangjun; Li, Jian; Yuan, Yuan; Wu, Kang-Da; Xiang, Guo-Yong; Li, Chuan-Feng; Guo, Guang-Can
2018-04-12
Collective measurements on identically prepared quantum systems can extract more information than local measurements, thereby enhancing information-processing efficiency. Although this nonclassical phenomenon has been known for two decades, it has remained a challenging task to demonstrate the advantage of collective measurements in experiments. Here, we introduce a general recipe for performing deterministic collective measurements on two identically prepared qubits based on quantum walks. Using photonic quantum walks, we realize experimentally an optimized collective measurement with fidelity 0.9946 without post selection. As an application, we achieve the highest tomographic efficiency in qubit state tomography to date. Our work offers an effective recipe for beating the precision limit of local measurements in quantum state tomography and metrology. In addition, our study opens an avenue for harvesting the power of collective measurements in quantum information-processing and for exploring the intriguing physics behind this power.
Pre-seizure state identified by diffuse optical tomography
Zhang, Tao; Zhou, Junli; Jiang, Ruixin; Yang, Hao; Carney, Paul R.; Jiang, Huabei
2014-01-01
In epilepsy it has been challenging to detect early changes in brain activity that occurs prior to seizure onset and to map their origin and evolution for possible intervention. Here we demonstrate using a rat model of generalized epilepsy that diffuse optical tomography (DOT) provides a unique functional neuroimaging modality for noninvasively and continuously tracking such brain activities with high spatiotemporal resolution. We detected early hemodynamic responses with heterogeneous patterns, along with intracranial electroencephalogram gamma power changes, several minutes preceding the electroencephalographic seizure onset, supporting the presence of a “pre-seizure” state. We also observed the decoupling between local hemodynamic and neural activities. We found widespread hemodynamic changes evolving from local regions of the bilateral cortex and thalamus to the entire brain, indicating that the onset of generalized seizures may originate locally rather than diffusely. Together, these findings suggest DOT represents a powerful tool for mapping early seizure onset and propagation pathways. PMID:24445927
Park, B Hyle; Pierce, Mark C; Cense, Barry; de Boer, Johannes F
2004-11-01
We present an analysis for polarization-sensitive optical coherence tomography that facilitates the unrestricted use of fiber and fiber-optic components throughout an interferometer and yields sample birefringence, diattenuation, and relative optic axis orientation. We use a novel Jones matrix approach that compares the polarization states of light reflected from the sample surface with those reflected from within a biological sample for pairs of depth scans. The incident polarization alternated between two states that are perpendicular in a Poincaré sphere representation to ensure proper detection of tissue birefringence regardless of optical fiber contributions. The method was validated by comparing the calculated diattenuation of a polarizing sheet, chicken tendon, and muscle with that obtained by independent measurement. The relative importance of diattenuation versus birefringence to angular displacement of Stokes vectors on a Poincaré sphere was quantified.
Álvarez-Murga, M; Perrillat, J P; Le Godec, Y; Bergame, F; Philippe, J; King, A; Guignot, N; Mezouar, M; Hodeau, J L
2017-01-01
X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris-Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C 60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure-temperature-stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.
NASA Astrophysics Data System (ADS)
Tudisco, E.; Hall, S. A.; Charalampidou, E. M.; Kardjilov, N.; Hilger, A.; Sone, H.
Recent studies have demonstrated that the combination of x-ray tomography during triaxial tests (;in-situ; tests) and 3D- volumetric Digital Image Correlation (3D-DIC) can provide important insight into the mechanical behaviour and deformation processes of granular materials such as sand. The application of these tools to investigate the mechanisms of failure in rocks is also of obvious interest. However, the relevant applied confining pressures for triaxial testing on rocks are higher than those on sands and therefore stronger pressure containment vessels, i.e., made of thick metal walls, are required. This makes in-situ x-ray imaging of rock deformation during triaxial tests a challenge. One possible solution to overcome this problem is to use neutrons, which should better penetrate the metal-walls of the pressure vessels. In this perspective, this work assesses the capability of neutron tomography with 3D-DIC to measure deformation fields in rock samples. Results from pre- and post-deformation neutron tomography of a Bentheim sandstone sample deformed ex-situ at 40 MPa show that clear images of the internal structure can be achieved and utilised for 3D-DIC analysis to reveal the details of the 3D strain field. From these results the character of the localised deformation in the study sample can thus be described. Furthermore, comparison with analyses based on equivalent x-ray tomography imaging of the same sample confirms the effectiveness of the method in relation to the more established x-ray based approach.
Into the decomposed body-forensic digital autopsy using multislice-computed tomography.
Thali, M J; Yen, K; Schweitzer, W; Vock, P; Ozdoba, C; Dirnhofer, R
2003-07-08
It is impossible to obtain a representative anatomical documentation of an entire body using classical X-ray methods, they subsume three-dimensional bodies into a two-dimensional level. We used the novel multislice-computed tomography (MSCT) technique in order to evaluate a case of homicide with putrefaction of the corpse before performing a classical forensic autopsy. This non-invasive method showed gaseous distension of the decomposing organs and tissues in detail as well as a complex fracture of the calvarium. MSCT also proved useful in screening for foreign matter in decomposing bodies, and full-body scanning took only a few minutes. In conclusion, we believe postmortem MSCT imaging is an excellent vizualisation tool with great potential for forensic documentation and evaluation of decomposed bodies.
Neutron Tomography at the Los Alamos Neutron Science Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, William Riley
Neutron imaging is an incredibly powerful tool for non-destructive sample characterization and materials science. Neutron tomography is one technique that results in a three-dimensional model of the sample, representing the interaction of the neutrons with the sample. This relies both on reliable data acquisition and on image processing after acquisition. Over the course of the project, the focus has changed from the former to the latter, culminating in a large-scale reconstruction of a meter-long fossilized skull. The full reconstruction is not yet complete, though tools have been developed to improve the speed and accuracy of the reconstruction. This project helpsmore » to improve the capabilities of LANSCE and LANL with regards to imaging large or unwieldy objects.« less
Evaluation of microfluidic channels with optical coherence tomography
NASA Astrophysics Data System (ADS)
Czajkowski, J.; Prykäri, T.; Alarousu, E.; Lauri, J.; Myllylä, R.
2010-11-01
Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.
Distribution of squeezed states through an atmospheric channel.
Peuntinger, Christian; Heim, Bettina; Müller, Christian R; Gabriel, Christian; Marquardt, Christoph; Leuchs, Gerd
2014-08-08
Continuous variable quantum states of light are used in quantum information protocols and quantum metrology and known to degrade with loss and added noise. We were able to show the distribution of bright polarization squeezed quantum states of light through an urban free-space channel of 1.6 km length. To measure the squeezed states in this extreme environment, we utilize polarization encoding and a postselection protocol that is taking into account classical side information stemming from the distribution of transmission values. The successful distribution of continuous variable squeezed states is accentuated by a quantum state tomography, allowing for determining the purity of the state.
Observation of dynamical vortices after quenches in a system with topology
NASA Astrophysics Data System (ADS)
Fläschner, N.; Vogel, D.; Tarnowski, M.; Rem, B. S.; Lühmann, D.-S.; Heyl, M.; Budich, J. C.; Mathey, L.; Sengstock, K.; Weitenberg, C.
2018-03-01
Topological phases constitute an exotic form of matter characterized by non-local properties rather than local order parameters1. The paradigmatic Haldane model on a hexagonal lattice features such topological phases distinguished by an integer topological invariant known as the first Chern number2. Recently, the identification of non-equilibrium signatures of topology in the dynamics of such systems has attracted particular attention3-6. Here, we experimentally study the dynamical evolution of the wavefunction using time- and momentum-resolved full state tomography for spin-polarized fermionic atoms in driven optical lattices7. We observe the appearance, movement and annihilation of dynamical vortices in momentum space after sudden quenches close to the topological phase transition. These dynamical vortices can be interpreted as dynamical Fisher zeros of the Loschmidt amplitude8, which signal a so-called dynamical phase transition9,10. Our results pave the way to a deeper understanding of the connection between topological phases and non-equilibrium dynamics.
Accurate 3D reconstruction by a new PDS-OSEM algorithm for HRRT
NASA Astrophysics Data System (ADS)
Chen, Tai-Been; Horng-Shing Lu, Henry; Kim, Hang-Keun; Son, Young-Don; Cho, Zang-Hee
2014-03-01
State-of-the-art high resolution research tomography (HRRT) provides high resolution PET images with full 3D human brain scanning. But, a short time frame in dynamic study causes many problems related to the low counts in the acquired data. The PDS-OSEM algorithm was proposed to reconstruct the HRRT image with a high signal-to-noise ratio that provides accurate information for dynamic data. The new algorithm was evaluated by simulated image, empirical phantoms, and real human brain data. Meanwhile, the time activity curve was adopted to validate a reconstructed performance of dynamic data between PDS-OSEM and OP-OSEM algorithms. According to simulated and empirical studies, the PDS-OSEM algorithm reconstructs images with higher quality, higher accuracy, less noise, and less average sum of square error than those of OP-OSEM. The presented algorithm is useful to provide quality images under the condition of low count rates in dynamic studies with a short scan time.
NASA Astrophysics Data System (ADS)
Da Pieve, F.
2016-01-01
A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.
Memory for light as a quantum process.
Lobino, M; Kupchak, C; Figueroa, E; Lvovsky, A I
2009-05-22
We report complete characterization of an optical memory based on electromagnetically induced transparency. We recover the superoperator associated with the memory, under two different working conditions, by means of a quantum process tomography technique that involves storage of coherent states and their characterization upon retrieval. In this way, we can predict the quantum state retrieved from the memory for any input, for example, the squeezed vacuum or the Fock state. We employ the acquired superoperator to verify the nonclassicality benchmark for the storage of a Gaussian distributed set of coherent states.
Lower Mantle S-wave Velocity Model under the Western United States
NASA Astrophysics Data System (ADS)
Nelson, P.; Grand, S. P.
2016-12-01
Deep mantle plumes created by thermal instabilities at the core-mantle boundary has been an explanation for intraplate volcanism since the 1970's. Recently, broad slow velocity conduits in the lower mantle underneath some hotspots have been observed (French and Romanowicz, 2015), however the direct detection of a classical thin mantle plume using seismic tomography has remained elusive. Herein, we present a seismic tomography technique designed to image a deep mantle plume under the Yellowstone Hotspot located in the western United States utilizing SKS and SKKS waves in conjunction with finite frequency tomography. Synthetic resolution tests show the technique can resolve a 235 km diameter lower mantle plume with a 1.5% Gaussian velocity perturbation even if a realistic amount of random noise is added to the data. The Yellowstone Hotspot presents a unique opportunity to image a thin plume because it is the only hotspot with a purported deep origin that has a large enough aperture and density of seismometers to accurately sample the lower mantle at the length scales required to image a plume. Previous regional tomography studies largely based on S wave data have imaged a cylindrically shaped slow anomaly extending down to 900km under the hotspot, however they could not resolve it any deeper (Schmandt et al., 2010; Obrebski et al., 2010).To test if the anomaly extends deeper, we measured and inverted over 40,000 SKS and SKKS waves' travel times in two frequency bands recorded at 2400+ stations deployed during 2006-2012. Our preliminary model shows narrow slow velocity anomalies in the lower mantle with no fast anomalies. The slow anomalies are offset from the Yellowstone hotspot and may be diapirs rising from the base of the mantle.
Davis, Margaret T.; Holmes, Sophie E.; Pietrzak, Robert H.; Esterlis, Irina
2018-01-01
Chronic stress accounts for billions of dollars of economic loss annually in the United States alone, and is recognized as a major source of disability and mortality worldwide. Robust evidence suggests that chronic stress plays a significant role in the onset of severe and impairing psychiatric conditions, including major depressive disorder, bipolar disorder, and posttraumatic stress disorder. Application of molecular imaging techniques such as positron emission tomography and single photon emission computed tomography in recent years has begun to provide insight into the molecular mechanisms by which chronic stress confers risk for these disorders. The present paper provides a comprehensive review and synthesis of all positron emission tomography and single photon emission computed tomography imaging publications focused on the examination of molecular targets in individuals with major depressive disorder, posttraumatic stress disorder, or bipolar disorder to date. Critical discussion of discrepant findings and broad strengths and weaknesses of the current body of literature is provided. Recommended future directions for the field of molecular imaging to further elucidate the neurobiological substrates of chronic stress-related disorders are also discussed. This article is part of the inaugural issue for the journal focused on various aspects of chronic stress. PMID:29862379
Knight, William D; Okello, Aren A; Ryan, Natalie S; Turkheimer, Federico E; Rodríguez Martinez de Llano, Sofia; Edison, Paul; Douglas, Jane; Fox, Nick C; Brooks, David J; Rossor, Martin N
2011-01-01
(11)Carbon-Pittsburgh compound B positron emission tomography studies have suggested early and prominent amyloid deposition in the striatum in presenilin 1 mutation carriers. This cross-sectional study examines the (11)Carbon-Pittsburgh compound B positron emission tomography imaging profiles of presymptomatic and mildly affected (mini-mental state examination ≥ 20) carriers of seven presenilin 1 mutations, comparing them with groups of controls and symptomatic sporadic Alzheimer's disease cases. Parametric ratio images representing (11)Carbon-Pittsburgh compound B retention from 60 to 90 min were created using the pons as a reference region and nine regions of interest were studied. We confirmed that increased amyloid load may be detected in presymptomatic presenilin 1 mutation carriers with (11)Carbon-Pittsburgh compound B positron emission tomography and that the pattern of retention is heterogeneous. Comparison of presenilin 1 and sporadic Alzheimer's disease groups revealed significantly greater thalamic retention in the presenilin 1 group and significantly greater frontotemporal retention in the sporadic Alzheimer's disease group. A few individuals with presenilin 1 mutations showed increased cerebellar (11)Carbon-Pittsburgh compound B retention suggesting that this region may not be as suitable a reference region in familial Alzheimer's disease.
Atomic scale chemical tomography of human bone
NASA Astrophysics Data System (ADS)
Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn
2017-01-01
Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale - the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.
Biedermann, Benjamin R.; Wieser, Wolfgang; Eigenwillig, Christoph M.; Palte, Gesa; Adler, Desmond C.; Srinivasan, Vivek J.; Fujimoto, James G.; Huber, Robert
2009-01-01
We demonstrate en face swept source optical coherence tomography (ss-OCT) without requiring a Fourier transformation step. The electronic optical coherence tomography (OCT) interference signal from a k-space linear Fourier domain mode-locked laser is mixed with an adjustable local oscillator, yielding the analytic reflectance signal from one image depth for each frequency sweep of the laser. Furthermore, a method for arbitrarily shaping the spectral intensity profile of the laser is presented, without requiring the step of numerical apodization. In combination, these two techniques enable sampling of the in-phase and quadrature signal with a slow analog-to-digital converter and allow for real-time display of en face projections even for highest axial scan rates. Image data generated with this technique is compared to en face images extracted from a three-dimensional OCT data set. This technique can allow for real-time visualization of arbitrarily oriented en face planes for the purpose of alignment, registration, or operator-guided survey scans while simultaneously maintaining the full capability of high-speed volumetric ss-OCT functionality. PMID:18978919
Concurrent Ultrasonic Tomography and Acoustic Emission in Solid Materials
NASA Astrophysics Data System (ADS)
Chow, Thomas M.
A series of experiments were performed to detect stress induced changes in the elastic properties of various solid materials. A technique was developed where these changes were monitored concurrently by two methods, ultrasonic tomography and acoustic emission monitoring. This thesis discusses some experiments in which acoustic emission (AE) and ultrasonic tomography were performed on various samples of solid materials including rocks, concrete, metals, and fibre reinforced composites. Three separate techniques were used to induce stress in these samples. Disk shaped samples were subject to stress via diametral loading using an indirect tensile test geometry. Cylindrical samples of rocks and concrete were subject to hydraulic fracture tests, and rectangular samples of fibre reinforced composite were subject to direct tensile loading. The majority of the samples were elastically anisotropic. Full waveform acoustic emission and tomographic data were collected while these samples were under load to give information concerning changes in the structure of the material as it was undergoing stress change and/or failure. Analysis of this data indicates that AE and tomographic techniques mutually compliment each other to give a view of the stress induced elastic changes in the tested samples.
Cosmic Ray Inspection and Passive Tomography for SNM Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armitage, John; Oakham, Gerald; Bryman, Douglas
2009-12-02
The Cosmic Ray Inspection and Passive Tomography (CRIPT) project has recently started investigating the detection of illicit Special Nuclear Material in cargo using cosmic ray muon tomography and complementary neutron detectors. We are currently performing simulation studies to help with the design of small scale prototypes. Based on the prototype tests and refined simulations, we will determine whether the muon tracking system for the full scale prototype will be based on drift chambers or extruded scintillator trackers. An analysis of the operations of the Port of Montreal has determined how long muon scan times should take if all or amore » subset of the cargo is to be screened. As long as the throughput of the muon system(s) is equal to the rate at which containers are unloaded from ships, the impact on port operations would not be great if a muon scanning stage were required for all cargo. We also show preliminary simulation results indicating that excellent separation between Al, Fe and Pb is possible under ideal conditions. The discrimination power is reduced but still significant when realistic momentum resolution measurements are considered.« less
NASA Astrophysics Data System (ADS)
Luo, Y.; Nissen-Meyer, T.; Morency, C.; Tromp, J.
2008-12-01
Seismic imaging in the exploration industry is often based upon ray-theoretical migration techniques (e.g., Kirchhoff) or other ideas which neglect some fraction of the seismic wavefield (e.g., wavefield continuation for acoustic-wave first arrivals) in the inversion process. In a companion paper we discuss the possibility of solving the full physical forward problem (i.e., including visco- and poroelastic, anisotropic media) using the spectral-element method. With such a tool at hand, we can readily apply the adjoint method to tomographic inversions, i.e., iteratively improving an initial 3D background model to fit the data. In the context of this inversion process, we draw connections between kernels in adjoint tomography and basic imaging principles in migration. We show that the images obtained by migration are nothing but particular kinds of adjoint kernels (mainly density kernels). Migration is basically a first step in the iterative inversion process of adjoint tomography. We apply the approach to basic 2D problems involving layered structures, overthrusting faults, topography, salt domes, and poroelastic regions.
Brezinski, M E
2018-01-01
Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.
Cosmic Ray Inspection and Passive Tomography for SNM Detection
NASA Astrophysics Data System (ADS)
Armitage, John; Bryman, Douglas; Cousins, Thomas; Gallant, Grant; Jason, Andrew; Jonkmans, Guy; Noël, Scott; Oakham, Gerald; Stocki, Trevor J.; Waller, David
2009-12-01
The Cosmic Ray Inspection and Passive Tomography (CRIPT) project has recently started investigating the detection of illicit Special Nuclear Material in cargo using cosmic ray muon tomography and complementary neutron detectors. We are currently performing simulation studies to help with the design of small scale prototypes. Based on the prototype tests and refined simulations, we will determine whether the muon tracking system for the full scale prototype will be based on drift chambers or extruded scintillator trackers. An analysis of the operations of the Port of Montreal has determined how long muon scan times should take if all or a subset of the cargo is to be screened. As long as the throughput of the muon system(s) is equal to the rate at which containers are unloaded from ships, the impact on port operations would not be great if a muon scanning stage were required for all cargo. We also show preliminary simulation results indicating that excellent separation between Al, Fe and Pb is possible under ideal conditions. The discrimination power is reduced but still significant when realistic momentum resolution measurements are considered.
Spin-Orbit Misalignments of Three Jovian Planets via Doppler Tomography
NASA Astrophysics Data System (ADS)
Johnson, Marshall C.; Cochran, William D.; Addison, Brett C.; Tinney, Chris G.; Wright, Duncan J.
2017-10-01
We present measurements of the spin-orbit misalignments of the hot Jupiters HAT-P-41 b and WASP-79 b, and the aligned warm Jupiter Kepler-448 b. We obtain these measurements with Doppler tomography, where we spectroscopically resolve the line profile perturbation during the transit due to the Rossiter-McLaughlin effect. We analyze time series spectra obtained during portions of five transits of HAT-P-41 b, and find a value of the spin-orbit misalignment of λ =-{22.1}-6.0{+0.8^\\circ }. We reanalyze the radial velocity Rossiter-McLaughlin data on WASP-79 b obtained by Addison et al. using Doppler tomographic methodology. We measure λ =-{99.1}-3.9{+4.1^\\circ }, consistent with but more precise than the value found by Addison et al. For Kepler-448 b we perform a joint fit to the Kepler light curve, Doppler tomographic data, and a radial velocity data set from Lillo-Box et al. We find an approximately aligned orbit (λ =-{7.1}-2.8{+4.2^\\circ }), in agreement with the value found by Bourrier et al. Through analysis of the Kepler light curve we measure a stellar rotation period of {P}{rot}=1.27+/- 0.11 days, and use this to argue that the full three-dimensional spin-orbit misalignment is small, \\psi ˜ 0^\\circ . Based in part on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.
NASA Astrophysics Data System (ADS)
Bao, X.; Shen, Y.
2017-12-01
An accurate tomography model of the lithospheric mantle is essential for understanding the dynamics and evolution of the Tibetan Plateau. Using regional earthquake records, we obtain the first full-wave Pn tomography model for the eastern Tibetan Plateau. The resulting three-dimensional model exhibits similarities to and notable differences from the previous models based on ray theory. The juxtaposition of a high-velocity anomaly under the eastern Qiangtang Terrane and a low-velocity anomaly to the south near the Bangong-Nujiang Suture (BNS) provides strong evidence that the underthrusting Indian Plate does not reach the BNS beneath the plateau east of 90°E. The model shows no evidence for a southward-subducted Qaidam lithosphere. The sandwich-like layering of a low-velocity layer between two high-velocity layers at 80 to 160 km depths, mainly beneath the Qiangtang Terrane, is consistent with the results of S-to-P receiver functions. The observed contact between these two high-velocity layers beneath the Kunlun suggests that the lower high-velocity layer can be identified as the foundering Tibetan lithospheric mantle, which may be caused by gravitational instability. Beneath the eastern Kunlun Fault and the West Qinling orogen, a southward dipping high-velocity anomaly underlies a low-velocity mantle anomaly, is a pattern consistent with a delaminated mantle lithosphere and associated upwelling asthenosphere. Together with the evidence for lithospheric delamination beneath the central and southern Tibetan Plateau in previous studies, our findings suggest that the lithospheric foundering plays an important role in the formation of the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Brenders, A. J.; Pratt, R. G.
2007-01-01
We provide a series of numerical experiments designed to test waveform tomography under (i) a reduction in the number of input data frequency components (`efficient' waveform tomography), (ii) sparse spatial subsampling of the input data and (iii) an increase in the minimum data frequency used. These results extend the waveform tomography results of a companion paper, using the same third-party, 2-D, wide-angle, synthetic viscoelastic seismic data, computed in a crustal geology model 250 km long and 40 km deep, with heterogeneous P-velocity, S-velocity, density and Q-factor structure. Accurate velocity models were obtained using efficient waveform tomography and only four carefully selected frequency components of the input data: 0.8, 1.7, 3.6 and 7.0 Hz. This strategy avoids the spectral redundancy present in `full' waveform tomography, and yields results that are comparable with those in the companion paper for an 88 per cent decrease in total computational cost. Because we use acoustic waveform tomography, the results further justify the use of the acoustic wave equation in calculating P-wave velocity models from viscoelastic data. The effect of using sparse survey geometries with efficient waveform tomography were investigated for both increased receiver spacing, and increased source spacing. Sampling theory formally requires spatial sampling at maximum interval of one half-wavelength (2.5 km at 0.8 Hz): For data with receivers every 0.9 km (conforming to this criterion), artefacts in the tomographic images were still minimal when the source spacing was as large as 7.6 km (three times the theoretical maximum). Larger source spacings led to an unacceptable degradation of the results. When increasing the starting frequency, image quality was progressively degraded. Acceptable image quality within the central portion of the model was nevertheless achieved using starting frequencies up to 3.0 Hz. At 3.0 Hz the maximum theoretical sample interval is reduced to 0.67 km due to the decreased wavelengths; the available sources were spaced every 5.0 km (more than seven times the theoretical maximum), and receivers were spaced every 0.9 km (1.3 times the theoretical maximum). Higher starting frequencies than 3.0 Hz again led to unacceptable degradation of the results.
Varshowsaz, Masoud; Goorang, Sepideh; Ehsani, Sara; Azizi, Zeynab; Rahimian, Sepideh
2016-03-01
Bone quality and quantity assessment is one of the most important steps in implant treatment planning. Different methods such as computed tomography (CT) and recently suggested cone beam computed tomography (CBCT) with lower radiation dose and less time and cost are used for bone density assessment. This in vitro study aimed to compare the tissue density values in Hounsfield units (HUs) in CBCT and CT scans of different tissue phantoms with two different thicknesses, two different image acquisition settings and in three locations in the phantoms. Four different tissue phantoms namely hard tissue, soft tissue, air and water were scanned by three different CBCT and a CT system in two thicknesses (full and half) and two image acquisition settings (high and low kVp and mA). The images were analyzed at three sites (middle, periphery and intermediate) using eFilm software. The difference in density values was analyzed by ANOVA and correction coefficient test (P<0.05). There was a significant difference between density values in CBCT and CT scans in most situations, and CBCT values were not similar to CT values in any of the phantoms in different thicknesses and acquisition parameters or the three different sites. The correction coefficients confirmed the results. CBCT is not reliable for tissue density assessment. The results were not affected by changes in thickness, acquisition parameters or locations.
Schauwvlieghe, Pieter-Paul; Torre, Kara Della; Coppieters, Frauke; Van Hoey, Anneleen; De Baere, Elfride; De Zaeytijd, Julie; Leroy, Bart P; Brodie, Scott E
2013-01-01
To describe the phenotype of three cases of Sjögren reticular dystrophy in detail, including high-resolution optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. Two unrelated teenagers were independently referred for ophthalmologic evaluation. Both underwent a full ophthalmologic workup, including electrophysiologic and extensive imaging with spectral-domain optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. In addition, mutation screening of ABCA4, PRPH2, and the mitochondrial tRNA gene was performed in Patient 1. Subsequently, the teenage sister of Patient 2 was examined. Strikingly similar phenotypes were present in these three patients. Fundoscopy showed bilateral foveal pigment alterations, and a lobular network of deep retinal, pigmented deposits throughout the posterior pole, tapering toward the midperiphery, with relative sparing of the immediate perifoveal macula and peripapillary area. This network is mildly to moderately hyperautofluorescent on autofluorescence and bright on near-infrared reflectance imaging. Optical coherence tomography showed abnormalities of the retinal pigment epithelium-Bruch membrane complex, photoreceptor outer segments, and photoreceptor inner/outer segment interface. The results of retinal function test were entirely normal. No molecular cause was detected in Patient 1. Imaging suggested that the lobular network of deep retinal deposits in Sjögren reticular dystrophy is the result of accumulation of both pigment and lipofuscin between photoreceptors and retinal pigment epithelium, as well as within the retinal pigment epithelium.
Ambient Noise Interferometry and Surface Wave Array Tomography: Promises and Problems
NASA Astrophysics Data System (ADS)
van der Hilst, R. D.; Yao, H.; de Hoop, M. V.; Campman, X.; Solna, K.
2008-12-01
In the late 1990ies most seismologists would have frowned at the possibility of doing high-resolution surface wave tomography with noise instead of with signal associated with ballistic source-receiver propagation. Some may still do, but surface wave tomography with Green's functions estimated through ambient noise interferometry ('sourceless tomography') has transformed from a curiosity into one of the (almost) standard tools for analysis of data from dense seismograph arrays. Indeed, spectacular applications of ambient noise surface wave tomography have recently been published. For example, application to data from arrays in SE Tibet revealed structures in the crust beneath the Tibetan plateau that could not be resolved by traditional tomography (Yao et al., GJI, 2006, 2008). While the approach is conceptually simple, in application the proverbial devil is in the detail. Full reconstruction of the Green's function requires that the wavefields used are diffusive and that ambient noise energy is evenly distributed in the spatial dimensions of interest. In the field, these conditions are not usually met, and (frequency dependent) non-uniformity of the noise sources may lead to incomplete reconstruction of the Green's function. Furthermore, ambient noise distributions can be time-dependent, and seasonal variations have been documented. Naive use of empirical Green's functions may produce (unknown) bias in the tomographic models. The degrading effect on EGFs of the directionality of noise distribution forms particular challenges for applications beyond isotropic surface wave inversions, such as inversions for (azimuthal) anisotropy and attempts to use higher modes (or body waves). Incomplete Green's function reconstruction can (probably) not be prevented, but it may be possible to reduce the problem and - at least - understand the degree of incomplete reconstruction and prevent it from degrading the tomographic model. We will present examples of Rayleigh wave inversions and discuss strategies to mitigate effects of incomplete Green's function reconstruction on tomographic images.
NASA Astrophysics Data System (ADS)
Li, Peng
This dissertation presents two innovations in seismic tomography and a new discovery of induced seismic events associated with CO2 injection at an Enhanced Oil Recovery (EOR) site. The following are brief introductions of these three works. The first innovated work is adaptive ambient seismic noise tomography (AANT). Traditional ambient noise tomography methods using regular grid nodes are often ill posed because the inversion grids do not always represent the distribution of ray paths. Large grid spacing is usually used to reduce the number of inversion parameters, which may not be able to solve for small-scale velocity structure. We present a new adaptive tomography method with irregular grids that provides a few advantages over the traditional methods. First, irregular grids with different sizes and shapes can fit the ray distribution better and the traditionally ill-posed problem can become more stable owing to the different parameterizations. Second, the data in the area with dense ray sampling will be sufficiently utilized so that the model resolution can be greatly improved. Both synthetic and real data are used to test the newly developed tomography algorithm. In synthetic data tests, we compare the resolution and stability of the traditional and adaptive methods. The results show that adaptive tomography is more stable and performs better in improving the resolution in the area with dense ray sampling. For real data, we extract the ambient noise signals of the seismic data near the Garlock Fault region, obtained from the Southern California Earthquake Data Center. The resulting group velocity of Rayleigh waves is well correlated with the geological structures. High velocity anomalies are shown in the cold southern Sierra Nevada, the Tehachapi Mountains and the Western San Gabriel Mountains. The second innovated work is local earthquake tomography with full topography (LETFT). In this work, we develop a new three-dimensional local earthquake tomography algorithm with the inclusion of full topography that is integrated from the Digital Elevation Model data. We present both synthetic and real data tests based on the compressional (P) wave arrival time data for Kilauea volcano in Hawai'i. A total of 33,768 events with 515,711 P-picks recorded by 35 stations at the Hawaiian Volcano Observatory are used in these tests. The comparison between the new and traditional methods based on the synthetic test shows that our new algorithm significantly improves the accuracy of the velocity model, especially at shallow depths. In the real data test, the P-wave velocity model of Kilauea shows some intriguing features. Velocity decrease from the surface to 2 km depth beneath Kilauea caldera indicates a state change of the basalt. Low velocity zones beneath Pu'u'O'o, Heiheiahulu and the Hilina fault system between 5 and 12 km are possible partial melting zones. High velocity anomalies are resolved below 6 km depth beneath the summit caldera, which may suggest the presence of consolidated gabbro-ultramafic cumulates. In the third work, we installed three broadband seismic stations (Test1, Test2 and Test3) in an Enhanced Oil Recovery field to monitor the potential seismic events associated with CO 2 injection. In the two years of continuous seismic data between October 2011 and October 2013, we observed a type of long duration (LD) events instead of typical micro earthquakes, with an average daily rate of 12. The LD events have the following characteristics: (1) their duration varies from ˜30 to ˜300 sec; (2) the amplitude changes smoothly from the beginning to the end of the LD event window; (3) they are local seismic events and were not recorded by regional seismic stations (e.g., ˜200 km away); (4) the waveforms are very different from those of typical earthquakes, but similar to volcanic tremors; (5) the frequency content is mainly concentrated between 0.5 and 6 Hz, which is similar to the frequency band of volcanic tremors; and (6) the source of the LD event is not a single source and could migrate to complex fractures. We picked the LD events in the two-year time period, calculated their daily rate, and compared the results with the reservoir pressure data measured in the north block. The LD event daily rates of Test1 and Test2 have a similar variation pattern as the reservoir pressure. The peak of the LD event daily rate at Test2 is about two months delayed from the peak of the pressure, whereas the LD event daily rate at Test3 does not show similar pattern. We interpret that this is because Test3 is located in the south block and a sealing fault blocks the migration of the injected CO2 from the north to the south block.
Noninvasive cardiovascular imaging.
Hartman, Robert J
2014-01-01
Over the past 2 decades, use of noninvasive cardiovascular imaging has increased dramatically. This article provides a brief synopsis of the current state of several technologies-- echocardiography, cardiac magnetic resonance imaging, and cardiac computed tomography--as well as a glimpse at future possibilities in cardiac imaging.
Hirano, Takao; Chanwimol, Karntida; Weichsel, Julian; Tepelus, Tudor; Sadda, Srinivas
2018-06-20
Optical coherence tomography angiography (OCTA) allows the retinal microvasculature to be visualized at various retinal depths. Previous studies introduced OCTA axial profile analysis and showed regional variations in the number and location of axially distinct vascular retinal plexuses. OCTA acquisition and processing approaches, however, vary in terms of their resulting transverse and axial resolutions, and especially the latter could potentially influence the profile analysis results. Our study imaged normal eyes using the Spectralis OCT2 with a full-spectrum, probabilistic OCTA algorithm, that, in marked contrast to split-spectrum approaches, preserves the original high OCT axial resolution also within the resulting OCTA signal. En face OCTA images are generally created by averaging flow signals over a finite axial depth window. However, we assessed regional OCTA signal profiles at each depth position at full axial resolution. All regions had two sharp vessel density peaks near the inner and outer boundaries of the inner nuclear layer, indicating separate intermediate and deep capillary plexuses. The superficial vascular plexus (SVP) separated into two distinct peaks within the ganglion cell layer in the parafoveal zone. The nasal, superior, and inferior perifovea had a deeper SVP peak that was shifted anteriorly compared to the parafoveal zone. Axial vascular density analysis with high-resolution, full spectrum OCTA thus allows healthy retinal vasculature to be precisely reconstructed and may be useful for clinically assessing retinal pathology.
Raymond, S B; Kumar, A T N; Boas, D A; Bacskai, B J
2012-01-01
Amyloid-β plaques are an Alzheimer’s disease biomarker which present unique challenges for near-infrared fluorescence tomography because of size (<50 μm diameter) and distribution. We used high-resolution simulations of fluorescence in a digital Alzheimer’s disease mouse model to investigate the optimal fluorophore and imaging parameters for near-infrared fluorescence tomography of amyloid plaques. Fluorescence was simulated for amyloid-targeted probes with emission at 630 and 800 nm, plaque-to-background ratios from 1–1000, amyloid burden from 0–10%, and for transmission and reflection measurement geometries. Fluorophores with high plaque-to-background contrast ratios and 800 nm emission performed significantly better than current amyloid imaging probes. We tested idealized fluorophores in transmission and full-angle tomographic measurement schemes (900 source–detector pairs), with and without anatomical priors. Transmission reconstructions demonstrated strong linear correlation with increasing amyloid burden, but underestimated fluorescence yield and suffered from localization artifacts. Full-angle measurements did not improve upon the transmission reconstruction qualitatively or in semi-quantitative measures of accuracy; anatomical and initial-value priors did improve reconstruction localization and accuracy for both transmission and full-angle schemes. Region-based reconstructions, in which the unknowns were reduced to a few distinct anatomical regions, produced highly accurate yield estimates for cortex, hippocampus and brain regions, even with a reduced number of measurements (144 source–detector pairs). PMID:19794239
Direct conversion semiconductor detectors in positron emission tomography
NASA Astrophysics Data System (ADS)
Cates, Joshua W.; Gu, Yi; Levin, Craig S.
2015-05-01
Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.
Synchrotron-based X-ray computed tomography during compression loading of cellular materials
Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; ...
2015-04-29
Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.
Subaperture correlation based digital adaptive optics for full field optical coherence tomography.
Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A
2013-05-06
This paper proposes a sub-aperture correlation based numerical phase correction method for interferometric full field imaging systems provided the complex object field information can be extracted. This method corrects for the wavefront aberration at the pupil/ Fourier transform plane without the need of any adaptive optics, spatial light modulators (SLM) and additional cameras. We show that this method does not require the knowledge of any system parameters. In the simulation study, we consider a full field swept source OCT (FF SSOCT) system to show the working principle of the algorithm. Experimental results are presented for a technical and biological sample to demonstrate the proof of the principle.
Transmission X-ray microscopy for full-field nano-imaging of biomaterials
ANDREWS, JOY C; MEIRER, FLORIAN; LIU, YIJIN; MESTER, ZOLTAN; PIANETTA, PIERO
2010-01-01
Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. These techniques are discussed and compared in light of results from imaging of biological materials including microorganisms, bone and mineralized tissue and plants, with a focus on hard X-ray TXM at ≤ 40 nm resolution. PMID:20734414
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inugami, A.; Kanno, I.; Uemura, K.
1988-12-01
The radioisotope distribution following intravenous injection of 99mTc-labeled hexamethylpropyleneamine oxime (HM-PAO) in the brain was measured by single photon emission computed tomography (SPECT) and corrected for the nonlinearity caused by differences in net extraction. The linearization correction was based on a three compartment model, and it required a region of reference to normalize the SPECT image in terms of regional cerebral blood flow distribution. Two different regions of reference, the cerebellum and the whole brain, were tested. The uncorrected and corrected HM-PAO images were compared with cerebral blood flow (CBF) image measured by the C VO2 inhalation steady state methodmore » and positron emission tomography (PET). The relationship between uncorrected HM-PAO and PET-CBF showed a correlation coefficient of 0.85 but tended to saturate at high CBF values, whereas it was improved to 0.93 after the linearization correction. The whole-brain normalization worked just as well as normalization using the cerebellum. This study constitutes a validation of the linearization correction and it suggests that after linearization the HM-PAO image may be scaled to absolute CBF by employing a global hemispheric CBF value as measured by the nontomographic TTXe clearance method.« less
NASA Astrophysics Data System (ADS)
Petri, Andrea; May, Morgan; Haiman, Zoltán
2016-09-01
Weak gravitational lensing is becoming a mature technique for constraining cosmological parameters, and future surveys will be able to constrain the dark energy equation of state w . When analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear correlations. We forecast parameter constraints on the triplet (Ωm,w ,σ8) for a LSST-like photometric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts and higher convergence moments. We find that redshift tomography with the power spectrum reduces the area of the 1 σ confidence interval in (Ωm,w ) space by a factor of 8 with respect to the case of the single highest redshift bin. We also find that adding non-Gaussian information from the peak counts and higher-order moments of the convergence field and its spatial derivatives further reduces the constrained area in (Ωm,w ) by factors of 3 and 4, respectively. When we add cosmic microwave background parameter priors from Planck to our analysis, tomography improves power spectrum constraints by a factor of 3. Adding moments yields an improvement by an additional factor of 2, and adding both moments and peaks improves by almost a factor of 3 over power spectrum tomography alone. We evaluate the effect of uncorrected systematic photometric redshift errors on the parameter constraints. We find that different statistics lead to different bias directions in parameter space, suggesting the possibility of eliminating this bias via self-calibration.
Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study
NASA Astrophysics Data System (ADS)
Sun, Yao; Sobel, Eric; Jiang, Huabei
2009-11-01
We present for the first time in vivo full three-dimensional (3-D) photoacoustic tomography (PAT) of the distal interphalangeal joint in a human subject. Both absorbed energy density and absorption coefficient images of the joint are quantitatively obtained using our finite-element-based photoacoustic image reconstruction algorithm coupled with the photon diffusion equation. The results show that major anatomical features in the joint along with the side arteries can be imaged with a 1-MHz transducer in a spherical scanning geometry. In addition, the cartilages associated with the joint can be quantitatively differentiated from the phalanx. This in vivo study suggests that the 3-D PAT method described has the potential to be used for early diagnosis of joint diseases such as osteoarthritis and rheumatoid arthritis.
The influence of Stochastic perturbation of Geotechnical media On Electromagnetic tomography
NASA Astrophysics Data System (ADS)
Song, Lei; Yang, Weihao; Huangsonglei, Jiahui; Li, HaiPeng
2015-04-01
Electromagnetic tomography (CT) are commonly utilized in Civil engineering to detect the structure defects or geological anomalies. CT are generally recognized as a high precision geophysical method and the accuracy of CT are expected to be several centimeters and even to be several millimeters. Then, high frequency antenna with short wavelength are utilized commonly in Civil Engineering. As to the geotechnical media, stochastic perturbation of the EM parameters are inevitably exist in geological scales, in structure scales and in local scales, et al. In those cases, the geometric dimensionings of the target body, the EM wavelength and the accuracy expected might be of the same order. When the high frequency EM wave propagated in the stochastic geotechnical media, the GPR signal would be reflected not only from the target bodies but also from the stochastic perturbation of the background media. To detect the karst caves in dissolution fracture rock, one need to assess the influence of the stochastic distributed dissolution holes and fractures; to detect the void in a concrete structure, one should master the influence of the stochastic distributed stones, et al. In this paper, on the base of stochastic media discrete realizations, the authors try to evaluate quantificationally the influence of the stochastic perturbation of Geotechnical media by Radon/Iradon Transfer through full-combined Monte Carlo numerical simulation. It is found the stochastic noise is related with transfer angle, perturbing strength, angle interval, autocorrelation length, et al. And the quantitative formula of the accuracy of the electromagnetic tomography is also established, which could help on the precision estimation of GPR tomography in stochastic perturbation Geotechnical media. Key words: Stochastic Geotechnical Media; Electromagnetic Tomography; Radon/Iradon Transfer.
NASA Astrophysics Data System (ADS)
Baptista, M.; Di Maria, S.; Vieira, S.; Vaz, P.
2017-11-01
Cone-Beam Computed Tomography (CBCT) enables high-resolution volumetric scanning of the bone and soft tissue anatomy under investigation at the treatment accelerator. This technique is extensively used in Image Guided Radiation Therapy (IGRT) for pre-treatment verification of patient position and target volume localization. When employed daily and several times per patient, CBCT imaging may lead to high cumulative imaging doses to the healthy tissues surrounding the exposed organs. This work aims at (1) evaluating the dose distribution during a CBCT scan and (2) calculating the organ doses involved in this image guiding procedure for clinically available scanning protocols. Both Monte Carlo (MC) simulations and measurements were performed. To model and simulate the kV imaging system mounted on a linear accelerator (Edge™, Varian Medical Systems) the state-of-the-art MC radiation transport program MCNPX 2.7.0 was used. In order to validate the simulation results, measurements of the Computed Tomography Dose Index (CTDI) were performed, using standard PMMA head and body phantoms, with 150 mm length and a standard pencil ionizing chamber (IC) 100 mm long. Measurements for head and pelvis scanning protocols, usually adopted in clinical environment were acquired, using two acquisition modes (full-fan and half fan). To calculate the organ doses, the implemented MC model of the CBCT scanner together with a male voxel phantom ("Golem") was used. The good agreement between the MCNPX simulations and the CTDIw measurements (differences up to 17%) presented in this work reveals that the CBCT MC model was successfully validated, taking into account the several uncertainties. The adequacy of the computational model to map dose distributions during a CBCT scan is discussed in order to identify ways to reduce the total CBCT imaging dose. The organ dose assessment highlights the need to evaluate the therapeutic and the CBCT imaging doses, in a more balanced approach, and the importance of improving awareness regarding the increased risk, arising from repeated exposures.
Adjoint tomography of crust and upper-mantle structure beneath Continental China
NASA Astrophysics Data System (ADS)
Chen, M.; Niu, F.; Liu, Q.; Tromp, J.
2013-12-01
Four years of regional earthquake recordings from 1,869 seismic stations are used for high-resolution and high-fidelity seismic imaging of the crust and upper-mantle structure beneath Continental China. This unprecedented high-density dataset is comprised of seismograms recorded by the China Earthquake Administration Array (CEArray), NorthEast China Extended SeiSmic Array (NECESSArray), INDEPTH-IV Array, F-net and other global and regional seismic networks, and involves 1,326,384 frequency-dependent phase measurements. Adjoint tomography is applied to this unprecedented dataset, aiming to resolve detailed 3D maps of compressional and shear wavespeeds, and radial anisotropy. Contrary to traditional ray-theory based tomography, adjoint tomography takes into account full 3D wave propagation effects and off-ray-path sensitivity. In our implementation, it utilizes a spectral-element method for precise wave propagation simulations. The tomographic method starts with a 3D initial model that combines smooth radially anisotropic mantle model S362ANI and 3D crustal model Crust2.0. Traveltime and amplitude misfits are minimized iteratively based on a conjugate gradient method, harnessing 3D finite-frequency kernels computed for each updated 3D model. After 17 iterations, our inversion reveals strong correlations of 3D wavespeed heterogeneities in the crust and upper mantle with surface tectonic units, such as the Himalaya Block, the Tibetan Plateau, the Tarim Basin, the Ordos Block, and the South China Block. Narrow slab features emerge from the smooth initial model above the transition zone beneath the Japan, Ryukyu, Philippine, Izu-Bonin, Mariana and Andaman arcs. 3D wavespeed variations appear comparable to or much sharper than in high-frequency P-and S-wave models from previous studies. Moreover our results include new information, such as 3D variations of radial anisotropy and the Vp/Vs ratio, which are expected to shed new light to the composition, thermal state, flow or fabric structure in the crust and upper mantle, as well as the related dynamical processes. We intend to use these seismic images to answer important tectonic questions, namely, 1) what controls the strength of the lithosphere; 2) how does lithosphere deform during the formation of orogens, basins and plateaus; 3) how pervasive is lithospheric delamination or partial removal beneath orogens and plateaus; 3) whether or not (and how) are slab segmentation and penetration into the lower mantle linked to upwellings associated with widespread magmatism in East Asia.
A LabVIEW® based generic CT scanner control software platform.
Dierick, M; Van Loo, D; Masschaele, B; Boone, M; Van Hoorebeke, L
2010-01-01
UGCT, the Centre for X-ray tomography at Ghent University (Belgium) does research on X-ray tomography and its applications. This includes the development and construction of state-of-the-art CT scanners for scientific research. Because these scanners are built for very different purposes they differ considerably in their physical implementations. However, they all share common principle functionality. In this context a generic software platform was developed using LabVIEW® in order to provide the same interface and functionality on all scanners. This article describes the concept and features of this software, and its potential for tomography in a research setting. The core concept is to rigorously separate the abstract operation of a CT scanner from its actual physical configuration. This separation is achieved by implementing a sender-listener architecture. The advantages are that the resulting software platform is generic, scalable, highly efficient, easy to develop and to extend, and that it can be deployed on future scanners with minimal effort.
Radioactive Nanomaterials for Multimodality Imaging
Chen, Daiqin; Dougherty, Casey A.; Yang, Dongzhi; Wu, Hongwei; Hong, Hao
2016-01-01
Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases. PMID:27227167
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, Barnaby D. A.; Padgett, Elliot; Chen, Chien-Chun
Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co 2 P nanocrystal, platinum nanoparticles on a carbonmore » nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.« less
History and future technical innovation in positron emission tomography
Jones, Terry; Townsend, David
2017-01-01
Abstract. Instrumentation for positron emission tomography (PET) imaging has experienced tremendous improvements in performance over the past 60 years since it was first conceived as a medical imaging modality. Spatial resolution has improved by a factor of 10 and sensitivity by a factor of 40 from the early designs in the 1970s to the high-performance scanners of today. Multimodality configurations have emerged that combine PET with computed tomography (CT) and, more recently, with MR. Whole-body scans for clinical purposes can now be acquired in under 10 min on a state-of-the-art PET/CT. This paper will review the history of these technical developments over 40 years and summarize the important clinical research and healthcare applications that have been made possible by these technical advances. Some perspectives for the future of this technology will also be presented that promise to bring about new applications of this imaging modality in clinical research and healthcare. PMID:28401173
The DAFT/FADA Survey status and latest results
NASA Astrophysics Data System (ADS)
Guennou, L.
2011-12-01
We present here the latest results obtained from the American French collaboration called the Dark energy American French Team/French American DArk energy Team (DAFT/FADA). The goal of the DAFT/FADA collaboration is to carry out a weak lensing tomography survey of z = 0.4-0.9 rich clusters of galaxies. Unlike supernovae or other methods such as cluster of galaxy counts, weak lensing tomography is purely based on geometry and does not depend on knowledge of the physics of the objects used as distance indicators. In addition, the reason for analyzing observations in the direction of clusters is that the shear signal is enhanced by about 10 over the field. Our work will eventually contain results obtained on 91 rich clusters from the HST archive combined with ground based work to obtain photo-zs. This combination of photo-z and weak lensing tomography will enable us to constrain the equation of state of dark energy. We present here the latest results obtained so far in this study.
Correlative cryogenic tomography of cells using light and soft x-rays
Smith, Elizabeth A.; Cinquin, Bertrand P.; Do, Myan; McDermott, Gerry; Le Gros, Mark A.; Larabell, Carolyn A.
2013-01-01
Correlated imaging is the process of imaging a specimen with two complementary modalities, and then combining the two data sets to create a highly informative, composite view. A recent implementation of this concept has been the combination of soft x-ray tomography (SXT) with fluorescence cryogenic microscopy (FCM). SXT-FCM is used to visualize cells that are held in a near-native, cryo-preserved state. The resultant images are, therefore, highly representative of both the cellular architecture and molecular organization in vivo. SXT quantitatively visualizes the cell and sub-cellular structures; FCM images the spatial distribution of fluorescently labeled molecules. Here, we review the characteristics of SXT-FCM, and briefly discuss how this method compares with existing correlative imaging techniques. We also describe how the incorporation of a cryo-rotation stage into a cryogenic fluorescence microscope allows acquisition of fluorescence cryogenic tomography (FCT) data. FCT is optimally suited to correlation with SXT, since both techniques image the specimen in 3-D, potentially with similar, isotropic spatial resolution. PMID:24355261
Magnetic Resonance Based Electrical Properties Tomography: A Review
Zhang, Xiaotong; Liu, Jiaen
2014-01-01
Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g. tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced Specific Absorption Rate (SAR) which is a major safety concern in high- and ultrahigh-field Magnetic Resonance Imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced Electrical Properties Tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and non-invasively with a spatial resolution of a few millimeters or less. This paper reviews the Electrical Properties Tomography approach from its basic theory in electromagnetism to the state of the art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed. PMID:24803104
Nanometer scale composition study of MBE grown BGaN performed by atom probe tomography
NASA Astrophysics Data System (ADS)
Bonef, Bastien; Cramer, Richard; Speck, James S.
2017-06-01
Laser assisted atom probe tomography is used to characterize the alloy distribution in BGaN. The effect of the evaporation conditions applied on the atom probe specimens on the mass spectrum and the quantification of the III site atoms is first evaluated. The evolution of the Ga++/Ga+ charge state ratio is used to monitor the strength of the applied field. Experiments revealed that applying high electric fields on the specimen results in the loss of gallium atoms, leading to the over-estimation of boron concentration. Moreover, spatial analysis of the surface field revealed a significant loss of atoms at the center of the specimen where high fields are applied. A good agreement between X-ray diffraction and atom probe tomography concentration measurements is obtained when low fields are applied on the tip. A random distribution of boron in the BGaN layer grown by molecular beam epitaxy is obtained by performing accurate and site specific statistical distribution analysis.
Vanner, M. R.; Pikovski, I.; Cole, G. D.; Kim, M. S.; Brukner, Č.; Hammerer, K.; Milburn, G. J.; Aspelmeyer, M.
2011-01-01
Studying mechanical resonators via radiation pressure offers a rich avenue for the exploration of quantum mechanical behavior in a macroscopic regime. However, quantum state preparation and especially quantum state reconstruction of mechanical oscillators remains a significant challenge. Here we propose a scheme to realize quantum state tomography, squeezing, and state purification of a mechanical resonator using short optical pulses. The scheme presented allows observation of mechanical quantum features despite preparation from a thermal state and is shown to be experimentally feasible using optical microcavities. Our framework thus provides a promising means to explore the quantum nature of massive mechanical oscillators and can be applied to other systems such as trapped ions. PMID:21900608
Ocular fundus manifestation of two patients following long-term chloroquine therapy: a case report
2010-01-01
This report describes the typical manifestations of chloroquine retinopathy with some advanced new technology. A series of examinations were performed on the patients, including the fundus fluorescein angiography, optical coherence tomography, GDxVCC Nerve Fiber Analyzer, full-field electroretinography, multifocal electroretinography and visual field examinations, to provide a better understanding of chloroquine retinopathy. PMID:20346186
NASA Astrophysics Data System (ADS)
Zarnescu, Livia; Leung, Michael C.; Abeyta, Michael; Sudkamp, Helge; Baer, Thomas; Behr, Barry; Ellerbee, Audrey K.
2015-09-01
Vitrification is an increasingly popular method of embryo cryopreservation that is used in assisted reproductive technology. Although vitrification has high post-thaw survival rates compared to other freezing techniques, its long-term effects on embryo development are still poorly understood. We demonstrate an application of full-field optical coherence tomography (FF-OCT) to visualize the effects of vitrification on live single-cell (2 pronuclear) mouse embryos without harmful labels. Using FF-OCT, we observed that vitrification causes a significant increase in the aggregation of structures within the embryo cytoplasm, consistent with reports in literature based on fluorescence techniques. We quantify the degree of aggregation with an objective metric, the cytoplasmic aggregation (CA) score, and observe a high degree of correlation between the CA scores of FF-OCT images of embryos and of fluorescence images of their mitochondria. Our results indicate that FF-OCT shows promise as a label-free assessment of the effects of vitrification on embryo mitochondria distribution. The CA score provides a quantitative metric to describe the degree to which embryos have been affected by vitrification and could aid clinicians in selecting embryos for transfer.
Optical coherence tomography in the diagnosis of juvenile X-linked retinoschisis.
Eriksson, Urban; Larsson, Eva; Holmström, Gerd
2004-04-01
To describe the value of optical coherence tomography (OCT) as a diagnostic tool in the diagnosis of X-linked retinoschisis. We report three boys aged between 8 and 17 years, diagnosed with X-linked retinoschisis. During investigations they were examined with OCT (Zeiss Humphrey OCT 1, upgraded version). Single scans of the central posterior pole and the region around the vascular arcades were obtained. Two of the boys underwent full-field ERG according to ISCEV standards. Genetic analysis was performed in all three boys, with sequencing of the XLRS gene. The OCT results revealed a pattern with a cleavage of the retina in two distinct planes, one deep (outer retina) and one superficial. This was very obvious in one patient and a similar but not as pronounced pattern was seen in the other two cases. The two layers were superficially connected with thin-walled, vertical palisades, separated by low reflective, cystoid spaces, confluent and most prominent in the foveal region. Full-field ERG and/or DNA analysis are well known methods used for diagnosis of X-linked juvenile retinoschisis. In this paper, we suggest that OCT can also be a helpful diagnostic tool.
Glacial Isostatic Adjustment with ICE-6G{_}C (VM5a) and Laterally Heterogeneous Mantle Viscosity
NASA Astrophysics Data System (ADS)
Li, Tanghua; Wu, Patrick; Steffen, Holger
2017-04-01
Recently, Peltier et al. (2015) introduced the ICE-6GC (VM5a) ice-earth model pair, which has successfully explained many observations of Glacial Isostatic Adjustment (GIA) simultaneously. However, their earth model used (VM5a) to infer the ice history (ICE-6G_C) is laterally homogeneous with viscosity profile varying in the radial direction only. Since surface geology and seismic tomography clearly indicates that the Earth's material properties also vary in the lateral direction, laterally heterogeneity must be included in GIA models. This can be achieved by using the Coupled-Laplace-Finite-Element method (Wu 2004) to model GIA in a spherical, self-gravitating, compressible viscoelastic Earth with linear rheology and lateral heterogeneity. In fact, Wu et al (2013) have used such model with GIA observations (e.g. global relative sea level data, GRACE data with recent hydrology contributions removed and GPS crustal uplift rates) to study the thermal contribution to lateral heterogeneity in the mantle. Their lateral viscosity perturbations are inferred from the seismic shear wave tomography model S20A (Ekstrom & Dziewonski 1998) by applying a scaling law, which includes both the effect of anharmonicity and anelasticity. The thermal contribution to seismic tomography, which is represented by the beta factor in the scaling relationship, is searched in the upper and lower mantle, for the best combination that gives the best fit between GIA predictions and observations. However, their study is based on ICE-4G only, and the new ice-earth model pair may give other best beta value combinations in the upper and lower mantle. Here, we follow the work of Wu et al (2013) but use the new ICE-6GC ice model instead. The higher resolution seismic tomography model by Bunge & Grand (2000) substitutes S20A. Earth model VM5a is used as the reference background viscosity model. The full viscosity model is obtained by superposing the background model with the lateral viscosity perturbations inferred from the seismic tomography model (Bunge & Grand 2000) logarithmically. The preliminary results of these and other background viscosity profiles will be presented. References: Bunge, H.-P. & Grand, S. P. (2000). Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab. Nature, 405(6784):337-340. Peltier, W., Argus, D., and Drummond, R. (2015). Space geodesy constrains ice age terminal deglaciation: The global ICE-6GC (VM5a) model. Journal of Geophysical Research: Solid Earth, 120(1): 450-487. Wu, P. (2004). Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress. Geophysical Journal International, 158(2): 401-408. Wu, P., Wang, H.S. & Steffen, H. (2012). The role of thermal effect on mantle seismic anomalies under Laurentia and Fennoscandia from observations of Glacial Isostatic Adjustment. Geophysical Journal International, 192(1):7-17.
Wuntakal, Rekha; Papadopoulos, Andreas John; Montalto, Stephen Attard; Perovic, Milica; Coutts, Michael; Devaja, Omer
2015-11-01
The aims of this study were to assess locality of the sentinel lymph node (SLN) in cervical carcinoma and examine factors affecting bilateral SLN detection. This was a retrospective review of SLN data (anatomical location, count and laterality) in patients with early-stage cervical cancer (International Federation of Gynecology and Obstetrics stage IA1 with lymphovascular space invasion to stage IIA) using intraoperative gamma probe and blue dye. The preoperative single-photon emission computed tomography with computed tomography was used to detect laterality, number of the SLNs, and rare locations. Patients were treated between January 2005 to January 2015 at the West Kent Gynaecological Oncology Centre, Maidstone Hospital, Maidstone, United Kingdom. A total of 132 women were investigated. The most common SLN location was the external iliac (38.6%) followed by obturator (25.3%) and internal iliac (23.6%) regions. A small percentage was identified in presacral (1.4%) and para-aortic regions (0.7%). Older age (P = 0.01) and an elevated body mass index (P = 0.03) were associated with decreased SLN count by preoperative single-photon emission computed tomography with computed tomography, and only age affected SLN count by gamma probe (P = 0.01). Initial surgery, large loop excision of the transformation zone, or cone biopsy of the cervix had no effect on SLN count. There was no difference observed in bilateral detection with respect to surgical approach (open: n = 48/laparoscopic: n = 84). However, older age was independently associated with a decrease in bilateral SLN detection (P = 0.003). In these patients who underwent unilateral full pelvic lymphadenectomy, all the nonsentinel nodes were negative. The majority of SLNs were located in the external iliac, obturator, and internal iliac regions. Both older age and an elevated body mass index were associated with a reduced SLN count. Unilateral detection of SLN was independently associated with older age, which may be due to sclerosis in the lymphatic vessels or reduced perfusion in the pelvis in these women. If no SLN is detected on one side, the consensus is to perform a full pelvic lymphadenectomy on that side of the pelvis.
Foundations for a multiscale collaborative Earth model
NASA Astrophysics Data System (ADS)
Afanasiev, Michael; Peter, Daniel; Sager, Korbinian; Simutė, Saulė; Ermert, Laura; Krischer, Lion; Fichtner, Andreas
2016-01-01
We present a computational framework for the assimilation of local to global seismic data into a consistent model describing Earth structure on all seismically accessible scales. This Collaborative Seismic Earth Model (CSEM) is designed to meet the following requirements: (i) Flexible geometric parametrization, capable of capturing topography and bathymetry, as well as all aspects of potentially resolvable structure, including small-scale heterogeneities and deformations of internal discontinuities. (ii) Independence of any particular wave equation solver, in order to enable the combination of inversion techniques suitable for different types of seismic data. (iii) Physical parametrization that allows for full anisotropy and for variations in attenuation and density. While not all of these parameters are always resolvable, the assimilation of data that constrain any parameter subset should be possible. (iv) Ability to accommodate successive refinements through the incorporation of updates on any scale as new data or inversion techniques become available. (v) Enable collaborative Earth model construction. The structure of the initial CSEM is represented on a variable-resolution tetrahedral mesh. It is assembled from a long-wavelength 3-D global model into which several regional-scale tomographies are embedded. We illustrate the CSEM workflow of successive updating with two examples from Japan and the Western Mediterranean, where we constrain smaller scale structure using full-waveform inversion. Furthermore, we demonstrate the ability of the CSEM to act as a vehicle for the combination of different tomographic techniques with a joint full-waveform and traveltime ray tomography of Europe. This combination broadens the exploitable frequency range of the individual techniques, thereby improving resolution. We perform two iterations of a whole-Earth full-waveform inversion using a long-period reference data set from 225 globally recorded earthquakes. At this early stage of the CSEM development, the broad global updates mostly act to remove artefacts from the assembly of the initial CSEM. During the future evolution of the CSEM, the reference data set will be used to account for the influence of small-scale refinements on large-scale global structure. The CSEM as a computational framework is intended to help bridging the gap between local, regional and global tomography, and to contribute to the development of a global multiscale Earth model. While the current construction serves as a first proof of concept, future refinements and additions will require community involvement, which is welcome at this stage already.
ERIC Educational Resources Information Center
Scientific American, 1978
1978-01-01
Describes scientific events: computed tomography (CT) scanner and its costs, existence of Upsilon particle in its lowest excited state, animal psychology to determine their capabilities of symbolic communication, findings of Viking mission about Mars and its two moons, and finally gives credit to first discoverer of penicillin. (GA)
NASA Astrophysics Data System (ADS)
Gelikonov, V. M.; Romashov, V. N.; Shabanov, D. V.; Ksenofontov, S. Yu.; Terpelov, D. A.; Shilyagin, P. A.; Gelikonov, G. V.; Vitkin, I. A.
2018-05-01
We consider a cross-polarization optical coherence tomography system with a common path for the sounding and reference waves and active maintenance of the circular polarization of a sounding wave. The system is based on the formation of birefringent characteristics of the total optical path, which are equivalent to a quarter-wave plate with a 45° orientation of its optical axes with respect to the linearly polarized reference wave. Conditions under which any light-polarization state can be obtained using a two-element phase controller are obtained. The dependence of the local cross-scattering coefficient of light in a model medium and biological tissue on the sounding-wave polarization state is demonstrated. The necessity of active maintenance of the circular polarization of a sounding wave in this common path system (including a flexible probe) is shown to realize uniform optimal conditions for cross-polarization studies of biological tissue.
[Human neurocysticercosis in Baixada Fluminense, Rio de Janeiro State, Brazil].
Mendes, Ernani Costa; da Silva, Scintilla Santos; Fonseca, Edson Alexandre La' Terza; de Souza, Hilana Regina Ribeiro; de Carvalho, Raimundo Wilson
2005-12-01
The objective of this manuscript was to know the neurocysticercosis prevalence and some epidemiological aspects in Baixada Fluminense, State of Rio de Janeiro, Brazil. The data came from the service of computerized tomography of the Nova Iguaçu General Hospital from 1996 to 2002 and from neuroimage "D'IMAGEM" Center from 1992 to 2002. We analyzed 36,379 tomographies identifying 72 cases of the parasitoses, the majority in women (62.5%, p>0.05) and in the chronic phase (93.1%). The neurocysticercosis had occurred in all age groups and increase with age (r=0.84, p<0.05), being that 45.8% of them up to 50 years. The 20 interviewed cases were origin from several municipal districts of Baixada Fluminense, the monthly per capita income was 366 R dollars. The growing urbanization, deficient sanitary vigilance, absence of sewage systems and sanitary education are the main factors that potentially the transmission of cysticercosis and taeniasis in the Baixada Fluminense.
Kashyap, Ravi; Dondi, Maurizio; Paez, Diana; Mariani, Guliano
2013-05-01
The growth in nuclear medicine, in the past decade, is largely due to hybrid imaging, specifically single-photon emission tomography-computed tomography (SPECT-CT) and positron emission tomography-computed tomography (PET-CT). Introduction and use of hybrid imaging has been growing at a fast pace. This has led to many challenges and opportunities to the personnel dealing with it. The International Atomic Energy Agency (IAEA) keeps a close watch on the trends in applications of nuclear techniques in health by many ways, including obtaining inputs from member states and professional societies. In 2012, a Technical Meeting on trends in hybrid imaging was organized by IAEA to understand the current status and trends of hybrid imaging using nuclear techniques, its role in clinical practice, and associated educational needs and challenges. Perspective of scientific societies and professionals from all the regions of the world was obtained. Heterogeneity in value, educational needs, and access was noted and the drivers of this heterogeneity were discussed. This article presents the key points shared during the technical meeting, focusing primarily on SPECT-CT and PET-CT, and shares the action plan for IAEA to deal with heterogeneity as suggested by the participants. Copyright © 2013 Elsevier Inc. All rights reserved.
Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode
Moroni, Riko; Börner, Markus; Zielke, Lukas; Schroeder, Melanie; Nowak, Sascha; Winter, Martin; Manke, Ingo; Zengerle, Roland; Thiele, Simon
2016-01-01
Focused ion beam/scanning electron microscopy tomography (FIB/SEMt) and synchrotron X-ray tomography (Xt) are used to investigate the same lithium manganese oxide composite cathode at the same specific spot. This correlative approach allows the investigation of three central issues in the tomographic analysis of composite battery electrodes: (i) Validation of state-of-the-art binary active material (AM) segmentation: Although threshold segmentation by standard algorithms leads to very good segmentation results, limited Xt resolution results in an AM underestimation of 6 vol% and severe overestimation of AM connectivity. (ii) Carbon binder domain (CBD) segmentation in Xt data: While threshold segmentation cannot be applied for this purpose, a suitable classification method is introduced. Based on correlative tomography, it allows for reliable ternary segmentation of Xt data into the pore space, CBD, and AM. (iii) Pore space analysis in the micrometer regime: This segmentation technique is applied to an Xt reconstruction with several hundred microns edge length, thus validating the segmentation of pores within the micrometer regime for the first time. The analyzed cathode volume exhibits a bimodal pore size distribution in the ranges between 0–1 μm and 1–12 μm. These ranges can be attributed to different pore formation mechanisms. PMID:27456201
Neutron Radiography and Computed Tomography at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raine, Dudley A. III; Hubbard, Camden R.; Whaley, Paul M.
1997-12-31
The capability to perform neutron radiography and computed tomography is being developed at Oak Ridge National Laboratory. The facility will be located at the High Flux Isotope Reactor (HFIR), which has the highest steady state neutron flux of any reactor in the world. The Monte Carlo N-Particle transport code (MCNP), versions 4A and 4B, has been used extensively in the design phase of the facility to predict and optimize the operating characteristics, and to ensure the safety of personnel working in and around the blockhouse. Neutrons are quite penetrating in most engineering materials and can be useful to detect internalmore » flaws and features. Hydrogen atoms, such as in a hydrocarbon fuel, lubricant or a metal hydride, are relatively opaque to neutron transmission. Thus, neutron based tomography or radiography is ideal to image their presence. The source flux also provides unparalleled flexibility for future upgrades, including real time radiography where dynamic processes can be observed. A novel tomography detector has been designed using optical fibers and digital technology to provide a large dynamic range for reconstructions. Film radiography is also available for high resolution imaging applications. This paper summarizes the results of the design phase of this facility and the potential benefits to science and industry.« less
Role of computed tomography angiography in detection and staging of small bowel carcinoid tumors
Bonekamp, David; Raman, Siva P; Horton, Karen M; Fishman, Elliot K
2015-01-01
Small-bowel carcinoid tumors are the most common form (42%) of gastrointestinal carcinoids, which by themselves comprise 70% of neuroendocrine tumors. Although primary small bowel neoplasms are overall rare (3%-6% of all gastrointestinal neoplasms), carcinoids still represent the second most common (20%-30%) primary small-bowel malignancy after small bowel adenocarcinoma. Their imaging evaluation is often challenging. State-of-the-art high-resolution multiphasic computed tomography together with advanced postprocessing methods provides an excellent tool for their depiction. The manifold interactive parameter choices however require knowledge of when to use which technique. Here, we discuss the imaging appearance and evaluation of duodenal, jejunal and ileal carcinoid tumors, including the imaging features of the primary tumor, locoregional mesenteric nodal metastases, and distant metastatic disease. A protocol for optimal lesion detection is presented, including the use of computed tomography enterography, volume acquisition, computed tomography angiography and three-dimensional mapping. Imaging findings are illustrated with a series of challenging cases which illustrate the spectrum of possible disease in the small bowel and mesentery, the range of possible appearances in the bowel itself on multiphase data and extraluminal findings such as the desmoplastic reaction in mesentery and hypervascular liver metastases. Typical imaging pitfalls and pearls are illustrated. PMID:26435774
NASA Astrophysics Data System (ADS)
Everett, Matthew J.; Colston, Bill W., Jr.; Sathyam, Ujwal S.; Da Silva, Luiz B.; Fried, Daniel; Featherstone, John D. B.
1999-05-01
There is no diagnostic technology presently available utilizing non-ionizing radiation that can image the state of demineralization of dental enamel in vivo for the detection, characterization and monitoring of early, incipient caries lesions. In this study, a Polarization Sensitive Optical Coherence Tomography (PS-OCT) system was evaluated for its potential for the non-invasive diagnosis of early carious lesions. We demonstrated clear discrimination in PS-OCT imags between regions of normal and demineralized enamel in bovine enamel blocks containing well-characterized artificial lesions. Moreover, high-resolution, cross- sectional images were acquired that clearly discriminate between the normal and carious regions of extracted human teeth. Regions that appeared to be demineralized in the PS- OCT imags were verified using histological thin sections examined under polarized light. The PS-OCT system discriminates between normal and carious regions by measuring the state of polarization of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. The demineralized regions of enamel have a large scattering coefficient, thus depolarizing the incident light. This initial study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions.
Specht, Holger P; Nölleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Figueroa, Eden; Ritter, Stephan; Rempe, Gerhard
2011-05-12
The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180 microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.
Wavelet-based multiscale adjoint waveform-difference tomography using body and surface waves
NASA Astrophysics Data System (ADS)
Yuan, Y. O.; Simons, F. J.; Bozdag, E.
2014-12-01
We present a multi-scale scheme for full elastic waveform-difference inversion. Using a wavelet transform proves to be a key factor to mitigate cycle-skipping effects. We start with coarse representations of the seismogram to correct a large-scale background model, and subsequently explain the residuals in the fine scales of the seismogram to map the heterogeneities with great complexity. We have previously applied the multi-scale approach successfully to body waves generated in a standard model from the exploration industry: a modified two-dimensional elastic Marmousi model. With this model we explored the optimal choice of wavelet family, number of vanishing moments and decomposition depth. For this presentation we explore the sensitivity of surface waves in waveform-difference tomography. The incorporation of surface waves is rife with cycle-skipping problems compared to the inversions considering body waves only. We implemented an envelope-based objective function probed via a multi-scale wavelet analysis to measure the distance between predicted and target surface-wave waveforms in a synthetic model of heterogeneous near-surface structure. Our proposed method successfully purges the local minima present in the waveform-difference misfit surface. An elastic shallow model with 100~m in depth is used to test the surface-wave inversion scheme. We also analyzed the sensitivities of surface waves and body waves in full waveform inversions, as well as the effects of incorrect density information on elastic parameter inversions. Based on those numerical experiments, we ultimately formalized a flexible scheme to consider both body and surface waves in adjoint tomography. While our early examples are constructed from exploration-style settings, our procedure will be very valuable for the study of global network data.
Husarik, Daniela B; Marin, Daniele; Samei, Ehsan; Richard, Samuel; Chen, Baiyu; Jaffe, Tracy A; Bashir, Mustafa R; Nelson, Rendon C
2012-08-01
The aim of this study was to compare the image quality of abdominal computed tomography scans in an anthropomorphic phantom acquired at different radiation dose levels where each raw data set is reconstructed with both a standard convolution filtered back projection (FBP) and a full model-based iterative reconstruction (MBIR) algorithm. An anthropomorphic phantom in 3 sizes was used with a custom-built liver insert simulating late hepatic arterial enhancement and containing hypervascular liver lesions of various sizes. Imaging was performed on a 64-section multidetector-row computed tomography scanner (Discovery CT750 HD; GE Healthcare, Waukesha, WI) at 3 different tube voltages for each patient size and 5 incrementally decreasing tube current-time products for each tube voltage. Quantitative analysis consisted of contrast-to-noise ratio calculations and image noise assessment. Qualitative image analysis was performed by 3 independent radiologists rating subjective image quality and lesion conspicuity. Contrast-to-noise ratio was significantly higher and mean image noise was significantly lower on MBIR images than on FBP images in all patient sizes, at all tube voltage settings, and all radiation dose levels (P < 0.05). Overall image quality and lesion conspicuity were rated higher for MBIR images compared with FBP images at all radiation dose levels. Image quality and lesion conspicuity on 25% to 50% dose MBIR images were rated equal to full-dose FBP images. This phantom study suggests that depending on patient size, clinically acceptable image quality of the liver in the late hepatic arterial phase can be achieved with MBIR at approximately 50% lower radiation dose compared with FBP.
Harder, G; Silberhorn, Ch; Rehacek, J; Hradil, Z; Motka, L; Stoklasa, B; Sánchez-Soto, L L
2016-04-01
We report the experimental point-by-point sampling of the Wigner function for nonclassical states created in an ultrafast pulsed type-II parametric down-conversion source. We use a loss-tolerant time-multiplexed detector based on a fiber-optical setup and a pair of photon-number-resolving avalanche photodiodes. By capitalizing on an expedient data-pattern tomography, we assess the properties of the light states with outstanding accuracy. The method allows us to reliably infer the squeezing of genuine two-mode states without any phase reference.
NASA Astrophysics Data System (ADS)
Dadkhah, Arash; Zhou, Jun; Yeasmin, Nusrat; Jiao, Shuliang
2018-02-01
Various optical imaging modalities with different optical contrast mechanisms have been developed over the past years. Although most of these imaging techniques are being used in many biomedical applications and researches, integration of these techniques will allow researchers to reach the full potential of these technologies. Nevertheless, combining different imaging techniques is always challenging due to the difference in optical and hardware requirements for different imaging systems. Here, we developed a multimodal optical imaging system with the capability of providing comprehensive structural, functional and molecular information of living tissue in micrometer scale. This imaging system integrates photoacoustic microscopy (PAM), optical coherence tomography (OCT), optical Doppler tomography (ODT) and fluorescence microscopy in one platform. Optical-resolution PAM (OR-PAM) provides absorption-based imaging of biological tissues. Spectral domain OCT is able to provide structural information based on the scattering property of biological sample with no need for exogenous contrast agents. In addition, ODT is a functional extension of OCT with the capability of measurement and visualization of blood flow based on the Doppler effect. Fluorescence microscopy allows to reveal molecular information of biological tissue using autofluoresce or exogenous fluorophores. In-vivo as well as ex-vivo imaging studies demonstrated the capability of our multimodal imaging system to provide comprehensive microscopic information on biological tissues. Integrating all the aforementioned imaging modalities for simultaneous multimodal imaging has promising potential for preclinical research and clinical practice in the near future.
Shi, Junwei; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing
2013-09-15
For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.
Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope
NASA Astrophysics Data System (ADS)
Qian, Hui; Egerton, Ray F.
2017-11-01
Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.
Endoscopic optical coherence tomography: technologies and clinical applications [Invited
Gora, Michalina J.; Suter, Melissa J.; Tearney, Guillermo J.; Li, Xingde
2017-01-01
In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed. PMID:28663882
Bayesian X-ray computed tomography using a three-level hierarchical prior model
NASA Astrophysics Data System (ADS)
Wang, Li; Mohammad-Djafari, Ali; Gac, Nicolas
2017-06-01
In recent decades X-ray Computed Tomography (CT) image reconstruction has been largely developed in both medical and industrial domain. In this paper, we propose using the Bayesian inference approach with a new hierarchical prior model. In the proposed model, a generalised Student-t distribution is used to enforce the Haar transformation of images to be sparse. Comparisons with some state of the art methods are presented. It is shown that by using the proposed model, the sparsity of sparse representation of images is enforced, so that edges of images are preserved. Simulation results are also provided to demonstrate the effectiveness of the new hierarchical model for reconstruction with fewer projections.
Optical coherence tomography in gynecology: a narrative review
NASA Astrophysics Data System (ADS)
Kirillin, Mikhail; Motovilova, Tatiana; Shakhova, Natalia
2017-12-01
Modern gynecologic practice requires noninvasive diagnostics techniques capable of detecting morphological and functional alterations in tissues of female reproductive organs. Optical coherence tomography (OCT) is a promising tool for providing imaging of biotissues with high resolution at depths up to 2 mm. Design of the customized probes provides wide opportunities for OCT use in gynecology. This paper contains a retrospective insight into the history of OCT employment in gynecology, an overview of the existing gynecologic OCT probes, including those for combination with other diagnostic modalities, and state-of-the-art application of OCT for diagnostics of tumor and nontumor pathologies of female genitalia. Perspectives of OCT both in diagnostics and treatment planning and monitoring in gynecology are overviewed.
Fast retinal layer segmentation of spectral domain optical coherence tomography images
NASA Astrophysics Data System (ADS)
Zhang, Tianqiao; Song, Zhangjun; Wang, Xiaogang; Zheng, Huimin; Jia, Fucang; Wu, Jianhuang; Li, Guanglin; Hu, Qingmao
2015-09-01
An approach to segment macular layer thicknesses from spectral domain optical coherence tomography has been proposed. The main contribution is to decrease computational costs while maintaining high accuracy via exploring Kalman filtering, customized active contour, and curve smoothing. Validation on 21 normal volumes shows that 8 layer boundaries could be segmented within 5.8 s with an average layer boundary error <2.35 μm. It has been compared with state-of-the-art methods for both normal and age-related macular degeneration cases to yield similar or significantly better accuracy and is 37 times faster. The proposed method could be a potential tool to clinically quantify the retinal layer boundaries.
Off-axis full-field swept-source optical coherence tomography using holographic refocusing
NASA Astrophysics Data System (ADS)
Hillmann, Dierck; Franke, Gesa; Hinkel, Laura; Bonin, Tim; Koch, Peter; Hüttmann, Gereon
2013-03-01
We demonstrate a full-field swept-source OCT using an off-axis geometry of the reference illumination. By using holographic refocusing techniques, a uniform lateral resolution is achieved over the measurement depth of approximately 80 Rayleigh lengths. Compared to a standard on-axis setup, artifacts and autocorrelation signals are suppressed and the measurement depth is doubled by resolving the complex conjugate ambiguity. Holographic refocusing was done efficiently by Fourier-domain resampling as demonstrated before in inverse scattering and holoscopy. It allowed to reconstruct a complete volume with about 10μm resolution over the complete measurement depth of more than 10mm. Off-axis full-field swept-source OCT enables high measurement depths, spanning many Rayleigh lengths with reduced artifacts.
Transmission X-ray microscopy for full-field nano imaging of biomaterials.
Andrews, Joy C; Meirer, Florian; Liu, Yijin; Mester, Zoltan; Pianetta, Piero
2011-07-01
Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure imaging. These techniques are discussed and compared in light of results from the imaging of biological materials including microorganisms, bone and mineralized tissue, and plants, with a focus on hard X-ray TXM at ≤ 40-nm resolution. Copyright © 2010 Wiley-Liss, Inc.
Brezinski, ME
2018-01-01
Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II. PMID:29863177
NASA Astrophysics Data System (ADS)
Zhang, Ying; Zhang, Xiyang; Li, Zhifang; Li, Hui
2016-10-01
Blood glucose concentration measurement is essential for the diagnosis and treatment of diabetes. However, conventional glucose measurement methods are invasive and not suitable for real-time monitoring. This study demonstrated a noninvasive blood glucose measurement method using optical coherence tomography to image human lip in vivo. Optical coherence tomography (OCT) is a noninvasive and depth-resolved technique capable of acquiring tissue structure images in real time. Human lip has very thin skin and is full of blood vessels, which is appropriate for noninvasive glucose measurement. To verify the feasibility of OCT for glucose concentration monitoring, two groups of OCT imaging data were obtained from human lips of normal people. In one group, OCT images of lip were acquired from people on an empty stomach. In the other group, the same sites of lip were observed by OCT 2 hours after breakfast. Evident differences were found from two groups of OCT images that correspond to preprandial glucose and 2- hour postprandial glucose, respectively. The relationship between OCT image and blood glucose concentration was investigated. The result indicates that OCT possesses considerable prospects in terms of noninvasive blood glucose measurement.
Shifera, Amde Selassie; Pennesi, Mark E; Yang, Paul; Lin, Phoebe
2017-06-01
To determine whether ultra-wide-field fundus autofluorescence (UWFFAF) findings in acute zonal occult outer retinopathy correlated well with perimetry, optical coherence tomography, and electroretinography findings. Retrospective observational study on 16 eyes of 10 subjects with AZOOR seen at a single referral center from October 2012 to March 2015 who had UWFFAF performed. Chi-square analysis was performed to compare categorical variables, and Mann-Whitney U test used for comparisons of nonparametric continuous variables. All eyes examined within 3 months of symptom onset (five of the five eyes) had diffusely hyperautofluorescent areas on UWFFAF. The remaining eyes contained hypoautofluorescent lesions with hyperautofluorescent borders. In 11/16 (68.8%) eyes, UWFFAF showed the full extent of lesions that would not have been possible with standard fundus autofluorescence centered on the fovea. There were 3 patterns of spread: centrifugal spread (7/16, 43.8%), centripetal spread (5/16, 31.3%), and centrifugal + centripetal spread (4/16, 25.0%). The UWFFAF lesions corresponded well with perimetric, optical coherence tomography, and electroretinography abnormalities. The UWFFAF along with optical coherence tomography can be useful in the evaluation and monitoring of acute zonal occult outer retinopathy patients.
Visualization of subcutaneous insulin injections by x-ray computed tomography
NASA Astrophysics Data System (ADS)
Thomsen, M.; Poulsen, M.; Bech, M.; Velroyen, A.; Herzen, J.; Beckmann, F.; Feidenhans'l, R.; Pfeiffer, F.
2012-11-01
We report how the three-dimensional structure of subcutaneous injections of soluble insulin can be visualized by x-ray computed tomography using an iodine based contrast agent. The injections investigated are performed ex vivo in porcine adipose tissue. Full tomography scans carried out at a laboratory x-ray source with a total acquisition time of about 1 min yield CT-images with an effective pixel size of 109 × 109 μm2. The depots are segmented using a modified Chan-Vese algorithm and we are able to observe differences in the shape of the injection depot and the position of the depot in the skin among equally performed injections. To overcome the beam hardening artefacts, which affect the quantitative prediction of the volume injected, we additionally present results concerning the visualization of two injections using synchrotron radiation. The spatial concentration distribution of iodine is calculated to show the dilution of the insulin drug inside the depot. Characterisation of the shape of the depot and the spatial concentration profile of the injected fluid is important knowledge when improving the clinical formulation of an insulin drug, the performance of injection devices and when predicting the effect of the drug through biomedical simulations.
Micro- and nano-tomography at the DIAMOND beamline I13L imaging and coherence
NASA Astrophysics Data System (ADS)
Rau, C.; Bodey, A.; Storm, M.; Cipiccia, S.; Marathe, S.; Zdora, M.-C.; Zanette, I.; Wagner, U.; Batey, D.; Shi, X.
2017-10-01
The Diamond Beamline I13L is dedicated to imaging on the micro- and nano-lengthsale, operating in the energy range between 6 and 30keV. For this purpose two independently operating branchlines and endstations have been built. The imaging branch is fully operational for micro-tomography and in-line phase contrast imaging with micrometre resolution. Grating interferometry is currently implemented, adding the capability of measuring phase and small-angle information. For tomography with increased resolution a full-field microscope providing 50nm spatial resolution with a field of view of 100μm is being tested. The instrument provides a large working distance between optics and sample to adapt a wide range of customised sample environments. On the coherence branch coherent diffraction imaging techniques such as ptychography, coherent X-ray diffraction (CXRD) are currently developed for three dimensional imaging with the highest resolution. The imaging branch is operated in collaboration with Manchester University, called therefore the Diamond-Manchester Branchline. The scientific applications cover a large area including bio-medicine, materials science, chemistry geology and more. The present paper provides an overview about the current status of the beamline and the science addressed.
Box Tomography: An efficient tomographic method for imaging localized structures in the deep Earth
NASA Astrophysics Data System (ADS)
Masson, Yder; Romanowicz, Barbara
2017-04-01
The accurate imaging of localized geological structures inside the deep Earth is key to understand our planet and its history. Since the introduction of the Preliminary Reference Earth Model, many generations of global tomographic models have been developed and give us access to the 3D structure of the Earth's interior. The latest generation of global tomographic models has emerged with the development of accurate numerical wavefield computations in a 3D earth combined with access to enhanced HPC capabilities. These models have sharpened up mantle images and unveiled relatively small scale structures that were blurred out in previous generation models. Fingerlike structures have been found at the base of the oceanic asthenosphere, and vertically oriented broad low velocity plume conduits [1] extend throughout the lower mantle beneath those major hotspots that are located within the perimeter of the deep mantle large low shear velocity provinces (LLSVPs). While providing new insights into our understanding of mantle dynamics, the detailed morphology of these features requires further efforts to obtain higher resolution images. In recent years, we developed a theoretical framework [2][3] for the tomographic imaging of localised geological structures buried inside the Earth, where no seismic sources nor receivers are necessarily present. We call this "box tomography" [4]. The essential difference between box-tomography and standard tomographic methods is that the numerical modeling (i.e. the raytracing in travel time tomography and the wave propagation in waveform tomography or full waveform inversion) is completely confined within the small box-region imaged. Thus, box tomography is a lot more efficient than global tomography (i.e. where we invert for the velocity in the larger volume that encompasses all the sources and receivers), for imaging localised objects. We present 2D and 3D examples showing that box tomography can be employed for imaging structures present within the D'' region at the base of the mantle. Further, we show that box-tomography performs well even in the difficult situation where the velocity distribution in the mantle above the target structure is not known a-priori. REFERENCES [1] French, S. W. and B. Romanowicz (2015) Broad Plumes at the base of the mantle beneath major hotspots, Nature, 525, 95-99 [2] Masson, Y., Cupillard, P., Capdeville, Y., & Romanowicz, B. (2013). On the numerical implementation of time-reversal mirrors for tomographic imaging. Geophysical Journal International, ggt459. [3] Masson, Y., & Romanowicz, B. (2017). Fast computation of synthetic seismograms within a medium containing remote localized perturbations: a numerical solution to the scattering problem. Geophysical Journal International, 208(2), 674-692. [4] Masson, Y., & Romanowicz, B. (2017). Box Tomography: Localised imaging of remote targets buried in an unknown medium, a step forward for understanding key structures in the deep Earth. Geophysical Journal International, (under review).
Cyclotrons and positron emitting radiopharmaceuticals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, A.P.; Fowler, J.S.
1984-01-01
The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)
A CW FFAG for Proton Computed Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstone, C.; Neuffer, D. V.; Snopok, P.
2012-05-01
An advantage of the cyclotron in proton therapy is the continuous (CW) beam output which reduces complexity and response time in the dosimetry requirements and beam controls. A CW accelerator requires isochronous particle orbits at all energie s through the acceleration cycle and present compact isochronous cyclotrons for proton therapy reach only 250 MeV (kinetic energy) which is required for patient treatment, but low for full Proton Computed Tomography (PCT) capability. PCT specifications ne ed 300-330 MeV in order for protons to transit the human body. Recent innovations in nonscaling FFAG design have achieved isochronous performance in a compact (~3more » m radius) design at these higher energies. Preliminary isochronous designs are presented her e. Lower energy beams can be efficiently extracted for patient treatment without changes to the acceleration cycle and magnet currents.« less
NASA Astrophysics Data System (ADS)
Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.; Park, YongKeun
2014-01-01
We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated.
de Freitas, Carolina; Ruggeri, Marco; Manns, Fabrice; Ho, Arthur; Parel, Jean-Marie
2013-01-15
We present a method for measuring the average group refractive index of the human crystalline lens in vivo using an optical coherence tomography (OCT) system which, allows full-length biometry of the eye. A series of OCT images of the eye including the anterior segment and retina were recorded during accommodation. Optical lengths of the anterior chamber, lens, and vitreous were measured dynamically along the central axis on the OCT images. The group refractive index of the crystalline lens along the central axis was determined using linear regression analysis of the intraocular optical length measurements. Measurements were acquired on three subjects of age 21, 24, and 35 years. The average group refractive index for the three subjects was, respectively, n=1.41, 1.43, and 1.39 at 835 nm.
Adaptive zooming in X-ray computed tomography.
Dabravolski, Andrei; Batenburg, Kees Joost; Sijbers, Jan
2014-01-01
In computed tomography (CT), the source-detector system commonly rotates around the object in a circular trajectory. Such a trajectory does not allow to exploit a detector fully when scanning elongated objects. Increase the spatial resolution of the reconstructed image by optimal zooming during scanning. A new approach is proposed, in which the full width of the detector is exploited for every projection angle. This approach is based on the use of prior information about the object's convex hull to move the source as close as possible to the object, while avoiding truncation of the projections. Experiments show that the proposed approach can significantly improve reconstruction quality, producing reconstructions with smaller errors and revealing more details in the object. The proposed approach can lead to more accurate reconstructions and increased spatial resolution in the object compared to the conventional circular trajectory.
Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.
2013-01-01
Abstract. We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated. PMID:23797986
Gewirtz, Henry; Dilsizian, Vasken
2016-05-31
In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted. © 2016 American Heart Association, Inc.
Petri, Andrea; May, Morgan; Haiman, Zoltán
2016-09-30
Weak gravitational lensing is becoming a mature technique for constraining cosmological parameters, and future surveys will be able to constrain the dark energy equation of state w. When analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear correlations. We forecast parameter constraints on the triplet (Ω m,w,σ 8) for a LSST-like photometric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts and higher convergence moments. Here we find that redshift tomography with the power spectrum reduces the area of the 1σ confidence interval in (Ω m,w) space by a factor ofmore » 8 with respect to the case of the single highest redshift bin. We also find that adding non-Gaussian information from the peak counts and higher-order moments of the convergence field and its spatial derivatives further reduces the constrained area in (Ω m,w) by factors of 3 and 4, respectively. When we add cosmic microwave background parameter priors from Planck to our analysis, tomography improves power spectrum constraints by a factor of 3. Adding moments yields an improvement by an additional factor of 2, and adding both moments and peaks improves by almost a factor of 3 over power spectrum tomography alone. We evaluate the effect of uncorrected systematic photometric redshift errors on the parameter constraints. In conclusion, we find that different statistics lead to different bias directions in parameter space, suggesting the possibility of eliminating this bias via self-calibration.« less
Jee, M. James; Tyson, J. Anthony; Hilbert, Stefan; ...
2016-06-15
Here, we present a tomographic cosmic shear study from the Deep Lens Survey (DLS), which, providing a limiting magnitudemore » $${r}_{\\mathrm{lim}}\\sim 27$$ ($$5\\sigma $$), is designed as a precursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on depth. Using five tomographic redshift bins, we study their auto- and cross-correlations to constrain cosmological parameters. We use a luminosity-dependent nonlinear model to account for the astrophysical systematics originating from intrinsic alignments of galaxy shapes. We find that the cosmological leverage of the DLS is among the highest among existing $$\\gt 10$$ deg2 cosmic shear surveys. Combining the DLS tomography with the 9 yr results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives $${{\\rm{\\Omega }}}_{m}={0.293}_{-0.014}^{+0.012}$$, $${\\sigma }_{8}={0.833}_{-0.018}^{+0.011}$$, $${H}_{0}={68.6}_{-1.2}^{+1.4}\\;{\\text{km s}}^{-1}\\;{{\\rm{Mpc}}}^{-1}$$, and $${{\\rm{\\Omega }}}_{b}=0.0475\\pm 0.0012$$ for ΛCDM, reducing the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume flatness for ΛCDM, we obtain the curvature constraint $${{\\rm{\\Omega }}}_{k}=-{0.010}_{-0.015}^{+0.013}$$ from the DLS+WMAP9 combination, which, however, is not well constrained when WMAP9 is used alone. The dark energy equation-of-state parameter w is tightly constrained when baryonic acoustic oscillation (BAO) data are added, yielding $$w=-{1.02}_{-0.09}^{+0.10}$$ with the DLS+WMAP9+BAO joint probe. The addition of supernova constraints further tightens the parameter to $$w=-1.03\\pm 0.03$$. Our joint constraints are fully consistent with the final Planck results and also with the predictions of a ΛCDM universe.« less
Almeida Montes, Luis Guillermo; Prado Alcántara, Hugo; Portillo Cedeño, Bertha Alicia; Hernández García, Ana Olivia; Fuentes Rojas, Patricia Elisa
2015-06-01
Major depressive disorder (MDD) is recurrent, and its pathophysiology is not fully understood. Studies using electric tomography (ET) have identified abnormalities in the current density (CD) of MDD subjects in regions associated with the neurobiology of MDD, such as the anterior cingulate cortex (ACC) and medial orbitofrontal cortex (mOFC). However, little is known regarding the long-term CD changes in MDD subjects who respond to antidepressants. The aim of this study was to compare CD between healthy and MDD subjects who received 1-year open-label treatment with fluoxetine. Thirty-two-channel electroencephalograms (EEGs) were collected from 70 healthy controls and 74 MDD subjects at baseline (pre-treatment), 1 and 2weeks and 1, 2, 6, 9 and 12months. Variable-resolution ET (VARETA) was used to assess the CD between subject groups at each time point. The MDD group exhibited decreased alpha CD (αCD) in the occipital and parietal cortices, ACC, mOFC, thalamus and caudate nucleus at each time point. The αCD abnormalities persisted in the MDD subjects despite their achieving full remission. The low sub-alpha band was different between the healthy and MDD subjects. Differences in the amount of αCD between sexes and treatment outcomes were observed. Lack of a placebo arm and the loss of depressed patients to follow-up were significant limitations. The persistence of the decrease in αCD might suggest that the underlying pathophysiologic mechanisms of MDD are not corrected despite the asymptomatic state of MDD subjects, which could be significant in understanding the highly recurrent nature of MDD. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch
Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, inmore » contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.« less
Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib
2016-03-01
Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.
Full-range k-domain linearization in spectral-domain optical coherence tomography.
Jeon, Mansik; Kim, Jeehyun; Jung, Unsang; Lee, Changho; Jung, Woonggyu; Boppart, Stephen A
2011-03-10
A full-bandwidth k-domain linearization method for spectral-domain optical coherence tomography (SD-OCT) is demonstrated. The method uses information of the wavenumber-pixel-position provided by a translating-slit-based wavelength filter. For calibration purposes, the filter is placed either after a broadband source or at the end of the sample path, and the filtered spectrum with a narrowed line width (∼0.5 nm) is incident on a line-scan camera in the detection path. The wavelength-swept spectra are co-registered with the pixel positions according to their central wavelengths, which can be automatically measured with an optical spectrum analyzer. For imaging, the method does not require a filter or a software recalibration algorithm; it simply resamples the OCT signal from the detector array without employing rescaling or interpolation methods. The accuracy of k-linearization is maximized by increasing the k-linearization order, which is known to be a crucial parameter for maintaining a narrow point-spread function (PSF) width at increasing depths. The broadening effect is studied by changing the k-linearization order by undersampling to search for the optimal value. The system provides more position information, surpassing the optimum without compromising the imaging speed. The proposed full-range k-domain linearization method can be applied to SD-OCT systems to simplify their hardware/software, increase their speed, and improve the axial image resolution. The experimentally measured width of PSF in air has an FWHM of 8 μm at the edge of the axial measurement range. At an imaging depth of 2.5 mm, the sensitivity of the full-range calibration case drops less than 10 dB compared with the uncompensated case.
Congenital lobar emphysema in a kitten.
Blonk, M; Van de Maele, I; Combes, A; Stablay, B; De Cock, H; Polis, I; Rybachuk, G; de Rooster, H
2017-11-01
A five-month-old ragdoll cat presented with severe respiratory signs, unresponsive to medical therapy. Hyperinflation of the right middle lung lobe was diagnosed with radiography and computed tomography. Lung lobectomy following a median sternotomy led to full recovery. Histopathological analysis revealed lobar emphysema and, based on the animal's age, congenital lobar emphysema was considered the most likely diagnosis. © 2017 British Small Animal Veterinary Association.
Biomechanics of compensatory mechanisms in spinal-pelvic complex
NASA Astrophysics Data System (ADS)
Ivanov, D. V.; Hominets, V. V.; Kirillova, I. V.; Kossovich, L. Yu; Kudyashev, A. L.; Teremshonok, A. V.
2018-04-01
3D geometric solid computer model of spinal-pelvic complex was constructed on the basis of computed tomography and full body X-ray in standing position data. The constructed model was used for biomechanical analysis of compensatory mechanisms arising in the spine with anteversion and retroversion of the pelvis. The results of numerical biomechanical 3D modeling are in good agreement with the clinical data.
Mosotho, Nathaniel Lehlohonolo; Timile, Ino; Joubert, Gina
computed tomography and the Bender Gestalt Test are some of the tests used routinely for the assessment of alleged offenders referred under Sections 77 and 78 of the Criminal Procedure Act 51 of 1977. An exploratory retrospective study was conducted at the Free State Psychiatric Complex. The aim of this study was to identify the extent to which the Bender Gestalt Test results and the computed tomography scans are associated with outcomes in the assessment of competency to stand trial and criminal responsibility in individuals referred to the Free State Psychiatric Complex (FSPC) observation unit. This was a cross-sectional study and the entire population of patients admitted in 2013 was included in the study. The clinical and demographic data were obtained from patient files. The majority of participants were black, males, single and unemployed. The most common diagnosis was schizophrenia. The current study showed no statistically significant association between the Bender Gestalt Test Hain's scores and the outcome of criminal responsibility and competency to stand trial. Similarly, the study also showed no statistically significant association between the presence of a brain lesion and the outcome of criminal responsibility and competency to stand trial. It was also concluded that as CT scans are expensive, patients should be referred for that service only when there is a clear clinical indication to do so. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoo, Jinwon; Choi, Yujun; Cho, Young-Wook; Han, Sang-Wook; Lee, Sang-Yun; Moon, Sung; Oh, Kyunghwan; Kim, Yong-Su
2018-07-01
We present a detailed method to prepare and characterize four-dimensional pure quantum states or ququarts using polarization and time-bin modes of a single-photon. In particular, we provide a simple method to generate an arbitrary pure ququart and fully characterize the state with quantum state tomography. We also verify the reliability of the recipe by showing experimental preparation and characterization of 20 ququart states in mutually unbiased bases. As qudits provide superior properties over qubits in many fundamental tests of quantum physics and applications in quantum information processing, the presented method will be useful for photonic quantum information science.
Experimental observation of four-photon entangled Dicke state with high fidelity.
Kiesel, N; Schmid, C; Tóth, G; Solano, E; Weinfurter, H
2007-02-09
We present the experimental observation of the symmetric four-photon entangled Dicke state with two excitations |D_{4};{(2)}. A simple experimental setup allowed quantum state tomography yielding a fidelity as high as 0.844+/-0.008. We study the entanglement persistency of the state using novel witness operators and focus on the demonstration of a remarkable property: depending on the orientation of a measurement on one photon, the remaining three photons are projected into both inequivalent classes of genuine tripartite entanglement, the Greenberger-Horne-Zeilinger and W class. Furthermore, we discuss possible applications of |D_{4};{(2)} in quantum communication.
2006-01-01
Virginia Hospital Center embarked on a branding effort in hopes of raising customer awareness of the hospital's state-of-the-art technologies in advanced medical care. The campaign launched a new phase of TV spots that highlight the facility's advanced services, such as the computed tomography angiogram, the argon plasma coagulator, and heart valve replacement surgery.
USDA-ARS?s Scientific Manuscript database
Water moves through plants under tension and in a thermodynamically metastable state, leaving the non-living vessels that transport this water vulnerable to blockage by gas embolisms. Failure to re-establish flow in embolized vessels can lead to systemic loss of hydraulic conductivity and ultimately...
Lithospheric Layering beneath the Contiguous United States Constrained by S-to-P Receiver Functions
NASA Astrophysics Data System (ADS)
Liu, L.; Liu, K. H.; Kong, F.; Gao, S. S.
2017-12-01
The greatly-improved spatial coverage of broadband seismic stations as a result of the deployment of the EarthScope Transportable Array (TA) stations and the diversity of tectonic environments in the contiguous United States provide a unique opportunity to investigate the depth variation and nature of intra-lithospheric interfaces in different tectonic regimes. A total of 284,121 high-quality S-to-P receiver functions (SRFs) are obtained from 3,809 broadband seismic stations in the TA and other permanent and temporary deployments in the contiguous United States. The SRFs are computed using frequency domain deconvolution, and are stacked in consecutive circles with a radius of 2°. They are converted to depth series after move-out corrections using the IASP91 Earth model. Similar to previous SRF studies, a robust negative arrival, representing a sharp discontinuity of velocity reduction with depth, is visible in virtually all the stacked traces in the depth range of 30-110 km. Beneath the western US, the depth of this discontinuity is 69±17 km, and beneath the eastern US, it ranges from 75 to 90 km, both of which are comparable to the depth of the tomographically-determined lithosphere-asthenosphere boundary (LAB). In contrast, the depth of the discontinuity beneath the central US is 83±10 km which is significantly smaller than the 250 km LAB depth determined by seismic surface wave tomography. Based on previous seismic tomography, shear-wave splitting and mantle xenolith studies, we interpret this discontinuity as the top of a frozen-in layer of volatile-rich melt beneath the central US. The observations and the discrepancy between the SRF and seismic tomography results for the central US as well as the amplitude of the corresponding arrival on the SRFs may be explained by spatial variations of the thickness of the transitional layer between the "pure" lithosphere and the "pure" asthenosphere. Under this hypothesis, the consistency between the results from the SRFs and seismic tomography for the western and eastern US suggests a thin transitional layer. On the contrary, a thick transitional layer is inferred for the central US. For this area, while the long-period surface waves can detect the transitional layer, the gradual natural of its lower boundary makes it hard for the short wavelength SRFs to detect.
Visualization of Electrochemical Reactions in Battery Materials with X-ray Microscopy and Mapping
Wolf, Mark; May, Brian M.; Cabana, Jordi
2017-03-21
By unlocking the full performance capabilities of battery materials we require a thorough understanding of the underlying electrochemical mechanisms at a variety of length scales. A broad arsenal of X-ray microscopy and mapping techniques is now available to probe these processes down to the nanoscale. The tunable nature of X-ray sources allows for the extraction of chemical states through spectromicroscopy. The addition of phase contrast imaging can retrieve the complex-valued refraction of the material, giving an even more nuanced chemical picture. Tomography and coherent Bragg diffraction imaging provide a reconstructed three-dimensional volume of the specimen, as well as internal strainmore » information from the latter. There have been many insights into battery materials achieved through the creative use of these, and similar, methods. Experiments performed while the battery is being actively cycled reveal behavior that differs significantly from what is observed at equilibrium and metastable conditions. Furthermore, there are planned improvements to X-ray source brightness and coherence will extend these techniques by alleviating the current trade-off in time, chemical, and spatial resolution.« less
Magnetic resonance imaging for the study of mummies.
Giovannetti, Giulio; Guerrini, Andrea; Carnieri, Emiliano; Salvadori, Piero A
2016-07-01
Nondestructive diagnostic imaging for mummies study has a long tradition and high-resolution images of the samples morphology have been extensively acquired by using computed tomography (CT). However, although in early reports no signal or image was obtained because of the low water content, mummy magnetic resonance imaging (MRI) was demonstrated able to generate images of such ancient specimens by using fast imaging techniques. Literature demonstrated the general feasibility of nonclinical MRI for visualizing historic human tissues, which is particularly interesting for archeology. More recently, multinuclear magnetic resonance spectroscopy (MRS) was demonstrated able to detect numerous organic biochemicals from such remains. Although the quality of these images is not yet comparable to that of clinical magnetic resonance (MR) images, and further research will be needed for determining the full capacity of MR in this topic, the information obtained with MR can be viewed as complementary to the one provided by CT and useful for paleoradiological studies of mummies. This work contains an overview of the state of art of the emerging uses of MRI in paleoradiology. Copyright © 2016 Elsevier Inc. All rights reserved.
Visualization of Electrochemical Reactions in Battery Materials with X-ray Microscopy and Mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Mark; May, Brian M.; Cabana, Jordi
By unlocking the full performance capabilities of battery materials we require a thorough understanding of the underlying electrochemical mechanisms at a variety of length scales. A broad arsenal of X-ray microscopy and mapping techniques is now available to probe these processes down to the nanoscale. The tunable nature of X-ray sources allows for the extraction of chemical states through spectromicroscopy. The addition of phase contrast imaging can retrieve the complex-valued refraction of the material, giving an even more nuanced chemical picture. Tomography and coherent Bragg diffraction imaging provide a reconstructed three-dimensional volume of the specimen, as well as internal strainmore » information from the latter. There have been many insights into battery materials achieved through the creative use of these, and similar, methods. Experiments performed while the battery is being actively cycled reveal behavior that differs significantly from what is observed at equilibrium and metastable conditions. Furthermore, there are planned improvements to X-ray source brightness and coherence will extend these techniques by alleviating the current trade-off in time, chemical, and spatial resolution.« less
NASA Astrophysics Data System (ADS)
König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.
2010-02-01
For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 μm and a lateral resolution down to 32 μm. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 μm tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.
Representation of photon limited data in emission tomography using origin ensembles
NASA Astrophysics Data System (ADS)
Sitek, A.
2008-06-01
Representation and reconstruction of data obtained by emission tomography scanners are challenging due to high noise levels in the data. Typically, images obtained using tomographic measurements are represented using grids. In this work, we define images as sets of origins of events detected during tomographic measurements; we call these origin ensembles (OEs). A state in the ensemble is characterized by a vector of 3N parameters Y, where the parameters are the coordinates of origins of detected events in a three-dimensional space and N is the number of detected events. The 3N-dimensional probability density function (PDF) for that ensemble is derived, and we present an algorithm for OE image estimation from tomographic measurements. A displayable image (e.g. grid based image) is derived from the OE formulation by calculating ensemble expectations based on the PDF using the Markov chain Monte Carlo method. The approach was applied to computer-simulated 3D list-mode positron emission tomography data. The reconstruction errors for a 10 000 000 event acquisition for simulated ranged from 0.1 to 34.8%, depending on object size and sampling density. The method was also applied to experimental data and the results of the OE method were consistent with those obtained by a standard maximum-likelihood approach. The method is a new approach to representation and reconstruction of data obtained by photon-limited emission tomography measurements.
Non-destructive testing of satellite nozzles made of carbon fibre ceramic matrix composite, C/SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebelo Kornmeier, J.; Hofmann, M.; Schmidt, S.
Carbon fibre ceramic matrix composite materials, C/SiC, are excellent candidates as lightweight structural materials for high performance hot structures such as in aerospace applications. Satellite nozzles are manufactured from C/SiC, using, for instance, the Liquid Polymer Infiltration (LPI) process. In this article the applicability of different non-destructive analysis methods for the characterisation of C/SiC components will be discussed. By using synchrotron and neutron tomography it is possible to characterise the C/SiC material in each desired location or orientation. Synchrotron radiation using tomography on small samples with a resolution of 1.4 {mu}m, i.e. the fibre scale, was used to characterise threemore » dimensionally fibre orientation and integrity, matrix homogeneity and dimensions and distributions of micro pores. Neutron radiation tomography with a resolution of about 300 {mu}m was used to analyse the over-all C/SiC satellite nozzle component with respect to the fibre content. The special solder connection of a C/SiC satellite nozzle to a metallic ring was also successfully analysed by neutron tomography. In addition, the residual stress state of a temperature tested satellite nozzle was analysed non-destructively in depth by neutron diffraction. The results revealed almost zero stress for the principal directions, radial, axial and tangential, which can be considered to be the principal directions.« less
Molecular Contrast Optical Coherence Tomography: A Review¶
Yang, Changhuei
2005-01-01
This article reviews the current state of research on the use of molecular contrast agents in optical coherence tomography (OCT) imaging techniques. After a brief discussion of the basic principle of OCT and the importance of incorporating molecular contrast agent usage into this imaging modality, we shall present an overview of the different molecular contrast OCT (MCOCT) methods that have been developed thus far. We will then discuss several important practical issues that define the possible range of contrast agent choice, the design criteria for engineered molecular contrast agent and the implementability of a given MCOCT method for clinical or biological applications. We will conclude by outlining a few areas of pursuit that deserve a greater degree of research and development. PMID:15588122
Zernike phase contrast cryo-electron tomography of whole bacterial cells
Guerrero-Ferreira, Ricardo C.; Wright, Elizabeth R.
2014-01-01
Cryo-electron tomography (cryo-ET) provides three-dimensional (3D) structural information of bacteria preserved in a native, frozen-hydrated state. The typical low contrast of tilt-series images, a result of both the need for a low electron dose and the use of conventional defocus phase-contrast imaging, is a challenge for high-quality tomograms. We show that Zernike phase-contrast imaging allows the electron dose to be reduced. This limits movement of gold fiducials during the tilt series, which leads to better alignment and a higher-resolution reconstruction. Contrast is also enhanced, improving visibility of weak features. The reduced electron dose also means that more images at more tilt angles could be recorded, further increasing resolution. PMID:24075950
Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.
Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre
2014-06-15
We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.
Variational Quantum Tomography with Incomplete Information by Means of Semidefinite Programs
NASA Astrophysics Data System (ADS)
Maciel, Thiago O.; Cesário, André T.; Vianna, Reinaldo O.
We introduce a new method to reconstruct unknown quantum states out of incomplete and noisy information. The method is a linear convex optimization problem, therefore with a unique minimum, which can be efficiently solved with Semidefinite Programs. Numerical simulations indicate that the estimated state does not overestimate purity, and neither the expectation value of optimal entanglement witnesses. The convergence properties of the method are similar to compressed sensing approaches, in the sense that, in order to reconstruct low rank states, it needs just a fraction of the effort corresponding to an informationally complete measurement.
Höhn, Katharina; Sailer, Michaela; Wang, Li; Lorenz, Myriam; Schneider, Marion E; Walther, Paul
2011-01-01
Scanning transmission electron tomography offers enhanced contrast compared to regular transmission electron microscopy, and thicker samples, up to 1 μm or more, can be analyzed, since the depth of focus and inelastic scattering are not limitations. In this study, we combine this novel imaging approach with state of the art specimen preparation by using novel light transparent sapphire specimen carrier for high-pressure freezing and a freeze substitution protocol for better contrast of membranes. This combination allows for imaging membranes and other subcellular structures with unsurpassed quality. This is demonstrated with mitochondria, where the inner and outer mitochondrial membranes as well as the membranes in the cristae appear in very close apposition with a minimal intermembrane space. These findings correspond well with old observations using freeze fracturing. In 880-nm thick sections of hemophagocytes, the three-dimensional structure of membrane sheets could be observed in the virtual sections of the tomogram. Microtubules, actin and intermediate filaments could be visualized within one sample. Intermediate filaments, however, could even be better observed in 3D using surface scanning electron tomography.
One step linear reconstruction method for continuous wave diffuse optical tomography
NASA Astrophysics Data System (ADS)
Ukhrowiyah, N.; Yasin, M.
2017-09-01
The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.
Chen, Kevin C; Jung, Jesse J; Aizman, Alexander
2012-01-01
To describe ocular findings in 3 cases of solar retinopathy using high definition, spectral domain optical coherence tomography (SD-OCT) and review the literature for optical coherence tomography (OCT) characteristics associated with worse vision. Case series and retrospective review of clinical features and Spectralis SD-OCT (Heidelberg Engineering, Vista, California, United States of America). A literature review of OCT findings in cases of solar retinopathy reported on MEDLINE was also performed and analyzed. Six eyes of 3 patients with solar retinopathy revealed significant foveal pathology. Visual acuity ranged from Snellen 20/30 to 20/50. High definition SD-OCT demonstrated defects at the level of the inner and outer segment junction of the photoreceptors as well as in the inner high reflective layer. There was a significant correlation between chronic disruption of the inner photoreceptor junction with worse vision based on the current case series and literature review. Screening patients with exposure to central foveal damage from solar retinopathy with high definition SD-OCT improves diagnosis and assessment of photoreceptor damage and vision loss.
Barrett's esophagus: current and future role of endosonography and optical coherence tomography.
Faruqi, S A; Arantes, V; Bhutani, M S
2004-01-01
This paper reviews the role of endosonography and optical coherence tomography (OCT) for imaging of Barrett's esophagus (BE). The routine use of endoscopic ultrasound (EUS) to screen patients with BE is neither justified nor cost effective. EUS does appear to have a role in patients who have BE and high-grade dysplasia or intramucosal carcinoma, in whom a non-operative therapy is being contemplated. For patients with a diagnosis of esophageal cancer with or without BE, EUS is superior to computed tomography or magnetic resonance imaging for assessing esophageal wall penetration and for detecting regional lymph node involvement. In its current state, OCT is not yet ready for application in clinical practice. However, given its superior resolution compared with other modalities such as EUS, OCT has great potential as a powerful adjunct to standard endoscopy in surveillance of BE and may enhance the ability of endoscopists to detect high-grade dysplasia at an early stage. With further technical refinement, this technique may become a mainstay in the surveillance of BE and other premalignant conditions of the gastrointestinal tract.
Tusler, Charlotte A; Maggs, David J; Kass, Philip H; Paul-Murphy, Joanne R; Schwab, Ivan R; Murphy, Christopher J
2015-01-01
To describe using spectral domain optical coherence tomography (SD-OCT), digital slit-lamp biomicroscopy, and external photography, changes in the ophidian cuticle, spectacle, and cornea during ecdysis. Four normal royal pythons (Python regius). Snakes were assessed once daily throughout a complete shed cycle using nasal, axial, and temporal SD-OCT images, digital slit-lamp biomicroscopy, and external photography. Spectral domain optical coherence tomography (SD-OCT) images reliably showed the spectacular cuticle and stroma, subcuticular space (SCS), cornea, anterior chamber, iris, and Schlemm's canal. When visible, the subspectacular space (SSS) was more distended peripherally than axially. Ocular surface changes throughout ecdysis were relatively conserved among snakes at all three regions imaged. From baseline (7 days following completion of a full cycle), the spectacle gradually thickened before separating into superficial cuticular and deep, hyper-reflective stromal components, thereby creating the SCS. During spectacular separation, the stroma regained original reflectivity, and multiple hyper-reflective foci (likely fragments from the cuticular-stromal interface) were noted within the SCS. The cornea was relatively unchanged in character or thickness throughout all stages of ecdysis. Slit-lamp images did not permit observation of these changes. Spectral domain optical coherence tomography (SD-OCT) provided excellent high-resolution images of the snake anterior segment, and especially the cuticle, spectacle, and cornea of manually restrained normal snakes at all stages of ecdysis and warrants investigation in snakes with anterior segment disease. The peripheral spectacle may be the preferred entry point for diagnostic or therapeutic injections into the SSS and for initiating spectacular surgery. © 2014 American College of Veterinary Ophthalmologists.
Burton, Kirsteen R; Perlis, Nathan; Aviv, Richard I; Moody, Alan R; Kapral, Moira K; Krahn, Murray D; Laupacis, Andreas
2014-03-01
This study reviews the quality of economic evaluations of imaging after acute stroke and identifies areas for improvement. We performed full-text searches of electronic databases that included Medline, Econlit, the National Health Service Economic Evaluation Database, and the Tufts Cost Effectiveness Analysis Registry through July 2012. Search strategy terms included the following: stroke*; cost*; or cost-benefit analysis*; and imag*. Inclusion criteria were empirical studies published in any language that reported the results of economic evaluations of imaging interventions for patients with stroke symptoms. Study quality was assessed by a commonly used checklist (with a score range of 0% to 100%). Of 568 unique potential articles identified, 5 were included in the review. Four of 5 articles were explicit in their analysis perspectives, which included healthcare system payers, hospitals, and stroke services. Two studies reported results during a 5-year time horizon, and 3 studies reported lifetime results. All included the modified Rankin Scale score as an outcome measure. The median quality score was 84.4% (range=71.9%-93.5%). Most studies did not consider the possibility that patients could not tolerate contrast media or could incur contrast-induced nephropathy. Three studies compared perfusion computed tomography with unenhanced computed tomography but assumed that outcomes guided by the results of perfusion computed tomography were equivalent to outcomes guided by the results of magnetic resonance imaging or noncontrast computed tomography. Economic evaluations of imaging modalities after acute ischemic stroke were generally of high methodological quality. However, important radiology-specific clinical components were missing from all of these analyses.
Swyer, Michael (ORCID:0000000309776975); Cladouhos, Trenton; Crosbie, Kayla; Ulberg, Carl (ORCID:000000016198809X)
2017-10-03
Data resources were derived from a passive seismic survey of the northern St. Helens Shear Zone on geothermal leases 12-24 km north of Mount St. Helens for phase 2 of the Geothermal Play-Fairway Analysis of Washington State Prospects. A 20 seismic station array of broadband seismometers was deployed with irregular spacing (1-4 km) over an area of 12 km to image seismogenic features and their damage zones in the shallow crust.
Demonstration of a quantum controlled-NOT gate in the telecommunications band.
Chen, Jun; Altepeter, Joseph B; Medic, Milja; Lee, Kim Fook; Gokden, Burc; Hadfield, Robert H; Nam, Sae Woo; Kumar, Prem
2008-04-04
We present the first quantum controlled-not (cnot) gate realized using a fiber-based indistinguishable photon-pair source in the 1.55 microm telecommunications band. Using this free-space cnot gate, all four Bell states are produced and fully characterized by performing quantum-state tomography, demonstrating the gate's unambiguous entangling capability and high fidelity. Telecom-band operation makes this cnot gate particularly suitable for quantum-information-processing tasks that are at the interface of quantum communication and linear optical quantum computing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramov, N. N., E-mail: Abramov@goi.kolasc.net.ru; Epimakhov, Yu. A.
2016-05-15
A package of geophysical criteria has been developed using seismic spatiotemporal tomography (SST) of a rock massif to perform an instrument-aided assessment of the effect of natural and technogenic factors on the geomechanical state of a rock massif enclosing an underground turbine room at an HPP. Results are presented for a detailed assessment for the underground turbine room at the Verkhnyaya Tuloma HPP on the Kola peninsula.
STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF BENIGN FLECK RETINA USING MULTIMODAL IMAGING.
Neriyanuri, Srividya; Rao, Chetan; Raman, Rajiv
2017-01-01
To report structural and functional features in a case series of benign fleck retina using multimodal imaging. Four cases with benign fleck retina underwent complete ophthalmic examination that included detailed history, visual acuity, and refractive error testing, FM-100 hue test, dilated fundus evaluation, full field electroretinogram, fundus photography with autofluorescence, fundus fluorescein angiography, and swept-source optical coherence tomography. Age group of the cases ranged from 19 years to 35 years (3 males and 1 female). Parental consanguinity was reported in two cases. All of them were visually asymptomatic with best-corrected visual acuity of 20/20 (moderate astigmatism) in both the eyes. Low color discrimination was seen in two cases. Fundus photography showed pisciform flecks which were compactly placed on posterior pole and were discrete, diverging towards periphery. Lesions were seen as smaller dots within 1500 microns from fovea and were hyperfluorescent on autofluorescence. Palisading retinal pigment epithelium defects were seen in posterior pole on fundus fluorescein angiography imaging; irregular hyper fluorescence was also noted. One case had reduced cone responses on full field electroretinogram; the other three cases had normal electroretinogram. On optical coherence tomography, level of lesions varied from retinal pigment epithelium, inner segment to outer segment extending till external limiting membrane. Functional and structural deficits in benign fleck retina were picked up using multimodal imaging.
NASA Astrophysics Data System (ADS)
Auksorius, Egidijus; Boccara, A. Claude
2017-09-01
Images recorded below the surface of a finger can have more details and be of higher quality than the conventional surface fingerprint images. This is particularly true when the quality of the surface fingerprints is compromised by, for example, moisture or surface damage. However, there is an unmet need for an inexpensive fingerprint sensor that is able to acquire high-quality images deep below the surface in short time. To this end, we report on a cost-effective full-field optical coherent tomography system comprised of a silicon camera and a powerful near-infrared LED light source. The system, for example, is able to record 1.7 cm×1.7 cm en face images in 0.12 s with the spatial sampling rate of 2116 dots per inch and the sensitivity of 93 dB. We show that the system can be used to image internal fingerprints and sweat ducts with good contrast. Finally, to demonstrate its biometric performance, we acquired subsurface fingerprint images from 240 individual fingers and estimated the equal-error-rate to be ˜0.8%. The developed instrument could also be used in other en face deep-tissue imaging applications because of its high sensitivity, such as in vivo skin imaging.
NASA Astrophysics Data System (ADS)
Lehti-Polojärvi, Mari; Koskela, Olli; Seppänen, Aku; Figueiras, Edite; Hyttinen, Jari
2018-02-01
Electrical impedance tomography (EIT) is an imaging method that could become a valuable tool in multimodal applications. One challenge in simultaneous multimodal imaging is that typically the EIT electrodes cover a large portion of the object surface. This paper investigates the feasibility of rotational EIT (rEIT) in applications where electrodes cover only a limited angle of the surface of the object. In the studied rEIT, the object is rotated a full 360° during a set of measurements to increase the information content of the data. We call this approach limited angle full revolution rEIT (LAFR-rEIT). We test LAFR-rEIT setups in two-dimensional geometries with computational and experimental data. We use up to 256 rotational measurement positions, which requires a new way to solve the forward and inverse problem of rEIT. For this, we provide a modification, available for EIDORS, in the supplementary material. The computational results demonstrate that LAFR-rEIT with eight electrodes produce the same image quality as conventional 16-electrode rEIT, when data from an adequate number of rotational measurement positions are used. Both computational and experimental results indicate that the novel LAFR-rEIT provides good EIT with setups with limited surface coverage and a small number of electrodes.
In vivo microwave-based thermoacoustic tomography of rats (Conference Presentation)
NASA Astrophysics Data System (ADS)
Lin, Li; Zhou, Yong; Wang, Lihong V.
2016-03-01
Microwave-based thermoacoustic tomography (TAT), based on the measurement of ultrasonic waves induced by microwave pulses, can reveal tissue dielectric properties that may be closely related to the physiological and pathological status of the tissues. Using microwaves as the excitation source improved imaging depth because of their deep penetration into biological tissues. We demonstrate, for the first time, in vivo microwave-based thermoacoustic imaging in rats. The transducer is rotated around the rat in a full circle, providing a full two-dimensional view. Instead of a flat ultrasonic transducer, we used a virtual line detector based on a cylindrically focused transducer. A 3 GHz microwave source with 0.6 µs pulse width and an electromagnetically shielded transducer with 2.25 MHz central frequency provided clear cross-sectional images of the rat's body. The high imaging contrast, based on the tissue's rate of absorption, and the ultrasonically defined spatial resolution combine to reveal the spine, kidney, muscle, and other deeply seated anatomical features in the rat's abdominal cavity. This non-invasive and non-ionizing imaging modality achieved an imaging depth beyond 6 cm in the rat's tissue. Cancer diagnosis based on information about tissue properties from microwave band TAT can potentially be more accurate than has previously been achievable.
Bakhtavar, Khadijeh; Sedighi, Nahid; Moradi, Zahra
2008-03-01
Chemical warfare agents (CWA) including sulfur mustard (SM) were commonly used in Iran-Iraq war. Respiratory problems are the greatest cause of long-term disability among people who had combat exposure to SM. High-resolution computed tomography (HRCT) has been accepted as the imaging modality of choice in these patients. We used expiratory HRCT findings in comparison to inspiratory HRCT for demonstration of pulmonary damage in these patients. HRCT in deep inspiration as well as full expiration was performed in 473 patients with a history of chemical gas exposure during the war and the results were compared. The study was prospective during 1 yr. Of 473 patients, 366 (77.38%) showed normal HRCT in deep inspiration; however, on corresponding expiratory cuts, 263 (71.86%) had abnormalities. The most frequent abnormal finding in expiration was patchy air trapping (77.77%). We conclude that exposure to SM causes pulmonary complications resulting in disability in the affected patients; however, HRCT in inspiration is normal in most of the affected patients. Expiratory HRCT showed patchy air trapping as the most common finding, which is suggestive of small air way diseases such as bronchiolitis obliterans; therefore it is recommended to do HRCT both in deep inspiration and full expiration in patients with a history of CWA exposure.
NASA Astrophysics Data System (ADS)
Chue-Sang, Joseph; Bai, Yuqiang; Stoff, Susan; Gonzalez, Mariacarla; Holness, Nola; Gomes, Jefferson; Jung, Ranu; Gandjbakhche, Amir; Chernomordik, Viktor V.; Ramella-Roman, Jessica C.
2017-08-01
Preterm birth (PTB) presents a serious medical health concern throughout the world. There is a high incidence of PTB in both developed and developing countries ranging from 11% to 15%, respectively. Recent research has shown that cervical collagen orientation and distribution changes during pregnancy may be useful in predicting PTB. Polarization imaging is an effective means to measure optical anisotropy in birefringent materials, such as the cervix's extracellular matrix. Noninvasive, full-field Mueller matrix polarimetry (MMP) imaging methodologies, and optical coherence tomography (OCT) imaging were used to assess cervical collagen content and structure in nonpregnant porcine cervices. We demonstrate that the highly ordered structure of the nonpregnant porcine cervix can be observed with MMP. Furthermore, when utilized ex vivo, OCT and MMP yield very similar results with a mean error of 3.46% between the two modalities.
NASA Astrophysics Data System (ADS)
Galmed, A. H.; du Plessis, A.; le Roux, S. G.; Hartnick, E.; Von Bergmann, H.; Maaza, M.
2018-01-01
Laboratory X-ray computed tomography is an emerging technology for the 3D characterization and dimensional analysis of many types of materials. In this work we demonstrate the usefulness of this characterization method for the full three dimensional analysis of laser ablation craters, in the context of a laser induced breakdown spectroscopy setup. Laser induced breakdown spectroscopy relies on laser ablation for sampling the material of interest. We demonstrate here qualitatively (in images) and quantitatively (in terms of crater cone angles, depths, diameters and volume) laser ablation crater analysis in 3D for metal (aluminum) and rock (false gold ore). We show the effect of a Gaussian beam profile on the resulting crater geometry, as well as the first visual evidence of undercutting in the rock sample, most likely due to ejection of relatively large grains. The method holds promise for optimization of laser ablation setups especially for laser induced breakdown spectroscopy.
Enhancement of intrinsic optical signal recording with split spectrum optical coherence tomography
NASA Astrophysics Data System (ADS)
Thapa, Damber; Wang, Benquan; Lu, Yiming; Son, Taeyoon; Yao, Xincheng
2017-09-01
Functional optical coherence tomography (OCT) of stimulus-evoked intrinsic optical signal (IOS) promises to be a new methodology for high-resolution mapping of retinal neural dysfunctions. However, its practical applications for non-invasive examination of retinal function have been hindered by the low signal-to-noise ratio (SNR) and small magnitude of IOSs. Split spectrum amplitude-decorrelation has been demonstrated to improve the image quality of OCT angiography. In this study, we exploited split spectrum strategy to improve the sensitivity of IOS recording. The full OCT spectrum was split into multiple spectral bands and IOSs from each sub-band were calculated separately and then combined to generate a single IOS image sequence. The algorithm was tested on in vivo images of frog retinas. It significantly improved both IOS magnitude and SNR, which are essential for practical applications of functional IOS imaging.
Chue-Sang, Joseph; Bai, Yuqiang; Stoff, Susan; Gonzalez, Mariacarla; Holness, Nola; Gomes, Jefferson; Jung, Ranu; Gandjbakhche, Amir; Chernomordik, Viktor V; Ramella-Roman, Jessica C
2017-08-01
Preterm birth (PTB) presents a serious medical health concern throughout the world. There is a high incidence of PTB in both developed and developing countries ranging from 11% to 15%, respectively. Recent research has shown that cervical collagen orientation and distribution changes during pregnancy may be useful in predicting PTB. Polarization imaging is an effective means to measure optical anisotropy in birefringent materials, such as the cervix's extracellular matrix. Noninvasive, full-field Mueller matrix polarimetry (MMP) imaging methodologies, and optical coherence tomography (OCT) imaging were used to assess cervical collagen content and structure in nonpregnant porcine cervices. We demonstrate that the highly ordered structure of the nonpregnant porcine cervix can be observed with MMP. Furthermore, when utilized ex vivo, OCT and MMP yield very similar results with a mean error of 3.46% between the two modalities. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Lu, Sheng-Hua; Huang, Siang-Ru; Chou, Che-Chung
2018-03-01
We resolve the complex conjugate ambiguity in spectral-domain optical coherence tomography (SD-OCT) by using achromatic two-harmonic method. Unlike previous researches, the optical phase of the fiber interferometer is modulated by an achromatic phase shifter based on an optical delay line. The achromatic phase modulation leads to a wavelength-independent scaling coefficient for the two harmonics. Dividing the mean absolute value of the first harmonic by that of the second harmonic in a B-scan interferogram directly gives the scaling coefficient. It greatly simplifies the determination of the magnitude ratio between the two harmonics without the need of third harmonic and cumbersome iterative calculations. The inverse fast Fourier transform of the complex-valued interferogram constructed with the scaling coefficient, first and second harmonics yields a full-range OCT image. Experimental results confirm the effectiveness of the proposed achromatic two-harmonic technique for suppressing the mirror artifacts in SD-OCT images.
Quantification of thickness loss in a liquid-loaded plate using ultrasonic guided wave tomography
NASA Astrophysics Data System (ADS)
Rao, Jing; Ratassepp, Madis; Fan, Zheng
2017-12-01
Ultrasonic guided wave tomography (GWT) provides an attractive solution to map thickness changes from remote locations. It is based on the velocity-to-thickness mapping employing the dispersive characteristics of selected guided modes. This study extends the application of GWT on a liquid-loaded plate. It is a more challenging case than the application on a free plate, due to energy of the guided waves leaking into the liquid. In order to ensure the accuracy of thickness reconstruction, advanced forward models are developed to consider attenuation effects using complex velocities. The reconstruction of the thickness map is based on the frequency-domain full waveform inversion (FWI) method, and its accuracy is discussed using different frequencies and defect dimensions. Validation experiments are carried out on a water-loaded plate with an irregularly shaped defect using S0 guided waves, showing excellent performance of the reconstruction algorithm.
The role of mobile computed tomography in mass fatality incidents.
Rutty, Guy N; Robinson, Claire E; BouHaidar, Ralph; Jeffery, Amanda J; Morgan, Bruno
2007-11-01
Mobile multi-detector computed tomography (MDCT) scanners are potentially available to temporary mortuaries and can be operational within 20 min of arrival. We describe, to our knowledge, the first use of mobile MDCT for a mass fatality incident. A mobile MDCT scanner attended the disaster mortuary after a five vehicle road traffic incident. Five out of six bodies were successfully imaged by MDCT in c. 15 min per body. Subsequent full radiological analysis took c. 1 h per case. The results were compared to the autopsy examinations. We discuss the advantages and disadvantages of imaging with mobile MDCT in relation to mass fatality work, illustrating the body pathway process, and its role in the identification of the pathology, personal effects, and health and safety hazards. We propose that the adoption of a single modality of mobile MDCT could replace the current use of multiple radiological sources within a mass fatality mortuary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Federle, M.P.; Cello J.P.; Laing, F.C.
1982-04-01
Five cases of recurrent pyogenic cholangitis (RPC) were studied by ultrasonography, computed tomography (CT), and cholangiography. All patients were recent immigrants from the Orient or Indonesia and had had recurrent attacks of cholangitis for many years. The bile was infected by E. coli and the biliary ducts were dilated; in addition, extrahepatic bile-pigment calculi we represent in all 5 and intrahepatic calculi in 4. Abdominal ultrasound usually failed to demonstrate duct calculi and extrahepatic dilatation due to the soft, mud-like consistency of the stones. CT was successful in showing the calculi and the full extent of dilatation. The authors concludemore » that preoperative diagnosis of RPC is best achieved by awareness of the characteristic clinical presentation and the findings on abdominal CT. Preoperative cholangiography provides excellent detail, but poses the danger of biliary sepsis requiring antibiotics.« less
Full ocular biometry through dual-depth whole-eye optical coherence tomography
Kim, Hyung-Jin; Kim, Minji; Hyeon, Min Gyu; Choi, Youngwoon; Kim, Beop-Min
2018-01-01
We propose a new method of determining the optical axis (OA), pupillary axis (PA), and visual axis (VA) of the human eye by using dual-depth whole-eye optical coherence tomography (OCT). These axes, as well as the angles “α” between the OA and VA and “κ” between PA and VA, are important in many ophthalmologic applications, especially in refractive surgery. Whole-eye images are reconstructed based on simultaneously acquired images of the anterior segment and retina. The light from a light source is split into two orthogonal polarization components for imaging the anterior segment and retina, respectively. The OA and PA are identified based on their geometric definitions by using the anterior segment image only, while the VA is detected through accurate correlation between the two images. The feasibility of our approach was tested using a model eye and human subjects. PMID:29552378
Vectorization with SIMD extensions speeds up reconstruction in electron tomography.
Agulleiro, J I; Garzón, E M; García, I; Fernández, J J
2010-06-01
Electron tomography allows structural studies of cellular structures at molecular detail. Large 3D reconstructions are needed to meet the resolution requirements. The processing time to compute these large volumes may be considerable and so, high performance computing techniques have been used traditionally. This work presents a vector approach to tomographic reconstruction that relies on the exploitation of the SIMD extensions available in modern processors in combination to other single processor optimization techniques. This approach succeeds in producing full resolution tomograms with an important reduction in processing time, as evaluated with the most common reconstruction algorithms, namely WBP and SIRT. The main advantage stems from the fact that this approach is to be run on standard computers without the need of specialized hardware, which facilitates the development, use and management of programs. Future trends in processor design open excellent opportunities for vector processing with processor's SIMD extensions in the field of 3D electron microscopy.
The Effect of Porosity on Fatigue of Die Cast AM60
NASA Astrophysics Data System (ADS)
Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.
2016-07-01
AM60 high-pressure die castings are known to contain significant porosity which can affect fatigue life. We have studied this using samples drawn from prototype AM60 shock towers by conducting strain-controlled fatigue tests accompanied by X-ray computed tomography analysis. The results show that the machined surface is the preferential location for fatigue crack development, with pores close to these surfaces serving as initiation sites. Fatigue life shows a strong inverse correlation with the size of the fatigue-crack-initiating pore. Pore shape and pore orientation also influence the response. A supplemental study on surface roughness shows that porosity is the dominant factor in fatigue. Tomography enables the link between porosity and fatigue crack initiation to be clearly identified. These data are complemented by SEM observations of the fracture surfaces which are generally flat and full of randomly oriented serration patterns but without long-range fatigue striations.
Hyperspectral image reconstruction for x-ray fluorescence tomography
Gürsoy, Doǧa; Biçer, Tekin; Lanzirotti, Antonio; ...
2015-01-01
A penalized maximum-likelihood estimation is proposed to perform hyperspectral (spatio-spectral) image reconstruction for X-ray fluorescence tomography. The approach minimizes a Poisson-based negative log-likelihood of the observed photon counts, and uses a penalty term that has the effect of encouraging local continuity of model parameter estimates in both spatial and spectral dimensions simultaneously. The performance of the reconstruction method is demonstrated with experimental data acquired from a seed of arabidopsis thaliana collected at the 13-ID-E microprobe beamline at the Advanced Photon Source. The resulting element distribution estimates with the proposed approach show significantly better reconstruction quality than the conventional analytical inversionmore » approaches, and allows for a high data compression factor which can reduce data acquisition times remarkably. In particular, this technique provides the capability to tomographically reconstruct full energy dispersive spectra without compromising reconstruction artifacts that impact the interpretation of results.« less
NASA Astrophysics Data System (ADS)
Talbot, C.; McClure, J. E.; Armstrong, R. T.; Mostaghimi, P.; Hu, Y.; Miller, C. T.
2017-12-01
Microscale simulation of multiphase flow in realistic, highly-resolved porous medium systems of a sufficient size to support macroscale evaluation is computationally demanding. Such approaches can, however, reveal the dynamic, steady, and equilibrium states of a system. We evaluate methods to utilize dynamic data to reduce the cost associated with modeling a steady or equilibrium state. We construct data-driven models using extensions to dynamic mode decomposition (DMD) and its connections to Koopman Operator Theory. DMD and its variants comprise a class of equation-free methods for dimensionality reduction of time-dependent nonlinear dynamical systems. DMD furnishes an explicit reduced representation of system states in terms of spatiotemporally varying modes with time-dependent oscillation frequencies and amplitudes. We use DMD to predict the steady and equilibrium macroscale state of a realistic two-fluid porous medium system imaged using micro-computed tomography (µCT) and simulated using the lattice Boltzmann method (LBM). We apply Koopman DMD to direct numerical simulation data resulting from simulations of multiphase fluid flow through a 1440x1440x4320 section of a full 1600x1600x5280 realization of imaged sandstone. We determine a representative set of system observables via dimensionality reduction techniques including linear and kernel principal component analysis. We demonstrate how this subset of macroscale quantities furnishes a representation of the time-evolution of the system in terms of dynamic modes, and discuss the selection of a subset of DMD modes yielding the optimal reduced model, as well as the time-dependence of the error in the predicted equilibrium value of each macroscale quantity. Finally, we describe how the above procedure, modified to incorporate methods from compressed sensing and random projection techniques, may be used in an online fashion to facilitate adaptive time-stepping and parsimonious storage of system states over time.
Resting-state functional connectivity imaging of the mouse brain using photoacoustic tomography
NASA Astrophysics Data System (ADS)
Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Q.; Culver, Joseph P.; Wang, Lihong V.
2014-03-01
Resting-state functional connectivity (RSFC) imaging is an emerging neuroimaging approach that aims to identify spontaneous cerebral hemodynamic fluctuations and their associated functional connections. Clinical studies have demonstrated that RSFC is altered in brain disorders such as stroke, Alzheimer's, autism, and epilepsy. However, conventional neuroimaging modalities cannot easily be applied to mice, the most widely used model species for human brain disease studies. For instance, functional magnetic resonance imaging (fMRI) of mice requires a very high magnetic field to obtain a sufficient signal-to-noise ratio and spatial resolution. Functional connectivity mapping with optical intrinsic signal imaging (fcOIS) is an alternative method. Due to the diffusion of light in tissue, the spatial resolution of fcOIS is limited, and experiments have been performed using an exposed skull preparation. In this study, we show for the first time, the use of photoacoustic computed tomography (PACT) to noninvasively image resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight regions, as well as several subregions. These findings agreed well with the Paxinos mouse brain atlas. This study showed that PACT is a promising, non-invasive modality for small-animal functional brain imaging.
Superfast maximum-likelihood reconstruction for quantum tomography
NASA Astrophysics Data System (ADS)
Shang, Jiangwei; Zhang, Zhengyun; Ng, Hui Khoon
2017-06-01
Conventional methods for computing maximum-likelihood estimators (MLE) often converge slowly in practical situations, leading to a search for simplifying methods that rely on additional assumptions for their validity. In this work, we provide a fast and reliable algorithm for maximum-likelihood reconstruction that avoids this slow convergence. Our method utilizes the state-of-the-art convex optimization scheme, an accelerated projected-gradient method, that allows one to accommodate the quantum nature of the problem in a different way than in the standard methods. We demonstrate the power of our approach by comparing its performance with other algorithms for n -qubit state tomography. In particular, an eight-qubit situation that purportedly took weeks of computation time in 2005 can now be completed in under a minute for a single set of data, with far higher accuracy than previously possible. This refutes the common claim that MLE reconstruction is slow and reduces the need for alternative methods that often come with difficult-to-verify assumptions. In fact, recent methods assuming Gaussian statistics or relying on compressed sensing ideas are demonstrably inapplicable for the situation under consideration here. Our algorithm can be applied to general optimization problems over the quantum state space; the philosophy of projected gradients can further be utilized for optimization contexts with general constraints.
Positron Emission Tomography - Computed Tomography (PET/CT)
... A-Z Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) uses small amounts of ... What is Positron Emission Tomography – Computed Tomography (PET/CT) Scanning? Positron emission tomography, also called PET imaging ...
Racial/ethnic disparities in the utilization of high-technology hospitals.
Kim, Tae Hyun; Samson, Linda F; Lu, Ning
2010-09-01
Hospitals with high-technology services may have better outcomes. However, access to high-technology hospitals might not be uniform across racial/ethnic groups. This study examined if racial/ethnic minorities, compared to whites, are less likely to utilize hospitals that have the availability of technology services and infrastructure items such as computed tomography, positron emission tomography, magnetic resonance imaging, diagnostics radiation facility, and a level 1 trauma unit. Data were obtained from the 2003 Healthcare Cost & Utilization Project's Nationwide Inpatient Sample and the 2003 American Hospital Association's annual survey data. The sample consisted of 3381 324 patients admitted to and discharged from 368 hospitals in 18 states in the United States. Logistic regression results suggest that Hispanic patients are less likely than whites to utilize high-technology hospitals when controlling for other factors (odds ratio[OR], 0.47; 95% confidence interval [CI], 0.28-0.79). Our study adds empirical evidence that significant gaps persist in access to care between minorities and whites. Particularly, access to high-technology hospitals for Hispanics appears to be a major problem.
Optimization of a solid-state electron spin qubit using Gate Set Tomography
Dehollain, Juan P.; Muhonen, Juha T.; Blume-Kohout, Robin J.; ...
2016-10-13
Here, state of the art qubit systems are reaching the gate fidelities required for scalable quantum computation architectures. Further improvements in the fidelity of quantum gates demands characterization and benchmarking protocols that are efficient, reliable and extremely accurate. Ideally, a benchmarking protocol should also provide information on how to rectify residual errors. Gate Set Tomography (GST) is one such protocol designed to give detailed characterization of as-built qubits. We implemented GST on a high-fidelity electron-spin qubit confined by a single 31P atom in 28Si. The results reveal systematic errors that a randomized benchmarking analysis could measure but not identify, whereasmore » GST indicated the need for improved calibration of the length of the control pulses. After introducing this modification, we measured a new benchmark average gate fidelity of 99.942(8)%, an improvement on the previous value of 99.90(2)%. Furthermore, GST revealed high levels of non-Markovian noise in the system, which will need to be understood and addressed when the qubit is used within a fault-tolerant quantum computation scheme.« less
NASA Astrophysics Data System (ADS)
Traverso, A.; Lopez Torres, E.; Fantacci, M. E.; Cerello, P.
2017-05-01
Lung cancer is one of the most lethal types of cancer, because its early diagnosis is not good enough. In fact, the detection of pulmonary nodule, potential lung cancers, in Computed Tomography scans is a very challenging and time-consuming task for radiologists. To support radiologists, researchers have developed Computer-Aided Diagnosis (CAD) systems for the automated detection of pulmonary nodules in chest Computed Tomography scans. Despite the high level of technological developments and the proved benefits on the overall detection performance, the usage of Computer-Aided Diagnosis in clinical practice is far from being a common procedure. In this paper we investigate the causes underlying this discrepancy and present a solution to tackle it: the M5L WEB- and Cloud-based on-demand Computer-Aided Diagnosis. In addition, we prove how the combination of traditional imaging processing techniques with state-of-art advanced classification algorithms allows to build a system whose performance could be much larger than any Computer-Aided Diagnosis developed so far. This outcome opens the possibility to use the CAD as clinical decision support for radiologists.
Neutron Radiography, Tomography, and Diffraction of Commercial Lithium-ion Polymer Batteries
NASA Astrophysics Data System (ADS)
Butler, Leslie G.; Lehmann, Eberhard H.; Schillinger, Burkhard
Imaging an intact, commercial battery as it cycles and wears is proved possible with neutron imaging. The wavelength range of imaging neutrons corresponds nicely with crystallographic dimensions of the electrochemically active species and the metal elec- trodes are relatively transparent. The time scale of charge/discharge cycling is well matched to dynamic tomography as performed with a golden ratio based projection angle ordering. The hydrogen content does create scatter which tends to blur internal struc- ture. In this report, three neutron experiments will be described: 3D images of charged and discharged batteries were obtained with monochromatic neutrons at the FRM II reactor. 2D images (PSI) of fresh and worn batteries as a function of charge state may show a new wear pattern. In situ neutron diffraction (SNS) of the intact battery provides more information about the concentrations of electrochemical species within the battery as a function of charge state and wear. The combination of 2D imaging, 3D imaging, and diffraction data show how neutron imaging can contribute to battery development and wear monitoring.
Bottom-up construction of artificial molecules for superconducting quantum processors
NASA Astrophysics Data System (ADS)
Poletto, Stefano; Rigetti, Chad; Gambetta, Jay M.; Merkel, Seth; Chow, Jerry M.; Corcoles, Antonio D.; Smolin, John A.; Rozen, Jim R.; Keefe, George A.; Rothwell, Mary B.; Ketchen, Mark B.; Steffen, Matthias
2012-02-01
Recent experiments on transmon qubits capacitively coupled to superconducting 3-dimensional cavities have shown coherence times much longer than transmons coupled to more traditional planar resonators. For the implementation of a quantum processor this approach has clear advantages over traditional techniques but it poses the challenge of scalability. We are currently implementing multi-qubits experiments based on a bottom-up scaling approach. First, transmon qubits are fabricated on individual chips and are independently characterized. Second, an artificial molecule is assembled by selecting a particular set of previously characterized single-transmon chips. We present recent data on a two-qubit artificial molecule constructed in this way. The two qubits are chosen to generate a strong Z-Z interaction by matching the 0-1 transition energy of one qubit with the 1-2 transition of the other. Single qubit manipulations and state tomography cannot be done with ``traditional'' single tone microwave pulses but instead specifically shaped pulses have to be simultaneously applied on both qubits. Coherence times, coupling strength, and optimal pulses for decoupling the two qubits and perform state tomography are presented
Accretion disk dynamics in X-ray binaries
NASA Astrophysics Data System (ADS)
Peris, Charith Srian
Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which is consistent with its lower accretion state. The donor stars in V691 CrA and Nova Muscae 1991 were also detected.
Brun, E; Grandl, S; Sztrókay-Gaul, A; Barbone, G; Mittone, A; Gasilov, S; Bravin, A; Coan, P
2014-11-01
Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure's possible applications. A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.
Offset-electrode profile acquisition strategy for electrical resistivity tomography
NASA Astrophysics Data System (ADS)
Robbins, Austin R.; Plattner, Alain
2018-04-01
We present an electrode layout strategy that allows electrical resistivity profiles to image the third dimension close to the profile plane. This "offset-electrode profile" approach involves laterally displacing electrodes away from the profile line in an alternating fashion and then inverting the resulting data using three-dimensional electrical resistivity tomography software. In our synthetic and field surveys, the offset-electrode method succeeds in revealing three-dimensional structures in the vicinity of the profile plane, which we could not achieve using three-dimensional inversions of linear profiles. We confirm and explain the limits of linear electrode profiles through a discussion of the three-dimensional sensitivity patterns: For a homogeneous starting model together with a linear electrode layout, all sensitivities remain symmetric with respect to the profile plane through each inversion step. This limitation can be overcome with offset-electrode layouts by breaking the symmetry pattern among the sensitivities. Thanks to freely available powerful three-dimensional resistivity tomography software and cheap modern computing power, the requirement for full three-dimensional calculations does not create a significant burden and renders the offset-electrode approach a cost-effective method. By offsetting the electrodes in an alternating pattern, as opposed to laying the profile out in a U-shape, we minimize shortening the profile length.
Deliolanis, Nikolaos C; Ale, Angelique; Morscher, Stefan; Burton, Neal C; Schaefer, Karin; Radrich, Karin; Razansky, Daniel; Ntziachristos, Vasilis
2014-10-01
A primary enabling feature of near-infrared fluorescent proteins (FPs) and fluorescent probes is the ability to visualize deeper in tissues than in the visible. The purpose of this work is to find which is the optimal visualization method that can exploit the advantages of this novel class of FPs in full-scale pre-clinical molecular imaging studies. Nude mice were stereotactically implanted with near-infrared FP expressing glioma cells to from brain tumors. The feasibility and performance metrics of FPs were compared between planar epi-illumination and trans-illumination fluorescence imaging, as well as to hybrid Fluorescence Molecular Tomography (FMT) system combined with X-ray CT and Multispectral Optoacoustic (or Photoacoustic) Tomography (MSOT). It is shown that deep-seated glioma brain tumors are possible to visualize both with fluorescence and optoacoustic imaging. Fluorescence imaging is straightforward and has good sensitivity; however, it lacks resolution. FMT-XCT can provide an improved rough resolution of ∼1 mm in deep tissue, while MSOT achieves 0.1 mm resolution in deep tissue and has comparable sensitivity. We show imaging capacity that can shift the visualization paradigm in biological discovery. The results are relevant not only to reporter gene imaging, but stand as cross-platform comparison for all methods imaging near infrared fluorescent contrast agents.
Caldarella, Carmelo; Muoio, Barbara; Isgrò, Maria Antonietta; Porfiri, Emilio; Treglia, Giorgio; Giovanella, Luca
2014-09-01
Positron emission tomography-computed tomography (PET-CT) using fluorodeoxyglucose (FDG) is increasingly used in the evaluation of patients with advanced renal cell carcinoma (RCC), primarily for staging purposes. The aim of this paper is to perform a systematic review about the usefulness of PET-CT using FDG in response assessment after treatment with tyrosine-kinase inhibitors (TKIs) in patients with advanced RCC. The scientific literature about the role of PET-CT using FDG in the assessment of response to treatment with TKIs in patients affected by advanced RCC was systematically reviewed. Seven studies about the role of PET-CT using FDG in the response assessment after treatment with TKIs (essentially sunitinib and sorafenib) in advanced RCC were retrieved in full-text and analysed, to determine the predictive role of this morpho-functional imaging method on patient outcome. To date, the role of PET-CT using FDG in evaluating the response to TKIs in metastatic RCC patients is still not well defined, partly due to heterogeneity of available studies; however, PET-CT reveals potential role for the selection of patients undergoing therapy with TKIs. The use of contrast-enhanced PET-CT appears to be promising for a "multi-dimensional" evaluation of treatment response in these patients.
SUPER-RESOLUTION ULTRASOUND TOMOGRAPHY: A PRELIMINARY STUDY WITH A RING ARRAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
HUANG, LIANJIE; SIMONETTI, FRANCESCO; DURIC, NEBOJSA
2007-01-18
Ultrasound tomography attempts to retrieve the structure of an objective by exploiting the interaction of acoustic waves with the object. A fundamental limit of ultrasound tomography is that features cannot be resolved if they are spaced less than {lambda}/2 apart, where {lambda} is wavelength of the probing wave, regardless of the degree of accuracy of the measurements. Therefore, since the attenuation of the probing wave with propagation distance increases as {lambda} decreases, resolution has to be traded against imaging depth. Recently, it has been shown that the {lambda}/2 limit is a consequence of the Born approximation (implicit in the imagingmore » algorithms currently employed) which neglects the distortion of the probing wavefield as it travels through the medium to be imaged. On the other hand, such a distortion, which is due to the multiple scattering phenomenon, can encode unlimited resolution in the radiating component of the scattered field. Previously, a resolution better than {lambda}/3 has been reported in these proceedings [F. Simonetti, pp. 126 (2006)] in the case of elastic wave probing. In this paper, they demonstrate experimentally a resolution better than {lambda}/4 for objects immersed in a water bth probed by means of a ring array which excites and detects pressure waves in a full view configuration.« less
Dual tracer imaging of SPECT and PET probes in living mice using a sequential protocol
Chapman, Sarah E; Diener, Justin M; Sasser, Todd A; Correcher, Carlos; González, Antonio J; Avermaete, Tony Van; Leevy, W Matthew
2012-01-01
Over the past 20 years, multimodal imaging strategies have motivated the fusion of Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) scans with an X-ray computed tomography (CT) image to provide anatomical information, as well as a framework with which molecular and functional images may be co-registered. Recently, pre-clinical nuclear imaging technology has evolved to capture multiple SPECT or multiple PET tracers to further enhance the information content gathered within an imaging experiment. However, the use of SPECT and PET probes together, in the same animal, has remained a challenge. Here we describe a straightforward method using an integrated trimodal imaging system and a sequential dosing/acquisition protocol to achieve dual tracer imaging with 99mTc and 18F isotopes, along with anatomical CT, on an individual specimen. Dosing and imaging is completed so that minimal animal manipulations are required, full trimodal fusion is conserved, and tracer crosstalk including down-scatter of the PET tracer in SPECT mode is avoided. This technique will enhance the ability of preclinical researchers to detect multiple disease targets and perform functional, molecular, and anatomical imaging on individual specimens to increase the information content gathered within longitudinal in vivo studies. PMID:23145357
OPTICAL COHERENCE TOMOGRAPHY FINDINGS IN CYTOMEGALOVIRUS RETINITIS: A Longitudinal Study.
Invernizzi, Alessandro; Agarwal, Aniruddha; Ravera, Vittoria; Oldani, Marta; Staurenghi, Giovanni; Viola, Francesco
2018-01-01
To evaluate the vitreal, retinal, and choroidal features using spectral domain optical coherence tomography (SD-OCT) in eyes affected by cytomegalovirus (CMV) retinitis. Patients diagnosed with either active or inactive CMV retinitis were included in the study. Complete ophthalmic examination, serial color fundus photography, and SD-OCT (with and without enhanced depth imaging function) were performed for all the subjects at baseline and follow-up visits. The SD-OCT images were analyzed by two independent graders to evaluate the structural changes in areas of CMV retinitis. Prevalence data for vitreal, retinal, and choroidal SD-OCT features were collected. Twelve eyes from 9 patients (6 males, mean age: 52.7 ± 10.3 years) were enrolled. Nine eyes were diagnosed with active CMV retinitis at baseline. Active disease SD-OCT characteristic findings included nebulous vitritis (100%), posterior hyaloid thickening (83.3%), epiretinal membrane (100%), and retinal swelling (100%). Two distinct patterns of chorioretinal involvement were observed in active retinitis: 1) full-thickness retinitis (Full thickness retinitis) (n = 7 eyes) with choriocapillaris alterations and retinal pigment epithelial thickening and 2) cavernous retinitis (n = 3 eyes) characterized by inner retinal hyperreflectivity, large empty spaces in outer nuclear layer, and bridges of retinal tissue but retinal pigment epithelium and choriocapillaris sparing. Patients with cavernous retinitis develop retinal detachment during follow-up. Eyes with Full thickness retinitis developed choriocapillaris atrophy and choroidal thinning and retinal scars as the lesions healed. There are two distinct patterns of chorioretinal involvement in CMV retinitis. SD-OCT is a useful tool in the diagnosis, management, and prediction of the outcome of CMV retinitis.
NASA Astrophysics Data System (ADS)
Hakala, Pasi; Kajava, Jari J. E.
2018-03-01
Transitional millisecond pulsars are systems that alternate between an accreting low-mass X-ray binary (LMXB) state and a non-accreting radio pulsar state. When at the LMXB state, their X-ray and optical light curves show rapid flares and dips, the origin of which is not well understood. We present results from our optical and NIR observing campaign of PSR J1023+0038, a transitional millisecond pulsar observed in an accretion state. Our wide-band optical photopolarimetry indicates that the system shows intrinsic linear polarisation, the degree of which is anticorrelated with optical emission, i.e. the polarisation could be diluted during the flares. However, the change in position angle during the flares suggests an additional emerging polarised component during the flares. We also find, based on our H α spectroscopy and Doppler tomography, that there is indication for change in the accretion disc structure/emission during the flares, possibly due to a change in accretion flow. This, together with changing polarisation during the flares, could mark the existence of magnetic propeller mass ejection process in the system. Furthermore, our analysis of flare profiles in both optical and NIR shows that NIR flares are at least as powerful as the optical ones and both can exhibit transition time-scales less than 3 s. The optical/NIR flares therefore seem to originate from a separate, polarised transient component, which might be due to Thomson scattering from propeller ejected matter.
A Comparison of Shadowgraphy and X-ray Computed Tomography in Liquid Spray Analysis
2014-11-14
atomizers and downstream of the nozzle exit gives insight into optimizing atomizers, particularly for combustion applications. The performance of gas ...regions near the spray nozzle [9, 10]. Because light refraction by liquid sheets is significant, these areas all cast a full shadow on the camera...hollow-cone pressure swirl design. Within this nozzle design, liquid swirls around an air-cored vortex. Upon exiting, the fluid expands due to its
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tourret, D.; Mertens, J. C. E.; Lieberman, E.
We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure,more » supported by quantitative simulations of microstructure formation and its mechanical behavior.« less
Gate Set Tomography on two qubits
NASA Astrophysics Data System (ADS)
Nielsen, Erik; Blume-Kohout, Robin; Gamble, John; Rudinger, Kenneth
Gate set tomography (GST) is a method for characterizing quantum gates that does not require pre-calibrated operations, and has been used to both certify and improve the operation of single qubits. We analyze the performance of GST applied to a simulated two-qubit system, and show that Heisenberg scaling is achieved in this case. We present a GST analysis of preliminary two-qubit experimental data, and draw comparisons with the simulated data case. Finally, we will discuss recent theoretical developments that have improved the efficiency of GST estimation procedures, and which are particularly beneficial when characterizing two qubit systems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Tourret, D.; Mertens, J. C. E.; Lieberman, E.; ...
2017-09-13
We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure,more » supported by quantitative simulations of microstructure formation and its mechanical behavior.« less
NASA Astrophysics Data System (ADS)
Tourret, D.; Mertens, J. C. E.; Lieberman, E.; Imhoff, S. D.; Gibbs, J. W.; Henderson, K.; Fezzaa, K.; Deriy, A. L.; Sun, T.; Lebensohn, R. A.; Patterson, B. M.; Clarke, A. J.
2017-11-01
We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure, supported by quantitative simulations of microstructure formation and its mechanical behavior.
NASA Astrophysics Data System (ADS)
Chen, Huaiguang; Fu, Shujun; Wang, Hong; Lv, Hongli; Zhang, Caiming
2018-03-01
As a high-resolution imaging mode of biological tissues and materials, optical coherence tomography (OCT) is widely used in medical diagnosis and analysis. However, OCT images are often degraded by annoying speckle noise inherent in its imaging process. Employing the bilateral sparse representation an adaptive singular value shrinking method is proposed for its highly sparse approximation of image data. Adopting the generalized likelihood ratio as similarity criterion for block matching and an adaptive feature-oriented backward projection strategy, the proposed algorithm can restore better underlying layered structures and details of the OCT image with effective speckle attenuation. The experimental results demonstrate that the proposed algorithm achieves a state-of-the-art despeckling performance in terms of both quantitative measurement and visual interpretation.
Freiberger, Manuel; Egger, Herbert; Liebmann, Manfred; Scharfetter, Hermann
2011-11-01
Image reconstruction in fluorescence optical tomography is a three-dimensional nonlinear ill-posed problem governed by a system of partial differential equations. In this paper we demonstrate that a combination of state of the art numerical algorithms and a careful hardware optimized implementation allows to solve this large-scale inverse problem in a few seconds on standard desktop PCs with modern graphics hardware. In particular, we present methods to solve not only the forward but also the non-linear inverse problem by massively parallel programming on graphics processors. A comparison of optimized CPU and GPU implementations shows that the reconstruction can be accelerated by factors of about 15 through the use of the graphics hardware without compromising the accuracy in the reconstructed images.
Ware, Robert E; Francis, Hilton W; Read, Kenneth E
2004-06-21
The Commonwealth Government constituted the Medicare Services Advisory Committee (MSAC) to implement its commitment to entrench the principles of evidence-based medicine in Australian clinical practice. With its recent review of positron emission tomography (PETReview), the Commonwealth intervened in an established MSAC process, and sanctioned the stated objective to restrict expenditure on the technology. In our opinion: The evaluation of evidence by PETReview was fundamentally compromised by a failure to meet the terms of reference, poor science, poor process and unique decision-making benchmarks. By accepting the recommendations of PETReview, the Commonwealth is propagating information which is not of the highest quality. The use of inferior-quality information for decision-making by doctors, patients and policy-makers is likely to harm rather than enhance healthcare outcomes.