Sample records for full stress tensor

  1. Full elastic strain and stress tensor measurements from individual dislocation cells in copper through-Si vias

    DOE PAGES

    Levine, Lyle E.; Okoro, Chukwudi A.; Xu, Ruqing

    2015-09-30

    We report non-destructive measurements of the full elastic strain and stress tensors from individual dislocation cells distributed along the full extent of a 50 mm-long polycrystalline copper via in Si is reported. Determining all of the components of these tensors from sub-micrometre regions within deformed metals presents considerable challenges. The primary issues are ensuring that different diffraction peaks originate from the same sample volume and that accurate determination is made of the peak positions from plastically deformed samples. For these measurements, three widely separated reflections were examined from selected, individual grains along the via. The lattice spacings and peak positionsmore » were measured for multiple dislocation cell interiors within each grain and the cell-interior peaks were sorted out using the measured included angles. A comprehensive uncertainty analysis using a Monte Carlo uncertainty algorithm provided uncertainties for the elastic strain tensor and stress tensor components.« less

  2. Local recovery of lithospheric stress tensor from GOCE gravitational tensor

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi

    2017-04-01

    The sublithospheric stress due to mantle convection can be computed from gravity data and propagated through the lithosphere by solving the boundary-value problem of elasticity for the Earth's lithosphere. In this case, a full tensor of stress can be computed at any point inside this elastic layer. Here, we present mathematical foundations for recovering such a tensor from gravitational tensor measured at satellite altitudes. The mathematical relations will be much simpler in this way than the case of using gravity data as no derivative of spherical harmonics (SHs) or Legendre polynomials is involved in the expressions. Here, new relations between the SH coefficients of the stress and gravitational tensor elements are presented. Thereafter, integral equations are established from them to recover the elements of stress tensor from those of the gravitational tensor. The integrals have no closed-form kernels, but they are easy to invert and their spatial truncation errors are reducible. The integral equations are used to invert the real data of the gravity field and steady-state ocean circulation explorer mission (GOCE), in 2009 November, over the South American plate and its surroundings to recover the stress tensor at a depth of 35 km. The recovered stress fields are in good agreement with the tectonic and geological features of the area.

  3. Synchrotron X-ray microbeam diffraction measurements of full elastic long range internal strain and stress tensors in commercial-purity aluminum processed by multiple passes of equal-channel angular pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Thien Q.; Levine, Lyle E.; Lee, I-Fang

    Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) aluminum alloy AA1050 after 1, 2, and 8 passes using route B C. This is the first time that full tensors were measured in plastically deformed metals at this length scale. The maximum (most tensile or least compressive) principal elastic strain directions for the unloaded 1 pass sample for the grain/subgrain interiors align well with the pressing direction, and are more random for the 2 and 8more » pass samples. The measurements reported here indicate that the local stresses and strains become increasingly isotropic (homogenized) with increasing ECAP passes using route BC. The average maximum (in magnitude) LRISs are -0.43 σ a for 1 pass, -0.44 σ a for 2 pass, and 0.14 σ a for the 8 pass sample. Furthermore, these LRISs are larger than those reported previously because those earlier measurements were unable to measure the full stress tensor. Significantly, the measured stresses are inconsistent with the two-component composite model.« less

  4. Synchrotron X-ray microbeam diffraction measurements of full elastic long range internal strain and stress tensors in commercial-purity aluminum processed by multiple passes of equal-channel angular pressing

    DOE PAGES

    Phan, Thien Q.; Levine, Lyle E.; Lee, I-Fang; ...

    2016-04-23

    Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) aluminum alloy AA1050 after 1, 2, and 8 passes using route B C. This is the first time that full tensors were measured in plastically deformed metals at this length scale. The maximum (most tensile or least compressive) principal elastic strain directions for the unloaded 1 pass sample for the grain/subgrain interiors align well with the pressing direction, and are more random for the 2 and 8more » pass samples. The measurements reported here indicate that the local stresses and strains become increasingly isotropic (homogenized) with increasing ECAP passes using route BC. The average maximum (in magnitude) LRISs are -0.43 σ a for 1 pass, -0.44 σ a for 2 pass, and 0.14 σ a for the 8 pass sample. Furthermore, these LRISs are larger than those reported previously because those earlier measurements were unable to measure the full stress tensor. Significantly, the measured stresses are inconsistent with the two-component composite model.« less

  5. Single-shot full strain tensor determination with microbeam X-ray Laue diffraction and a two-dimensional energy-dispersive detector.

    PubMed

    Abboud, A; Kirchlechner, C; Keckes, J; Conka Nurdan, T; Send, S; Micha, J S; Ulrich, O; Hartmann, R; Strüder, L; Pietsch, U

    2017-06-01

    The full strain and stress tensor determination in a triaxially stressed single crystal using X-ray diffraction requires a series of lattice spacing measurements at different crystal orientations. This can be achieved using a tunable X-ray source. This article reports on a novel experimental procedure for single-shot full strain tensor determination using polychromatic synchrotron radiation with an energy range from 5 to 23 keV. Microbeam X-ray Laue diffraction patterns were collected from a copper micro-bending beam along the central axis (centroid of the cross section). Taking advantage of a two-dimensional energy-dispersive X-ray detector (pnCCD), the position and energy of the collected Laue spots were measured for multiple positions on the sample, allowing the measurement of variations in the local microstructure. At the same time, both the deviatoric and hydrostatic components of the elastic strain and stress tensors were calculated.

  6. Elliptic Relaxation of a Tensor Representation for the Redistribution Terms in a Reynolds Stress Turbulence Model

    NASA Technical Reports Server (NTRS)

    Carlson, J. R.; Gatski, T. B.

    2002-01-01

    A formulation to include the effects of wall proximity in a second-moment closure model that utilizes a tensor representation for the redistribution terms in the Reynolds stress equations is presented. The wall-proximity effects are modeled through an elliptic relaxation process of the tensor expansion coefficients that properly accounts for both correlation length and time scales as the wall is approached. Direct numerical simulation data and Reynolds stress solutions using a full differential approach are compared for the case of fully developed channel flow.

  7. Elliptic Relaxation of a Tensor Representation of the Pressure-Strain and Dissipation Rate

    NASA Technical Reports Server (NTRS)

    Carlson, John R.; Gatski, Thomas B.

    2002-01-01

    A formulation to include the effects of wall-proximity in a second moment closure model is presented that utilizes a tensor representation for the redistribution term in the Reynolds stress equations. The wall-proximity effects are modeled through an elliptic relaxation process of the tensor expansion coefficients that properly accounts for both correlation length and time scales as the wall is approached. DNS data and Reynolds stress solutions using a full differential approach at channel Reynolds number of 590 are compared to the new model.

  8. Full paleostress tensor reconstruction: case study of the Panasqueira Mine, Portugal.

    NASA Astrophysics Data System (ADS)

    Pascal, C.; Jaques Ribeiro, L. M.

    2017-12-01

    Paleostress tensor restoration methods are traditionally limited to reconstructing geometrical parameters and are unable to resolve stress magnitudes. Based on previous studies we further developed a methodology to restore full paleostress tensors. We concentrated on inversion of Mode I fractures and acquired data in Panasqueira Mine, Portugal, where optimal 3D exposures of mineralised quartz veins can be found. To carry out full paleostress restoration we needed to determine (1) pore (paleo)pressure and (2) vein attitudes. To these aims we conducted an extensive fluid inclusion study to derive fluid isochores from the quartz of the studied veins. To further constrain P-T conditions, we combined these isochores with crystallisation temperatures derived from geochemical analyses of coeval arsenopyrite. We also applied the sphalerite geobarometer and considered two other independent pressure indicators. Our results point to pore pressures of 300 MPa and formation depths of 10 km. As a second step, we measured 600 subhorizontal quartz veins in all the levels of the mine. The inversion of the attitudes of the veins allowed for reconstructing the orientations of the principal axes of stress, the unscaled Mohr circle and the relative pore pressure. After merging these results with the previously obtained absolute pore pressure we reconstructed the six parameters of the paleostress tensor.

  9. Electromagnetic stress tensor for an amorphous metamaterial medium

    NASA Astrophysics Data System (ADS)

    Wang, Neng; Wang, Shubo; Ng, Jack

    2018-03-01

    We analytically and numerically investigated the internal optical forces exerted by an electromagnetic wave inside an amorphous metamaterial medium. We derived, by using the principle of virtual work, the Helmholtz stress tensor, which takes into account the electrostriction effect. Several examples of amorphous media are considered, and different electromagnetic stress tensors, such as the Einstein-Laub tensor and Minkowski tensor, are also compared. It is concluded that the Helmholtz stress tensor is the appropriate tensor for such systems.

  10. Electrostatic forces in the Poisson-Boltzmann systems

    NASA Astrophysics Data System (ADS)

    Xiao, Li; Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2013-09-01

    Continuum modeling of electrostatic interactions based upon numerical solutions of the Poisson-Boltzmann equation has been widely used in structural and functional analyses of biomolecules. A limitation of the numerical strategies is that it is conceptually difficult to incorporate these types of models into molecular mechanics simulations, mainly because of the issue in assigning atomic forces. In this theoretical study, we first derived the Maxwell stress tensor for molecular systems obeying the full nonlinear Poisson-Boltzmann equation. We further derived formulations of analytical electrostatic forces given the Maxwell stress tensor and discussed the relations of the formulations with those published in the literature. We showed that the formulations derived from the Maxwell stress tensor require a weaker condition for its validity, applicable to nonlinear Poisson-Boltzmann systems with a finite number of singularities such as atomic point charges and the existence of discontinuous dielectric as in the widely used classical piece-wise constant dielectric models.

  11. Detailed stress tensor measurements in a centrifugal compressor vaneless diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinarbasi, A.; Johnson, M.W.

    1996-04-01

    Detailed flow measurements have been made in the vaneless diffuser of a large low-speed centrifugal compressor using hot-wire anemometry. The three time mean velocity components and full stress tensor distributions have been determined on eight measurement plans within the diffuser. High levels of Reynolds stress result in the rapid mixing out of the blade wake. Although high levels of turbulent kinetic energy are found in the passage wake, they are not associated with strong Reynolds stresses and hence the passage wake mixes out only slowly. Low-frequency meandering of the wake position is therefore likely to be responsible for the highmore » kinetic energy levels. The anisotropic nature of the turbulence suggests that Reynolds stress turbulence models are required for CFD modeling of diffuser flows.« less

  12. Calculation of the Maxwell stress tensor and the Poisson-Boltzmann force on a solvated molecular surface using hypersingular boundary integrals

    NASA Astrophysics Data System (ADS)

    Lu, Benzhuo; Cheng, Xiaolin; Hou, Tingjun; McCammon, J. Andrew

    2005-08-01

    The electrostatic interaction among molecules solvated in ionic solution is governed by the Poisson-Boltzmann equation (PBE). Here the hypersingular integral technique is used in a boundary element method (BEM) for the three-dimensional (3D) linear PBE to calculate the Maxwell stress tensor on the solvated molecular surface, and then the PB forces and torques can be obtained from the stress tensor. Compared with the variational method (also in a BEM frame) that we proposed recently, this method provides an even more efficient way to calculate the full intermolecular electrostatic interaction force, especially for macromolecular systems. Thus, it may be more suitable for the application of Brownian dynamics methods to study the dynamics of protein/protein docking as well as the assembly of large 3D architectures involving many diffusing subunits. The method has been tested on two simple cases to demonstrate its reliability and efficiency, and also compared with our previous variational method used in BEM.

  13. The use of Stress Tensor Discriminator Faults in separating heterogeneous fault-slip data with best-fit stress inversion methods. II. Compressional stress regimes

    NASA Astrophysics Data System (ADS)

    Tranos, Markos D.

    2018-02-01

    Synthetic heterogeneous fault-slip data as driven by Andersonian compressional stress tensors were used to examine the efficiency of best-fit stress inversion methods in separating them. Heterogeneous fault-slip data are separated only if (a) they have been driven by stress tensors defining 'hybrid' compression (R < 0.375), and their σ1 axes differ in trend more than 30° (R = 0) or 50° (R = 0.25). Separation is not feasible if they have been driven by (b) 'real' (R ≥ 0.375) and 'hybrid' compressional tensors having their σ1 axes in similar trend, or (c) 'real' compressional tensors. In case (a), the Stress Tensor Discriminator Faults (STDF) exist in more than 50% of the activated fault slip data while in cases (b) and (c), they exist in percentages of much less than 50% or not at all. They constitute a necessary discriminatory tool for the establishment and comparison of two compressional stress tensors determined by a best-fit stress inversion method. The best-fit stress inversion methods are not able to determine more than one 'real' compressional stress tensor, as far as the thrust stacking in an orogeny is concerned. They can only possibly discern stress differences in the late-orogenic faulting processes, but not between the main- and late-orogenic stages.

  14. Full paleostress tensor reconstruction using quartz veins of Panasqueira Mine, central Portugal; part I: Paleopressure determination

    NASA Astrophysics Data System (ADS)

    Jaques, Luís; Pascal, Christophe

    2017-09-01

    Paleostress tensor restoration methods are traditionally limited to reconstructing geometrical parameters and are unable to resolve stress magnitudes. Based on previous studies we further developed a methodology to restore full paleostress tensors. We concentrated on inversion of Mode I fractures and acquired data in Panasqueira Mine, Portugal, where optimal exposures of mineralized quartz veins can be found. To carry out full paleostress restoration we needed to determine (1) pore (paleo)pressure and (2) vein attitudes. The present contribution focuses specifically on the determination of pore pressure. To these aims we conducted an extensive fluid inclusion study to derive fluid isochores from the quartz of the studied veins. To constrain P-T conditions, we combined these isochores with crystallisation temperatures derived from geochemical analyses of coeval arsenopyrite. We also applied the sphalerite geobarometer and considered two other independent pressure indicators. Our results point to pore pressures of ∼300 MPa and formation depths of ∼10 km. Such formation depths are in good agreement with the regional geological evolution. The obtained pore pressure will be merged with vein inversion results, in order to achieve full paleostress tensor restoration, in a forthcoming companion paper.

  15. TensorCalculator: exploring the evolution of mechanical stress in the CCMV capsid

    NASA Astrophysics Data System (ADS)

    Kononova, Olga; Maksudov, Farkhad; Marx, Kenneth A.; Barsegov, Valeri

    2018-01-01

    A new computational methodology for the accurate numerical calculation of the Cauchy stress tensor, stress invariants, principal stress components, von Mises and Tresca tensors is developed. The methodology is based on the atomic stress approach which permits the calculation of stress tensors, widely used in continuum mechanics modeling of materials properties, using the output from the MD simulations of discrete atomic and C_α -based coarse-grained structural models of biological particles. The methodology mapped into the software package TensorCalculator was successfully applied to the empty cowpea chlorotic mottle virus (CCMV) shell to explore the evolution of mechanical stress in this mechanically-tested specific example of a soft virus capsid. We found an inhomogeneous stress distribution in various portions of the CCMV structure and stress transfer from one portion of the virus structure to another, which also points to the importance of entropic effects, often ignored in finite element analysis and elastic network modeling. We formulate a criterion for elastic deformation using the first principal stress components. Furthermore, we show that von Mises and Tresca stress tensors can be used to predict the onset of a viral capsid’s mechanical failure, which leads to total structural collapse. TensorCalculator can be used to study stress evolution and dynamics of defects in viral capsids and other large-size protein assemblies.

  16. Stresses in non-equilibrium fluids: Exact formulation and coarse-grained theory.

    PubMed

    Krüger, Matthias; Solon, Alexandre; Démery, Vincent; Rohwer, Christian M; Dean, David S

    2018-02-28

    Starting from the stochastic equation for the density operator, we formulate the exact (instantaneous) stress tensor for interacting Brownian particles and show that its average value agrees with expressions derived previously. We analyze the relation between the stress tensor and forces due to external potentials and observe that, out of equilibrium, particle currents give rise to extra forces. Next, we derive the stress tensor for a Landau-Ginzburg theory in generic, non-equilibrium situations, finding an expression analogous to that of the exact microscopic stress tensor, and discuss the computation of out-of-equilibrium (classical) Casimir forces. Subsequently, we give a general form for the stress tensor which is valid for a large variety of energy functionals and which reproduces the two mentioned cases. We then use these relations to study the spatio-temporal correlations of the stress tensor in a Brownian fluid, which we compute to leading order in the interaction potential strength. We observe that, after integration over time, the spatial correlations generally decay as power laws in space. These are expected to be of importance for driven confined systems. We also show that divergence-free parts of the stress tensor do not contribute to the Green-Kubo relation for the viscosity.

  17. Stresses in non-equilibrium fluids: Exact formulation and coarse-grained theory

    NASA Astrophysics Data System (ADS)

    Krüger, Matthias; Solon, Alexandre; Démery, Vincent; Rohwer, Christian M.; Dean, David S.

    2018-02-01

    Starting from the stochastic equation for the density operator, we formulate the exact (instantaneous) stress tensor for interacting Brownian particles and show that its average value agrees with expressions derived previously. We analyze the relation between the stress tensor and forces due to external potentials and observe that, out of equilibrium, particle currents give rise to extra forces. Next, we derive the stress tensor for a Landau-Ginzburg theory in generic, non-equilibrium situations, finding an expression analogous to that of the exact microscopic stress tensor, and discuss the computation of out-of-equilibrium (classical) Casimir forces. Subsequently, we give a general form for the stress tensor which is valid for a large variety of energy functionals and which reproduces the two mentioned cases. We then use these relations to study the spatio-temporal correlations of the stress tensor in a Brownian fluid, which we compute to leading order in the interaction potential strength. We observe that, after integration over time, the spatial correlations generally decay as power laws in space. These are expected to be of importance for driven confined systems. We also show that divergence-free parts of the stress tensor do not contribute to the Green-Kubo relation for the viscosity.

  18. On the Tensorial Nature of Fluxes in Continuous Media.

    ERIC Educational Resources Information Center

    Stokes, Vijay Kumar; Ramkrishna, Doraiswami

    1982-01-01

    Argues that mass and energy fluxes in a fluid are vectors. Topics include the stress tensor, theorem for tensor fields, mass flux as a vector, stress as a second order tensor, and energy flux as a tensor. (SK)

  19. Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation

    NASA Astrophysics Data System (ADS)

    Shi, Peidong; Angus, Doug; Nowacki, Andy; Yuan, Sanyi; Wang, Yanyan

    2018-03-01

    Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green's function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.

  20. Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation

    NASA Astrophysics Data System (ADS)

    Shi, Peidong; Angus, Doug; Nowacki, Andy; Yuan, Sanyi; Wang, Yanyan

    2018-07-01

    Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green's function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.

  1. Conservation laws and stress-energy-momentum tensors for systems with background fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gratus, Jonathan, E-mail: j.gratus@lancaster.ac.uk; The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD; Obukhov, Yuri N., E-mail: yo@thp.uni-koeln.de

    2012-10-15

    This article attempts to delineate the roles played by non-dynamical background structures and Killing symmetries in the construction of stress-energy-momentum tensors generated from a diffeomorphism invariant action density. An intrinsic coordinate independent approach puts into perspective a number of spurious arguments that have historically lead to the main contenders, viz the Belinfante-Rosenfeld stress-energy-momentum tensor derived from a Noether current and the Einstein-Hilbert stress-energy-momentum tensor derived in the context of Einstein's theory of general relativity. Emphasis is placed on the role played by non-dynamical background (phenomenological) structures that discriminate between properties of these tensors particularly in the context of electrodynamics inmore » media. These tensors are used to construct conservation laws in the presence of Killing Lie-symmetric background fields. - Highlights: Black-Right-Pointing-Pointer The role of background fields in diffeomorphism invariant actions is demonstrated. Black-Right-Pointing-Pointer Interrelations between different stress-energy-momentum tensors are emphasised. Black-Right-Pointing-Pointer The Abraham and Minkowski electromagnetic tensors are discussed in this context. Black-Right-Pointing-Pointer Conservation laws in the presence of nondynamic background fields are formulated. Black-Right-Pointing-Pointer The discussion is facilitated by the development of a new variational calculus.« less

  2. Analysis of structural correlations in a model binary 3D liquid through the eigenvalues and eigenvectors of the atomic stress tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levashov, V. A.

    2016-03-07

    It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids’ structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectorsmore » of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ{sub 1} ≥ λ{sub 2} ≥ λ{sub 3} ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ{sub 2}/λ{sub 1}) and (λ{sub 3}/λ{sub 2}) are essentially identical to each other in the liquids state. We also found that λ{sub 2} tends to be equal to the geometric average of λ{sub 1} and λ{sub 3}. In our view, correlations between the eigenvalues may represent “the Poisson ratio effect” at the atomic scale.« less

  3. Analysis of structural correlations in a model binary 3D liquid through the eigenvalues and eigenvectors of the atomic stress tensors.

    PubMed

    Levashov, V A

    2016-03-07

    It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids' structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectors of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ1 ≥ λ2 ≥ λ3 ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ2/λ1) and (λ3/λ2) are essentially identical to each other in the liquids state. We also found that λ2 tends to be equal to the geometric average of λ1 and λ3. In our view, correlations between the eigenvalues may represent "the Poisson ratio effect" at the atomic scale.

  4. Stress-dependence of kinetic transitions at atomistic defects

    NASA Astrophysics Data System (ADS)

    Ball, S. L.; Alexander, K. C.; Schuh, C. A.

    2018-01-01

    The full second-rank activation volume tensors associated with vacancy migration in FCC copper and HCP titanium as well as transition events in the Σ5 (2 1 0) grain boundary in copper are calculated and analyzed. The full tensorial results quantitatively illustrate how the conventional use of an activation volume scalar in atomistic studies of the kinetic processes of complex defects can miss important stress dependencies, in that neither hydrostatic pressure nor deviatoric stress dependencies can be considered alone as dominating the response. The results speak to the importance of anisotropies in the stress-dependence of atomistic kinetics, including crystal structure anisotropy, elastic anisotropy, and defect structure or migration-path anisotropies.

  5. Quantum electromagnetic stress tensor in an inhomogeneous medium

    NASA Astrophysics Data System (ADS)

    Parashar, Prachi; Milton, Kimball A.; Li, Yang; Day, Hannah; Guo, Xin; Fulling, Stephen A.; Cavero-Peláez, Inés

    2018-06-01

    Continuing a program of examining the behavior of the vacuum expectation value of the stress tensor in a background which varies only in a single direction, we here study the electromagnetic stress tensor in a medium with permittivity depending on a single spatial coordinate, specifically, a planar dielectric half-space facing a vacuum region. There are divergences occurring that are regulated by temporal and spatial point splitting, which have a universal character for both transverse electric and transverse magnetic modes. The nature of the divergences depends on the model of dispersion adopted. And there are singularities occurring at the edge between the dielectric and vacuum regions, which also have a universal character, depending on the structure of the discontinuities in the material properties there. Remarks are offered concerning renormalization of such models, and the significance of the stress tensor. The ambiguity in separating "bulk" and "scattering" parts of the stress tensor is discussed.

  6. Simplified derivation of the gravitational wave stress tensor from the linearized Einstein field equations.

    PubMed

    Balbus, Steven A

    2016-10-18

    A conserved stress energy tensor for weak field gravitational waves propagating in vacuum is derived directly from the linearized general relativistic wave equation alone, for an arbitrary gauge. In any harmonic gauge, the form of the tensor leads directly to the classical expression for the outgoing wave energy. The method described here, however, is a much simpler, shorter, and more physically motivated approach than is the customary procedure, which involves a lengthy and cumbersome second-order (in wave-amplitude) calculation starting with the Einstein tensor. Our method has the added advantage of exhibiting the direct coupling between the outgoing wave energy flux and the work done by the gravitational field on the sources. For nonharmonic gauges, the directly derived wave stress tensor has an apparent index asymmetry. This coordinate artifact may be straightforwardly removed, and the symmetrized (still gauge-invariant) tensor then takes on its widely used form. Angular momentum conservation follows immediately. For any harmonic gauge, however, the stress tensor found is manifestly symmetric from the start, and its derivation depends, in its entirety, on the structure of the linearized wave equation.

  7. Stochastic Gravity: Theory and Applications.

    PubMed

    Hu, Bei Lok; Verdaguer, Enric

    2004-01-01

    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operatorvalued) stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole (enclosed in a box). We derive a fluctuation-dissipation relation between the fluctuations in the radiation and the dissipative dynamics of metric fluctuations.

  8. On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity

    NASA Astrophysics Data System (ADS)

    Vallée, Claude; Fortuné, Danielle; Lerintiu, Camelia

    2008-11-01

    Elastic materials are governed by a constitutive law relating the second Piola-Kirchhoff stress tensor Σ and the right Cauchy-Green strain tensor C=FF. Isotropic elastic materials are the special cases for which the Cauchy stress tensor σ depends solely on the left Cauchy-Green strain tensor B=FF. In this Note we revisit the following property of isotropic hyperelastic materials: if the constitutive law relating Σ and C is derivable from a potential ϕ, then σ and lnB are related by a constitutive law derived from the compound potential ϕ○exp. We give a new and concise proof which is based on an explicit integral formula expressing the derivative of the exponential of a tensor. To cite this article: C. Vallée et al., C. R. Mecanique 336 (2008).

  9. Time Evolution of Modeled Reynolds Stresses in Planar Homogeneous Flows

    NASA Technical Reports Server (NTRS)

    Jongen, T.; Gatski, T. B.

    1997-01-01

    The analytic expression of the time evolution of the Reynolds stress anisotropy tensor in all planar homogeneous flows is obtained by exact integration of the modeled differential Reynolds stress equations. The procedure is based on results of tensor representation theory, is applicable for general pressure-strain correlation tensors, and can account for any additional turbulence anisotropy effects included in the closure. An explicit solution of the resulting system of scalar ordinary differential equations is obtained for the case of a linear pressure-strain correlation tensor. The properties of this solution are discussed, and the dynamic behavior of the Reynolds stresses is studied, including limit cycles and sensitivity to initial anisotropies.

  10. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation.

    PubMed

    Freistühler, Heinrich; Temple, Blake

    2014-06-08

    CURRENT THEORIES OF DISSIPATION IN THE RELATIVISTIC REGIME SUFFER FROM ONE OF TWO DEFICITS: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier-Stokes-Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ , η , ζ , corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress-energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor.

  11. NIED seismic moment tensor catalogue for regional earthquakes around Japan: quality test and application

    NASA Astrophysics Data System (ADS)

    Kubo, Atsuki; Fukuyama, Eiichi; Kawai, Hiroyuki; Nonomura, Ken'ichi

    2002-10-01

    We have examined the quality of the National Research Institute for Earth Science and Disaster Prevention (NIED) seismic moment tensor (MT) catalogue obtained using a regional broadband seismic network (FREESIA). First, we examined using synthetic waveforms the robustness of the solutions with regard to data noise as well as to errors in the velocity structure and focal location. Then, to estimate the reliability, robustness and validity of the catalogue, we compared it with the Harvard centroid moment tensor (CMT) catalogue as well as the Japan Meteorological Agency (JMA) focal mechanism catalogue. We found out that the NIED catalogue is consistent with Harvard and JMA catalogues within the uncertainty of 0.1 in moment magnitude, 10 km in depth, and 15° in direction of the stress axes. The NIED MT catalogue succeeded in reducing to 3.5 the lower limit of moment magnitude above which the moment tensor could be reliably estimated. Finally, we estimated the stress tensors in several different regions by using the NIED MT catalogue. This enables us to elucidate the stress/deformation field in and around the Japanese islands to understand the mode of deformation and applied stress. Moreover, we identified a region of abnormal stress in a swarm area from stress tensor estimates.

  12. Reversible and dissipative macroscopic contributions to the stress tensor: active or passive?

    PubMed

    Brand, H R; Pleiner, H; Svenšek, D

    2014-09-01

    The issue of dynamic contributions to the macroscopic stress tensor has been of high interest in the field of bio-inspired active systems over the last few years. Of particular interest is a direct coupling ("active term") of the stress tensor with the order parameter, the latter describing orientational order induced by active processes. Here we analyze more generally possible reversible and irreversible dynamic contributions to the stress tensor for various passive and active macroscopic systems. This includes systems with tetrahedral/octupolar order, polar and non-polar (chiral) nematic and smectic liquid crystals, as well as active fluids with a dynamic preferred (polar or non-polar) direction. We show that it cannot a priori be seen, neither from the symmetry properties of the macroscopic variables involved, nor from the structure of the cross-coupling contributions to the stress tensor, whether the system studied is active or passive. Rather, that depends on whether the variables that give rise to those cross-couplings in the stress tensor are driven or not. We demonstrate that several simplified descriptions of active systems in the literature that neglect the necessary counter term to the active term violate linear irreversible thermodynamics and lead to an unphysical contribution to the entropy production.

  13. Inversion of calcite twin data for paleostress (1) : improved Etchecopar technique tested on numerically-generated and natural data

    NASA Astrophysics Data System (ADS)

    Parlangeau, Camille; Lacombe, Olivier; Daniel, Jean-Marc; Schueller, Sylvie

    2015-04-01

    Inversion of calcite twin data are known to be a powerful tool to reconstruct the past-state of stress in carbonate rocks of the crust, especially in fold-and-thrust belts and sedimentary basins. This is of key importance to constrain results of geomechanical modelling. Without proposing a new inversion scheme, this contribution reports some recent improvements of the most efficient stress inversion technique to date (Etchecopar, 1984) that allows to reconstruct the 5 parameters of the deviatoric paleostress tensors (principal stress orientations and differential stress magnitudes) from monophase and polyphase twin data sets. The improvements consist in the search of the possible tensors that account for the twin data (twinned and untwinned planes) and the aid to the user to define the best stress tensor solution, among others. We perform a systematic exploration of an hypersphere in 4 dimensions by varying different parameters, Euler's angles and the stress ratio. We first record all tensors with a minimum penalization function accounting for 20% of the twinned planes. We then define clusters of tensors following a dissimilarity criterion based on the stress distance between the 4 parameters of the reduced stress tensors and a degree of disjunction of the related sets of twinned planes. The percentage of twinned data to be explained by each tensor is then progressively increased and tested using the standard Etchecopar procedure until the best solution that explains the maximum number of twinned planes and the whole set of untwinned planes is reached. This new inversion procedure is tested on monophase and polyphase numerically-generated as well as natural calcite twin data in order to more accurately define the ability of the technique to separate more or less similar deviatoric stress tensors applied in sequence on the samples, to test the impact of strain hardening through the change of the critical resolved shear stress for twinning as well as to evaluate the possible bias due to measurement uncertainties or clustering of grain optical axes in the samples.

  14. Pragmatic mode-sum regularization method for semiclassical black-hole spacetimes

    NASA Astrophysics Data System (ADS)

    Levi, Adam; Ori, Amos

    2015-05-01

    Computation of the renormalized stress-energy tensor is the most serious obstacle in studying the dynamical, self-consistent, semiclassical evaporation of a black hole in 4D. The difficulty arises from the delicate regularization procedure for the stress-energy tensor, combined with the fact that in practice the modes of the field need to be computed numerically. We have developed a new method for numerical implementation of the point-splitting regularization in 4D, applicable to the renormalized stress-energy tensor as well as to ⟨ϕ2⟩ren , namely the renormalized ⟨ϕ2⟩. So far we have formulated two variants of this method: t -splitting (aimed for stationary backgrounds) and angular splitting (for spherically symmetric backgrounds). In this paper we introduce our basic approach, and then focus on the t -splitting variant, which is the simplest of the two (deferring the angular-splitting variant to a forthcoming paper). We then use this variant, as a first stage, to calculate ⟨ϕ2⟩ren in Schwarzschild spacetime, for a massless scalar field in the Boulware state. We compare our results to previous ones, obtained by a different method, and find full agreement. We discuss how this approach can be applied (using the angular-splitting variant) to analyze the dynamical self-consistent evaporation of black holes.

  15. Mid-Crustal Stress Magnitude and Rotation Transients Related to the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Nüchter, J. A.; Ellis, S.

    2008-12-01

    Seismic slip causes a stress drop in the upper crust, and a major stress increase at the lower termination of the fault in the middle crust. Previous numerical models show how these stresses relax during an episode of postseismic creep. Natural evidence for postseismic stress and strain transients at depth is provided by 1) the geological record of exhumed metamorphic rocks, and 2) from postseismic surface deformation transients. In the present study, we use numerical models to investigate the changes in the geometry of the mid-crustal stress field caused by seismic slip along normal faults within an extensional tectonic setting. We model a 100x30km crustal section, with a fault reaching down to 20km and dipping at 60°. A non-linear thermal gradient and constant elastic parameters are applied. Thermally activated creep is described by values derived from laboratory creep experiments on wet quartzite. The crust is loaded by horizontal extension at a constant rate, and earthquakes are triggered by a short term decrease in the frictional coefficient of the fault. During the interseismic period, this coefficient is set to high values to lock the fault. A sequence of 30 earthquakes with a constant recurrence interval of 500y is simulated, and the results for the last seismic cycle are analyzed. In such a tectonic setting, the Anderson theory predicts that the maximum principal stress is vertical. A stress field consistent to this theory is reached after an initial stage of 15ka extension without earthquake activity. The results for the 30th seismic cycle imply that seismic slip causes a major stress increase of at least 50MPa at a depth level below the brittle ductile transition, which is in accordance to reports on seismic stress increase derived from the record of metamorphic rocks. In the hanging wall, the stress increase results mainly from an increase in the maximum principal stress and the stress tensor rotates counter-clockwise by 10-30°. In the footwall the stress increase results mainly from a drop in the minimum principal stress, and the stress tensor rotates clockwise by 45-60°. A change in the magnitude of differential stress can be addressed by the addition of an incremental stress tensor resulting from elastic strain to the preexisting stress tensor. In an isotropic medium, the orientation of the maximum and the minimum principal stress changes are controlled by the directions of maximum compression and maximum extension, respectively. The magnitude and the orientation of the resulting stress tensor depend: 1) on the absolute magnitudes and on the ratio of the magnitudes of pre-existing stress and incremental change in the stress tensor; and 2) on the mis-orientation between existing stress and stress change principal directions. The zone of coseismic loading correlates to the interval in which seismic slip tapers off with depth. For a normal fault, the crust here is subjected to fault-parallel compression in the hanging wall, and to extension in the footwall. The resulting orientation of the seismic principal compressive stress change parallel to the fault in the hanging wall and normal to the fault in the footwall causes the particular deflection of the resulting stress tensor . During the interseismic period, the stress peak relaxes by thermally activated creep, while the deflection of the stress tensor is persistent. We show that significant mis- orientations of the stress tensor can be preserved over timescales typical for a seismic cycle, in dependence on the far field extension rate. We conclude that seismic activity causes 1) a non-steady state mid-crustal stress field, and 2) a persistent deflection of the stress tensor orientation from the predictions of the Anderson theory.

  16. A contribution toward rational modeling of the pressure-strain-rate correlation

    NASA Technical Reports Server (NTRS)

    Lee, Moon Joo

    1990-01-01

    A novel method of obtaining an analytical expression of the 'linear part' of the pressure-strain-rate tensor in terms of the anisotropy tensor of the Reynolds stresses has been developed, where the coefficients of the seven independent tensor terms are functions of the invariants of the Reynolds-stress anisotropy. The coefficients are evaluated up to fourth order in the anisotropy of the Reynolds stresses to provide guidance for development of a turbulence model.

  17. Holographic stress-energy tensor near the Cauchy horizon inside a rotating black hole

    NASA Astrophysics Data System (ADS)

    Ishibashi, Akihiro; Maeda, Kengo; Mefford, Eric

    2017-07-01

    We investigate a stress-energy tensor for a conformal field theory (CFT) at strong coupling inside a small five-dimensional rotating Myers-Perry black hole with equal angular momenta by using the holographic method. As a gravitational dual, we perturbatively construct a black droplet solution by applying the "derivative expansion" method, generalizing the work of Haddad [Classical Quantum Gravity 29, 245001 (2012), 10.1088/0264-9381/29/24/245001] and analytically compute the holographic stress-energy tensor for our solution. We find that the stress-energy tensor is finite at both the future and past outer (event) horizons and that the energy density is negative just outside the event horizons due to the Hawking effect. Furthermore, we apply the holographic method to the question of quantum instability of the Cauchy horizon since, by construction, our black droplet solution also admits a Cauchy horizon inside. We analytically show that the null-null component of the holographic stress-energy tensor negatively diverges at the Cauchy horizon, suggesting that a singularity appears there, in favor of strong cosmic censorship.

  18. Polymer stress tensor in turbulent shear flows.

    PubMed

    L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Tiberkevich, Vasil

    2005-01-01

    The interaction of polymers with turbulent shear flows is examined. We focus on the structure of the elastic stress tensor, which is proportional to the polymer conformation tensor. We examine this object in turbulent flows of increasing complexity. First is isotropic turbulence, then anisotropic (but homogenous) shear turbulence, and finally wall bounded turbulence. The main result of this paper is that for all these flows the polymer stress tensor attains a universal structure in the limit of large Deborah number De > 1. We present analytic results for the suppression of the coil-stretch transition at large Deborah numbers. Above the transition the turbulent velocity fluctuations are strongly correlated with the polymer's elongation: there appear high-quality "hydroelastic" waves in which turbulent kinetic energy turns into polymer potential energy and vice versa. These waves determine the trace of the elastic stress tensor but practically do not modify its universal structure. We demonstrate that the influence of the polymers on the balance of energy and momentum can be accurately described by an effective polymer viscosity that is proportional to the cross-stream component of the elastic stress tensor. This component is smaller than the streamwise component by a factor proportional to De2. Finally we tie our results to wall bounded turbulence and clarify some puzzling facts observed in the problem of drag reduction by polymers.

  19. Tensorial analysis of Eshelby stresses in 3D supercooled liquids

    NASA Astrophysics Data System (ADS)

    Lemaître, Anaël

    2015-10-01

    It was recently proposed that the local rearrangements governing relaxation in supercooled liquids impress on the liquid medium long-ranged (Eshelby) stress fluctuations that accumulate over time. From this viewpoint, events must be characterized by elastic dipoles, which are second order tensors, and Eshelby fields are expected to show up in stress and stress increment correlations, which are fourth order tensor fields. We construct here an analytical framework that permits analyzing such tensorial correlations in isotropic media in view of accessing Eshelby fields. Two spherical bases are introduced, which correspond to Cartesian and spherical coordinates for tensors. We show how they can be used to decompose stress correlations and thus test such properties as isotropy and power-law scalings. Eshelby fields and the predicted stress correlations in an infinite medium are shown to belong to an algebra that can conveniently be described using the spherical tensor bases. Using this formalism, we demonstrate that the inherent stress field of 3D supercooled liquids is power law correlated and carries the signature of Eshelby fields, thus supporting the idea that relaxation events give rise to Eshelby stresses that accumulate over time.

  20. Experimental Measurement of In Situ Stress

    NASA Astrophysics Data System (ADS)

    Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul

    2016-04-01

    The World Stress Map data is determined by stress indicators including earthquake focal mechanisms, in situ measurement in mining, oil and gas boreholes as well as the borehole cores, and geologic data. Unfortunately, these measurements are not only infrequent but sometimes infeasible, and do not provide nearly enough data points with high accuracy to correctly infer stress fields in deep mines around the world. Improvements in stress measurements of Earth's crust is fundamental to several industries such as oil and gas, mining, nuclear waste management, and enhanced geothermal systems. Quantifying the state of stress and the geophysical properties of different rock types is a major complication in geophysical monitoring of deep mines. Most stress measurement techniques involve either the boreholes or their cores, however these measurements usually only give stress along one axis, not the complete stress tensor. The goal of this project is to investigate a new method of acquiring a complete stress tensor of the in situ stress in the Earth's crust. This project is part of a comprehensive, exploration geophysical study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, and focuses on two boreholes located in this mine. These boreholes are approximately 400 m long with NQ diameters and are located at depths of about 1300 - 1600 m and 1700 - 2000 m. Two borehole logging surveys were performed on both boreholes, October 2013 and July 2015, in order to perform a time-lapse analysis of the geophysical changes in the mine. These multi-parameter surveys include caliper, full waveform sonic, televiewer, chargeability (IP), and resistivity. Laboratory experiments have been performed on borehole core samples of varying geologies from each borehole. These experiments have measured the geophysical properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. The apparatus' used for this project are geophysical imaging cells capable of hydrostatic stress (σ1 = σ2 = σ3), differential stress (σ1 > σ2 = σ3), and the unique true triaxial stress (σ1 > σ2 > σ3). Velocity surveys can be acquired along all three axes, and therefore the effects of σ1,σ2,σ3 on the velocity-stress curve can be obtained. These geophysical cells are being used to reproduce the borehole P- and S-wave velocities by altering the differential stress, allowing for the unique position of determining the stress tensor. Currently, results have been obtained for differential stress (σ1 > σ2 = σ3), and true triaxial experiments will determine if σ3 is the missing factor to reproducing the borehole velocities. This project is the first to combine time - lapse borehole logging data and experimental laboratory data to infer a complete stress tensor.

  1. An integrated workflow for stress and flow modelling using outcrop-derived discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Bisdom, K.; Nick, H. M.; Bertotti, G.

    2017-06-01

    Fluid flow in naturally fractured reservoirs is often controlled by subseismic-scale fracture networks. Although the fracture network can be partly sampled in the direct vicinity of wells, the inter-well scale network is poorly constrained in fractured reservoir models. Outcrop analogues can provide data for populating domains of the reservoir model where no direct measurements are available. However, extracting relevant statistics from large outcrops representative of inter-well scale fracture networks remains challenging. Recent advances in outcrop imaging provide high-resolution datasets that can cover areas of several hundred by several hundred meters, i.e. the domain between adjacent wells, but even then, data from the high-resolution models is often upscaled to reservoir flow grids, resulting in loss of accuracy. We present a workflow that uses photorealistic georeferenced outcrop models to construct geomechanical and fluid flow models containing thousands of discrete fractures covering sufficiently large areas, that does not require upscaling to model permeability. This workflow seamlessly integrates geomechanical Finite Element models with flow models that take into account stress-sensitive fracture permeability and matrix flow to determine the full permeability tensor. The applicability of this workflow is illustrated using an outcropping carbonate pavement in the Potiguar basin in Brazil, from which 1082 fractures are digitised. The permeability tensor for a range of matrix permeabilities shows that conventional upscaling to effective grid properties leads to potential underestimation of the true permeability and the orientation of principal permeabilities. The presented workflow yields the full permeability tensor model of discrete fracture networks with stress-induced apertures, instead of relying on effective properties as most conventional flow models do.

  2. Full magnetic gradient tensor from triaxial aeromagnetic gradient measurements: Calculation and application

    NASA Astrophysics Data System (ADS)

    Luo, Yao; Wu, Mei-Ping; Wang, Ping; Duan, Shu-Ling; Liu, Hao-Jun; Wang, Jin-Long; An, Zhan-Feng

    2015-09-01

    The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.

  3. Simple Derivation of the Maxwell Stress Tensor and Electrostrictive Effects in Crystals

    ERIC Educational Resources Information Center

    Juretschke, H. J.

    1977-01-01

    Shows that local equilibrium and energy considerations in an elastic dielectric crystal lead to a simple derivation of the Maxwell stress tensor in anisotropic dielectric solids. The resulting equilibrium stress-strain relations are applied to determine the deformations of a charged parallel plate capacitor. (MLH)

  4. Constitutive equations of a tensorial model for strain-induced damage of metals based on three invariants

    NASA Astrophysics Data System (ADS)

    Tutyshkin, Nikolai D.; Lofink, Paul; Müller, Wolfgang H.; Wille, Ralf; Stahn, Oliver

    2017-01-01

    On the basis of the physical concepts of void formation, nucleation, and growth, generalized constitutive equations are formulated for a tensorial model of plastic damage in metals based on three invariants. The multiplicative decomposition of the metric transformation tensor and a thermodynamically consistent formulation of constitutive relations leads to a symmetric second-order damage tensor with a clear physical meaning. Its first invariant determines the damage related to plastic dilatation of the material due to growth of the voids. The second invariant of the deviatoric damage tensor is related to the change in void shape. The third invariant of the deviatoric tensor describes the impact of the stress state on damage (Lode angle), including the effect of rotating the principal axes of the stress tensor (Lode angle change). The introduction of three measures with related physical meaning allows for the description of kinetic processes of strain-induced damage with an equivalent parameter in a three-dimensional vector space, including the critical condition of ductile failure. Calculations were performed by using experimentally determined material functions for plastic dilatation and deviatoric strain at the mesoscale, as well as three-dimensional graphs for plastic damage of steel DC01. The constitutive parameter was determined from tests in tension, compression, and shear by using scanning electron microscopy, which allowed to vary the Lode angle over the full range of its values [InlineEquation not available: see fulltext.]. In order to construct the three-dimensional plastic damage curve for a range of triaxiality parameters -1 ≤ ST ≤ 1 and of Lode angles [InlineEquation not available: see fulltext.], we used our own, as well as systematized published experimental data. A comparison of calculations shows a significant effect of the third invariant (Lode angle) on equivalent damage. The measure of plastic damage, based on three invariants, can be useful for assessing the quality of metal mesostructure produced during metal forming processes. In many processes of metal sheet forming the material experiences, a non-proportional loading accompanied by rotating the principal axes of the stress tensor and a corresponding change of Lode angle.

  5. Vacuum quantum stress tensor fluctuations: A diagonalization approach

    NASA Astrophysics Data System (ADS)

    Schiappacasse, Enrico D.; Fewster, Christopher J.; Ford, L. H.

    2018-01-01

    Large vacuum fluctuations of a quantum stress tensor can be described by the asymptotic behavior of its probability distribution. Here we focus on stress tensor operators which have been averaged with a sampling function in time. The Minkowski vacuum state is not an eigenstate of the time-averaged operator, but can be expanded in terms of its eigenstates. We calculate the probability distribution and the cumulative probability distribution for obtaining a given value in a measurement of the time-averaged operator taken in the vacuum state. In these calculations, we study a specific operator that contributes to the stress-energy tensor of a massless scalar field in Minkowski spacetime, namely, the normal ordered square of the time derivative of the field. We analyze the rate of decrease of the tail of the probability distribution for different temporal sampling functions, such as compactly supported functions and the Lorentzian function. We find that the tails decrease relatively slowly, as exponentials of fractional powers, in agreement with previous work using the moments of the distribution. Our results lend additional support to the conclusion that large vacuum stress tensor fluctuations are more probable than large thermal fluctuations, and may have observable effects.

  6. Projector Augmented-Wave formulation of response to strain and electric field perturbation within the density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Martin, Alexandre; Torrent, Marc; Caracas, Razvan

    2015-03-01

    A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).

  7. Two-point function of a quantum scalar field in the interior region of a Reissner-Nordstrom black hole

    NASA Astrophysics Data System (ADS)

    Lanir, Assaf; Levi, Adam; Ori, Amos; Sela, Orr

    2018-01-01

    We derive explicit expressions for the two-point function of a massless scalar field in the interior region of a Reissner-Nordstrom black hole, in both the Unruh and the Hartle-Hawking quantum states. The two-point function is expressed in terms of the standard l m ω modes of the scalar field (those associated with a spherical harmonic Yl m and a temporal mode e-i ω t), which can be conveniently obtained by solving an ordinary differential equation, the radial equation. These explicit expressions are the internal analogs of the well-known results in the external region (originally derived by Christensen and Fulling), in which the two-point function outside the black hole is written in terms of the external l m ω modes of the field. They allow the computation of ⟨Φ2⟩ren and the renormalized stress-energy tensor inside the black hole, after the radial equation has been solved (usually numerically). In the second part of the paper, we provide an explicit expression for the trace of the renormalized stress-energy tensor of a minimally coupled massless scalar field (which is nonconformal), relating it to the d'Alembertian of ⟨Φ2⟩ren . This expression proves itself useful in various calculations of the renormalized stress-energy tensor.

  8. Present-day stress tensors along the southern Caribbean plate boundary zone from inversion of focal mechanism solutions: A successful trial

    NASA Astrophysics Data System (ADS)

    Audemard M., Franck A.; Castilla, Raymi

    2016-11-01

    This paper presents a compilation of 16 present-day stress tensors along the southern Caribbean plate boundary zone (PBZ), and particularly in western and along northern Venezuela. As a trial, these new stress tensors along PBZ have been calculated from inversion of 125 focal mechanism solutions (FMS) by applying the Angelier & Mechler's dihedral method, which were originally gathered by the first author and published in 2005. These new tensors are compared to those 59 tensors inverted from fault-slip data measured only in Plio-Quaternary sedimentary rocks, compiled in Audemard et al. (2005), which were originally calculated by several researchers through the inversion methods developed by Angelier and Mechler or Etchecopar et al. The two sets of stress tensors, one derived from geological data and the other one from seismological data, compare very well throughout the PBZ in terms of both stress orientation and shape of the stress tensor. This region is characterized by a compressive strike-slip (transpressional senso lato), occasionally compressional, regime from the southern Mérida Andes on the southwest to the gulf of Paria in the east. Significant changes in direction of the maximum horizontal stress (σH = σ1) can be established along it though. The σ1 direction varies progressively from nearly east-west in the southern Andes (SW Venezuela) to between NW-SE and NNW-SSE in northwestern Venezuela; this direction remaining constant across northern Venezuela, from Colombia to Trinidad. In addition, the σV defined by inversion of focal mechanisms or by the shape of the stress ellipsoid derived from the Etchecopar et al.'s method better characterize whether the stress regime is transpressional or compressional, or even very rarely trantensional at local scale. The orientation and space variation of this regional stress field in western Venezuela results from the addition of the two major neighbouring interplate maximum horizontal stress orientations (σH): roughly east-west trending stress across the Nazca-South America type-B subduction along the pacific coast of Colombia and NNW-SSE oriented one across the southern Caribbean PBZ. Meanwhile, northern Venezuela, although dextral strike-slip (SS) is the dominant process, NW-SE to NNW-SSE compression is also taking place, which are both also supported by recent GPS results.

  9. Mesoscopic model for the viscosities of nematic liquid crystals.

    PubMed

    Chrzanowska, A; Kröger, M; Sellers, S

    1999-10-01

    Based on the definition of the mesoscopic concept by Blenk et al. [Physica A 174, 119 (1991); J. Noneq. Therm. 16, 67 (1991); Mol. Cryst. Liq. Cryst. 204, 133 (1991)] an approach to calculate the Leslie viscosity coefficients for nematic liquid crystals is presented. The approach rests upon the mesoscopic stress tensor, whose structure is assumed similar to the macroscopic Leslie viscous stress. The proposed form is also the main dissipation part of the mesoscopic Navier-Stokes equation. On the basis of the correspondence between microscopic and mesoscopic scales a mean-field mesoscopic potential is introduced. It allows us to obtain the stress tensor angular velocity of the free rotating molecules with the help of the orientational Fokker-Planck equation. The macroscopic stress tensor is calculated as an average of the mesoscopic counterpart. Appropriate relations among mesoscopic viscosities have been found. The mesoscopic analysis results are shown to be consistent with the diffusional model of Kuzuu-Doi and Osipov-Terentjev with the exception of the shear viscosity alpha(4). In the nematic phase alpha(4) is shown to have two contributions: isotropic and nematic. There exists an indication that the influence of the isotropic part is dominant over the nematic part. The so-called microscopic stress tensor used in the microscopic theories is shown to be the mean-field potential-dependent representation of the mesoscopic stress tensor. In the limiting case of total alignment the Leslie coefficients are estimated for the diffusional and mesoscopic models. They are compared to the results of the affine transformation model of the perfectly ordered systems. This comparison shows disagreement concerning the rotational viscosity, whereas the coefficients characteristic for the symmetric part of the viscous stress tensor remain the same. The difference is caused by the hindered diffusion in the affine model case.

  10. A Review of Tensors and Tensor Signal Processing

    NASA Astrophysics Data System (ADS)

    Cammoun, L.; Castaño-Moraga, C. A.; Muñoz-Moreno, E.; Sosa-Cabrera, D.; Acar, B.; Rodriguez-Florido, M. A.; Brun, A.; Knutsson, H.; Thiran, J. P.

    Tensors have been broadly used in mathematics and physics, since they are a generalization of scalars or vectors and allow to represent more complex properties. In this chapter we present an overview of some tensor applications, especially those focused on the image processing field. From a mathematical point of view, a lot of work has been developed about tensor calculus, which obviously is more complex than scalar or vectorial calculus. Moreover, tensors can represent the metric of a vector space, which is very useful in the field of differential geometry. In physics, tensors have been used to describe several magnitudes, such as the strain or stress of materials. In solid mechanics, tensors are used to define the generalized Hooke’s law, where a fourth order tensor relates the strain and stress tensors. In fluid dynamics, the velocity gradient tensor provides information about the vorticity and the strain of the fluids. Also an electromagnetic tensor is defined, that simplifies the notation of the Maxwell equations. But tensors are not constrained to physics and mathematics. They have been used, for instance, in medical imaging, where we can highlight two applications: the diffusion tensor image, which represents how molecules diffuse inside the tissues and is broadly used for brain imaging; and the tensorial elastography, which computes the strain and vorticity tensor to analyze the tissues properties. Tensors have also been used in computer vision to provide information about the local structure or to define anisotropic image filters.

  11. Geomechanical simulation of the stress tensor rotation caused by injection of cold water in a deep geothermal reservoir

    DOE PAGES

    Jeanne, Pierre; Rutqvist, Jonny; Dobson, Patrick F.; ...

    2015-11-12

    We present a three-dimensional thermohydromechanical numerical study of the evolution and distribution of the stress tensor within the northwest part of The Geysers geothermal reservoir (in California), including a detailed study of the region around one injection well from 2003 to 2012. Initially, after imposing a normal faulting stress regime, we calculated local changes in the stress regime around injection wells. Our results were compared with previously published studies in which the stress state was inferred from inverting the focal plane mechanism of seismic events. Our main finding is that changes in stress tensor orientation are caused by injection-induced progressivemore » cooling of the reservoir, as well as by the seasonal variations in injection rate. Because of the gravity flow and cooling around a liquid zone formed by the injection, the vertical stress reduction is larger and propagates far below the injection well. At the same time, the horizontal stress increases, mostly because of stress redistribution below and above the cooling area. These two phenomena cause the rotation of the stress tensor and the appearance of a strike-slip regime above, inside, and below the cooling area. The cooling and the associated rotation of the stress regime can play a significant role in the observed long-term deepening of the microseismicity below active injection wells.« less

  12. Dense lower crust elevates long-term earthquake rates in the New Madrid seismic zone

    USGS Publications Warehouse

    Levandowski, William Brower; Boyd, Oliver; Ramirez-Guzman, Leonardo

    2016-01-01

    Knowledge of the local state of stress is critical in appraising intraplate seismic hazard. Inverting earthquake moment tensors, we demonstrate that principal stress directions in the New Madrid seismic zone (NMSZ) differ significantly from those in the surrounding region. Faults in the NMSZ that are incompatible with slip in the regional stress field are favorably oriented relative to local stress. We jointly analyze seismic velocity, gravity, and topography to develop a 3-D crustal and upper mantle density model, revealing uniquely dense lower crust beneath the NMSZ. Finite element simulations then estimate the stress tensor due to gravitational body forces, which sums with regional stress. The anomalous lower crust both elevates gravity-derived stress at seismogenic depths in the NMSZ and rotates it to interfere more constructively with far-field stress, producing a regionally maximal deviatoric stress coincident with the highest concentration of modern seismicity. Moreover, predicted principal stress directions mirror variations (observed independently in moment tensors) at the NMSZ and across the region.

  13. Polymer Fluid Dynamics: Continuum and Molecular Approaches.

    PubMed

    Bird, R B; Giacomin, A J

    2016-06-07

    To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (a) One can write a continuum expression for the stress tensor in terms of kinematic tensors, or (b) one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.

  14. Membrane paradigm of black holes in Chern-Simons modified gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Tian-Yi; Wang, Towe, E-mail: zhaotianyi5566@foxmail.com, E-mail: twang@phy.ecnu.edu.cn

    2016-06-01

    The membrane paradigm of black hole is studied in the Chern-Simons modified gravity. Derived with the action principle a la Parikh-Wilczek, the stress tensor of membrane manifests a rich structure arising from the Chern-Simons term. The membrane stress tensor, if related to the bulk stress tensor in a special form, obeys the low-dimensional fluid continuity equation and the Navier-Stokes equation. This paradigm is applied to spherically symmetric static geometries, and in particular, the Schwarzschild black hole, which is a solution of a large class of dynamical Chern-Simons gravity.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klima, Matej; Kucharik, MIlan; Shashkov, Mikhail Jurievich

    We analyze several new and existing approaches for limiting tensor quantities in the context of deviatoric stress remapping in an ALE numerical simulation of elastic flow. Remapping and limiting of the tensor component-by-component is shown to violate radial symmetry of derived variables such as elastic energy or force. Therefore, we have extended the symmetry-preserving Vector Image Polygon algorithm, originally designed for limiting vector variables. This limiter constrains the vector (in our case a vector of independent tensor components) within the convex hull formed by the vectors from surrounding cells – an equivalent of the discrete maximum principle in scalar variables.more » We compare this method with a limiter designed specifically for deviatoric stress limiting which aims to constrain the J 2 invariant that is proportional to the specific elastic energy and scale the tensor accordingly. We also propose a method which involves remapping and limiting the J 2 invariant independently using known scalar techniques. The deviatoric stress tensor is then scaled to match this remapped invariant, which guarantees conservation in terms of elastic energy.« less

  16. Stress formulation in the all-electron full-potential linearized augmented plane wave method

    NASA Astrophysics Data System (ADS)

    Nagasako, Naoyuki; Oguchi, Tamio

    2012-02-01

    Stress formulation in the linearlized augmented plane wave (LAPW) method has been proposed in 2002 [1] as an extension of the force formulation in the LAPW method [2]. However, pressure calculations only for Al and Si were reported in Ref.[1] and even now stress calculations have not yet been fully established in the LAPW method. In order to make it possible to efficiently relax lattice shape and atomic positions simultaneously and to precisely evaluate the elastic constants in the LAPW method, we reformulate stress formula in the LAPW method with the Soler-Williams representation [3]. Validity of the formulation is tested by comparing the pressure obtained as the trace of stress tensor with that estimated from total energies for a wide variety of material systems. Results show that pressure is estimated within the accuracy of less than 0.1 GPa. Calculations of the shear elastic constant show that the shear components of the stress tensor are also precisely computed with the present formulation [4].[4pt] [1] T. Thonhauser et al., Solid State Commun. 124, 275 (2002).[0pt] [2] R. Yu et al., Phys. Rev. B 43, 6411 (1991).[0pt] [3] J. M. Soler and A. R. Williams, Phys. Rev. B 40, 1560 (1989).[0pt] [4] N. Nagasako and T. Oguchi, J. Phys. Soc. Jpn. 80, 024701 (2011).

  17. Normal stress differences and beyond-Navier-Stokes hydrodynamics

    NASA Astrophysics Data System (ADS)

    Alam, Meheboob; Saha, Saikat

    2017-06-01

    A recently proposed beyond-Navier-Stokes order hydrodynamic theory for dry granular fluids is revisited by focussing on the behaviour of the stress tensor and the scaling of related transport coefficients in the dense limit. For the homogeneous shear flow, it is shown that the eigen-directions of the second-moment tensor and those of the shear tensor become co-axial, thus making the first normal stress difference (N1) to zero in the same limit. In contrast, the origin of the second normal stress difference (N2) is tied to the `excess' temperature along the mean-vorticity direction and the imposed shear field, respectively, in the dilute and dense flows. The scaling relations for transport coefficients are suggested based on the present theory.

  18. Turbulence Model Predictions of Strongly Curved Flow in a U-Duct

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.; Morrison, Joseph H.

    2000-01-01

    The ability of three types of turbulence models to accurately predict the effects of curvature on the flow in a U-duct is studied. An explicit algebraic stress model performs slightly better than one- or two-equation linear eddy viscosity models, although it is necessary to fully account for the variation of the production-to-dissipation-rate ratio in the algebraic stress model formulation. In their original formulations, none of these turbulence models fully captures the suppressed turbulence near the convex wall, whereas a full Reynolds stress model does. Some of the underlying assumptions used in the development of algebraic stress models are investigated and compared with the computed flowfield from the full Reynolds stress model. Through this analysis, the assumption of Reynolds stress anisotropy equilibrium used in the algebraic stress model formulation is found to be incorrect in regions of strong curvature. By the accounting for the local variation of the principal axes of the strain rate tensor, the explicit algebraic stress model correctly predicts the suppressed turbulence in the outer part of the boundary layer near the convex wall.

  19. Matrix exponential-based closures for the turbulent subgrid-scale stress tensor.

    PubMed

    Li, Yi; Chevillard, Laurent; Eyink, Gregory; Meneveau, Charles

    2009-01-01

    Two approaches for closing the turbulence subgrid-scale stress tensor in terms of matrix exponentials are introduced and compared. The first approach is based on a formal solution of the stress transport equation in which the production terms can be integrated exactly in terms of matrix exponentials. This formal solution of the subgrid-scale stress transport equation is shown to be useful to explore special cases, such as the response to constant velocity gradient, but neglecting pressure-strain correlations and diffusion effects. The second approach is based on an Eulerian-Lagrangian change of variables, combined with the assumption of isotropy for the conditionally averaged Lagrangian velocity gradient tensor and with the recent fluid deformation approximation. It is shown that both approaches lead to the same basic closure in which the stress tensor is expressed as the matrix exponential of the resolved velocity gradient tensor multiplied by its transpose. Short-time expansions of the matrix exponentials are shown to provide an eddy-viscosity term and particular quadratic terms, and thus allow a reinterpretation of traditional eddy-viscosity and nonlinear stress closures. The basic feasibility of the matrix-exponential closure is illustrated by implementing it successfully in large eddy simulation of forced isotropic turbulence. The matrix-exponential closure employs the drastic approximation of entirely omitting the pressure-strain correlation and other nonlinear scrambling terms. But unlike eddy-viscosity closures, the matrix exponential approach provides a simple and local closure that can be derived directly from the stress transport equation with the production term, and using physically motivated assumptions about Lagrangian decorrelation and upstream isotropy.

  20. Numerical simulation of a compressible homogeneous, turbulent shear flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Feiereisen, W. J.; Reynolds, W. C.; Ferziger, J. H.

    1981-01-01

    A direct, low Reynolds number, numerical simulation was performed on a homogeneous turbulent shear flow. The full compressible Navier-Stokes equations were used in a simulation on the ILLIAC IV computer with a 64,000 mesh. The flow fields generated by the code are used as an experimental data base, to examine the behavior of the Reynols stresses in this simple, compressible flow. The variation of the structure of the stresses and their dynamic equations as the character of the flow changed is emphasized. The structure of the tress tensor is more heavily dependent on the shear number and less on the fluctuating Mach number. The pressure-strain correlation tensor in the dynamic uations is directly calculated in this simulation. These correlations are decomposed into several parts, as contrasted with the traditional incompressible decomposition into two parts. The performance of existing models for the conventional terms is examined, and a model is proposed for the 'mean fluctuating' part.

  1. Radiation Forces and Torques without Stress (Tensors)

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2011-01-01

    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  2. Moment tensor clustering: a tool to monitor mining induced seismicity

    NASA Astrophysics Data System (ADS)

    Cesca, Simone; Dahm, Torsten; Tolga Sen, Ali

    2013-04-01

    Automated moment tensor inversion routines have been setup in the last decades for the analysis of global and regional seismicity. Recent developments could be used to analyse smaller events and larger datasets. In particular, applications to microseismicity, e.g. in mining environments, have then led to the generation of large moment tensor catalogues. Moment tensor catalogues provide a valuable information about the earthquake source and details of rupturing processes taking place in the seismogenic region. Earthquake focal mechanisms can be used to discuss the local stress field, possible orientations of the fault system or to evaluate the presence of shear and/or tensile cracks. Focal mechanism and moment tensor solutions are typically analysed for selected events, and quick and robust tools for the automated analysis of larger catalogues are needed. We propose here a method to perform cluster analysis for large moment tensor catalogues and identify families of events which characterize the studied microseismicity. Clusters include events with similar focal mechanisms, first requiring the definition of distance between focal mechanisms. Different metrics are here proposed, both for the case of pure double couple, constrained moment tensor and full moment tensor catalogues. Different clustering approaches are implemented and discussed. The method is here applied to synthetic and real datasets from mining environments to demonstrate its potential: the proposed cluserting techniques prove to be able to automatically recognise major clusters. An important application for mining monitoring concerns the early identification of anomalous rupture processes, which is relevant for the hazard assessment. This study is funded by the project MINE, which is part of the R&D-Programme GEOTECHNOLOGIEN. The project MINE is funded by the German Ministry of Education and Research (BMBF), Grant of project BMBF03G0737.

  3. Numerical Approximation of Elasticity Tensor Associated With Green-Naghdi Rate.

    PubMed

    Liu, Haofei; Sun, Wei

    2017-08-01

    Objective stress rates are often used in commercial finite element (FE) programs. However, deriving a consistent tangent modulus tensor (also known as elasticity tensor or material Jacobian) associated with the objective stress rates is challenging when complex material models are utilized. In this paper, an approximation method for the tangent modulus tensor associated with the Green-Naghdi rate of the Kirchhoff stress is employed to simplify the evaluation process. The effectiveness of the approach is demonstrated through the implementation of two user-defined fiber-reinforced hyperelastic material models. Comparisons between the approximation method and the closed-form analytical method demonstrate that the former can simplify the material Jacobian evaluation with satisfactory accuracy while retaining its computational efficiency. Moreover, since the approximation method is independent of material models, it can facilitate the implementation of complex material models in FE analysis using shell/membrane elements in abaqus.

  4. Quantum corrections to the stress-energy tensor in thermodynamic equilibrium with acceleration

    NASA Astrophysics Data System (ADS)

    Becattini, F.; Grossi, E.

    2015-08-01

    We show that the stress-energy tensor has additional terms with respect to the ideal form in states of global thermodynamic equilibrium in flat spacetime with nonvanishing acceleration and vorticity. These corrections are of quantum origin and their leading terms are second order in the gradients of the thermodynamic fields. Their relevant coefficients can be expressed in terms of correlators of the stress-energy tensor operator and the generators of the Lorentz group. With respect to previous assessments, we find that there are more second-order coefficients and that all thermodynamic functions including energy density receive acceleration and vorticity dependent corrections. Notably, also the relation between ρ and p , that is, the equation of state, is affected by acceleration and vorticity. We have calculated the corrections for a free real scalar field—both massive and massless—and we have found that they increase, particularly for a massive field, at very high acceleration and vorticity and very low temperature. Finally, these nonideal terms depend on the explicit form of the stress-energy operator, implying that different stress-energy tensors of the scalar field—canonical or improved—are thermodynamically inequivalent.

  5. Analysis of Multi-Layered Materials Under High Velocity Impact Using CTH

    DTIC Science & Technology

    2008-03-01

    of state . The other relationship deals with the deviatoric stress and is taken care of by the constitutive equations which are discussed in the next...models in CTH decompose the total stress tensor into the spherical and deviatoric parts. The spherical part of the stress tensor is the equation of state ...investigate the effects of wave propagation. Waves in rods are considered to create a state of

  6. Stress regularity in quasi-static perfect plasticity with a pressure dependent yield criterion

    NASA Astrophysics Data System (ADS)

    Babadjian, Jean-François; Mora, Maria Giovanna

    2018-04-01

    This work is devoted to establishing a regularity result for the stress tensor in quasi-static planar isotropic linearly elastic - perfectly plastic materials obeying a Drucker-Prager or Mohr-Coulomb yield criterion. Under suitable assumptions on the data, it is proved that the stress tensor has a spatial gradient that is locally squared integrable. As a corollary, the usual measure theoretical flow rule is expressed in a strong form using the quasi-continuous representative of the stress.

  7. In Silico Investigation of Intracranial Blast Mitigation with Relevance to Military Traumatic Brain Injury

    DTIC Science & Technology

    2010-09-01

    how personal protective equipment affects the brain’s response to blasts. In this study we investigated the effect of the Advanced Combat...analyzing stress wave propagation, which is the main dynamic effect loading the brain tissue during a blast event. We consider two key metrics of stress ...Cauchy stress tensor, and sij ¼ σij − 13σkkδij are the compo- nents of the deviatoric stress tensor (24). Fig. 1 shows snapshots of the pressure

  8. Two formalisms, one renormalized stress-energy tensor

    NASA Astrophysics Data System (ADS)

    Barceló, C.; Carballo, R.; Garay, L. J.

    2012-04-01

    We explicitly compare the structure of the renormalized stress-energy tensor of a massless scalar field in a (1+1) curved spacetime as obtained by two different strategies: normal-mode construction of the field operator and one-loop effective action. We pay special attention to where and how the information related to the choice of vacuum state in both formalisms is encoded. By establishing a clear translation map between both procedures, we show that these two potentially different renormalized stress-energy tensors are actually equal, when using vacuum-state choices related by this map. One specific aim of the analysis is to facilitate the comparison of results regarding semiclassical effects in gravitational collapse as obtained within these different formalisms.

  9. Use of non-fault fractures in stress tensor reconstruction using the Mohr Circle with the Win-tensor program

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien

    2016-04-01

    Paleostress inversion of geological fault-slip data is usually done using the directional part of the applied stress tensor on a slip plane and comparing it with the observed slip lines. However, this method do not fully exploit the brittle data sets as those are composed of shear and tension fractures, in addition to faults. Brittle deformation can be decomposed in two steps. An initial fracture/failure in previously intact rock generate extension/tensile fractures or shear fractures, both without visible opening or displacement. This first step may or not be followed by fracture opening to form tension joints, frictional shearing to form shear faults, or a combination of opening and shearing which produces hybrid fractures. Fractured rock outcrop contain information of the stress conditions that acted during both brittle deformation steps. The purpose here is to investigate how the fracture pattern generated during the initial fracture/failure step might be used in paleostress reconstruction. Each fracture is represented on the Mohr Circle by its resolved normal and shear stress magnitudes. We consider the typical domains on the Mohr circle where the different types de fractures nucleate (tension, hybrid, shear and compression fractures), as well the domain which contain reactivated fractures (faults reactivating an initial fracture plane). In function of the fracture type defined in the field, a "distance" is computed on the Mohr circle between each point and its expected corresponding nucleation/reactivation domain. This "Mohr Distance" is then used as function to minimize during the inversion. We implemented this new function in the Win-Tensor program, and tested it with natural and synthetic data sets from different stress regimes. It can be used alone using only the Mohr Distance on each plane (function F10), or combined with the angular misfit between observed striae and resolved shear directions (composite function F11). When used alone (F10), only the 3 stress axes can be determined and the stress ratio R (sigma 2-3)/sigma1-3) has to be pre-determined. With the combined function (F11), it provide an additional constrain to the classical angular misfit. With data sets composed of a majority of neoformed fractures, stress inversion using the Mohr Distance F10 function provide a good approximation of the 3 stress axes (using only the fracture data) as compared with the results of the F11 composite function (using also the observed slip lines). Tensor program is available at (http://www.damiendelvaux.be/Tensor/tensor-index.html).

  10. Unified Stress Tensor of the Hydration Water Layer

    NASA Astrophysics Data System (ADS)

    Kim, Bongsu; Kim, QHwan; Kwon, Soyoung; An, Sangmin; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho

    2013-12-01

    We present the general stress tensor of the ubiquitous hydration water layer (HWL), based on the empirical hydration force, by combining the elasticity and hydrodynamics theories. The tapping and shear component of the tensor describe the elastic and damping properties of the HWL, respectively, in good agreement with experiments. In particular, a unified understanding of HWL dynamics provides the otherwise unavailable intrinsic parameters of the HWL, which offer additional but unexplored aspects to the supercooled liquidity of the confined HWL. Our results may allow deeper insight on systems where the HWL is critical.

  11. Unified stress tensor of the hydration water layer.

    PubMed

    Kim, Bongsu; Kim, Qhwan; Kwon, Soyoung; An, Sangmin; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho

    2013-12-13

    We present the general stress tensor of the ubiquitous hydration water layer (HWL), based on the empirical hydration force, by combining the elasticity and hydrodynamics theories. The tapping and shear component of the tensor describe the elastic and damping properties of the HWL, respectively, in good agreement with experiments. In particular, a unified understanding of HWL dynamics provides the otherwise unavailable intrinsic parameters of the HWL, which offer additional but unexplored aspects to the supercooled liquidity of the confined HWL. Our results may allow deeper insight on systems where the HWL is critical.

  12. Distinguishing and quantifying the torquoselectivity in competitive ring-opening reactions using the stress tensor and QTAIM.

    PubMed

    Guo, Huan; Morales-Bayuelo, Alejandro; Xu, Tianlv; Momen, Roya; Wang, Lingling; Yang, Ping; Kirk, Steven R; Jenkins, Samantha

    2016-12-05

    Currently the theories to explain and predict the classification of the electronic reorganization due to the torquoselectivity of a ring-opening reaction cannot accommodate the directional character of the reaction pathway; the torquoselectivity is a type of stereoselectivity and therefore is dependent on the pathway. Therefore, in this investigation we introduced new measures from quantum theory of atoms in molecules and the stress tensor to clearly distinguish and quantify the transition states of the inward (TSIC) and outward (TSOC) conrotations of competitive ring-opening reactions of 3-(trifluoromethyl)cyclobut-1-ene and 1-cyano-1-methylcyclobutene. We find the metallicity ξ(r b ) of the ring-opening bond does not occur exactly at the transition state in agreement with transition state theory. The vector-based stress tensor response β σ was used to distinguish the effect of the CN, CH 3 , and CF 3 groups on the TSIC and TSOC paths that was consistent with the ellipticity ε, the total local energy density H(r b ) and the stress tensor stiffness S σ . We determine the directional properties of the TSIC and TSOC ring-opening reactions by constructing a stress tensor UσTS space with trajectories TσTS (s) with length l in real space, longer l correlated with the lowest density functional theory-evaluated total energy barrier and hence will be more thermodynamically favored. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Importance of Force Decomposition for Local Stress Calculations in Biomembrane Molecular Simulations.

    PubMed

    Vanegas, Juan M; Torres-Sánchez, Alejandro; Arroyo, Marino

    2014-02-11

    Local stress fields are routinely computed from molecular dynamics trajectories to understand the structure and mechanical properties of lipid bilayers. These calculations can be systematically understood with the Irving-Kirkwood-Noll theory. In identifying the stress tensor, a crucial step is the decomposition of the forces on the particles into pairwise contributions. However, such a decomposition is not unique in general, leading to an ambiguity in the definition of the stress tensor, particularly for multibody potentials. Furthermore, a theoretical treatment of constraints in local stress calculations has been lacking. Here, we present a new implementation of local stress calculations that systematically treats constraints and considers a privileged decomposition, the central force decomposition, that leads to a symmetric stress tensor by construction. We focus on biomembranes, although the methodology presented here is widely applicable. Our results show that some unphysical behavior obtained with previous implementations (e.g. nonconstant normal stress profiles along an isotropic bilayer in equilibrium) is a consequence of an improper treatment of constraints. Furthermore, other valid force decompositions produce significantly different stress profiles, particularly in the presence of dihedral potentials. Our methodology reveals the striking effect of unsaturations on the bilayer mechanics, missed by previous stress calculation implementations.

  14. A tensorial description of particle perception in black-hole physics

    NASA Astrophysics Data System (ADS)

    Barbado, Luis C.; Barceló, Carlos; Garay, Luis J.; Jannes, G.

    2016-09-01

    In quantum field theory in curved backgrounds, one typically distinguishes between objective, tensorial quantities such as the renormalized stress-energy tensor (RSET) and subjective, nontensorial quantities such as Bogoliubov coefficients which encode perception effects associated with the specific trajectory of a detector. In this work, we propose a way to treat both objective and subjective notions on an equal tensorial footing. For that purpose, we define a new tensor which we will call the perception renormalized stress-energy tensor (PeRSET). The PeRSET is defined as the subtraction of the RSET corresponding to two different vacuum states. Based on this tensor, we can define perceived energy densities and fluxes. The PeRSET helps us to have a more organized and systematic understanding of various results in the literature regarding quantum field theory in black hole spacetimes. We illustrate the physics encoded in this tensor by working out various examples of special relevance.

  15. Energy Flux Positivity and Unitarity in Conformal Field Theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulaxizi, Manuela; Parnachev, Andrei

    2011-01-07

    We show that in most conformal field theories the condition of the energy flux positivity, proposed by Hofman and Maldacena, is equivalent to the absence of ghosts. At finite temperature and large energy and momenta, the two-point functions of the stress energy tensor develop light like poles. The residues of the poles can be computed, as long as the only spin-two conserved current, which appears in the stress energy tensor operator-product expansion and acquires a nonvanishing expectation value at finite temperature, is the stress energy tensor. The condition for the residues to stay positive and the theory to remain ghost-freemore » is equivalent to the condition of positivity of energy flux.« less

  16. Inversion of calcite twin data for paleostress orientations and magnitudes: A new technique tested and calibrated on numerically-generated and natural data

    NASA Astrophysics Data System (ADS)

    Parlangeau, Camille; Lacombe, Olivier; Schueller, Sylvie; Daniel, Jean-Marc

    2018-01-01

    The inversion of calcite twin data is a powerful tool to reconstruct paleostresses sustained by carbonate rocks during their geological history. Following Etchecopar's (1984) pioneering work, this study presents a new technique for the inversion of calcite twin data that reconstructs the 5 parameters of the deviatoric stress tensors from both monophase and polyphase twin datasets. The uncertainties in the parameters of the stress tensors reconstructed by this new technique are evaluated on numerically-generated datasets. The technique not only reliably defines the 5 parameters of the deviatoric stress tensor, but also reliably separates very close superimposed stress tensors (30° of difference in maximum principal stress orientation or switch between σ3 and σ2 axes). The technique is further shown to be robust to sampling bias and to slight variability in the critical resolved shear stress. Due to our still incomplete knowledge of the evolution of the critical resolved shear stress with grain size, our results show that it is recommended to analyze twin data subsets of homogeneous grain size to minimize possible errors, mainly those concerning differential stress values. The methodological uncertainty in principal stress orientations is about ± 10°; it is about ± 0.1 for the stress ratio. For differential stresses, the uncertainty is lower than ± 30%. Applying the technique to vein samples within Mesozoic limestones from the Monte Nero anticline (northern Apennines, Italy) demonstrates its ability to reliably detect and separate tectonically significant paleostress orientations and magnitudes from naturally deformed polyphase samples, hence to fingerprint the regional paleostresses of interest in tectonic studies.

  17. Detailed fault structure of the 2000 Western Tottori, Japan, earthquake sequence

    USGS Publications Warehouse

    Fukuyama, E.; Ellsworth, W.L.; Waldhauser, F.; Kubo, A.

    2003-01-01

    We investigate the faulting process of the aftershock region of the 2000 western Tottori earthquake (Mw 6.6) by combining aftershock hypocenters and moment tensor solutions. Aftershock locations were precisely determined by the double difference method using P- and S-phase arrival data of the Japan Meteorological Agency unified catalog. By combining the relocated hypocenters and moment tensor solutions of aftershocks by broadband waveform inversion of FREESIA (F-net), we successfully resolved very detailed fault structures activated by the mainshock. The estimated fault model resolves 15 individual fault segments that are consistent with both aftershock distribution and focal mechanism solutions. Rupture in the mainshock was principally confined to the three fault elements in the southern half of the zone, which is also where the earliest aftershocks concentrate. With time, the northern part of the zone becomes activated, which is also reflected in the postseismic deformation field. From the stress tensor analysis of aftershock focal mechanisms, we found a rather uniform stress field in the aftershock region, although fault strikes were scattered. The maximum stress direction is N107??E, which is consistent with the tectonic stress field in this region. In the northern part of the fault, where no slip occurred during the mainshock but postseismic slip was observed, the maximum stress direction of N130??E was possible as an alternative solution of stress tensor inversion.

  18. Nonlocal elasticity tensors in dislocation and disclination cores

    DOE PAGES

    Taupin, V.; Gbemou, K.; Fressengeas, C.; ...

    2017-01-07

    We introduced nonlocal elastic constitutive laws for crystals containing defects such as dislocations and disclinations. Additionally, the pointwise elastic moduli tensors adequately reflect the elastic response of defect-free regions by relating stresses to strains and couple-stresses to curvatures, elastic cross-moduli tensors relating strains to couple-stresses and curvatures to stresses within convolution integrals are derived from a nonlocal analysis of strains and curvatures in the defects cores. Sufficient conditions are derived for positive-definiteness of the resulting free energy, and stability of elastic solutions is ensured. The elastic stress/couple stress fields associated with prescribed dislocation/disclination density distributions and solving the momentum andmore » moment of momentum balance equations in periodic media are determined by using a Fast Fourier Transform spectral method. Here, the convoluted cross-moduli bring the following results: (i) Nonlocal stresses and couple stresses oppose their local counterparts in the defects core regions, playing the role of restoring forces and possibly ensuring spatio-temporal stability of the simulated defects, (ii) The couple stress fields are strongly affected by nonlocality. Such effects favor the stability of the simulated grain boundaries and allow investigating their elastic interactions with extrinsic defects, (iii) Driving forces inducing grain growth or refinement derive from the self-stress and couple stress fields of grain boundaries in nanocrystalline configurations.« less

  19. Parameterization of subgrid-scale stress by the velocity gradient tensor

    NASA Technical Reports Server (NTRS)

    Lund, Thomas S.; Novikov, E. A.

    1993-01-01

    The objective of this work is to construct and evaluate subgrid-scale models that depend on both the strain rate and the vorticity. This will be accomplished by first assuming that the subgrid-scale stress is a function of the strain and rotation rate tensors. Extensions of the Caley-Hamilton theorem can then be used to write the assumed functional dependence explicitly in the form of a tensor polynomial involving products of the strain and rotation rates. Finally, use of this explicit expression as a subgrid-scale model will be evaluated using direct numerical simulation data for homogeneous, isotropic turbulence.

  20. Stress pattern of the Shanxi rift system, North China, inferred from the inversion of new focal mechanisms

    NASA Astrophysics Data System (ADS)

    Li, Bin; Atakan, Kuvvet; Sørensen, Mathilde Bøttger; Havskov, Jens

    2015-05-01

    Earthquake focal mechanisms of the Shanxi rift system, North China, are investigated for the time period 1965-April 2014. A total of 143 focal mechanisms of ML ≥ 3.0 earthquakes were compiled. Among them, 105 solutions are newly determined in this study by combining the P-wave first motions and full waveform inversion, and 38 solutions are from available published data. Stress tensor inversion was then performed based on the new database. The results show that most solutions in the Shanxi rift system exhibit normal or strike-slip faulting, and the regional stress field is transtensional and dominated by NNW-SSE extension. This correlates well with results from GPS data, geological field observations and levelling measurements across the faults. Heterogeneity exists in the regional stress field, as indicated by individual stress tensor inversions conducted for five subzones. While the minimum stress axis (σ3) appears to be consistent and stable, the orientations, especially the plunges, of the maximum and intermediate stresses (σ1 and σ2) vary significantly along the strike of the different subzones. Based on our results and combining multidisciplinary observations from geological surveys, GPS and cross-fault monitoring, a kinematic model is proposed for the Shanxi rift system, in which the rift is situated between two opposite rotating crustal blocks, exhibiting a transtensional stress regimes. This model illustrates the present-day stress field and its correlation to the regional tectonics, as well as the current crustal deformation of the Shanxi rift system. Results obtained in this study, may help to understand the geodynamics, neotectonic activity, active seismicity and potential seismic hazard in this region.

  1. Einstein gravity 3-point functions from conformal field theory

    NASA Astrophysics Data System (ADS)

    Afkhami-Jeddi, Nima; Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein

    2017-12-01

    We study stress tensor correlation functions in four-dimensional conformal field theories with large N and a sparse spectrum. Theories in this class are expected to have local holographic duals, so effective field theory in anti-de Sitter suggests that the stress tensor sector should exhibit universal, gravity-like behavior. At the linearized level, the hallmark of locality in the emergent geometry is that stress tensor three-point functions 〈 T T T 〉, normally specified by three constants, should approach a universal structure controlled by a single parameter as the gap to higher spin operators is increased. We demonstrate this phenomenon by a direct CFT calculation. Stress tensor exchange, by itself, violates causality and unitarity unless the three-point functions are carefully tuned, and the unique consistent choice exactly matches the prediction of Einstein gravity. Under some assumptions about the other potential contributions, we conclude that this structure is universal, and in particular, that the anomaly coefficients satisfy a ≈ c as conjectured by Camanho et al. The argument is based on causality of a four-point function, with kinematics designed to probe bulk locality, and invokes the chaos bound of Maldacena, Shenker, and Stanford.

  2. Determination of stress glut moments of total degree 2 from teleseismic surface wave amplitude spectra

    NASA Astrophysics Data System (ADS)

    Bukchin, B. G.

    1995-08-01

    A special case of the seismic source, where the stress glut tensor can be expressed as a product of a uniform moment tensor and a scalar function of spatial coordinates and time, is considered. For such a source, a technique of determining stress glut moments of total degree 2 from surface wave amplitude spectra is described. The results of application of this technique for the estimation of spatio-temporal characteristics of the Georgian earthquake, 29.04.91 are presented.

  3. The relationship between a deformation-based eddy parameterization and the LANS-α turbulence model

    NASA Astrophysics Data System (ADS)

    Bachman, Scott D.; Anstey, James A.; Zanna, Laure

    2018-06-01

    A recent class of ocean eddy parameterizations proposed by Porta Mana and Zanna (2014) and Anstey and Zanna (2017) modeled the large-scale flow as a non-Newtonian fluid whose subgridscale eddy stress is a nonlinear function of the deformation. This idea, while largely new to ocean modeling, has a history in turbulence modeling dating at least back to Rivlin (1957). The new class of parameterizations results in equations that resemble the Lagrangian-averaged Navier-Stokes-α model (LANS-α, e.g., Holm et al., 1998a). In this note we employ basic tensor mathematics to highlight the similarities between these turbulence models using component-free notation. We extend the Anstey and Zanna (2017) parameterization, which was originally presented in 2D, to 3D, and derive variants of this closure that arise when the full non-Newtonian stress tensor is used. Despite the mathematical similarities between the non-Newtonian and LANS-α models which might provide insight into numerical implementation, the input and dissipation of kinetic energy between these two turbulent models differ.

  4. On a viable first-order formulation of relativistic viscous fluids and its applications to cosmology

    NASA Astrophysics Data System (ADS)

    Disconzi, Marcelo M.; Kephart, Thomas W.; Scherrer, Robert J.

    We consider a first-order formulation of relativistic fluids with bulk viscosity based on a stress-energy tensor introduced by Lichnerowicz. Choosing a barotropic equation-of-state, we show that this theory satisfies basic physical requirements and, under the further assumption of vanishing vorticity, that the equations of motion are causal, both in the case of a fixed background and when the equations are coupled to Einstein's equations. Furthermore, Lichnerowicz's proposal does not fit into the general framework of first-order theories studied by Hiscock and Lindblom, and hence their instability results do not apply. These conclusions apply to the full-fledged nonlinear theory, without any equilibrium or near equilibrium assumptions. Similarities and differences between the approach explored here and other theories of relativistic viscosity, including the Mueller-Israel-Stewart formulation, are addressed. Cosmological models based on the Lichnerowicz stress-energy tensor are studied. As the topic of (relativistic) viscous fluids is also of interest outside the general relativity and cosmology communities, such as, for instance, in applications involving heavy-ion collisions, we make our presentation largely self-contained.

  5. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation

    PubMed Central

    Freistühler, Heinrich; Temple, Blake

    2014-01-01

    Current theories of dissipation in the relativistic regime suffer from one of two deficits: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier–Stokes–Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress–energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526

  6. Normal stresses in semiflexible polymer hydrogels

    NASA Astrophysics Data System (ADS)

    Vahabi, M.; Vos, Bart E.; de Cagny, Henri C. G.; Bonn, Daniel; Koenderink, Gijsje H.; MacKintosh, F. C.

    2018-03-01

    Biopolymer gels such as fibrin and collagen networks are known to develop tensile axial stress when subject to torsion. This negative normal stress is opposite to the classical Poynting effect observed for most elastic solids including synthetic polymer gels, where torsion provokes a positive normal stress. As shown recently, this anomalous behavior in fibrin gels depends on the open, porous network structure of biopolymer gels, which facilitates interstitial fluid flow during shear and can be described by a phenomenological two-fluid model with viscous coupling between network and solvent. Here we extend this model and develop a microscopic model for the individual diagonal components of the stress tensor that determine the axial response of semiflexible polymer hydrogels. This microscopic model predicts that the magnitude of these stress components depends inversely on the characteristic strain for the onset of nonlinear shear stress, which we confirm experimentally by shear rheometry on fibrin gels. Moreover, our model predicts a transient behavior of the normal stress, which is in excellent agreement with the full time-dependent normal stress we measure.

  7. Nonlinear temperature dependent failure analysis of finite width composite laminates

    NASA Technical Reports Server (NTRS)

    Nagarkar, A. P.; Herakovich, C. T.

    1979-01-01

    A quasi-three dimensional, nonlinear elastic finite element stress analysis of finite width composite laminates including curing stresses is presented. Cross-ply, angle-ply, and two quasi-isotropic graphite/epoxy laminates are studied. Curing stresses are calculated using temperature dependent elastic properties that are input as percent retention curves, and stresses due to mechanical loading in the form of an axial strain are calculated using tangent modulii obtained by Ramberg-Osgood parameters. It is shown that curing stresses and stresses due to tensile loading are significant as edge effects in all types of laminate studies. The tensor polynomial failure criterion is used to predict the initiation of failure. The mode of failure is predicted by examining individual stress contributions to the tensor polynomial.

  8. Correlation Between Fracture Network Properties and Stress Variability in Geological Media

    NASA Astrophysics Data System (ADS)

    Lei, Qinghua; Gao, Ke

    2018-05-01

    We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.

  9. Mysteries of R ik = 0: A novel paradigm in Einstein's theory of gravitation

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Ram Gopal

    2014-02-01

    Despite a century-long effort, a proper energy-stress tensor of the gravitational field, could not have been discovered. Furthermore, it has been discovered recently that the standard formulation of the energy-stress tensor of matter, suffers from various inconsistencies and paradoxes, concluding that the tensor is not consistent with the geometric formulation of gravitation [Astrophys. Space Sci., 2009, 321: 151; Astrophys. Space Sci., 2012, 340: 373]. This perhaps hints that a consistent theory of gravitation should not have any bearing on the energy-stress tensor. It is shown here that the so-called "vacuum" field equations R ik = 0 do not represent an empty spacetime, and the energy, momenta and angular momenta of the gravitational and the matter fields are revealed through the geometry, without including any formulation thereof in the field equations. Though, this novel discovery appears baffling and orthogonal to the usual understanding, is consistent with the observations at all scales, without requiring the hypothetical dark matter, dark energy or inflation. Moreover, the resulting theory circumvents the long-standing problems of the standard cosmology, besides explaining some unexplained puzzles.

  10. FAST TRACK COMMUNICATION The Bel-Robinson tensor for topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Deser, S.; Franklin, J.

    2011-02-01

    We construct, and establish the (covariant) conservation of, a 4-index 'super stress tensor' for topologically massive gravity. Separately, we discuss its invalidity in quadratic curvature models and suggest a generalization.

  11. Implementation and Testing of Advanced Surface Boundary Conditions Over Complex Terrain in A Semi-idealized Model

    NASA Astrophysics Data System (ADS)

    Li, Y.; Epifanio, C.

    2017-12-01

    In numerical prediction models, the interaction between the Earth's surface and the atmosphere is typically accounted for in terms of surface layer parameterizations, whose main job is to specify turbulent fluxes of heat, moisture and momentum across the lower boundary of the model domain. In the case of a domain with complex geometry, implementing the flux conditions (particularly the tensor stress condition) at the boundary can be somewhat subtle, and there has been a notable history of confusion in the CFD community over how to formulate and impose such conditions generally. In the atmospheric case, modelers have largely been able to avoid these complications, at least until recently, by assuming that the terrain resolved at typical model resolutions is fairly gentle, in the sense of having relatively shallow slopes. This in turn allows the flux conditions to be imposed as if the lower boundary were essentially flat. Unfortunately, while this flat-boundary assumption is acceptable for coarse resolutions, as grids become more refined and the geometry of the resolved terrain becomes more complex, the appproach is less justified. With this in mind, the goal of our present study is to explore the implementation and usage of the full, unapproximated version of the turbulent flux/stress conditions in atmospheric models, thus taking full account of the complex geometry of the resolved terrain. We propose to implement the conditions using a semi-idealized model developed by Epifanio (2007), in which the discretized boundary conditions are reduced to a large, sparse-matrix problem. The emphasis will be on fluxes of momentum, as the tensor nature of this flux makes the associated stress condition more difficult to impose, although the flux conditions for heat and moisture will be considered as well. With the resulotion of 90 meters, some of the results show that the typical differences between flat-boundary cases and full/stress cases are on the order of 10%, with extreme cases reaching as high as 30% based on typical disturbance wind speeds. And this difference dropping by a factor of six between grid spacings of 90 meters and 240 meters. It would thus appear that the need to apply the full stress condition is limited to relatively high-resolution modeling, with grid spacings on the order of 250 meters or less.

  12. Thin films structural properties: results of the full-atomistic supercomputer simulation

    NASA Astrophysics Data System (ADS)

    Grigoriev, F. V.; Sulimov, V. B.; Tikhonravov, A. V.

    2017-12-01

    The previously developed full-atomistic approach to the thin film growth simulation is applied for the investigation of the dependence of silicon dioxide films properties on deposition conditions. It is shown that the surface roughness and porosity are essentially reduced with the growth of energy of deposited silicon atoms. The growth of energy from 0.1 eV to 10 eV results in the increase of the film density for 0.2 - 0.4 g/cm3 and of the refractive index for 0.04-0.08. The compressive stress in films structures is observed for all deposition conditions. Absolute values of the stress tensor components increase with the growth of e energy of deposited atoms. The increase of the substrate temperature results in smoothing of the density profiles of the deposited films.

  13. Reduced Stress Tensor and Dissipation and the Transport of Lamb Vector

    NASA Technical Reports Server (NTRS)

    Wu, Jie-Zhi; Zhou, Ye; Wu, Jian-Ming

    1996-01-01

    We develop a methodology to ensure that the stress tensor, regardless of its number of independent components, can be reduced to an exactly equivalent one which has the same number of independent components as the surface force. It is applicable to the momentum balance if the shear viscosity is constant. A direct application of this method to the energy balance also leads to a reduction of the dissipation rate of kinetic energy. Following this procedure, significant saving in analysis and computation may be achieved. For turbulent flows, this strategy immediately implies that a given Reynolds stress model can always be replaced by a reduced one before putting it into computation. Furthermore, we show how the modeling of Reynolds stress tensor can be reduced to that of the mean turbulent Lamb vector alone, which is much simpler. As a first step of this alternative modeling development, we derive the governing equations for the Lamb vector and its square. These equations form a basis of new second-order closure schemes and, we believe, should be favorably compared to that of traditional Reynolds stress transport equation.

  14. Visualization of geologic stress perturbations using Mohr diagrams.

    PubMed

    Crossno, Patricia; Rogers, David H; Brannon, Rebecca M; Coblentz, David; Fredrich, Joanne T

    2005-01-01

    Huge salt formations, trapping large untapped oil and gas reservoirs, lie in the deepwater region of the Gulf of Mexico. Drilling in this region is high-risk and drilling failures have led to well abandonments, with each costing tens of millions of dollars. Salt tectonics plays a central role in these failures. To explore the geomechanical interactions between salt and the surrounding sand and shale formations, scientists have simulated the stresses in and around salt diapirs in the Gulf of Mexico using nonlinear finite element geomechanical modeling. In this paper, we describe novel techniques developed to visualize the simulated subsurface stress field. We present an adaptation of the Mohr diagram, a traditional paper-and-pencil graphical method long used by the material mechanics community for estimating coordinate transformations for stress tensors, as a new tensor glyph for dynamically exploring tensor variables within three-dimensional finite element models. This interactive glyph can be used as either a probe or a filter through brushing and linking.

  15. Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi; Tenzer, Robert

    2017-07-01

    In this study we investigate the lithospheric stresses computed from the gravity and lithospheric structure models. The functional relation between the lithospheric stress tensor and the gravity field parameters is formulated based on solving the boundary-value problem of elasticity in order to determine the propagation of stresses inside the lithosphere, while assuming the horizontal shear stress components (computed at the base of the lithosphere) as lower boundary values for solving this problem. We further suppress the signature of global mantle flow in the stress spectrum by subtracting the long-wavelength harmonics (below the degree of 13). This numerical scheme is applied to compute the normal and shear stress tensor components globally at the Moho interface. The results reveal that most of the lithospheric stresses are accumulated along active convergent tectonic margins of oceanic subductions and along continent-to-continent tectonic plate collisions. These results indicate that, aside from a frictional drag caused by mantle convection, the largest stresses within the lithosphere are induced by subduction slab pull forces on the side of subducted lithosphere, which are coupled by slightly less pronounced stresses (on the side of overriding lithospheric plate) possibly attributed to trench suction. Our results also show the presence of (intra-plate) lithospheric loading stresses along Hawaii islands. The signature of ridge push (along divergent tectonic margins) and basal shear traction resistive forces is not clearly manifested at the investigated stress spectrum (between the degrees from 13 to 180).

  16. Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements

    DOE PAGES

    Hofmann, Felix; Phillips, Nicholas W.; Harder, Ross J.; ...

    2017-08-08

    Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here, in this paper, a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focusedmore » ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Lastly, our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.« less

  17. Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, Felix; Phillips, Nicholas W.; Harder, Ross J.

    Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here, in this paper, a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focusedmore » ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Lastly, our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.« less

  18. Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements.

    PubMed

    Hofmann, Felix; Phillips, Nicholas W; Harder, Ross J; Liu, Wenjun; Clark, Jesse N; Robinson, Ian K; Abbey, Brian

    2017-09-01

    Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focused ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.

  19. Micro-beam Laue Alignment of Multi-Reflection Bragg Coherent Diffraction Imaging Measurements

    PubMed Central

    Hofmann, Felix; Phillips, Nicholas W.; Harder, Ross J.; Liu, Wenjun; Clark, Jesse N.; Robinson, Ian K.; Abbey, Brian

    2017-01-01

    Multi-reflection Bragg coherent diffraction imaging has the potential to allow 3D resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here we demonstrate a different approach, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focussed ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples. PMID:28862628

  20. Rotational relaxation time as unifying time scale for polymer and fiber drag reduction

    NASA Astrophysics Data System (ADS)

    Boelens, A. M. P.; Muthukumar, M.

    2016-05-01

    Using hybrid direct numerical simulation plus Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime for both flexible polymers and rigid fibers. Since fibers do not have an elastic backbone, this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers.

  1. Rotational relaxation time as unifying time scale for polymer and fiber drag reduction.

    PubMed

    Boelens, A M P; Muthukumar, M

    2016-05-01

    Using hybrid direct numerical simulation plus Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime for both flexible polymers and rigid fibers. Since fibers do not have an elastic backbone, this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers.

  2. Vacuum polarization of the quantized massive fields in Friedman-Robertson-Walker spacetime

    NASA Astrophysics Data System (ADS)

    Matyjasek, Jerzy; Sadurski, Paweł; Telecka, Małgorzata

    2014-04-01

    The stress-energy tensor of the quantized massive fields in a spatially open, flat, and closed Friedman-Robertson-Walker universe is constructed using the adiabatic regularization (for the scalar field) and the Schwinger-DeWitt approach (for the scalar, spinor, and vector fields). It is shown that the stress-energy tensor calculated in the sixth adiabatic order coincides with the result obtained from the regularized effective action, constructed from the heat kernel coefficient a3. The behavior of the tensor is examined in the power-law cosmological models, and the semiclassical Einstein field equations are solved exactly in a few physically interesting cases, such as the generalized Starobinsky models.

  3. A Note on the Application of the Extended Bernoulli Equation

    DTIC Science & Technology

    1999-02-01

    as OV s ... - Vp „ _ = -±L L + VO , (2) Dt p where DIDt denotes the material derivative (discussed in following section); V is the vector...force potential; V is the vector gradient operator; s (J is the deviatoric-stress tensor arising from any type of elasto-viscoplastic constitutive...behavior; and s ^j is index notation for dsy/dxp denoting the following vector condensation of the deviatoric-stress tensor: ds ds ds

  4. Charged Vaidya solution satisfies weak energy condition

    NASA Astrophysics Data System (ADS)

    Chatterjee, Soumyabrata; Ganguli, Suman; Virmani, Amitabh

    2016-07-01

    The external matter stress-tensor supporting charged Vaidya solution appears to violate weak energy condition in certain region of the spacetime. Motivated by this, a new interpretation of charged Vaidya solution was proposed by Ori (Class Quant Grav 8:1559, 1991) in which the energy condition continues to be satisfied. In this construction, one glues an outgoing Vaidya solution to the original ingoing Vaidya solution provided the surface where the external stress-tensor vanishes is spacelike. We revisit this study and extend it to higher-dimensions, to AdS settings, and to higher-derivative f( R) theories. In asymptotically flat space context, we explore in detail the case when the mass function m( v) is proportional to the charge function q( v). When the proportionality constant ν = q(v)/m(v) lies in between zero and one, we show that the surface where the external stress-tensor vanishes is spacelike and lies in between the inner and outer apparent horizons.

  5. The Constantine (Algeria) seismic sequence of 27 October 1985: a new rupture model from aftershock relocation, focal mechanisms, and stress tensors

    NASA Astrophysics Data System (ADS)

    Ousadou, F.; Dorbath, L.; Dorbath, C.; Bounif, M. A.; Benhallou, H.

    2013-04-01

    The October 27, 1985 Constantine earthquake of magnitude MS 5.9 (NEIC) although moderate is the strongest earthquake recorded in the eastern Tellian Atlas (northeast Algeria) since the beginning of instrumental seismology. The main shock locations given by different institutions are scattered and up to 10 km away northwest from the NE-SW 30 km long elongated aftershocks cloud localized by a dedicated temporary portable network. The focal mechanism indicates left-lateral strike-slip on an almost vertical fault with a small reverse component on the northwest dipping plane. This paper presents relocations of the main shock and aftershocks using TomoDD. One hundred thirty-eight individual focal mechanisms have been built allowing the determination of the stress tensor at different scales. A rupture model has been suggested, which explains the different observations of aftershock distribution and stress tensor rotation.

  6. Intrinsic Viscosity of Dendrimers via Equilibrium Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Drew, Phil; Adolf, David

    2004-03-01

    Equilibrium molecular dynamics simulations of dendrimers in dilute solution have been performed using dl-poly. Analysis of the system stress tensor via the Green-Kubo formula produces the viscosity of the dendrimer solution which, when coupled with that of a solvent only system leads to the intrinsic viscosity of the dendrimer solute. Particular attention has been paid to error analysis as the auto-correlation of the stress tensor exhibits a long time tail, potentially leading to large uncertainties in the solution, and hence intrinsic, viscosities. In order to counter this effect and provide reliable statistical averaging, simulations have been run spanning very many times the longest system relaxation. Comparison is made to previous studies, using different techniques, which suggest a peak in the intrinsic viscosity of dendrimers at around generation four. Results are also presented from investigations in to the individual contributions to the system stress tensor from the solvent and the solute.

  7. Full Moment Tensor Analysis Using First Motion Data at The Geysers Geothermal Field

    NASA Astrophysics Data System (ADS)

    Boyd, O.; Dreger, D. S.; Lai, V. H.; Gritto, R.

    2012-12-01

    Seismicity associated with geothermal energy production at The Geysers Geothermal Field in northern California has been increasing during the last forty years. We investigate source models of over fifty earthquakes with magnitudes ranging from Mw 3.5 up to Mw 4.5. We invert three-component, complete waveform data from broadband stations of the Berkeley Digital Seismic Network, the Northern California Seismic Network and the USA Array deployment (2005-2007) for the complete, six-element moment tensor. Some solutions are double-couple while others have substantial non-double-couple components. To assess the stability and significance of non-double-couple components, we use a suite of diagnostic tools including the F-test, Jackknife test, bootstrap and network sensitivity solution (NSS). The full moment tensor solutions of the studied events tend to plot in the upper half of the Hudson source type diagram where the fundamental source types include +CLVD, +LVD, tensile-crack, DC and explosion. Using the F-test to compare the goodness-of-fit values between the full and deviatoric moment tensor solutions, most of the full moment tensor solutions do not show a statistically significant improvement in fit over the deviatoric solutions. Because a small isotropic component may not significantly improve the fit, we include first motion polarity data to better constrain the full moment tensor solutions.

  8. Design and Implementation of a Numerical Technique to Inform Anisotropic Hyperelastic Finite Element Models using Diffusion-Weighted Imaging

    DTIC Science & Technology

    2011-10-01

    the deviatoric part of a tensor in the reference configuration and p = −∂Ψ ∂J is the hydrostatic pressure. Using the chain 4 rule, equation 13 can be...Kirchoff stress tensor S to the current configuration, and a scaling with the inverse of the volume ratio, transforms equation 16 to the Cauchy stress ...a characteristic of most soft tissues. Then, similar to equation 13, the second Piola-Kirchoff stress is given by: S = 2J−2/3DEV [ ∂Ψisoc ( C ) ∂C

  9. Boundary stress tensor and asymptotically AdS3 non-Einstein spaces at the chiral point

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston; Goya, Andrés; Leston, Mauricio

    2011-09-01

    Chiral gravity admits asymptotically AdS3 solutions that are not locally equivalent to AdS3; meaning that solutions do exist which, while obeying the strong boundary conditions usually imposed in general relativity, happen not to be Einstein spaces. In topologically massive gravity (TMG), the existence of non-Einstein solutions is particularly connected to the question about the role played by complex saddle points in the Euclidean path integral. Consequently, studying (the existence of) nonlocally AdS3 solutions to chiral gravity is relevant to understanding the quantum theory. Here, we discuss a special family of nonlocally AdS3 solutions to chiral gravity. In particular, we show that such solutions persist when one deforms the theory by adding the higher-curvature terms of the so-called new massive gravity. Moreover, the addition of higher-curvature terms to the gravity action introduces new nonlocally AdS3 solutions that have no analogues in TMG. Both stationary and time-dependent, axially symmetric solutions that asymptote AdS3 space without being locally equivalent to it appear. Defining the boundary stress tensor for the full theory, we show that these non-Einstein geometries have associated vanishing conserved charges.

  10. QTAIM and Stress Tensor Characterization of Intramolecular Interactions Along Dynamics Trajectories of a Light-Driven Rotary Molecular Motor.

    PubMed

    Wang, Lingling; Huan, Guo; Momen, Roya; Azizi, Alireza; Xu, Tianlv; Kirk, Steven R; Filatov, Michael; Jenkins, Samantha

    2017-06-29

    A quantum theory of atoms in molecules (QTAIM) and stress tensor analysis was applied to analyze intramolecular interactions influencing the photoisomerization dynamics of a light-driven rotary molecular motor. For selected nonadiabatic molecular dynamics trajectories characterized by markedly different S 1 state lifetimes, the electron densities were obtained using the ensemble density functional theory method. The analysis revealed that torsional motion of the molecular motor blades from the Franck-Condon point to the S 1 energy minimum and the S 1 /S 0 conical intersection is controlled by two factors: greater numbers of intramolecular bonds before the hop-time and unusually strongly coupled bonds between the atoms of the rotor and the stator blades. This results in the effective stalling of the progress along the torsional path for an extended period of time. This finding suggests a possibility of chemical tuning of the speed of photoisomerization of molecular motors and related molecular switches by reshaping their molecular backbones to decrease or increase the degree of coupling and numbers of intramolecular bond critical points as revealed by the QTAIM/stress tensor analysis of the electron density. Additionally, the stress tensor scalar and vector analysis was found to provide new methods to follow the trajectories, and from this, new insight was gained into the behavior of the S 1 state in the vicinity of the conical intersection.

  11. Moment tensor inversion with three-dimensional sensor configuration of mining induced seismicity (Kiruna mine, Sweden)

    NASA Astrophysics Data System (ADS)

    Ma, Ju; Dineva, Savka; Cesca, Simone; Heimann, Sebastian

    2018-06-01

    Mining induced seismicity is an undesired consequence of mining operations, which poses significant hazard to miners and infrastructures and requires an accurate analysis of the rupture process. Seismic moment tensors of mining-induced events help to understand the nature of mining-induced seismicity by providing information about the relationship between the mining, stress redistribution and instabilities in the rock mass. In this work, we adapt and test a waveform-based inversion method on high frequency data recorded by a dense underground seismic system in one of the largest underground mines in the world (Kiruna mine, Sweden). A stable algorithm for moment tensor inversion for comparatively small mining induced earthquakes, resolving both the double-couple and full moment tensor with high frequency data, is very challenging. Moreover, the application to underground mining system requires accounting for the 3-D geometry of the monitoring system. We construct a Green's function database using a homogeneous velocity model, but assuming a 3-D distribution of potential sources and receivers. We first perform a set of moment tensor inversions using synthetic data to test the effects of different factors on moment tensor inversion stability and source parameters accuracy, including the network spatial coverage, the number of sensors and the signal-to-noise ratio. The influence of the accuracy of the input source parameters on the inversion results is also tested. Those tests show that an accurate selection of the inversion parameters allows resolving the moment tensor also in the presence of realistic seismic noise conditions. Finally, the moment tensor inversion methodology is applied to eight events chosen from mining block #33/34 at Kiruna mine. Source parameters including scalar moment, magnitude, double-couple, compensated linear vector dipole and isotropic contributions as well as the strike, dip and rake configurations of the double-couple term were obtained. The orientations of the nodal planes of the double-couple component in most cases vary from NNW to NNE with a dip along the ore body or in the opposite direction.

  12. Moment Tensor Inversion with 3D sensor configuration of Mining Induced Seismicity (Kiruna mine, Sweden)

    NASA Astrophysics Data System (ADS)

    Ma, Ju; Dineva, Savka; Cesca, Simone; Heimann, Sebastian

    2018-03-01

    Mining induced seismicity is an undesired consequence of mining operations, which poses significant hazard to miners and infrastructures and requires an accurate analysis of the rupture process. Seismic moment tensors of mining-induced events help to understand the nature of mining-induced seismicity by providing information about the relationship between the mining, stress redistribution and instabilities in the rock mass. In this work, we adapt and test a waveform-based inversion method on high frequency data recorded by a dense underground seismic system in one of the largest underground mines in the world (Kiruna mine, Sweden). Stable algorithm for moment tensor inversion for comparatively small mining induced earthquakes, resolving both the double couple and full moment tensor with high frequency data is very challenging. Moreover, the application to underground mining system requires accounting for the 3D geometry of the monitoring system. We construct a Green's function database using a homogeneous velocity model, but assuming a 3D distribution of potential sources and receivers. We first perform a set of moment tensor inversions using synthetic data to test the effects of different factors on moment tensor inversion stability and source parameters accuracy, including the network spatial coverage, the number of sensors and the signal-to-noise ratio. The influence of the accuracy of the input source parameters on the inversion results is also tested. Those tests show that an accurate selection of the inversion parameters allows resolving the moment tensor also in presence of realistic seismic noise conditions. Finally, the moment tensor inversion methodology is applied to 8 events chosen from mining block #33/34 at Kiruna mine. Source parameters including scalar moment, magnitude, double couple, compensated linear vector dipole and isotropic contributions as well as the strike, dip, rake configurations of the double couple term were obtained. The orientations of the nodal planes of the double-couple component in most cases vary from NNW to NNE with a dip along the ore body or in the opposite direction.

  13. Implicit constitutive models with a thermodynamic basis: a study of stress concentration

    NASA Astrophysics Data System (ADS)

    Bridges, C.; Rajagopal, K. R.

    2015-02-01

    Motivated by the recent generalization of the class of elastic bodies by Rajagopal (Appl Math 48:279-319, 2003), there have been several recent studies that have been carried out within the context of this new class. Rajagopal and Srinivasa (Proc R Soc Ser A 463:357-367, 2007, Proc R Soc Ser A: Math Phys Eng Sci 465:493-500, 2009) provided a thermodynamic basis for such models and appealing to the idea that rate of entropy production ought to be maximized they developed nonlinear rate equations of the form where T is the Cauchy stress and D is the stretching tensor as well as , where S is the Piola-Kirchhoff stress tensor and E is the Green-St. Venant strain tensor. We follow a similar procedure by utilizing the Gibb's potential and the left stretch tensor V from the Polar Decomposition of the deformation gradient, and we show that when the displacement gradient is small one arrives at constitutive relations of the form . This is, of course, in stark contrast to traditional elasticity wherein one obtains a single model, Hooke's law, when the displacement gradient is small. By solving a classical boundary value problem, with a particular form for f( T), we show that when the stresses are small, the strains are also small which is in agreement with traditional elasticity. However, within the context of our model, when the stress blows up the strains remain small, unlike the implications of Hooke's law. We use this model to study boundary value problems in annular domains to illustrate its efficacy.

  14. Full-wave Moment Tensor and Tomographic Inversions Based on 3D Strain Green Tensor

    DTIC Science & Technology

    2010-01-31

    propagation in three-dimensional (3D) earth, linearizes the inverse problem by iteratively updating the earth model , and provides an accurate way to...self-consistent FD-SGT databases constructed from finite-difference simulations of wave propagation in full-wave tomographic models can be used to...determine the moment tensors within minutes after a seismic event, making it possible for real time monitoring using 3D models . 15. SUBJECT TERMS

  15. Magnification effect of Kerr metric by configurations of collisionless particles in non-isotropic kinetic equilibria

    NASA Astrophysics Data System (ADS)

    Cremaschini, Claudio; Stuchlík, Zdeněk

    2018-05-01

    A test fluid composed of relativistic collisionless neutral particles in the background of Kerr metric is expected to generate non-isotropic equilibrium configurations in which the corresponding stress-energy tensor exhibits pressure and temperature anisotropies. This arises as a consequence of the constraints placed on single-particle dynamics by Killing tensor symmetries, leading to a peculiar non-Maxwellian functional form of the kinetic distribution function describing the continuum system. Based on this outcome, in this paper the generation of Kerr-like metric by collisionless N -body systems of neutral matter orbiting in the field of a rotating black hole is reported. The result is obtained in the framework of covariant kinetic theory by solving the Einstein equations in terms of an analytical perturbative treatment whereby the gravitational field is decomposed as a prescribed background metric tensor described by the Kerr solution plus a self-field correction. The latter one is generated by the uncharged fluid at equilibrium and satisfies the linearized Einstein equations having the non-isotropic stress-energy tensor as source term. It is shown that the resulting self-metric is again of Kerr type, providing a mechanism of magnification of the background metric tensor and its qualitative features.

  16. Generalized Rainich conditions, generalized stress-energy conditions, and the Hawking-Ellis classification

    NASA Astrophysics Data System (ADS)

    Martín–Moruno, Prado; Visser, Matt

    2017-11-01

    The (generalized) Rainich conditions are algebraic conditions which are polynomial in the (mixed-component) stress-energy tensor. As such they are logically distinct from the usual classical energy conditions (NEC, WEC, SEC, DEC), and logically distinct from the usual Hawking-Ellis (Segré-Plebański) classification of stress-energy tensors (type I, type II, type III, type IV). There will of course be significant inter-connections between these classification schemes, which we explore in the current article. Overall, we shall argue that it is best to view the (generalized) Rainich conditions as a refinement of the classical energy conditions and the usual Hawking-Ellis classification.

  17. The calculation of the viscosity from the autocorrelation function using molecular and atomic stress tensors

    NASA Astrophysics Data System (ADS)

    Cui, S. T.

    The stress-stress correlation function and the viscosity of a united-atom model of liquid decane are studied by equilibrium molecular dynamics simulation using two different formalisms for the stress tensor: the atomic and the molecular formalisms. The atomic and molecular correlation functions show dramatic difference in short-time behaviour. The integrals of the two correlation functions, however, become identical after a short transient period whichis significantly shorter than the rotational relaxation time of the molecule. Both reach the same plateau value in a time period corresponding to this relaxation time. These results provide a convenient guide for the choice of the upper integral time limit in calculating the viscosity by the Green-Kubo formula.

  18. BOOK REVIEW: Nonlinear Continuum Mechanics for Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Bialek, James M.

    1998-05-01

    Nonlinear continuum mechanics of solids is a fascinating subject. All the assumptions inherited from an overexposure to linear behaviour and analysis must be re-examined. The standard definitions of strain designed for small deformation linear problems may be totally misleading when finite motion or large deformations are considered. Nonlinear behaviour includes phenomena like `snap-through', where bifurcation theory is applied to engineering design. Capabilities in this field are growing at a fantastic speed; for example, modern automobiles are presently being designed to crumple in the most energy absorbing manner in order to protect the occupants. The combination of nonlinear mechanics and the finite element method is a very important field. Most engineering designs encountered in the fusion effort are strictly limited to small deformation linear theory. In fact, fusion devices are usually kept in the low stress, long life regime that avoids large deformations, nonlinearity and any plastic behaviour. The only aspect of nonlinear continuum solid mechanics about which the fusion community now worries is that rare case where details of the metal forming process must be considered. This text is divided into nine sections: introduction, mathematical preliminaries, kinematics, stress and equilibrium, hyperelasticity, linearized equilibrium equations, discretization and solution, computer implementation and an appendix covering an introduction to large inelastic deformations. The authors have decided to use vector and tensor notation almost exclusively. This means that the usual maze of indicial equations is avoided, but most readers will therefore be stretched considerably to follow the presentation, which quickly proceeds to the heart of nonlinear behaviour in solids. With great speed the reader is led through the material (Lagrangian) and spatial (Eulerian) co-ordinates, the deformation gradient tensor (an example of a two point tensor), the right and left Cauchy-Green tensors, the Eulerian or Almansi strain tensor, distortional components, strain rate tensors, rate of deformation tensors, spin tensors and objectivity. The standard Cauchy stress tensor is mentioned in passing, and then virtual work and work conjugacy lead to alternative stress representations such as the Piola-Kirchoff representation. Chapter 5 concentrates on hyperelasticity (where stresses are derived from a stored energy function) and its subvarieties. Chapter 6 proceeds by linearizing the virtual work statement prior to discretization and Chapter 7 deals with approaches to solving the formulation. In Chapter 8 the FORTRAN finite element code written by Bonet (available via the world wide web) is described. In summary this book is written by experts, for future experts, and provides a very fast review of the field for people who already know the topic. The authors assume the reader is familiar with `elementary stress analysis' and has had some exposure to `the principle of the finite element method'. Their goals are summarized by the statement, `If the reader is prepared not to get too hung up on details, it is possible to use the book to obtain a reasonable overview of the subject'. This is a very nice summary of what is going on in the field but as a stand-alone text it is much too terse. The total bibliography is a page and a half. It would be an improvement if there were that much reference material for each chapter.

  19. On actions for (entangling) surfaces and DCFTs

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Tarrío, Javier

    2018-04-01

    The dynamics of surfaces and interfaces describe many physical systems, including fluid membranes, entanglement entropy and the coupling of defects to quantum field theories. Based on the formulation of submanifold calculus developed by Carter, we introduce a new variational principle for (entangling) surfaces. This principle captures all diffeomorphism constraints on surface/interface actions and their associated spacetime stress tensor. The different couplings to the geometric tensors appearing in the surface action are interpreted in terms of response coefficients within elasticity theory. An example of a surface action with edges at the two-derivative level is studied, including both the parity-even and parity-odd sectors. Its conformally invariant counterpart restricts the type of conformal anomalies that can appear in two-dimensional submanifolds with boundaries. Analogously to hydrodynamics, it is shown that classification methods can be used to constrain the stress tensor of (entangling) surfaces at a given order in derivatives. This analysis reveals a purely geometric parity-odd contribution to the Young modulus of a thin elastic membrane. Extending this novel variational principle to BCFTs and DCFTs in curved spacetimes allows to obtain the Ward identities for diffeomorphism and Weyl transformations. In this context, we provide a formal derivation of the contact terms in the stress tensor and of the displacement operator for a broad class of actions.

  20. Modelling Dynamic Behaviour and Spall Failure of Aluminium Alloy AA7010

    NASA Astrophysics Data System (ADS)

    Ma'at, N.; Nor, M. K. Mohd; Ismail, A. E.; Kamarudin, K. A.; Jamian, S.; Ibrahim, M. N.; Awang, M. K.

    2017-10-01

    A finite strain constitutive model to predict the dynamic deformation behaviour of Aluminium Alloy 7010 including shockwaves and spall failure is developed in this work. The important feature of this newly hyperelastic-plastic constitutive formulation is a new Mandel stress tensor formulated using new generalized orthotropic pressure. This tensor is combined with a shock equation of state (EOS) and Grady spall failure. The Hill’s yield criterion is adopted to characterize plastic orthotropy by means of the evolving structural tensors that is defined in the isoclinic configuration. This material model was developed and integration into elastic and plastic parts. The elastic anisotropy is taken into account through the newly stress tensor decomposition of a generalized orthotropic pressure. Plastic anisotropy is considered through yield surface and an isotropic hardening defined in a unique alignment of deviatoric plane within the stress space. To test its ability to describe shockwave propagation and spall failure, the new material model was implemented into the LLNL-DYNA3D code of UTHM’s. The capability of this newly constitutive model were compared against published experimental data of Plate Impact Test at 234m/s, 450m/s and 895m/s impact velocities. A good agreement is obtained between experimental and simulation in each test.

  1. Seismotectonics and crustal stress across the northern Arabian plate

    NASA Astrophysics Data System (ADS)

    yassminh, R.; Gomez, F. G.; Sandvol, E. A.; Ghalib, H. A.; Daoud, M.

    2013-12-01

    The region encompassing the collision of northern Arabia with Eurasia is a tectonically heterogeneous region of distributed deformation. The northern Arabia plate is bounded to the west by the subducting Sinai plate and the left-lateral Dead Sea transform. This complexity suggests that there are, multiple competing processes that may influence regional tectonics in northern Arabia and adjacent areas. Earthquake mechanisms provide insight into crustal kinematics and stress; however, reliable determination of earthquake source parameters can be challenging in a complex geological region, such as the continental collision zone between the Arabian and Eurasian plates. The goal of this study is to investigate spatial patterns of the crustal stress in the northern Arabian plate and surrounding area. The focal mechanisms used in this study are based on (1) first-motion polarities for earthquakes recorded by Syrian earthquake center during 2000-2011, and (2) regional moment tensors from broadband seismic data, from Turkey and Iraq. First motion focal mechanisms were assigned quality classifications based on the variation of both nodal planes. Regional moment tensor analysis can be significantly influenced by seismic velocity structure; thus, we have divided the study area into regions based on tectonic units. For each region, a specific velocity model is defined using waveform-modeling technique prior to the regional moment tensor inversion. The resulting focal mechanisms, combined with other previously published focal mechanisms for the study area, provide a basis for stress inversion analysis. The resulting deviatoric stress tensors show the spatial distribution of the maximum horizontal stress varies from NW-SE along the Dead Sea Fault to the N-S toward the east. We interpret this to reflect the eastward change from the transform to collision processes in northern Arabia. Along the Dead Sea Fault, transposition of the sigma-1 and sigma-2 to vertical and horizontal, respectively, may relate to influences from the subducted part of the Sinai plate. This change in regional stress is also consistent with extensional strains observed from GPS velocities.

  2. An Integrated Tensorial Approach for Quantifying Porous, Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Healy, David; Rizzo, Roberto; Harland, Sophie; Farrell, Natalie; Browning, John; Meredith, Phil; Mitchell, Tom; Bubeck, Alodie; Walker, Richard

    2017-04-01

    The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, and larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. Based on previously published work (Oda, Cowin, Sayers & Kachanov) this presentation describes an integrated tensorial approach to quantifying fracture networks and predicting the key properties of fractured rock: permeability and elasticity (and in turn, seismic velocities). Each of these properties can be represented as tensors, and these entities capture the essential 'directionality', or anisotropy of the property. In structural geology, we are familiar with using tensors for stress and strain, where these concepts incorporate volume averaging of many forces (in the case of the stress tensor), or many displacements (for the strain tensor), to produce more tractable and more computationally efficient quantities. It is conceptually attractive to formulate both the structure (the fracture network) and the structure-dependent properties (permeability, elasticity) in a consistent way with tensors of 2nd and 4th rank, as appropriate. Examples are provided to highlight the interdependence of the property tensors with the geometry of the fracture network. The fabric tensor (or orientation tensor of Scheidegger, Woodcock) describes the orientation distribution of fractures in the network. The crack tensor combines the fabric tensor (orientation distribution) with information about the fracture density and fracture size distribution. Changes to the fracture network, manifested in the values of the fabric and crack tensors, translate into changes in predicted permeability and elasticity (seismic velocity). Conversely, this implies that measured changes in any of the in situ properties or responses in the subsurface (e.g. permeability, seismic velocity) could be used to predict, or at least constrain, the fracture network. Explicitly linking the fracture network geometry to the permeability and elasticity (seismic velocity) through a tensorial formulation provides an exciting and efficient alternative to existing approaches.

  3. Reynolds stress flow shear and turbulent energy transfer in reversed field pinch configuration

    NASA Astrophysics Data System (ADS)

    Vianello, Nicola; Spolaore, Monica; Serianni, Gianluigi; Regnoli, Giorgio; Spada, Emanuele; Antoni, Vanni; Bergsåker, Henric; Drake, James R.

    2003-10-01

    The role of Reynolds Stress tensor on flow generation in turbulent fluids and plasmas is still an open question and the comprehension of its behavior may assist the understanding of improved confinement scenario. It is generally believed that shear flow generation may occur by an interaction of the turbulent Reynolds stress with the shear flow. It is also generally believed that this mechanism may influence the generation of zonal flow shears. The evaluation of the complete Reynolds Stress tensor requires contemporary measurements of its electrostatic and magnetic part: this requirement is more restrictive for Reversed Field Pinch configuration where magnetic fluctuations are larger than in tokamak . A new diagnostic system which combines electrostatic and magnetic probes has been installed in the edge region of Extrap-T2R reversed field pinch. With this new probe the Reynolds stress tensor has been deduced and its radial profile has been reconstructed on a shot to shot basis exploring differen plasma conditions. These profiles have been compared with the naturally occurring velocity flow profile, in particular during Pulsed Poloidal Current Drive experiment, where a strong variation of ExB flow radial profile has been registered. The study of the temporal evolution of Reynolds stress reveals the appearance of strong localized bursts: these are considered in relation with global MHD relaxation phenomena, which naturally occur in the core of an RFP plasma sustaining its configuration.

  4. Tensor-Train Split-Operator Fourier Transform (TT-SOFT) Method: Multidimensional Nonadiabatic Quantum Dynamics.

    PubMed

    Greene, Samuel M; Batista, Victor S

    2017-09-12

    We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.

  5. Nanoscale multiphase phase field approach for stress- and temperature-induced martensitic phase transformations with interfacial stresses at finite strains

    NASA Astrophysics Data System (ADS)

    Basak, Anup; Levitas, Valery I.

    2018-04-01

    A thermodynamically consistent, novel multiphase phase field approach for stress- and temperature-induced martensitic phase transformations at finite strains and with interfacial stresses has been developed. The model considers a single order parameter to describe the austenite↔martensitic transformations, and another N order parameters describing N variants and constrained to a plane in an N-dimensional order parameter space. In the free energy model coexistence of three or more phases at a single material point (multiphase junction), and deviation of each variant-variant transformation path from a straight line have been penalized. Some shortcomings of the existing models are resolved. Three different kinematic models (KMs) for the transformation deformation gradient tensors are assumed: (i) In KM-I the transformation deformation gradient tensor is a linear function of the Bain tensors for the variants. (ii) In KM-II the natural logarithms of the transformation deformation gradient is taken as a linear combination of the natural logarithm of the Bain tensors multiplied with the interpolation functions. (iii) In KM-III it is derived using the twinning equation from the crystallographic theory. The instability criteria for all the phase transformations have been derived for all the kinematic models, and their comparative study is presented. A large strain finite element procedure has been developed and used for studying the evolution of some complex microstructures in nanoscale samples under various loading conditions. Also, the stresses within variant-variant boundaries, the sample size effect, effect of penalizing the triple junctions, and twinned microstructures have been studied. The present approach can be extended for studying grain growth, solidifications, para↔ferro electric transformations, and diffusive phase transformations.

  6. Einstein Revisited - Gravity in Curved Spacetime Without Event Horizons

    NASA Astrophysics Data System (ADS)

    Leiter, Darryl

    2000-04-01

    In terms of covariant derivatives with respect to flat background spacetimes upon which the physical curved spacetime is imposed (1), covariant conservation of energy momentum requires, via the Bianchi Identity, that the Einstein tensor be equated to the matter energy momentum tensor. However the Einstein tensor covariantly splits (2) into two tensor parts: (a) a term proportional to the gravitational stress energy momentum tensor, and (b) an anti-symmetric tensor which obeys a covariant 4-divergence identity called the Freud Identity. Hence covariant conservation of energy momentum requires, via the Freud Identity, that the Freud tensor be equal to a constant times the matter energy momentum tensor. The resultant field equations (3) agree with the Einstein equations to first order, but differ in higher orders (4) such that black holes are replaced by "red holes" i.e., dense objects collapsed inside of their photon orbits with no event horizons. (1) Rosen, N., (1963), Ann. Phys. v22, 1; (2) Rund, H., (1991), Alg. Grps. & Geom. v8, 267; (3) Yilmaz, Hl, (1992), Nuo. Cim. v107B, 946; (4) Roberstson, S., (1999),Ap.J. v515, 365.

  7. Generalized recursion relations for correlators in the gauge-gravity correspondence.

    PubMed

    Raju, Suvrat

    2011-03-04

    We show that a generalization of the Britto-Cachazo-Feng-Witten recursion relations gives a new and efficient method of computing correlation functions of the stress tensor or conserved currents in conformal field theories with an (d+1)-dimensional anti-de Sitter space dual, for d≥4, in the limit where the bulk theory is approximated by tree-level Yang-Mills theory or gravity. In supersymmetric theories, additional correlators of operators that live in the same multiplet as a conserved current or stress tensor can be computed by these means.

  8. Stress Energy tensor in LCFT and the Logarithmic Sugawara construction

    NASA Astrophysics Data System (ADS)

    Kogan, Ian I.; Nichols, Alexander

    2002-01-01

    We discuss the partners of the stress energy tensor and their structure in Logarithmic conformal field theories. In particular we draw attention to the fundamental differences between theories with zero and non-zero central charge. However they are both characterised by at least two independent parameters. We show how, by using a generalised Sugawara construction, one can calculate the logarithmic partner of T. We show that such a construction works in the c = -2 theory using the conformal dimension one primary currents which generate a logarithmic extension of the Kac-Moody algebra.

  9. Transversely Isotropic Hyperelastic Constitutive Model of Short Fiber Reinforced EPDM Based on Tensor Function

    NASA Astrophysics Data System (ADS)

    Feng, Q. L.; Li, C.; Liao, Y. F.

    2017-12-01

    Short fiber reinforced EPDM is a new kind of composite material used in solid rocket motor winding and coating. It has relatively large deformation under the small stress condition, and the physical non-linear characteristic is obvious. Due to the addition of fiber in the specific direction of the rubber, the macroscopic mechanical properties are expressed as transversely isotropic properties. In order to describe the mechanical behavior under the impact and vibration, the transversely isotropic hyperelastic constitutive model based on tensor function is proposed. The symmetry of the transversely isotropic incompressible material limits the stress tensor ‘ K ’ to be characterized as a function of 5 tensor invariants and 4 scalar invariants. The third power constitutive equations of the model give 12 independent elastic constants of the transversely isotropic nonlinear elastic material. The experimental results show that the non-zero elastic constants are different in the fiber direction and at the different strain rate. Number and value of adiabatic layer and related products R & D has a reference value.

  10. Killing approximation for vacuum and thermal stress-energy tensor in static space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, V.P.; Zel'nikov, A.I.

    1987-05-15

    The problem of the vacuum polarization of conformal massless fields in static space-times is considered. A tensor T/sub ..mu..//sub ..nu../ constructed from the curvature, the Killing vector, and their covariant derivatives is proposed which can be used to approximate the average value of the stress-energy tensor /sup ren/ in such spaces. It is shown that if (i) its trace T /sub epsilon//sup epsilon/ coincides with the trace anomaly /sup ren/, (ii) it satisfies the conservation law T/sup ..mu..//sup epsilon/ /sub ;//sub epsilon/ = 0, and (iii) it has the correct behavior under the scale transformations, then it is uniquely definedmore » up to a few arbitrary constants. These constants must be chosen to satisfy the boundary conditions. In the case of a static black hole in a vacuum these conditions single out the unique tensor T/sub ..mu..//sub ..nu../ which provides a good approximation for /sup ren/ in the Hartle-Hawking vacuum. The relation between this approach and the Page-Brown-Ottewill approach is discussed.« less

  11. Physical stress, mass, and energy for non-relativistic matter

    NASA Astrophysics Data System (ADS)

    Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.

    2017-06-01

    For theories of relativistic matter fields there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.

  12. On volume-source representations based on the representation theorem

    NASA Astrophysics Data System (ADS)

    Ichihara, Mie; Kusakabe, Tetsuya; Kame, Nobuki; Kumagai, Hiroyuki

    2016-01-01

    We discuss different ways to characterize a moment tensor associated with an actual volume change of ΔV C , which has been represented in terms of either the stress glut or the corresponding stress-free volume change ΔV T . Eshelby's virtual operation provides a conceptual model relating ΔV C to ΔV T and the stress glut, where non-elastic processes such as phase transitions allow ΔV T to be introduced and subsequent elastic deformation of - ΔV T is assumed to produce the stress glut. While it is true that ΔV T correctly represents the moment tensor of an actual volume source with volume change ΔV C , an explanation as to why such an operation relating ΔV C to ΔV T exists has not previously been given. This study presents a comprehensive explanation of the relationship between ΔV C and ΔV T based on the representation theorem. The displacement field is represented using Green's function, which consists of two integrals over the source surface: one for displacement and the other for traction. Both integrals are necessary for representing volumetric sources, whereas the representation of seismic faults includes only the first term, as the second integral over the two adjacent fault surfaces, across which the traction balances, always vanishes. Therefore, in a seismological framework, the contribution from the second term should be included as an additional surface displacement. We show that the seismic moment tensor of a volume source is directly obtained from the actual state of the displacement and stress at the source without considering any virtual non-elastic operations. A purely mathematical procedure based on the representation theorem enables us to specify the additional imaginary displacement necessary for representing a volume source only by the displacement term, which links ΔV C to ΔV T . It also specifies the additional imaginary stress necessary for representing a moment tensor solely by the traction term, which gives the "stress glut." The imaginary displacement-stress approach clarifies the mathematical background to the classical theory.

  13. Charting the complete elastic properties of inorganic crystalline compounds

    PubMed Central

    de Jong, Maarten; Chen, Wei; Angsten, Thomas; Jain, Anubhav; Notestine, Randy; Gamst, Anthony; Sluiter, Marcel; Krishna Ande, Chaitanya; van der Zwaag, Sybrand; Plata, Jose J; Toher, Cormac; Curtarolo, Stefano; Ceder, Gerbrand; Persson, Kristin A.; Asta, Mark

    2015-01-01

    The elastic constant tensor of an inorganic compound provides a complete description of the response of the material to external stresses in the elastic limit. It thus provides fundamental insight into the nature of the bonding in the material, and it is known to correlate with many mechanical properties. Despite the importance of the elastic constant tensor, it has been measured for a very small fraction of all known inorganic compounds, a situation that limits the ability of materials scientists to develop new materials with targeted mechanical responses. To address this deficiency, we present here the largest database of calculated elastic properties for inorganic compounds to date. The database currently contains full elastic information for 1,181 inorganic compounds, and this number is growing steadily. The methods used to develop the database are described, as are results of tests that establish the accuracy of the data. In addition, we document the database format and describe the different ways it can be accessed and analyzed in efforts related to materials discovery and design. PMID:25984348

  14. Mechanical signals in plant development: a new method for single cell studies

    NASA Technical Reports Server (NTRS)

    Lynch, T. M.; Lintilhac, P. M.

    1997-01-01

    Cell division, which is critical to plant development and morphology, requires the orchestration of hundreds of intracellular processes. In the end, however, cells must make critical decisions, based on a discrete set of mechanical signals such as stress, strain, and shear, to divide in such a way that they will survive the mechanical loads generated by turgor pressure and cell enlargement within the growing tissues. Here we report on a method whereby tobacco protoplasts swirled into a 1.5% agarose entrapment medium will survive and divide. The application of a controlled mechanical load to agarose blocks containing protoplasts orients the primary division plane of the embedded cells. Photoelastic analysis of the agarose entrapment medium can identify the lines of principal stress within the agarose, confirming the hypothesis that cells divide either parallel or perpendicular to the principal stress tensors. The coincidence between the orientation of the new division wall and the orientation of the principal stress tensors suggests that the perception of mechanical stress is a characteristic of individual plant cells. The ability of a cell to determine a shear-free orientation for a new partition wall may be related to the applied load through the deformation of the matrix material. In an isotropic matrix a uniaxial load will produce a rotationally symmetric strain field, which will define a shear-free plane. Where high stress intensities combine with the loading geometry to produce multiaxial loads there will be no axis of rotational symmetry and hence no shear free plane. This suggests that two mechanisms may be orienting the division plane, one a mechanism that works in rotationally symmetrical fields, yielding divisions perpendicular to the compressive tensor, parallel to the long axis of the cell, and one in asymmetric fields, yielding divisions parallel to the short axis of the cell and the compressive tensor.

  15. Universality for shape dependence of Casimir effects from Weyl anomaly

    NASA Astrophysics Data System (ADS)

    Miao, Rong-Xin; Chu, Chong-Sun

    2018-03-01

    We reveal elegant relations between the shape dependence of the Casimir effects and Weyl anomaly in boundary conformal field theories (BCFT). We show that for any BCFT which has a description in terms of an effective action, the near boundary divergent behavior of the renormalized stress tensor is completely determined by the central charges of the theory. These relations are verified by free BCFTs. We also test them with holographic models of BCFT and find exact agreement. We propose that these relations between Casimir coefficients and central charges hold for any BCFT. With the holographic models, we reproduce not only the precise form of the near boundary divergent behavior of the stress tensor, but also the surface counter term that is needed to make the total energy finite. As they are proportional to the central charges, the near boundary divergence of the stress tensor must be physical and cannot be dropped by further artificial renormalization. Our results thus provide affirmative support on the physical nature of the divergent energy density near the boundary, whose reality has been a long-standing controversy in the literature.

  16. Estimation of Uncertainties of Full Moment Tensors

    DTIC Science & Technology

    2017-10-06

    Nevada Test Site (tab. 1 of Ford et al., 2009). Figure 1 shows the three regions and the stations used within the moment tensor inversions . For the...and additional bandpass filtering, were applied during the moment tensor inversions . We use high-frequency P waves for the Uturuncu and NTS events...reliable when we align the P waves on the observed P arrival time. 3.2 Methods Seismic moment tensor inversion requires specifying a misfit function

  17. Quantification of Uncertainty in Full-Waveform Moment Tensor Inversion for Regional Seismicity

    NASA Astrophysics Data System (ADS)

    Jian, P.; Hung, S.; Tseng, T.

    2013-12-01

    Routinely and instantaneously determined moment tensor solutions deliver basic information for investigating faulting nature of earthquakes and regional tectonic structure. The accuracy of full-waveform moment tensor inversion mostly relies on azimuthal coverage of stations, data quality and previously known earth's structure (i.e., impulse responses or Green's functions). However, intrinsically imperfect station distribution, noise-contaminated waveform records and uncertain earth structure can often result in large deviations of the retrieved source parameters from the true ones, which prohibits the use of routinely reported earthquake catalogs for further structural and tectonic interferences. Duputel et al. (2012) first systematically addressed the significance of statistical uncertainty estimation in earthquake source inversion and exemplified that the data covariance matrix, if prescribed properly to account for data dependence and uncertainty due to incomplete and erroneous data and hypocenter mislocation, cannot only be mapped onto the uncertainty estimate of resulting source parameters, but it also aids obtaining more stable and reliable results. Over the past decade, BATS (Broadband Array in Taiwan for Seismology) has steadily devoted to building up a database of good-quality centroid moment tensor (CMT) solutions for moderate to large magnitude earthquakes that occurred in Taiwan area. Because of the lack of the uncertainty quantification and reliability analysis, it remains controversial to use the reported CMT catalog directly for further investigation of regional tectonics, near-source strong ground motions, and seismic hazard assessment. In this study, we develop a statistical procedure to make quantitative and reliable estimates of uncertainty in regional full-waveform CMT inversion. The linearized inversion scheme adapting efficient estimation of the covariance matrices associated with oversampled noisy waveform data and errors of biased centroid positions is implemented and inspected for improving source parameter determination of regional seismicity in Taiwan. Synthetic inversion tests demonstrate the resolved moment tensors would better match the hypothetical CMT solutions, and tend to suppress unreal non-double-couple components and reduce the trade-off between focal mechanism and centroid depth if individual signal-to-noise ratios and correlation lengths for 3-component seismograms at each station and mislocation uncertainties are properly taken into account. We further testify the capability of our scheme in retrieving the robust CMT information for mid-sized (Mw~3.5) and offshore earthquakes in Taiwan, which offers immediate and broad applications in detailed modelling of regional stress field and deformation pattern and mapping of subsurface velocity structures.

  18. From orientation to magnitudes in paleostress determinations using fault slip data

    NASA Astrophysics Data System (ADS)

    Angelier, Jacques

    Determinations of reduced stress tensors using fault slip data yield the orientation of principal stress axes and the ratio Φ of the differences between principal stress magnitudes. The use of rupture and friction laws allows determination of the two remaining unknowns, that is, the reconstruction of the complete stress tensor. Taking into account the depth of overburden brings an additional constraint. The method is applied and discussed in the case of the Hoover Dam site (western U.S.A.), where large data sets and rock mechanics information are available. Differences between intact sample and rock mass properties account for apparent disagreements between paleostress levels determined in similar tectonic environments. Pore pressure plays an important role; where information about pore pressure is absent, zero and hydrostatic pore pressure cases should be considered as limits.

  19. Complex brittle deformation pattern along the Southern Patagonian Andes (Argentina)

    NASA Astrophysics Data System (ADS)

    Barberón, Vanesa; Sue, Christian; Ronda, Gonzalo; Ghiglione, Matías

    2016-04-01

    The Southern Patagonian Andes is located in the southern extreme of the Pacific subduction zone, where the Antartic oceanic plate sinks underneath South America. The history of the area begins with compression during Paleozoic, Jurassic extension associated to the rift and opening of the South Atlantic Ocean, then a sag stage in the Lower Cretaceous followed by a foreland phase as a result of plate tectonics (Ghiglione et al., 2016). The kinematic study is concentrated in the Argentinean foothills, between 46°40' and 48° SL. We measured around 800 fault planes and their striaes with the sense of movement in order to characterize the stress field. The software used to make the stress inversion were Tensor (Delvaux, 2011) and Multiple Inverse Method MIM (Yamaji et al., 2011). The stress field map was built with the results of the MIM. We present new data from 48 sites located in the northern sector of the Southern Patagonian Andes. The measurements were made in several rocks from Paleozoic to Lower Cretaceous, even though most were taken in pyroclastic jurassic rocks from El Quemado Complex. Paleostress tensors obtained are mostly strike-slip, although a 25% is normal and there are a few compresional. The pattern of faults found is complex. In some sites the tensor can be locally linked to satellite images and observations from the field or be related to a major thrust front. There is no clear correlation between the age and/or lithology with the tensor since the youngest rocks measured are Lower Cretaceous. Probably there are several generations of family faults connected to different and recent tectonic phases then the paleostress tensors might correspond to the latest tectonic events.

  20. Averaging problem in general relativity, macroscopic gravity and using Einstein's equations in cosmology.

    NASA Astrophysics Data System (ADS)

    Zalaletdinov, R. M.

    1998-04-01

    The averaging problem in general relativity is briefly discussed. A new setting of the problem as that of macroscopic description of gravitation is proposed. A covariant space-time averaging procedure is described. The structure of the geometry of macroscopic space-time, which follows from averaging Cartan's structure equations, is described and the correlation tensors present in the theory are discussed. The macroscopic field equations (averaged Einstein's equations) derived in the framework of the approach are presented and their structure is analysed. The correspondence principle for macroscopic gravity is formulated and a definition of the stress-energy tensor for the macroscopic gravitational field is proposed. It is shown that the physical meaning of using Einstein's equations with a hydrodynamic stress-energy tensor in looking for cosmological models means neglecting all gravitational field correlations. The system of macroscopic gravity equations to be solved when the correlations are taken into consideration is given and described.

  1. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance

    DOE PAGES

    Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy

    2016-10-18

    There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property.more » Furthermore, the Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.« less

  2. Vector and tensor contributions to the curvature perturbation at second order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrilho, Pedro; Malik, Karim A., E-mail: p.gregoriocarrilho@qmul.ac.uk, E-mail: k.malik@qmul.ac.uk

    2016-02-01

    We derive the evolution equation for the second order curvature perturbation using standard techniques of cosmological perturbation theory. We do this for different definitions of the gauge invariant curvature perturbation, arising from different splits of the spatial metric, and compare the expressions. The results are valid at all scales and include all contributions from scalar, vector and tensor perturbations, as well as anisotropic stress, with all our results written purely in terms of gauge invariant quantities. Taking the large-scale approximation, we find that a conserved quantity exists only if, in addition to the non-adiabatic pressure, the transverse traceless part ofmore » the anisotropic stress tensor is also negligible. We also find that the version of the gauge invariant curvature perturbation which is exactly conserved is the one defined with the determinant of the spatial part of the inverse metric.« less

  3. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy

    There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property.more » Furthermore, the Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.« less

  4. New Views on Dark Matter from Emergent Gravity

    NASA Astrophysics Data System (ADS)

    Sun, Sichun; Zhang, Yun-Long

    2018-01-01

    We discuss a scenario that apparent dark matter comes from the induced gravity in the (3+1)- dimensional spacetime, which can be embedded into one higher dimensional flat spacetime. The stress tensor of dark energy and dark matter is identified with the Brown-York stress tensor on the hypersurface, and we find an interesting constraint relation between the dark matter and dark energy density parameter and baryonic density parameter. Our approach may show a new understanding for Verlinde's emergent gravity from higher dimensions. We also comment on some phenomenological implications, including gravitational wave solutions and MOND limit.

  5. The nonlocal elastomagnetoelectrostatics of disordered micropolar media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabychenkov, A. F.; Lisiovskii, F. V., E-mail: lisf@rambler.ru

    The interactions of electric, magnetic, and elastic subsystems in nonlinear disordered micropolar media that possess a bending–torsion tensor and an nonsymmetric strain tensor have been studied in the framework of phenomenological elastomagnetoelectrostatics. A system of nonlinear equations for determining the ground state of these media has been obtained by the variational method. It is shown that nonuniform external and internal rotations not only create elastic stresses, but also generate additional electric and magnetic fields, while nonuniform elastic stresses and external fields induce internal rotations. The nonlocal character of the micropolar media significantly influences elementary excitations and nonlinear dynamic processes.

  6. Anisotropy of the Reynolds stress tensor in the wakes of wind turbine arrays in Cartesian arrangements with counter-rotating rotors

    NASA Astrophysics Data System (ADS)

    Hamilton, Nicholas; Cal, Raúl Bayoán

    2015-01-01

    A 4 × 3 wind turbine array in a Cartesian arrangement was constructed in a wind tunnel setting with four configurations based on the rotational sense of the rotor blades. The fourth row of devices is considered to be in the fully developed turbine canopy for a Cartesian arrangement. Measurements of the flow field were made with stereo particle-image velocimetry immediately upstream and downstream of the selected model turbines. Rotational sense of the turbine blades is evident in the mean spanwise velocity W and the Reynolds shear stress - v w ¯ . The flux of kinetic energy is shown to be of greater magnitude following turbines in arrays where direction of rotation of the blades varies. Invariants of the normalized Reynolds stress anisotropy tensor (η and ξ) are plotted in the Lumley triangle and indicate that distinct characters of turbulence exist in regions of the wake following the nacelle and the rotor blade tips. Eigendecomposition of the tensor yields principle components and corresponding coordinate system transformations. Characteristic spheroids representing the balance of components in the normalized anisotropy tensor are composed with the eigenvalues yielding shapes predicted by the Lumley triangle. Rotation of the coordinate system defined by the eigenvectors demonstrates trends in the streamwise coordinate following the rotors, especially trailing the top-tip of the rotor and below the hub. Direction of rotation of rotor blades is shown by the orientation of characteristic spheroids according to principle axes. In the inflows of exit row turbines, the normalized Reynolds stress anisotropy tensor shows cumulative effects of the upstream turbines, tending toward prolate shapes for uniform rotational sense, oblate spheroids for streamwise organization of rotational senses, and a mixture of characteristic shapes when the rotation varies by row. Comparison between the invariants of the Reynolds stress anisotropy tensor and terms from the mean mechanical energy equation indicate correlation between the degree of anisotropy and the regions of the wind turbine wakes where turbulence kinetic energy is produced. The flux of kinetic energy into the momentum-deficit area of the wake from above the canopy is associated with prolate characteristic spheroids. Flux upward into the wake from below the rotor area is associated with oblate characteristic spheroids. Turbulence in the region of the flow directly following the nacelle of the wind turbines demonstrates greater isotropy than regions following the rotor blades. The power and power coefficients for wind turbines indicate that flow structures on the order of magnitude of the spanwise turbine spacing that increase turbine efficiency depending on particular array configuration.

  7. Waveform-based Bayesian full moment tensor inversion and uncertainty determination for the induced seismicity in an oil/gas field

    NASA Astrophysics Data System (ADS)

    Gu, Chen; Marzouk, Youssef M.; Toksöz, M. Nafi

    2018-03-01

    Small earthquakes occur due to natural tectonic motions and are induced by oil and gas production processes. In many oil/gas fields and hydrofracking processes, induced earthquakes result from fluid extraction or injection. The locations and source mechanisms of these earthquakes provide valuable information about the reservoirs. Analysis of induced seismic events has mostly assumed a double-couple source mechanism. However, recent studies have shown a non-negligible percentage of non-double-couple components of source moment tensors in hydraulic fracturing events, assuming a full moment tensor source mechanism. Without uncertainty quantification of the moment tensor solution, it is difficult to determine the reliability of these source models. This study develops a Bayesian method to perform waveform-based full moment tensor inversion and uncertainty quantification for induced seismic events, accounting for both location and velocity model uncertainties. We conduct tests with synthetic events to validate the method, and then apply our newly developed Bayesian inversion approach to real induced seismicity in an oil/gas field in the sultanate of Oman—determining the uncertainties in the source mechanism and in the location of that event.

  8. Crustal stress across the northern Arabian plate and the relationship with the plate boundary forces

    NASA Astrophysics Data System (ADS)

    Yassminh, Rayan

    The region encompassing the collision of northern Arabia with Eurasia is a tectonically heterogeneous region of distributed deformation. The northern Arabia plate is bounded to the west by the subducting Sinai plate and the left-lateral Dead Sea transform. This complexity suggests that there are multiple competing processes that may influence regional tectonics in northern Arabia and adjacent areas. Earthquake mechanisms provide insight into crustal kinematics and stress; however, reliable determination of earthquake source parameters can be challenging in a complex geological region, such as the continental collision zone between the Arabian and Eurasian plates. The goal of this study is to investigate spatial patterns of the crustal stress in the northern Arabian plate and surrounding area. The focal mechanisms used in this study are based on (1) first-motion polarities for earthquakes recorded by Syrian earthquake center during 2000-2011, and (2) regional moment tensors from broadband seismic data, from Turkey and Iraq. First motion focal mechanisms were assigned quality classifications based on the variation of both nodal planes. Regional moment tensor analysis can be significantly influenced by seismic velocity structure; thus, we have divided the study area into regions based on tectonic units. For each region, the velocity model is described using a waveform-modeling technique prior to the regional moment tensor inversion. The resulting focal mechanisms, combined with other previously published focal mechanisms for the study area, provide a basis for stress inversion analysis. The resulting deviatoric stress tensors show the spatial distribution of the maximum horizontal stress varies from NW-SE along the Dead Sea Fault to the N-S toward the east. We interpret this to reflect the eastward change from the transform to collision processes in northern Arabia. Along the Dead Sea Fault, transposition of the sigma-1 and sigma-2 to vertical and horizontal, respectively, may relate to influences from the subducted part of the Sinai plate. This change in regional stress is also consistent with extensional strains observed from GPS velocities.

  9. Spatial and Temporal Variations in the Moment Tensor Solutions of the 2008 Wenchuan Earthquake Aftershocks and Their Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Lin, X.; Dreger, D.; Ge, H.; Xu, P.; Wu, M.; Chiang, A.; Zhao, G.; Yuan, H.

    2018-03-01

    Following the mainshock of the 2008 M8 Wenchuan Earthquake, there were more than 300 ML ≥ 4.0 aftershocks that occurred between 12 May 2008 and 8 September 2010. We analyzed the broadband waveforms for these events and found 160 events with sufficient signal-to-noise levels to invert for seismic moment tensors. Considering the length of the activated fault and the distances to the recording stations, four velocity models were employed to account for variability in crustal structure. The moment tensor solutions show considerable variations with a mixture of mainly reverse and strike-slip mechanisms and a small number of normal events and ambiguous events. We analyzed the spatial and temporal distribution of the aftershocks and their mechanism types to characterize the structure and the deformation occurring in the Longmen Shan fold and thrust belt. Our results suggest that the stress is very complex at the Longmen Shan fault zone. The moment tensors have both a spatial segmentation with two major categories of the moment tensor of thrust and strike slip; and a temporal pattern that the majority of the aftershocks gradually migrated to thrust-type events. The variability of aftershock mechanisms is a strong indication of significant tectonic release and stress reorganization that activated numerous small faults in the system.

  10. Seismic moment tensor for anisotropic media: implication for Non-double-couple earthquakes

    NASA Astrophysics Data System (ADS)

    Cai, X.; Chen, X.; Chen, Y.; Cai, M.

    2008-12-01

    It is often found that the inversion results of seismic moment tensor from real seismic recorded data show the trace of seismic moment tensor M is not zero, a phenomenon called non-double-couple earthquake sources mechanism. Recently we have derived the analytical expressions of M in transversely isotropic media with the titled axis of symmetry and the results shows even only pure shear-motion of fault can lead to the implosive components determined by several combined anisotropic elastic constants. Many non-double-couple earthquakes from observations often appear in volcanic and geothermal areas (Julian, 1998), where there exist a mount of stress-aligned fluid-saturated parallel vertical micro-cracks identical to transversely isotropic media (Crampin, 2008), this stress-aligned crack will modify the seismic moment tensor. In another word, non-double-couple earthquakes don't mean to have a seismic failure movement perpendicular to the fault plane, while traditional research of seismic moment tensor focus on the case of isotropy, which cannot provide correct interpretation of seismic source mechanism. Reference: Julian, B.R., Miller, A.D. and Foulger, G.R., 1998. Non-double-couple earthquakes,1. Theory, Rev. Geophys., 36, 525¨C549. Crampin,S., Peacock,S., 2008, A review of the current understanding of seismic shear-wave splitting in the Earth's crust and common fallacies in interpretation, wave motion, 45,675-722

  11. Complete stress tensor determination by microearthquake analysis

    NASA Astrophysics Data System (ADS)

    Slunga, R.

    2010-12-01

    Jones 1984 found that half of the shallow strike-slip EQ in California had at least one M>2 foreshock. By the Gutenberg law this means at least 3-20 M>0 (low b-value 0.4-0.8). deformations within the crust. This was confirmed by observations in Iceland after 1990 when anew seismic network in Iceland operated by IMO started. Like the Parkfield project in California the SIL network in Iceland was established in an area predicted (Einarsson et al 1981, Stefansson and Halldorsson 1988) to be struck by major EQs within decades of years. The area of main interest have a detection threshold of M=0. A physical approach was chosen to the earthquake warning problem (Stefansson et al 1993) and therefore all microearthquakes were analyzed for FPS by the spectral amplitude method (Slunga 1981). As the shear slip is caused by the in situ stress it is logical to investigate what bounds the FPS puts on the stress tensor. McKenzie 1969 assumed that the earthquake takes place in a crust containing only one fracture, the fault plane. He found that in s uch a case only very weak constraints could be put on the stress. This was widely accepted t o be valid also for microearthquakes in the real crust and lead to methods (Angelier 1978, G ephart and Forsythe 1984 etc) to put four constraints on the stress tensor by assuming that the same stress tensor is causing the slip on four or more different fractures. Another and more realistic approach is to assume that the crust have frequent fractures with almost all orientations. In such a case one can rely on Coulomb's failure criterion for isotropic mat erial (gives four constraints) instead of the weaker Bolt's criterion (giving only one const raint). One obvious fifth constraint is to require the vertical stress to equal the lithosta tic pressure. A sixth constraint is achieved by requiring that the deviatoric elastic energy is minimized. The water pressure is also needed for the fourth constraint by Coulomb (CFS=0 ). It can be related to the depth based on the assumptions of a fractured crust, widely vary ing stress field, and a general closeness to instability as found by stress measurements (Jamison and Cook 1976). Wheather this approach is working or not is best answered by applying it to real data. This was provided by the IMO network in Iceland. Along Southern Iceland Seismic Zone (SISZ) more than 200,000 microearthquakes and a few M 5 EQs and 2 M=6.6 EQs have been recorded. The results will be presented it is obvious that the use of the stresses determined from the microearthquake recordings may significa ntly improve earthquake warnings and will make it possible to use the absolute C FS method for more deterministic predictions. Note that the microearthquake meth od only shows the part of the stress field that has caused slip. Volumes with st able stress will not show up. However stress measurements (Brown and Hoek 1978, Slunga 1988) have shown that the crustal stresses in general are close to instabi lity and microearthquake source analysis has shown that a large number of differ ent fractures become unstable within longer time windows. This may explain the e xcellent results given by the Icelandic tests of the absolute stress tensor fiel d as given by the microearthquakes. However I prefer to call this stress apparen t.

  12. A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal and polyhedral meshes (u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnikov, Konstantin; Shashkov, Mikhail

    2011-01-11

    We construct a new mimetic tensor artificial viscosity on general polygonal and polyhedral meshes. The tensor artificial viscosity is based on a mimetic discretization of coordinate invariant operators, divergence of a tensor and gradient of a vector. The focus of this paper is on the symmetric form, div ({mu},{var_epsilon}(u)), of the tensor artificial viscosity where {var_epsilon}(u) is the symmetrized gradient of u and {mu}, is a tensor. The mimetic discretizations of this operator is derived for the case of a full tensor coefficient {mu}, that may reflect a shock direction. We demonstrate performance of the new viscosity for the Nohmore » implosion, Sedov explosion and Saltzman piston problems in both Cartesian and axisymmetric coordinate systems.« less

  13. Moment tensor inversion of ground motion from mining-induced earthquakes, Trail Mountain, Utah

    USGS Publications Warehouse

    Fletcher, Joe B.; McGarr, A.

    2005-01-01

    A seismic network was operated in the vicinity of the Trail Mountain mine, central Utah, from the summer of 2000 to the spring of 2001 to investigate the seismic hazard to a local dam from mining-induced events that we expect to be triggered by future coal mining in this area. In support of efforts to develop groundmotion prediction relations for this situation, we inverted ground-motion recordings for six mining-induced events to determine seismic moment tensors and then to estimate moment magnitudes M for comparison with the network coda magnitudes Mc. Six components of the tensor were determined, for an assumed point source, following the inversion method of McGarr (1992a), which uses key measurements of amplitude from obvious features of the displacement waveforms. When the resulting moment tensors were decomposed into implosive and deviatoric components, we found that four of the six events showed a substantial volume reduction, presumably due to coseismic closure of the adjacent mine openings. For these four events, the volume reduction ranges from 27% to 55% of the shear component (fault area times average slip). Radiated seismic energy, computed from attenuation-corrected body-wave spectra, ranged from 2.4 ?? 105 to 2.4 ?? 106 J for events with M from 1.3 to 1.8, yielding apparent stresses from 0.02 to 0.06 MPa. The energy released for each event, approximated as the product of volume reduction and overburden stress, when compared with the corresponding seismic energies, revealed seismic efficiencies ranging from 0.5% to 7%. The low apparent stresses are consistent with the shallow focal depths of 0.2 to 0.6 km and rupture in a low stress/low strength regime compared with typical earthquake source regions at midcrustal depths.

  14. Symmetry classes of the anisotropy tensors of quasielastic materials and a generalized Kelvin approach

    NASA Astrophysics Data System (ADS)

    Ostrosablin, N. I.

    2017-05-01

    The anisotropy matrices (tensors) of quasielastic (Cauchy-elastic) materials were obtained for all classes of crystallographic symmetries in explicit form. The fourth-rank anisotropy tensors of such materials do not have the main symmetry, in which case the anisotropy matrix is not symmetric. As a result of introducing various bases in the space of symmetric stress and strain tensors, the linear relationship between stresses and strains is represented in invariant form similar to the form in which generalized Hooke's law is written for the case of anisotropic hyperelastic materials and contains six positive Kelvin eigen moduli. It is shown that the introduction of modified rotation-induced deformation in the strain space can cause a transition to the symmetric anisotropy matrix observed in the case of hyperelasticity. For the case of transverse isotropy, there are examples of determination of the Kelvin eigen moduli and eigen bases and the rotation matrix in the strain space. It is shown that there is a possibility of existence of quasielastic media with a skew-symmetric anisotropy matrix with no symmetric part. Some techniques for the experimental testing of the quasielasticity model are proposed.

  15. Source Parameters from Full Moment Tensor Inversions of Potentially Induced Earthquakes in Western Canada

    NASA Astrophysics Data System (ADS)

    Wang, R.; Gu, Y. J.; Schultz, R.; Kim, A.; Chen, Y.

    2015-12-01

    During the past four years, the number of earthquakes with magnitudes greater than three has substantially increased in the southern section of Western Canada Sedimentary Basin (WCSB). While some of these events are likely associated with tectonic forces, especially along the foothills of the Canadian Rockies, a significant fraction occurred in previously quiescent regions and has been linked to waste water disposal or hydraulic fracturing. A proper assessment of the origin and source properties of these 'induced earthquakes' requires careful analyses and modeling of regional broadband data, which steadily improved during the past 8 years due to recent establishments of regional broadband seismic networks such as CRANE, RAVEN and TD. Several earthquakes, especially those close to fracking activities (e.g. Fox creek town, Alberta) are analyzed. Our preliminary full moment tensor inversion results show maximum horizontal compressional orientations (P-axis) along the northeast-southwest orientation, which agree with the regional stress directions from borehole breakout data and the P-axis of historical events. The decomposition of those moment tensors shows evidence of strike-slip mechanism with near vertical fault plane solutions, which are comparable to the focal mechanisms of injection induced earthquakes in Oklahoma. Minimal isotropic components have been observed, while a modest percentage of compensated-linear-vector-dipole (CLVD) components, which have been linked to fluid migraition, may be required to match the waveforms. To further evaluate the non-double-couple components, we compare the outcomes of full, deviatoric and pure double couple (DC) inversions using multiple frequency ranges and phases. Improved location and depth information from a novel grid search greatly assists the identification and classification of earthquakes in potential connection with fluid injection or extraction. Overall, a systematic comparison of the source attributes of intermediate-sized earthquakes present a new window into the nature of potentially induced earthquakes in the WCSB.

  16. What Is Better Than Coulomb Failure Stress? A Ranking of Scalar Static Stress Triggering Mechanisms from 105 Mainshock-Aftershock Pairs

    NASA Astrophysics Data System (ADS)

    Meade, Brendan J.; DeVries, Phoebe M. R.; Faller, Jeremy; Viegas, Fernanda; Wattenberg, Martin

    2017-11-01

    Aftershocks may be triggered by the stresses generated by preceding mainshocks. The temporal frequency and maximum size of aftershocks are well described by the empirical Omori and Bath laws, but spatial patterns are more difficult to forecast. Coulomb failure stress is perhaps the most common criterion invoked to explain spatial distributions of aftershocks. Here we consider the spatial relationship between patterns of aftershocks and a comprehensive list of 38 static elastic scalar metrics of stress (including stress tensor invariants, maximum shear stress, and Coulomb failure stress) from 213 coseismic slip distributions worldwide. The rates of true-positive and false-positive classification of regions with and without aftershocks are assessed with receiver operating characteristic analysis. We infer that the stress metrics that are most consistent with observed aftershock locations are maximum shear stress and the magnitude of the second and third invariants of the stress tensor. These metrics are significantly better than random assignment at a significance level of 0.005 in over 80% of the slip distributions. In contrast, the widely used Coulomb failure stress criterion is distinguishable from random assignment in only 51-64% of the slip distributions. These results suggest that a number of alternative scalar metrics are better predictors of aftershock locations than classic Coulomb failure stress change.

  17. An Improved Method for Seismic Event Depth and Moment Tensor Determination: CTBT Related Application

    NASA Astrophysics Data System (ADS)

    Stachnik, J.; Rozhkov, M.; Baker, B.

    2016-12-01

    According to the Protocol to CTBT, International Data Center is required to conduct expert technical analysis and special studies to improve event parameters and assist State Parties in identifying the source of specific event. Determination of seismic event source mechanism and its depth is a part of these tasks. It is typically done through a strategic linearized inversion of the waveforms for a complete or subset of source parameters, or similarly defined grid search through precomputed Greens Functions created for particular source models. We show preliminary results using the latter approach from an improved software design and applied on a moderately powered computer. In this development we tried to be compliant with different modes of CTBT monitoring regime and cover wide range of source-receiver distances (regional to teleseismic), resolve shallow source depths, provide full moment tensor solution based on body and surface waves recordings, be fast to satisfy both on-demand studies and automatic processing and properly incorporate observed waveforms and any uncertainties a priori as well as accurately estimate posteriori uncertainties. Implemented HDF5 based Green's Functions pre-packaging allows much greater flexibility in utilizing different software packages and methods for computation. Further additions will have the rapid use of Instaseis/AXISEM full waveform synthetics added to a pre-computed GF archive. Along with traditional post processing analysis of waveform misfits through several objective functions and variance reduction, we follow a probabilistic approach to assess the robustness of moment tensor solution. In a course of this project full moment tensor and depth estimates are determined for DPRK 2009, 2013 and 2016 events and shallow earthquakes using a new implementation of waveform fitting of teleseismic P waves. A full grid search over the entire moment tensor space is used to appropriately sample all possible solutions. A recent method by Tape & Tape (2012) to discretize the complete moment tensor space from a geometric perspective is used. Moment tensors for DPRK events show isotropic percentages greater than 50%. Depth estimates for the DPRK events range from 1.0-1.4 km. Probabilistic uncertainty estimates on the moment tensor parameters provide robustness to solution.

  18. Drilling into seismogenic zones of M2.0 - M5.5 earthquakes in deep South African gold mines (DSeis)

    NASA Astrophysics Data System (ADS)

    Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Cichowicz, Artur; Onstott, Tullis; Kieft, Tom; Boettcher, Margaret; Wiemer, Stefan; Ziegler, Martin; Janssen, Christoph; Shapiro, Serge; Gupta, Harsh; Dight, Phil

    2016-04-01

    Several times a year, mining-induced earthquakes with magnitudes equal to or larger than 2 take place only a few tens of meters away from active workings in South African gold mines at depths of up to 3.4 km. The largest event recorded in mining regions, a M5.5 earthquake, took place near Orkney, South Africa on 5 August 2014, with the upper edge of the activated fault being only some hundred meters below the nearest mine workings (3.0 km depth). This is one of the rare events for which detailed seismological data are available, both from surface and underground seismometers and strainmeters, allowing for a detailed seismological analysis and comparison with in-situ observed data. Therefore, this earthquake calls for drilling to investigate the seismogenic zones before aftershocks diminish. Such a project will have a significantly better spatial coverage (including nuclei of ruptures, strong motion sources, asperities, and rupture edges) than drilling in seismogenic zones of natural large earthquakes and will be possible with a lower risk and at much smaller costs. In seismogenic zones in a critical state of stress, it is difficult to delineate reliably the local spatial variation in both directions and magnitudes of principal stresses (3D full stress tensor) reliably. However, we have overcome this problem. We are able to numerically model stress better than before, enabling us to orient boreholes so that the chance of stress-induced damage during stress measurement is minimized, and enabling us to measure the full 3D stress tensor successively in a hole within reasonable time even when stresses are as large as those expected in seismogenic zones. Better recovery of cores with less stress-induced damage during drilling is also feasible. These will allow us to address key scientific questions in earthquake science and associated deep biosphere activities which have remained elusive. We held a 4-day workshop sponsored by ICDP and Ritsumeikan University in October/November 2015, which confirmed the great scientific value as well as technical feasibility, flexibility, and cost-effectiveness of drilling into the targets which have already been well seismologically probed. The value will be maximized if we combine outcomes from a limited number of holes drilled from 3 km depth into the M5.5 seismogenic zones (~ 4 km depth) with larger number of boreholes from mining horizons into the other targets (M~2 faults) already extensively exhumed by mining or which will be in future. We could have additional inputs during the 2015 AGU Fall Meeting period. We intend to start drilling before the M5.5 aftershocks diminish or mining around the M2.8 fault starts to alter stress considerably.

  19. The Topology of Symmetric Tensor Fields

    NASA Technical Reports Server (NTRS)

    Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval

    1997-01-01

    Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.

  20. Estimation of full moment tensors, including uncertainties, for earthquakes, volcanic events, and nuclear explosions

    NASA Astrophysics Data System (ADS)

    Alvizuri, Celso R.

    We present a catalog of full seismic moment tensors for 63 events from Uturuncu volcano in Bolivia. The events were recorded during 2011-2012 in the PLUTONS seismic array of 24 broadband stations. Most events had magnitudes between 0.5 and 2.0 and did not generate discernible surface waves; the largest event was Mw 2.8. For each event we computed the misfit between observed and synthetic waveforms, and we used first-motion polarity measurements to reduce the number of possible solutions. Each moment tensor solution was obtained using a grid search over the six-dimensional space of moment tensors. For each event we show the misfit function in eigenvalue space, represented by a lune. We identify three subsets of the catalog: (1) 6 isotropic events, (2) 5 tensional crack events, and (3) a swarm of 14 events southeast of the volcanic center that appear to be double couples. The occurrence of positively isotropic events is consistent with other published results from volcanic and geothermal regions. Several of these previous results, as well as our results, cannot be interpreted within the context of either an oblique opening crack or a crack-plus-double-couple model. Proper characterization of uncertainties for full moment tensors is critical for distinguishing among physical models of source processes. A seismic moment tensor is a 3x3 symmetric matrix that provides a compact representation of a seismic source. We develop an algorithm to estimate moment tensors and their uncertainties from observed seismic data. For a given event, the algorithm performs a grid search over the six-dimensional space of moment tensors by generating synthetic waveforms for each moment tensor and then evaluating a misfit function between the observed and synthetic waveforms. 'The' moment tensor M0 for the event is then the moment tensor with minimum misfit. To describe the uncertainty associated with M0, we first convert the misfit function to a probability function. The uncertainty, or rather the confidence, is then given by the 'confidence curve' P( V), where P(V) is the probability that the true moment tensor for the event lies within the neighborhood of M that has fractional volume V. The area under the confidence curve provides a single, abbreviated 'confidence parameter' for M0. We apply the method to data from events in different regions and tectonic settings: 63 small (M w 4) earthquakes in the southern Alaska subduction zone, and 12 earthquakes and 17 nuclear explosions at the Nevada Test Site. Characterization of moment tensor uncertainties puts us in better position to discriminate among moment tensor source types and to assign physical processes to the events.

  1. The mathematical formulation of a generalized Hooke's law for blood vessels.

    PubMed

    Zhang, Wei; Wang, Chong; Kassab, Ghassan S

    2007-08-01

    It is well known that the stress-strain relationship of blood vessels is highly nonlinear. To linearize the relationship, the Hencky strain tensor is generalized to a logarithmic-exponential (log-exp) strain tensor to absorb the nonlinearity. A quadratic nominal strain potential is proposed to derive the second Piola-Kirchhoff stresses by differentiating the potential with respect to the log-exp strains. The resulting constitutive equation is a generalized Hooke's law. Ten material constants are needed for the three-dimensional orthotropic model. The nondimensional constant used in the log-exp strain definition is interpreted as a nonlinearity parameter. The other nine constants are the elastic moduli with respect to the log-exp strains. In this paper, the proposed linear stress-strain relation is shown to represent the pseudoelastic Fung model very well.

  2. Group field theory and tensor networks: towards a Ryu–Takayanagi formula in full quantum gravity

    NASA Astrophysics Data System (ADS)

    Chirco, Goffredo; Oriti, Daniele; Zhang, Mingyi

    2018-06-01

    We establish a dictionary between group field theory (thus, spin networks and random tensors) states and generalized random tensor networks. Then, we use this dictionary to compute the Rényi entropy of such states and recover the Ryu–Takayanagi formula, in two different cases corresponding to two different truncations/approximations, suggested by the established correspondence.

  3. ON THE DECOMPOSITION OF STRESS AND STRAIN TENSORS INTO SPHERICAL AND DEVIATORIC PARTS

    PubMed Central

    Augusti, G.; Martin, J. B.; Prager, W.

    1969-01-01

    It is well known that Hooke's law for a linearly elastic, isotropic solid may be written in the form of two relations that involve only the spherical or only the deviatoric parts of the tensors of stress and strain. The example of the linearly elastic, transversely isotropic solid is used to show that this decomposition is not, in general, feasible for linearly elastic, anisotropic solids. The discussion is extended to a large class of work-hardening rigid, plastic solids, and it is shown that the considered decomposition can only be achieved for the incompressible solids of this class. PMID:16591754

  4. Analytical Summary. Part 1. The Physical Properties of STS under Triaxial Stress

    DTIC Science & Technology

    1946-06-01

    between Octahedral Shear Stress and Octahedral Shear Strain for Zero Mean Hydrostatic Tension. Data for SIS of 115000 (lb)/(in)2 Tensile Strength. Figure (5...the specimen and the twist by the equation a4• S The tensors I + VAr and (I + VAr)-1 have the matrices Ii 0 0 0 00 0 i O and 0 1 0 0 s 1 jO- si The...given in terms of s by the equations = - + V. + ’s + ___ Sis + + =. 2 ’ = - i + i+ 1s2 is 44 e/ l+ 44S2 The rate of strain tensor X has the components

  5. Full moment tensors for small events (Mw < 3) at Uturuncu volcano, Bolivia

    NASA Astrophysics Data System (ADS)

    Alvizuri, Celso; Tape, Carl

    2016-09-01

    We present a catalogue of full seismic moment tensors for 63 events from Uturuncu volcano in Bolivia. The events were recorded during 2011-2012 in the PLUTONS seismic array of 24 broad-band stations. Most events had magnitudes between 0.5 and 2.0 and did not generate discernible surface waves; the largest event was Mw 2.8. For each event we computed the misfit between observed and synthetic waveforms, and we used first-motion polarity measurements to reduce the number of possible solutions. Each moment tensor solution was obtained using a grid search over the 6-D space of moment tensors. For each event, we show the misfit function in eigenvalue space, represented by a lune. We identify three subsets of the catalogue: (1) six isotropic events, (2) five tensional crack events, and (3) a swarm of 14 events southeast of the volcanic centre that appear to be double couples. The occurrence of positively isotropic events is consistent with other published results from volcanic and geothermal regions. Several of these previous results, as well as our results, cannot be interpreted within the context of either an oblique opening crack or a crack-plus-double-couple model. Proper characterization of uncertainties for full moment tensors is critical for distinguishing among physical models of source processes.

  6. Full moment tensors with uncertainties for the 2017 North Korea declared nuclear test and for a collocated, subsequent event

    NASA Astrophysics Data System (ADS)

    Alvizuri, C. R.; Tape, C.

    2017-12-01

    A seismic moment tensor is a 3×3 symmetric matrix that characterizes the far-field seismic radiation from a source, whether it be an earthquake, volcanic event, explosion. We estimate full moment tensors and their uncertainties for the North Korea declared nuclear test and for a collocated event that occurred eight minutes later. The nuclear test and the subsequent event occurred on September 3, 2017 at around 03:30 and 03:38 UTC time. We perform a grid search over the six-dimensional space of moment tensors, generating synthetic waveforms at each moment tensor grid point and then evaluating a misfit function between the observed and synthetic waveforms. The synthetic waveforms are computed using a 1-D structure model for the region; this approximation requires careful assessment of time shifts between data and synthetics, as well as careful choice of the bandpass for filtering. For each moment tensor we characterize its uncertainty in terms of waveform misfit, a probability function, and a confidence curve for the probability that the true moment tensor lies within the neighborhood of the optimal moment tensor. For each event we estimate its moment tensor using observed waveforms from all available seismic stations within a 2000-km radius. We use as much of the waveform as possible, including surface waves for all stations, and body waves above 1 Hz for some of the closest stations. Our preliminary magnitude estimates are Mw 5.1-5.3 for the first event and Mw 4.7 for the second event. Our results show a dominantly positive isotropic moment tensor for the first event, and a dominantly negative isotropic moment tensor for the subsequent event. As expected, the details of the probability density, waveform fit, and confidence curves are influenced by the structural model, the choice of filter frequencies, and the selection of stations.

  7. Mechanical behaviour of the human atria.

    PubMed

    Bellini, Chiara; Di Martino, Elena S; Federico, Salvatore

    2013-07-01

    This work was aimed at providing a local mechanical characterisation of tissues from the healthy human atria. Thirty-two tissue specimens were harvested from nine adult subjects whose death was not directly related to cardiovascular diseases. Tissues were kept in Tyrode's solution and tested using a planar biaxial device. Results showed that tissues from healthy human atria undergo large deformations under in-plane distributed tensions roughly corresponding to an in vivo pressure of 15 mmHg. The material was modelled as hyperelastic and a Fung-type elastic strain energy potential was chosen. This class of potentials is based on a function of a quadratic form in the components of the Green-Lagrange strain tensor, and it has been previously proved that the fourth-order tensor of this quadratic form is proportional to the linear elasticity tensor of the linearised theory. This has three important consequences: (i) the coefficients in Fung-type potentials have a precise physical meaning; (ii) whenever a microstructural description for the linear elasticity tensor is available, this is automatically inherited by the Fung-type potential; (iii) because of the presence of the linear elasticity tensor in the definition of a Fung-type potential, each of the three normal stresses is coupled with all three normal strains.We propose to include information on the microstructure of the atrium by writing the linear elasticity tensor as the volumetric-fraction-weighed sum of the linear elasticity tensors of the three constituents of the tissue: the ground matrix, the main fibre family and the secondary fibre family. To the best of our knowledge, this is the first time that a Fung-type potential is given a precise structural meaning, based on the directions and the material properties of the fibres. Because of the coupling between normal strains and normal stresses, this structurally-based Fung-type potential allows for discriminating among all testing protocols in planar biaxial stretch.

  8. Tensor network method for reversible classical computation

    NASA Astrophysics Data System (ADS)

    Yang, Zhi-Cheng; Kourtis, Stefanos; Chamon, Claudio; Mucciolo, Eduardo R.; Ruckenstein, Andrei E.

    2018-03-01

    We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017), 10.1038/ncomms15303]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.

  9. Nonlinear resistivity for magnetohydrodynamical models

    DOE PAGES

    Lingam, M.; Hirvijoki, E.; Pfefferlé, D.; ...

    2017-04-20

    A new formulation of the plasma resistivity that stems from the collisional momentum-transfer rate between electrons and ions is presented. The resistivity computed herein is shown to depend not only on the temperature and density but also on all other polynomial velocity-space moments of the distribution function, such as the pressure tensor and heat flux vector. The full expression for the collisional momentum-transfer rate is determined and is used to formulate the nonlinear anisotropic resistivity. The new formalism recovers the Spitzer resistivity, as well as the concept of thermal force if the heat flux is assumed to be proportional tomore » a temperature gradient. Furthermore, if the pressure tensor is related to viscous stress, the latter enters the expression for the resistivity. The relative importance of the nonlinear term(s) with respect to the well-established electron inertia and Hall terms is also examined. Lastly, the subtle implications of the nonlinear resistivity, and its dependence on the fluid variables, are discussed in the context of magnetized plasma environments and phenomena such as magnetic reconnection.« less

  10. A bulk viscosity approach for shock capturing on unstructured grids

    NASA Astrophysics Data System (ADS)

    Shoeybi, Mohammad; Larsson, Nils Johan; Ham, Frank; Moin, Parviz

    2008-11-01

    The bulk viscosity approach for shock capturing (Cook and Cabot, JCP, 2005) augments the bulk part of the viscous stress tensor. The intention is to capture shock waves without dissipating turbulent structures. The present work extends and modifies this method for unstructured grids. We propose a method that properly scales the bulk viscosity with the grid spacing normal to the shock for unstructured grid for which the shock is not necessarily aligned with the grid. The magnitude of the strain rate tensor used in the original formulation is replaced with the dilatation, which appears to be more appropriate in the vortical turbulent flow regions (Mani et al., 2008). The original form of the model is found to have an impact on dilatational motions away form the shock wave, which is eliminated by a proposed localization of the bulk viscosity. Finally, to allow for grid adaptation around shock waves, an explicit/implicit time advancement scheme has been developed that adaptively identifies the stiff regions. The full method has been verified with several test cases, including 2D shock-vorticity entropy interaction, homogenous isotropic turbulence, and turbulent flow over a cylinder.

  11. Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence

    USGS Publications Warehouse

    Hardebeck, J.L.; Michael, A.J.

    2006-01-01

    We present a new focal mechanism stress inversion technique to produce regional-scale models of stress orientation containing the minimum complexity necessary to fit the data. Current practice is to divide a region into small subareas and to independently fit a stress tensor to the focal mechanisms of each subarea. This procedure may lead to apparent spatial variability that is actually an artifact of overfitting noisy data or nonuniquely fitting data that does not completely constrain the stress tensor. To remove these artifacts while retaining any stress variations that are strongly required by the data, we devise a damped inversion method to simultaneously invert for stress in all subareas while minimizing the difference in stress between adjacent subareas. This method is conceptually similar to other geophysical inverse techniques that incorporate damping, such as seismic tomography. In checkerboard tests, the damped inversion removes the stress rotation artifacts exhibited by an undamped inversion, while resolving sharper true stress rotations than a simple smoothed model or a moving-window inversion. We show an example of a spatially damped stress field for southern California. The methodology can also be used to study temporal stress changes, and an example for the Coalinga, California, aftershock sequence is shown. We recommend use of the damped inversion technique for any study examining spatial or temporal variations in the stress field.

  12. Analysis of spatial correlations in a model two-dimensional liquid through eigenvalues and eigenvectors of atomic-level stress matrices.

    PubMed

    Levashov, V A; Stepanov, M G

    2016-01-01

    Considerations of local atomic-level stresses associated with each atom represent a particular approach to address structures of disordered materials at the atomic level. We studied structural correlations in a two-dimensional model liquid using molecular dynamics simulations in the following way. We diagonalized the atomic-level stress tensor of every atom and investigated correlations between the eigenvalues and orientations of the eigenvectors of different atoms as a function of distance between them. It is demonstrated that the suggested approach can be used to characterize structural correlations in disordered materials. In particular, we found that changes in the stress correlation functions on decrease of temperature are the most pronounced for the pairs of atoms with separation distance that corresponds to the first minimum in the pair density function. We also show that the angular dependencies of the stress correlation functions previously reported by Wu et al. [Phys. Rev. E 91, 032301 (2015)10.1103/PhysRevE.91.032301] do not represent the anisotropic Eshelby's stress fields, as it is suggested, but originate in the rotational properties of the stress tensors.

  13. Renormalized stress-energy tensor for stationary black holes

    NASA Astrophysics Data System (ADS)

    Levi, Adam

    2017-01-01

    We continue the presentation of the pragmatic mode-sum regularization (PMR) method for computing the renormalized stress-energy tensor (RSET). We show in detail how to employ the t -splitting variant of the method, which was first presented for ⟨ϕ2⟩ren , to compute the RSET in a stationary, asymptotically flat background. This variant of the PMR method was recently used to compute the RSET for an evaporating spinning black hole. As an example for regularization, we demonstrate here the computation of the RSET for a minimally coupled, massless scalar field on Schwarzschild background in all three vacuum states. We discuss future work and possible improvements of the regularization schemes in the PMR method.

  14. Method to compute the stress-energy tensor for a quantum field outside a black hole that forms from collapse

    NASA Astrophysics Data System (ADS)

    Anderson, Paul; Evans, Charles

    2017-01-01

    A method to compute the stress-energy tensor for a quantized massless minimally coupled scalar field outside the event horizon of a 4-D black hole that forms from the collapse of a spherically symmetric null shell is given. The method is illustrated in the corresponding 2-D case which is mathematically similar but is simple enough that the calculations can be done analytically. The approach to the Unruh state at late times is discussed. National Science Foundation Grant No. PHY-1505875 to Wake Forest University and National Science Foundation Grant No. PHY-1506182 to the University of North Carolina, Chapel Hill

  15. Bridging scales of crustal stress patterns using the new World Stress Map

    NASA Astrophysics Data System (ADS)

    Heidbach, O.; Rajabi, M.; Cui, X.; Fuchs, K. W.; Mueller, B.; Reinecker, J.; Reiter, K.; Tingay, M. R. P.; Wenzel, F.; Xie, F.; Ziegler, M.; Zoback, M. D.; Zoback, M. L.

    2017-12-01

    Knowledge of the contemporary crustal stress field is a key parameter for the understanding of geodynamic processes such as global plate tectonics and the earthquake cycle. It is also an essential parameter for our sustainable and safe usage of Earth's resources, which is a major challenge for energy security in the 21st century. Since 1986, the World Stress Map (WSM) project has systematically compiled present-day stress information and provides a unique public domain global database. It is a long-term project based on an international network of partners from academia and industry. All data are public and available on the project website at world-stress-map.org. For the 30th anniversary of the project a new database has been compiled, containing double the amount of data records (n=42,870) including new data records from almost 4,000 deep boreholes. The new compilation focused on areas with previously sparse data coverage in order to resolve the stress pattern on different spatial scales. The significantly higher data density can now be used to resolve stress pattern heterogeneities on regional and local scales, as well as with depth in some regions. We present three results derived from the new WSM compilation: 1.) The global comparison between absolute plate motion and the mean of the orientation of maximum horizontal stress SHmax on a regular grid shows that there is still a correlation for the North and South America plate, but deviations from this general trend are now also clearly resolved. 2.) The variability of the crustal stress pattern changes when zooming in from plate-wide scale down to basin scale at 100 km. We show examples for Eastern Australia, Oklahoma and Central Europe. This regional and local variability of the stress pattern can be used as a proxy to identify and quantify regional and local stress sources by means of geomechanical-numerical models of the 3D stress tensor. 3.) Finally we present briefly the general concept of a multi-stage 3D geomechanical-numerical model workflow based on the WSM data to describe the in situ stress tensor. 3D Geomechanical-numerical modelling of the in situ stress state is essential to derive a continuous description of the stress tensor e.g. in order to estimate the distance to a critical stress state.

  16. Highly efficient all-dielectric optical tensor impedance metasurfaces for chiral polarization control.

    PubMed

    Kim, Minseok; Eleftheriades, George V

    2016-10-15

    We propose a highly efficient (nearly lossless and impedance-matched) all-dielectric optical tensor impedance metasurface that mimics chiral effects at optical wavelengths. By cascading an array of rotated crossed silicon nanoblocks, we realize chiral optical tensor impedance metasurfaces that operate as circular polarization selective surfaces. Their efficiencies are maximized through a nonlinear numerical optimization process in which the tensor impedance metasurfaces are modeled via multi-conductor transmission line theory. From rigorous full-wave simulations that include all material losses, we show field transmission efficiencies of 94% for right- and left-handed circular polarization selective surfaces at 800 nm.

  17. Submicron x-ray diffraction and its applications to problems in materials and environmental science

    NASA Astrophysics Data System (ADS)

    Tamura, N.; Celestre, R. S.; MacDowell, A. A.; Padmore, H. A.; Spolenak, R.; Valek, B. C.; Meier Chang, N.; Manceau, A.; Patel, J. R.

    2002-03-01

    The availability of high brilliance third generation synchrotron sources together with progress in achromatic focusing optics allows us to add submicron spatial resolution to the conventional century-old x-ray diffraction technique. The new capabilities include the possibility to map in situ, grain orientations, crystalline phase distribution, and full strain/stress tensors at a very local level, by combining white and monochromatic x-ray microbeam diffraction. This is particularly relevant for high technology industry where the understanding of material properties at a microstructural level becomes increasingly important. After describing the latest advances in the submicron x-ray diffraction techniques at the Advanced Light Source, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects. Its use in the field of environmental science will also be discussed.

  18. Geothermal induced seismicity: What links source mechanics and event magnitudes to faulting regime and injection rates?

    NASA Astrophysics Data System (ADS)

    Martinez-Garzon, Patricia; Kwiatek, Grzegorz; Bohnhoff, Marco; Dresen, Georg

    2017-04-01

    Improving estimates of seismic hazard associated to reservoir stimulation requires advanced understanding of the physical processes governing induced seismicity, which can be better achieved by carefully processing large datasets. To this end, we investigate source-type processes (shear/tensile/compaction) and rupture geometries with respect to the local stress field using seismicity from The Geysers (TG) and Salton Sea geothermal reservoirs, California. Analysis of 869 well-constrained full moment tensors (MW 0.8-3.5) at TG reveals significant non-double-couple (NDC) components (>25%) for 65% of the events and remarkably diversity in the faulting mechanisms. Volumetric deformation is clearly governed by injection rates with larger NDC components observed near injection wells and during high injection periods. The overall volumetric deformation from the moment tensors increases with time, possibly reflecting a reservoir pore pressure increase after several years of fluid injection with no significant production nearby. The obtained source mechanisms and fault orientations are magnitude-dependent and vary significantly between faulting regimes. Normal faulting events (MW < 2) reveal substantial NDC components indicating dilatancy, and they occur on varying fault orientations. In contrast, strike-slip events dominantly reveal a double-couple source, larger magnitudes (MW > 2) and mostly occur on optimally oriented faults with respect to the local stress field. NDC components indicating closure of cracks and pore spaces in the source region are found for reverse faulting events with MW > 2.5. Our findings from TG are generally consistent with preliminary source-type results from a reduced subset of well-recorded seismicity at the Salton Sea geothermal reservoir. Combined results imply that source processes and magnitudes of geothermal-induced seismicity are strongly affected by and systematically related to the hydraulic operations and the local stress state.

  19. Mechanics of deformations in terms of scalar variables

    NASA Astrophysics Data System (ADS)

    Ryabov, Valeriy A.

    2017-05-01

    Theory of particle and continuous mechanics is developed which allows a treatment of pure deformation in terms of the set of variables "coordinate-momentum-force" instead of the standard treatment in terms of tensor-valued variables "strain-stress." This approach is quite natural for a microscopic description of atomic system, according to which only pointwise forces caused by the stress act to atoms making a body deform. The new concept starts from affine transformation of spatial to material coordinates in terms of the stretch tensor or its analogs. Thus, three principal stretches and three angles related to their orientation form a set of six scalar variables to describe deformation. Instead of volume-dependent potential used in the standard theory, which requires conditions of equilibrium for surface and body forces acting to a volume element, a potential dependent on scalar variables is introduced. A consistent introduction of generalized force associated with this potential becomes possible if a deformed body is considered to be confined on the surface of torus having six genuine dimensions. Strain, constitutive equations and other fundamental laws of the continuum and particle mechanics may be neatly rewritten in terms of scalar variables. Giving a new presentation for finite deformation new approach provides a full treatment of hyperelasticity including anisotropic case. Derived equations of motion generate a new kind of thermodynamical ensemble in terms of constant tension forces. In this ensemble, six internal deformation forces proportional to the components of Irving-Kirkwood stress are controlled by applied external forces. In thermodynamical limit, instead of the pressure and volume as state variables, this ensemble employs deformation force measured in kelvin unit and stretch ratio.

  20. A Three-Dimensional Eulerian Code for Simulation of High-Speed Multimaterial Interactions

    DTIC Science & Technology

    2011-08-01

    PDE -based extension. The extension process is done on only the host cells on a particular processor. After extension the parallel communication is...condensation shocks, explosive debris transport, detonation in heterogeneous media and so on. In these flows complex interactions occur between the...A.22] and ijΩ is the spin tensor. The Jaumann derivative is used to ensure objectivity of the stress tensor with respect to rotation

  1. Experimental Validation of a Coupled Fluid-Multibody Dynamics Model for Tanker Trucks

    DTIC Science & Technology

    2007-11-08

    order to accurately predict the dynamic response of tanker trucks, the model must accurately account for the following effects : • Incompressible...computational code which uses a time- accurate explicit solution procedure is used to solve both the solid and fluid equations of motion. Many commercial...position vector, τ is the deviatoric stress tensor, D is the rate of deformation tensor, f r is the body force vector, r is the artificial

  2. Spatial distribution of F-net moment tensors for the 2005 West Off Fukuoka Prefecture Earthquake determined by the extended method of the NIED F-net routine

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takumi; Ito, Yoshihiro; Matsubayashi, Hirotoshi; Sekiguchi, Shoji

    2006-01-01

    The 2005 West Off Fukuoka Prefecture Earthquake with a Japan Meteorological Agency (JMA) magnitude (MJMA) of 7.0 occurred on March 20, 2005. We determined moment tensor solutions, using a surface wave with an extended method of the NIED F-net routine processing. The horizontal distance to the station is rounded to the nearest interval of 1 km, and the variance reduction approach is applied to a focal depth from 2 km with an interval of 1 km. We obtain the moment tensors of 101 events with (MJMA) exceeding 3.0 and spatial distribution of these moment tensors. The focal mechanism of aftershocks is mainly of the strike-slip type. The alignment of the epicenters in the rupture zone of the main-shock is oriented between N110°E and N130°E, which is close to the strike of the main-shock's moment tensor solutions (N122°E). These moment tensor solutions of intermediatesized aftershocks around the focal region represent basic and important information concerning earthquakes in investigating regional tectonic stress fields, source mechanisms and so on.

  3. Quantum field theory in spaces with closed timelike curves

    NASA Astrophysics Data System (ADS)

    Boulware, David G.

    1992-11-01

    Gott spacetime has closed timelike curves, but no locally anomalous stress energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 2π. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the noncausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the noncausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  4. Irreducible Representations of Oscillatory and Swirling Flows in Active Soft Matter

    NASA Astrophysics Data System (ADS)

    Ghose, Somdeb; Adhikari, R.

    2014-03-01

    Recent experiments imaging fluid flow around swimming microorganisms have revealed complex time-dependent velocity fields that differ qualitatively from the stresslet flow commonly employed in theoretical descriptions of active matter. Here we obtain the most general flow around a finite sized active particle by expanding the surface stress in irreducible Cartesian tensors. This expansion, whose first term is the stresslet, must include, respectively, third-rank polar and axial tensors to minimally capture crucial features of the active oscillatory flow around translating Chlamydomonas and the active swirling flow around rotating Volvox. The representation provides explicit expressions for the irreducible symmetric, antisymmetric, and isotropic parts of the continuum active stress. Antisymmetric active stresses do not conserve orbital angular momentum and our work thus shows that spin angular momentum is necessary to restore angular momentum conservation in continuum hydrodynamic descriptions of active soft matter.

  5. Elastic constants of hcp 4He: Path-integral Monte Carlo results versus experiment

    NASA Astrophysics Data System (ADS)

    Ardila, Luis Aldemar Peña; Vitiello, Silvio A.; de Koning, Maurice

    2011-09-01

    The elastic constants of hcp 4He are computed using the path-integral Monte Carlo (PIMC) method. The stiffness coefficients are obtained by imposing different distortions to a periodic cell containing 180 atoms, followed by measurement of the elements of the corresponding stress tensor. For this purpose an appropriate path-integral expression for the stress tensor observable is derived and implemented into the pimc++ package. In addition to allowing the determination of the elastic stiffness constants, this development also opens the way to an explicit atomistic determination of the Peierls stress for dislocation motion using the PIMC technique. A comparison of the results to available experimental data shows an overall good agreement of the density dependence of the elastic constants, with the single exception of C13. Additional calculations for the bcc phase, on the other hand, show good agreement for all elastic constants.

  6. 8 January 2013 Mw=5.7 North Aegean Sea Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Kürçer, Akın; Yalçın, Hilal; Gülen, Levent; Kalafat, Doǧan

    2014-05-01

    The deformation of the North Aegean Sea is mainly controlled by the westernmost segments of North Anatolian Fault Zone (NAFZ). On January 8, 2013, a moderate earthquake (Mw= 5.7) occurred in the North Aegean Sea, which may be considered to be a part of westernmost splay of the NAFZ. A series of aftershocks were occurred within four months following the mainschock, which have magnitudes varying from 1.9 to 5.0. In this study, a total of 23 earthquake moment tensor solutions that belong to the 2013 earthquake sequence have been obtained by using KOERI and AFAD seismic data. The most widely used Gephart & Forsyth (1984) and Michael (1987) methods have been used to carry out stress tensor inversions. Based on the earthquake moment tensor solutions, distribution of epicenters and seismotectonic setting, the source of this earthquake sequence is a N75°E trending pure dextral strike-slip fault. The temporal and spatial distribution of earthquakes indicate that the rupture unilaterally propagated from SW to NE. The length of the fault has been calculated as approximately 12 km. using the afterschock distribution and empirical equations, suggested by Wells and Coppersmith (1994). The stress tensor analysis indicate that the dominant faulting type in the region is strike-slip and the direction of the regional compressive stress is WNW-ESE. The 1968 Aghios earthquake (Ms=7.3; Ambraseys and Jackson, 1998) and 2013 North Aegean Sea earthquake sequences clearly show that the regional stress has been transferred from SW to NE in this region. The last historical earthquake, the Bozcaada earthquake (M=7.05) had been occurred in the northeast of the 2013 earthquake sequence in 1672. The elapsed time (342 year) and regional stress transfer point out that the 1672 earthquake segment is probably a seismic gap. According to the empirical equations, the surface rupture length of the 1672 Earthquake segment was about 47 km, with a maximum displacement of 170 cm and average displacement of 107 cm. These values indicate that the 1672 earthquake segment is a potential earthquake hazard for this region.

  7. Calculation and Analysis of Magnetic Gradient Tensor Components of Global Magnetic Models

    NASA Astrophysics Data System (ADS)

    Schiffler, M.; Queitsch, M.; Schneider, M.; Goepel, A.; Stolz, R.; Krech, W.; Meyer, H. G.; Kukowski, N.

    2014-12-01

    Global Earth's magnetic field models like the International Geomagnetic Reference Field (IGRF), the World Magnetic Model (WMM) or the High Definition Geomagnetic Model (HDGM) are harmonic analysis regressions to available magnetic observations stored as spherical harmonic coefficients. Input data combine recordings from magnetic observatories, airborne magnetic surveys and satellite data. The advance of recent magnetic satellite missions like SWARM and its predecessors like CHAMP offer high resolution measurements while providing a full global coverage. This deserves expansion of the theoretical framework of harmonic synthesis to magnetic gradient tensor components. Measurement setups for Full Tensor Magnetic Gradiometry equipped with high sensitive gradiometers like the JeSSY STAR system can directly measure the gradient tensor components, which requires precise knowledge about the background regional gradients which can be calculated with this extension. In this study we develop the theoretical framework for calculation of the magnetic gradient tensor components from the harmonic series expansion and apply our approach to the IGRF and HDGM. The gradient tensor component maps for entire Earth's surface produced for the IGRF show low gradients reflecting the variation from the dipolar character, whereas maps for the HDGM (up to degree N=729) reveal new information about crustal structure, especially across the oceans, and deeply situated ore bodies. From the gradient tensor components, the rotational invariants, the Eigenvalues, and the normalized source strength (NSS) are calculated. The NSS focuses on shallower and stronger anomalies. Euler deconvolution using either the tensor components or the NSS applied to the HDGM reveals an estimate of the average source depth for the entire magnetic crust as well as individual plutons and ore bodies. The NSS reveals the boundaries between the anomalies of major continental provinces like southern Africa or the Eastern European Craton.

  8. The Spacetime Between Einstein and Kaluza-Klein: Further Explorations

    NASA Astrophysics Data System (ADS)

    Vuille, Chris

    2017-01-01

    Tensor multinomials can be used to create a generalization of Einstein's general relativity that in a mathematical sense falls between Einstein's original theory in four dimensions and the Kaluza-Klein theory in five dimensions. In the extended theory there are only four physical dimensions, but the tensor multinomials are expanded operators that can accommodate other forces of nature. The equivalent Ricci tensor of this geometry yields vacuum general relativity and electromagnetism, as well as a Klein-Gordon-like quantum scalar field. With a generalization of the stress-energy tensor, an exact solution for a plane-symmetric dust can be found where the scalar portion of the field drives early universe inflation, levels off for a period, then causes a later continued universal acceleration, a possible geometric mechanism for the inflaton or dark energy. Some new explorations of the equations, the problems, and possibilities will be presented and discussed.

  9. An anisotropic elastoplastic constitutive formulation generalised for orthotropic materials

    NASA Astrophysics Data System (ADS)

    Mohd Nor, M. K.; Ma'at, N.; Ho, C. S.

    2018-03-01

    This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour that involves very high pressures and shockwaves in orthotropic materials using an anisotropic Hill's yield criterion by means of the evolving structural tensors. The yield surface of this hyperelastic-plastic constitutive model is aligned uniquely within the principal stress space due to the combination of Mandel stress tensor and a new generalised orthotropic pressure. The formulation is developed in the isoclinic configuration and allows for a unique treatment for elastic and plastic orthotropy. An isotropic hardening is adopted to define the evolution of plastic orthotropy. The important feature of the proposed hyperelastic-plastic constitutive model is the introduction of anisotropic effect in the Mie-Gruneisen equation of state (EOS). The formulation is further combined with Grady spall failure model to predict spall failure in the materials. The proposed constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM's version, named Material Type 92 (Mat92). The combination of the proposed stress tensor decomposition and the Mie-Gruneisen EOS requires some modifications in the code to reflect the formulation of the generalised orthotropic pressure. The validation approach is also presented in this paper for guidance purpose. The \\varvec{ψ} tensor used to define the alignment of the adopted yield surface is first validated. This is continued with an internal validation related to elastic isotropic, elastic orthotropic and elastic-plastic orthotropic of the proposed formulation before a comparison against range of plate impact test data at 234, 450 and {895 ms}^{-1} impact velocities is performed. A good agreement is obtained in each test.

  10. Advanced Signal Processing & Classification: UXO Standardized Test Site Data

    DTIC Science & Technology

    2012-04-01

    magnetic polarizability tensor , and represent the response of the target along each of three principal axes. In order to reduce the number of fit...Oldenburg-Billings (POB) model – GPA version The full POB analysis assumes an axially symmetric (axial and transverse) tensor dipolar target response, and... tensor , and represent the response of the target along each of three principal axes. The β’s are in turn expressed in terms of an empirical five

  11. Focal mechanisms and tidal modulation for tectonic tremors in Taiwan

    NASA Astrophysics Data System (ADS)

    Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.

    2015-12-01

    Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.

  12. Spatially Resolved Measurement of the Stress Tensor in Thin Membranes Using Bending Waves

    NASA Astrophysics Data System (ADS)

    Waitz, Reimar; Lutz, Carolin; Nößner, Stephan; Hertkorn, Michael; Scheer, Elke

    2015-04-01

    The mode shape of bending waves in thin silicon and silicon-carbide membranes is measured as a function of space and time, using a phase-shift interferometer with stroboscopic light. The mode shapes hold information about all the relevant mechanical parameters of the samples, including the spatial distribution of static prestress. We present a simple algorithm to obtain a map of the lateral tensor components of the prestress, with a spatial resolution much better than the wavelength of the bending waves. The method is not limited to measuring the stress of bending waves. It is applicable in almost any situation, where the fields determining the state of the system can be measured as a function of space and time.

  13. Vacuum polarization of the electromagnetic field near a rotating black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, V.P.; Zel'nikov, A.I.

    1985-12-15

    The electromagnetic field contribution to the vacuum polarization near a rotating black hole is considered. It is shown that the problem of calculating the renormalized average value of the stress-energy tensor /sup ren/ for the Hartle-Hawking vacuum state at the pole of the event horizon can be reduced to the problem of electro- and magnetostatics in the Kerr spacetime. An explicit expression for /sup ren/ at the pole of the event horizon is obtained and its properties are discussed. It is shown that in the case of a nonrotating black hole the Page-Brown approximation for the electromagnetic stress-energy tensor givesmore » a result which coincides at the event horizon with the exact value of /sup ren/. .AE« less

  14. Stress Energy Tensor in LCFT and LOGARITHMIC Sugawara Construction

    NASA Astrophysics Data System (ADS)

    Kogan, Ian I.; Nichols, Alexander

    We discuss the partners of the stress energy tensor and their structure in Logarithmic conformal field theories. In particular we draw attention to the fundamental differences between theories with zero and non-zero central charge. However they are both characterised by at least two independent parameters. We show how, by using a generalised Sugawara construction, one can calculate the logarithmic partner of T. We show that such a construction works in the c=-2 theory using the conformal dimension one primary currents which generate a logarithmic extension of the Kac-Moody algebra. This is an expanded version of a talk presented by A. Nichols at the conference on Logarithmic Conformal Field Theory and its Applications in Tehran Iran, 2001.

  15. Renormalized Stress-Energy Tensor of an Evaporating Spinning Black Hole.

    PubMed

    Levi, Adam; Eilon, Ehud; Ori, Amos; van de Meent, Maarten

    2017-04-07

    We provide the first calculation of the renormalized stress-energy tensor (RSET) of a quantum field in Kerr spacetime (describing a stationary spinning black hole). More specifically, we employ a recently developed mode-sum regularization method to compute the RSET of a minimally coupled massless scalar field in the Unruh vacuum state, the quantum state corresponding to an evaporating black hole. The computation is done here for the case a=0.7M, using two different variants of the method: t splitting and φ splitting, yielding good agreement between the two (in the domain where both are applicable). We briefly discuss possible implications of the results for computing semiclassical corrections to certain quantities, and also for simulating dynamical evaporation of a spinning black hole.

  16. Numerical Estimation of the Elastic Properties of Thin-Walled Structures Manufactured from Short-Fiber-Reinforced Thermoplastics

    NASA Astrophysics Data System (ADS)

    Altenbach, H.; Naumenko, K.; L'vov, G. I.; Pilipenko, S. N.

    2003-05-01

    A model which allows us to estimate the elastic properties of thin-walled structures manufactured by injection molding is presented. The starting step is the numerical prediction of the microstructure of a short-fiber-reinforced composite developed during the filling stage of the manufacturing process. For this purpose, the Moldflow Plastic Insight® commercial program is used. As a result of simulating the filling process, a second-rank orientation tensor characterizing the microstructure of the material is obtained. The elastic properties of the prepared material locally depend on the orientational distribution of fibers. The constitutive equation is formulated by means of orientational averaging for a given orientation tensor. The tensor of elastic material properties is computed and translated into the format for a stress-strain analysis based on the ANSYSÒ finite-element code. The numerical procedure and the convergence of results are discussed for a thin strip, a rectangular plate, and a shell of revolution. The influence of manufacturing conditions on the stress-strain state of statically loaded thin-walled elements is illustrated.

  17. Derivation of the Schwartzchild Metric From the ``Self Censorship'' of the ZPF (Zero Point Energy) in the GEM Theory

    NASA Astrophysics Data System (ADS)

    Brandenburg, John

    2012-10-01

    The GEM theory (1) links the EM stress tensor directly to the metric tensor by the principle of ``self censorship'' of the ZPF (2) where the definition of guv = FuwF^wv/ 4 for Planck scale fields makes the stress tensor vanish even when fields are present. The first order form of the metric is recovered as Lorentzian due to alternating regions of strong electric and magnetic fields similar to that seen in models of spacetime in ``Loop Gravity,'' where the model admits perturbations. The GEM ExB drift models of gravity is used The first order perturbations on the fields are considered to be of the order of the fine structure constant alpha. Radiation fields due to a single charged particle of mass M fall off as 1/r and give the values (G=c=1) gtt = 1-2M/r and grr = (1-2M/r). (1) Brandenburg, J.E. (2012)., (2) STAIF II Conference Albuquerque NM 2.Brandenburg, J.E. (2007). IEEE Transactions On Plasma Science, Vol. 35, No. 4., p845.

  18. The Nature of Residual Stress and Its Measurement.

    DTIC Science & Technology

    1981-07-16

    that stress can relax due to microplasticity in the near- surface region (see the chapter by James). As the surface is ini- tially in compression, the...material by boring or electro- polishing and to determine the stress from measurements of strain on the surface opposite to the one where material is...Naval Research, particularly Dr. B. A. MacDcnald. APPENDIX We consider the determination by diffraction of the three-di- mensional stress tensor for a

  19. Possibilities and limitations of rod-beam theories. [nonlinear distortion tensor and nonlinear stress tensors

    NASA Technical Reports Server (NTRS)

    Peterson, D.

    1979-01-01

    Rod-beam theories are founded on hypotheses such as Bernouilli's suggesting flat cross-sections under deformation. These assumptions, which make rod-beam theories possible, also limit the accuracy of their analysis. It is shown that from a certain order upward terms of geometrically nonlinear deformations contradict the rod-beam hypotheses. Consistent application of differential geometry calculus also reveals differences from existing rod theories of higher order. These differences are explained by simple examples.

  20. Anisotropic Poroelasticity in a Rock With Cracks

    NASA Astrophysics Data System (ADS)

    Wong, Teng-Fong

    2017-10-01

    Deformation of a saturated rock in the field and laboratory may occur in a broad range of conditions, ranging from undrained to drained. The poromechanical response is often anisotropic, and in a brittle rock, closely related to preexisting and stress-induced cracks. This can be modeled as a rock matrix embedded with an anisotropic system of cracks. Assuming microisotropy, expressions for three of the poroelastic coefficients of a transversely isotropic rock were derived in terms of the crack density tensor. Together with published results for the five effective elastic moduli, this provides a complete micromechanical description of the eight independent poroelastic coefficients of such a cracked rock. Relatively simple expressions were obtained for the Skempton pore pressure tensor, which allow one to infer the crack density tensor from undrained measurement in the laboratory, and also to infer the Biot-Willis effective stress coefficients. The model assumes a dilute concentration of noninteractive penny-shaped cracks, and it shows good agreement with experimental data for Berea sandstone, with crack density values up to 0.6. Whereas predictions on the storage coefficient and normal components of the elastic stiffness tensor also seem reasonable, significant discrepancy between model and measurement was observed regarding the off-diagonal and shear components of the stiffness. A plausible model had been proposed for development of very strong anisotropy in the undrained response of a fault zone, and the model here placed geometric constraints on the associated fracture system.

  1. Turbulence Modeling Effects on the Prediction of Equilibrium States of Buoyant Shear Flows

    NASA Technical Reports Server (NTRS)

    Zhao, C. Y.; So, R. M. C.; Gatski, T. B.

    2001-01-01

    The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-stress closure assuming two different pressure-strain models and three different dissipation rate tensor models. As for the thermal field closure models, two different pressure-scrambling models and nine different temperature variance dissipation rate, Epsilon(0) equations were considered. The emphasis of this paper is focused on the effects of the Epsilon(0)-equation, of the dissipation rate models, of the pressure-strain models and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equilibrium turbulence is defined by the time rate (if change of the scaled Reynolds stress anisotropic tensor and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters. Calculations show that the Epsilon(0)-equation has a significant effect on the prediction of the approach to equilibrium turbulence. For a particular Epsilon(0)-equation, all velocity closure models considered give an equilibrium state if anisotropic dissipation is accounted for in one form or another in the dissipation rate tensor or in the Epsilon(0)-equation. It is further found that the models considered for the pressure-strain tensor and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibrium turbulence.

  2. Simultaneous determination of mean pressure and deviatoric stress based on numerical tensor analysis: a case study for polycrystalline x-ray diffraction of gold enclosed in a methanol-ethanol mixture.

    PubMed

    Yoneda, A; Kubo, A

    2006-06-28

    It is known that the {100} and {111} planes of cubic crystals subjected to uniaxial deviatoric stress conditions have strain responses that are free from the effect of lattice preferred orientation. By utilizing this special character, one can unambiguously and simultaneously determine the mean pressure and deviatoric stress from polycrystalline diffraction data of the cubic sample. Here we introduce a numerical tensor calculation method based on the generalized Hooke's law to simultaneously determine the hydrostatic component of the stress (mean pressure) and deviatoric stress in the sample. The feasibility of this method has been tested by examining the experimental data of the Au pressure marker enclosed in a diamond anvil cell using a pressure medium of methanol-ethanol mixture. The results demonstrated that the magnitude of the deviatoric stress is ∼0.07 GPa at the mean pressure of 10.5 GPa, which is consistent with previous results of Au strength under high pressure. Our results also showed that even a small deviatoric stress (∼0.07 GPa) could yield a ∼0.3 GPa mean pressure error at ∼10 GPa.

  3. An Assessment of the Seismicity of the Bursa Region from a Temporary Seismic Network

    NASA Astrophysics Data System (ADS)

    Gok, Elcin; Polat, Orhan

    2012-04-01

    A temporary earthquake station network of 11 seismological recorders was operated in the Bursa region, south of the Marmara Sea in the northwest of Turkey, which is located at the southern strand of the North Anatolian Fault Zone (NAFZ). We located 384 earthquakes out of a total of 582 recorded events that span the study area between 28.50-30.00°E longitudes and 39.75-40.75°N latitudes. The depth of most events was found to be less than 29 km, and the magnitude interval ranges were between 0.3 ≤ ML ≤ 5.4, with RMS less than or equal to 0.2. Seismic activities were concentrated southeast of Uludag Mountain (UM), in the Kestel-Igdir area and along the Gemlik Fault (GF). In the study, we computed 10 focal mechanisms from temporary and permanents networks. The predominant feature of the computed focal mechanisms is the relatively widespread near horizontal northwest-southeast (NW-SE) T-axis orientation. These fault planes have been used to obtain the orientation and shape factor (R, magnitude stress ratio) of the principal stress tensors (σ1, σ2, σ3). The resulting stress tensors reveal σ1 closer to the vertical (oriented NE-SW) and σ2, σ3 horizontal with R = 0.5. These results confirm that Bursa and its vicinity could be defined by an extensional regime showing a primarily normal to oblique-slip motion character. It differs from what might be expected from the stress tensor inversion for the NAFZ. Different fault patterns related to structural heterogeneity from the north to the south in the study area caused a change in the stress regime from strike-slip to normal faulting.

  4. Characterizing heterogeneous properties of cerebral aneurysms with unknown stress-free geometry: a precursor to in vivo identification.

    PubMed

    Zhao, Xuefeng; Raghavan, Madhavan L; Lu, Jia

    2011-05-01

    Knowledge of elastic properties of cerebral aneurysms is crucial for understanding the biomechanical behavior of the lesion. However, characterizing tissue properties using in vivo motion data presents a tremendous challenge. Aside from the limitation of data accuracy, a pressing issue is that the in vivo motion does not expose the stress-free geometry. This is compounded by the nonlinearity, anisotropy, and heterogeneity of the tissue behavior. This article introduces a method for identifying the heterogeneous properties of aneurysm wall tissue under unknown stress-free configuration. In the proposed approach, an accessible configuration is taken as the reference; the unknown stress-free configuration is represented locally by a metric tensor describing the prestrain from the stress-free configuration to the reference configuration. Material parameters are identified together with the metric tensor pointwisely. The paradigm is tested numerically using a forward-inverse analysis loop. An image-derived sac is considered. The aneurysm tissue is modeled as an eightply laminate whose constitutive behavior is described by an anisotropic hyperelastic strain-energy function containing four material parameters. The parameters are assumed to vary continuously in two assigned patterns to represent two types of material heterogeneity. Nine configurations between the diastolic and systolic pressures are generated by forward quasi-static finite element analyses. These configurations are fed to the inverse analysis to delineate the material parameters and the metric tensor. The recovered and the assigned distributions are in good agreement. A forward verification is conducted by comparing the displacement solutions obtained from the recovered and the assigned material parameters at a different pressure. The nodal displacements are found in excellent agreement.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    Here, we investigate the stability of electrodeposition at solid-solid interfaces for materials exhibiting an anisotropic mechanical response. The stability of electrodeposition or resistance to the formation of dendrites is studied within a linear stability analysis. The deformation and stress equations are solved using the Stroh formalism and faithfully recover the boundary conditions at the interface. The stability parameter is used to quantify the stability of different solid-solid interfaces incorporating the full anisotropy of the elastic tensor of the two materials. Our results show a high degree of variability in the stability parameter depending on the crystallographic orientation of the solidsmore » in contact, and point to opportunities for exploiting this effect in developing Li metal anodes.« less

  6. Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces

    NASA Astrophysics Data System (ADS)

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    2017-10-01

    We investigate the stability of electrodeposition at solid-solid interfaces for materials exhibiting an anisotropic mechanical response. The stability of electrodeposition or resistance to the formation of dendrites is studied within a linear stability analysis. The deformation and stress equations are solved using the Stroh formalism and faithfully recover the boundary conditions at the interface. The stability parameter is used to quantify the stability of different solid-solid interfaces incorporating the full anisotropy of the elastic tensor of the two materials. Results show a high degree of variability in the stability parameter depending on the crystallographic orientation of the solids in contact, and point to opportunities for exploiting this effect in developing Li metal anodes.

  7. Analysis of seismicity and stress before and after the Mw 8.1 Pisagua, Chile, 2014 earthquake

    NASA Astrophysics Data System (ADS)

    Grigoli, F.; Cesca, S.; Dahm, T.; Hainzl, S.

    2014-12-01

    On April 1st, 2014 at 23:46:50 UTC, a powerful earthquake of magnitude Mw 8.1 occurred offshore the Northern Chile in the region of the North Chilean seismic gap. The epicenter of the earthquake was approximately 50 km offshore the Chilean coast, near the town of Pisagua. Two days after the main event a Mw 7.6 aftershock struck approximately the same area. In order to identify spatio-temporal changes of source parameters and stress before and after the mainshock, we analyzed in detail the local seismicity above magnitude Mw 3.0 within the time period 01/01/2013-30/04/2014 and estimated long term trends in b-values and earthquake productivity. We used data from the IPOC (Integrated Plate boundary Observatory Chile) regional seismic network, consisting of 20 "in land" broadband station deployed and managed by the GFZ-Potsdam. The recorded earthquake catalog shows an intense foreshock activity consisting of more than 1000 M3+ events in the source region. Full waveform techniques are used to derive both locations and focal mechanisms of about 435 seismic events. The location process has been performed by using a waveform stacking method (Grigoli et al 2013, 2014) with a layered velocity model based on CRUST 2.0 (see the attached figure for the location results of one of these events). Moment tensor inversion has been performed by using the KIWI tool software (Cesca et al. 2010), which is based on a two-step inversion approach. The first step consists in the inversion of the amplitude spectra to retrieve the best fitting focal planes, while the second inversion step is carried out in time domain to solve the focal mechanism polarity and to obtain the centroid location and time. Both location and moment tensor inversion resulted in agreement with the geodynamical settings of the region. Mapping the b-value reveals a spatiotemporal anomaly of low b-values characterizing the frequency-magnitude distribution of the foreshocks in the source area of the mainshock. Finally, clustering analysis of the retrieved focal mechanism and a stress tensor inversion has been performed in order to analyze the spatio-temporal evolution of the stress, before and after the mainshock. This work has been funded by the German BMBF "Geothecnologien" project MINE (BMBF03G0737A) and by Hazard and Risk Team (HART) and PBO-Chile of GFZ.

  8. A fast and robust method for moment tensor and depth determination of shallow seismic events in CTBT related studies.

    NASA Astrophysics Data System (ADS)

    Baker, Ben; Stachnik, Joshua; Rozhkov, Mikhail

    2017-04-01

    International Data Center is required to conduct expert technical analysis and special studies to improve event parameters and assist State Parties in identifying the source of specific event according to the protocol to the Protocol to the Comprehensive Nuclear Test Ban Treaty. Determination of seismic event source mechanism and its depth is closely related to these tasks. It is typically done through a strategic linearized inversion of the waveforms for a complete or subset of source parameters, or similarly defined grid search through precomputed Greens Functions created for particular source models. In this presentation we demonstrate preliminary results obtained with the latter approach from an improved software design. In this development we tried to be compliant with different modes of CTBT monitoring regime and cover wide range of source-receiver distances (regional to teleseismic), resolve shallow source depths, provide full moment tensor solution based on body and surface waves recordings, be fast to satisfy both on-demand studies and automatic processing and properly incorporate observed waveforms and any uncertainties a priori as well as accurately estimate posteriori uncertainties. Posterior distributions of moment tensor parameters show narrow peaks where a significant number of reliable surface wave observations are available. For earthquake examples, fault orientation (strike, dip, and rake) posterior distributions also provide results consistent with published catalogues. Inclusion of observations on horizontal components will provide further constraints. In addition, the calculation of teleseismic P wave Green's Functions are improved through prior analysis to determine an appropriate attenuation parameter for each source-receiver path. Implemented HDF5 based Green's Functions pre-packaging allows much greater flexibility in utilizing different software packages and methods for computation. Further additions will have the rapid use of Instaseis/AXISEM full waveform synthetics added to a pre-computed GF archive. Along with traditional post processing analysis of waveform misfits through several objective functions and variance reduction, we follow a probabilistic approach to assess the robustness of moment tensor solution. In a course of this project full moment tensor and depth estimates are determined for DPRK events and shallow earthquakes using a new implementation of teleseismic P waves waveform fitting. A full grid search over the entire moment tensor space is used to appropriately sample all possible solutions. A recent method by Tape & Tape (2012) to discretize the complete moment tensor space from a geometric perspective is used. Probabilistic uncertainty estimates on the moment tensor parameters provide robustness to solution.

  9. Hawking radiation, covariant boundary conditions, and vacuum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Rabin; Kulkarni, Shailesh

    2009-04-15

    The basic characteristics of the covariant chiral current and the covariant chiral energy-momentum tensor are obtained from a chiral effective action. These results are used to justify the covariant boundary condition used in recent approaches of computing the Hawking flux from chiral gauge and gravitational anomalies. We also discuss a connection of our results with the conventional calculation of nonchiral currents and stress tensors in different (Unruh, Hartle-Hawking and Boulware) states.

  10. Seismic sensitivity of normal-mode coupling to Lorentz stresses in the Sun

    NASA Astrophysics Data System (ADS)

    Hanasoge, Shravan M.

    2017-09-01

    Understanding the governing mechanism of solar magnetism remains an outstanding challenge in astrophysics. Seismology is the most compelling technique to infer the internal properties of the Sun and stars. Waves in the Sun, nominally acoustic, are sensitive to the emergence and cyclical strengthening of magnetic field, evidenced by measured changes in resonant oscillation frequencies that are correlated with the solar cycle. The inference of internal Lorentz stresses from these measurements has the potential to significantly advance our appreciation of the dynamo. Indeed, seismological inverse theory for the Sun is well understood for perturbations in composition, thermal structure and flows but, is not fully developed for magnetism, owing to the complexity of the ideal magnetohydrodynamic (MHD) equation. Invoking first-Born perturbation theory to characterize departures from spherically symmetric hydrostatic models of the Sun and applying the notation of generalized spherical harmonics, we calculate sensitivity functions of seismic measurements to the general time-varying Lorentz stress tensor. We find that eigenstates of isotropic (I.e. acoustic only) background models are dominantly sensitive to isotropic deviations in the stress tensor and much more weakly than anisotropic stresses (and therefore challenging to infer). The apple cannot fall far from the tree.

  11. Stresses in curved nematic membranes.

    PubMed

    Santiago, J A

    2018-05-01

    Ordering configurations of a director field on a curved membrane induces stress. In this work, we present a theoretical framework to calculate the stress tensor and the torque as a consequence of the nematic ordering; we use the variational principle and invariance of the energy under Euclidean motions. Euler-Lagrange equations of the membrane as well as the corresponding boundary conditions also appear as natural results. The stress tensor found includes attraction-repulsion forces between defects; likewise, defects are attracted to patches with the same sign in Gaussian curvature. These forces are mediated by the Green function of the Laplace-Beltrami operator of the surface. In addition, we find nonisotropic forces that involve derivatives of the Green function and the Gaussian curvature, even in the normal direction to the membrane. We examine the case of axial membranes to analyze the spherical one. For spherical vesicles we find the modified Young-Laplace law as a consequence of the nematic texture. In the case of spherical cap with defect at the north pole, we find that the force is repulsive with respect to the north pole, indicating that it is an unstable equilibrium point.

  12. Stress field estimation based on focal mechanisms and back projected imaging in the Eastern Llanos Basin (Colombia)

    NASA Astrophysics Data System (ADS)

    Gómez-Alba, Sebastián; Fajardo-Zarate, Carlos Eduardo; Vargas, Carlos Alberto

    2016-11-01

    At least 156 earthquakes (Mw 2.8-4.4) were detected in Puerto Gaitán, Colombia (Eastern Llanos Basin) between April 2013 and December 2014. Out of context, this figure is not surprising. However, from its inception in 1993, the Colombian National Seismological Network (CNSN) found no evidence of significant seismic events in this region. In this study, we used CNSN data to model the rupture front and orientation of the highest-energy events. For these earthquakes, we relied on a joint inversion method to estimate focal mechanisms and, in turn, determine the area's fault trends and stress tensor. While the stress tensor defines maximum stress with normal tendency, focal mechanisms generally represent normal faults with NW orientation, an orientation which lines up with the tracking rupture achieved via Back Projection Imaging for the study area. We ought to bear in mind that this anomalous earthquake activity has taken place within oil fields. In short, the present paper argues that, based on the spatiotemporal distribution of seismic events, hydrocarbon operations may induce the study area's seismicity.

  13. Stresses in curved nematic membranes

    NASA Astrophysics Data System (ADS)

    Santiago, J. A.

    2018-05-01

    Ordering configurations of a director field on a curved membrane induces stress. In this work, we present a theoretical framework to calculate the stress tensor and the torque as a consequence of the nematic ordering; we use the variational principle and invariance of the energy under Euclidean motions. Euler-Lagrange equations of the membrane as well as the corresponding boundary conditions also appear as natural results. The stress tensor found includes attraction-repulsion forces between defects; likewise, defects are attracted to patches with the same sign in Gaussian curvature. These forces are mediated by the Green function of the Laplace-Beltrami operator of the surface. In addition, we find nonisotropic forces that involve derivatives of the Green function and the Gaussian curvature, even in the normal direction to the membrane. We examine the case of axial membranes to analyze the spherical one. For spherical vesicles we find the modified Young-Laplace law as a consequence of the nematic texture. In the case of spherical cap with defect at the north pole, we find that the force is repulsive with respect to the north pole, indicating that it is an unstable equilibrium point.

  14. Finite element implementation of a thermo-damage-viscoelastic constitutive model for hydroxyl-terminated polybutadiene composite propellant

    NASA Astrophysics Data System (ADS)

    Xu, Jinsheng; Han, Long; Zheng, Jian; Chen, Xiong; Zhou, Changsheng

    2017-11-01

    A thermo-damage-viscoelastic model for hydroxyl-terminated polybutadiene (HTPB) composite propellant with consideration for the effect of temperature was implemented in ABAQUS. The damage evolution law of the model has the same form as the crack growth equation for viscoelastic materials, and only a single damage variable S is considered. The HTPB propellant was considered as an isotropic material, and the deviatoric and volumetric strain-stress relations are decoupled and described by the bulk and shear relaxation moduli, respectively. The stress update equations were expressed by the principal stresses σ_{ii}R and the rotation tensor M, the Jacobian matrix in the global coordinate system J_{ijkl} was obtained according to the fourth-order tensor transformation rules. Two models having complex stress states were used to verify the accuracy of the constitutive model. The test results showed good agreement with the strain responses of characteristic points measured by a contactless optical deformation test system, which illustrates that the thermo-damage-viscoelastic model perform well at describing the mechanical properties of an HTPB propellant.

  15. Finite-temperature stress calculations in atomic models using moments of position.

    PubMed

    Parthasarathy, Ranganathan; Misra, Anil; Ouyang, Lizhi

    2018-07-04

    Continuum modeling of finite temperature mechanical behavior of atomic systems requires refined description of atomic motions. In this paper, we identify additional kinematical quantities that are relevant for a more accurate continuum description as the system is subjected to step-wise loading. The presented formalism avoids the necessity for atomic trajectory mapping with deformation, provides the definitions of the kinematic variables and their conjugates in real space, and simplifies local work conjugacy. The total work done on an atom under deformation is decomposed into the work corresponding to changing its equilibrium position and work corresponding to changing its second moment about equilibrium position. Correspondingly, we define two kinematic variables: a deformation gradient tensor and a vibration tensor, and derive their stress conjugates, termed here as static and vibration stresses, respectively. The proposed approach is validated using MD simulation in NVT ensembles for fcc aluminum subjected to uniaxial extension. The observed evolution of second moments in the MD simulation with macroscopic deformation is not directly related to the transformation of atomic trajectories through the deformation gradient using generator functions. However, it is noteworthy that deformation leads to a change in the second moment of the trajectories. Correspondingly, the vibration part of the Piola stress becomes particularly significant at high temperature and high tensile strain as the crystal approaches the softening limit. In contrast to the eigenvectors of the deformation gradient, the eigenvectors of the vibration tensor show strong spatial heterogeneity in the vicinity of softening. More importantly, the elliptic distribution of local atomic density transitions to a dumbbell shape, before significant non-affinity in equilibrium positions has occurred.

  16. Finite-temperature stress calculations in atomic models using moments of position

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Ranganathan; Misra, Anil; Ouyang, Lizhi

    2018-07-01

    Continuum modeling of finite temperature mechanical behavior of atomic systems requires refined description of atomic motions. In this paper, we identify additional kinematical quantities that are relevant for a more accurate continuum description as the system is subjected to step-wise loading. The presented formalism avoids the necessity for atomic trajectory mapping with deformation, provides the definitions of the kinematic variables and their conjugates in real space, and simplifies local work conjugacy. The total work done on an atom under deformation is decomposed into the work corresponding to changing its equilibrium position and work corresponding to changing its second moment about equilibrium position. Correspondingly, we define two kinematic variables: a deformation gradient tensor and a vibration tensor, and derive their stress conjugates, termed here as static and vibration stresses, respectively. The proposed approach is validated using MD simulation in NVT ensembles for fcc aluminum subjected to uniaxial extension. The observed evolution of second moments in the MD simulation with macroscopic deformation is not directly related to the transformation of atomic trajectories through the deformation gradient using generator functions. However, it is noteworthy that deformation leads to a change in the second moment of the trajectories. Correspondingly, the vibration part of the Piola stress becomes particularly significant at high temperature and high tensile strain as the crystal approaches the softening limit. In contrast to the eigenvectors of the deformation gradient, the eigenvectors of the vibration tensor show strong spatial heterogeneity in the vicinity of softening. More importantly, the elliptic distribution of local atomic density transitions to a dumbbell shape, before significant non-affinity in equilibrium positions has occurred.

  17. Multiple seismogenic processes for high-frequency earthquakes at Katmai National Park, Alaska: Evidence from stress tensor inversions of fault-plane solutions

    USGS Publications Warehouse

    Moran, S.C.

    2003-01-01

    The volcanological significance of seismicity within Katmai National Park has been debated since the first seismograph was installed in 1963, in part because Katmai seismicity consists almost entirely of high-frequency earthquakes that can be caused by a wide range of processes. I investigate this issue by determining 140 well-constrained first-motion fault-plane solutions for shallow (depth < 9 km) earthquakes occuring between 1995 and 2001 and inverting these solutions for the stress tensor in different regions within the park. Earthquakes removed by several kilometers from the volcanic axis occur in a stress field characterized by horizontally oriented ??1 and ??3 axes, with ??1 rotated slightly (12??) relative to the NUVELIA subduction vector, indicating that these earthquakes are occurring in response to regional tectonic forces. On the other hand, stress tensors for earthquake clusters beneath several Katmai cluster volcanoes have vertically oriented ??1 axes, indicating that these events are occuring in response to local, not regional, processes. At Martin-Mageik, vertically oriented ??1 is most consistent with failure under edifice loading conditions in conjunction with localized pore pressure increases associated with hydrothermal circulation cells. At Trident-Novarupta, it is consistent with a number of possible models, including occurence along fractures formed during the 1912 eruption that now serve as horizontal conduits for migrating fluids and/or volatiles from nearby degassing and cooling magma bodies. At Mount Katmai, it is most consistent with continued seismicity along ring-fracture systems created in the 1912 eruption, perhaps enhanced by circulating hydrothermal fluids and/or seepage from the caldera-filling lake.

  18. Assessment of Reynolds stress components and turbulent pressure loss using 4D flow MRI with extended motion encoding.

    PubMed

    Haraldsson, Henrik; Kefayati, Sarah; Ahn, Sinyeob; Dyverfeldt, Petter; Lantz, Jonas; Karlsson, Matts; Laub, Gerhard; Ebbers, Tino; Saloner, David

    2018-04-01

    To measure the Reynolds stress tensor using 4D flow MRI, and to evaluate its contribution to computed pressure maps. A method to assess both velocity and Reynolds stress using 4D flow MRI is presented and evaluated. The Reynolds stress is compared by cross-sectional integrals of the Reynolds stress invariants. Pressure maps are computed using the pressure Poisson equation-both including and neglecting the Reynolds stress. Good agreement is seen for Reynolds stress between computational fluid dynamics, simulated MRI, and MRI experiment. The Reynolds stress can significantly influence the computed pressure loss for simulated (eg, -0.52% vs -15.34% error; P < 0.001) and experimental (eg, 306 ± 11 vs 203 ± 6 Pa; P < 0.001) data. A 54% greater pressure loss is seen at the highest experimental flow rate when accounting for Reynolds stress (P < 0.001). 4D flow MRI with extended motion-encoding enables quantification of both the velocity and the Reynolds stress tensor. The additional information provided by this method improves the assessment of pressure gradients across a stenosis in the presence of turbulence. Unlike conventional methods, which are only valid if the flow is laminar, the proposed method is valid for both laminar and disturbed flow, a common presentation in diseased vessels. Magn Reson Med 79:1962-1971, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Information geometry and its application to theoretical statistics and diffusion tensor magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Wisniewski, Nicholas Andrew

    This dissertation is divided into two parts. First we present an exact solution to a generalization of the Behrens-Fisher problem by embedding the problem in the Riemannian manifold of Normal distributions. From this we construct a geometric hypothesis testing scheme. Secondly we investigate the most commonly used geometric methods employed in tensor field interpolation for DT-MRI analysis and cardiac computer modeling. We computationally investigate a class of physiologically motivated orthogonal tensor invariants, both at the full tensor field scale and at the scale of a single interpolation by doing a decimation/interpolation experiment. We show that Riemannian-based methods give the best results in preserving desirable physiological features.

  20. BRST Exactness of Stress-Energy Tensors

    NASA Astrophysics Data System (ADS)

    Miyata, Hideo; Sugimoto, Hiroshi

    BRST commutators in the topological conformal field theories obtained by twisting N=2 theories are evaluated explicitly. By our systematic calculations of the multiple integrals which contain screening operators, the BRST exactness of the twisted stress-energy tensors is deduced for classical simple Lie algebras and general level k. We can see that the paths of integrations do not affect the result, and further, the N=2 coset theories are obtained by deleting two simple roots with Kac-label 1 from the extended Dynkin diagram; in other words, by not performing the integrations over the variables corresponding to the two simple roots of Kac-Moody algebras. It is also shown that a series of N=1 theories are generated in the same way by deleting one simple root with Kac-label 2.

  1. Consequences of theory level choice evaluated with new tools from QTAIM and the stress tensor for a dipeptide conformer

    NASA Astrophysics Data System (ADS)

    Li, Jiahui; Xu, Tianlv; Ping, Yang; van Mourik, Tanja; Früchtl, Herbert; Kirk, Steven R.; Jenkins, Samantha

    2018-03-01

    QTAIM and the stress tensor were used to provide a detailed analysis of the topology of the molecular graph, BCP and bond-path properties, including the new introduced helicity length H, of a Tyr-Gly dipeptide conformer subjected to a torsion with four levels of theory; MP2, M06-2X, B3LYP-D3 and B3LYP and a modest-sized basis set, 6-31+G(d). Structural effects and bonding properties are quantified and reflect differences in the BSSE and lack of inclusion of dispersion effects in the B3LYP calculations. The helicity length H demonstrated that MP2 produced a unique response to the torsion suggesting future use as a diagnostic tool.

  2. Exact example of backreaction of small scale inhomogeneities in cosmology

    NASA Astrophysics Data System (ADS)

    Green, Stephen; Wald, Robert

    2013-04-01

    We construct a one-parameter family of polarized vacuum Gowdy spacetimes on a torus. In the limit as the parameter N goes to infinity, the metric uniformly approaches a smooth ``background metric.'' However, spacetime derivatives of the metric do not approach a limit. As a result, we find that the background metric itself is not a solution of the vacuum Einstein equation. Rather, it is a solution of the Einstein equation with an ``effective stress-energy tensor,'' which is traceless and satisfies the weak energy condition. This is an explicit example of backreaction due to small scale inhomogeneities. We comment on the non-vacuum case, where we have proven in previous work that, provided the matter stress-energy tensor satisfies the weak energy condition, no additional backreaction is possible.

  3. Quantum corrections in thermal states of fermions on anti-de Sitter space-time

    NASA Astrophysics Data System (ADS)

    Ambruş, Victor E.; Winstanley, Elizabeth

    2017-12-01

    We study the energy density and pressure of a relativistic thermal gas of massless fermions on four-dimensional Minkowski and anti-de Sitter space-times using relativistic kinetic theory. The corresponding quantum field theory quantities are given by components of the renormalized expectation value of the stress-energy tensor operator acting on a thermal state. On Minkowski space-time, the renormalized vacuum expectation value of the stress-energy tensor is by definition zero, while on anti-de Sitter space-time the vacuum contribution to this expectation value is in general nonzero. We compare the properties of the vacuum and thermal expectation values of the energy density and pressure for massless fermions and discuss the circumstances in which the thermal contribution dominates over the vacuum one.

  4. Second moment closure analysis of the backstep flow database

    NASA Technical Reports Server (NTRS)

    Parneix, S.; Laurence, D.; Durbin, P.

    1996-01-01

    A Second Moment Closure computation (SMC) is compared in detail with the Direct Numerical Simulation (DNS) data of Le and Moin for the backstep flow at Re = 5,000 in an attempt to understand why the intensity of the backflow and, consequently, the friction coefficient in the recirculation bubble are severely underestimated. The data show that this recirculation bubble is far from being laminar except in the very near wall layer. A novel 'differential a priori' procedure was used, in which the full transport equation for one isolated component of the Reynolds stress tensor was solved using DNS data as input. Conclusions are then different from what would have been deduced by comparing a full simulation to a DNS. One cause of discrepancy was traced back to insufficient transfer of energy to the normal stress by pressure strain, but was not cured. A significant finding, confirmed by the DNS data in the core region of a channel flow, is that the coefficient that controls destruction of dissipation, C epsilon(sub 2), should be decreased by a factor of 2 when production is vanishing. This is also the case in the recirculation bubble, and a new formulation has cured 25% of the backflow discrepancy.

  5. An Orthotropic Model for Composite Materials in EPIC

    DTIC Science & Technology

    2014-06-06

    directions, and fails the material by eliminating the deviatoric stresses when any of the plastic strain components reaches its user-supplied critical...the directions of the fibers, especially in comparison to the non-linear stress -strain curves obtained from off-axis tensile tests. A somewhat...increment in Cauchy stress ; and is the tensor of elastic moduli. In EPIC, this equation is implemented via central differences because the velocity

  6. SORTAN: a Unix program for calculation and graphical presentation of fault slip as induced by stresses

    NASA Astrophysics Data System (ADS)

    Pascal, Christophe

    2004-04-01

    Stress inversion programs are nowadays frequently used in tectonic analysis. The purpose of this family of programs is to reconstruct the stress tensor characteristics from fault slip data acquired in the field or derived from earthquake focal mechanisms (i.e. inverse methods). Until now, little attention has been paid to direct methods (i.e. to determine fault slip directions from an inferred stress tensor). During the 1990s, the fast increase in resolution in 3D seismic reflection techniques made it possible to determine the geometry of subsurface faults with a satisfactory accuracy but not to determine precisely their kinematics. This recent improvement allows the use of direct methods. A computer program, namely SORTAN, is introduced. The program is highly portable on Unix platforms, straightforward to install and user-friendly. The computation is based on classical stress-fault slip relationships and allows for fast treatment of a set of faults and graphical presentation of the results (i.e. slip directions). In addition, the SORTAN program permits one to test the sensitivity of the results to input uncertainties. It is a complementary tool to classical stress inversion methods and can be used to check the mechanical consistency and the limits of structural interpretations based upon 3D seismic reflection surveys.

  7. A stress-dependent model for reservoir stimulation in enhanced geothermal systems

    NASA Astrophysics Data System (ADS)

    Troiano, Antonio; Giulia Di Giuseppe, Maria; Troise, Claudia; De Natale, Giuseppe

    2015-04-01

    We present a procedure for testing the interpretation of the induced seismicity. The procedure is based on Coulomb stress changes induced by deep fluid injection during well stimulation, providing a way to estimate how the potential for seismic failure in different volumes of a geothermal reservoir might change due to the water injection. Coulomb stress changes appear to be the main cause for the induced seismicity during the water injection. These stress changes do not only result from changes in the pore pressure, but also from the whole change in the stress tensor at any point in the medium, which results from the pressure perturbations. The numerical procedure presented takes into account the permeability increase that is due to the induced stress changes. A conceptual model that links the induced stress tensor and the permeability modifications is considered to estimate the permeability change induced during the water injection. In this way, we can adapt the medium behavior to mechanical changes, in order to better evaluate the effectiveness of the stimulation process for the enhancement of the reservoir permeability, while also refining the reconstruction of the Coulomb stress change patterns. Numerical tests have been developed that consider a physical medium and a geometry of the system comparable with that of Soultz EGS site (Alsace, France). Tests considering a fixed permeability, both isotropic and anisotropic, indicate a general decrease in the pressure changes when an anisotropic permeability was considered, with respect to the isotropic case. A marked elongation of the coulomb stress change patterns in the regional load direction was retrieved. This effect is enforced when a stress-dependent permeability is taken into account. Permeability enhancement progressively enlarges the seismic volume in turns, while decreasing the pressure in the neighborhood of the bottom of the well. The use of stress-dependent permeability also improves the reconstruction of the observed seismicity pattern. In particular, the large maximum of the coulomb stress changes at the point of injection, which was already mitigated by the consideration of anisotropic permeability, appears further decreased in the new data. The improving of the correlation between the coulomb stress changes and the induced seismicity distribution supports the reliability and robustness of the main hypothesis of this study of the relationship between the induced stress tensor variation and the permeability enhancement. The use of stress-dependent permeability constitutes an important step towards the theoretical planning of stimulation procedures, and towards interpretation and mitigation of the induced seismicity.

  8. Calculation and Analysis of magnetic gradient tensor components of global magnetic models

    NASA Astrophysics Data System (ADS)

    Schiffler, Markus; Queitsch, Matthias; Schneider, Michael; Stolz, Ronny; Krech, Wolfram; Meyer, Hans-Georg; Kukowski, Nina

    2014-05-01

    Magnetic mapping missions like SWARM and its predecessors, e.g. the CHAMP and MAGSAT programs, offer high resolution Earth's magnetic field data. These datasets are usually combined with magnetic observatory and survey data, and subject to harmonic analysis. The derived spherical harmonic coefficients enable magnetic field modelling using a potential series expansion. Recently, new instruments like the JeSSY STAR Full Tensor Magnetic Gradiometry system equipped with very high sensitive sensors can directly measure the magnetic field gradient tensor components. The full understanding of the quality of the measured data requires the extension of magnetic field models to gradient tensor components. In this study, we focus on the extension of the derivation of the magnetic field out of the potential series magnetic field gradient tensor components and apply the new theoretical framework to the International Geomagnetic Reference Field (IGRF) and the High Definition Magnetic Model (HDGM). The gradient tensor component maps for entire Earth's surface produced for the IGRF show low values and smooth variations reflecting the core and mantle contributions whereas those for the HDGM gives a novel tool to unravel crustal structure and deep-situated ore bodies. For example, the Thor Suture and the Sorgenfrei-Thornquist Zone in Europe are delineated by a strong northward gradient. Derived from Eigenvalue decomposition of the magnetic gradient tensor, the scaled magnetic moment, normalized source strength (NSS) and the bearing of the lithospheric sources are presented. The NSS serves as a tool for estimating the lithosphere-asthenosphere boundary as well as the depth of plutons and ore bodies. Furthermore changes in magnetization direction parallel to the mid-ocean ridges can be obtained from the scaled magnetic moment and the normalized source strength discriminates the boundaries between the anomalies of major continental provinces like southern Africa or the Eastern European Craton.

  9. Plate convergence at the westernmost Philippine Sea Plate

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Nan; Hsu, Shu-Kun; Lo, Chung-Liang; Chen, How-Wei; Ma, Kuo-Fong

    2009-03-01

    To understand the convergent characteristics of the westernmost plate boundary between the Philippine Sea Plate (PSP) and Eurasian Plate (EP), we have calculated the stress states of plate motion by focal mechanisms. Cataloged by the Harvard centroid moment tensor solutions (Harvard CMT) and the Broadband Array in Taiwan (BATS) moment tensor, 251 focal mechanisms are used to determine the azimuths of the principal stress axes. We first used all the data to derive the mean stress tensor of the study area. The inversion result shows that the stress regime has a maximum compression along the direction of azimuth N299°. This result is consistent with the general direction of the rigid plate motion between the PSP and EP in the study area. In order to understand the spatial variation of the regional stress pattern, we divided the study area into six sub-areas (blocks A to F) based on the feature of the free-air gravity anomaly. We compare the compressive directions obtained from the stress inversion with the plate motions calculated by the Euler pole and the Global Positioning System (GPS) analysis. As a result, the azimuth of the maximum stress axis, σ1, generally agrees with the directions of the theoretical plate motion and GPS velocity vectors except block C (Lanhsu region) and block F (Ilan plain region). The discrepancy of convergent direction near the Ilan plain region is probably caused by the rifting of the Okinawa Trough. The deviation of the σ1 azimuth in the Lanhsu region could be attributed to a southwestward extrusion of the Luzon Arc (LA) block between 21°N and 22°N whose northern boundary may be associated with the right-lateral NE-SW trending fault (i.e. Huatung Fault, HF) along the Taitung Canyon. Comparing the σ1 stress patterns between block C and block D, great strain energy along HF may not be completely released yet. Alternatively, the upper crust of block C may significantly have decoupled from its lower crust or uppermost mantle.

  10. Probing Earth's State of Stress

    NASA Astrophysics Data System (ADS)

    Delorey, A. A.; Maceira, M.; Johnson, P. A.; Coblentz, D. D.

    2016-12-01

    The state of stress in the Earth's crust is a fundamental physical property that controls both engineered and natural systems. Engineered environments including those for hydrocarbon, geothermal energy, and mineral extraction, as well those for storage of wastewater, carbon dioxide, and nuclear fuel are as important as ever to our economy and environment. Yet, it is at spatial scales relevant to these activities where stress is least understood. Additionally, in engineered environments the rate of change in the stress field can be much higher than that of natural systems. In order to use subsurface resources more safely and effectively, we need to understand stress at the relevant temporal and spatial scales. We will present our latest results characterizing the state of stress in the Earth at scales relevant to engineered environments. Two important components of the state of stress are the orientation and magnitude of the stress tensor, and a measure of how close faults are to failure. The stress tensor at any point in a reservoir or repository has contributions from both far-field tectonic stress and local density heterogeneity. We jointly invert seismic (body and surface waves) and gravity data for a self-consistent model of elastic moduli and density and use the model to calculate the contribution of local heterogeneity to the total stress field. We then combine local and plate-scale contributions, using local indicators for calibration and ground-truth. In addition, we will present results from an analysis of the quantity and pattern of microseismicity as an indicator of critically stressed faults. Faults are triggered by transient stresses only when critically stressed (near failure). We show that tidal stresses can trigger earthquakes in both tectonic and reservoir environments and can reveal both stress and poroelastic conditions.

  11. Physics behind the oscillation of pressure tensor autocorrelation function for nanocolloidal dispersions.

    PubMed

    Wang, Tao; Wang, Xinwei; Luo, Zhongyang; Cen, Kefa

    2008-08-01

    In this work, extensive equilibrium molecular dynamics simulations are conducted to explore the physics behind the oscillation of pressure tensor autocorrelation function (PTACF) for nanocolloidal dispersions, which leads to strong instability in viscosity calculation. By reducing the particle size and density, we find the intensity of the oscillation decreases while the frequency of the oscillation becomes higher. Careful analysis of the relationship between the oscillation and nanoparticle characteristics reveals that the stress wave scattering/reflection at the particle-liquid interface plays a critical role in PTACF oscillation while the Brownian motion/vibration of solid particles has little effect. Our modeling proves that it is practical to eliminate the PTACF oscillation through suppressing the acoustic mismatch at the solid-liquid interface by designing special nanoparticle materials. It is also found when the particle size is comparable with the wavelength of the stress wave, diffraction of stress wave happens at the interface. Such effect substantially reduces the PTACF oscillation and improves the stability of viscosity calculation.

  12. Quantum field theory in spaces with closed time-like curves

    NASA Astrophysics Data System (ADS)

    Boulware, D. G.

    Gott spacetime has closed timelike curves, but no locally anomalous stress-energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 27(pi). A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the acausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the acausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  13. Neotectonic activity and parameters of seismotectonic deformations of seismic belts in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Imaeva, Lyudmila; Gusev, Georgy; Imaev, Valerii; Mel'nikova, Valentina

    2017-10-01

    The Arctic-Asian and Okhotsk-Chukotka seismic belts bordering the Kolyma-Chukotka crustal plate are the subject of our study aimed at reconstructing the stress-strain state of the crust and defining the types of seismotectonic deformation (STD) in the region. Based on the degrees of activity of geodynamic processes, the regional principles for ranking neotectonic structures were constrained, and the corresponding classes of the discussed neotectonic structures were substantiated. We analyzed the structural tectonic positions of the modern structures, their deep structure parameters, and the systems of active faults in the Laptev, Kharaulakh, Koryak, and Chukotka segments and Chersky seismotectonic zone, as well as the tectonic stress fields revealed by tectonophysical analysis of the Late Cenozoic faults and folds. From the earthquake focal mechanisms, the average seismotectonic strain tensors were estimated. Using the geological, geostructural, geophysical and GPS data, and corresponding average tensors, the directions of the principal stress axes were determined. A regularity in the changes of tectonic settings in the Northeast Arctic was revealed.

  14. A note on stress-driven anisotropic diffusion and its role in active deformable media.

    PubMed

    Cherubini, Christian; Filippi, Simonetta; Gizzi, Alessio; Ruiz-Baier, Ricardo

    2017-10-07

    We introduce a new model to describe diffusion processes within active deformable media. Our general theoretical framework is based on physical and mathematical considerations, and it suggests to employ diffusion tensors directly influenced by the coupling with mechanical stress. The proposed generalised reaction-diffusion-mechanics model reveals that initially isotropic and homogeneous diffusion tensors turn into inhomogeneous and anisotropic quantities due to the intrinsic structure of the nonlinear coupling. We study the physical properties leading to these effects, and investigate mathematical conditions for its occurrence. Together, the mathematical model and the numerical results obtained using a mixed-primal finite element method, clearly support relevant consequences of stress-driven diffusion into anisotropy patterns, drifting, and conduction velocity of the resulting excitation waves. Our findings also indicate the applicability of this novel approach in the description of mechano-electric feedback in actively deforming bio-materials such as the cardiac tissue. Copyright © 2017. Published by Elsevier Ltd.

  15. A representation for the turbulent mass flux contribution to Reynolds-stress and two-equation closures for compressible turbulence

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.

    1993-01-01

    The turbulent mass flux, or equivalently the fluctuating Favre velocity mean, appears in the first and second moment equations of compressible kappa-epsilon and Reynolds stress closures. Mathematically it is the difference between the unweighted and density-weighted averages of the velocity field and is therefore a measure of the effects of compressibility through variations in density. It appears to be fundamental to an inhomogeneous compressible turbulence, in which it characterizes the effects of the mean density gradients, in the same way the anisotropy tensor characterizes the effects of the mean velocity gradients. An evolution equation for the turbulent mass flux is derived. A truncation of this equation produces an algebraic expression for the mass flux. The mass flux is found to be proportional to the mean density gradients with a tensor eddy-viscosity that depends on both the mean deformation and the Reynolds stresses. The model is tested in a wall bounded DNS at Mach 4.5 with notable results.

  16. Moment tensor solutions for the Iberian-Maghreb region during the IberArray deployment (2009-2013)

    NASA Astrophysics Data System (ADS)

    Martín, R.; Stich, D.; Morales, J.; Mancilla, F.

    2015-11-01

    We perform regional moment tensor inversion for 84 earthquakes that occurred in the Iberian-Maghreb region during the second and third leg of IberArray deployment (2009-2013). During this period around 300 seismic broadband stations were operating in the area, reducing the interstation spacing to ~ 50 km over extended areas. We use the established processing sequence of the IAG moment tensor catalogue, increasing to 309 solutions with this update. New moment tensor solutions present magnitudes ranging from Mw 3.2 to 6.3 and source depths from 2 to 620 km. Most solutions correspond to Northern Algeria, where a compressive deformation pattern is consolidated. The Betic-Rif sector shows a progression of faulting styles from mainly shear faulting in the east via predominantly extension in the central sector to reverse and strike-slip faulting in the west. At the SW Iberia margin, the predominance of strike-slip and reverse faulting agrees with the expected transpressive character of the Eurasian-Nubia plate boundary. New strike-slip and oblique reverse solutions in the Trans-Alboran Shear Zone reflect its left-lateral regime. The most significant improvement corresponds to the Atlas Mountains and the surroundings of the Gibraltar Arc with scarce previous solutions. Reverse and strike-slip faulting solutions in the Atlas System display the accommodation of plate convergence by shortening in the belt. At the Gibraltar Arc, several new solutions were obtained at lower crustal and subcrustal depths. These mechanisms show substantial heterogeneity, covering the full range of faulting styles with highly variable orientations of principal stress axes, including opposite strike slip faulting solutions at short distance. The observations are not straightforward to explain by a simple geodynamic scenario and suggest the interplay of different processes, among them plate convergence in old oceanic lithospheric with large brittle thickness at the SW Iberia margin, as well as delamination of thickened continental lithosphere beneath the Betic-Rif arc.

  17. The Reynolds-stress tensor in diffusion flames; An experimental and theoretical investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, F.; Janicka, J.

    1990-07-01

    The authors present measurements and predictions of Reynolds-stress components and mean velocities in a CH{sub 4}-air diffusion flame. A reference beam LDA technique is applied for measuring all Reynolds-stress components. A hologram with dichromated gelatine as recording medium generates strictly coherent reference beams. The theoretical part describes a Reynolds-stress model based on Favre-averaged quantities, paying special attention to modeling the pressure-shear correlation and the dissipation equation in flames. Finally, measurement/prediction comparisons are presented.

  18. Propagation of threading dislocations in heteroepitaxial diamond films with (111) orientation and their role in the formation of intrinsic stress

    NASA Astrophysics Data System (ADS)

    Gallheber, B.-C.; Klein, O.; Fischer, M.; Schreck, M.

    2017-06-01

    In the present study, systematic correlations were revealed between the propagation direction of threading dislocations, the off-axis growth conditions, and the stress state of heteroepitaxial diamond on Ir/YSZ/Si(111). Measurements of the strain tensor ɛ ⃡ by X-ray diffraction and the subsequent calculation of the tensor of intrinsic stress σ ⃡ showed stress-free samples as well as symmetric biaxial stress states for on-axis samples. Transmission electron microscopy (TEM) lamellas were prepared for plan-view studies along the [ 1 ¯ 1 ¯ 1 ¯ ] direction and for cross-section investigations along the [11 2 ¯ ] and [1 1 ¯ 0] zone axes. For samples grown on-axis with parameters which avoid the formation of intrinsic stress, the majority of dislocations have line vectors clearly aligned along [111]. A sudden change to conditions that promote stress formation is correlated with an abrupt bending of the dislocations away from [111]. This behaviour is in nice agreement with the predictions of a model that attributes formation of intrinsic stress to an effective climb of dislocations. Further growth experiments under off-axis conditions revealed the generation of stress states with pronounced in-plane anisotropy of several Gigapascal. Their formation is attributed to the combined action of two basic processes, i.e., the step flow driven dislocation tilting and the temperature dependent effective climb of dislocations. Again, our interpretation is supported by the dislocation propagation derived from TEM observations.

  19. Estimation of full moment tensors, including uncertainties, for earthquakes, volcanic events, and nuclear explosions

    NASA Astrophysics Data System (ADS)

    Alvizuri, Celso; Silwal, Vipul; Krischer, Lion; Tape, Carl

    2017-04-01

    A seismic moment tensor is a 3 × 3 symmetric matrix that provides a compact representation of seismic events within Earth's crust. We develop an algorithm to estimate moment tensors and their uncertainties from observed seismic data. For a given event, the algorithm performs a grid search over the six-dimensional space of moment tensors by generating synthetic waveforms at each grid point and then evaluating a misfit function between the observed and synthetic waveforms. 'The' moment tensor M for the event is then the moment tensor with minimum misfit. To describe the uncertainty associated with M, we first convert the misfit function to a probability function. The uncertainty, or rather the confidence, is then given by the 'confidence curve' P(V ), where P(V ) is the probability that the true moment tensor for the event lies within the neighborhood of M that has fractional volume V . The area under the confidence curve provides a single, abbreviated 'confidence parameter' for M. We apply the method to data from events in different regions and tectonic settings: small (Mw < 2.5) events at Uturuncu volcano in Bolivia, moderate (Mw > 4) earthquakes in the southern Alaska subduction zone, and natural and man-made events at the Nevada Test Site. Moment tensor uncertainties allow us to better discriminate among moment tensor source types and to assign physical processes to the events.

  20. Moment Tensor Analysis of Shallow Sources

    NASA Astrophysics Data System (ADS)

    Chiang, A.; Dreger, D. S.; Ford, S. R.; Walter, W. R.; Yoo, S. H.

    2015-12-01

    A potential issue for moment tensor inversion of shallow seismic sources is that some moment tensor components have vanishing amplitudes at the free surface, which can result in bias in the moment tensor solution. The effects of the free-surface on the stability of the moment tensor method becomes important as we continue to investigate and improve the capabilities of regional full moment tensor inversion for source-type identification and discrimination. It is important to understand these free surface effects on discriminating shallow explosive sources for nuclear monitoring purposes. It may also be important in natural systems that have shallow seismicity such as volcanoes and geothermal systems. In this study, we apply the moment tensor based discrimination method to the HUMMING ALBATROSS quarry blasts. These shallow chemical explosions at approximately 10 m depth and recorded up to several kilometers distance represent rather severe source-station geometry in terms of vanishing traction issues. We show that the method is capable of recovering a predominantly explosive source mechanism, and the combined waveform and first motion method enables the unique discrimination of these events. Recovering the correct yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique.

  1. New insights on the matter-gravity coupling paradigm.

    PubMed

    Delsate, Térence; Steinhoff, Jan

    2012-07-13

    The coupling between matter and gravity in general relativity is given by a proportionality relation between the stress tensor and the geometry. This is an oriented assumption driven by the fact that both the stress tensor and the Einstein tensor are divergenceless. However, general relativity is in essence a nonlinear theory, so there is no obvious reason why the coupling to matter should be linear. On another hand, modified theories of gravity usually affect the vacuum dynamics, yet keep the coupling to matter linear. In this Letter, we address the implications of consistent nonlinear gravity-matter coupling. The Eddington-inspired Born-Infeld theory recently introduced by Bañados and Ferreira provides an enlightening realization of such coupling modifications. We find that this theory coupled to a perfect fluid reduces to general relativity coupled to a nonlinearly modified perfect fluid, leading to an ambiguity between modified coupling and modified equation of state. We discuss observational consequences of this degeneracy and argue that such a completion of general relativity is viable from both an experimental and theoretical point of view through energy conditions, consistency, and singularity-avoidance perspectives. We use these results to discuss the impact of changing the coupling paradigm.

  2. Why fibers are better turbulent drag reducing agents than polymers

    NASA Astrophysics Data System (ADS)

    Boelens, Arnout; Muthukumar, Murugappan

    2016-11-01

    It is typically found in literature that fibers are not as effective as drag reducing agents as polymers. However, for low concentrations, when adding charged polymers to either distilled or salt water, it is found that polymers showing rod-like behavior are better drag reducing agents than polymers showing coil-like behavior. In this study, using hybrid Direct Numerical Simulation with Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime. Since fibers do not have an elastic backbone, this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we are able to explain why charged polymers showing rod-like behavior are better drag reducing agents than polymers showing coil-like behavior. Additionally, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers. This research was supported by NSF Grant No. DMR-1404940 and AFOSR Grant No. FA9550-14-1-0164.

  3. The influence of topographic stresses on faulting, emphasizing the 2008 Wenchuan, China earthquake rupture

    NASA Astrophysics Data System (ADS)

    Styron, R. H.; Hetland, E. A.; Zhang, G.

    2013-12-01

    The weight of large mountains produces stresses in the crust that locally may be on the order of tectonic stresses (10-100 MPa). These stresses have a significant and spatially-variable deviatoric component that may be resolved as strong normal and shear stresses on range-bounding faults. In areas of high relief, the shear stress on faults can be comparable to inferred stress drops in earthquakes, and fault-normal stresses may be greater than 50 MPa, and thus may potentially influence fault rupture. Additionally, these stresses may be used to make inferences about the orientation and magnitude of tectonic stresses, for example by indicating a minimum stress needed to be overcome by tectonic stress. We are studying these effects in several tectonic environments, such as the Longmen Shan (China), the Denali fault (Alaska, USA) and the Wasatch Fault Zone (Utah, USA). We calculate the full topographic stress tensor field in the crust in a study region by convolution of topography with Green's functions approximating stresses from a point load on the surface of an elastic halfspace, using the solution proposed by Liu and Zoback [1992]. The Green's functions are constructed from Boussinesq's solutions for a vertical point load on an elastic halfspace, as well as Cerruti's solutions for a horizontal surface point load, accounting for irregular surface boundary and topographic spreading forces. The stress tensor field is then projected onto points embedded in the halfspace representing the faults, and the fault normal and shear stresses at each point are calculated. Our primary focus has been on the 2008 Wenchuan earthquake, as this event occurred at the base of one of Earth's highest and steepest topographic fronts and had a complex and well-studied coseismic slip distribution, making it an ideal case study to evaluate topographic influence on faulting. We calculate the topographic stresses on the Beichuan and Pengguan faults, and compare the results to the coseismic slip distribution, considering several published fault models. These models differ primarily in slip magnitude and planar vs. listric fault geometry at depth. Preliminary results indicate that topographic stresses are generally resistive to tectonic deformation, especially above ~10 km depth, where the faults are steep in all models. Down-dip topographic shear stresses on the fault are normal sense where the faults dip steeply, and reach 20 MPa on the fault beneath the Pengguan massif. Reverse-sense shear up to ~15 MPa is present on gently-dipping thrust flats at depth on listric fault models. Strike-slip shear stresses are sinistral on the steep, upper portions of faults but may be dextral on thrust flats. Topographic normal stress on the faults reaches ~80 MPa on thrust ramps and may be higher on flats. Coseismic slip magnitude is negatively correlated with topographic normal and down-dip shear stresses. The spatial patterns of topographic stresses and slip suggest that topographic stresses have significantly suppressed slip in certain areas: slip maxima occur in areas of locally lower topographic stresses, while areas of higher down-dip shear and normal stress show less slip than adjacent regions.

  4. Investigation of Thermal Stress Convection in Nonisothermal Gases Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Mackowski, Daniel W.; Knight, Roy W.

    1996-01-01

    Microgravity conditions offer an environment in which convection in a nonisothermal gas could be driven primarily by thermal stress. A direct examination of thermal stress flows would be invaluable in assessing the accuracy of the Burnett terms in the fluid stress tensor. We present a preliminary numerical investigation of the competing effects of thermal stress, thermal creep at the side walls, and buoyancy on gas convection in nonuniformly heated containers under normal and reduced gravity levels. Conditions in which thermal stress convection becomes dominant are identified, and issues regarding the experimental measurement of the flows are discussed.

  5. Stress field models from Maxwell stress functions: southern California

    NASA Astrophysics Data System (ADS)

    Bird, Peter

    2017-08-01

    The lithospheric stress field is formally divided into three components: a standard pressure which is a function of elevation (only), a topographic stress anomaly (3-D tensor field) and a tectonic stress anomaly (3-D tensor field). The boundary between topographic and tectonic stress anomalies is somewhat arbitrary, and here is based on the modeling tools available. The topographic stress anomaly is computed by numerical convolution of density anomalies with three tensor Green's functions provided by Boussinesq, Cerruti and Mindlin. By assuming either a seismically estimated or isostatic Moho depth, and by using Poisson ratio of either 0.25 or 0.5, I obtain four alternative topographic stress models. The tectonic stress field, which satisfies the homogeneous quasi-static momentum equation, is obtained from particular second derivatives of Maxwell vector potential fields which are weighted sums of basis functions representing constant tectonic stress components, linearly varying tectonic stress components and tectonic stress components that vary harmonically in one, two and three dimensions. Boundary conditions include zero traction due to tectonic stress anomaly at sea level, and zero traction due to the total stress anomaly on model boundaries at depths within the asthenosphere. The total stress anomaly is fit by least squares to both World Stress Map data and to a previous faulted-lithosphere, realistic-rheology dynamic model of the region computed with finite-element program Shells. No conflict is seen between the two target data sets, and the best-fitting model (using an isostatic Moho and Poisson ratio 0.5) gives minimum directional misfits relative to both targets. Constraints of computer memory, execution time and ill-conditioning of the linear system (which requires damping) limit harmonically varying tectonic stress to no more than six cycles along each axis of the model. The primary limitation on close fitting is that the Shells model predicts very sharp shallow stress maxima and discontinuous horizontal compression at the Moho, which the new model can only approximate. The new model also lacks the spatial resolution to portray the localized stress states that may occur near the central surfaces of weak faults; instead, the model portrays the regional or background stress field which provides boundary conditions for weak faults. Peak shear stresses in one registered model and one alternate model are 120 and 150 MPa, respectively, while peak vertically integrated shear stresses are 2.9 × 1012 and 4.1 × 1012 N m-1. Channeling of deviatoric stress along the strong Great Valley and the western slope of the Peninsular Ranges is evident. In the neotectonics of southern California, it appears that deviatoric stress and long-term strain rate have a negative correlation, because regions of low heat flow are strong and act as stress guides, while undergoing very little internal deformation. In contrast, active faults lie preferentially in areas with higher heat flow, and their low strength keeps deviatoric stresses locally modest.

  6. Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces

    DOE PAGES

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    2017-10-24

    Here, we investigate the stability of electrodeposition at solid-solid interfaces for materials exhibiting an anisotropic mechanical response. The stability of electrodeposition or resistance to the formation of dendrites is studied within a linear stability analysis. The deformation and stress equations are solved using the Stroh formalism and faithfully recover the boundary conditions at the interface. The stability parameter is used to quantify the stability of different solid-solid interfaces incorporating the full anisotropy of the elastic tensor of the two materials. Our results show a high degree of variability in the stability parameter depending on the crystallographic orientation of the solidsmore » in contact, and point to opportunities for exploiting this effect in developing Li metal anodes.« less

  7. A Catalog of Moment Tensors and Source-type Characterization for Small Events at Uturuncu Volcano, Bolivia

    NASA Astrophysics Data System (ADS)

    Alvizuri, C. R.; Tape, C.

    2015-12-01

    We present a catalog of full seismic moment tensors for 63 events from Uturuncu volcano in Bolivia. The events were recorded during 2011-2012 in the PLUTONS seismic array of 24 broadband stations. Most events had magnitudes between 0.5 and 2.0 and did not generate discernible surface waves; the largest event was Mw 2.8. For each event we computed the misfit between observed and synthetic waveforms, and we also used first-motion polarity measurements to reduce the number of possible solutions. Each moment tensor solution was obtained using a grid search over the six-dimensional space of moment tensors. For each event we characterize the variation of moment tensor source type by plotting the misfit function in eigenvalue space, represented by a lune. We plot the optimal solutions for the 63 events on the lune in order to identify three subsets of the catalog: (1) a set of isotropic events, (2) a set of tensional crack events, and (3) a swarm of events southeast of the volcanic center that appear to be double couples. The occurrence of positively isotropic events is consistent with other published results from volcanic and geothermal regions. Several of these previous results, as well as our results, cannot be interpreted within the context of either an oblique opening crack or a crack-plus-double-couple model; instead they require a multiple-process source model. Our study emphasizes the importance of characterizing uncertainties for full moment tensors, and it provides strong support for isotropic events at Uturuncu volcano.

  8. A dynamic regularized gradient model of the subgrid-scale stress tensor for large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Vollant, A.; Balarac, G.; Corre, C.

    2016-02-01

    Large-eddy simulation (LES) solves only the large scales part of turbulent flows by using a scales separation based on a filtering operation. The solution of the filtered Navier-Stokes equations requires then to model the subgrid-scale (SGS) stress tensor to take into account the effect of scales smaller than the filter size. In this work, a new model is proposed for the SGS stress model. The model formulation is based on a regularization procedure of the gradient model to correct its unstable behavior. The model is developed based on a priori tests to improve the accuracy of the modeling for both structural and functional performances, i.e., the model ability to locally approximate the SGS unknown term and to reproduce enough global SGS dissipation, respectively. LES is then performed for a posteriori validation. This work is an extension to the SGS stress tensor of the regularization procedure proposed by Balarac et al. ["A dynamic regularized gradient model of the subgrid-scale scalar flux for large eddy simulations," Phys. Fluids 25(7), 075107 (2013)] to model the SGS scalar flux. A set of dynamic regularized gradient (DRG) models is thus made available for both the momentum and the scalar equations. The second objective of this work is to compare this new set of DRG models with direct numerical simulations (DNS), filtered DNS in the case of classic flows simulated with a pseudo-spectral solver and with the standard set of models based on the dynamic Smagorinsky model. Various flow configurations are considered: decaying homogeneous isotropic turbulence, turbulent plane jet, and turbulent channel flows. These tests demonstrate the stable behavior provided by the regularization procedure, along with substantial improvement for velocity and scalar statistics predictions.

  9. Model for quantum effects in stellar collapse

    NASA Astrophysics Data System (ADS)

    Arderucio-Costa, Bruno; Unruh, William G.

    2018-01-01

    We present a simple model for stellar collapse and evaluate the quantum mechanical stress-energy tensor to argue that quantum effects do not play an important role for the collapse of astrophysical objects.

  10. Microstructural Rearrangements and their Rheological Implications in a Model Thixotropic Elastoviscoplastic Fluid

    NASA Astrophysics Data System (ADS)

    Jamali, Safa; McKinley, Gareth H.; Armstrong, Robert C.

    2017-01-01

    We identify the sequence of microstructural changes that characterize the evolution of an attractive particulate gel under flow and discuss their implications on macroscopic rheology. Dissipative particle dynamics is used to monitor shear-driven evolution of a fabric tensor constructed from the ensemble spatial configuration of individual attractive constituents within the gel. By decomposing this tensor into isotropic and nonisotropic components we show that the average coordination number correlates directly with the flow curve of the shear stress versus shear rate, consistent with theoretical predictions for attractive systems. We show that the evolution in nonisotropic local particle rearrangements are primarily responsible for stress overshoots (strain-hardening) at the inception of steady shear flow and also lead, at larger times and longer scales, to microstructural localization phenomena such as shear banding flow-induced structure formation in the vorticity direction.

  11. Stress Fields Along Okinawa Trough and Ryukyu Arc Inferred From Regional Broadband Moment Tensors

    NASA Astrophysics Data System (ADS)

    Kubo, A.; Fukuyama, E.

    2001-12-01

    Most shallow earthquakes along Okinawa trough and Ryukyu arc are relatively small (M<5.5). Focal mechanism estimations for such events were difficult due to insufficient dataset. However, this situation is improved by regional broadband network (FREESIA). Lower limit of magnitude of the earthquakes determined becomes 1.5 smaller in M{}w than that of Harvard moment tensors. As a result, we could examine the stress field in more detail than Fournier et al.(2001, JGR, 106, 13751-) did based on surface geology and teleseismic moment tensors. In the NE Okinawa trough, extension axes are oblique to the trough strike, while in SW Okinawa trough, they are perpendicular to the trough. Fault type in SW is normal fault and gradually changes to mixture of normal and strike slip toward NE. In the Ryukyu arc, extension axes are parallel to the arc. Although this feature is not clear in the NW Ryukyu arc, arc parallel extension may be a major property of entire arc. Dominant fault type is normal fault and several strike slips with the same extensional component are included. The volcanic train is located at the edge of arc parallel extension field faced A simple explanation of the arc parallel extension is the response to the opening motion of the Okinawa trough. Another possible mechanism is forearc movement due to oblique subduction which is enhanced in SW. We consider that the Okinawa trough and the Ryukyu arc are independent stress provinces.

  12. Defects in Nonlinear Elastic Crystals: Differential Geometry, Finite Kinematics, and Second-Order Analytical Solutions

    DTIC Science & Technology

    2015-04-01

    of unit length: da = F L a αδ α Ad A , da = F L−1αaδ A α dA . (2.12) The metric tensor associated with the deformed... A spatial density tensor θ and Frank vector ω̂ of the following forms are consistent with geometry of the problem: θ = θzzgz ⊗ gz = ω̂δ(r)gz ⊗ gz = δ...stress depends quadratically on strain, with the elastic potential cubic in strain and including elastic constants of

  13. Nonlinear Viscoelastic Analysis of Orthotropic Beams Using a General Third-Order Theory

    DTIC Science & Technology

    2012-06-20

    Kirchhoff stress tensor, denoted by r and reduced strain tensor E e is given by rxx rzz rxz 8><>: 9>=>;¼ Q11ð0Þ Q13ð0Þ 0 Q13ð0Þ Q33ð0Þ 0 0 0 Q55ð0Þ...0.5 1 −0.5 0 0.5 1 (a) (b) Fig. 1. Graphs of (a) equi-spaced and (b) spectral lagrange interpolation functions for polynomial order of p = 11. 3762 V

  14. Micro-Stress Bound Estimate Enabled Optimization of Structural Composite Repair for the Next Generation Aircraft

    DTIC Science & Technology

    2007-02-28

    where they exhibited the maximum values, which were the midsurface and 0/-0 surface for two laminates with 0=150 and 0=400. a) 50000 40000 - 0 30000...the first and second invariants of the strain tensor calculated at the midsurface in the x=O cross section as a function of distance from the hole edge...Y Figure 7. Comparison of the distributions of strain tensor invariants predicted in the matrix phase at the midsurface at x=0 as a function of

  15. On the energy-momentum tensor of light in strong fields: an all optical view of the Abraham-Minkowski controversy

    NASA Astrophysics Data System (ADS)

    Macleod, Alexander J.; Noble, Adam; Jaroszynski, Dino A.

    2017-05-01

    The Abraham-Minkowski controversy is the debate surrounding the "correct" form of the energy-momentum tensor of light in a medium. Over a century of theoretical and experimental studies have consistently produced conflicting results, with no consensus being found on how best to describe the influence of a material on the propagation of light. It has been argued that the total energy-momentum tensor for each of the theories, which includes both wave and material components, are equal. The difficulty in separating the full energy-momentum tensor is generally attributed to the fact that one cannot obtain the energy-momentum tensor of the medium for real materials. Non-linear electrodynamics provides an opportunity to approach the debate from an all optical set up, where the role of the medium is replaced by the vacuum under the influence of a strong background field. We derive, from first principles, the general form of the energy-momentum tensor in such theories, and use our results to shed some light on this long standing issue.

  16. Relating Residual Stress and Substructural Evolution During Tensile Deformation of an Aluminum-Manganese Alloy

    NASA Astrophysics Data System (ADS)

    Lodh, Arijit; Tak, Tawqeer Nasir; Prakash, Aditya; Guruprasad, P. J.; Hutchinson, Christopher; Samajdar, Indradev

    2017-11-01

    Interrupted tensile tests were coupled with ex situ measurements of residual stress and microtexture. The residual stress quantification involved measurements of six independent Laue spots and conversion of the interplanar spacings to the residual stress tensor. A clear orientation-dependent residual stress evolution emerged from the experiments and the numerical simulations. For the orientations undergoing negligible changes in ρ GND (density of geometrically necessary dislocation), the residual stress developments appeared to be governed by the elastic stiffness of the grain clusters. For the others, the evolution of the residual stress and ρ GND exhibited a clear orientation-dependent scaling.

  17. Stress-stress correlator in ϕ 4 theory: poles or a cut?

    NASA Astrophysics Data System (ADS)

    Moore, Guy D.

    2018-05-01

    We explore the analytical properties of the traceless stress tensor 2-point function at zero momentum and small frequency (relevant for shear viscosity and hydrodynamic response) in hot, weakly coupled λ ϕ 4 theory. We show that, rather than one or a small number of poles, the correlator has a cut along the negative imaginary frequency axis. We briefly discuss this result's relevance for constructing 2'nd order hydrodynamic models of hot relativistic field theories.

  18. Search for subgrid scale parameterization by projection pursuit regression

    NASA Technical Reports Server (NTRS)

    Meneveau, C.; Lund, T. S.; Moin, Parviz

    1992-01-01

    The dependence of subgrid-scale stresses on variables of the resolved field is studied using direct numerical simulations of isotropic turbulence, homogeneous shear flow, and channel flow. The projection pursuit algorithm, a promising new regression tool for high-dimensional data, is used to systematically search through a large collection of resolved variables, such as components of the strain rate, vorticity, velocity gradients at neighboring grid points, etc. For the case of isotropic turbulence, the search algorithm recovers the linear dependence on the rate of strain (which is necessary to transfer energy to subgrid scales) but is unable to determine any other more complex relationship. For shear flows, however, new systematic relations beyond eddy viscosity are found. For the homogeneous shear flow, the results suggest that products of the mean rotation rate tensor with both the fluctuating strain rate and fluctuating rotation rate tensors are important quantities in parameterizing the subgrid-scale stresses. A model incorporating these terms is proposed. When evaluated with direct numerical simulation data, this model significantly increases the correlation between the modeled and exact stresses, as compared with the Smagorinsky model. In the case of channel flow, the stresses are found to correlate with products of the fluctuating strain and rotation rate tensors. The mean rates of rotation or strain do not appear to be important in this case, and the model determined for homogeneous shear flow does not perform well when tested with channel flow data. Many questions remain about the physical mechanisms underlying these findings, about possible Reynolds number dependence, and, given the low level of correlations, about their impact on modeling. Nevertheless, demonstration of the existence of causal relations between sgs stresses and large-scale characteristics of turbulent shear flows, in addition to those necessary for energy transfer, provides important insight into the relation between scales in turbulent flows.

  19. Killing-Yano forms and Killing tensors on a warped space

    NASA Astrophysics Data System (ADS)

    Krtouš, Pavel; KubizÅák, David; Kolář, Ivan

    2016-01-01

    We formulate several criteria under which the symmetries associated with the Killing and Killing-Yano tensors on the base space can be lifted to the symmetries of the full warped geometry. The procedure is explicitly illustrated on several examples, providing new prototypes of spacetimes admitting such tensors. In particular, we study a warped product of two Kerr-NUT-(A)dS spacetimes and show that it gives rise to a new class of highly symmetric vacuum (with a cosmological constant) black hole solutions that inherit many of the properties of the Kerr-NUT-(A)dS geometry.

  20. The 1/ N Expansion of Tensor Models Beyond Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Gurau, Razvan

    2014-09-01

    We analyze in full mathematical rigor the most general quartically perturbed invariant probability measure for a random tensor. Using a version of the Loop Vertex Expansion (which we call the mixed expansion) we show that the cumulants write as explicit series in 1/ N plus bounded rest terms. The mixed expansion recasts the problem of determining the subleading corrections in 1/ N into a simple combinatorial problem of counting trees decorated by a finite number of loop edges. As an aside, we use the mixed expansion to show that the (divergent) perturbative expansion of the tensor models is Borel summable and to prove that the cumulants respect an uniform scaling bound. In particular the quartically perturbed measures fall, in the N→ ∞ limit, in the universality class of Gaussian tensor models.

  1. Stress as an order parameter for the glass transition

    NASA Astrophysics Data System (ADS)

    Visscher, P. B.; Logan, W. T.

    1990-09-01

    The stress tensor has been considered as a possible order parameter for the liquid-glass transition, and its autocorrelation matrix (elements of which are the integrands in the Green-Kubo formulas for bulk and shear viscosity) have been measured in simulations. However, only the k=0 spatial Fourier component has apparently been previously measured. We have measured four Fourier components of all matrix elements of the stress-stress correlation function, and we find that some of those with nonzero wave vector are significantly more persistent (slower decaying) than the k=0 component.

  2. The incompressible Rindler fluid versus the Schwarzschild-AdS fluid

    NASA Astrophysics Data System (ADS)

    Matsuo, Yoshinori; Natsuume, Makoto; Ohta, Masahiro; Okamura, Takashi

    2013-02-01

    We study the proposal by Bredberg et al. [J. High Energy Phys. 1103, 141 (2011)], where the fluid is defined by the Brown-York tensor on a timelike surface at r = rc in black hole backgrounds. We consider both Rindler space and the Schwarzschild-AdS (SAdS) black hole. The former describes an incompressible fluid, whereas the latter describes the vanishing bulk viscosity at arbitrary rc. Although the near-horizon limit of the SAdS black hole is Rindler space, these two results do not contradict each other. We also find an interesting "coincidence" with the black hole membrane paradigm that gives a negative bulk viscosity. In order to show these results, we rewrite the hydrodynamic stress tensor via metric perturbations using the conservation equation. The resulting expressions are suitable to compare with the Brown-York tensor.

  3. Analytical structure, dynamics, and coarse graining of a kinetic model of an active fluid

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Betterton, Meredith D.; Jhang, An-Sheng; Shelley, Michael J.

    2017-09-01

    We analyze one of the simplest active suspensions with complex dynamics: a suspension of immotile "extensor" particles that exert active extensile dipolar stresses on the fluid in which they are immersed. This is relevant to several experimental systems, such as recently studied tripartite rods that create extensile flows by consuming a chemical fuel. We first describe the system through a Doi-Onsager kinetic theory based on microscopic modeling. This theory captures the active stresses produced by the particles that can drive hydrodynamic instabilities, as well as the steric interactions of rodlike particles that lead to nematic alignment. This active nematic system yields complex flows and disclination defect dynamics very similar to phenomenological Landau-deGennes Q -tensor theories for active nematic fluids, as well as by more complex Doi-Onsager theories for polar microtubule-motor-protein systems. We apply the quasiequilibrium Bingham closure, used to study suspensions of passive microscopic rods, to develop a nonstandard Q -tensor theory. We demonstrate through simulation that this B Q -tensor theory gives an excellent analytical and statistical accounting of the suspension's complex dynamics, at a far reduced computational cost. Finally, we apply the B Q -tensor model to study the dynamics of extensor suspensions in circular and biconcave domains. In circular domains, we reproduce previous results for systems with weak nematic alignment, but for strong alignment we find unusual dynamics with activity-controlled defect production and absorption at the boundaries of the domain. In biconcave domains, a Fredericks-like transition occurs as the width of the neck connecting the two disks is varied.

  4. Intermolecular shielding contributions studied by modeling the 13C chemical-shift tensors of organic single crystals with plane waves

    PubMed Central

    Johnston, Jessica C.; Iuliucci, Robbie J.; Facelli, Julio C.; Fitzgerald, George; Mueller, Karl T.

    2009-01-01

    In order to predict accurately the chemical shift of NMR-active nuclei in solid phase systems, magnetic shielding calculations must be capable of considering the complete lattice structure. Here we assess the accuracy of the density functional theory gauge-including projector augmented wave method, which uses pseudopotentials to approximate the nodal structure of the core electrons, to determine the magnetic properties of crystals by predicting the full chemical-shift tensors of all 13C nuclides in 14 organic single crystals from which experimental tensors have previously been reported. Plane-wave methods use periodic boundary conditions to incorporate the lattice structure, providing a substantial improvement for modeling the chemical shifts in hydrogen-bonded systems. Principal tensor components can now be predicted to an accuracy that approaches the typical experimental uncertainty. Moreover, methods that include the full solid-phase structure enable geometry optimizations to be performed on the input structures prior to calculation of the shielding. Improvement after optimization is noted here even when neutron diffraction data are used for determining the initial structures. After geometry optimization, the isotropic shift can be predicted to within 1 ppm. PMID:19831448

  5. Relaxation approximation in the theory of shear turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    1995-01-01

    Leslie's perturbative treatment of the direct interaction approximation for shear turbulence (Modern Developments in the Theory of Turbulence, 1972) is applied to derive a time dependent model for the Reynolds stresses. The stresses are decomposed into tensor components which satisfy coupled linear relaxation equations; the present theory therefore differs from phenomenological Reynolds stress closures in which the time derivatives of the stresses are expressed in terms of the stresses themselves. The theory accounts naturally for the time dependence of the Reynolds normal stress ratios in simple shear flow. The distortion of wavenumber space by the mean shear plays a crucial role in this theory.

  6. Atomic-batched tensor decomposed two-electron repulsion integrals

    NASA Astrophysics Data System (ADS)

    Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove

    2017-04-01

    We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.

  7. Atomic-batched tensor decomposed two-electron repulsion integrals.

    PubMed

    Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove

    2017-04-07

    We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.

  8. Variational optical flow estimation based on stick tensor voting.

    PubMed

    Rashwan, Hatem A; Garcia, Miguel A; Puig, Domenec

    2013-07-01

    Variational optical flow techniques allow the estimation of flow fields from spatio-temporal derivatives. They are based on minimizing a functional that contains a data term and a regularization term. Recently, numerous approaches have been presented for improving the accuracy of the estimated flow fields. Among them, tensor voting has been shown to be particularly effective in the preservation of flow discontinuities. This paper presents an adaptation of the data term by using anisotropic stick tensor voting in order to gain robustness against noise and outliers with significantly lower computational cost than (full) tensor voting. In addition, an anisotropic complementary smoothness term depending on directional information estimated through stick tensor voting is utilized in order to preserve discontinuity capabilities of the estimated flow fields. Finally, a weighted non-local term that depends on both the estimated directional information and the occlusion state of pixels is integrated during the optimization process in order to denoise the final flow field. The proposed approach yields state-of-the-art results on the Middlebury benchmark.

  9. Liouville action as path-integral complexity: from continuous tensor networks to AdS/CFT

    NASA Astrophysics Data System (ADS)

    Caputa, Pawel; Kundu, Nilay; Miyaji, Masamichi; Takayanagi, Tadashi; Watanabe, Kento

    2017-11-01

    We propose an optimization procedure for Euclidean path-integrals that evaluate CFT wave functionals in arbitrary dimensions. The optimization is performed by minimizing certain functional, which can be interpreted as a measure of computational complexity, with respect to background metrics for the path-integrals. In two dimensional CFTs, this functional is given by the Liouville action. We also formulate the optimization for higher dimensional CFTs and, in various examples, find that the optimized hyperbolic metrics coincide with the time slices of expected gravity duals. Moreover, if we optimize a reduced density matrix, the geometry becomes two copies of the entanglement wedge and reproduces the holographic entanglement entropy. Our approach resembles a continuous tensor network renormalization and provides a concrete realization of the proposed interpretation of AdS/CFT as tensor networks. The present paper is an extended version of our earlier report arXiv:1703.00456 and includes many new results such as evaluations of complexity functionals, energy stress tensor, higher dimensional extensions and time evolutions of thermofield double states.

  10. General equilibrium second-order hydrodynamic coefficients for free quantum fields

    NASA Astrophysics Data System (ADS)

    Buzzegoli, M.; Grossi, E.; Becattini, F.

    2017-10-01

    We present a systematic calculation of the corrections of the stress-energy tensor and currents of the free boson and Dirac fields up to second order in thermal vorticity, which is relevant for relativistic hydrodynamics. These corrections are non-dissipative because they survive at general thermodynamic equilibrium with non vanishing mean values of the conserved generators of the Lorentz group, i.e. angular momenta and boosts. Their equilibrium nature makes it possible to express the relevant coefficients by means of correlators of the angular-momentum and boost operators with stress-energy tensor and current, thus making simpler to determine their so-called "Kubo formulae". We show that, at least for free fields, the corrections are of quantum origin and we study several limiting cases and compare our results with previous calculations. We find that the axial current of the free Dirac field receives corrections proportional to the vorticity independently of the anomalous term.

  11. Brownian thermal noise in functional optical surfaces

    NASA Astrophysics Data System (ADS)

    Kroker, S.; Dickmann, J.; Rojas Hurtado, C. B.; Heinert, D.; Nawrodt, R.; Levin, Y.; Vyatchanin, S. P.

    2017-07-01

    We present a formalism to compute Brownian thermal noise in functional optical surfaces such as grating reflectors, photonic crystal slabs, or complex metamaterials. Such computations are based on a specific readout variable, typically a surface integral of a dielectric interface displacement weighed by a form factor. This paper shows how to relate this form factor to Maxwell's stress tensor computed on all interfaces of the moving surface. As an example, we examine Brownian thermal noise in monolithic T-shaped grating reflectors. The previous computations by Heinert et al. [Phys. Rev. D 88, 042001 (2013), 10.1103/PhysRevD.88.042001] utilizing a simplified readout form factor produced estimates of thermal noise that are tens of percent higher than those of the exact analysis in the present paper. The relation between the form factor and Maxwell's stress tensor implies a close correlation between the optical properties of functional optical surfaces and thermal noise.

  12. Assessing the Uncertainties on Seismic Source Parameters: Towards Realistic Estimates of Moment Tensor Determinations

    NASA Astrophysics Data System (ADS)

    Magnoni, F.; Scognamiglio, L.; Tinti, E.; Casarotti, E.

    2014-12-01

    Seismic moment tensor is one of the most important source parameters defining the earthquake dimension and style of the activated fault. Moment tensor catalogues are ordinarily used by geoscientists, however, few attempts have been done to assess possible impacts of moment magnitude uncertainties upon their own analysis. The 2012 May 20 Emilia mainshock is a representative event since it is defined in literature with a moment magnitude value (Mw) spanning between 5.63 and 6.12. An uncertainty of ~0.5 units in magnitude leads to a controversial knowledge of the real size of the event. The possible uncertainty associated to this estimate could be critical for the inference of other seismological parameters, suggesting caution for seismic hazard assessment, coulomb stress transfer determination and other analyses where self-consistency is important. In this work, we focus on the variability of the moment tensor solution, highlighting the effect of four different velocity models, different types and ranges of filtering, and two different methodologies. Using a larger dataset, to better quantify the source parameter uncertainty, we also analyze the variability of the moment tensor solutions depending on the number, the epicentral distance and the azimuth of used stations. We endorse that the estimate of seismic moment from moment tensor solutions, as well as the estimate of the other kinematic source parameters, cannot be considered an absolute value and requires to come out with the related uncertainties and in a reproducible framework characterized by disclosed assumptions and explicit processing workflows.

  13. Boundary Element Method in a Self-Gravitating Elastic Half-Space and Its Application to Deformation Induced by Magma Chambers

    NASA Astrophysics Data System (ADS)

    Fang, M.; Hager, B. H.

    2014-12-01

    In geophysical applications the boundary element method (BEM) often carries the essential physics in addition to being an efficient numerical scheme. For use of the BEM in a self-gravitating uniform half-space, we made extra effort and succeeded in deriving the fundamental solution analytically in closed-form. A problem that goes deep into the heart of the classic BEM is encountered when we try to apply the new fundamental solution in BEM for deformation field induced by a magma chamber or a fluid-filled reservoir. The central issue of the BEM is the singular integral arising from determination of the boundary values. A widely employed technique is to rescale the singular boundary point into a small finite volume and then shrink it to extract the limits. This operation boils down to the calculation of the so-called C-matrix. Authors in the past take the liberty of either adding or subtracting a small volume. By subtracting a small volume, the C-matrix is (1/2)I on a smooth surface, where I is the identity matrix; by adding a small volume, we arrive at the same C-matrix in the form of I - (1/2)I. This evenness is a result of the spherical symmetry of Kelvin's fundamental solution employed. When the spherical symmetry is broken by gravity, the C-matrix is polarized. And we face the choice between right and wrong, for adding and subtracting a small volume yield different C-matrices. Close examination reveals that both derivations, addition and subtraction of a small volume, are ad hoc. To resolve the issue we revisit the Somigliana identity with a new derivation and careful step-by-step anatomy. The result proves that even though both adding and subtracting a small volume appear to twist the original boundary, only addition essentially modifies the original boundary and consequently modifies the physics of the original problem in a subtle way. The correct procedure is subtraction. We complete a new BEM theory by introducing in full analytical form what we call the singular stress tensor for the fundamental solution. We partition the stress tensor of the fundamental solution into a singular part and a regular part. In this way all singular integrals systematically shift into the easy singular stress tensor. Applications of this new BEM to deformation and gravitational perturbation induced by magma chambers of finite volume will be presented.

  14. Full Tensor Diffusion Imaging Is Not Required To Assess the White-Matter Integrity in Mouse Contusion Spinal Cord Injury

    PubMed Central

    Tu, Tsang-Wei; Kim, Joong H.; Wang, Jian

    2010-01-01

    Abstract In vivo diffusion tensor imaging (DTI) derived indices have been demonstrated to quantify accurately white-matter injury after contusion spinal cord injury (SCI) in rodents. In general, a full diffusion tensor analysis requires the acquisition of diffusion-weighted images (DWI) along at least six independent directions of diffusion-sensitizing gradients. Thus, DTI measurements of the rodent central nervous system are time consuming. In this study, diffusion indices derived using the two-direction DWI (parallel and perpendicular to axonal tracts) were compared with those obtained using six-direction DTI in a mouse model of SCI. It was hypothesized that the mouse spinal cord ventral-lateral white-matter (VLWM) tracts, T8–T10 in this study, aligned with the main magnet axis (z) allowing the apparent diffusion coefficient parallel and perpendicular to the axis of the spine to be derived with diffusion-weighting gradients in the z and y axes of the magnet coordinate respectively. Compared with six-direction full tensor DTI, two-direction DWI provided comparable diffusion indices in mouse spinal cords. The measured extent of spared white matter after injury, estimated by anisotropy indices, using both six-direction DTI and two-direction DWI were in close agreement and correlated well with histological staining and behavioral assessment. The results suggest that the two-direction DWI derived indices may be used, with significantly reduced imaging time, to estimate accurately spared white matter in mouse SCI. PMID:19715399

  15. Remarks on turbulent constitutive relations

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Lumley, John L.

    1993-01-01

    The paper demonstrates that the concept of turbulent constitutive relations can be used to construct general models for various turbulent correlations. Some of the Generalized Cayley-Hamilton formulas for relating tensor products of higher extension to tensor products of lower extension are introduced. The combination of dimensional analysis and invariant theory can lead to 'turbulent constitutive relations' (or general turbulence models) for, in principle, any turbulent correlations. As examples, the constitutive relations for Reynolds stresses and scalar fluxes are derived. The results are consistent with ones from Renormalization Group (RNG) theory and two-scale Direct-Interaction Approximation (DIA) method, but with a more general form.

  16. Scale-invariant curvature fluctuations from an extended semiclassical gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinamonti, Nicola, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it; INFN Sezione di Genova, Via Dodecaneso 33, 16146 Genova; Siemssen, Daniel, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it

    2015-02-15

    We present an extension of the semiclassical Einstein equations which couple n-point correlation functions of a stochastic Einstein tensor to the n-point functions of the quantum stress-energy tensor. We apply this extension to calculate the quantum fluctuations during an inflationary period, where we take as a model a massive conformally coupled scalar field on a perturbed de Sitter space and describe how a renormalization independent, almost-scale-invariant power spectrum of the scalar metric perturbation is produced. Furthermore, we discuss how this model yields a natural basis for the calculation of non-Gaussianities of the considered metric fluctuations.

  17. Seismic velocity structure and microearthquake source properties at The Geysers, California, geothermal area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connell, D.R.

    1986-12-01

    The method of progressive hypocenter-velocity inversion has been extended to incorporate S-wave arrival time data and to estimate S-wave velocities in addition to P-wave velocities. S-wave data to progressive inversion does not completely eliminate hypocenter-velocity tradeoffs, but they are substantially reduced. Results of a P and S-wave progressive hypocenter-velocity inversion at The Geysers show that the top of the steam reservoir is clearly defined by a large decrease of V/sub p//V/sub s/ at the condensation zone-production zone contact. The depth interval of maximum steam production coincides with minimum observed V/sub p//V/sub s/, and V/sub p//V/sub s/ increses below the shallowmore » primary production zone suggesting that reservoir rock becomes more fluid saturated. The moment tensor inversion method was applied to three microearthquakes at The Geysers. Estimated principal stress orientations were comparable to those estimated using P-wave firstmotions as constraints. Well constrained principal stress orientations were obtained for one event for which the 17 P-first motions could not distinguish between normal-slip and strike-slip mechanisms. The moment tensor estimates of principal stress orientations were obtained using far fewer stations than required for first-motion focal mechanism solutions. The three focal mechanisms obtained here support the hypothesis that focal mechanisms are a function of depth at The Geysers. Progressive inversion as developed here and the moment tensor inversion method provide a complete approach for determining earthquake locations, P and S-wave velocity structure, and earthquake source mechanisms.« less

  18. Turbulent Kinetic Energy (TKE) Budgets Using 5-beam Doppler Profilers

    NASA Astrophysics Data System (ADS)

    Guerra, M. A.; Thomson, J. M.

    2016-12-01

    Field observations of turbulence parameters are important for the development of hydrodynamic models, understanding contaminant mixing, and predicting sediment transport. The turbulent kinetic energy (TKE) budget quantifies where turbulence is being produced, dissipated or transported at a specific site. The Nortek Signature 5-beam AD2CP was used to measure velocities at high sampling rates (up to 8 Hz) at Admiralty Inlet and Rich Passage in Puget Sound, WA, USA. Raw along-beam velocity data is quality controlled and is used to estimate TKE spectra, spatial structure functions, and Reynolds stress tensors. Exceptionally low Doppler noise in the data enables clear observations of the inertial sub-range of isotropic turbulence in both the frequency TKE spectra and the spatial structure functions. From these, TKE dissipation rates are estimated following Kolmogorov's theory of turbulence. The TKE production rates are estimated using Reynolds stress tensors together with the vertical shear in the mean flow. The Reynolds stress tensors are estimated following the methodology of Dewey and Stinger (2007), which is significantly improved by inclusion of the 5th beam (as opposed to the conventional 4). These turbulence parameters are used to study the TKE budget along the water column at the two sites. Ebb and flood production and dissipation rates are compared through the water column at both sites. At Admiralty Inlet, dissipation exceeds production during ebb while the opposite occurs during flood because the proximity to a lateral headland. At Rich Passage, production exceeds dissipation through the water column for all tidal conditions due to a vertical sill in the vicinity of the measurement site.

  19. Corner entanglement as a probe of quantum criticality

    NASA Astrophysics Data System (ADS)

    Witczak-Krempa, William; Bueno, Pablo; Myers, Robert C.

    The entanglement entropy in many gapless quantum systems in 2+1D receives a contribution from corners in the entangling surface. It is characterized by a universal function a (θ) that depends non-trivially on the corner opening angle θ. Focusing on a large family of quantum critical theories with emergent Lorentz invariance (CFTs), we argue that the smooth limit a (θ ~ π) is entirely determined by the energy-density or stress tensor 2-point function coefficient. This explains recent results obtained via cutting edge simulations on the quantum critical Ising, XY and Heisenberg models. We also show how to extract the full thermal entropy of the quantum critical system using corner entanglement of the groundstate alone. ** Bueno, Myers, WK, Phys. Rev. Lett. (2015) Work supported by Perimeter Institute and NSERC.

  20. Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes.

    PubMed

    East, William E; Pretorius, Frans

    2017-07-28

    We study the growth and saturation of the superradiant instability of a complex, massive vector (Proca) field as it extracts energy and angular momentum from a spinning black hole, using numerical solutions of the full Einstein-Proca equations. We concentrate on a rapidly spinning black hole (a=0.99) and the dominant m=1 azimuthal mode of the Proca field, with real and imaginary components of the field chosen to yield an axisymmetric stress-energy tensor and, hence, spacetime. We find that in excess of 9% of the black hole's mass can be transferred into the field. In all cases studied, the superradiant instability smoothly saturates when the black hole's horizon frequency decreases to match the frequency of the Proca cloud that spontaneously forms around the black hole.

  1. Topological regularization and self-duality in four-dimensional anti-de Sitter gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskovic, Olivera; Olea, Rodrigo; Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso

    2009-06-15

    It is shown that the addition of a topological invariant (Gauss-Bonnet term) to the anti-de Sitter gravity action in four dimensions recovers the standard regularization given by the holographic renormalization procedure. This crucial step makes possible the inclusion of an odd parity invariant (Pontryagin term) whose coupling is fixed by demanding an asymptotic (anti) self-dual condition on the Weyl tensor. This argument allows one to find the dual point of the theory where the holographic stress tensor is related to the boundary Cotton tensor as T{sub j}{sup i}={+-}(l{sup 2}/8{pi}G)C{sub j}{sup i}, which has been observed in recent literature in solitonicmore » solutions and hydrodynamic models. A general procedure to generate the counterterm series for anti-de Sitter gravity in any even dimension from the corresponding Euler term is also briefly discussed.« less

  2. Energy-momentum tensors in linearized Einstein's theory and massive gravity: The question of uniqueness

    NASA Astrophysics Data System (ADS)

    Bičák, Jiří; Schmidt, Josef

    2016-01-01

    The question of the uniqueness of energy-momentum tensors in the linearized general relativity and in the linear massive gravity is analyzed without using variational techniques. We start from a natural ansatz for the form of the tensor (for example, that it is a linear combination of the terms quadratic in the first derivatives), and require it to be conserved as a consequence of field equations. In the case of the linear gravity in a general gauge we find a four-parametric system of conserved second-rank tensors which contains a unique symmetric tensor. This turns out to be the linearized Landau-Lifshitz pseudotensor employed often in full general relativity. We elucidate the relation of the four-parametric system to the expression proposed recently by Butcher et al. "on physical grounds" in harmonic gauge, and we show that the results coincide in the case of high-frequency waves in vacuum after a suitable averaging. In the massive gravity we show how one can arrive at the expression which coincides with the "generalized linear symmetric Landau-Lifshitz" tensor. However, there exists another uniquely given simpler symmetric tensor which can be obtained by adding the divergence of a suitable superpotential to the canonical energy-momentum tensor following from the Fierz-Pauli action. In contrast to the symmetric tensor derived by the Belinfante procedure which involves the second derivatives of the field variables, this expression contains only the field and its first derivatives. It is simpler than the generalized Landau-Lifshitz tensor but both yield the same total quantities since they differ by the divergence of a superpotential. We also discuss the role of the gauge conditions in the proofs of the uniqueness. In the Appendix, the symbolic tensor manipulation software cadabra is briefly described. It is very effective in obtaining various results which would otherwise require lengthy calculations.

  3. Polarized-cathodoluminescence study of uniaxial and biaxial stress in GaAs/Si

    NASA Technical Reports Server (NTRS)

    Rich, D. H.; Ksendzov, A.; Terhune, R. W.; Grunthaner, F. J.; Wilson, B. A.; Shen, H.; Dutta, M.; Vernon, S. M.; Dixon, T. M.

    1991-01-01

    The strain-induced splitting of the heavy-hole (hh) and light-hole (lh) valence bands for 4-microns thick GaAs/Si is examined on a microscopic scale using linear polarized-cathodoluminescence imaging and spectroscopy. The energies and intensities of the hh- and lh-exciton luminescence are quantitatively analyzed to determine spatial variations in the stress tensor. The results indicate that regions near and far from the microcracks are primarily subject to uniaxial and biaxial tensile stresses, respectively. The transition region where biaxial stress gradually converts to uniaxial stress is analyzed, and reveals a mixing of lh and hh characters in the strain-split bands.

  4. Element Library for Three-Dimensional Stress Analysis by the Integrated Force Method

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.

    1996-01-01

    The Integrated Force Method, a recently developed method for analyzing structures, is extended in this paper to three-dimensional structural analysis. First, a general formulation is developed to generate the stress interpolation matrix in terms of complete polynomials of the required order. The formulation is based on definitions of the stress tensor components in term of stress functions. The stress functions are written as complete polynomials and substituted into expressions for stress components. Then elimination of the dependent coefficients leaves the stress components expressed as complete polynomials whose coefficients are defined as generalized independent forces. Such derived components of the stress tensor identically satisfy homogenous Navier equations of equilibrium. The resulting element matrices are invariant with respect to coordinate transformation and are free of spurious zero-energy modes. The formulation provides a rational way to calculate the exact number of independent forces necessary to arrive at an approximation of the required order for complete polynomials. The influence of reducing the number of independent forces on the accuracy of the response is also analyzed. The stress fields derived are used to develop a comprehensive finite element library for three-dimensional structural analysis by the Integrated Force Method. Both tetrahedral- and hexahedral-shaped elements capable of modeling arbitrary geometric configurations are developed. A number of examples with known analytical solutions are solved by using the developments presented herein. The results are in good agreement with the analytical solutions. The responses obtained with the Integrated Force Method are also compared with those generated by the standard displacement method. In most cases, the performance of the Integrated Force Method is better overall.

  5. A generalized electro-elastic theory of polymer networks

    NASA Astrophysics Data System (ADS)

    Cohen, Noy

    2018-01-01

    A rigorous multi-scale analysis of the electromechanical coupling in dielectric polymers is conducted. The body couples stemming from a misalignment between the electric field and the electric-dipole density vector are studied and the conservation laws for polymer networks are derived. Using variational principles, expressions for the polarization and the stress are determined. Interestingly, it is found that the stress tensor resulting from coupled loadings in which the electric field is misaligned with the principal stretch directions is not symmetric and the asymmetry arises from the body couples. Next, the electro-mechanical response of a chain is analyzed. The deformations of the individual polymer chains are related to the macroscopic deformation via two highly non-linear constraints - the first pertaining to the compatibility of the local deformations with the imposed macroscopic one and the second stems from the symmetric part of the stress at equilibrium. In accord with the proposed framework, an amended three-chains model is introduced. The predictions of this model are found to be in excellent agreement with experimental findings. Lastly, the behavior of a polymer subjected to a simple shear and an electric field is studied. The offset between the electric field and the principal directions gives rise to body couples, a polarization that is not aligned with the electric field, and an asymmetric stress tensor.

  6. Triaxial X-Ray Diffraction Method and its Application to Monitor Residual Stress in Surface Layers after High-Feed Milling

    NASA Astrophysics Data System (ADS)

    Zaušková, Lucia; Czán, Andrej; Šajgalík, Michal; Pobijak, Jozef; Mikloš, Matej

    2017-10-01

    High-feed milling is a milling method characteristic with shallow depth of cut and high feed rate to maximize the amount of removed metal from a part, generating residual stresses in the surface and subsurface layers of the machined parts. The residual stress has a large influence on the functional properties of the components. The article is focused on the application of triaxial x-ray diffraction method to monitor residual stresses after high feed milling. Significance of triaxial measuring method is the capability of measuring in different angles so it is possible to acquire stress tensor containing normal and shear stress components.

  7. Software Tool for Computing Maximum Von Mises Stress

    NASA Technical Reports Server (NTRS)

    Chen, Long Y.; Knutson, Kurt; Martin, Eric

    2007-01-01

    The maximum Van Mises stress and stress direction are of interest far analyzing launch accelerations such as with the Mass Acceleration Curves developed by JPL. Maximum launch stresses can be combined with appropriate load cases at consistent locations with resulting stress tensors. Maximum Van Mises stress is also of interest for understanding maximum operational loading such as traverse events. - For example, planetary traversing simulations may prescribe bounding acceleration values during traverse for a rover such as Mars Science Lab (MSL) in (X,Y,Z) of the rover. - Such accelerations can be really in any directions for many parts such as a mast or head mounted components which can be in numerous configurations and orientations when traversing a planet surface.

  8. A new unified theory of electromagnetic and gravitational interactions

    NASA Astrophysics Data System (ADS)

    Li, Li-Xin

    2016-12-01

    In this paper we present a new unified theory of electromagnetic and gravitational interactions. By considering a four-dimensional spacetime as a hypersurface embedded in a five-dimensional bulk spacetime, we derive the complete set of field equations in the four-dimensional spacetime from the fivedimensional Einstein field equation. Besides the Einstein field equation in the four-dimensional spacetime, an electromagnetic field equation is obtained: ∇a F ab - ξ R b a A a = -4π J b with ξ = -2, where F ab is the antisymmetric electromagnetic field tensor defined by the potential vector A a , R ab is the Ricci curvature tensor of the hypersurface, and J a is the electric current density vector. The electromagnetic field equation differs from the Einstein-Maxwell equation by a curvature-coupled term ξ R b a A a , whose presence addresses the problem of incompatibility of the Einstein-Maxwell equation with a universe containing a uniformly distributed net charge, as discussed in a previous paper by the author [L.-X. Li, Gen. Relativ. Gravit. 48, 28 (2016)]. Hence, the new unified theory is physically different from Kaluza-Klein theory and its variants in which the Einstein-Maxwell equation is derived. In the four-dimensional Einstein field equation derived in the new theory, the source term includes the stress-energy tensor of electromagnetic fields as well as the stress-energy tensor of other unidentified matter. Under certain conditions the unidentified matter can be interpreted as a cosmological constant in the four-dimensional spacetime. We argue that, the electromagnetic field equation and hence the unified theory presented in this paper can be tested in an environment with a high mass density, e.g., inside a neutron star or a white dwarf, and in the early epoch of the universe.

  9. Stress field modeling of the Carpathian Basin based on compiled tectonic maps

    NASA Astrophysics Data System (ADS)

    Albert, Gáspár; Ungvári, Zsuzsanna; Szentpéteri, Krisztián

    2014-05-01

    The estimation of the stress field in the Carpathian Basin is tackled by several authors. Their modeling methods usually based on measurements (borehole-, focal mechanism- and geodesic data) and the result is a possible structural pattern of the region. Our method works indirectly: the analysis is aimed to project a possible 2D stress field over the already mapped/known/compiled lineament pattern. This includes a component-wise interpolation of the tensor-field, which is based on the generated irregular point cloud in the puffer zone of the mapped lineaments. The interpolated values appear on contour and tensor maps, and show the relative stress field of the area. In 2006 Horváth et al. compiled the 'Atlas of the present-day geodynamics of the Pannonian basin'. To test our method we processed the lineaments of the 1:1 500 000 scale 'Map of neotectonic (active) structures' published in this atlas. The geodynamic parameters (i.e. normal, reverse, right- and left lateral strike-slip faults, etc.) of the lines on this map were mostly explained in the legend. We classified the linear elements according to these parameters and created a geo-referenced mapping database. This database contains the polyline sections of the map lineaments as vectors (i.e. line sections), and the directions of the stress field as attributes of these vectors. The directions of the dip-parallel-, strike-parallel- and vertical stress-vectors are calculated from the geodynamical parameters of the line section. Since we created relative stress field properties, the eigenvalues of the vectors were maximized to one. Each point in the point cloud inherits the stress property of the line section, from which it was derived. During the modeling we tried several point-cloud generating- and interpolation methods. The analysis of the interpolated tensor fields revealed that the model was able to reproduce a geodynamic synthesis of the Carpathian Basin, which can be correlated with the synthesis of the Atlas published in 2006. The method was primarily aimed to reconstruct paleo-stress fields. References Horváth, F., Bada, G., Windhoffer, G., Csontos, L., Dombrádi, E., Dövényi, P., Fodor, L., Grenerczy, G., Síkhegyi, F., Szafián, P., Székely, B., Timár, G., Tóth, L., Tóth, T. 2006: Atlas of the present-day geodynamics of the Pannonian basin: Euroconform maps with explanatory text. Magyar Geofizika 47, 133-137.

  10. Piezo-optic tensor of crystals from quantum-mechanical calculations.

    PubMed

    Erba, A; Ruggiero, M T; Korter, T M; Dovesi, R

    2015-10-14

    An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of the full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO4, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π61 constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.

  11. Piezo-optic tensor of crystals from quantum-mechanical calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erba, A., E-mail: alessandro.erba@unito.it; Dovesi, R.; Ruggiero, M. T.

    2015-10-14

    An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of themore » full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO{sub 4}, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π{sub 61} constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.« less

  12. The Effects of Racket Inertia Tensor on Elbow Loadings and Racket Behavior for Central and Eccentric Impacts

    PubMed Central

    Nesbit, Steven M.; Elzinga, Michael; Herchenroder, Catherine; Serrano, Monika

    2006-01-01

    This paper discusses the inertia tensors of tennis rackets and their influence on the elbow swing torques in a forehand motion, the loadings transmitted to the elbow from central and eccentric impacts, and the racket acceleration responses from central and eccentric impacts. Inertia tensors of various rackets with similar mass and mass center location were determined by an inertia pendulum and were found to vary considerably in all three orthogonal directions. Tennis swing mechanics and impact analyses were performed using a computer model comprised of a full-body model of a human, a parametric model of the racket, and an impact function. The swing mechanics analysis of a forehand motion determined that inertia values had a moderate linear effect on the pronation-supination elbow torques required to twist the racket, and a minor effect on the flexion-extension and valgus-varus torques. The impact analysis found that mass center inertia values had a considerable effect on the transmitted torques for both longitudinal and latitudinal eccentric impacts and significantly affected all elbow torque components. Racket acceleration responses to central and eccentric impacts were measured experimentally and found to be notably sensitive to impact location and mass center inertia values. Key Points Tennis biomechanics. Racket inertia tensor. Impact analysis. Full-body computer model. PMID:24260004

  13. Identification of the full anisotropic flow resistivity tensor for multiple glass wool and melamine foam samples.

    PubMed

    Van der Kelen, Christophe; Göransson, Peter

    2013-12-01

    The flow resistivity tensor, which is the inverse of the viscous permeability tensor, is one of the most important material properties for the acoustic performance of porous materials used in acoustic treatments. Due to the manufacturing processes involved, these porous materials are most often geometrically anisotropic on a microscopic scale, and for demanding applications, there is a need for improved characterization methods. This paper discusses recent refinements of a method for the identification of the anisotropic flow resistivity tensor. The inverse estimation is verified for three fictitious materials with different degrees of anisotropy. Measurements are performed on nine glass wool samples and seven melamine foam samples, and the anisotropic flow resistivity tensors obtained are validated by comparison to measurements performed on uni-directional cylindrical samples, extracted from the same, previously measured cubic samples. The variability of flow resistivity in the batch of material from which the glass wool is extracted is discussed. The results for the melamine foam suggest that there is a relation between the direction of highest flow resistivity, and the rise direction of the material.

  14. Simulation of Anisotropic Rock Damage for Geologic Fracturing

    NASA Astrophysics Data System (ADS)

    Busetti, S.; Xu, H.; Arson, C. F.

    2014-12-01

    A continuum damage model for differential stress-induced anisotropic crack formation and stiffness degradation is used to study geologic fracturing in rocks. The finite element-based model solves for deformation in the quasi-linear elastic domain and determines the six component damage tensor at each deformation increment. The model permits an isotropic or anisotropic intact or pre-damaged reference state, and the elasticity tensor evolves depending on the stress path. The damage variable, similar to Oda's fabric tensor, grows when the surface energy dissipated by three-dimensional opened cracks exceeds a threshold defined at the appropriate scale of the representative elementary volume (REV). At the laboratory or wellbore scale (<1m) brittle continuum damage reflects microcracking, grain boundary separation, grain crushing, or fine delamination, such as in shale. At outcrop (1m-100m), seismic (10m-1000m), and tectonic (>1000m) scales the damaged REV reflects early natural fracturing (background or tectonic fracturing) or shear strain localization (fault process zone, fault-tip damage, etc.). The numerical model was recently benchmarked against triaxial stress-strain data from laboratory rock mechanics tests. However, the utility of the model to predict geologic fabric such as natural fracturing in hydrocarbon reservoirs was not fully explored. To test the ability of the model to predict geological fracturing, finite element simulations (Abaqus) of common geologic scenarios with known fracture patterns (borehole pressurization, folding, faulting) are simulated and the modeled damage tensor is compared against physical fracture observations. Simulated damage anisotropy is similar to that derived using fractured rock-mass upscaling techniques for pre-determined fracture patterns. This suggests that if model parameters are constrained with local data (e.g., lab, wellbore, or reservoir domain), forward modeling could be used to predict mechanical fabric at the relevant REV scale. This reference fabric also can be used as the starting material property to pre-condition subsequent deformation or fluid flow. Continuing efforts are to expand the present damage model to couple damage evolution with plasticity and with permeability for more geologically realistic simulation.

  15. A direct numerical simulation-based re-examination of coefficients in the pressure-strain models in second-moment closures

    NASA Astrophysics Data System (ADS)

    Jakirlić, S.; Hanjalić, K.

    2013-10-01

    The most challenging task in closing the Reynolds-averaged Navier-Stokes equations at the second-moment closure (SMC) level is to model the pressure-rate-of-strain correlation in the transport equation for the Reynolds-stress tensor. The accurate modelling of this term, commonly denoted as Φij, is the key prerequisite for the correct capturing of the stress anisotropy, which potentially gives SMCs a decisive advantage over the ‘anisotropy-blind’ eddy-viscosity models. A variety of models for Φij proposed in the literature can all be expressed as a function of the stress-anisotropy-, rate-of-strain- and rate-of-rotation second-rank tensors, so that the modelling task is reduced to determining the model coefficients. It is, thus, the coefficients, associated with various terms in the expression, which differ from one model to another. The model coefficients have been traditionally determined with reference to the available data for sets of generic flows while being forced to satisfying the known values at flow boundaries. We evaluated the coefficients up to the second-order terms (in stress-anisotropy aij) directly from the DNS database for Φij and the turbulence variables involved in its modelling. The variations of the coefficients across the flow in a plane channel over a range of Reynolds numbers are compared with several popular models. The analysis provided a reasonable support for the common tensor-expansion representation of both the slow and rapid terms. Apart from the near-wall region and the channel centre, most coefficients for higher Re numbers showed themselves to be reasonably uniform, with the values closest to those proposed by Sarkar et al (1991 J. Fluid Mech. 227 245-72). An illustration of the coefficient variation for the ‘quasi-linear’ model is also presented for flow over a backward-facing step.

  16. Triple-material stress-strain resistivity gage

    DOEpatents

    Stout, R.B.

    1987-05-19

    A triple material piezoresistive gage provides multi-component elastic stress or strain measurements. Thin foils of three piezoresistive materials, e.g., ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grind or other grind arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated form the resistivity measurements. 4 figs.

  17. Triple-material stress-strain resistivity gage

    DOEpatents

    Stout, R.B.

    1988-05-17

    A triple material piezoresistive gage provides multi-component elastic stress measurements is disclosed. Thin foils of three piezoresistive materials, e.g. ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grid or other grid arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of the gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated from the resistivity measurements. 4 figs.

  18. Triple-material stress-strain resistivity gage

    DOEpatents

    Stout, Ray B.

    1988-01-01

    A triple material piezoresistive gage provides multi-component elastic stress or measurements. Thin foils of three piezoresistive materials, e.g. ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grid or other grid arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of the gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated from the resistivity measurements.

  19. Effect of microstructural damage on ply stresses in laminated composites

    NASA Technical Reports Server (NTRS)

    Allen, D. H.; Nottorf, E. W.; Harris, C. E.

    1988-01-01

    The mechanisms involved in damage and failure of laminated orthotropic composites are investigated theoretically. The continuum model developed accounts for both matrix cracks and interply delamination using second-order tensor-valued internal-state variables based on the locally averaged microcrack dynamics. The derivation of the model is given in detail, and numerical results for sample problems are presented in extensive graphs and tables. The model is shown to be effective in predicting stresses at the ply level, and significant damage-induced decreases in laminate stress states are found.

  20. General theories of linear gravitational perturbations to a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Tattersall, Oliver J.; Ferreira, Pedro G.; Lagos, Macarena

    2018-02-01

    We use the covariant formulation proposed by Tattersall, Lagos, and Ferreira [Phys. Rev. D 96, 064011 (2017), 10.1103/PhysRevD.96.064011] to analyze the structure of linear perturbations about a spherically symmetric background in different families of gravity theories, and hence study how quasinormal modes of perturbed black holes may be affected by modifications to general relativity. We restrict ourselves to single-tensor, scalar-tensor and vector-tensor diffeomorphism-invariant gravity models in a Schwarzschild black hole background. We show explicitly the full covariant form of the quadratic actions in such cases, which allow us to then analyze odd parity (axial) and even parity (polar) perturbations simultaneously in a straightforward manner.

  1. High resolution microdiffraction studies using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Spolenak, R.; Tamura, N.; Valek, B. C.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Brown, W. L.; Marieb, T.; Batterman, B. W.; Patel, J. R.

    2002-04-01

    The advent of third generation synchrotron light sources in combination with x-ray focusing devices such as Kirkpatrick-Baez mirrors make Laue diffraction on a submicron length scale possible. Analysis of Laue images enables us to determine the deviatoric part of the 3D strain tensor to an accuracy of 2×10-4 in strain with a spatial resolution comparable to the grain size in our thin films. In this paper the application of x-ray microdiffraction to the temperature dependence of the mechanical behavior of a sputtered blanket Cu film and of electroplated damascene Cu lines will be presented. Microdiffraction reveals very large variations in the strain of a film or line from grain to grain. When the strain is averaged over a macroscopic region the results are in good agreement with direct macroscopic stress measurements. However, the strain variations are so large that in some cases in which the average stress is tensile there are some grains actually under compression. The full implications of these observations are still being considered, but it is clear that the mechanical properties of thin film materials are now accessible with new visibility.

  2. Imaging stress redistribution in a high-stress mining environment using induced microseismicity and seismic tomography

    NASA Astrophysics Data System (ADS)

    Baig, A. M.; Urbancic, T.; Bosman, K.; Smith-Boughner, L.; Viegas, G. F.

    2016-12-01

    Underground excavation of ore tends to concentrate stress in the pillars of the mines. As the mining progresses, the stress tends to concentrate in these pillars resulting in potentially critical stress conditions that lead to concerns over personnel safety and has implications with regards to efficient and effective extraction criteria. It therefore becomes critical for operations to manage this stress behaviour as the extraction activities progress. In this study, we examine seismicity recorded with a full three-dimensional array consisting of single- and three-component accelerometers and geophones around the extraction volumes; this data formed the basis for characterization of stress variations. Specifically, we present an integrated study of the seismological properties of a sill pillar during the blasting of a stope to characterize how the stress is evolving in the mine. Our results suggest that the seismicity itself reacts to the stress conditions of the mining and through investigation of the source parameters, reveals how these events are being activated. Through consideration of the both the source parameters and the inter-event times and distances, we arrive at a description of the deformation of the reservoir and are able to assess the role of stress during this process. Further resolution of the stress state in the mine is obtained through inversions of moment tensors on the highest-quality microseismic data, and a descriptive analysis of event clustering by space and time to resolve the dynamics of the stress orientations. To corroborate our inferences based on microseismicity, we use blasts recorded around the extraction volume to understand how stress is manifesting itself through P-wave velocity anomalies. We confirm the dynamics of the stress field that we observe from the microseismicity and show the destressing effect of blasting coupled with stress migration through to other parts of the sill pillar.

  3. Spatio-temporal changes of seismic anisotropy in seismogenic zones

    NASA Astrophysics Data System (ADS)

    Saade, M.; Montagner, J.; Roux, P.; Paul, C.; Brenguier, F.; Enescu, B.; Shiomi, K.

    2013-12-01

    Seismic anisotropy plays a key role in the study of stress and strain fields in the earth. Potential temporal change of seismic anisotropy can be interpreted as change of the orientation of cracks in seismogenic zones and thus change of the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes (Durand et al. , 2011) but are still not well understood. In this study, from a numerical point of view, we investigate the variations of the polarization of surface waves in anisotropic media. These variations are related to the elastic properties of the medium, in particular to anisotropy. The technique used is based on the calculation of the whole cross-correlation tensor (CCT) of ambient seismic noise. If the sources are randomly distributed in homogeneous medium, it allows us to reconstruct the Green's tensor between two stations continuously and to monitor the region through the use of its fluctuations. Therefore, the temporal change of the Green's cross-correlation tensor enables the monitoring of stress and strain fields. This technique is applied to synthetic seismograms computed in a transversally isotropic medium with horizontal symmetry axis (hereafter referred to an HTI medium) using a code RegSEM (Cupillard et al. , 2012) based on the spectral element method. We designed an experiment in order to investigate the influence of anisotropy on the CCT. In homogeneous, isotropic medium the off-diagonal terms of the Green's tensor are null. The CCT is computed between each pair of stations and then rotated in order to approximate the Green's tensor by minimizing the off-diagonal components. This procedure permits the calculation of the polarization angle of quasi-Rayleigh and quasi-Love waves, and to observe the azimuthal variation of their polarization. The results show that even a small variation of the azimuth of seismic anisotropy with respect to a certain pair of stations can induce, in some cases, a large variation in the horizontal polarization of surface waves along the direction of this pair of stations. It depends on the relative azimuth angle between the pair of stations and the direction of anisotropy, on the amplitude of anisotropy and the frequency band of the signal. Therefore, it is now possible to explain the large, rapid and very localized variations of surface waves horizontal polarization observed by Durand et al. (2011) during the Parkfield earthquake of 2004. Furthermore, some preliminary results about the investigation of seismic anisotropy change caused by the June 13, 2008 Iwate-Miyagi Nairiku earthquake (Mw = 6.9) will be presented.

  4. Robust photometric invariant features from the color tensor.

    PubMed

    van de Weijer, Joost; Gevers, Theo; Smeulders, Arnold W M

    2006-01-01

    Luminance-based features are widely used as low-level input for computer vision applications, even when color data is available. The extension of feature detection to the color domain prevents information loss due to isoluminance and allows us to exploit the photometric information. To fully exploit the extra information in the color data, the vector nature of color data has to be taken into account and a sound framework is needed to combine feature and photometric invariance theory. In this paper, we focus on the structure tensor, or color tensor, which adequately handles the vector nature of color images. Further, we combine the features based on the color tensor with photometric invariant derivatives to arrive at photometric invariant features. We circumvent the drawback of unstable photometric invariants by deriving an uncertainty measure to accompany the photometric invariant derivatives. The uncertainty is incorporated in the color tensor, hereby allowing the computation of robust photometric invariant features. The combination of the photometric invariance theory and tensor-based features allows for detection of a variety of features such as photometric invariant edges, corners, optical flow, and curvature. The proposed features are tested for noise characteristics and robustness to photometric changes. Experiments show that the proposed features are robust to scene incidental events and that the proposed uncertainty measure improves the applicability of full invariants.

  5. Hilbert complexes of nonlinear elasticity

    NASA Astrophysics Data System (ADS)

    Angoshtari, Arzhang; Yavari, Arash

    2016-12-01

    We introduce some Hilbert complexes involving second-order tensors on flat compact manifolds with boundary that describe the kinematics and the kinetics of motion in nonlinear elasticity. We then use the general framework of Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors. As some applications of these decompositions in nonlinear elasticity, we study the strain compatibility equations of linear and nonlinear elasticity in the presence of Dirichlet boundary conditions and the existence of stress functions on non-contractible bodies. As an application of these Hilbert complexes in computational mechanics, we briefly discuss the derivation of a new class of mixed finite element methods for nonlinear elasticity.

  6. Dilational processes accompanying earthquakes in the Long Valley Caldera

    USGS Publications Warehouse

    Dreger, Douglas S.; Tkalcic, Hrvoje; Johnston, M.

    2000-01-01

    Regional distance seismic moment tensor determinations and broadband waveforms of moment magnitude 4.6 to 4.9 earthquakes from a November 1997 Long Valley Caldera swarm, during an inflation episode, display evidence of anomalous seismic radiation characterized by non-double couple (NDC) moment tensors with significant volumetric components. Observed coseismic dilation suggests that hydrothermal or magmatic processes are directly triggering some of the seismicity in the region. Similarity in the NDC solutions implies a common source process, and the anomalous events may have been triggered by net fault-normal stress reduction due to high-pressure fluid injection or pressurization of fluid-saturated faults due to magmatic heating.

  7. Representing Matrix Cracks Through Decomposition of the Deformation Gradient Tensor in Continuum Damage Mechanics Methods

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.

    2015-01-01

    A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.

  8. Stationary black holes with stringy hair

    NASA Astrophysics Data System (ADS)

    Boos, Jens; Frolov, Valeri P.

    2018-01-01

    We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.

  9. Modeling the Proterozoic Basement's Effective Stress Field, Assessing Fault Reactivation Potential Related to Increased Fluid Pressures, and Improved 3D Structural Interpretation of Faulting within Wellington and Anson-Bates Fields, Sumner County, Kansas

    NASA Astrophysics Data System (ADS)

    Keast, R. T.; Lacroix, B.; Raef, A. E.; Adam, C.; Bidgoli, T. S.; Leclere, H.; Daniel, G.

    2017-12-01

    South-central Kansas has experienced an increase in seismic activity within the Proterozoic basement. Since 2013, United States Geological Survey (USGS) seismograph stations have recorded 3414 earthquakes. Fluid pressure increases associated with recent high-rate wastewater injection into the dolomitic Arbuckle disposal zone is the hypothesized cause of reactivation of the faulted study region's Proterozoic basement. Although the magnitude of the pressure change required for reactivation of these faults is likely low given failure equilibrium conditions in the midcontinent, heterogeneities in the basement could allow for a range of fluid pressure changes associated with injection. This research aims to quantify the fluid pressure changes responsible for fault reactivation of the Proterozoic basement. To address this issue, we use 103 focal mechanisms and 3,414 seismic events, from the USGS catalog, within an area encompassing 4,000 km2. Three major fault populations have been identified using the dense seismicity and focal mechanism datasets. Win-Tensor paleostress reconstruction software was used to identify effective stress ratios, R = (σ'1/σ'3), and stress tensors for twelve 22 km by 17 km grid squares covering the study area. One fault population strikes parallel with the Nemaha Ridge basement structure ( 030˚). Another reoccurring fault population is oriented 310˚, closely parallel to the Central Kansas Uplift, a subtle anticlinal structure subjected to repeated movement during the Paleozoic. The third population of faults is parallel to the regional maximum compressive stress oriented 265˚ as determined by previous researchers using borehole image logs and shear wave anisotropy. A 3D stress modeling Matlab script was used to analyze fault reactivation potential based on results obtained from Win-Tensor to better understand fault orientations and their susceptibility to reactivation related to pore fluid pressure increases. In addition, the orientations of these normal and strike-slip fault populations suggest the development of a transtensional basin, not yet identified.

  10. Full-Wave Tomographic and Moment Tensor Inversion Based on 3D Multigrid Strain Green’s Tensor Databases

    DTIC Science & Technology

    2014-04-30

    grade metamorphic rocks on the southern slope of the Himalaya is imaged as a band of high velocity anomaly...velocity structures closely follow the geological features. As an indication of resolution, the ductile extrusion of high-grade metamorphic rocks on...MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data

  11. A geometric exploration of stress in deformed liquid foams

    NASA Astrophysics Data System (ADS)

    Evans, Myfanwy E.; Schröder-Turk, Gerd E.; Kraynik, Andrew M.

    2017-03-01

    We explore an alternate way of looking at the rheological response of a yield stress fluid: using discrete geometry to probe the heterogeneous distribution of stress in soap froth. We present quasi-static, uniaxial, isochoric compression and extension of three-dimensional random monodisperse soap froth in periodic boundary conditions and examine the stress and geometry that result. The stress and shape anisotropy of individual cells is quantified by Q, a scalar measure derived from the interface tensor that gauges each cell’s contribution to the global stress. Cumulatively, the spatial distribution of highly deformed cells allows us to examine how stress is internally distributed. The topology of highly deformed cells, how they arrange relative to one another in space, gives insight into the heterogeneous distribution of stress.

  12. A curious explanation of some cosmological phenomena

    NASA Astrophysics Data System (ADS)

    Gopal Vishwakarma, Ram

    2013-05-01

    Although observational cosmology has shown tremendous growth over the last decade, deep mysteries continue to haunt our theoretical understanding of the ingredients of the concordance cosmological model, which are mainly ‘dark’. More than 95% of the content of the energy-stress tensor has to be in the form of the inflaton field, dark matter and dark energy, which do not have any non-gravitational or laboratory evidence and remain unidentified. Moreover, the dark energy poses a serious confrontation between fundamental physics and cosmology. This makes a strong case to discover alternative theories that do not require the dark sectors of the standard approach to explain the observations. In the present situation, it would be important to gain insight about the requirements of the ‘would-be’ final theory from all possible means. In this context, this paper highlights some, hitherto unnoticed, interesting coincidences that may prove useful to develop insight about the ‘holy grail’ of gravitation. It appears that the requirement of the speculative dark sectors by the energy-stress tensor is indicative of a possible way out of the present crisis appearing in the standard cosmology, in terms of a theory wherein the energy-stress tensor does not play a direct role in the dynamics. It is shown that various cosmological observations can be explained satisfactorily in the framework of one such theory—the Milne model, without requiring the dark sectors of the standard approach. Moreover, the model evades the horizon, flatness and the cosmological constant problems afflicting the standard cosmology. Although Milne's theory is an incomplete, phenomenological theory, and cannot be the final theory of gravitation, nevertheless, it would be worthwhile to study these coincidences, which may help us develop insight about the would-be final theory.

  13. Determination of Multiple Near-Surface Residual Stress Components in Laser Peened Aluminum Alloy via the Contour Method

    NASA Astrophysics Data System (ADS)

    Toparli, M. Burak; Fitzpatrick, Michael E.; Gungor, Salih

    2015-09-01

    In this study, residual stress fields, including the near-surface residual stresses, were determined for an Al7050-T7451 sample after laser peening. The contour method was applied to measure one component of the residual stress, and the relaxed stresses on the cut surfaces were then measured by X-ray diffraction. This allowed calculation of the three orthogonal stress components using the superposition principle. The near-surface results were validated with results from incremental hole drilling and conventional X-ray diffraction. The results demonstrate that multiple residual stress components can be determined using a combination of the contour method and another technique. If the measured stress components are congruent with the principal stress axes in the sample, then this allows for determination of the complete stress tensor.

  14. Dynamics of charged viscous dissipative cylindrical collapse with full causal approach

    NASA Astrophysics Data System (ADS)

    Shah, S. M.; Abbas, G.

    2017-11-01

    The aim of this paper is to investigate the dynamical aspects of a charged viscous cylindrical source by using the Misner approach. To this end, we have considered the more general charged dissipative fluid enclosed by the cylindrical symmetric spacetime. The dissipative nature of the source is due to the presence of dissipative variables in the stress-energy tensor. The dynamical equations resulting from such charged cylindrical dissipative source have been coupled with the causal transport equations for heat flux, shear and bulk viscosity, in the context of the Israel-Steward theory. In this case, we have the considered Israel-Steward transportation equations without excluding the thermodynamics viscous/heat coupling coefficients. The results are compared with the previous works in which such coefficients were excluded and viscosity variables do not satisfy the casual transportation equations.

  15. The Origin of High-angle Dip-slip Earthquakes at Geothermal Fields in California

    NASA Astrophysics Data System (ADS)

    Barbour, A. J.; Schoenball, M.; Martínez-Garzón, P.; Kwiatek, G.

    2016-12-01

    We examine the source mechanisms of earthquakes occurring in three California geothermal fields: The Geysers, Salton Sea, and Coso. We find source mechanisms ranging from strike slip faulting, consistent with the tectonic settings, to dip slip with unusually steep dip angles which are inconsistent with local structures. For example, we identify a fault zone in the Salton Sea Geothermal Field imaged using precisely-relocated hypocenters with a dip angle of 60° yet double-couple focal mechanisms indicate higher-angle dip-slip on ≥75° dipping planes. We observe considerable temporal variability in the distribution of source mechanisms. For example, at the Salton Sea we find that the number of high angle dip-slip events increased after 1989, when net-extraction rates were highest. There is a concurrent decline in strike-slip and strike-slip-normal faulting, the mechanisms expected from regional tectonics. These unusual focal mechanisms and their spatio-temporal patterns are enigmatic in terms of our understanding of faulting in geothermal regions. While near-vertical fault planes are expected to slip in a strike-slip sense, and dip slip is expected to occur on moderately dipping faults, we observe dip slip on near-vertical fault planes. However, for plausible stress states and accounting for geothermal production, the resolved fault planes should be stable. We systematically analyze the source mechanisms of these earthquakes using full moment tensor inversion to understand the constraints imposed by assuming a double-couple source. Applied to The Geysers field, we find a significant reduction in the number of high-angle dip-slip mechanisms using the full moment tensor. The remaining mechanisms displaying high-angle dip-slip could be consistent with faults accommodating subsidence and compaction associated with volumetric strain changes in the geothermal reservoir.

  16. Ordered rate constitutive theories for thermoviscoelastic solids with memory in Lagrangian description using Gibbs potential

    NASA Astrophysics Data System (ADS)

    Surana, K. S.; Reddy, J. N.; Nunez, Daniel

    2015-11-01

    This paper presents ordered rate constitutive theories of orders m and n, i.e., ( m, n) for finite deformation of homogeneous, isotropic, compressible and incompressible thermoviscoelastic solids with memory in Lagrangian description using entropy inequality in Gibbs potential Ψ as an alternate approach of deriving constitutive theories using entropy inequality in terms of Helmholtz free energy density Φ. Second Piola-Kirchhoff stress σ [0] and Green's strain tensor ɛ [0] are used as conjugate pair. We consider Ψ, heat vector q, entropy density η and rates of upto orders m and n of σ [0] and ɛ [0], i.e., σ [ i]; i = 0, 1, . . . , m and ɛ [ j]; j = 0, 1, . . . , n. We choose Ψ, ɛ [ n], q and η as dependent variables in the constitutive theories with ɛ [ j]; j = 0, 1, . . . , n - 1, σ [ i]; i = 0, 1, . . . , m, temperature gradient g and temperature θ as their argument tensors. Rationale for this choice is explained in the paper. Entropy inequality, decomposition of σ [0] into equilibrium and deviatoric stresses, the conditions resulting from entropy inequality and the theory of generators and invariants are used in the derivations of ordered rate constitutive theories of orders m and n in stress and strain tensors. Constitutive theories for the heat vector q (of up to orders m and n - 1) that are consistent (in terms of the argument tensors) with the constitutive theories for ɛ [ n] (of up to orders m and n) are also derived. Many simplified forms of the rate theories of orders ( m, n) are presented. Material coefficients are derived by considering Taylor series expansions of the coefficients in the linear combinations representing ɛ [ n] and q using the combined generators of the argument tensors about a known configuration {{\\underline{\\varOmega}}} in the combined invariants of the argument tensors and temperature. It is shown that the rate constitutive theories of order one ( m = 1, n = 1) when further simplified result in constitutive theories that resemble currently used theories but are in fact different. The solid continua characterized by these theories have mechanisms of elasticity, dissipation and memory, i.e., relaxation behavior or rheology. Fourier heat conduction law is shown to be an over simplified case of the rate theory of order one ( m = 1, n = 1) for q. The paper establishes when there is equivalence between the constitutive theories derived here using Ψ and those presented in reference Surana et al. (Acta Mech. doi:10.1007/s00707-014-1173-6, 2014) that are derived using Helmholtz free energy density Φ. The fundamental differences between the two constitutive theories in terms of physics and their explicit forms using Φ and Ψ are difficult to distinguish from the ordered theories of orders ( m, n) due to complexity of expressions. However, by choosing lower ordered theories, the difference between the two approaches can be clearly seen.

  17. On the equivalence among stress tensors in a gauge-fluid system

    NASA Astrophysics Data System (ADS)

    Mitra, Arpan Krishna; Banerjee, Rabin; Ghosh, Subir

    2017-12-01

    In this paper, we bring out the subtleties involved in the study of a first-order relativistic field theory with auxiliary field variables playing an essential role. In particular, we discuss the nonisentropic Eulerian (or Hamiltonian) fluid model. Interactions are introduced by coupling the fluid to a dynamical Maxwell (U(1)) gauge field. This dynamical nature of the gauge field is crucial in showing the equivalence, on the physical subspace, of the stress tensor derived from two definitions, i.e. the canonical (Noether) one and the symmetric one. In the conventional equal-time formalism, we have shown that the generators of the space-time transformations obtained from these two definitions agree modulo the Gauss constraint. This equivalence in the physical sector has been achieved only because of the dynamical nature of the gauge fields. Subsequently, we have explicitly demonstrated the validity of the Schwinger condition. A detailed analysis of the model in lightcone formalism has also been done where several interesting features are revealed.

  18. Features of Relaxation of a Stress Tensor in the Microscopic Volume of Nematic Phase under the Action of a Strong Electric Field

    NASA Astrophysics Data System (ADS)

    Zakharov, A. V.

    2018-02-01

    A numerical study of new regimes of reorientation of director field n̂, velocity v, and components of stress tensor σ ij ( ij = x, y, z) of nematic liquid crystal (LC) encapsulated in a rectangular channel under the action of a strong electric field E directed at angle α ( {˜{π }/{2}} ) to the horizontal surfaces bounding the LC channel is proposed. The numerical calculations performed in the framework of nonlinear generalization of the classical Eriksen-Leslie theory have shown that at certain relations between the torques and momenta affecting the unit LC volume and E ≫ E th, transition periodic structures can emerge during reorientation of n̂, if the corresponding distortion mode has the fastest response, and, thus, suppress all other modes. Rotating domains originating within this process decrease the energy dissipation rate and create more favorable regimes of the director field reorientation, as compared with the uniform rotational displacement.

  19. Effective Tolman temperature induced by trace anomaly

    NASA Astrophysics Data System (ADS)

    Eune, Myungseok; Gim, Yongwan; Kim, Wontae

    2017-04-01

    Despite the finiteness of stress tensor for a scalar field on the four-dimensional Schwarzschild black hole in the Israel-Hartle-Hawking vacuum, the Tolman temperature in thermal equilibrium is certainly divergent on the horizon due to the infinite blue-shift of the Hawking temperature. The origin of this conflict is due to the fact that the conventional Tolman temperature was based on the assumption of a traceless stress tensor, which is, however, incompatible with the presence of the trace anomaly responsible for the Hawking radiation. Here, we present an effective Tolman temperature which is compatible with the presence of the trace anomaly by using the modified Stefan-Boltzmann law. Eventually, the effective Tolman temperature turns out to be finite everywhere outside the horizon, and so an infinite blue-shift of the Hawking temperature at the event horizon does not appear any more. In particular, it is vanishing on the horizon, so that the equivalence principle is exactly recovered at the horizon.

  20. Deciphering the role of fluids in early stage rifting from full moment tensor inversion of East African earthquakes

    NASA Astrophysics Data System (ADS)

    Oliva, S. J. C.; Ebinger, C. J.; Keir, D.; Shillington, D. J.; Chindandali, P. R. N.

    2016-12-01

    The East African Rift splits around the Archaean Tanzania craton into the magmatic Eastern branch and the mostly amagmatic Western branch, which continues south of the craton. Temporary seismic networks recently deployed in three rift sectors allow for comparison and insights into the early stages of rifting, including areas with lower crustal earthquakes. We analyze earthquakes with ML > 3.5 in the area recorded by CRAFTI (northern Tanzania/Kenya), TANGA (Tanganyika rift), and/or SEGMeNT (Malawi rift) networks. For events not well enclosed by these arrays, nearby permanent stations are used to improve azimuthal coverage when possible. We present source mechanisms as well as better-constrained source depth estimates from moment tensor inversion using Dreger and Ford TDMT algorithm (Dreger, 2003; Minson & Dreger, 2008). Data and synthetic waveforms are bandpass filtered between 0.02 to 0.10 Hz, or a narrower frequency band within this range, depending on lake noise, which can interfere strongly on the lower end of this frequency range. Results suggest local stress reorientations as well as significant dilatation components on some events within magmatic rift sectors. The implications of these results for crustal rheology and magmatic modification will be discussed in light of the growing complementary data sets from the three projects to inform our understanding of early rifting as a whole.

  1. A chemo-mechanical free-energy-based approach to model durotaxis and extracellular stiffness-dependent contraction and polarization of cells.

    PubMed

    Shenoy, Vivek B; Wang, Hailong; Wang, Xiao

    2016-02-06

    We propose a chemo-mechanical model based on stress-dependent recruitment of myosin motors to describe how the contractility, polarization and strain in cells vary with the stiffness of their surroundings and their shape. A contractility tensor, which depends on the distribution of myosin motors, is introduced to describe the chemical free energy of the cell due to myosin recruitment. We explicitly include the contributions to the free energy that arise from mechanosensitive signalling pathways (such as the SFX, Rho-Rock and MLCK pathways) through chemo-mechanical coupling parameters. Taking the variations of the total free energy, which consists of the chemical and mechanical components, in accordance with the second law of thermodynamics provides equations for the temporal evolution of the active stress and the contractility tensor. Following this approach, we are able to recover the well-known Hill relation for active stresses, based on the fundamental principles of irreversible thermodynamics rather than phenomenology. We have numerically implemented our free energy-based approach to model spatial distribution of strain and contractility in (i) cells supported by flexible microposts, (ii) cells on two-dimensional substrates, and (iii) cells in three-dimensional matrices. We demonstrate how the polarization of the cells and the orientation of stress fibres can be deduced from the eigenvalues and eigenvectors of the contractility tensor. Our calculations suggest that the chemical free energy of the cell decreases with the stiffness of the extracellular environment as the cytoskeleton polarizes in response to stress-dependent recruitment of molecular motors. The mechanical energy, which includes the strain energy and motor potential energy, however, increases with stiffness, but the overall energy is lower for cells in stiffer environments. This provides a thermodynamic basis for durotaxis, whereby cells preferentially migrate towards stiffer regions of the extracellular environment. Our models also explain, from an energetic perspective, why the shape of the cells can change in response to stiffness of the surroundings. The effect of the stiffness of the nucleus on its shape and the orientation of the stress fibres is also studied for all the above geometries. Along with making testable predictions, we have estimated the magnitudes of the chemo-mechanical coupling parameters for myofibroblasts based on data reported in the literature.

  2. A chemo-mechanical free-energy-based approach to model durotaxis and extracellular stiffness-dependent contraction and polarization of cells

    PubMed Central

    Shenoy, Vivek B.; Wang, Hailong; Wang, Xiao

    2016-01-01

    We propose a chemo-mechanical model based on stress-dependent recruitment of myosin motors to describe how the contractility, polarization and strain in cells vary with the stiffness of their surroundings and their shape. A contractility tensor, which depends on the distribution of myosin motors, is introduced to describe the chemical free energy of the cell due to myosin recruitment. We explicitly include the contributions to the free energy that arise from mechanosensitive signalling pathways (such as the SFX, Rho-Rock and MLCK pathways) through chemo-mechanical coupling parameters. Taking the variations of the total free energy, which consists of the chemical and mechanical components, in accordance with the second law of thermodynamics provides equations for the temporal evolution of the active stress and the contractility tensor. Following this approach, we are able to recover the well-known Hill relation for active stresses, based on the fundamental principles of irreversible thermodynamics rather than phenomenology. We have numerically implemented our free energy-based approach to model spatial distribution of strain and contractility in (i) cells supported by flexible microposts, (ii) cells on two-dimensional substrates, and (iii) cells in three-dimensional matrices. We demonstrate how the polarization of the cells and the orientation of stress fibres can be deduced from the eigenvalues and eigenvectors of the contractility tensor. Our calculations suggest that the chemical free energy of the cell decreases with the stiffness of the extracellular environment as the cytoskeleton polarizes in response to stress-dependent recruitment of molecular motors. The mechanical energy, which includes the strain energy and motor potential energy, however, increases with stiffness, but the overall energy is lower for cells in stiffer environments. This provides a thermodynamic basis for durotaxis, whereby cells preferentially migrate towards stiffer regions of the extracellular environment. Our models also explain, from an energetic perspective, why the shape of the cells can change in response to stiffness of the surroundings. The effect of the stiffness of the nucleus on its shape and the orientation of the stress fibres is also studied for all the above geometries. Along with making testable predictions, we have estimated the magnitudes of the chemo-mechanical coupling parameters for myofibroblasts based on data reported in the literature. PMID:26855753

  3. Thermodynamics of viscoelastic rate-type fluids with stress diffusion

    NASA Astrophysics Data System (ADS)

    Málek, Josef; Průša, Vít; Skřivan, Tomáš; Süli, Endre

    2018-02-01

    We propose thermodynamically consistent models for viscoelastic fluids with a stress diffusion term. In particular, we derive variants of compressible/incompressible Maxwell/Oldroyd-B models with a stress diffusion term in the evolution equation for the extra stress tensor. It is shown that the stress diffusion term can be interpreted either as a consequence of a nonlocal energy storage mechanism or as a consequence of a nonlocal entropy production mechanism, while different interpretations of the stress diffusion mechanism lead to different evolution equations for the temperature. The benefits of the knowledge of the thermodynamical background of the derived models are documented in the study of nonlinear stability of equilibrium rest states. The derived models open up the possibility to study fully coupled thermomechanical problems involving viscoelastic rate-type fluids with stress diffusion.

  4. Triaxial Measurement Method for Analysis of Residual Stress after High Feed Milling by X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Čuma, Matúš; Török, Jozef; Telišková, Monika

    2016-12-01

    Surface integrity is a broad term which includes various quality factors affecting the functional properties of parts. Residual stress is one of these factors. Machining generates residual stresses in the surface and subsurface layers of the structural elements. X-ray diffractometry is a non-destructive method applicable for the measurement of residual stresses in surface and subsurface layers of components. The article is focused on the non-destructive progressive method of triaxial measurement of residual stress after machining the surface of sample by high feed milling technology. Significance of triaxial measuring is the capability of measuring in different angles so it is possible to acquire stress tensor containing normal and shear stress components acting in the spot of measuring, using a Cartesian coordinate system.

  5. Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms.

    PubMed

    Levitas, Valery I; Javanbakht, Mahdi

    2014-01-07

    There are two main challenges in the discovery of new high pressure phases (HPPs) and transforming this discovery into technologies: finding conditions to synthesize new HPPs and finding ways to reduce the phase transformation (PT) pressure to an economically reasonable level. Based on the results of pressure-shear experiments in the rotational diamond anvil cell (RDAC), superposition of plastic shear on high pressure is a promising way to resolve these problems. However, physical mechanisms behind these phenomena are not yet understood. Here, we elucidate generic mechanisms of coupled nucleation and evolution of dislocation and HPP structures in the nanograin material under pressure and shear utilizing the developed advanced phase field approach (PFA). Dislocations are generated at the grain boundaries and are densely piled up near them, creating a strong concentrator of the stress tensor. Averaged shear stress is essentially larger in the nanograin material due to grain boundary strengthening. This leads to the increase in the local thermodynamic driving force for PT, which allows one to significantly reduce the applied pressure. For all cases, the applied pressure is 3-20 times lower than the PT pressure and 2-12.5 times smaller than the phase equilibrium pressure. Interaction between nuclei leads sometimes to their coalescence and growth of the HPP away from stress concentrators. Plasticity plays a dual role: in addition to creating stress concentrators, it may relax stresses at other concentrators, thus competing with PT. Some ways to optimize the loading parameters have been found that lead to methods for controlling PT. Since such a local stress tensor with high shear stress component cannot be created without plastic deformations, this may lead to new transformation paths and phases, which are hidden during pressure induced PTs.

  6. New seismogenic stress fields for southern Italy from a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Totaro, Cristina; Orecchio, Barbara; Presti, Debora; Scolaro, Silvia; Neri, Giancarlo

    2017-04-01

    A new database of high-quality waveform inversion focal mechanism has been compiled for southern Italy by integrating the highest quality solutions, available from literature and catalogues, and 146 newly-computed ones. All the selected focal mechanisms are (i) coming from the Italian CMT, Regional CMT and TDMT catalogues (Pondrelli et al., PEPI 2006, PEPI 2011; http://www.ingv.it), or (ii) computed by using the Cut And Paste (CAP) method (Zhao & Helmberger, BSSA 1994; Zhu & Helmberger, BSSA 1996). Specific tests have been carried out in order to evaluate the robustness of the obtained solutions (e.g., by varying both seismic network configuration and Earth structure parameters) and to estimate uncertainties on the focal mechanism parameters. Only the resulting highest-quality solutions have been enclosed in the database, that has then been used for computation of posterior density distributions of stress tensor components by a Bayesian method (Arnold & Townend, GJI 2007). This algorithm furnishes the posterior density function of the principal components of stress tensor (maximum σ1, intermediate σ2, and minimum σ3 compressive stress, respectively) and the stress-magnitude ratio (R). Before stress computation, we applied the k-means clustering algorithm to subdivide the focal mechanism catalog on the basis of earthquake locations. This approach allows identifying the sectors to be investigated without any "a priori" constraint from faulting type distribution. The large amount of data and the application of the Bayesian algorithm allowed us to provide a more accurate local-to-regional scale stress distribution that has shed new light on the kinematics and dynamics of this very complex area, where lithospheric unit configuration and geodynamic engines are still strongly debated. The new high-quality information here furnished will then represent very useful tools and constraints for future geophysical analyses and geodynamic modeling.

  7. Minutia Tensor Matrix: A New Strategy for Fingerprint Matching

    PubMed Central

    Fu, Xiang; Feng, Jufu

    2015-01-01

    Establishing correspondences between two minutia sets is a fundamental issue in fingerprint recognition. This paper proposes a new tensor matching strategy. First, the concept of minutia tensor matrix (simplified as MTM) is proposed. It describes the first-order features and second-order features of a matching pair. In the MTM, the diagonal elements indicate similarities of minutia pairs and non-diagonal elements indicate pairwise compatibilities between minutia pairs. Correct minutia pairs are likely to establish both large similarities and large compatibilities, so they form a dense sub-block. Minutia matching is then formulated as recovering the dense sub-block in the MTM. This is a new tensor matching strategy for fingerprint recognition. Second, as fingerprint images show both local rigidity and global nonlinearity, we design two different kinds of MTMs: local MTM and global MTM. Meanwhile, a two-level matching algorithm is proposed. For local matching level, the local MTM is constructed and a novel local similarity calculation strategy is proposed. It makes full use of local rigidity in fingerprints. For global matching level, the global MTM is constructed to calculate similarities of entire minutia sets. It makes full use of global compatibility in fingerprints. Proposed method has stronger description ability and better robustness to noise and nonlinearity. Experiments conducted on Fingerprint Verification Competition databases (FVC2002 and FVC2004) demonstrate the effectiveness and the efficiency. PMID:25822489

  8. Complete Moment Tensor Determination of Induced Seismicity in Unconventional and Conventional Oil/Gas Fields

    NASA Astrophysics Data System (ADS)

    Gu, C.; Li, J.; Toksoz, M. N.

    2013-12-01

    Induced seismicity occurs both in conventional oil/gas fields due to production and water injection and in unconventional oil/gas fields due to hydraulic fracturing. Source mechanisms of these induced earthquakes are of great importance for understanding their causes and the physics of the seismic processes in reservoirs. Previous research on the analysis of induced seismic events in conventional oil/gas fields assumed a double couple (DC) source mechanism. However, recent studies have shown a non-negligible percentage of a non-double-couple (non-DC) component of source moment tensor in hydraulic fracturing events (Šílený et al., 2009; Warpinski and Du, 2010; Song and Toksöz, 2011). In this study, we determine the full moment tensor of the induced seismicity data in a conventional oil/gas field and for hydrofrac events in an unconventional oil/gas field. Song and Toksöz (2011) developed a full waveform based complete moment tensor inversion method to investigate a non-DC source mechanism. We apply this approach to the induced seismicity data from a conventional gas field in Oman. In addition, this approach is also applied to hydrofrac microseismicity data monitored by downhole geophones in four wells in US. We compare the source mechanisms of induced seismicity in the two different types of gas fields and explain the differences in terms of physical processes.

  9. Constraining primordial vector mode from B-mode polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saga, Shohei; Ichiki, Kiyotomo; Shiraishi, Maresuke, E-mail: saga.shohei@nagoya-u.jp, E-mail: maresuke.shiraishi@pd.infn.it, E-mail: ichiki@a.phys.nagoya-u.ac.jp

    The B-mode polarization spectrum of the Cosmic Microwave Background (CMB) may be the smoking gun of not only the primordial tensor mode but also of the primordial vector mode. If there exist nonzero vector-mode metric perturbations in the early Universe, they are known to be supported by anisotropic stress fluctuations of free-streaming particles such as neutrinos, and to create characteristic signatures on both the CMB temperature, E-mode, and B-mode polarization anisotropies. We place constraints on the properties of the primordial vector mode characterized by the vector-to-scalar ratio r{sub v} and the spectral index n{sub v} of the vector-shear power spectrum,more » from the Planck and BICEP2 B-mode data. We find that, for scale-invariant initial spectra, the ΛCDM model including the vector mode fits the data better than the model including the tensor mode. The difference in χ{sup 2} between the vector and tensor models is Δχ{sup 2} = 3.294, because, on large scales the vector mode generates smaller temperature fluctuations than the tensor mode, which is preferred for the data. In contrast, the tensor mode can fit the data set equally well if we allow a significantly blue-tilted spectrum. We find that the best-fitting tensor mode has a large blue tilt and leads to an indistinct reionization bump on larger angular scales. The slightly red-tilted vector mode supported by the current data set can also create O(10{sup -22})-Gauss magnetic fields at cosmological recombination. Our constraints should motivate research that considers models of the early Universe that involve the vector mode.« less

  10. Insights into the Lurking Structures and Related Intraplate Earthquakes in the Region of Bay of Bengal Using Gravity and Full Gravity Gradient Tensor

    NASA Astrophysics Data System (ADS)

    Dubey, C. P.; Tiwari, V. M.; Rao, P. R.

    2017-12-01

    Comprehension of subsurface structures buried under thick sediments in the region of Bay of Bengal is vital as structural features are the key parameters that influence or are caused by the subsurface deformation and tectonic events like earthquakes. Here, we address this issue using the integrated analysis and interpretation of gravity and full gravity gradient tensor with few seismic profiles available in the poorly known region. A 2D model of the deep earth crust-mantle is constructed and interpreted with gravity gradients and seismic profiles, which made it possible to obtain a visual image of a deep seated fault below the basement associated with thick sediments strata. Gravity modelling along a NE-SW profile crossing the hypocentre of the earthquake of 21 May 2014 ( M w 6.0) in the northern Bay of Bengal suggests that the location of intraplate normal dip fault earthquake in the upper mantle is at the boundary of density anomalies, which is probably connected to the crustal fault. We also report an enhanced structural trend of two major ridges, the 85°E and the 90°E ridges hidden under the sedimentary cover from the computed full gravity gradients tensor components.

  11. Rheological Predictions of Network Systems Swollen with Entangled Solvent

    DTIC Science & Technology

    2014-04-01

    represent binary entanglements and the crosses represent cross-links. Both of which are fixed in space for Green– Kubo calculations or moved affinely for...Two types of calculations can be performed, equilibrium (or Green– Kubo ) calculations in which the rate of deformation tensor21,22 is set to zero and the...autocorrelation function of stress at equilibrium is followed; or flow calculations in which a specific flow field is applied and the stress as a

  12. Modeling Slip System Strength Evolution in Ti 7Al Informed by In situ Grain Stress Measurements (Postprint)

    DTIC Science & Technology

    2017-02-17

    time for the tomography and diffraction sweeps was approximately 42 min. In a typical quasi -static in-situ experiment, loading is halted and the...data is used to extract individual grain- average stress tensors in a large aggregate of Ti-7Al grains (z500) over a time series of prescribed states...for public release: distribution unlimited. © 2017 ELSEVIER LTD (STINFO COPY) AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING

  13. Forces in General Relativity

    ERIC Educational Resources Information Center

    Ridgely, Charles T.

    2010-01-01

    Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced…

  14. The method of planes pressure tensor for a spherical subvolume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyes, D. M., E-mail: d.heyes@imperial.ac.uk; Smith, E. R., E-mail: edward.smith05@imperial.ac.uk; Dini, D., E-mail: d.dini@imperial.ac.uk

    2014-02-07

    Various formulas for the local pressure tensor based on a spherical subvolume of radius, R, are considered. An extension of the Method of Planes (MOP) formula of Todd et al. [Phys. Rev. E 52, 1627 (1995)] for a spherical geometry is derived using the recently proposed Control Volume formulation [E. R. Smith, D. M. Heyes, D. Dini, and T. A. Zaki, Phys. Rev. E 85, 056705 (2012)]. The MOP formula for the purely radial component of the pressure tensor is shown to be mathematically identical to the Radial Irving-Kirkwood formula. Novel offdiagonal elements which are important for momentum conservation emergemore » naturally from this treatment. The local pressure tensor formulas for a plane are shown to be the large radius limits of those for spherical surfaces. The radial-dependence of the pressure tensor computed by Molecular Dynamics simulation is reported for virtual spheres in a model bulk liquid where the sphere is positioned randomly or whose center is also that of a molecule in the liquid. The probability distributions of angles relating to pairs of atoms which cross the surface of the sphere, and the center of the sphere, are presented as a function of R. The variance in the shear stress calculated from the spherical Volume Averaging method is shown to converge slowly to the limiting values with increasing radius, and to be a strong function of the number of molecules in the simulation cell.« less

  15. Anisotropic Developments for Homogeneous Shear Flows

    NASA Technical Reports Server (NTRS)

    Cambon, Claude; Rubinstein, Robert

    2006-01-01

    The general decomposition of the spectral correlation tensor R(sub ij)(k) by Cambon et al. (J. Fluid Mech., 202, 295; J. Fluid Mech., 337, 303) into directional and polarization components is applied to the representation of R(sub ij)(k) by spherically averaged quantities. The decomposition splits the deviatoric part H(sub ij)(k) of the spherical average of R(sub ij)(k) into directional and polarization components H(sub ij)(sup e)(k) and H(sub ij)(sup z)(k). A self-consistent representation of the spectral tensor in the limit of weak anisotropy is constructed in terms of these spherically averaged quantities. The directional polarization components must be treated independently: models that attempt the same representation of the spectral tensor using the spherical average H(sub ij)(k) alone prove to be inconsistent with Navier-Stokes dynamics. In particular, a spectral tensor consistent with a prescribed Reynolds stress is not unique. The degree of anisotropy permitted by this theory is restricted by realizability requirements. Since these requirements will be less severe in a more accurate theory, a preliminary account is given of how to generalize the formalism of spherical averages to higher expansion of the spectral tensor. Directionality is described by a conventional expansion in spherical harmonics, but polarization requires an expansion in tensorial spherical harmonics generated by irreducible representations of the spatial rotation group SO(exp 3). These expansions are considered in more detail in the special case of axial symmetry.

  16. Quasinormal modes, bifurcations, and nonuniqueness of charged scalar-tensor black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doneva, Daniela D.; Theoretical Astrophysics, Eberhard-Karls University of Tuebingen, Tuebingen 72076; Yazadjiev, Stoytcho S.

    In the present paper, we study the scalar sector of the quasinormal modes of charged general relativistic, static, and spherically symmetric black holes coupled to nonlinear electrodynamics and embedded in a class of scalar-tensor theories. We find that for a certain domain of the parametric space, there exists unstable quasinormal modes. The presence of instabilities implies the existence of scalar-tensor black holes with primary hair that bifurcate from the embedded general relativistic black-hole solutions at critical values of the parameters corresponding to the static zero modes. We prove that such scalar-tensor black holes really exist by solving the full systemmore » of scalar-tensor field equations for the static, spherically symmetric case. The obtained solutions for the hairy black holes are nonunique, and they are in one-to-one correspondence with the bounded states of the potential governing the linear perturbations of the scalar field. The stability of the nonunique hairy black holes is also examined, and we find that the solutions for which the scalar field has zeros are unstable against radial perturbations. The paper ends with a discussion of possible formulations of a new classification conjecture.« less

  17. A high-order strong stability preserving Runge-Kutta method for three-dimensional full waveform modeling and inversion of anelastic models

    NASA Astrophysics Data System (ADS)

    Wang, N.; Shen, Y.; Yang, D.; Bao, X.; Li, J.; Zhang, W.

    2017-12-01

    Accurate and efficient forward modeling methods are important for high resolution full waveform inversion. Compared with the elastic case, solving anelastic wave equation requires more computational time, because of the need to compute additional material-independent anelastic functions. A numerical scheme with a large Courant-Friedrichs-Lewy (CFL) condition number enables us to use a large time step to simulate wave propagation, which improves computational efficiency. In this work, we apply the fourth-order strong stability preserving Runge-Kutta method with an optimal CFL coeffiecient to solve the anelastic wave equation. We use a fourth order DRP/opt MacCormack scheme for the spatial discretization, and we approximate the rheological behaviors of the Earth by using the generalized Maxwell body model. With a larger CFL condition number, we find that the computational efficient is significantly improved compared with the traditional fourth-order Runge-Kutta method. Then, we apply the scattering-integral method for calculating travel time and amplitude sensitivity kernels with respect to velocity and attenuation structures. For each source, we carry out one forward simulation and save the time-dependent strain tensor. For each station, we carry out three `backward' simulations for the three components and save the corresponding strain tensors. The sensitivity kernels at each point in the medium are the convolution of the two sets of the strain tensors. Finally, we show several synthetic tests to verify the effectiveness of the strong stability preserving Runge-Kutta method in generating accurate synthetics in full waveform modeling, and in generating accurate strain tensors for calculating sensitivity kernels at regional and global scales.

  18. Estimating Stresses, Fault Friction and Fluid Pressure from Topography and Coseismic Slip Models

    NASA Astrophysics Data System (ADS)

    Styron, R. H.; Hetland, E. A.

    2014-12-01

    Stress is a first-order control on the deformation state of the earth. However, stress is notoriously hard to measure, and researchers typically only estimate the directions and relative magnitudes of principal stresses, with little quantification of the uncertainties or absolute magnitude. To improve upon this, we have developed methods to constrain the full stress tensor field in a region surrounding a fault, including tectonic, topographic, and lithostatic components, as well as static friction and pore fluid pressure on the fault. Our methods are based on elastic halfspace techniques for estimating topographic stresses from a DEM, and we use a Bayesian approach to estimate accumulated tectonic stress, fluid pressure, and friction from fault geometry and slip rake, assuming Mohr-Coulomb fault mechanics. The nature of the tectonic stress inversion is such that either the stress maximum or minimum is better constrained, depending on the topography and fault deformation style. Our results from the 2008 Wenchuan event yield shear stresses from topography up to 20 MPa (normal-sinistral shear sense) and topographic normal stresses up to 80 MPa on the faults; tectonic stress had to be large enough to overcome topography to produce the observed reverse-dextral slip. Maximum tectonic stress is constrained to be >0.3 * lithostatic stress (depth-increasing), with a most likely value around 0.8, trending 90-110°E. Minimum tectonic stress is about half of maximum. Static fault friction is constrained at 0.1-0.4, and fluid pressure at 0-0.6 * total pressure on the fault. Additionally, the patterns of topographic stress and slip suggest that topographic normal stress may limit fault slip once failure has occurred. Preliminary results from the 2013 Balochistan earthquake are similar, but yield stronger constraints on the upper limits of maximum tectonic stress, as well as tight constraints on the magnitude of minimum tectonic stress and stress orientation. Work in progress on the Wasatch fault suggests that maximum tectonic stress may also be able to be constrained, and that some of the shallow rupture segmentation may be due in part to localized topographic loading. Future directions of this work include regions where high relief influences fault kinematics (such as Tibet).

  19. Tensor Fermi liquid parameters in nuclear matter from chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Holt, J. W.; Kaiser, N.; Whitehead, T. R.

    2018-05-01

    We compute from chiral two- and three-body forces the complete quasiparticle interaction in symmetric nuclear matter up to twice nuclear matter saturation density. Second-order perturbative contributions that account for Pauli blocking and medium polarization are included, allowing for an exploration of the full set of central and noncentral operator structures permitted by symmetries and the long-wavelength limit. At the Hartree-Fock level, the next-to-next-to-leading order three-nucleon force contributes to all noncentral interactions, and their strengths grow approximately linearly with the nucleon density up to that of saturated nuclear matter. Three-body forces are shown to enhance the already strong proton-neutron effective tensor interaction, while the corresponding like-particle tensor force remains small. We also find a large isovector cross-vector interaction but small center-of-mass tensor interactions in the isoscalar and isovector channels. The convergence of the expansion of the noncentral quasiparticle interaction in Landau parameters and Legendre polynomials is studied in detail.

  20. Fluid Registration of Diffusion Tensor Images Using Information Theory

    PubMed Central

    Chiang, Ming-Chang; Leow, Alex D.; Klunder, Andrea D.; Dutton, Rebecca A.; Barysheva, Marina; Rose, Stephen E.; McMahon, Katie L.; de Zubicaray, Greig I.; Toga, Arthur W.; Thompson, Paul M.

    2008-01-01

    We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or J-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the J-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data. PMID:18390342

  1. Six dimensional X-ray Tensor Tomography with a compact laboratory setup

    NASA Astrophysics Data System (ADS)

    Sharma, Y.; Wieczorek, M.; Schaff, F.; Seyyedi, S.; Prade, F.; Pfeiffer, F.; Lasser, T.

    2016-09-01

    Attenuation based X-ray micro computed tomography (XCT) provides three-dimensional images with micrometer resolution. However, there is a trade-off between the smallest size of the structures that can be resolved and the measurable sample size. In this letter, we present an imaging method using a compact laboratory setup that reveals information about micrometer-sized structures within samples that are several orders of magnitudes larger. We combine the anisotropic dark-field signal obtained in a grating interferometer and advanced tomographic reconstruction methods to reconstruct a six dimensional scattering tensor at every spatial location in three dimensions. The scattering tensor, thus obtained, encodes information about the orientation of micron-sized structures such as fibres in composite materials or dentinal tubules in human teeth. The sparse acquisition schemes presented in this letter enable the measurement of the full scattering tensor at every spatial location and can be easily incorporated in a practical, commercially feasible laboratory setup using conventional X-ray tubes, thus allowing for widespread industrial applications.

  2. Tidal disruption of solid bodies

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, Anthony R.

    1990-01-01

    The problem of stress, strain, and breakup in solid satellites and stray bodies subject to tidal perturbations is presently addressed in view of three novel considerations. After presenting a new analytic solution for the stress tensor in a homogeneous and compressible elastic sphere, where the inclusion of compressibility alters stresses by several percent, realistic failure criteria are noted to demonstrate the general failure of such ductile bodies as iron meteoroids by plastic shear, while brittle ice bodies fail by either tensile or shear fracture. A reexamination of crack propagation after initial failure allows the diverse breakup criteria to be reconciled.

  3. Mean template for tensor-based morphometry using deformation tensors.

    PubMed

    Leporé, Natasha; Brun, Caroline; Pennec, Xavier; Chou, Yi-Yu; Lopez, Oscar L; Aizenstein, Howard J; Becker, James T; Toga, Arthur W; Thompson, Paul M

    2007-01-01

    Tensor-based morphometry (TBM) studies anatomical differences between brain images statistically, to identify regions that differ between groups, over time, or correlate with cognitive or clinical measures. Using a nonlinear registration algorithm, all images are mapped to a common space, and statistics are most commonly performed on the Jacobian determinant (local expansion factor) of the deformation fields. In, it was shown that the detection sensitivity of the standard TBM approach could be increased by using the full deformation tensors in a multivariate statistical analysis. Here we set out to improve the common space itself, by choosing the shape that minimizes a natural metric on the deformation tensors from that space to the population of control subjects. This method avoids statistical bias and should ease nonlinear registration of new subjects data to a template that is 'closest' to all subjects' anatomies. As deformation tensors are symmetric positive-definite matrices and do not form a vector space, all computations are performed in the log-Euclidean framework. The control brain B that is already the closest to 'average' is found. A gradient descent algorithm is then used to perform the minimization that iteratively deforms this template and obtains the mean shape. We apply our method to map the profile of anatomical differences in a dataset of 26 HIV/AIDS patients and 14 controls, via a log-Euclidean Hotelling's T2 test on the deformation tensors. These results are compared to the ones found using the 'best' control, B. Statistics on both shapes are evaluated using cumulative distribution functions of the p-values in maps of inter-group differences.

  4. Strength Analysis of Glass-Fiber-Reinforced Plastic during Buckling,

    DTIC Science & Technology

    An algorithm is developed for calculating and analyzing the stress tensor by the experimental function of deflections during the buckling of glass ... fiber -reinforced plastic shells loaded with a hydrostatic load. Malmeyster’s theory of strength is used to qualitatively establish the possible points of shell failure. (Author-PL)

  5. Stress before and after the 2002 Denali fault earthquake

    USGS Publications Warehouse

    Wesson, R.L.; Boyd, O.S.

    2007-01-01

    Spatially averaged, absolute deviatoric stress tensors along the faults ruptured during the 2002 Denali fault earthquake, both before and after the event, are derived, using a new method, from estimates of the orientations of the principal stresses and the stress change associated with the earthquake. Stresses are estimated in three regions along the Denali fault, one of which also includes the Susitna Glacier fault, and one region along the Totschunda fault. Estimates of the spatially averaged shear stress before the earthquake resolved onto the faults that ruptured during the event range from near 1 MPa to near 4 MPa. Shear stresses estimated along the faults in all these regions after the event are near zero (0 ?? 1 MPa). These results suggest that deviatoric stresses averaged over a few tens of km along strike are low, and that the stress drop during the earthquake was complete or nearly so.

  6. 4He binding energy calculation including full tensor-force effects

    NASA Astrophysics Data System (ADS)

    Fonseca, A. C.

    1989-09-01

    The four-body equations of Alt, Grassberger, and Sandhas are solved in the version where the (2)+(2) subamplitudes are treated exactly by convolution, using one-term separable Yamaguchy nucleon-nucleon potentials in the 1S0 and 3S1-3D1 channels. The resulting jp=1/2+ and (3/2+ three-body subamplitudes are represented in a separable form using the energy-dependent pole expansion. Converged bound-state results are calculated for the first time using the full interaction, and are compared with those obtained from a simplified treatment of the tensor force. The Tjon line that correlates three-nucleon and four-nucleon binding energies is shown using different nucleon-nucleon potentials. In all calculations the Coulomb force has been neglected.

  7. Description of plastic deformation of structural materials in triaxial loading

    NASA Astrophysics Data System (ADS)

    Lagzdins, A.; Zilaucs, A.

    2008-03-01

    A model of nonassociated plasticity is put forward for initially isotropic materials deforming with residual changes in volume under the action of triaxial normal stresses. The model is based on novel plastic loading and plastic potential functions, which define closed, convex, every where smooth surfaces in the 6D space of symmetric second-rank stress tensors. By way of example, the plastic deformation of a cylindrical concrete specimen wrapped with a CFRP tape and loaded in axial compression is described.

  8. Future Directions of Nonlinear Dynamics in PhysicaL and Biological Systems,

    DTIC Science & Technology

    1992-01-01

    ACKNOWLEDGEMENT This work has been supported in part by the Air Force Office of Scientific Research through Grant No. AFOSR-89-0510 and by NWSC, Crane ...Biological Systemr Edied by PL. Cbhsius et a., Plenu= Press, New York, 1993 121 with the stress tensor (TMm,) having components TMrm ` SYM nNtnN + I...transparent. This also implies that Nt= N, - N where N = N1=1 is the usual boson number operator. It is worth stressing that the notion of q-hermiticity

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Dongsheng; Wang Hongcai; Ma Yinsheng

    In-situ stress change near the fault before and after a great earthquake is a key issue in the geosciences field. In this work, based on the 2008 Great Wenchuan earthquake fault slip dislocation model, the co-seismic stress tensor change due to the Wenchuan earthquake and the distribution functions around the Longmen Shan fault are given. Our calculated results are almost consistent with the before and after great Wenchuan earthquake in-situ measuring results. The quantitative assessment results provide a reference for the study of the mechanism of earthquakes.

  10. Efficient 3-D finite element failure analysis of compression loaded angle-ply plates with holes

    NASA Technical Reports Server (NTRS)

    Burns, S. W.; Herakovich, C. T.; Williams, J. G.

    1987-01-01

    Finite element stress analysis and the tensor polynomial failure criterion predict that failure always initiates at the interface between layers on the hole edge for notched angle-ply laminates loaded in compression. The angular location of initial failure is a function of the fiber orientation in the laminate. The dominant stress components initiating failure are shear. It is shown that approximate symmetry can be used to reduce the computer resources required for the case of unaxial loading.

  11. Normal-faulting stress state associated with low differential stress in an overriding plate in northeast Japan prior to the 2011 Mw 9.0 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Otsubo, Makoto; Miyakawa, Ayumu; Imanishi, Kazutoshi

    2018-03-01

    Spatial and temporal variations in inland crustal stress prior to the 2011 Mw 9.0 Tohoku earthquake are investigated using focal mechanism solutions for shallow seismicity in Iwaki City, Japan. The multiple inverse method of stress tensor inversion detected two normal-faulting stress states that dominate in different regions. The stress field around Iwaki City changed from a NNW-SSE-trending triaxial extensional stress (stress regime A) to a NW-SE-trending axial tension (stress regime B) between 2005 and 2008. These stress changes may be the result of accumulated extensional stress associated with co- and post-seismic deformation due to the M7 class earthquakes. In this study we suggest that the stress state around Iwaki City prior to the 2011 Tohoku earthquake may have been extensional with a low differential stress. High pore pressure is required to cause earthquakes under such small differential stresses.

  12. Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Wang, Yi-Nan

    2015-04-01

    We construct exceptional field theory for the duality group SL(3) × SL(2). The theory is defined on a space with 8 `external' coordinates and 6 `internal' coordinates in the (3, 2) fundamental representation, leading to a 14-dimensional generalized spacetime. The bosonic theory is uniquely determined by gauge invariance under generalized external and internal diffeomorphisms. The latter invariance can be made manifest by introducing higher form gauge fields and a so-called tensor hierarchy, which we systematically develop to much higher degree than in previous studies. To this end we introduce a novel Cartan-like tensor calculus based on a covariant nil-potent differential, generalizing the exterior derivative of conventional differential geometry. The theory encodes the full D = 11 or type IIB supergravity, respectively.

  13. Self-adaptive tensor network states with multi-site correlators

    NASA Astrophysics Data System (ADS)

    Kovyrshin, Arseny; Reiher, Markus

    2017-12-01

    We introduce the concept of self-adaptive tensor network states (SATNSs) based on multi-site correlators. The SATNS ansatz gradually extends its variational space incorporating the most important next-order correlators into the ansatz for the wave function. The selection of these correlators is guided by entanglement-entropy measures from quantum information theory. By sequentially introducing variational parameters and adjusting them to the system under study, the SATNS ansatz achieves keeping their number significantly smaller than the total number of full-configuration interaction parameters. The SATNS ansatz is studied for manganocene in its lowest-energy sextet and doublet states; the latter of which is known to be difficult to describe. It is shown that the SATNS parametrization solves the convergence issues found for previous correlator-based tensor network states.

  14. The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results

    PubMed Central

    Seppecher, P.

    2015-01-01

    In order to found continuum mechanics, two different postulations have been used. The first, introduced by Lagrange and Piola, starts by postulating how the work expended by internal interactions in a body depends on the virtual velocity field and its gradients. Then, by using the divergence theorem, a representation theorem is found for the volume and contact interactions which can be exerted at the boundary of the considered body. This method assumes an a priori notion of internal work, regards stress tensors as dual of virtual displacements and their gradients, deduces the concept of contact interactions and produces their representation in terms of stresses using integration by parts. The second method, conceived by Cauchy and based on the celebrated tetrahedron argument, starts by postulating the type of contact interactions which can be exerted on the boundary of every (suitably) regular part of a body. Then it proceeds by proving the existence of stress tensors from a balance-type postulate. In this paper, we review some relevant literature on the subject, discussing how the two postulations can be reconciled in the case of higher gradient theories. Finally, we underline the importance of the concept of contact surface, edge and wedge s-order forces. PMID:26730215

  15. Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, V.P.; Thorne, K.S.

    1989-04-15

    The renormalized expectation value of the stress-energy tensor /sup ren/ of a quantum field in an arbitrary quantum state near the future horizon of a rotating (Kerr) black hole is derived in two very different ways: One derivation (restricted for simplicity to a massless scalar field) makes use of traditional techniques of quantum field theory in curved spacetime, augmented by a variant of the ''eta formalism'' for handling superradiant modes. The other derivation (valid for any quantum field) uses the equivalence principle to infer, from /sup ren/ in flat spacetime, what must be /sup ren/ near the hole's horizon. Themore » two derivations give the same result: a result in accord with a previous conjecture by Zurek and Thorne: /sup ren/, in any quantum state, is equal to that, /sup ZAMO/, which zero-angular-momentum observers (ZAMO's) would compute from their own physical measurements near the horizon, plus a vacuum-polarization contribution T/sub ..mu..//sub ..nu..//sup vac pol/, which is the negative of the stress-energy of a rigidly rotating thermal reservoir with angular velocity equal to that of the horizon ..cap omega../sub H/, and (red-shifted) temperature equal to that of the Hawking temperature T/sub H/.« less

  16. Evolution of Lamb Vector as a Vortex Breaking into Turbulence.

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Lu, X. Y.

    1996-11-01

    In an incompressible flow, either laminar or turbulent, the Lamb vector is solely responsible to nonlinear interactions. While its longitudinal part is balanced by stagnation enthalpy, its transverse part is the unique source (as an external forcing in spectral space) that causes the flow to evolve. Moreover, in Reynolds-averaged flows the turbulent force can be derived exclusively from the Lamb vector instead of the full Reynolds stress tensor. Therefore, studying the evolution of the Lamb vector itself (both longitudinal and transverse parts) is of great interest. We have numerically examined this problem, taking the nonlinear distabilization of a viscous vortex as an example. In the later stage of this evolution we introduced a forcing to keep a statistically steady state, and observed the Lamb vector behavior in the resulting fine turbulence. The result is presented in both physical and spectral spaces.

  17. Rheologic effects of crystal preferred orientation in upper mantle flow near plate boundaries

    NASA Astrophysics Data System (ADS)

    Blackman, Donna; Castelnau, Olivier; Dawson, Paul; Boyce, Donald

    2016-04-01

    Observations of anisotropy provide insight into upper mantle processes. Flow-induced mineral alignment provides a link between mantle deformation patterns and seismic anisotropy. Our study focuses on the rheologic effects of crystal preferred orientation (CPO), which develops during mantle flow, in order to assess whether corresponding anisotropic viscosity could significantly impact the pattern of flow. We employ a coupled nonlinear numerical method to link CPO and the flow model via a local viscosity tensor field that quantifies the stress/strain-rate response of a textured mineral aggregate. For a given flow field, the CPO is computed along streamlines using a self-consistent texture model and is then used to update the viscosity tensor field. The new viscosity tensor field defines the local properties for the next flow computation. This iteration produces a coupled nonlinear model for which seismic signatures can be predicted. Results thus far confirm that CPO can impact flow pattern by altering rheology in directionally-dependent ways, particularly in regions of high flow gradient. Multiple iterations run for an initial, linear stress/strain-rate case (power law exponent n=1) converge to a flow field and CPO distribution that are modestly different from the reference, scalar viscosity case. Upwelling rates directly below the spreading axis are slightly reduced and flow is focused somewhat toward the axis. Predicted seismic anisotropy differences are modest. P-wave anisotropy is a few percent greater in the flow 'corner', near the spreading axis, below the lithosphere and extending 40-100 km off axis. Predicted S-wave splitting differences would be below seafloor measurement limits. Calculations with non-linear stress/strain-rate relation, which is more realistic for olivine, indicate that effects are stronger than for the linear case. For n=2-3, the distribution and strength of CPO for the first iteration are greater than for n=1, although the fast seismic axis directions are similar. The greatest difference in CPO for the nonlinear cases develop at the flow 'corner' at depths of 10-30 km and 20-100 km off-axis. J index values up to 10% greater than the linear case are predicted near the lithosphere base in that region. Viscosity tensor components are notably altered in the nonlinear cases. Iterations between the texture and flow calculations for the non-linear cases are underway this winter; results will be reported in the presentation.

  18. On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Fu, Yao; Song, Jeong-Hoon

    2014-08-01

    Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifies the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.

  19. Refraction of the principal stress trajectories and the stress jumps on faults and contact surfaces: Part 1. Non-constrained regular trajectories

    NASA Astrophysics Data System (ADS)

    Mukhamediev, Sh. A.

    2014-09-01

    Rock masses contain ubiquitous multiscale heterogeneities, which (or whose boundaries) serve as the surfaces of discontinuity for some characteristics of the stress state, e.g., for the orientation of principal stress axes. Revealing the regularities that control these discontinuities is a key to understanding the processes taking place at the boundaries of the heterogeneities and for designing the correct procedures for reconstructing and theoretical modeling of tectonic stresses. In the present study, the local laws describing the refraction of the axes of extreme principal stresses T 1 (maximal tension in the deviatoric sense) and T 3 (maximal compression) of the Cauchy stress tensor at the transition over the elementary area n of discontinuity whose orientation is specified by the unit normal n are derived. It is assumed that on the area n of discontinuity, frictional contact takes place. No hypotheses are made on the constitutive equations, and a priori constraints are not posed on the orientation on the stress axes. Two domains, which adjoin area n on the opposite sides and are conventionally marked + and -, are distinguished. In the case of the two-dimensional (2D) stress state, any principal stress axis on passing from domain - to domain + remains in the same quadrant of the plane as the continuation of this axis in domain +. The sign and size of the refraction angle depend on the sign and amplitude of the jump of the normal stress, which is tangential to the surface of discontinuity. In the three-dimensional (3D) case, the refraction of axes T 1 and T 3 should be analyzed simultaneously. For each side, + and -, the projections of the T 1 and T 3 axes on the generally oriented plane n form the shear sectors S + and S -, which are determined unambiguously and to whose angular domains the possible directions p + and p - of the shear stress vectors belong. In order for the extreme stress axes T {1/+}, T {3/+} and T {1/-}, T {3/-} to be statically compatible on the generally oriented plane n, it is required that sectors S + and S - had a nonempty intersection. The direction vectors p + and p - are determined uniquely if, besides axes T {1/-}, T {3/-} and T {1/+}, T {3/+}, also the ratios of differential stresses R + and R - (0 ≤ R ± ≤ 1) are known. This is equivalent to specifying the reduced stress tensors T {/R +} and T {/R -} The necessary condition for tensors T {/R +} and T {/R -} being statically compatible on plane n is the equality p + = p -. In this paper, simple methods are suggested for solving the inverse problem of constructing the set of the orientations of the extreme stress axes from the known direction p of the shear stress vector on plane n and from the data on the shear sector. Based on these methods and using the necessary conditions of local equilibrium on plane n formulated above, all the possible orientations of axes T {1/+}, T {3/+} are determined if the projections of axes T {1/-}, T {3/-} axes on side — are given. The angle between the projections of axes T {1/+}, T {1/-} and/or T {3/+}, T {3/-} on the plane can attain 90°. Besides the general case, also the particular cases of the contact between the degenerate stress states and the special position of plane n relative to the principal stress axes are thoroughly examined. Generalization of the obtained results makes it possible to plot the local diagram of the orientations of axes T {1/+}, T {3/+} for a given sector S -. This diagram is a so-called stress orientation sphere, which is subdivided into three pairs of areas (compression, tension, and compression-extension). The tension and compression zones cannot contain the poles of T {3/+} and T {1/+} axes, respectively. The compression-extension zones can contain the poles of either T {1/+} or T {3/+} axis but not both poles simultaneously. In the particular case when the shear stress vector has a unique direction p - on side -, the areas of compression-extension disappear and the diagram is reduced to a beach-ball plot, which visualizes the focal mechanism solution of an earthquake. If area n is a generally oriented plane and if the orientation of the pairs of the statically compatible axes T {1/-}, T {3/-} and T {1/+}, T {3/+} is specified, then, the stress values on side + are uniquely determined from the known stress values on side -. From the value of differential stress ratio R -, one can calculate the value of R +, and using the values of the principal stresses on side -, determine the total stress tensor T + on side +. The obtained results are supported by the laboratory experiments and drilling data. In particular, these results disclose the drawbacks of some established notions and methods in which the possible refraction of the stress axes is unreasonably ignored or taken into account improperly. For example, it is generally misleading to associate the slip on the preexisting fault with the orientation of any particular trihedron of the principal stress axes. The reconstruction should address the potentially statically compatible principal stress axes, which are differently oriented on opposite sides of the fault plane. The fact that, based on the orientation of the intraplate principal stresses at the base of the lithosphere, one cannot make a conclusion on the active or passive influence of the mantle flows on the lithospheric plate motion is another example. The present relationships linking the stress values on the opposite sides of the fault plane on which the orientations of the principal stress axes are known demonstrate the incorrectness of the existing methods, in which the reduced stress tensors within the material domains are reconstructed without allowance for the dynamic interaction of these domains with their neighbors. In addition, using the obtained results, one can generalize the notion of the zone of dynamical control of a fault onto the case of the existence of discontinuities in this region and analyze the stress transfer across the system of the faults.

  20. The structure and Gel'fand patterns inherent in the Heisenberg supergenerator algebra of dual Liouville-space ||kq{K-tilde.}(k1 - kn)[lambda- tilde],scriptn>> tensors and the Cayley algebra of scalar invariants over a (k1 - kn) field

    NASA Astrophysics Data System (ADS)

    Temme, F. P.

    1991-06-01

    For many-body spin cluster problems, dual-symmetry recoupled tensors over Liouville space provide suitable bases for a generalized torque formalism using the Sn-adapted density operator in which to discuss NMR and related techniques. The explicit structure of such tensors is considered in the context of the Cayley algebra of scalar invariants over a field, specified by the inner ki rank labels of the Tkq(kl-kn)s. The pertinence of both lexical combinatorial architectures over inner rank sets and SU2 propagative topologies in specifying the structure of dual recoupling tensors is considered in the context of the Sn partitional aspects of spin clusters. The form of Heisenberg superoperator generators whose algebra underlies the Gel'fand pattern algebra of SU(2) and SU(2)×Sn tensor bases over Liouville space is presented together with both the related s-boson algebras and a description of the associated {||2k 0>>} pattern sets of CF29H carrier space under the appropriate symmetry. These concepts are correlated with recent work on SU(2)×Sn induced symmetry hierarchies over Liouville spin space. The pertinence of this theoretical work to an understanding of multiquantum NMR in Liouville space formalisms is stressed in a discussion of the nature of pathways for intracluster J coupling, which also gives a valuable physical insight into the nature of coherence transfer in more general spin-1/2 systems.

  1. Constraints on behaviour of a mining‐induced earthquake inferred from laboratory rock mechanics experiments

    USGS Publications Warehouse

    McGarr, Arthur F.; Johnston, Malcolm J.; Boettcher, M.; Heesakkers, V.; Reches, Z.

    2013-01-01

    On December 12, 2004, an earthquake of magnitude 2.2, located in the TauTona Gold Mine at a depth of about 3.65 km in the ancient Pretorius fault zone, was recorded by the in-mine borehole seismic network, yielding an excellent set of ground motion data recorded at hypocentral distances of several km. From these data, the seismic moment tensor, indicating mostly normal faulting with a small implosive component, and the radiated energy were measured; the deviatoric component of the moment tensor was estimated to be M0 = 2.3×1012 N·m and the radiated energy ER = 5.4×108 J. This event caused extensive damage along tunnels within the Pretorius fault zone. What rendered this earthquake of particular interest was the underground investigation of the complex pattern of exposed rupture surfaces combined with laboratory testing of rock samples retrieved from the ancient fault zone (Heesakkers et al.2011a, 2011b). Event 12/12 2004 was the result of fault slip across at least four nonparallel fault surfaces; 25 mm of slip was measured at one location on the rupture segment that is most parallel with a fault plane inferred from the seismic moment tensor, suggesting that this segment accounted for much of the total seismic deformation. By applying a recently developed technique based on biaxial stick-slip friction experiments (McGarr2012, 2013) to the seismic results, together with the 25 mm slip observed underground, we estimated a maximum slip rate of at least 6.6 m/s, which is consistent with the observed damage to tunnels in the rupture zone. Similarly, the stress drop and apparent stress were found to be correspondingly high at 21.9 MPa and 6.6 MPa, respectively. The ambient state of stress, measured at the approximate depth of the earthquake but away from the influence of mining, in conjunction with laboratory measurements of the strength of the fault zone cataclasites, indicates that during rupture of the M 2.2 event, the normal stress acting on the large-slip fault segment was about 260 MPa, the yield stress was 172 MPa and the seismic efficiency was 0.05. Thus, for event 12/12 2004, 5% of the energy released by the earthquake was radiated and the remaining 95% was consumed in overcoming fault friction and expanding the zone of rupture.

  2. Behavior of the Position-Spread Tensor in Diatomic Systems.

    PubMed

    Brea, Oriana; El Khatib, Muammar; Angeli, Celestino; Bendazzoli, Gian Luigi; Evangelisti, Stefano; Leininger, Thierry

    2013-12-10

    The behavior of the Position-Spread Tensor (Λ) in a series of light diatomic molecules (either neutral or negative ions) is investigated at a Full Configuration Interaction level. This tensor, which is the second moment cumulant of the total position operator, is invariant with respect to molecular translations, while its trace is also rotationally invariant. Moreover, the tensor is additive in the case of noninteracting subsystems and can be seen as an intrinsic property of a molecule. In the present work, it is shown that the longitudinal component of the tensor, Λ∥, which is small for internuclear distances close to the equilibrium, tends to grow if the bond is stretched. A maximum is reached in the region of the bond breaking, then Λ∥ decreases and converges toward the isolated-atom value. The degenerate transversal components, Λ⊥, on the other hand, usually have a monotonic growth toward the atomic value. The Position Spread is extremely sensitive to reorganization of the molecular wave function, and it becomes larger in the case of an increase of the electron mobility, as illustrated by the neutral-ionic avoided crossing in LiF. For these reasons, the Position Spread can be an extremely useful property that characterizes the nature of the wave function in a molecular system.

  3. Four Poynting Theorems

    ERIC Educational Resources Information Center

    Kinsler, Paul; Favaro, Alberto; McCall, Martin W.

    2009-01-01

    The Poynting vector is an invaluable tool for analysing electromagnetic problems. However, even a rigorous stress-energy tensor approach can still leave us with the question: is it best defined as E x H or as D x B? Typical electromagnetic treatments provide yet another perspective: they regard E x B as the appropriate definition, because E and B…

  4. Archimedes' Principle in General Coordinates

    ERIC Educational Resources Information Center

    Ridgely, Charles T.

    2010-01-01

    Archimedes' principle is well known to state that a body submerged in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the body. Herein, Archimedes' principle is derived from first principles by using conservation of the stress-energy-momentum tensor in general coordinates. The resulting expression for the force is…

  5. The excitation of long period seismic waves by a source spanning a structural discontinuity

    NASA Astrophysics Data System (ADS)

    Woodhouse, J. H.

    Simple theoretical results are obtained for the excitation of seismic waves by an indigenous seismic source in the case that the source volume is intersected by a structural discontinuity. In the long wavelength approximation the seismic radiation is identical to that of a point source placed on one side of the discontinuity or of a different point source placed on the other side. The moment tensors of these two equivalent sources are related by a specific linear transformation and may differ appreciably both in magnitude and geometry. Either of these sources could be obtained by linear inversion of seismic data but the physical interpretation is more complicated than in the usual case. A source which involved no volume change would, for example, yield an isotropic component if, during inversion, it were assumed to lie on the wrong side of the discontinuity. The problem of determining the true moment tensor of the source is indeterminate unless further assumptions are made about the stress glut distribution; one way to resolve this indeterminancy is to assume proportionality between the integrated stress glut on each side of the discontinuity.

  6. Characterizing Atomistic Geometries and Potential Functions Using Strain Functionals

    NASA Astrophysics Data System (ADS)

    Kober, Edward; Mathew, Nithin; Rudin, Sven

    2017-06-01

    We demonstrate the use of strain tensor functionals for characterizing arbitrarily ordered atomistic structures. This approach defines a Gaussian-weighted neighborhood around each atom and characterizes that local geometry in terms of n-th order strain tensors, which are equivalent to the n-th order moments/derivatives of the neighborhood. Fourth order expansions can distinguish the cubic structures (and deformations thereof), but sixth order expansions are required to fully characterize hexagonal structures. These functions are continuous and smooth and much less sensitive to thermal fluctuations than other descriptors based on discrete neighborhoods. Reducing these metrics to rotational invariant descriptors allows a large number of defect structures to be readily identified and forms the basis of a classification scheme that allows molecular dynamics simulations to be readily analyzed. Applications to the analysis of shock waves impinging on samples of Cu, Ta and Ti will be presented. The method has been extended to vector fields as well, enabling the local stress to be cast in terms of rotationally invariant functions as well. The stress-strain correlations can then be used as the basis for developing and analyzing potential functions.

  7. A priori testing of subgrid-scale models for large-eddy simulation of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Juneja, Anurag; Brasseur, James G.

    1996-11-01

    Subgrid-scale models are generally developed assuming homogeneous isotropic turbulence with the filter cutoff lying in the inertial range. In the surface layer and capping inversion regions of the atmospheric boundary layer, the turbulence is strongly anisotropic and, in general, influenced by both buoyancy and shear. Furthermore, the integral scale motions are under-resolved in these regions. Herein we perform direct numerical simulations of shear and buoyancy-generated homogeneous anisotropic turbulence to compute and analyze the actual subgrid-resolved-scale (SGS-RS) dynamics as the filter cutoff moves into the energy-containing scales. These are compared with the SGS-RS dynamics predicted by Smagorinsky-based models with a focus on motivating improved closures. We find that, in general, the underlying assumption of such models, that the anisotropic part of the subgrid stress tensor be aligned with the resolved strain rate tensor, is a poor approximation. Similarly, we find poor alignment between the actual and predicted stress divergence, and find low correlations between the actual and modeled subgrid-scale contribution to the pressure and pressure gradient. Details will be given in the talk.

  8. Modulated Hawking radiation and a nonviolent channel for information release

    NASA Astrophysics Data System (ADS)

    Giddings, Steven B.

    2014-11-01

    Unitarization of black hole evaporation requires that quantum information escapes a black hole; an important question is to identify the mechanism or channel by which it does so. Accurate counting of black hole states via the Bekenstein-Hawking entropy would indicate this information should be encoded in radiation with average energy flux matching Hawking's. Information can be encoded with no change in net flux via fine-grained modulation of the Hawking radiation. In an approximate effective field theory description, couplings to the stress tensor of the black hole atmosphere that depend on the internal state of the black hole are a promising alternative for inducing such modulation. These can be picturesquely thought of as due to state-dependent metric fluctuations in the vicinity of the horizon. Such couplings offer the prospect of emitting information without extra energy flux, and can be shown to do so at linear order in the couplings, with motivation given for possible extension of this result to higher orders. The potential advantages of such couplings to the stress tensor thus extend beyond their universality, which is helpful in addressing constraints from black hole mining.

  9. Quantum heating as an alternative of reheating

    NASA Astrophysics Data System (ADS)

    Akhmedov, Emil T.; Bascone, Francesco

    2018-02-01

    To model a realistic situation for the beginning we consider massive real scalar ϕ4 theory in a (1 +1 )-dimensional asymptotically static Minkowski spacetime with an intermediate stage of expansion. To have an analytic headway we assume that scalars have a big mass. At past and future infinities of the background we have flat Minkowski regions which are joint by the inflationary expansion region. We use the tree-level Keldysh propagator in the theory in question to calculate the expectation value of the stress-energy tensor which is, thus, due to the excitations of the zero-point fluctuations. Then we show that even for large mass, if the de Sitter expansion stage is long enough, the quantum loop corrections to the expectation value of the stress-energy tensor are not negligible in comparison with the tree-level contribution. That is revealed itself via the excitation of the higher-point fluctuations of the exact modes: during the expansion stage a nonzero particle number density for the exact modes is generated. This density is not Planckian and serves as a quench which leads to a thermalization in the out Minkowski stage.

  10. Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Bae, Hyun J.; Moin, Parviz

    2016-08-01

    Minimum-dissipation models are a simple alternative to the Smagorinsky-type approaches to parametrize the subfilter turbulent fluxes in large-eddy simulation. A recently derived model of this type for subfilter stress tensor is the anisotropic minimum-dissipation (AMD) model [Rozema et al., Phys. Fluids 27, 085107 (2015), 10.1063/1.4928700], which has many desirable properties. It is more cost effective than the dynamic Smagorinsky model, it appropriately switches off in laminar and transitional flows, and it is consistent with the exact subfilter stress tensor on both isotropic and anisotropic grids. In this study, an extension of this approach to modeling the subfilter scalar flux is proposed. The performance of the AMD model is tested in the simulation of a high-Reynolds-number rough-wall boundary-layer flow with a constant and uniform surface scalar flux. The simulation results obtained from the AMD model show good agreement with well-established empirical correlations and theoretical predictions of the resolved flow statistics. In particular, the AMD model is capable of accurately predicting the expected surface-layer similarity profiles and power spectra for both velocity and scalar concentration.

  11. A new hybrid turbulence modelling strategy for industrial CFD

    NASA Astrophysics Data System (ADS)

    Basara, B.; Jakirlic, S.

    2003-05-01

    This paper presents a new strategy for turbulence model employment with emphasis on the model's applicability for industrial computational fluid dynamics (CFD). In the hybrid modelling strategy proposed here, the Reynolds stress and mean rate of strain tensors are coupled via Boussinesq's formula as in the standard k-model. However, the turbulent kinetic energy is calculated as the sum of the normal Reynolds-stress components, representing the solutions of the appropriate transport equations. The equations governing the Reynolds-stress tensor and dissipation rate have been solved in the framework of a background second-moment closure model. Furthermore, the structure parameter C-? has been re-calculated from a newly proposed functional dependency rather than kept constant. This new definition of C-? has been assessed by using direct numerical simulation (DNS) results of several generic flow configurations featuring different phenomena such as separation, reattachment and rotation. Comparisons show a large departure of C-? from the commonly used value of 0.09. The model proposed is computationally validated in a number of well-proven fluid flow benchmarks, e.g. backward-facing step, 180° turn-around duct, rotating pipe, impinging jet and three-dimensional (3D) Ahmed body. The obtained results confirm that the present hybrid model delivers a robust solution procedure while preserving most of the physical advantages of the Reynolds-stress model over simple k-models. A low Reynolds number version of the hybrid model is also proposed and discussed.

  12. Mass Function of Galaxy Clusters in Relativistic Inhomogeneous Cosmology

    NASA Astrophysics Data System (ADS)

    Ostrowski, Jan J.; Buchert, Thomas; Roukema, Boudewijn F.

    The current cosmological model (ΛCDM) with the underlying FLRW metric relies on the assumption of local isotropy, hence homogeneity of the Universe. Difficulties arise when one attempts to justify this model as an average description of the Universe from first principles of general relativity, since in general, the Einstein tensor built from the averaged metric is not equal to the averaged stress-energy tensor. In this context, the discrepancy between these quantities is called "cosmological backreaction" and has been the subject of scientific debate among cosmologists and relativists for more than 20 years. Here we present one of the methods to tackle this problem, i.e. averaging the scalar parts of the Einstein equations, together with its application, the cosmological mass function of galaxy clusters.

  13. Mapping residual stress fields from Vickers hardness indents using Raman microprobe spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    Micro-Raman spectroscopy is used to map the residual stress fields in the vicinity of Vickers hardness indents. Both 514.5 and 488.0 nm, light is used to excite the effect and the resulting shifted and broadened Raman peaks are analyzed using computer deconvolution. Half-wave plates are used to vary the orientation of the incident later light`s polarization state with respect to crystal orientation. The Raman scattered light is then analyzed for polarization dependences which are indicative of the various components of the Raman scattering tensor. Such studies can yield valuable information about the orientation of stress components in a well knownmore » stress field. The results can then be applied to the determination of stress components in machined semiconductor materials.« less

  14. Study of grain-level deformation and residual stresses in Ti-7Al under combined bending and tension using high energy diffraction microscopy (HEDM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, K.; Venkataraman, A.; Garbaciak, T.

    In-situ high energy diffraction microscopy (HEDM) experiments are carried out to analyze the state of combined bending and tension in a Ti-7Al alloy under room temperature creep. Grain-level elastic strain tensors are evaluated from HEDM data. Atomistic calculations are used to predict elastic constants of Ti-7Al, to be used in determination of stress from strain. The stress gradient and residual stresses are successfully determined, which allows the demarcation between macro-/micro-level residual stresses. A cluster of three neighboring grains are identified that highlight the variation of mean and effective stress between grains. Crystallographic orientations and slip characteristics are analyzed for themore » selected grains. It is inferred that the interfaces between loaded grains with markedly different stress triaxiality and slip tendency are potential spots for material damage.« less

  15. Analysis of stress fields and elastic energies in the vicinity of nanograin boundaries using the disclination approach

    NASA Astrophysics Data System (ADS)

    Sukhanov, Ivan I.; Ditenberg, Ivan A.

    2017-12-01

    The paper provides a theoretical analysis of elastic stresses and elastic energy distribution in nanostructured metal materials in the vicinity of nanograin boundaries with a high partial disclination density. The analysis demonstrates the stress field distribution in disclination grain boundary configurations as a function of nanograin size, taking into account the superposition of these stresses in screening the disclination pile-ups. It is found that the principal stress tensor components reach maximum values only in disclination planes P ≈ E/25 and that the stress gradients peak at nodal points ∂P/∂x ≈ 0.08E nm-1. The shear stress components are localized within the physical grain size, and the specific elastic energy distribution for such configurations reveals characteristic local maxima which can be the cause for physical broadening of nanograin boundaries.

  16. Temperature dependence of the dielectric tensor of monoclinic Ga2O3 single crystals in the spectral range 1.0-8.5 eV

    NASA Astrophysics Data System (ADS)

    Sturm, C.; Schmidt-Grund, R.; Zviagin, V.; Grundmann, M.

    2017-08-01

    The full dielectric tensor of monoclinic Ga2O3 (β-phase) was determined by generalized spectroscopic ellipsometry in the spectral range from 1.0 eV up to 8.5 eV and temperatures in the range from 10 K up to 300 K. By using the oriented dipole approach, the energies and broadenings of the excitonic transitions are determined as a function of the temperature, and the exciton-phonon coupling properties are deduced.

  17. Flexible Force Field Parameterization through Fitting on the Ab Initio-Derived Elastic Tensor

    PubMed Central

    2017-01-01

    Constructing functional forms and their corresponding force field parameters for the metal–linker interface of metal–organic frameworks is challenging. We propose fitting these parameters on the elastic tensor, computed from ab initio density functional theory calculations. The advantage of this top-down approach is that it becomes evident if functional forms are missing when components of the elastic tensor are off. As a proof-of-concept, a new flexible force field for MIL-47(V) is derived. Negative thermal expansion is observed and framework flexibility has a negligible effect on adsorption and transport properties for small guest molecules. We believe that this force field parametrization approach can serve as a useful tool for developing accurate flexible force field models that capture the correct mechanical behavior of the full periodic structure. PMID:28661672

  18. Interpolation Environment of Tensor Mathematics at the Corpuscular Stage of Computational Experiments in Hydromechanics

    NASA Astrophysics Data System (ADS)

    Bogdanov, Alexander; Degtyarev, Alexander; Khramushin, Vasily; Shichkina, Yulia

    2018-02-01

    Stages of direct computational experiments in hydromechanics based on tensor mathematics tools are represented by conditionally independent mathematical models for calculations separation in accordance with physical processes. Continual stage of numerical modeling is constructed on a small time interval in a stationary grid space. Here coordination of continuity conditions and energy conservation is carried out. Then, at the subsequent corpuscular stage of the computational experiment, kinematic parameters of mass centers and surface stresses at the boundaries of the grid cells are used in modeling of free unsteady motions of volume cells that are considered as independent particles. These particles can be subject to vortex and discontinuous interactions, when restructuring of free boundaries and internal rheological states has place. Transition from one stage to another is provided by interpolation operations of tensor mathematics. Such interpolation environment formalizes the use of physical laws for mechanics of continuous media modeling, provides control of rheological state and conditions for existence of discontinuous solutions: rigid and free boundaries, vortex layers, their turbulent or empirical generalizations.

  19. Regional flow simulation in fractured aquifers using stress-dependent parameters.

    PubMed

    Preisig, Giona; Joel Cornaton, Fabien; Perrochet, Pierre

    2012-01-01

    A model function relating effective stress to fracture permeability is developed from Hooke's law, implemented in the tensorial form of Darcy's law, and used to evaluate discharge rates and pressure distributions at regional scales. The model takes into account elastic and statistical fracture parameters, and is able to simulate real stress-dependent permeabilities from laboratory to field studies. This modeling approach gains in phenomenology in comparison to the classical ones because the permeability tensors may vary in both strength and principal directions according to effective stresses. Moreover this method allows evaluation of the fracture porosity changes, which are then translated into consolidation of the medium. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  20. Conformal and Nearly Conformal Theories at Large N

    NASA Astrophysics Data System (ADS)

    Tarnoplskiy, Grigory M.

    In this thesis we present new results in conformal and nearly conformal field theories in various dimensions. In chapter two, we study different properties of the conformal Quantum Electrodynamics (QED) in continuous dimension d. At first we study conformal QED using large Nf methods, where Nf is the number of massless fermions. We compute its sphere free energy as a function of d, ignoring the terms of order 1/Nf and higher. For finite Nf we use the epsilon-expansion. Next we use a large Nf diagrammatic approach to calculate the leading corrections to CT, the coefficient of the two-point function of the stress-energy tensor, and CJ, the coefficient of the two-point function of the global symmetry current. We present explicit formulae as a function of d and check them versus the expectations in 2 and 4 - epsilon dimensions. In chapter three, we discuss vacuum stability in 1 + 1 dimensional conformal field theories with external background fields. We show that the vacuum decay rate is given by a non-local two-form. This two-form is a boundary term that must be added to the effective in/out Lagrangian. The two-form is expressed in terms of a Riemann-Hilbert decomposition for background gauge fields, and is given by its novel "functional'' version in the gravitational case. In chapter four, we explore Tensor models. Such models possess the large N limit dominated by the melon diagrams. The quantum mechanics of a real anti-commuting rank-3 tensor has a large N limit similar to the Sachdev-Ye-Kitaev (SYK) model. We also discuss the quantum mechanics of a complex 3-index anti-commuting tensor and argue that it is equivalent in the large N limit to a version of SYK model with complex fermions. Finally, we discuss models of a commuting tensor in dimension d. We study the spectrum of the large N quantum field theory of bosonic rank-3 tensors using the Schwinger-Dyson equations. We compare some of these results with the 4 - epsilon expansion, finding perfect agreement. We also study the spectra of bosonic theories of rank q - 1 tensors with φq interactions.

  1. Monitoring the Earthquake source process in North America

    USGS Publications Warehouse

    Herrmann, Robert B.; Benz, H.; Ammon, C.J.

    2011-01-01

    With the implementation of the USGS National Earthquake Information Center Prompt Assessment of Global Earthquakes for Response system (PAGER), rapid determination of earthquake moment magnitude is essential, especially for earthquakes that are felt within the contiguous United States. We report an implementation of moment tensor processing for application to broad, seismically active areas of North America. This effort focuses on the selection of regional crustal velocity models, codification of data quality tests, and the development of procedures for rapid computation of the seismic moment tensor. We systematically apply these techniques to earthquakes with reported magnitude greater than 3.5 in continental North America that are not associated with a tectonic plate boundary. Using the 0.02-0.10 Hz passband, we can usually determine, with few exceptions, moment tensor solutions for earthquakes with M w as small as 3.7. The threshold is significantly influenced by the density of stations, the location of the earthquake relative to the seismic stations and, of course, the signal-to-noise ratio. With the existing permanent broadband stations in North America operated for rapid earthquake response, the seismic moment tensor of most earthquakes that are M w 4 or larger can be routinely computed. As expected the nonuniform spatial pattern of these solutions reflects the seismicity pattern. However, the orientation of the direction of maximum compressive stress and the predominant style of faulting is spatially coherent across large regions of the continent.

  2. Multi-Grid and Resolution Full-Wave Tomography and Moment Tensor Inversion (Postprint)

    DTIC Science & Technology

    2012-06-04

    Denver: University of Colorado. Chen, P., L. Zhao, and T.H. Jordan (2007). Full 3D tomography for crustal structure of the Los Angeles Region, Bull...M.J.R. Wortel, and W. Spakman (2006). Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions, J. Geophys

  3. Stress field modelling from digital geological map data

    NASA Astrophysics Data System (ADS)

    Albert, Gáspár; Barancsuk, Ádám; Szentpéteri, Krisztián

    2016-04-01

    To create a model for the lithospheric stress a functional geodatabase is required which contains spatial and geodynamic parameters. A digital structural-geological map is a geodatabase, which usually contains enough attributes to create a stress field model. Such a model is not accurate enough for engineering-geological purposes because simplifications are always present in a map, but in many cases maps are the only sources for a tectonic analysis. The here presented method is designed for field geologist, who are interested to see the possible realization of the stress field over the area, on which they are working. This study presents an application which can produce a map of 3D stress vectors from a kml-file. The core application logic is implemented on top of a spatially aware relational database management system. This allows rapid and geographically accurate analysis of the imported geological features, taking advantage of standardized spatial algorithms and indexing. After pre-processing the map features in a GIS, according to the Type-Property-Orientation naming system, which was described in a previous study (Albert et al. 2014), the first stage of the algorithm generates an irregularly spaced point cloud by emitting a pattern of points within a user-defined buffer zone around each feature. For each point generated, a component-wise approximation of the tensor field at the point's position is computed, derived from the original feature's geodynamic properties. In a second stage a weighted moving average method calculates the stress vectors in a regular grid. Results can be exported as geospatial data for further analysis or cartographic visualization. Computation of the tensor field's components is based on the implementation of the Mohr diagram of a compressional model, which uses a Coulomb fracture criterion. Using a general assumption that the main principal stress must be greater than the stress from the overburden, the differential stress is calculated from the fracture criterion. The calculation includes the gravitational acceleration, the average density of rocks and the experimental 60 degree of the fracture angle from the normal of the fault plane. This way, the stress tensors are calculated as absolute pressure values per square meters on both sides of the faults. If the stress from the overburden is greater than 1 bar (i.e. the faults are buried), a confined compression would be present. Modelling this state of stress may result a confusing pattern of vectors, because in a confined position the horizontal stress vectors may point towards structures primarily associated with extension. To step over this, and to highlight the variability in the stress-field, the model calculates the vectors directly from the differential stress (practically subtracting the minimum principal stress from the critical stress). The result of the modelling is a vector map, which theoretically represents the minimum tectonic pressure in the moment, when the rock body breaks from an initial state. This map - together with the original fault-map - is suitable for determining those areas where unrevealed tectonic, sedimentary and lithological structures are possibly present (e.g. faults, sub-basins and intrusions). With modelling different deformational phases on the same area, change of the stress vectors can be detected which reveals not only the varying directions of the principal stresses, but the tectonic-driven sedimentation patterns too. The decrease of necessary critical stress in the case of a possible reactivation of a fault in subsequent deformation phase can be managed with the down-ranking of the concerning structural elements. Reference: Albert G., Ungvári ZS., Szentpéteri K. 2014: Modeling the present day stress field of the Pannonian Basin from neotectonic maps - In: Beqiraj A, Ionescu C, Christofides G, Uta A, Beqiraj Goga E, Marku S (eds.) Proceedings XX Congress of the Carpathian-Balkan Geological Association. Tirana: p. 2.

  4. Asymmetric Yield Function Based on the Stress Invariants for Pressure Sensitive Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong Wahn Yoon; Yanshan Lou; Jong Hun Yoon

    A general asymmetric yield function is proposed with dependence on the stress invariants for pressure sensitive metals. The pressure sensitivity of the proposed yield function is consistent with the experimental result of Spitzig and Richmond (1984) for steel and aluminum alloys while the asymmetry of the third invariant is preserved to model strength differential (SD) effect of pressure insensitive materials. The proposed yield function is transformed in the space of the stress triaxaility, the von Mises stress and the normalized invariant to theoretically investigate the possible reason of the SD effect. The proposed plasticity model is further extended to characterizemore » the anisotropic behavior of metals both in tension and compression. The extension of the yield function is realized by introducing two distinct fourth-order linear transformation tensors of the stress tensor for the second and third invariants, respectively. The extended yield function reasonably models the evolution of yield surfaces for a zirconium clock-rolled plate during in-plane and through-thickness compression reported by Plunkett et al. (2007). The extended yield function is also applied to describe the orthotropic behavior of a face-centered cubic metal of AA 2008-T4 and two hexagonal close-packed metals of high-purity-titanium and AZ31 magnesium alloy. The orthotropic behavior predicted by the generalized model is compared with experimental results of these metals. The comparison validates that the proposed yield function provides sufficient predictability on SD effect and anisotropic behavior both in tension and compression. When it is necessary to consider r-value anisotropy, the proposed function is efficient to be used with nonassociated flow plasticity by introducing a separate plastic potential for the consideration of r-values as shown in Stoughton & Yoon (2004, 2009).« less

  5. Stress tensor and focal mechanisms in the Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Hofstetter, A.; Dorbath, C.; Dorbath, L.; Braeuer, B.; Weber, M. H.

    2015-12-01

    We use the recorded seismicity, confined to the Dead Sea basin and its boundaries, by the Dead Sea Integrated Research (DESIRE) portable seismic network and the Israel and Jordan permanent seismic networks for studying the mechanisms of earthquakes that occurred in the Dead Sea basin. The observed seismicity in the Dead Sea basin was divided into 9 regions according to the spatial distribution of the earthquakes and the known tectonic features. The large number of recording stations and the good station distribution allowed the reliable determinations of 494 earthquake focal mechanisms. For each region, based on the inversion of the observed polarities of the earthquakes, we determine the focal mechanisms and the associated stress tensor. For 159 earthquakes out of the 494 mechanisms we could determine compatible fault planes. On the eastern side, the focal mechanisms are mainly strike-slip mechanism with nodal planes in the N-S and E-W directions. The azimuths of the stress axes are well constrained presenting minimal variability in the inversion of the data, which is in good agreement with the Arava fault on the eastern side of the Dead Sea basin and what we had expected from the regional geodynamics. However, larger variabilities of the azimuthal and dip angles are observed on the western side of the basin. Due to the wider range of azimuths of the fault planes, we observe the switching of sigma1 and sigma2 or the switching of sigma2 and sigma3as major horizontal stress directions. This observed switching of stress axes allows having dip-slip and normal mechanisms in a region that is dominated by strike-slip motion.

  6. Gravitational radiation theory. M.A. Thesis - Rice Univ.; [survey of current research

    NASA Technical Reports Server (NTRS)

    Wilson, T. L.

    1973-01-01

    A survey is presented of current research in the theory of gravitational radiation. The mathematical structure of gravitational radiation is stressed. Furthermore, the radiation problem is treated independently from other problems in gravitation. The development proceeds candidly through three points of view - scalar, rector, and tensor radiation theory - and the corresponding results are stated.

  7. CVD-MPFA full pressure support, coupled unstructured discrete fracture-matrix Darcy-flux approximations

    NASA Astrophysics Data System (ADS)

    Ahmed, Raheel; Edwards, Michael G.; Lamine, Sadok; Huisman, Bastiaan A. H.; Pal, Mayur

    2017-11-01

    Two novel control-volume methods are presented for flow in fractured media, and involve coupling the control-volume distributed multi-point flux approximation (CVD-MPFA) constructed with full pressure support (FPS), to two types of discrete fracture-matrix approximation for simulation on unstructured grids; (i) involving hybrid grids and (ii) a lower dimensional fracture model. Flow is governed by Darcy's law together with mass conservation both in the matrix and the fractures, where large discontinuities in permeability tensors can occur. Finite-volume FPS schemes are more robust than the earlier CVD-MPFA triangular pressure support (TPS) schemes for problems involving highly anisotropic homogeneous and heterogeneous full-tensor permeability fields. We use a cell-centred hybrid-grid method, where fractures are modelled by lower-dimensional interfaces between matrix cells in the physical mesh but expanded to equi-dimensional cells in the computational domain. We present a simple procedure to form a consistent hybrid-grid locally for a dual-cell. We also propose a novel hybrid-grid for intersecting fractures, for the FPS method, which reduces the condition number of the global linear system and leads to larger time steps for tracer transport. The transport equation for tracer flow is coupled with the pressure equation and provides flow parameter assessment of the fracture models. Transport results obtained via TPS and FPS hybrid-grid formulations are compared with the corresponding results of fine-scale explicit equi-dimensional formulations. The results show that the hybrid-grid FPS method applies to general full-tensor fields and provides improved robust approximations compared to the hybrid-grid TPS method for fractured domains, for both weakly anisotropic permeability fields and very strong anisotropic full-tensor permeability fields where the TPS scheme exhibits spurious oscillations. The hybrid-grid FPS formulation is extended to compressible flow and the results demonstrate the method is also robust for transient flow. Furthermore, we present FPS coupled with a lower-dimensional fracture model, where fractures are strictly lower-dimensional in the physical mesh as well as in the computational domain. We present a comparison of the hybrid-grid FPS method and the lower-dimensional fracture model for several cases of isotropic and anisotropic fractured media which illustrate the benefits of the respective methods.

  8. DR-TAMAS: Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures

    PubMed Central

    Irfanoglu, M. Okan; Nayak, Amritha; Jenkins, Jeffrey; Hutchinson, Elizabeth B.; Sadeghi, Neda; Thomas, Cibu P.; Pierpaoli, Carlo

    2016-01-01

    In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures, including white matter (WM), gray matter (GM), and spaces containing cerebrospinal fluid (CSF). Currently most DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some diffusion-derived metrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative for proper alignment of WM, other tensor metrics such as the trace or mean diffusivity (MD) are fundamental for a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural MRI data, e.g., T1-weighted or T2-weighted images, which are usually available together with the diffusion data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric time-varying velocity-based transformation model, which enables it to account for potentially large anatomical variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets and compared with other widely-used diffeomorphic image registration techniques employing both full tensor information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall performance in the entire brain, while being equivalent to the best existing methods in WM. PMID:26931817

  9. Novel region of interest interrogation technique for diffusion tensor imaging analysis in the canine brain.

    PubMed

    Li, Jonathan Y; Middleton, Dana M; Chen, Steven; White, Leonard; Ellinwood, N Matthew; Dickson, Patricia; Vite, Charles; Bradbury, Allison; Provenzale, James M

    2017-08-01

    Purpose We describe a novel technique for measuring diffusion tensor imaging metrics in the canine brain. We hypothesized that a standard method for region of interest placement could be developed that is highly reproducible, with less than 10% difference in measurements between raters. Methods Two sets of canine brains (three seven-week-old full-brains and two 17-week-old single hemispheres) were scanned ex-vivo on a 7T small-animal magnetic resonance imaging system. Strict region of interest placement criteria were developed and then used by two raters to independently measure diffusion tensor imaging metrics within four different white-matter regions within each specimen. Average values of fractional anisotropy, radial diffusivity, and the three eigenvalues (λ1, λ2, and λ3) within each region in each specimen overall and within each individual image slice were compared between raters by calculating the percentage difference between raters for each metric. Results The mean percentage difference between raters for all diffusion tensor imaging metrics when pooled by each region and specimen was 1.44% (range: 0.01-5.17%). The mean percentage difference between raters for all diffusion tensor imaging metrics when compared by individual image slice was 2.23% (range: 0.75-4.58%) per hemisphere. Conclusion Our results indicate that the technique described is highly reproducible, even when applied to canine specimens of differing age, morphology, and image resolution. We propose this technique for future studies of diffusion tensor imaging analysis in canine brains and for cross-sectional and longitudinal studies of canine brain models of human central nervous system disease.

  10. The total position-spread tensor: Spin partition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Khatib, Muammar, E-mail: elkhatib@irsamc.ups-tlse.fr; Evangelisti, Stefano, E-mail: stefano@irsamc.ups-tlse.fr; Leininger, Thierry, E-mail: Thierry.Leininger@irsamc.ups-tlse.fr

    2015-03-07

    The Total Position Spread (TPS) tensor, defined as the second moment cumulant of the position operator, is a key quantity to describe the mobility of electrons in a molecule or an extended system. In the present investigation, the partition of the TPS tensor according to spin variables is derived and discussed. It is shown that, while the spin-summed TPS gives information on charge mobility, the spin-partitioned TPS tensor becomes a powerful tool that provides information about spin fluctuations. The case of the hydrogen molecule is treated, both analytically, by using a 1s Slater-type orbital, and numerically, at Full Configuration Interactionmore » (FCI) level with a V6Z basis set. It is found that, for very large inter-nuclear distances, the partitioned tensor growths quadratically with the distance in some of the low-lying electronic states. This fact is related to the presence of entanglement in the wave function. Non-dimerized open chains described by a model Hubbard Hamiltonian and linear hydrogen chains H{sub n} (n ≥ 2), composed of equally spaced atoms, are also studied at FCI level. The hydrogen systems show the presence of marked maxima for the spin-summed TPS (corresponding to a high charge mobility) when the inter-nuclear distance is about 2 bohrs. This fact can be associated to the presence of a Mott transition occurring in this region. The spin-partitioned TPS tensor, on the other hand, has a quadratical growth at long distances, a fact that corresponds to the high spin mobility in a magnetic system.« less

  11. Using tensor-based morphometry to detect structural brain abnormalities in rats with adolescent intermittent alcohol exposure

    NASA Astrophysics Data System (ADS)

    Paniagua, Beatriz; Ehlers, Cindy; Crews, Fulton; Budin, Francois; Larson, Garrett; Styner, Martin; Oguz, Ipek

    2011-03-01

    Understanding the effects of adolescent binge drinking that persist into adulthood is a crucial public health issue. Adolescent intermittent ethanol exposure (AIE) is an animal model that can be used to investigate these effects in rodents. In this work, we investigate the application of a particular image analysis technique, tensor-based morphometry, for detecting anatomical differences between AIE and control rats using Diffusion Tensor Imaging (DTI). Deformation field analysis is a popular method for detecting volumetric changes analyzing Jacobian determinants calculated on deformation fields. Recent studies showed that computing deformation field metrics on the full deformation tensor, often referred to as tensor-based morphometry (TBM), increases the sensitivity to anatomical differences. In this paper we conduct a comprehensive TBM study for precisely locating differences between control and AIE rats. Using a DTI RARE sequence designed for minimal geometric distortion, 12-directional images were acquired postmortem for control and AIE rats (n=9). After preprocessing, average images for the two groups were constructed using an unbiased atlas building approach. We non-rigidly register the two atlases using Large Deformation Diffeomorphic Metric Mapping, and analyze the resulting deformation field using TBM. In particular, we evaluate the tensor determinant, geodesic anisotropy, and deformation direction vector (DDV) on the deformation field to detect structural differences. This yields data on the local amount of growth, shrinkage and the directionality of deformation between the groups. We show that TBM can thus be used to measure group morphological differences between rat populations, demonstrating the potential of the proposed framework.

  12. DR-TAMAS: Diffeomorphic Registration for Tensor Accurate Alignment of Anatomical Structures.

    PubMed

    Irfanoglu, M Okan; Nayak, Amritha; Jenkins, Jeffrey; Hutchinson, Elizabeth B; Sadeghi, Neda; Thomas, Cibu P; Pierpaoli, Carlo

    2016-05-15

    In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures, including white matter (WM), gray matter (GM), and spaces containing cerebrospinal fluid (CSF). Currently most DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some diffusion-derived metrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative for proper alignment of WM, other tensor metrics such as the trace or mean diffusivity (MD) are fundamental for a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural MRI data, e.g., T1-weighted or T2-weighted images, which are usually available together with the diffusion data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric time-varying velocity-based transformation model, which enables it to account for potentially large anatomical variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets and compared with other widely-used diffeomorphic image registration techniques employing both full tensor information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall performance in the entire brain, while being equivalent to the best existing methods in WM. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effect of thermal exposure on the residual stress relaxation in a hardened cylindrical sample under creep conditions

    NASA Astrophysics Data System (ADS)

    Radchenko, V. P.; Saushkin, M. N.; Tsvetkov, V. V.

    2016-05-01

    This paper describes the effect of thermal exposure (high-temperature exposure) ( T = 675°C) on the residual creep stress relaxation in a surface hardened solid cylindrical sample made of ZhS6UVI alloy. The analysis is carried out with the use of experimental data for residual stresses after micro-shot peening and exposures to temperatures equal to T = 675°C during 50, 150, and 300 h. The paper presents the technique for solving the boundary-value creep problem for the hardened cylindrical sample with the initial stress-strain state under the condition of thermal exposure. The uniaxial experimental creep curves obtained under constant stresses of 500, 530, 570, and 600 MPa are used to construct the models describing the primary and secondary stages of creep. The calculated and experimental data for the longitudinal (axial) tensor components of residual stresses are compared, and their satisfactory agreement is determined.

  14. Influence of seismic anisotropy on the cross correlation tensor: numerical investigations

    NASA Astrophysics Data System (ADS)

    Saade, M.; Montagner, J. P.; Roux, P.; Cupillard, P.; Durand, S.; Brenguier, F.

    2015-05-01

    Temporal changes in seismic anisotropy can be interpreted as variations in the orientation of cracks in seismogenic zones, and thus as variations in the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes, although they are still not well understood. In this study, we investigate the azimuthal polarization of surface waves in anisotropic media with respect to the orientation of anisotropy, from a numerical point of view. This technique is based on the observation of the signature of anisotropy on the nine-component cross-correlation tensor (CCT) computed from seismic ambient noise recorded on pairs of three-component sensors. If noise sources are spatially distributed in a homogeneous medium, the CCT allows the reconstruction of the surface wave Green's tensor between the station pairs. In homogeneous, isotropic medium, four off-diagonal terms of the surface wave Green's tensor are null, but not in anisotropic medium. This technique is applied to three-component synthetic seismograms computed in a transversely isotropic medium with a horizontal symmetry axis, using a spectral element code. The CCT is computed between each pair of stations and then rotated, to approximate the surface wave Green's tensor by minimizing the off-diagonal components. This procedure allows the calculation of the azimuthal variation of quasi-Rayleigh and quasi-Love waves. In an anisotropic medium, in some cases, the azimuth of seismic anisotropy can induce a large variation in the horizontal polarization of surface waves. This variation depends on the relative angle between a pair of stations and the direction of anisotropy, the amplitude of the anisotropy, the frequency band of the signal and the depth of the anisotropic layer.

  15. Scale-Similar Models for Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Sarghini, F.

    1999-01-01

    Scale-similar models employ multiple filtering operations to identify the smallest resolved scales, which have been shown to be the most active in the interaction with the unresolved subgrid scales. They do not assume that the principal axes of the strain-rate tensor are aligned with those of the subgrid-scale stress (SGS) tensor, and allow the explicit calculation of the SGS energy. They can provide backscatter in a numerically stable and physically realistic manner, and predict SGS stresses in regions that are well correlated with the locations where large Reynolds stress occurs. In this paper, eddy viscosity and mixed models, which include an eddy-viscosity part as well as a scale-similar contribution, are applied to the simulation of two flows, a high Reynolds number plane channel flow, and a three-dimensional, nonequilibrium flow. The results show that simulations without models or with the Smagorinsky model are unable to predict nonequilibrium effects. Dynamic models provide an improvement of the results: the adjustment of the coefficient results in more accurate prediction of the perturbation from equilibrium. The Lagrangian-ensemble approach [Meneveau et al., J. Fluid Mech. 319, 353 (1996)] is found to be very beneficial. Models that included a scale-similar term and a dissipative one, as well as the Lagrangian ensemble averaging, gave results in the best agreement with the direct simulation and experimental data.

  16. On the curvature effect of thin membranes

    NASA Astrophysics Data System (ADS)

    Wang, Duo; Jiao, Xiangmin; Conley, Rebecca; Glimm, James

    2013-01-01

    We investigate the curvature effect of a thin, curved elastic interface that separates two subdomains and exerts a pressure due to a curvature effect. This pressure, which we refer to as interface pressure, is similar to the surface tension in fluid mechanics. It is important in some applications, such as the canopy of parachutes, biological membranes of cells, balloons, airbags, etc., as it partially balances a pressure jump between the two sides of an interface. In this paper, we show that the interface pressure is equal to the trace of the matrix product of the curvature tensor and the Cauchy stress tensor in the tangent plane. We derive the theory for interfaces in both 2-D and 3-D, and present numerical discretizations for computing the quality over triangulated surfaces.

  17. Orbiting naked singularities in large-ω Brans-Dicke gravity

    NASA Astrophysics Data System (ADS)

    Chauvineau, Bertrand

    2017-11-01

    Brans-Dicke gravity admits spherical solutions describing naked singularities rather than black holes. Depending on some parameters entering such a solution, stable circular orbits exist for all radii. One shows that, despite the fact a naked singularity is an infinite redshift location, the far observed orbital motion frequency is unbounded for an adiabatically decreasing radius. We then argue that this feature remains true in a wide set of scalar(s)-tensor theories if gravity. This is a salient difference with general relativity, and the repercussion on the gravitational radiation by EMRI systems is stressed. Since this behaviour survives the ω \\longrightarrow ∞ limit, the possibility of such solutions is of utmost interest in the new gravitational wave astronomy context, despite the current constraints on scalar-tensor gravity.

  18. On the role of the transformation eigenstrain in the growth or shrinkage of spheroidal isotropic precipitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, F.D.; Boehm, H.J.

    The jumps of the strain and stress tensors on the surface of elastic homogeneous or inhomogeneous ellipsoidal inclusions embedded in an elastic matrix are obtained from results reported in the literature. They are used to derive closed-form expressions for the thermodynamic force in such matrix-inclusion systems that are subjected to a generally defined homogeneous transformation eigenstrain. A detailed study is presented for an isotropic spheroidal inclusion in an isotropic matrix in which the most important parameters are the inclusion's aspect ratio {alpha} and an eigenstrain triaxiality parameter d-bar. The fluctuations of the thermodynamic force are investigated for a set ofmore » specific transformation eigenstrain tensors and are presented for inclusion shapes ranging from disk-like to fiber-like spheroids.« less

  19. Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories

    NASA Astrophysics Data System (ADS)

    Dong, Xi

    2016-06-01

    We develop a framework for studying the well-known universal term in the Rényi entropy for an arbitrary entangling region in four-dimensional conformal field theories that are holographically dual to gravitational theories. The shape dependence of the Rényi entropy Sn is described by two coefficients: fb(n ) for traceless extrinsic curvature deformations and fc(n ) for Weyl tensor deformations. We provide the first calculation of the coefficient fb(n ) in interacting theories by relating it to the stress tensor one-point function in a deformed hyperboloid background. The latter is then determined by a straightforward holographic calculation. Our results show that a previous conjecture fb(n )=fc(n ), motivated by surprising evidence from a variety of free field theories and studies of conical defects, fails holographically.

  20. On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yao, E-mail: fu5@mailbox.sc.edu, E-mail: jhsong@cec.sc.edu; Song, Jeong-Hoon, E-mail: fu5@mailbox.sc.edu, E-mail: jhsong@cec.sc.edu

    2014-08-07

    Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifiesmore » the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.« less

  1. Stress regime in the Philippine Sea slab beneath Kanto, Japan

    NASA Astrophysics Data System (ADS)

    Nakajima, Junichi; Hasegawa, Akira; Hirose, Fuyuki

    2011-08-01

    We determine the focal mechanisms of earthquakes within the Philippine Sea slab beneath the Tokyo metropolitan area, and perform stress tensor inversions to investigate the detailed stress field within the slab. The results show a characteristic spatial variation in earthquake-generating stress. Slab stress in northeastern part of the PHS slab is characterized by down-dip tension (DDT), except for the uppermost tip of the seismic portion of the slab where down-dip compression (DDC) stress is dominant. We interpret that DDT is caused by the net slab pull and DDC is attributable to local resistance to subduction at the tip of the slab. In southwestern part of the PHS slab, σ1 and σ3 are generally rotated oblique to the dip of the slab, suggesting that earthquakes occur under stress conditions of neither DDC nor DDT. The rotations in σ1 and σ3 may be related to stress accumulation by the slip deficit along the asperity of the 1923 Kanto earthquake (M7.9).

  2. New constraints on micro-seismicity and stress state in the western part of the North Anatolian Fault Zone: Observations from a dense seismic array

    NASA Astrophysics Data System (ADS)

    Altuncu Poyraz, Selda; Teoman, M. Uğur; Türkelli, Niyazi; Kahraman, Metin; Cambaz, Didem; Mutlu, Ahu; Rost, Sebastian; Houseman, Gregory A.; Thompson, David A.; Cornwell, David; Utkucu, Murat; Gülen, Levent

    2015-08-01

    With the aim of extensively investigating the crustal structure beneath the western segment of the North Anatolian Fault Zone where it splays into northern and southern branches, a temporary seismic network (dense array for North Anatolia-DANA) consisting of 70 stations was deployed in early May 2012 and operated for 18 months in the Sakarya region during the FaultLab experiment. Out of 2437 events contaminated by explosions, we extracted 1371 well located earthquakes. The enhanced station coverage having a nominal station spacing of 7 km, lead to a minimum magnitude calculation of 0.1. Horizontal and vertical location uncertainties within the array do not exceed 0.8 km and 0.9 km, respectively. We observe considerable seismic activity along both branches of the fault where the depth of the seismogenic zone was mostly confined to 15 km. Using our current earthquake catalog we obtained a b-value of 1. We also mapped the b-value variation with depth and observed a gradual decrease. Furthermore, we determined the source parameters of 41 earthquakes with magnitudes greater than 1.8 using P-wave first motion polarity method. Regional Moment Tensor Inversion method was also applied to earthquakes with magnitudes greater than 3.0. Focal mechanism solutions confirm that Sakarya and its vicinity is stressed by a compressional regime showing a primarily oblique-slip motion character. Stress tensor analysis indicates that the maximum principal stress is aligned in WNW-ESE direction and the tensional axis is aligned in NNE-SSW direction.

  3. SGS Closure Methodology for Surface-layer Rough-wall Turbulence.

    NASA Astrophysics Data System (ADS)

    Brasseur, James G.; Juneja, Anurag

    1998-11-01

    As reported in another abstract, necessary under-resolution and anisotropy of integral scales near the surface in LES of rough-wall boundary layers cause errors in the statistical structure of the modeled subgrid-scale (SGS) acceleration using eddy viscosity and similarity closures. The essential difficulty is an overly strong coupling between the modeled SGS stress tensor and predicted resolved velocity u^r. Specific to this problem, we propose a class of SGS closures in which subgrid scale velocities u^s1 between an explicit filter scale Δ and the grid scale δ are estimated from the solution to a separate prognostic equation, and the SGS stress tensor is formed using u^s1 as a surrogate for subgrid velocity u^s. The method is currently under development for pseudo-spectral LES where a filter at scales δ < Δ is explicit. The exact evolution equation for u^s1 contains dynamical interactions between u^r and u^s1 which can be calculated directly, and a term which is modeled to capture energy flux from the s1 scales without altering u^s1 structure. Three levels of closure for SGS stress are possible at different levels of accuracy and computational expense. The cheapest model has been tested with DNS and LES of anisotropic buoyancy-driven turbulence. Preliminary results show major improvement in the structure of the predicted SGS acceleration with much of the spurious coupling between u^r and SGS stress removed. Performance, predictions and cost of the three levels of closure are under analysis.

  4. Probe measurements of the three-dimensional magnetic field structure in a rotating magnetic field sustained field-reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velas, K. M.; Milroy, R. D.

    A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure B{sub r}, B{sub θ}, and B{sub z} at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10 kHz low pass filter usedmore » in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.« less

  5. Obtaining molecular and structural information from 13C-14N systems with 13C FIREMAT experiments.

    PubMed

    Strohmeier, Mark; Alderman, D W; Grant, David M

    2002-04-01

    The effect of dipolar coupling to 14N on 13C FIREMAT (five pi replicated magic angle turning) experiments is investigated. A method is developed for fitting the 13C FIREMAT FID employing the full theory to extract the 13C-14N dipolar and 13C chemical shift tensor information. The analysis requires prior knowledge of the electric field gradient (EFG) tensor at the 14N nucleus. In order to validate the method the analysis is done for the amino acids alpha-glycine, gamma-glycine, l-alanine, l-asparagine, and l-histidine on FIREMAT FIDs recorded at 13C frequencies of 50 and 100 MHz. The dipolar and chemical shift data obtained with this analysis are in very good agreement with the previous single-crystal 13C NMR results and neutron diffraction data on alpha-glycine, l-alanine, and l-asparagine. The values for gamma-glycine and l-histidine obtained with this new method are reported for the first time. The uncertainties in the EFG tensor on the resultant 13C chemical shift and dipolar tensor values are assessed. (c) 2002 Elsevier Science (USA).

  6. Gluing operation and form factors of local operators in N = 4 Super Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Bolshov, A. E.

    2018-04-01

    The gluing operation is an effective way to get form factors of both local and non-local operators starting from different representations of on-shell scattering amplitudes. In this paper it is shown how it works on the example of form factors of operators from stress-tensor operator supermultiplet in Grassmannian and spinor helicity representations.

  7. Finsler-Geometric Continuum Mechanics

    DTIC Science & Technology

    2016-05-01

    gravitation and astrophysical applications. Physical Review D. 1977;16:1643–1663. 50. Ozakin A, Yavari A. A geometric theory of thermal stresses...to physical problems of tensile fracture, shear localization, and cavitation in solid bodies. The pseudo-Finsler approach is demonstrated to be more...Weyl-type transformation of the fundamental tensor, analytical and numerical solutions of representative example problems offer new physical insight

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizard, Alain J.; Tronci, Cesare

    The variational formulations of guiding-center Vlasov-Maxwell theory based on Lagrange, Euler, and Euler-Poincaré variational principles are presented. Each variational principle yields a different approach to deriving guiding-center polarization and magnetization effects into the guiding-center Maxwell equations. The conservation laws of energy, momentum, and angular momentum are also derived by Noether method, where the guiding-center stress tensor is now shown to be explicitly symmetric.

  9. Modulated Hawking radiation and a nonviolent channel for information release

    DOE PAGES

    Giddings, Steven B.

    2014-09-16

    The unitarization of black hole evaporation requires that quantum information escapes a black hole; an important question is to identify the mechanism or channel by which it does so. Accurate counting of black hole states via the Bekenstein–Hawking entropy would indicate this information should be encoded in radiation with average energy flux matching Hawking’s. Information can be encoded with no change in net flux via fine-grained modulation of the Hawking radiation. In an approximate effective field theory description, couplings to the stress tensor of the black hole atmosphere that depend on the internal state of the black hole are amore » promising alternative for inducing such modulation. These can be picturesquely thought of as due to state-dependent metric fluctuations in the vicinity of the horizon. Such couplings offer the prospect of emitting information without extra energy flux, and can be shown to do so at linear order in the couplings, with motivation given for possible extension of this result to higher orders. The potential advantages of such couplings to the stress tensor thus extend beyond their universality, which is helpful in addressing constraints from black hole mining.« less

  10. A Comprehensive Overview of the Duvernay Induced Seismicity near Fox Creek, Alberta

    NASA Astrophysics Data System (ADS)

    Schultz, R.; Wang, R.; Gu, Y. J.; Haug, K.; Atkinson, G. M.

    2016-12-01

    In this work we summarize the current state of understanding regarding the induced seismicity related to Duvernay hydraulic fracturing operations in central Alberta, near the town of Fox Creek. Earthquakes in this region cluster into distinct sequences in time, space, and focal mechanism. To corroborate this point, we use cross-correlation detection methods to delineate transient temporal relationships, double-difference relocations to confirm spatial clustering, and moment tensor determinations to show fault motion consistency. The spatiotemporal clustering of sequences is strongly related to nearby hydraulic fracturing operations. In addition, we identify a strong preference for subvertical strike-slip motion with a roughly 45º P-axis orientation, consistent with ambient stress field considerations. The hypocentral geometry in two red traffic light protocol cases, that are robustly constrained by local array data, provide compelling evidence for planar features starting at Duvernay Formation depths and extending into the shallow Precambrian basement. We interpret these features as faults orientated approximately north-south and subvertically, consistent with moment tensor determinations. Finally, we conclude that the primary sequences are best explained as induced events in response to effective stress changes as a result of pore-pressure increase along previously existing faults due to hydraulic fracturing stimulations.

  11. Scalewise invariant analysis of the anisotropic Reynolds stress tensor for atmospheric surface layer and canopy sublayer turbulent flows

    NASA Astrophysics Data System (ADS)

    Brugger, Peter; Katul, Gabriel G.; De Roo, Frederik; Kröniger, Konstantin; Rotenberg, Eyal; Rohatyn, Shani; Mauder, Matthias

    2018-05-01

    Anisotropy in the turbulent stress tensor, which forms the basis of invariant analysis, is conducted using velocity time series measurements collected in the canopy sublayer (CSL) and the atmospheric surface layer (ASL). The goal is to assess how thermal stratification and surface roughness conditions simultaneously distort the scalewise relaxation towards isotropic state from large to small scales when referenced to homogeneous turbulence. To achieve this goal, conventional invariant analysis is extended to allow scalewise information about relaxation to isotropy in physical (instead of Fourier) space to be incorporated. The proposed analysis shows that the CSL is more isotropic than its ASL counterpart at large, intermediate, and small (or inertial) scales irrespective of the thermal stratification. Moreover, the small (or inertial) scale anisotropy is more prevalent in the ASL when compared to the CSL, a finding that cannot be fully explained by the intensity of the mean velocity gradient acting on all scales. Implications to the validity of scalewise Rotta and Lumley models for return to isotropy as well as advantages to using barycentric instead of anisotropy invariant maps for such scalewise analysis are discussed.

  12. Statistics of fully turbulent impinging jets

    NASA Astrophysics Data System (ADS)

    Wilke, Robert; Sesterhenn, Jörn

    2017-08-01

    Direct numerical simulations of sub- and supersonic impinging jets with Reynolds numbers of 3300 and 8000 are carried out to analyse their statistical properties. The influence of the parameters Mach number, Reynolds number and ambient temperature on the mean velocity and temperature fields are studied. For the compressible subsonic cold impinging jets into a heated environment, different Reynolds analogies are assesses. It is shown, that the (original) Reynolds analogy as well as the Chilton Colburn analogy are in good agreement with the DNS data outside the impinging area. The generalised Reynolds analogy (GRA) and the Crocco-Busemann relation are not suited for the estimation of the mean temperature field based on the mean velocity field of impinging jets. Furthermore, the prediction of fluctuating temperatures according to the GRA fails. On the contrary, the linear relation between thermodynamic fluctuations of entropy, density and temperature as suggested by Lechner et al. (2001) can be confirmed for the entire wall jet. The turbulent heat flux and Reynolds stress tensor are analysed and brought into coherence with the primary and secondary ring vortices of the wall jet. Budget terms of the Reynolds stress tensor are given as data base for the improvement of turbulence models.

  13. A strain energy filter for 3D vessel enhancement with application to pulmonary CT images.

    PubMed

    Xiao, Changyan; Staring, Marius; Shamonin, Denis; Reiber, Johan H C; Stolk, Jan; Stoel, Berend C

    2011-02-01

    The traditional Hessian-related vessel filters often suffer from detecting complex structures like bifurcations due to an over-simplified cylindrical model. To solve this problem, we present a shape-tuned strain energy density function to measure vessel likelihood in 3D medical images. This method is initially inspired by established stress-strain principles in mechanics. By considering the Hessian matrix as a stress tensor, the three invariants from orthogonal tensor decomposition are used independently or combined to formulate distinctive functions for vascular shape discrimination, brightness contrast and structure strength measuring. Moreover, a mathematical description of Hessian eigenvalues for general vessel shapes is obtained, based on an intensity continuity assumption, and a relative Hessian strength term is presented to ensure the dominance of second-order derivatives as well as suppress undesired step-edges. Finally, we adopt the multi-scale scheme to find an optimal solution through scale space. The proposed method is validated in experiments with a digital phantom and non-contrast-enhanced pulmonary CT data. It is shown that our model performed more effectively in enhancing vessel bifurcations and preserving details, compared to three existing filters. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Experimental investigation of turbulent flow through a circular-to-rectangular transition duct. Ph.D. Thesis - Washington Univ.

    NASA Technical Reports Server (NTRS)

    Davis, David O.

    1991-01-01

    Steady, incompressible, turbulent, swirl-free flow through a circular-to-rectangular transition duck was studied experimentally. The cross-sectional area remains the same at the exit as at the inlet, but varies through the transition section to a maximum value approximately 15 percent above the inlet value. The cross-sectional geometry everywhere along the duct is defined by the equation of a superellipse. Mean and turbulence data were accumulated utilizing pressure and hot-wire instrumentation at five stations along the test section. Data are presented for operating bulk Reynolds numbers of 88,000 and 390,000. Measured quantities include total and static pressure, the three components of the mean velocity vector, and the six components of the Reynolds stress tensor. In addition to the transition duct measurements, a hot-wire technique which relies on the sequential use of single rotatable normal and slant-wire probes was proposed. The technique is applicable for measurement of the total mean velocity vector and the complete Reynolds stress tensor when the primary flow is arbitrarily skewed relative to a plane which lies normal to the probe axis of rotation.

  15. Multi-scale properties of large eddy simulations: correlations between resolved-scale velocity-field increments and subgrid-scale quantities

    NASA Astrophysics Data System (ADS)

    Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca

    2018-06-01

    We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.

  16. Nonlinear fluid dynamics of nanoscale hydration water layer

    NASA Astrophysics Data System (ADS)

    Jhe, Wonho; Kim, Bongsu; Kim, Qhwan; An, Sangmin

    In nature, the hydration water layer (HWL) ubiquitously exists in ambient conditions or aqueous solutions, where water molecules are tightly bound to ions or hydrophilic surfaces. It plays an important role in various mechanisms such as biological processes, abiotic materials, colloidal interaction, and friction. The HWL, for example, can be easily formed between biomaterials since most biomaterials are covered by hydrophilic molecules such as lipid bilayers, and this HWL is expected to be significant to biological and physiological functions. Here (1) we present the general stress tensor of the hydration water layer. The hydration stress tensor provided the platform form for holistic understanding of the dynamic behaviors of the confined HWL including tapping and shear dynamics which are until now individually studied. And, (2) through fast shear velocity ( 1mm/s) experiments, the elastic turbulence caused by elastic property of the HWL is indirectly observed. Our results may contribute to a deeper study of systems where the HWL plays an important role such as biomolecules, colloidal particles, and the MEMS. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIP) (2016R1A3B1908660).

  17. Moment Tensor Inversions of the M1.7+ Earthquakes in Basel. Switzerland Reveal Predominant Shear Dislocations

    NASA Astrophysics Data System (ADS)

    Guilhem, A.; Walter, F. T.

    2013-12-01

    We investigate moment tensor solutions of nearly 30 magnitude (M) 1.7+ earthquakes that occurred in Basel, Switzerland during and after the simulation of the geothermal enhanced system between December 2nd and 8th 2006. In 2009, Deichmann and Ernst determined the focal mechanisms for these events using P-wave first-motions. They found clear evidence for double-couple mechanisms with no indications for substantial volumetric changes. This differs from evidences of composite type ruptures (i.e., shearing with isotropic motion) observed in other geothermal environments. Here, we use a similar approach for the computation of the moment tensor inversions to the one used by Guilhem et al. (2012) for M3 earthquakes in Geysers. We use a dataset from strong-motion stations located within 7 km from the epicenters, with data filtered between 0.5 and 3 Hz and integrated twice to displacement. The waveforms are inverted for both deviatoric and full moment tensor solutions. In addition, we perform a network sensitivity test (NSS) by computing 100 million random moment tensors for each event thus testing the sensitivity of the moment tensor solutions. Finally, because the injection of fluids in the ground can promote crack growth generating seismic events, we also compute a crack + double-couple inversion (Minson et al., 2007) for each of the studied earthquakes between December 2006 and May 2007. From this extensive search we find that the results of our different techniques converge. Moment tensor solutions are very similar to the first-motion focal mechanisms of Deichmann and Ernst (2009) and accordingly do not exhibit dominant volumetric changes except for a subset of events, which we discuss in some detail. References: Deichmann, N. and Ernst, J. (2009), Swiss J. Geosc. Guilhem, A., Dreger, D.S., Hutchings, L. J., and Johnson, L. (2012), AGU Fall meeting Minson, S. E., Dreger, D. S., Bürgmann, R., Kanamori, H., Larson, K. M. (2007), J. Geophys. Res.

  18. Stress tensor and viscosity of water: Molecular dynamics and generalized hydrodynamics results

    NASA Astrophysics Data System (ADS)

    Bertolini, Davide; Tani, Alessandro

    1995-08-01

    The time correlation functions (CF's) of diagonal and off-diagonal components of the stress tensor of water have been calculated at 245 and 298 K in a molecular dynamics (MD) study on 343 molecules in the microcanonical ensemble. We present results obtained at wave number k=0 and at a few finite values of k, in the atomic and molecular formalism. In all cases, more than 98% of these functions are due to the potential term of the stress tensor. At k=0, their main features are a fast oscillatory initial decay, followed by a long-time tail more apparent in the supercooled region. Bulk and shear viscosities, calculated via Green-Kubo integration of the relevant CF at k=0, are underestimated with respect to experimental data, mainly at low temperature, but their ratio (~=2) is correctly reproduced. Both shear and bulk viscosity decrease as a function of k, the latter more rapidly, so that they become almost equal at ~=1 Å-1. Also, both viscosities drop rapidly from their maximum at ω=0. This behavior has been related to the large narrowing observed in the acoustic band, mainly in the supercooled region. The infinite frequency bulk and shear rigidity moduli have been shown to be in fair agreement with the experimental data, provided the MD value used for comparison is that corresponding to the frequency range relevant to ultrasonic measurements. The MD results of stress-stress CF's compare well with those predicted by Bertolini and Tani [Phys. Rev. E 51, 1091 (1995)] at k=0, by an application of generalized hydrodynamics [de Schepper et al., Phys. Rev. A 38, 271 (1988)] in the molecular formalism, to the same model of water (TIP4P) [Jorgensen et al., J. Chem. Phys. 79, 926 (1983)]. These CF's are essentially equal in the atomic and molecular formalism, the only minor difference being restricted to the high frequency librational region of the shear function. By a comparison of atomic and molecular results, we show here that neglecting libration has no effect on the density-density and longitudinal current CF's and very little effect on transverse properties. On the other hand, this study points out the importance of including the oscillation in the nearest-neighbor cage in the memory function of the longitudinal and transverse current CF. The oscillatory local motion turns out to play an important role in all CF's and hence contributes significantly to the value of viscosity and of rigidity moduli.

  19. Analysis of Seismic Moment Tensor and Finite-Source Scaling During EGS Resource Development at The Geysers, CA

    NASA Astrophysics Data System (ADS)

    Boyd, O. S.; Dreger, D. S.; Gritto, R.

    2015-12-01

    Enhanced Geothermal Systems (EGS) resource development requires knowledge of subsurface physical parameters to quantify the evolution of fracture networks. We investigate seismicity in the vicinity of the EGS development at The Geysers Prati-32 injection well to determine moment magnitude, focal mechanism, and kinematic finite-source models with the goal of developing a rupture area scaling relationship for the Geysers and specifically for the Prati-32 EGS injection experiment. Thus far we have analyzed moment tensors of M ≥ 2 events, and are developing the capability to analyze the large numbers of events occurring as a result of the fluid injection and to push the analysis to smaller magnitude earthquakes. We have also determined finite-source models for five events ranging in magnitude from M 3.7 to 4.5. The scaling relationship between rupture area and moment magnitude of these events resembles that of a published empirical relationship derived for events from M 4.5 to 8.3. We plan to develop a scaling relationship in which moment magnitude and corner frequency are predictor variables for source rupture area constrained by the finite-source modeling. Inclusion of corner frequency in the empirical scaling relationship is proposed to account for possible variations in stress drop. If successful, we will use this relationship to extrapolate to the large numbers of events in the EGS seismicity cloud to estimate the coseismic fracture density. We will present the moment tensor and corner frequency results for the micro earthquakes, and for select events, finite-source models. Stress drop inferred from corner frequencies and from finite-source modeling will be compared.

  20. Earthquake focal mechanism forecasting in Italy for PSHA purposes

    NASA Astrophysics Data System (ADS)

    Roselli, Pamela; Marzocchi, Warner; Mariucci, Maria Teresa; Montone, Paola

    2018-01-01

    In this paper, we put forward a procedure that aims to forecast focal mechanism of future earthquakes. One of the primary uses of such forecasts is in probabilistic seismic hazard analysis (PSHA); in fact, aiming at reducing the epistemic uncertainty, most of the newer ground motion prediction equations consider, besides the seismicity rates, the forecast of the focal mechanism of the next large earthquakes as input data. The data set used to this purpose is relative to focal mechanisms taken from the latest stress map release for Italy containing 392 well-constrained solutions of events, from 1908 to 2015, with Mw ≥ 4 and depths from 0 down to 40 km. The data set considers polarity focal mechanism solutions until to 1975 (23 events), whereas for 1976-2015, it takes into account only the Centroid Moment Tensor (CMT)-like earthquake focal solutions for data homogeneity. The forecasting model is rooted in the Total Weighted Moment Tensor concept that weighs information of past focal mechanisms evenly distributed in space, according to their distance from the spatial cells and magnitude. Specifically, for each cell of a regular 0.1° × 0.1° spatial grid, the model estimates the probability to observe a normal, reverse, or strike-slip fault plane solution for the next large earthquakes, the expected moment tensor and the related maximum horizontal stress orientation. These results will be available for the new PSHA model for Italy under development. Finally, to evaluate the reliability of the forecasts, we test them with an independent data set that consists of some of the strongest earthquakes with Mw ≥ 3.9 occurred during 2016 in different Italian tectonic provinces.

  1. Acute white matter changes following sport-related concussion: A serial diffusion tensor and diffusion kurtosis tensor imaging study.

    PubMed

    Lancaster, Melissa A; Olson, Daniel V; McCrea, Michael A; Nelson, Lindsay D; LaRoche, Ashley A; Muftuler, L Tugan

    2016-11-01

    Recent neuroimaging studies have suggested that following sport-related concussion (SRC) physiological brain alterations may persist after an athlete has shown full symptom recovery. Diffusion MRI is a versatile technique to study white matter injury following SRC, yet serial follow-up studies in the very acute stages following SRC utilizing a comprehensive set of diffusion metrics are lacking. The aim of the current study was to characterize white matter changes within 24 hours of concussion in a group of high school and collegiate athletes, using Diffusion Tensor and Diffusion Kurtosis Tensor metrics. Participants were reassessed a week later. At 24 hours post-injury, the concussed group reported significantly more concussion symptoms than a well-matched control group and demonstrated poorer performance on a cognitive screening measure, yet these differences were nonsignificant at the 8-day follow-up. Similarly, within 24-hours after injury, the concussed group exhibited a widespread decrease in mean diffusivity, increased axial kurtosis and, to a lesser extent, decreased axial and radial diffusivities compared with control subjects. At 8 days post injury, the differences in these diffusion metrics were even more widespread in the injured athletes, despite improvement of symptoms and cognitive performance. These MRI findings suggest that the athletes might not have reached full physiological recovery a week after the injury. These findings have significant implications for the management of SRC because allowing an athlete to return to play before the brain has fully recovered from injury may have negative consequences. Hum Brain Mapp 37:3821-3834, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Toward an improved determination of Earth's lithospheric magnetic field from satellite observations

    NASA Astrophysics Data System (ADS)

    Kotsiaros, S.

    2016-12-01

    An analytical and numerical analysis of the spectral properties of the gradient tensor, initially performed by Rummel and van Gelderen (1992) for the gravity potential, shows that when the tensor elements are grouped into sets of semi-tangential and pure-tangential parts, they produce almost identical signal content as the normal element. Moreover, simple eigenvalue relations can be derived between these sets and the spherical harmonic expansion of the potential. This theoretical development generally applies to any potential field. First, the analysis of Rummel and van Gelderen (1992) is adapted to the magnetic field case and then the elements of the magnetic gradient tensor are estimated by 2 years of Swarm data and grouped into Γ(1) = {[∇B]rθ,[∇B]rφ} resp. Γ(2) = {[∇B]θθ-[∇B]φφ, 2[∇B]θφ}. It is shown that the estimated combinations Γ(1) and Γ(2) produce similar signal content as the theoretical radial gradient [∇B]rr. These results demonstrate the ability of multi-satellite missions such as Swarm, which cannot directly measure the radial gradient, to retrieve similar signal content by means of the horizontal gradients. Finally, lithospheric field models are derived using the gradient combinations Γ(1) and Γ(2) and compared with models derived from traditional vector and gradient data. The model resulting from Γ(1) leads to a very similar, and in particular cases improved, model compared to models retrieved by using approximately three times more data, i.e. a full set of vector, North-South and East-West gradients. ReferencesRummel, R., and M. van Gelderen (1992), Spectral analysis of the full gravity tensor, Geophysical Journal International, 111 (1), 159-169.

  3. Transformations of the dislocation structure of nickel single crystals

    NASA Astrophysics Data System (ADS)

    Alfyorova, E. A.; Lychagin, D. V.; Lychagina, L. L.; Tsvetkov, N. A.

    2017-12-01

    A relationship between different-scale deformations of crystals has not been established yet. In order to solve this task, we investigate the development of a deformation relief and dislocation structure in nickel single crystals after deformation. The stress tensor, crystallography, and geometry of specimens affect the organization of some shear along corresponding systems of sliding. The organization of shear shows some features of self-organization. It is associated with the self-organization in the dislocation subsystem analyzed previously. The effectiveness of reducing external and internal stresses determines patterns of deformation processes at different scale levels.

  4. A nonlinear viscoelastic constitutive equation - Yield predictions in multiaxial deformations

    NASA Technical Reports Server (NTRS)

    Shay, R. M., Jr.; Caruthers, J. M.

    1987-01-01

    Yield stress predictions of a nonlinear viscoelastic constitutive equation for amorphous polymer solids have been obtained and are compared with the phenomenological von Mises yield criterion. Linear viscoelasticity theory has been extended to include finite strains and a material timescale that depends on the instantaneous temperature, volume, and pressure. Results are presented for yield and the correct temperature and strain-rate dependence in a variety of multiaxial deformations. The present nonlinear viscoelastic constitutive equation can be formulated in terms of either a Cauchy or second Piola-Kirchhoff stress tensor, and in terms of either atmospheric or hydrostatic pressure.

  5. 3D inversion of full gravity gradient tensor data in spherical coordinate system using local north-oriented frame

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wu, Yulong; Yan, Jianguo; Wang, Haoran; Rodriguez, J. Alexis P.; Qiu, Yue

    2018-04-01

    In this paper, we propose an inverse method for full gravity gradient tensor data in the spherical coordinate system. As opposed to the traditional gravity inversion in the Cartesian coordinate system, our proposed method takes the curvature of the Earth, the Moon, or other planets into account, using tesseroid bodies to produce gravity gradient effects in forward modeling. We used both synthetic and observed datasets to test the stability and validity of the proposed method. Our results using synthetic gravity data show that our new method predicts the depth of the density anomalous body efficiently and accurately. Using observed gravity data for the Mare Smythii area on the moon, the density distribution of the crust in this area reveals its geological structure. These results validate the proposed method and potential application for large area data inversion of planetary geological structures.[Figure not available: see fulltext.

  6. The influence of installation angle of GGIs on full-tensor gravity gradient measurement

    NASA Astrophysics Data System (ADS)

    Wei, Hongwei; Wu, Meiping

    2018-03-01

    Gravity gradient plays an important role in many disciplines as a fundamental signal to reflect the information of the earth. Full-tensor gravity gradient measurement (FGGM) is an effective way to obtain the gravity gradient signal. In this paper, the installation mode of GGIs in FGGM is studied. It is expected that the accuracy of FGGM will be improved by optimizing the installation mode of GGIs. In addition, we analysed the relationship between GGIs’ installation angle and FGGM by establishing the measurement model of FGGM. Then the following conclusions was proved that there was no relationship between GGIs’ installation angle and the measurement result. This conclusion showed that there was no optimal angle for the GGIs’ installation in FGGM, and the installation angle only need to satisfy the relationship shown in the conclusion section of this paper. Finally, this conclusion was demonstrated by computer simulations.

  7. Inversion of magnetotelluric data using integral equation approach with variable sensitivity domain: Application to EarthScope MT data

    NASA Astrophysics Data System (ADS)

    Čuma, Martin; Gribenko, Alexander; Zhdanov, Michael S.

    2017-09-01

    We have developed a multi-level parallel magnetotelluric (MT) integral equation based inversion program which uses variable sensitivity domain. The limited sensitivity of the data, which decreases with increasing frequency, is exploited by a receiver sensitivity domain, which also varies with frequency. We assess the effect of inverting principal impedances, full impedance tensor, and full tensor jointly with magnetovariational data (tipper). We first apply this method to several models and then invert the EarthScope MT data. We recover well the prominent features in the area including resistive structure associated with the Juan de Fuca slab subducting beneath the northwestern United States, the conductive zone of partially melted material above the subducting slab at the Cascade volcanic arc, conductive features in the Great Basin and in the area of Yellowstone associated with the hot spot, and resistive areas to the east corresponding to the older and more stable cratons.

  8. Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories.

    PubMed

    Dong, Xi

    2016-06-24

    We develop a framework for studying the well-known universal term in the Rényi entropy for an arbitrary entangling region in four-dimensional conformal field theories that are holographically dual to gravitational theories. The shape dependence of the Rényi entropy S_{n} is described by two coefficients: f_{b}(n) for traceless extrinsic curvature deformations and f_{c}(n) for Weyl tensor deformations. We provide the first calculation of the coefficient f_{b}(n) in interacting theories by relating it to the stress tensor one-point function in a deformed hyperboloid background. The latter is then determined by a straightforward holographic calculation. Our results show that a previous conjecture f_{b}(n)=f_{c}(n), motivated by surprising evidence from a variety of free field theories and studies of conical defects, fails holographically.

  9. Particle-based solid for nonsmooth multidomain dynamics

    NASA Astrophysics Data System (ADS)

    Nordberg, John; Servin, Martin

    2018-04-01

    A method for simulation of elastoplastic solids in multibody systems with nonsmooth and multidomain dynamics is developed. The solid is discretised into pseudo-particles using the meshfree moving least squares method for computing the strain tensor. The particle's strain and stress tensor variables are mapped to a compliant deformation constraint. The discretised solid model thus fit a unified framework for nonsmooth multidomain dynamics simulations including rigid multibodies with complex kinematic constraints such as articulation joints, unilateral contacts with dry friction, drivelines, and hydraulics. The nonsmooth formulation allows for impact impulses to propagate instantly between the rigid multibody and the solid. Plasticity is introduced through an associative perfectly plastic modified Drucker-Prager model. The elastic and plastic dynamics are verified for simple test systems, and the capability of simulating tracked terrain vehicles driving on a deformable terrain is demonstrated.

  10. Reactivated faulting near Cushing, Oklahoma: Increased potential for a triggered earthquake in an area of United States strategic infrastructure

    USGS Publications Warehouse

    McNamara, Daniel E.; Hayes, Gavin; Benz, Harley M.; Williams, Robert; McMahon, Nicole D; Aster, R.C.; Holland, Austin F.; Sickbert, T; Herrmann, Robert B.; Briggs, Richard; Smoczyk, Gregory M.; Bergman, Eric; Earle, Paul S.

    2015-01-01

    In October 2014 two moderate-sized earthquakes (Mw 4.0 and 4.3) struck south of Cushing, Oklahoma, below the largest crude oil storage facility in the world. Combined analysis of the spatial distribution of earthquakes and regional moment tensor focal mechanisms indicate reactivation of a subsurface unnamed and unmapped left-lateral strike-slip fault. Coulomb failure stress change calculations using the relocated seismicity and slip distribution determined from regional moment tensors, allow for the possibility that the Wilzetta-Whitetail fault zone south of Cushing, Oklahoma, could produce a large, damaging earthquake comparable to the 2011 Prague event. Resultant very strong shaking levels (MMI VII) in the epicentral region present the possibility of this potential earthquake causing moderate to heavy damage to national strategic infrastructure and local communities.

  11. An LES study of vertical-axis wind turbine wakes aerodynamics

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Dabiri, John O.

    2016-11-01

    In this study, large-eddy simulation (LES) combined with a turbine model is used to investigate the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a recently developed minimum dissipation model is used to parameterize the subgrid-scale stress tensor, while the turbine-induced forces are modeled with an actuator-line technique. The LES framework is first tested in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel, and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit is well characterized by a two-dimensional elliptical Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine.

  12. Compaction trends of full stiffness tensor and fluid permeability in artificial shales

    NASA Astrophysics Data System (ADS)

    Beloborodov, Roman; Pervukhina, Marina; Lebedev, Maxim

    2018-03-01

    We present a methodology and describe a set-up that allows simultaneous acquisition of all five elastic coefficients of a transversely isotropic (TI) medium and its permeability in the direction parallel to the symmetry axis during mechanical compaction experiments. We apply the approach to synthetic shale samples and investigate the role of composition and applied stress on their elastic and transport properties. Compaction trends for the five elastic coefficients that fully characterize TI anisotropy of artificial shales are obtained for a porosity range from 40 per cent to 15 per cent. A linear increase of elastic coefficients with decreasing porosity is observed. The permeability acquired with the pressure-oscillation technique exhibits exponential decrease with decreasing porosity. Strong correlations are observed between an axial fluid permeability and seismic attributes, namely, VP/VS ratio and acoustic impedance, measured in the same direction. These correlations might be used to derive permeability of shales from seismic data given that their mineralogical composition is known.

  13. The complexity of non-Schmid behavior in the CuZnAl shape memory alloy

    NASA Astrophysics Data System (ADS)

    Alkan, S.; Ojha, A.; Sehitoglu, H.

    2018-05-01

    The paper addresses one of the most important yet overlooked phenomenon in shape memory research- the plastic slip response. We show that the slip response is highly crystal orientation dependent and we demonstrate the precise reasons behind such complex response. The fractional dislocations on <111> {112} or <111> {011} systems can be activated depending on the sample orientation and solutions are derived for the variations in disregistries and dislocation core spreadings. This leads to the calculation of critical resolved shear stress in close agreement with experimental trends. The results show considerable dependence of the flow behavior on the non-Schmid stress components and the proposed yield criterion captures the role of stress tensor components.

  14. X-Ray Microdiffraction as a Probe to Reveal Flux Divergences in Interconnects

    NASA Astrophysics Data System (ADS)

    Spolenak, R.; Tamura, N.; Patel, J. R.

    2006-02-01

    Most reliability issues in interconnect systems occur at a local scale and many of them include the local build-up of stresses. Typical failure mechanisms are electromigration and stress voiding in interconnect lines and fatigue in surface acoustic wave devices. Thus a local probe is required for the investigation of these phenomena. In this paper the application of the Laue microdiffraction technique to investigate flux divergences in interconnect systems will be described. The deviatoric strain tensor of single grains can be correlated with the local microstructure, orientation and defect density. Especially the latter led to recent results about the correlation of stress build-up and orientation in Cu lines and electromigration-induced grain rotation in Cu and Al lines.

  15. Constitutive relations describing creep deformation for multi-axial time-dependent stress states

    NASA Astrophysics Data System (ADS)

    McCartney, L. N.

    1981-02-01

    A THEORY of primary and secondary creep deformation in metals is presented, which is based upon the concept of tensor internal state variables and the principles of continuum mechanics and thermodynamics. The theory is able to account for both multi-axial and time-dependent stress and strain states. The wellknown concepts of elastic, anelastic and plastic strains follow naturally from the theory. Homogeneous stress states are considered in detail and a simplified theory is derived by linearizing with respect to the internal state variables. It is demonstrated that the model can be developed in such a way that multi-axial constant-stress creep data can be presented as a single relationship between an equivalent stress and an equivalent strain. It is shown how the theory may be used to describe the multi-axial deformation of metals which are subjected to constant stress states. The multi-axial strain response to a general cyclic stress state is calculated. For uni-axial stress states, square-wave loading and a thermal fatigue stress cycle are analysed.

  16. Current crustal deformation of the Taiwan orogen reassessed by cGPS strain-rate estimation and focal mechanism stress inversion

    NASA Astrophysics Data System (ADS)

    Chen, Sean Kuanhsiang; Wu, Yih-Min; Hsu, Ya-Ju; Chan, Yu-Chang

    2017-07-01

    We study internal deformation of the Taiwan orogen, a young arc-continental collision belt, which the spatial heterogeneity remains unclear. We aim to ascertain heterogeneity of the orogenic crust in depth when specifying general mechanisms of the Taiwan orogeny. To reach this goal, we used updated data of continuous GPS (cGPS) and earthquake focal mechanisms to reassess geodetic strain-rate and seismic stress fields of Taiwan, respectively. We updated the both data sets from 1990 to 2015 to provide large amount of constraints on surficial and internal deformation of the crust for a better understanding. We estimated strain-rate tensors by calculating gradient tensors of cGPS station velocities in horizontal 0.1°-spacing grids via Delaunay triangulation. We determined stress tensors within a given horizontal and vertical grid cell of 0.1° and 10 km, respectively, by employing the spatial and temporal stress inversion. To minimize effects of the 1999 Mw 7.6 Chi-Chi earthquake on trends of the strain and stress, we modified observational possible bias of the cGPS velocities after the earthquake and removed the first 15-month focal mechanisms within the fault rupture zone. We also calculated the Anderson fault parameter (Aϕ) based on stress ratios and rake angles to quantitatively describe tectonic regimes of Taiwan. By examining directions of seismic compressive axes and styles of faulting, our results indicate that internal deformation of the crust is presently heterogeneous in the horizontal and vertical spaces. Directions of the compressive axes are fan-shaped oriented between N10°W and N110°W in the western and mid-eastern Taiwan at the depths of 0-20 km and near parallel to orientations of geodetic compressional axes. The orientations agreed with predominantly reverse faulting in the western Taiwan at the same depth range, implying a brittle deformation regime against the Peikang Basement High. Orientations of the compressive axes most rotated counter-clockwise at the depths of 20-40 km, coinciding with transition of styles of faulting from reverse to strike-slip faulting along the depths as revealed by variation of the Aϕ values. The features indicate that internal deformation of the upper crust is primarily driven by the same compressional mechanism. It implies that geodetic strains could detect the deformation from surface down to a maximal depth of 20 km in most regimes of Taiwan. We find that heterogeneity in orientations of compressive axes and styles of faulting is strong in two regimes at the northern and southern Central Range, coinciding to areas of the orogenic thinned/thickened crust. Conversely, the heterogeneity is weak in the central Western Foothills at surrounding area of root of the overthickened crust. This observation, coupled with regional seismological observations, may imply that vertical deformation from crustal thickening and thinning and thinning-related dynamics from mantle flows may have joint influence on degree of stress heterogeneity.

  17. Intraplate Stress Field in South America Derived from Earthquake Focal Mechanisms

    NASA Astrophysics Data System (ADS)

    Dias, F. L.; Assumpcao, M.

    2017-12-01

    We present an updated compilation of earthquake focal mechanisms in Brazil together with the sub-Andean region through more obtained solutions together with published results from the literature and catalogs of international agencies. Stress orientations from breakouts and in-situ measurements were also compiled. The focal mechanisms were classified according to WSM (World Stress Map) criteria.For Brazil, we have 82 earthquakes with the mechanism that has been determined since 1978, begin that three new from this study. Focal mechanisms in Brazil show reverse, strike-slip and normal faulting while all events in the sub-Andean region have reverse (majority) or strike-slip mechanisms. For sub-Andean region have reverse (majority) or strike-slip mechanisms. Normal mechanisms can be found only in high attitudes. The mechanisms were grouped by proximity to be inverted for the stress tensor. We use the bootstrap technique to analyze the stability of the tensor. In SE Brazil and the Chaco-Pantanal basins, S1 tends to be oriented roughly E-W with S2 approximately equal to S3. This stress pattern changes to purely compressional (both SHmax and Shmin larger than Sv) in the São Francisco craton. A rotation of SHmax from E-W to SE-NW is suggested towards the Amazon region. Along the Atlantic margin, the regional stresses are affected by coastal effects. This coastal effect tends to make SHmax parallel to the coastline and Shmin (usually S3) perpendicular to the coastline. Few breakout data and in-situ measurements are available in Brazil and are generally consistent with the pattern derived from the earthquake focal mechanisms. In the sub-Andean region, the intermediate principal stress (S2) is also compressional, a feature that is not always reproduced in numerical models published in the literature. In mid-plate South America stresses seem to vary in nature and orientation. Although numerical models of global lithospheric stresses tend to reproduce the main large-scale features in most mid-plate areas, the S1 rotation from E-W in SE Brazil to SE-NW in the Amazon region are not well explained by the current numerical models. This means that the observed stress pattern in mid-plate South America should provide new insights into upper mantle dynamics, distinct from current global convection models.

  18. Description and Features of UX-Analyze

    DTIC Science & Technology

    2009-02-01

    POB model and GUI for EM63 Inversion The full Pasion -Oldenburg-Billings (POB) analysis assumes an axially symmetric (axial and transverse) tensor...output from the EM63 inversion. 1 Pasion , L.R., and Oldenburg, D.W., 2001, Locating and

  19. Elasticity of Pargasite Amphibole: A Hydrous Phase at Mid Lithospheric Discontinuity

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Mookherjee, M.

    2017-12-01

    Mid Lithospheric Discontinuity (MLD) is characterized by a low shear wave velocity ( 3 to 10 %). In cratons, the depth of MLD varies between 80 and 100 km. The reduction of the shear wave velocity at MLD is similar to what is observed in the lithosphere-asthenosphere boundary (LAB). Such low velocity at MLD could be caused by partial melting, temperature induced grain boundary sliding, changes in the elastic anisotropy, and/or metasomatism which may lead to the formation of hydrous phases including mica and amphibole. Thus, it is clear that in order to assess the role of metasomatism at MLD, we need better constraints on the elasticity of hydrous phases. However, such elasticity data are scarce. In this study, we explore elasticity of pargasite amphibole [NaCa2(Mg4Al)(Si6Al2)O22(OH)2] using density functional theory (DFT) with local density approximation (LDA) and generalized gradient approximation (GGA). We find that the pressure-volume results can be adequately described by a finite strain equation with the bulk modulus, K0 being 102 and 85 GPa for LDA and GGA respectively. We also determined the full elastic constant tensor (Cij) using the finite difference method. The bulk modulus, K0 determined from the full elastic constant tensor is 104 GPa for LDA and 87 GPa for GGA. The shear modulus, G0 determined from the full elastic constant tensor is 64 GPa for LDA and 58 GPa for GGA. The bulk and shear moduli predicted with LDA are 5 and 1 % stiffer than the recent results [1]. In contrast, the bulk and shear moduli predicted with GGA are 12 and 10 % softer compared to the recent results [1]. The full elastic constant tensor for pargasite shows significant anisotropy. For instance, LDA predicts compressional (AVP) and shear (AVS) wave anisotropy of 22 and 20 % respectively. At higher pressure, elastic moduli stiffen. However, temperature is likely to have an opposite effect on the elasticity and this remains largely unknown for pargasite. Compared to the major mantle minerals, pargasite has softer elastic constants and significant anisotropy and may explain the reduction in shear wave velocity at MLD. Reference: [1] Brown, J. M., Abramson, E. H.,2016, Phys. Earth Planet. Int., 261, 161-171. Acknowledgement: This work is supported by US NSF award EAR 1639552.

  20. 3D Experimental Measurement of Lattice Strain and Fracture Behavior of Sand Particles Using Synchrotron X-Ray Diffraction and Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cil, Mehmet B.; Alshibli, Khalid A.; Kenesei, Peter

    3D synchrotron X-ray diffraction (3DXRD) and synchrotron micro-computed tomography (SMT) techniques were used to measure and monitor the lattice strain evolution and fracture behavior of natural Ottawa sand particles subjected to 1D compression loading. The particle-averaged lattice strain within sand particles was measured using 3DXRD and then was used to calculate the corresponding lattice stress tensor. In addition, the evolution and mode of fracture of sand particles was investigated using high-resolution 3D SMT images. The results of diffraction data analyses revealed that the major principal component of the lattice strain or stress tensor increased in most of the particles asmore » the global applied compressive load increased until the onset of fracture. Particle fracture and subsequent rearrangements caused significant variation and fluctuations in measured lattice strain/stress values from one particle to another and from one load step to the next one. SMT image analysis at the particle-scale showed that cracks in fractured sand particles generally initiate and propagate along the plane that connects the two contact points. Fractured particles initially split into two or three major fragments followed by disintegration into multiple smaller fragments in some cases. In conclusion, microscale analysis of fractured particles showed that particle position, morphology, the number and location of contact points play a major role in the occurrence of particle fracture in confined comminution of the sand assembly.« less

  1. 3D Experimental Measurement of Lattice Strain and Fracture Behavior of Sand Particles Using Synchrotron X-Ray Diffraction and Tomography

    DOE PAGES

    Cil, Mehmet B.; Alshibli, Khalid A.; Kenesei, Peter

    2017-05-27

    3D synchrotron X-ray diffraction (3DXRD) and synchrotron micro-computed tomography (SMT) techniques were used to measure and monitor the lattice strain evolution and fracture behavior of natural Ottawa sand particles subjected to 1D compression loading. The particle-averaged lattice strain within sand particles was measured using 3DXRD and then was used to calculate the corresponding lattice stress tensor. In addition, the evolution and mode of fracture of sand particles was investigated using high-resolution 3D SMT images. The results of diffraction data analyses revealed that the major principal component of the lattice strain or stress tensor increased in most of the particles asmore » the global applied compressive load increased until the onset of fracture. Particle fracture and subsequent rearrangements caused significant variation and fluctuations in measured lattice strain/stress values from one particle to another and from one load step to the next one. SMT image analysis at the particle-scale showed that cracks in fractured sand particles generally initiate and propagate along the plane that connects the two contact points. Fractured particles initially split into two or three major fragments followed by disintegration into multiple smaller fragments in some cases. In conclusion, microscale analysis of fractured particles showed that particle position, morphology, the number and location of contact points play a major role in the occurrence of particle fracture in confined comminution of the sand assembly.« less

  2. Instability of enclosed horizons

    NASA Astrophysics Data System (ADS)

    Kay, Bernard S.

    2015-03-01

    We point out that there are solutions to the scalar wave equation on dimensional Minkowski space with finite energy tails which, if they reflect off a uniformly accelerated mirror due to (say) Dirichlet boundary conditions on it, develop an infinite stress-energy tensor on the mirror's Rindler horizon. We also show that, in the presence of an image mirror in the opposite Rindler wedge, suitable compactly supported arbitrarily small initial data on a suitable initial surface will develop an arbitrarily large stress-energy scalar near where the two horizons cross. Also, while there is a regular Hartle-Hawking-Israel-like state for the quantum theory between these two mirrors, there are coherent states built on it for which there are similar singularities in the expectation value of the renormalized stress-energy tensor. We conjecture that in other situations with analogous enclosed horizons such as a (maximally extended) Schwarzschild black hole in equilibrium in a (stationary spherical) box or the (maximally extended) Schwarzschild-AdS spacetime, there will be similar stress-energy singularities and almost-singularities—leading to instability of the horizons when gravity is switched on and matter and gravity perturbations are allowed for. All this suggests it is incorrect to picture a black hole in equilibrium in a box or a Schwarzschild-AdS black hole as extending beyond the past and future horizons of a single Schwarzschild (/Schwarzschild-AdS) wedge. It would thus provide new evidence for 't Hooft's brick wall model while seeming to invalidate the picture in Maldacena's ` Eternal black holes in AdS'. It would thereby also support the validity of the author's matter-gravity entanglement hypothesis and of the paper ` Brick walls and AdS/CFT' by the author and Ortíz.

  3. Characterizing the Potential for Injection-Induced Fault Reactivation Through Subsurface Structural Mapping and Stress Field Analysis, Wellington Field, Sumner County, Kansas

    NASA Astrophysics Data System (ADS)

    Schwab, Drew R.; Bidgoli, Tandis S.; Taylor, Michael H.

    2017-12-01

    Kansas, like other parts of the central U.S., has experienced a recent increase in seismicity. Correlation of these events with brine disposal operations suggests pore fluid pressure increases are reactivating preexisting faults, but rigorous evaluation at injection sites is lacking. Here we determine the suitability of CO2 injection into the Cambrian-Ordovician Arbuckle Group for long-term storage and into a Mississippian reservoir for enhanced oil recovery in Wellington Field, Sumner County, Kansas. To determine the potential for injection-induced earthquakes, we map subsurface faults and estimate in situ stresses, perform slip and dilation tendency analyses to identify well-oriented faults relative to the estimated stress field, and determine the pressure changes required to induce slip at reservoir and basement depths. Three-dimensional seismic reflection data reveal 12 near-vertical faults, mostly striking NNE, consistent with nodal planes from moment tensor solutions from recent earthquakes in the region. Most of the faults cut both reservoirs and several clearly penetrate the Precambrian basement. Drilling-induced fractures (N = 40) identified from image logs and inversion of earthquake moment tensor solutions (N = 65) indicate that the maximum horizontal stress is approximately EW. Slip tendency analysis indicates that faults striking <020° are stable under current reservoir conditions, whereas faults striking 020°-049° may be prone to reactivation with increasing pore fluid pressure. Although the proposed injection volume (40,000 t) is unlikely to reactive faults at reservoir depths, high-rate injection operations could reach pressures beyond the critical threshold for slip within the basement, as demonstrated by the large number of injection-induced earthquakes west of the study area.

  4. Vacuum stress energy density and its gravitational implications

    NASA Astrophysics Data System (ADS)

    Estrada, Ricardo; Fulling, Stephen A.; Kaplan, Lev; Kirsten, Klaus; Liu, Zhonghai; Milton, Kimball A.

    2008-04-01

    In nongravitational physics the local density of energy is often regarded as merely a bookkeeping device; only total energy has an experimental meaning—and it is only modulo a constant term. But in general relativity the local stress-energy tensor is the source term in Einstein's equation. In closed universes, and those with Kaluza-Klein dimensions, theoretical consistency demands that quantum vacuum energy should exist and have gravitational effects, although there are no boundary materials giving rise to that energy by van der Waals interactions. In the lab there are boundaries, and in general the energy density has a nonintegrable singularity as a boundary is approached (for idealized boundary conditions). As pointed out long ago by Candelas and Deutsch, in this situation there is doubt about the viability of the semiclassical Einstein equation. Our goal is to show that the divergences in the linearized Einstein equation can be renormalized to yield a plausible approximation to the finite theory that presumably exists for realistic boundary conditions. For a scalar field with Dirichlet or Neumann boundary conditions inside a rectangular parallelepiped, we have calculated by the method of images all components of the stress tensor, for all values of the conformal coupling parameter and an exponential ultraviolet cutoff parameter. The qualitative features of contributions from various classes of closed classical paths are noted. Then the Estrada-Kanwal distributional theory of asymptotics, particularly the moment expansion, is used to show that the linearized Einstein equation with the stress-energy near a plane boundary as source converges to a consistent theory when the cutoff is removed. This paper reports work in progress on a project combining researchers in Texas, Louisiana and Oklahoma. It is supported by NSF Grants PHY-0554849 and PHY-0554926.

  5. The recent (upper Miocene to Quaternary) and present tectonic stress distributions in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Herraiz, M.; de Vicente, G.; Lindo-Ñaupari, R.; Giner, J.; Simón, J. L.; GonzáLez-Casado, J. M.; Vadillo, O.; RodríGuez-Pascua, M. A.; CicuéNdez, J. I.; Casas, A.; CabañAs, L.; Rincón, P.; CortéS, A. L.; RamíRez, M.; Lucini, M.

    2000-08-01

    A general synthesis of the recent and present stress situation and evolution in the Iberian Peninsula was obtained from microstructural and seismological analysis. The stress evolution was deduced from (1) fault population analysis (FPA) from 409 sites distributed throughout the Iberian Peninsula, (2) paleostress indicators given by 324 stations taken from the bibliography, and (3) seismic data corresponding to 161 focal mechanisms evenly spread in the studied region. The application of FPA together with the determination of stress tensors and focal mechanisms for the whole Iberian microplate has provided two main results: (1) the Iberian Peninsula is undergoing a NW-SE oriented compression, except for the northeastern part (Pyrenees, Ebro Basin, and Iberian Chain), where it is N-S to NE-SW, and the Gulf of Cádiz, where it seems to be E-W, and (2) the main trends of the stress field have remained almost constant since the upper Miocene. The analysis performed by zones suggests the presence of local heterogeneities in the stress field.

  6. Tensor fascia lata flap versus tensor fascia lata perforator-based island flap for the coverage of extensive trochanteric pressure sores.

    PubMed

    Kim, Youn Hwan; Kim, Sang Wha; Kim, Jeong Tae; Kim, Chang Yeon

    2013-06-01

    Tensor fascia lata (TFL) musculocutaneous flaps often require a donor site graft when harvesting a large flap. However, a major drawback is that it also sacrifices the muscle. To overcome this disadvantage, we designed a TFL perforator-based island flap that was harvested from a site near the defect and involved transposition within 90 degrees without full isolation of the pedicles. We performed procedures on 17 musculocutaneous flaps and 23 perforator-based island flaps, and compared the outcomes of these surgeries. The overall complication rate was 27.5% (11 regions). There were 7 complications related to the musculocutaneous flaps and 4 complications related to the perforator flaps. Although there were no statistical differences between those groups, lower complication rates were associated with procedures involving perforator flaps. The TFL perforator procedure is a simple and fast operation that avoids sacrificing muscle. This decreases complication rates compared to true perforator flap techniques that require dissection around the perforator or pedicle.

  7. Finite element models of earthquake cycles in mature strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Lynch, John Charles

    The research presented in this dissertation is on the subject of strike-slip earthquakes and the stresses that build and release in the Earth's crust during earthquake cycles. Numerical models of these cycles in a layered elastic/viscoelastic crust are produced using the finite element method. A fault that alternately sticks and slips poses a particularly challenging problem for numerical implementation, and a new contact element dubbed the "Velcro" element was developed to address this problem (Appendix A). Additionally, the finite element code used in this study was bench-marked against analytical solutions for some simplified problems (Chapter 2), and the resolving power was tested for the fault region of the models (Appendix B). With the modeling method thus developed, there are two main questions posed. First, in Chapter 3, the effect of a finite-width shear zone is considered. By defining a viscoelastic shear zone beneath a periodically slipping fault, it is found that shear stress concentrates at the edges of the shear zone and thus causes the stress tensor to rotate into non-Andersonian orientations. Several methods are used to examine the stress patterns, including the plunge angles of the principal stresses and a new method that plots the stress tensor in a manner analogous to seismic focal mechanism diagrams. In Chapter 4, a simple San Andreas-like model is constructed, consisting of two great earthquake producing faults separated by a freely-slipping shorter fault. The model inputs of lower crustal viscosity, fault separation distance, and relative breaking strengths are examined for their effect on fault communication. It is found that with a lower crustal viscosity of 1018 Pa s (in the lower range of estimates for California), the two faults tend to synchronize their earthquake cycles, even in the cases where the faults have asymmetric breaking strengths. These models imply that postseismic stress transfer over hundreds of kilometers may play a significant roll in the variability of earthquake repeat times. Specifically, small perturbations in the model parameters can lead to results similar to such observed phenomena as earthquake clustering and disruptions to so-called "characteristic" earthquake cycles.

  8. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array

    PubMed Central

    Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun

    2017-01-01

    This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank-(L1,L2,·) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method. PMID:28448431

  9. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array.

    PubMed

    Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun

    2017-04-27

    This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank- ( L 1 , L 2 , · ) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method.

  10. Kubo-Greenwood electrical conductivity formulation and implementation for projector augmented wave datasets

    NASA Astrophysics Data System (ADS)

    Calderín, L.; Karasiev, V. V.; Trickey, S. B.

    2017-12-01

    As the foundation for a new computational implementation, we survey the calculation of the complex electrical conductivity tensor based on the Kubo-Greenwood (KG) formalism (Kubo, 1957; Greenwood, 1958), with emphasis on derivations and technical aspects pertinent to use of projector augmented wave datasets with plane wave basis sets (Blöchl, 1994). New analytical results and a full implementation of the KG approach in an open-source Fortran 90 post-processing code for use with Quantum Espresso (Giannozzi et al., 2009) are presented. Named KGEC ([K]ubo [G]reenwood [E]lectronic [C]onductivity), the code calculates the full complex conductivity tensor (not just the average trace). It supports use of either the original KG formula or the popular one approximated in terms of a Dirac delta function. It provides both Gaussian and Lorentzian representations of the Dirac delta function (though the Lorentzian is preferable on basic grounds). KGEC provides decomposition of the conductivity into intra- and inter-band contributions as well as degenerate state contributions. It calculates the dc conductivity tensor directly. It is MPI parallelized over k-points, bands, and plane waves, with an option to recover the plane wave processes for their use in band parallelization as well. It is designed to provide rapid convergence with respect to k-point density. Examples of its use are given.

  11. Flexoelectricity as a bulk property

    NASA Astrophysics Data System (ADS)

    Resta, Raffaele

    2010-03-01

    Piezoelectric composites can be created using nonpiezoelectric materials, by exploiting flexoelectricity. This is by definition the linear response of polarization to strain gradient, and is symmetry-allowed even in elemental crystals. However, the basic issue whether flexoelectricity is a bulk or a surface material property is open. We mention that the analogous issue about piezoelectricity is nontrivial either.^1 In this first attempt towards a full theory of flexoelectricity we prove that, for a simple class of strain and strain gradients, flexoelectricity is indeed a bulk effect. The key ingredients of the present theory are the long-range perturbations linearly induced by a unit displacement of a single nucleus in an otherwise perfect crystal: to leading order these are dipolar, quadrupolar, and octupolar. The corresponding tensors have rank 2, 3, and 4, respectively. Whereas dipoles and quadrupoles provide the piezoelectric response,^1 we show that dipoles and octupoles provide the flexoelectric response in nonpiezoelectric crystals. We conjecture that the full dipole and octupole tensors provide the flexoelectric response to the most general form of strain gradient. Our problem has a close relationship to the one of the ``absolute'' deformation potentials, which is based on a similar kind of dipolar and octupolar tensors.^2 ^1 R. M. Martin, Phys. Rev. B 5, 1607 (1972). ^2 R. Resta, L. Colombo and S. Baroni, Phys. Rev. B 41, 12538 (1990).

  12. Moment-tensor inversion for offshore earthquakes east of Taiwan and their implications to regional collision

    NASA Astrophysics Data System (ADS)

    Kao, Honn; Jian, Pei-Ru; Ma, Kuo-Fong; Huang, Bor-Shouh; Liu, Chun-Chi

    Reliable determination of source parameters for offshore earthquakes east of Taiwan with mb<5.5 was a difficult task because of the poor azimuthal coverage by local network and the lack of signals at teleseismic distances. We take advantage of the recently established “Broadband Array in Taiwan for Seismology” (BATS) to invert seismic moment tensors for 7 such events occurred in 1996. To cope with different patterns of background noise and unknown structural details, we utilize variable frequency bands in the inversion and adapt a two-step procedure to select best velocity models for individual epicenter-station paths. Our results are consistent with the overall patterns of regional collision and indicate that the resulting compressive stress has caused significant intraplate deformation within the Philippine Sea plate. Simulation of the region's geological evolution and orogenic processes should take this factor into account and allow the Philippine Sea plate to deform internally.

  13. Strain Characterization and Microstructure Evolution Under Deformation in 2060 Alloy

    NASA Astrophysics Data System (ADS)

    Jin, X.; Zhang, G. D.; Zhao, Y. F.; Xue, F.

    2018-05-01

    A new method of DIC combined with EBSD is developed for the characterization of strain and microstructure evolution during bending. The traditional microhardness point and DIC methods are used to study the microstructure evolution in 2060 alloy during bending; the interested area suffers under tensile stress, the microstructure evolution is collected by SEM, EBSD, digital image correlation (DIC) method during bending. The results shows that the DIC method can both realize the strain tensor characterization of the interested area, and can also express the local strain tensor in the micro-area even more. The degree of grain division in the process of deformation is related to the strain in this region; the grains have larger strain of small angle grain boundary (SLGBs), which results in a new micro-organizational structure. The misorientation is smaller with larger strain degree while the misorientation is larger with smaller strain.

  14. A Thermodynamically Consistent Damage Model for Advanced Composites

    NASA Technical Reports Server (NTRS)

    Maimi, Pere; Camanho, Pedro P.; Mayugo, Joan-Andreu; Davila, Carlos G.

    2006-01-01

    A continuum damage model for the prediction of damage onset and structural collapse of structures manufactured in fiber-reinforced plastic laminates is proposed. The principal damage mechanisms occurring in the longitudinal and transverse directions of a ply are represented by a damage tensor that is fixed in space. Crack closure under load reversal effects are taken into account using damage variables established as a function of the sign of the components of the stress tensor. Damage activation functions based on the LaRC04 failure criteria are used to predict the different damage mechanisms occurring at the ply level. The constitutive damage model is implemented in a finite element code. The objectivity of the numerical model is assured by regularizing the dissipated energy at a material point using Bazant's Crack Band Model. To verify the accuracy of the approach, analyses of coupon specimens were performed, and the numerical predictions were compared with experimental data.

  15. Reynolds and Maxwell stress measurements in the reversed field pinch experiment Extrap-T2R

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.

    2005-08-01

    The complete Reynolds stress (RS) has been measured in the edge region of the Extrap-T2R reversed field pinch experiment. The RS exhibits a strong gradient in the region where a high E × B shear takes place. Experimental results show this gradient to be almost entirely due to the electrostatic contribution. This has been interpreted as experimental evidence of flow generation via turbulence mechanism. The scales involved in flow generation are deduced from the frequency decomposition of RS tensor. They are found related to magnetohydrodynamic activity but are different with respect to the scales responsible for turbulent transport.

  16. Cosmic microwave background radiation anisotropies in brane worlds.

    PubMed

    Koyama, Kazuya

    2003-11-28

    We propose a new formulation to calculate the cosmic microwave background (CMB) spectrum in the Randall-Sundrum two-brane model based on recent progress in solving the bulk geometry using a low energy approximation. The evolution of the anisotropic stress imprinted on the brane by the 5D Weyl tensor is calculated. An impact of the dark radiation perturbation on the CMB spectrum is investigated in a simple model assuming an initially scale-invariant adiabatic perturbation. The dark radiation perturbation induces isocurvature perturbations, but the resultant spectrum can be quite different from the prediction of simple mixtures of adiabatic and isocurvature perturbations due to Weyl anisotropic stress.

  17. Divergence correction schemes in finite difference method for 3D tensor CSAMT in axial anisotropic media

    NASA Astrophysics Data System (ADS)

    Wang, Kunpeng; Tan, Handong; Zhang, Zhiyong; Li, Zhiqiang; Cao, Meng

    2017-05-01

    Resistivity anisotropy and full-tensor controlled-source audio-frequency magnetotellurics (CSAMT) have gradually become hot research topics. However, much of the current anisotropy research for tensor CSAMT only focuses on the one-dimensional (1D) solution. As the subsurface is rarely 1D, it is necessary to study three-dimensional (3D) model response. The staggered-grid finite difference method is an effective simulation method for 3D electromagnetic forward modelling. Previous studies have suggested using the divergence correction to constrain the iterative process when using a staggered-grid finite difference model so as to accelerate the 3D forward speed and enhance the computational accuracy. However, the traditional divergence correction method was developed assuming an isotropic medium. This paper improves the traditional isotropic divergence correction method and derivation process to meet the tensor CSAMT requirements for anisotropy using the volume integral of the divergence equation. This method is more intuitive, enabling a simple derivation of a discrete equation and then calculation of coefficients related to the anisotropic divergence correction equation. We validate the result of our 3D computational results by comparing them to the results computed using an anisotropic, controlled-source 2.5D program. The 3D resistivity anisotropy model allows us to evaluate the consequences of using the divergence correction at different frequencies and for two orthogonal finite length sources. Our results show that the divergence correction plays an important role in 3D tensor CSAMT resistivity anisotropy research and offers a solid foundation for inversion of CSAMT data collected over an anisotropic body.

  18. Homogenized moment tensor and the effect of near-field heterogeneities on nonisotropic radiation in nuclear explosion

    NASA Astrophysics Data System (ADS)

    Burgos, Gaël.; Capdeville, Yann; Guillot, Laurent

    2016-06-01

    We investigate the effect of small-scale heterogeneities close to a seismic explosive source, at intermediate periods (20-50 s), with an emphasis on the resulting nonisotropic far-field radiation. First, using a direct numerical approach, we show that small-scale elastic heterogeneities located in the near-field of an explosive source, generate unexpected phases (i.e., long period S waves). We then demonstrate that the nonperiodic homogenization theory applied to 2-D and 3-D elastic models, with various pattern of small-scale heterogeneities near the source, leads to accurate waveforms at a reduced computational cost compared to direct modeling. Further, it gives an interpretation of how nearby small-scale features interact with the source at low frequencies, through an explicit correction to the seismic moment tensor. In 2-D simulations, we find a deviatoric contribution to the moment tensor, as high as 21% for near-source heterogeneities showing a 25% contrast of elastic values (relative to a homogeneous background medium). In 3-D this nonisotropic contribution reaches 27%. Second, we analyze intermediate-periods regional seismic waveforms associated with some underground nuclear explosions conducted at the Nevada National Security Site and invert for the full moment tensor, in order to quantify the relative contribution of the isotropic and deviatoric components of the tensor. The average value of the deviatoric part is about 35%. We conclude that the interactions between an explosive source and small-scale local heterogeneities of moderate amplitude may lead to a deviatoric contribution to the seismic moment, close to what is observed using regional data from nuclear test explosions.

  19. Three-Dimensional, Ten-Moment, Two-Fluid Simulation of the Solar Wind Interaction with Mercury

    NASA Astrophysics Data System (ADS)

    Dong, C. F.; Wang, L.; Hakim, A.; Bhattacharjee, A.; Germaschewski, K.; DiBraccio, G. A.

    2018-05-01

    We investigate solar wind interaction with Mercury’s magnetosphere by using Gkeyll ten-moment multifluid code that solves the continuity, momentum, and pressure tensor equations of both protons and electrons, as well as the full Maxwell equations.

  20. Holographic heat current as Noether current

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Shan; Lü, H.; Pope, C. N.

    2017-09-01

    We employ the Noether procedure to derive a general formula for the radially conserved heat current in AdS planar black holes with certain transverse and traceless perturbations, for a general class of gravity theories. For Einstein gravity, the general higher-order Lovelock gravities and also a class of Horndeski gravities, we derive the boundary stress tensor and show that the resulting boundary heat current matches precisely the bulk Noether current.

  1. Entropy density of spacetime and the Navier-Stokes fluid dynamics of null surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padmanabhan, T.

    2011-02-15

    It has been known for several decades that Einstein's field equations, when projected onto a null surface, exhibit a structure very similar to the nonrelativistic Navier-Stokes equation. I show that this result arises quite naturally when gravitational dynamics is viewed as an emergent phenomenon. Extremizing the spacetime entropy density associated with the null surfaces leads to a set of equations which, when viewed in the local inertial frame, becomes identical to the Navier-Stokes equation. This is in contrast to the usual description of the Damour-Navier-Stokes equation in a general coordinate system, in which there appears a Lie derivative rather thanmore » a convective derivative. I discuss this difference, its importance, and why it is more appropriate to view the equation in a local inertial frame. The viscous force on fluid, arising from the gradient of the viscous stress-tensor, involves the second derivatives of the metric and does not vanish in the local inertial frame, while the viscous stress-tensor itself vanishes so that inertial observers detect no dissipation. We thus provide an entropy extremization principle that leads to the Damour-Navier-Stokes equation, which makes the hydrodynamical analogy with gravity completely natural and obvious. Several implications of these results are discussed.« less

  2. Mode-sum regularization of ⟨ϕ2⟩ in the angular-splitting method

    NASA Astrophysics Data System (ADS)

    Levi, Adam; Ori, Amos

    2016-08-01

    The computation of the renormalized stress-energy tensor or ⟨ϕ2⟩ren in curved spacetime is a challenging task, at both the conceptual and technical levels. Recently we developed a new approach to compute such renormalized quantities in asymptotically flat curved spacetimes, based on the point-splitting procedure. Our approach requires the spacetime to admit some symmetry. We already implemented this approach to compute ⟨ϕ2⟩ren in a stationary spacetime using t splitting, namely splitting in the time-translation direction. Here we present the angular-splitting version of this approach, aimed for computing renormalized quantities in a general (possibly dynamical) spherically symmetric spacetime. To illustrate how the angular-splitting method works, we use it here to compute ⟨ϕ2⟩ren for a quantum massless scalar field in Schwarzschild background, in various quantum states (Boulware, Unruh, and Hartle-Hawking states). We find excellent agreement with the results obtained from the t -splitting variant and also with other methods. Our main goal in pursuing this new mode-sum approach was to enable the computation of the renormalized stress-energy tensor in a dynamical spherically symmetric background, e.g. an evaporating black hole. The angular-splitting variant presented here is most suitable to this purpose.

  3. Depth-resolved photo- and ionoluminescence of LiF and Al2O3

    NASA Astrophysics Data System (ADS)

    Skuratov, V. A.; Kirilkin, N. S.; Kovalev, Yu. S.; Strukova, T. S.; Havanscak, K.

    2012-09-01

    Microluminescence and laser confocal scanning microscopy techniques have been used to study spatial distribution of F-type color centers in LiF and mechanical stress profiles in Al2O3:Cr single crystals irradiated with 1.2 MeV/amu Ar, Kr, Xe and 3 MeV/amu Kr and Bi ions. It was found that F2 and F3+-center profiles at low ion fluences correlate with ionizing energy loss profiles. With increasing ion fluence, after ion track halo overlapping, the luminescence yield is defined by radiation defects formed in elastic collisions in the end-of-range area. Stress profiles and stress tensor components in ruby crystals across swift heavy ion irradiated layers have been deduced from depth-resolved photo-stimulated spectra using piezospectroscopic effect. Experimental data show that that stresses are compressive in basal plane and tensile in perpendicular direction in all samples irradiated with high energy ions.

  4. Emergent SO(3) Symmetry of the Frictionless Shear Jamming Transition

    NASA Astrophysics Data System (ADS)

    Baity-Jesi, Marco; Goodrich, Carl P.; Liu, Andrea J.; Nagel, Sidney R.; Sethna, James P.

    2017-05-01

    We study the shear jamming of athermal frictionless soft spheres, and find that in the thermodynamic limit, a shear-jammed state exists with different elastic properties from the isotropically-jammed state. For example, shear-jammed states can have a non-zero residual shear stress in the thermodynamic limit that arises from long-range stress-stress correlations. As a result, the ratio of the shear and bulk moduli, which in isotropically-jammed systems vanishes as the jamming transition is approached from above, instead approaches a constant. Despite these striking differences, we argue that in a deeper sense, the shear jamming and isotropic jamming transitions actually have the same symmetry, and that the differences can be fully understood by rotating the six-dimensional basis of the elastic modulus tensor.

  5. Discrete variable representation in electronic structure theory: quadrature grids for least-squares tensor hypercontraction.

    PubMed

    Parrish, Robert M; Hohenstein, Edward G; Martínez, Todd J; Sherrill, C David

    2013-05-21

    We investigate the application of molecular quadratures obtained from either standard Becke-type grids or discrete variable representation (DVR) techniques to the recently developed least-squares tensor hypercontraction (LS-THC) representation of the electron repulsion integral (ERI) tensor. LS-THC uses least-squares fitting to renormalize a two-sided pseudospectral decomposition of the ERI, over a physical-space quadrature grid. While this procedure is technically applicable with any choice of grid, the best efficiency is obtained when the quadrature is tuned to accurately reproduce the overlap metric for quadratic products of the primary orbital basis. Properly selected Becke DFT grids can roughly attain this property. Additionally, we provide algorithms for adopting the DVR techniques of the dynamics community to produce two different classes of grids which approximately attain this property. The simplest algorithm is radial discrete variable representation (R-DVR), which diagonalizes the finite auxiliary-basis representation of the radial coordinate for each atom, and then combines Lebedev-Laikov spherical quadratures and Becke atomic partitioning to produce the full molecular quadrature grid. The other algorithm is full discrete variable representation (F-DVR), which uses approximate simultaneous diagonalization of the finite auxiliary-basis representation of the full position operator to produce non-direct-product quadrature grids. The qualitative features of all three grid classes are discussed, and then the relative efficiencies of these grids are compared in the context of LS-THC-DF-MP2. Coarse Becke grids are found to give essentially the same accuracy and efficiency as R-DVR grids; however, the latter are built from explicit knowledge of the basis set and may guide future development of atom-centered grids. F-DVR is found to provide reasonable accuracy with markedly fewer points than either Becke or R-DVR schemes.

  6. Imperfect dark energy from kinetic gravity braiding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deffayet, Cédric; Pujolàs, Oriol; Sawicki, Ignacy

    2010-10-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding,more » the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.« less

  7. Identifying the stored energy of a hyperelastic structure by using an attenuated Landweber method

    NASA Astrophysics Data System (ADS)

    Seydel, Julia; Schuster, Thomas

    2017-12-01

    We consider the nonlinear inverse problem of identifying the stored energy function of a hyperelastic material from full knowledge of the displacement field as well as from surface sensor measurements. The displacement field is represented as a solution of Cauchy’s equation of motion, which is a nonlinear elastic wave equation. Hyperelasticity means that the first Piola-Kirchhoff stress tensor is given as the gradient of the stored energy function. We assume that a dictionary of suitable functions is available. The aim is to recover the stored energy with respect to this dictionary. The considered inverse problem is of vital interest for the development of structural health monitoring systems which are constructed to detect defects in elastic materials from boundary measurements of the displacement field, since the stored energy encodes the mechanical properties of the underlying structure. In this article we develop a numerical solver using the attenuated Landweber method. We show that the parameter-to-solution map satisfies the local tangential cone condition. This result can be used to prove local convergence of the attenuated Landweber method in the case that the full displacement field is measured. In our numerical experiments we demonstrate how to construct an appropriate dictionary and show that our method is well suited to localize damages in various situations.

  8. The influence of open fracture anisotropy on CO2 movement within geological storage complexes

    NASA Astrophysics Data System (ADS)

    Bond, C. E.; Wightman, R.; Ringrose, P. S.

    2012-12-01

    Carbon mitigation through the geological storage of carbon dioxide is dependent on the ability of geological formations to store CO2 trapping it within a geological storage complex. Secure long-term containment needs to be demonstrated, due to both political and social drivers, meaning that this containment must be verifiable over periods of 100-105 years. The effectiveness of sub-surface geological storage systems is dependent on trapping CO2 within a volume of rock and is reliant on the integrity of the surrounding rocks, including their chemical and physical properties, to inhibit migration to the surface. Oil and gas reservoir production data, and field evidence show that fracture networks have the potential to act as focused pathways for fluid movement. Fracture networks can allow large volumes of fluid to migrate to the surface within the time scales of interest. In this paper we demonstrate the importance of predicting the effects of fracture networks in storage, using a case study from the In Salah CO2 storage site, and show how the fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our workflow combines well data of imaged fractures, with a discrete fracture network (DFN) model of tectonically induced fractures, within the horizon of interest. The modelled and observed fractures have been compared and combined with present day stress data to predict the open fracture network and its implications for anisotropic movement of CO2 in the sub-surface. The created fracture network model has been used to calculate the 2D permeability tensor for the reservoir for two scenarios: 1) a model in which all fractures are permeable, based on the whole DFN model and 2) those fractures determined to be in dilatational failure under the present day stress regime, a sub-set of the DFN. The resulting permeability anisotropy tensors show distinct anisotropies for the predicted CO2 movement within the reservoir. These predictions have been compared with InSAR imagery of surface uplift, used as an indicator of fluid pressure and movement in the sub-surface, around the CO2 injection wells. The analysis shows that the permeability tensor with the greatest anisotropy, that for the DFN sub-set of open fractures, matches well with the anisotropy in surface uplift imaged by InSAR. We demonstrate that predicting fracture networks alone does not predict fluid movement in the sub-surface, and that fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our results show that a workflow of fracture network prediction combined with present day stress analysis can be used to successfully predict CO2 movement in the sub-surface at an active injection site.

  9. A Bootstrap-Based Probabilistic Optimization Method to Explore and Efficiently Converge in Solution Spaces of Earthquake Source Parameter Estimation Problems: Application to Volcanic and Tectonic Earthquakes

    NASA Astrophysics Data System (ADS)

    Dahm, T.; Heimann, S.; Isken, M.; Vasyura-Bathke, H.; Kühn, D.; Sudhaus, H.; Kriegerowski, M.; Daout, S.; Steinberg, A.; Cesca, S.

    2017-12-01

    Seismic source and moment tensor waveform inversion is often ill-posed or non-unique if station coverage is poor or signals are weak. Therefore, the interpretation of moment tensors can become difficult, if not the full model space is explored, including all its trade-offs and uncertainties. This is especially true for non-double couple components of weak or shallow earthquakes, as for instance found in volcanic, geothermal or mining environments.We developed a bootstrap-based probabilistic optimization scheme (Grond), which is based on pre-calculated Greens function full waveform databases (e.g. fomosto tool, doi.org/10.5880/GFZ.2.1.2017.001). Grond is able to efficiently explore the full model space, the trade-offs and the uncertainties of source parameters. The program is highly flexible with respect to the adaption to specific problems, the design of objective functions, and the diversity of empirical datasets.It uses an integrated, robust waveform data processing based on a newly developed Python toolbox for seismology (Pyrocko, see Heimann et al., 2017, http://doi.org/10.5880/GFZ.2.1.2017.001), and allows for visual inspection of many aspects of the optimization problem. Grond has been applied to the CMT moment tensor inversion using W-phases, to nuclear explosions in Korea, to meteorite atmospheric explosions, to volcano-tectonic events during caldera collapse and to intra-plate volcanic and tectonic crustal events.Grond can be used to optimize simultaneously seismological waveforms, amplitude spectra and static displacements of geodetic data as InSAR and GPS (e.g. KITE, Isken et al., 2017, http://doi.org/10.5880/GFZ.2.1.2017.002). We present examples of Grond optimizations to demonstrate the advantage of a full exploration of source parameter uncertainties for interpretation.

  10. Full moment tensor and source location inversion based on full waveform adjoint method

    NASA Astrophysics Data System (ADS)

    Morency, C.

    2012-12-01

    The development of high-performance computing and numerical techniques enabled global and regional tomography to reach high levels of precision, and seismic adjoint tomography has become a state-of-the-art tomographic technique. The method was successfully used for crustal tomography of Southern California (Tape et al., 2009) and Europe (Zhu et al., 2012). Here, I will focus on the determination of source parameters (full moment tensor and location) based on the same approach (Kim et al, 2011). The method relies on full wave simulations and takes advantage of the misfit between observed and synthetic seismograms. An adjoint wavefield is calculated by back-propagating the difference between observed and synthetics from the receivers to the source. The interaction between this adjoint wavefield and the regular forward wavefield helps define Frechet derivatives of the source parameters, that is, the sensitivity of the misfit with respect to the source parameters. Source parameters are then recovered by minimizing the misfit based on a conjugate gradient algorithm using the Frechet derivatives. First, I will demonstrate the method on synthetic cases before tackling events recorded at the Geysers. The velocity model used at the Geysers is based on the USGS 3D velocity model. Waveform datasets come from the Northern California Earthquake Data Center. Finally, I will discuss strategies to ultimately use this method to characterize smaller events for microseismic and induced seismicity monitoring. References: - Tape, C., Q. Liu, A. Maggi, and J. Tromp, 2009, Adjoint tomography of the Southern California crust: Science, 325, 988992. - Zhu, H., Bozdag, E., Peter, D., and Tromp, J., 2012, Structure of the European upper mantle revealed by adjoint method: Nature Geoscience, 5, 493-498. - Kim, Y., Q. Liu, and J. Tromp, 2011, Adjoint centroid-moment tensor inversions: Geophys. J. Int., 186, 264278. Prepared by LLNL under Contract DE-AC52-07NA27344.

  11. Extension of the MIRS computer package for the modeling of molecular spectra: From effective to full ab initio ro-vibrational Hamiltonians in irreducible tensor form

    NASA Astrophysics Data System (ADS)

    Nikitin, A. V.; Rey, M.; Champion, J. P.; Tyuterev, Vl. G.

    2012-07-01

    The MIRS software for the modeling of ro-vibrational spectra of polyatomic molecules was considerably extended and improved. The original version [Nikitin AV, Champion JP, Tyuterev VlG. The MIRS computer package for modeling the rovibrational spectra of polyatomic molecules. J Quant Spectrosc Radiat Transf 2003;82:239-49.] was especially designed for separate or simultaneous treatments of complex band systems of polyatomic molecules. It was set up in the frame of effective polyad models by using algorithms based on advanced group theory algebra to take full account of symmetry properties. It has been successfully used for predictions and data fitting (positions and intensities) of numerous spectra of symmetric and spherical top molecules within the vibration extrapolation scheme. The new version offers more advanced possibilities for spectra calculations and modeling by getting rid of several previous limitations particularly for the size of polyads and the number of tensors involved. It allows dealing with overlapping polyads and includes more efficient and faster algorithms for the calculation of coefficients related to molecular symmetry properties (6C, 9C and 12C symbols for C3v, Td, and Oh point groups) and for better convergence of least-square-fit iterations as well. The new version is not limited to polyad effective models. It also allows direct predictions using full ab initio ro-vibrational normal mode Hamiltonians converted into the irreducible tensor form. Illustrative examples on CH3D, CH4, CH3Cl, CH3F and PH3 are reported reflecting the present status of data available. It is written in C++ for standard PC computer operating under Windows. The full package including on-line documentation and recent data are freely available at http://www.iao.ru/mirs/mirs.htm or http://xeon.univ-reims.fr/Mirs/ or http://icb.u-bourgogne.fr/OMR/SMA/SHTDS/MIRS.html and as supplementary data from the online version of the article.

  12. Simplified moment tensor analysis and unified decomposition of acoustic emission source: Application to in situ hydrofracturing test

    NASA Astrophysics Data System (ADS)

    Ohtsu, Masayasu

    1991-04-01

    An application of a moment tensor analysis to acoustic emission (AE) is studied to elucidate crack types and orientations of AE sources. In the analysis, simplified treatment is desirable, because hundreds of AE records are obtained from just one experiment and thus sophisticated treatment is realistically cumbersome. Consequently, a moment tensor inversion based on P wave amplitude is employed to determine six independent tensor components. Selecting only P wave portion from the full-space Green's function of homogeneous and isotropic material, a computer code named SiGMA (simplified Green's functions for the moment tensor analysis) is developed for the AE inversion analysis. To classify crack type and to determine crack orientation from moment tensor components, a unified decomposition of eigenvalues into a double-couple (DC) part, a compensated linear vector dipole (CLVD) part, and an isotropic part is proposed. The aim of the decomposition is to determine the proportion of shear contribution (DC) and tensile contribution (CLVD + isotropic) on AE sources and to classify cracks into a crack type of the dominant motion. Crack orientations determined from eigenvectors are presented as crack-opening vectors for tensile cracks and fault motion vectors for shear cracks, instead of stereonets. The SiGMA inversion and the unified decomposition are applied to synthetic data and AE waveforms detected during an in situ hydrofracturing test. To check the accuracy of the procedure, numerical experiments are performed on the synthetic waveforms, including cases with 10% random noise added. Results show reasonable agreement with assumed crack configurations. Although the maximum error is approximately 10% with respect to the ratios, the differences on crack orientations are less than 7°. AE waveforms detected by eight accelerometers deployed during the hydrofracturing test are analyzed. Crack types and orientations determined are in reasonable agreement with a predicted failure plane from borehole TV observation. The results suggest that tensile cracks are generated first at weak seams and then shear cracks follow on the opened joints.

  13. Multiscale analysis of the invariants of the velocity gradient tensor in isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Danish, Mohammad; Meneveau, Charles

    2018-04-01

    Knowledge of local flow-topology, the patterns of streamlines around a moving fluid element as described by the velocity-gradient tensor, is useful for developing insights into turbulence processes, such as energy cascade, material element deformation, or scalar mixing. Much has been learned in the recent past about flow topology at the smallest (viscous) scales of turbulence. However, less is known at larger scales, for instance, at the inertial scales of turbulence. In this work, we present a detailed study on the scale dependence of various quantities of interest, such as the population fraction of different types of flow-topologies, the joint probability distribution of the second and third invariants of the velocity gradient tensor, and the geometrical alignment of vorticity with strain-rate eigenvectors. We perform the analysis on a simulation dataset of isotropic turbulence at Reλ=433 . While quantities appear close to scale invariant in the inertial range, we observe a "bump" in several quantities at length scales between the inertial and viscous ranges. For instance, the population fraction of unstable node-saddle-saddle flow topology shows an increase when reducing the scale from the inertial entering the viscous range. A similar bump is observed for the vorticity-strain-rate alignment. In order to document possible dynamical causes for the different trends in the viscous and inertial ranges, we examine the probability fluxes appearing in the Fokker-Plank equation governing the velocity gradient invariants. Specifically, we aim to understand whether the differences observed between the viscous and inertial range statistics are due to effects caused by pressure, subgrid-scale, or viscous stresses or various combinations of these terms. To decompose the flow into small and large scales, we mainly use a spectrally compact non-negative filter with good spatial localization properties (Eyink-Aluie filter). The analysis shows that when going from the inertial range into the viscous range, the subgrid-stress effect decreases more rapidly as a function of scale than the viscous effects increase. To make up for the difference, the pressure Hessian also behaves somewhat differently in the viscous than in the inertial range. The results have implications for models for the velocity gradient tensor showing that the effects of subgrid scales may not be simply modeled via a constant eddy viscosity in the inertial range if one wishes to reproduce the observed trends.

  14. Maternal adiposity negatively influences infant brain white matter development

    USDA-ARS?s Scientific Manuscript database

    Objective: To study potential effects of maternal body composition on central nervous system (CNS) development of newborn infants. Methods: Diffusion tensor imaging was used to evaluate brain white matter development in 2-week-old, full-term, appropriate for gestational age infants from uncomplicat...

  15. The GEM Theory of the Unification of Gravitation and Electro-Magnetism

    NASA Astrophysics Data System (ADS)

    Brandenburg, J. E.

    2012-01-01

    The GEM (Gravity Electro-Magnetism), theory is presented as an alloy of Sakharov and Kaluza-Klein approaches to field unification. GEM uses the concept of gravity fields as Poynting fields to postulate that the non-metric portion of the EM stress tensor becomes the metric tensor in strong fields leading to "self-censorship". Covariant formulation of the GEM theory is accomplished through definition of the spacetime metric tensor as a portion of the EM stress tensor normalized by its own trace: gab = 4(FcaFcb )/(FabFab), it is found that this results in a massless ground state vacuum and a Newtonian gravitation potential f=1/2 E2/B2 =GM/r , where E, B and F are part of the vacuum Zero Point Fluctuation (ZPF) and M and r are the mass and distance from the center of a gravitating body and G is the Newton gravitation constant. It is found that a Lorentz flat-space metric is recovered in the limit of a vacuum full spectrum ZPF. The vacuum ZPF energy and vacuum quantities G, h, c, gives birth to particles quantities mp, me, e,-e in a process triggered by the appearance of the Kaluza-Klein fifth dimension, where also the EM and gravity forces split from each other in a process correlated to the splitting apart of protons and electrons. The separate appearance of the proton and electron occurs as the splitting of a light-like spacetime interval of zero-length into a finite space-like portion containing three subdimensions identified with the quarks and a time-like portion identified with the electron. The separation of mass with charge for the electron and proton pair comes about from a U(1) symmetry with a rotation in imaginary angle. A logarithmic variation of charge with mass for the proton-electron pair results and leads to the formula ln(ro/rp) = s, where s = (mp/me)1/2 , where mp and me are the electron and proton masses respectively and where ro =e2/moc2 , and where mo = (mpme)1/2 and where rp is the Planck length . This leads to the formula G=e2/mo2aexp(-2s)=6.6684x10-11 dynes-cm2/g2 , without free parameters, which is within 1 part per thousand of the measured value. We also have from the mass model, where q'/e = a-1/2 is the normalized Planck charge, and where MP is the Planck mass, a formula for the proton mass : mp=MP sq'/e = 1.71 x10-24g and thus is accurate to 2.5% , also without free parameters. GEM theory is now validated through the the Standard Model of physics. Derivation of the value of the Gravitation constant based on the observed variation of a with energy: results in the formula G @ hc/Mhc2 exp ( -1/(1.61a)), where a is the fine structure constant, h, is Plancks constant, c, is the speed of light, and Mhc is the mass of the hcc Charmonium meson and is shown to be identical to that derived from GEM postulates. GEM is thus consistent with quantum renormalization with an ultraviolet cutoff at the Planck length. More accurate values of G me and mp are found by perturbation theory.

  16. Examples of backreaction of small-scale inhomogeneities in cosmology

    NASA Astrophysics Data System (ADS)

    Green, Stephen R.; Wald, Robert M.

    2013-06-01

    In previous work, we introduced a new framework to treat large-scale backreaction effects due to small-scale inhomogeneities in general relativity. We considered one-parameter families of spacetimes for which such backreaction effects can occur, and we proved that, provided the weak energy condition on matter is satisfied, the leading effect of small-scale inhomogeneities on large-scale dynamics is to produce a traceless effective stress-energy tensor that itself satisfies the weak energy condition. In this work, we illustrate the nature of our framework by providing two explicit examples of one-parameter families with backreaction. The first, based on previous work of Berger, is a family of polarized vacuum Gowdy spacetimes on a torus, which satisfies all of the assumptions of our framework. As the parameter approaches its limiting value, the metric uniformly approaches a smooth background metric, but spacetime derivatives of the deviation of the metric from the background metric do not converge uniformly to zero. The limiting metric has nontrivial backreaction from the small-scale inhomogeneities, with an effective stress energy that is traceless and satisfies the weak energy condition, in accord with our theorems. Our second one-parameter family consists of metrics which have a uniform Friedmann-Lemaître-Robertson-Walker limit. This family satisfies all of our assumptions with the exception of the weak energy condition for matter. In this case, the limiting metric has an effective stress-energy tensor which is not traceless. We emphasize the importance of imposing energy conditions on matter in studies of backreaction.

  17. Investigation into influence factors of wave velocity anisotropy for TCDP borehole

    NASA Astrophysics Data System (ADS)

    Wu, C. N.; Dong, J. J.; Yang, C. M.; Wu, W. J.

    2015-12-01

    The direction of fast horizontal shear wave velocity (FSH direction) is used as an indicator of the direction of maximum horizontal principal stress. However, the wave velocity anisotropy will be simultaneously dominated by the stress induced anisotropy and the inherent anisotropy which includes the effects of sedimentary and tectonic structures. In this study, the influence factors of wave velocity anisotropy will be analyzed in borehole-A of Taiwan Chelungpu-Fault Drilling Project (TCDP). The anisotropic compliance tensors of intact sandstones and mudrocks derived from the laboratory wave measurement are combined with the equivalent continuous model to evaluate the compliance tensor of jointed rock mass. Results show the lithology was identified as the most influential factor on the wave velocity anisotropy. Comparing the FSH direction logging data with our results, the wave velocity anisotropy in sandstones is mostly caused by inherent anisotropy of intact sandstones. The spatial variations of wave velocity anisotropy in mudrocks is caused by other relatively higher influence factors than inherent anisotropy of intact mudrocks. In addition, the dip angle of bedding plans is also important for wave velocity anisotropy of mudrocks because the FSH direction logging data seems dominated by the dip direction of bedding planes when the dip angle becomes steeper (at the depth greater than 1785 m). Surprisingly, the wave velocity anisotropy contributed by joints that we determined by equivalent continuous model is not significant. In this study, based on the TCDP borehole data, we conclude that determining the direction of maximum horizontal principal stress from the FSH directions should consider the influence of inherent anisotropy on rock mass.

  18. Integrability conditions for Killing-Yano tensors and conformal Killing-Yano tensors

    NASA Astrophysics Data System (ADS)

    Batista, Carlos

    2015-01-01

    The integrability conditions for the existence of a conformal Killing-Yano tensor of arbitrary order are worked out in all dimensions and expressed in terms of the Weyl tensor. As a consequence, the integrability conditions for the existence of a Killing-Yano tensor are also obtained. By means of such conditions, it is shown that in certain Einstein spaces one can use a conformal Killing-Yano tensor of order p to generate a Killing-Yano tensor of order (p -1 ) . Finally, it is proved that in maximally symmetric spaces the covariant derivative of a Killing-Yano tensor is a closed conformal Killing-Yano tensor and that every conformal Killing-Yano tensor is uniquely decomposed as the sum of a Killing-Yano tensor and a closed conformal Killing-Yano tensor.

  19. Simulation of Richtmyer-Meshkov flows for elastic-plastic solids in planar and converging geometries using an Eulerian framework

    NASA Astrophysics Data System (ADS)

    Lopez Ortega, Alejandro

    This thesis presents a numerical and analytical study of two problems of interest involving shock waves propagating through elastic-plastic media: the motion of converging (imploding) shocks and the Richtmyer-Meshkov (RM) instability. Since the stress conditions encountered in these cases normally produce large deformations in the materials, an Eulerian description, in which the spatial coordinates are fixed, is employed. This formulation enables a direct comparison of similarities and differences between the present study of phenomena driven by shock-loading in elastic-plastic solids, and in fluids, where they have been studied extensively. In the first application, Whitham's shock dynamics (WSD) theory is employed for obtaining an approximate description of the motion of an elastic-plastic material processed by a cylindrically/spherically converging shock. Comparison with numerical simulations of the full set of equations of motion reveal that WSD is an accurate tool for characterizing the evolution of converging shocks at all stages. The study of the Richtmyer-Meshkov flow (i.e., interaction between the interface separating two materials of different density and a shock wave incoming at an angle) in solids is performed by means of analytical models for purely elastic solids and numerical simulations when plasticity is included in the material model. To this effect, an updated version of a previously developed multi-material, level-set-based, Eulerian framework for solid mechanics is employed. The revised code includes the use of a multi-material HLLD Riemann problem for imposing material boundary conditions, and a new formulation of the equations of motion that makes use of the stretch tensor while avoiding the degeneracy of the stress tensor under rotation. Results reveal that the interface separating two elastic solids always behaves in a stable oscillatory or decaying oscillatory manner due to the existence of shear waves, which are able to transport the initial vorticity away from the interface. In the case of elastic-plastic materials, the interface behaves at first in an unstable manner similar to a fluid. Ejecta formation is appreciated under certain initial conditions while in other conditions, after an initial period of growth, the interface displays a quasi-stationary long-term behavior due to stress relaxation. The effect of secondary shock-interface interactions (re-shocks) in converging geometries is also studied. A turbulent mixing zone, similar to what is observed in gas--gas interfaces, is created, especially when materials with low strength driven by moderate to strong shocks are considered.

  20. Airborne full tensor magnetic gradiometry surveys in the Thuringian basin, Germany

    NASA Astrophysics Data System (ADS)

    Queitsch, M.; Schiffler, M.; Goepel, A.; Stolz, R.; Meyer, M.; Meyer, H.; Kukowski, N.

    2013-12-01

    In this contribution we introduce a newly developed fully operational full tensor magnetic gradiometer (FTMG) instrument based on Superconducting Quantum Interference Devices (SQUIDs) and show example data acquired in 2012 within the framework of the INFLUINS (Integrated Fluid Dynamics in Sedimentary basins) project. This multidisciplinary project aims for a better understanding of movements and interaction between shallow and deep fluids in the Thuringian Basin in the center of Germany. In contrast to mapping total magnetic field intensity (TMI) in conventional airborne magnetic surveys for industrial exploration of mineral deposits and sedimentary basins, our instrument measures all components of the magnetic field gradient tensor using highly sensitive SQUID gradiometers. This significantly constrains the solutions of the inverse problem. Furthermore, information on the ratio between induced and remanent magnetization is obtained. Special care has been taken to reduce motion noise while acquiring data in airborne operation. Therefore, the sensors are mounted in a nonmagnetic and aerodynamically shaped bird made of fiberglas with a high drag tail which stabilizes the bird even at low velocities. The system is towed by a helicopter and kept at 30m above ground during data acquisition. Additionally, the system in the bird incorporates an inertial unit for geo-referencing and enhanced motion noise compensation, a radar altimeter for topographic correction and a GPS system for high precision positioning. Advanced data processing techniques using reference magnetometer and inertial unit data result in a very low system noise of less than 60 pT/m peak to peak in airborne operation. To show the performance of the system we present example results from survey areas within the Thuringian basin and along its bordering highlands. The mapped gradient tensor components show a high correlation to existing geologic maps. Furthermore, the measured gradient components indicate that some of the observed magnetic anomalies have a strong remanent magnetization. One example of interpretation of the acquired data of a magnetic anomaly related to a larger gabbro formation is presented.

  1. Systematic assessment of fault stability in the Northern Niger Delta Basin, Nigeria: Implication for hydrocarbon prospects and increased seismicities

    NASA Astrophysics Data System (ADS)

    Adewole, E. O.; Healy, D.

    2017-03-01

    Accurate information on fault networks, the full stress tensor, and pore fluid pressures are required for quantifying the stability of structure-bound hydrocarbon prospects, carbon dioxide sequestration, and drilling prolific and safe wells, particularly fluid injections wells. Such information also provides essential data for a proper understanding of superinduced seismicities associated with areas of intensive hydrocarbon exploration and solid minerals mining activities. Pressure and stress data constrained from wells and seismic data in the Northern Niger Delta Basin (NNDB), Nigeria, have been analysed in the framework of fault stability indices by varying the maximum horizontal stress direction from 0° to 90°, evaluated at depths of 2 km, 3.5 km and 4 km. We have used fault dips and azimuths interpreted from high resolution 3D seismic data to calculate the predisposition of faults to failures in three faulting regimes (normal, pseudo-strike-slip and pseudo-thrust). The weighty decrease in the fault stability at 3.5 km depth from 1.2 MPa to 0.55 MPa demonstrates a reduction of the fault strength by high magnitude overpressures. Pore fluid pressures > 50 MPa have tendencies to increase the risk of faults to failure in the study area. Statistical analysis of stability indices (SI) indicates faults dipping 50°-60°, 80°-90°, and azimuths ranging 100°-110° are most favourably oriented for failure to take place, and thus likely to favour migrations of fluids given appropriate pressure and stress conditions in the dominant normal faulting regime of the NNDB. A few of the locally assessed stability of faults show varying results across faulting regimes. However, the near similarities of some model-based results in the faulting regimes explain the stability of subsurface structures are greatly influenced by the maximum horizontal stress (SHmax) direction and magnitude of pore fluid pressures.

  2. Computational Fluid Dynamic Solutions of Optimized Heat Shields Designed for Earth Entry

    DTIC Science & Technology

    2010-01-01

    domain ρ = Density (kg/m3) σ = Stefan Boltzmann constant τ = Shear stress tensor τT−V = T-V relaxation time τe−V = e-V relaxation time xi φ = Sweep angle...Vehicle DES = Differential evolutionary Scheme DOR = Design Optimization Tools DPLR = Data Parallel Line Relaxation GSLR = Gauss- Seidel Line... Stefan - Boltzmann constant. This model provides accurate heating predictions, especially for the non-ablating heat-shields explored in this work. Various

  3. Effect of Convection on Weld Pool Shape and Microstructure.

    DTIC Science & Technology

    1986-07-01

    latent heat of fusion 11 u dynamic viscosity Iwo V kinematic viscosity P density a Stefan -Boltzman constant stress tensor 0, functions defined the...and temperature. The convections for velocities and temperature are based on a mixed Gauss- -* Seidel and Jacobi schemes, proceeding from line-to...line according to the Gauss- Seidel scheme, updating values as each line is completed. With each line, however, the point-by-point iteration is based on

  4. Fault Weakening due to Erosion by Fluids: A Possible Origin of Intraplate Earthquake Swarms

    NASA Astrophysics Data System (ADS)

    Vavrycuk, V.; Hrubcova, P.

    2016-12-01

    The occurrence and specific properties of earthquake swarms in geothermal areas are usually attributed to a highly fractured rock and/or heterogeneous stress within the rock mass being triggered by magmatic or hydrothermal fluid intrusion. The increase of fluid pressure destabilizes fractures and causes their opening and subsequent shear-tensile rupture. The spreading and evolution of the seismic activity is controlled by fluid flow due to diffusion in a permeable rock and/or by the redistribution of Coulomb stress. The `fluid-injection model', however, is not valid universally. We provide evidence that this model is inconsistent with observations of earthquake swarms in West Bohemia, Czech Republic. Full seismic moment tensors of micro-earthquakes in the 1997 and 2008 swarms in West Bohemia indicate that fracturing at the starting phase of the swarm was not associated with fault openings caused by pressurized fluids but rather with fault compactions. This can physically be explained by a `fluid-erosion model', when the essential role in the swarm triggering is attributed to chemical and hydrothermal fluid-rock interactions in the focal zone. Since the rock is exposed to circulating hydrothermal, CO2-saturated fluids, the walls of fractures are weakened by dissolving and altering various minerals. If fault strength lowers to a critical value, the seismicity is triggered. The fractures are compacted during failure, the fault strength recovers and a new cycle begins.

  5. Virtual Seismometers for Induced Seismicity Monitoring and Full Moment Tensor Inversion

    NASA Astrophysics Data System (ADS)

    Morency, C.; Matzel, E.

    2016-12-01

    Induced seismicity is associated with subsurface fluid injection, and puts at risk efforts to develop geologic carbon sequestration and enhanced geothermal systems. We are developing methods to monitor the microseismically active zone so that we can ultimately identify faults at risk of slipping. The virtual seismometer method (VSM) is an interferometric technique that is very sensitive to the source parameters (location, mechanism and magnitude) and to the Earth structure in the source region. VSM works by virtually placing seismometers inside a micro events cloud, where we can focus on properties directly between induced micro events, and effectively replacing each earthquake with a virtual seismometer recording all the others. Here, we show that the cross-correlated signals from seismic wavefields triggered by two events and recorded at the surface are a combination of the strain field between these two sources times a moment tensor. Based on this relationship, we demonstrate how we can use these measured cross-correlated signals to invert for full moment tensor. The advantage of VSM is to allow to considerably reduce the modeled numerical domain to the region directly around the micro events cloud, which lowers computational cost, permits to reach higher frequency resolution, and suppresses the impact of the Earth structural model uncertainties outside the micro events cloud. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Near real-time estimation of the seismic source parameters in a compressed domain

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ismael A. Vera

    Seismic events can be characterized by its origin time, location and moment tensor. Fast estimations of these source parameters are important in areas of geophysics like earthquake seismology, and the monitoring of seismic activity produced by volcanoes, mining operations and hydraulic injections in geothermal and oil and gas reservoirs. Most available monitoring systems estimate the source parameters in a sequential procedure: first determining origin time and location (e.g., epicentre, hypocentre or centroid of the stress glut density), and then using this information to initialize the evaluation of the moment tensor. A more efficient estimation of the source parameters requires a concurrent evaluation of the three variables. The main objective of the present thesis is to address the simultaneous estimation of origin time, location and moment tensor of seismic events. The proposed method displays the benefits of being: 1) automatic, 2) continuous and, depending on the scale of application, 3) of providing results in real-time or near real-time. The inversion algorithm is based on theoretical results from sparse representation theory and compressive sensing. The feasibility of implementation is determined through the analysis of synthetic and real data examples. The numerical experiments focus on the microseismic monitoring of hydraulic fractures in oil and gas wells, however, an example using real earthquake data is also presented for validation. The thesis is complemented with a resolvability analysis of the moment tensor. The analysis targets common monitoring geometries employed in hydraulic fracturing in oil wells. Additionally, it is presented an application of sparse representation theory for the denoising of one-component and three-component microseismicity records, and an algorithm for improved automatic time-picking using non-linear inversion constraints.

  7. Modeling the effects of structure on seismic anisotropy in the Chester gneiss dome, southeast Vermont

    NASA Astrophysics Data System (ADS)

    Saif, S.; Brownlee, S. J.

    2017-12-01

    Compositional and structural heterogeneity in the continental crust are factors that contribute to the complex expression of crustal seismic anisotropy. Understanding deformation and flow in the crust using seismic anisotropy has thus proven difficult. Seismic anisotropy is affected by rock microstructure and mineralogy, and a number of studies have begun to characterize the full elastic tensors of crustal rocks in an attempt to increase our understanding of these intrinsic factors. However, there is still a large gap in length-scale between laboratory characterization on the scale of centimeters and seismic wavelengths on the order of kilometers. To address this length-scale gap we are developing a 3D crustal model that will help us determine the effects of rotating laboratory-scale elastic tensors into field-scale structures. The Chester gneiss dome in southeast Vermont is our primary focus. The model combines over 2000 structural data points from field measurements and published USGS structural data with elastic tensors of Chester dome rocks derived from electron backscatter diffraction data. We created a uniformly spaced grid by averaging structural measurements together in equally spaced grid boxes. The surface measurements are then projected into the third dimension using existing subsurface interpretations. A measured elastic tensor for the specific rock type is rotated according to its unique structural input at each point in the model. The goal is to use this model to generate artificial seismograms using existing numerical wave propagation codes. Once completed, the model input can be varied to examine the effects of different subsurface structure interpretations, as well as heterogeneity in rock composition and elastic tensors. Our goal is to be able to make predictions for how specific structures will appear in seismic data, and how that appearance changes with variations in rock composition.

  8. Bayesian inference and interpretation of centroid moment tensors of the 2016 Kumamoto earthquake sequence, Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Hallo, Miroslav; Asano, Kimiyuki; Gallovič, František

    2017-09-01

    On April 16, 2016, Kumamoto prefecture in Kyushu region, Japan, was devastated by a shallow M JMA7.3 earthquake. The series of foreshocks started by M JMA6.5 foreshock 28 h before the mainshock. They have originated in Hinagu fault zone intersecting the mainshock Futagawa fault zone; hence, the tectonic background for this earthquake sequence is rather complex. Here we infer centroid moment tensors (CMTs) for 11 events with M JMA between 4.8 and 6.5, using strong motion records of the K-NET, KiK-net and F-net networks. We use upgraded Bayesian full-waveform inversion code ISOLA-ObsPy, which takes into account uncertainty of the velocity model. Such an approach allows us to reliably assess uncertainty of the CMT parameters including the centroid position. The solutions show significant systematic spatial and temporal variations throughout the sequence. Foreshocks are right-lateral steeply dipping strike-slip events connected to the NE-SW shear zone. Those located close to the intersection of the Hinagu and Futagawa fault zones are dipping slightly to ESE, while those in the southern area are dipping to WNW. Contrarily, aftershocks are mostly normal dip-slip events, being related to the N-S extensional tectonic regime. Most of the deviatoric moment tensors contain only minor CLVD component, which can be attributed to the velocity model uncertainty. Nevertheless, two of the CMTs involve a significant CLVD component, which may reflect complex rupture process. Decomposition of those moment tensors into two pure shear moment tensors suggests combined right-lateral strike-slip and normal dip-slip mechanisms, consistent with the tectonic settings of the intersection of the Hinagu and Futagawa fault zones.[Figure not available: see fulltext.

  9. Magnetic resonance neurography and diffusion tensor imaging: origins, history, and clinical impact of the first 50,000 cases with an assessment of efficacy and utility in a prospective 5000-patient study group.

    PubMed

    Filler, Aaron

    2009-10-01

    Methods were invented that made it possible to image peripheral nerves in the body and to image neural tracts in the brain. The history, physical basis, and dyadic tensor concept underlying the methods are reviewed. Over a 15-year period, these techniques-magnetic resonance neurography (MRN) and diffusion tensor imaging-were deployed in the clinical and research community in more than 2500 published research reports and applied to approximately 50,000 patients. Within this group, approximately 5000 patients having MRN were carefully tracked on a prospective basis. A uniform Neurography imaging methodology was applied in the study group, and all images were reviewed and registered by referral source, clinical indication, efficacy of imaging, and quality. Various classes of image findings were identified and subjected to a variety of small targeted prospective outcome studies. Those findings demonstrated to be clinically significant were then tracked in the larger clinical volume data set. MRN demonstrates mechanical distortion of nerves, hyperintensity consistent with nerve irritation, nerve swelling, discontinuity, relations of nerves to masses, and image features revealing distortion of nerves at entrapment points. These findings are often clinically relevant and warrant full consideration in the diagnostic process. They result in specific pathological diagnoses that are comparable to electrodiagnostic testing in clinical efficacy. A review of clinical outcome studies with diffusion tensor imaging also shows convincing utility. MRN and diffusion tensor imaging neural tract imaging have been validated as indispensable clinical diagnostic methods that provide reliable anatomic pathological information. There is no alternative diagnostic method in many situations. With the elapsing of 15 years, tens of thousands of imaging studies, and thousands of publications, these methods should no longer be considered experimental.

  10. Reducing RANS Model Error Using Random Forest

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Xun; Wu, Jin-Long; Xiao, Heng; Ling, Julia

    2016-11-01

    Reynolds-Averaged Navier-Stokes (RANS) models are still the work-horse tools in the turbulence modeling of industrial flows. However, the model discrepancy due to the inadequacy of modeled Reynolds stresses largely diminishes the reliability of simulation results. In this work we use a physics-informed machine learning approach to improve the RANS modeled Reynolds stresses and propagate them to obtain the mean velocity field. Specifically, the functional forms of Reynolds stress discrepancies with respect to mean flow features are trained based on an offline database of flows with similar characteristics. The random forest model is used to predict Reynolds stress discrepancies in new flows. Then the improved Reynolds stresses are propagated to the velocity field via RANS equations. The effects of expanding the feature space through the use of a complete basis of Galilean tensor invariants are also studied. The flow in a square duct, which is challenging for standard RANS models, is investigated to demonstrate the merit of the proposed approach. The results show that both the Reynolds stresses and the propagated velocity field are improved over the baseline RANS predictions. SAND Number: SAND2016-7437 A

  11. An anisotropic universe due to dimension-changing vacuum decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scargill, James H.C., E-mail: james.scargill@physics.ox.ac.uk

    In this paper we consider the question of observational signatures of a false vacuum decay event in the early universe followed by a period of inflation; in particular, motivated by the string landscape, we consider decays in which the parent vacuum has a smaller number of large dimensions than the current vacuum, which leads to an anisotropic universe. We go beyond previous studies, and examine the effects on the CMB temperature and polarisation power spectra, due to both scalar and tensor modes, and consider not only late-time effects but also the full cosmological perturbation theory at early times. We findmore » that whilst the scalar mode behaves as one would expect, and the effects of anisotropy at early times are sub-dominant to the late-time effects already studied, for the tensor modes in fact the the early-time effects grow with multipole and can become much larger than one would expect, even dominating over the late-time effects. Thus these effects should be included if one is looking for such a signal in the tensor modes.« less

  12. Asymptotic safety of quantum gravity beyond Ricci scalars

    NASA Astrophysics Data System (ADS)

    Falls, Kevin; King, Callum R.; Litim, Daniel F.; Nikolakopoulos, Kostas; Rahmede, Christoph

    2018-04-01

    We investigate the asymptotic safety conjecture for quantum gravity including curvature invariants beyond Ricci scalars. Our strategy is put to work for families of gravitational actions which depend on functions of the Ricci scalar, the Ricci tensor, and products thereof. Combining functional renormalization with high order polynomial approximations and full numerical integration we derive the renormalization group flow for all couplings and analyse their fixed points, scaling exponents, and the fixed point effective action as a function of the background Ricci curvature. The theory is characterized by three relevant couplings. Higher-dimensional couplings show near-Gaussian scaling with increasing canonical mass dimension. We find that Ricci tensor invariants stabilize the UV fixed point and lead to a rapid convergence of polynomial approximations. We apply our results to models for cosmology and establish that the gravitational fixed point admits inflationary solutions. We also compare findings with those from f (R ) -type theories in the same approximation and pin-point the key new effects due to Ricci tensor interactions. Implications for the asymptotic safety conjecture of gravity are indicated.

  13. Efficient Computation of Anharmonic Force Constants via q-space, with Application to Graphene

    NASA Astrophysics Data System (ADS)

    Kornbluth, Mordechai; Marianetti, Chris

    We present a new approach for extracting anharmonic force constants from a sparse sampling of the anharmonic dynamical tensor. We calculate the derivative of the energy with respect to q-space displacements (phonons) and strain, which guarantees the absence of supercell image errors. Central finite differences provide a well-converged quadratic error tail for each derivative, separating the contribution of each anharmonic order. These derivatives populate the anharmonic dynamical tensor in a sparse mesh that bounds the Brillouin Zone, which ensures comprehensive sampling of q-space while exploiting small-cell calculations for efficient, high-throughput computation. This produces a well-converged and precisely-defined dataset, suitable for big-data approaches. We transform this sparsely-sampled anharmonic dynamical tensor to real-space anharmonic force constants that obey full space-group symmetries by construction. Machine-learning techniques identify the range of real-space interactions. We show the entire process executed for graphene, up to and including the fifth-order anharmonic force constants. This method successfully calculates strain-based phonon renormalization in graphene, even under large strains, which solves a major shortcoming of previous potentials.

  14. A Matlab user interface for the statistically assisted fluid registration algorithm and tensor-based morphometry

    NASA Astrophysics Data System (ADS)

    Yepes-Calderon, Fernando; Brun, Caroline; Sant, Nishita; Thompson, Paul; Lepore, Natasha

    2015-01-01

    Tensor-Based Morphometry (TBM) is an increasingly popular method for group analysis of brain MRI data. The main steps in the analysis consist of a nonlinear registration to align each individual scan to a common space, and a subsequent statistical analysis to determine morphometric differences, or difference in fiber structure between groups. Recently, we implemented the Statistically-Assisted Fluid Registration Algorithm or SAFIRA,1 which is designed for tracking morphometric differences among populations. To this end, SAFIRA allows the inclusion of statistical priors extracted from the populations being studied as regularizers in the registration. This flexibility and degree of sophistication limit the tool to expert use, even more so considering that SAFIRA was initially implemented in command line mode. Here, we introduce a new, intuitive, easy to use, Matlab-based graphical user interface for SAFIRA's multivariate TBM. The interface also generates different choices for the TBM statistics, including both the traditional univariate statistics on the Jacobian matrix, and comparison of the full deformation tensors.2 This software will be freely disseminated to the neuroimaging research community.

  15. Weyl geometry

    NASA Astrophysics Data System (ADS)

    Wheeler, James T.

    2018-07-01

    We develop the properties of Weyl geometry, beginning with a review of the conformal properties of Riemannian spacetimes. Decomposition of the Riemann curvature into trace and traceless parts allows an easy proof that the Weyl curvature tensor is the conformally invariant part of the Riemann curvature, and shows the explicit change in the Ricci and Schouten tensors required to insure conformal invariance. We include a proof of the well-known condition for the existence of a conformal transformation to a Ricci-flat spacetime. We generalize this to a derivation of the condition for the existence of a conformal transformation to a spacetime satisfying the Einstein equation with matter sources. Then, enlarging the symmetry from Poincaré to Weyl, we develop the Cartan structure equations of Weyl geometry, the form of the curvature tensor and its relationship to the Riemann curvature of the corresponding Riemannian geometry. We present a simple theory of Weyl-covariant gravity based on a curvature-linear action, and show that it is conformally equivalent to general relativity. This theory is invariant under local dilatations, but not the full conformal group.

  16. Evaluating gyro-viscosity in the Kelvin-Helmholtz instability by kinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umeda, Takayuki, E-mail: taka.umeda@nagoya-u.jp; Yamauchi, Natsuki; Wada, Yasutaka

    2016-05-15

    In the present paper, the finite-Larmor-radius (gyro-viscous) term [K. V. Roberts and J. B. Taylor, Phys. Rev. Lett. 8, 197–198 (1962)] is evaluated by using a full kinetic Vlasov simulation result of the Kelvin-Helmholtz instability (KHI). The velocity field and the pressure tensor are calculated from the high-resolution data of the velocity distribution functions obtained by the Vlasov simulation, which are used to approximate the Finite-Larmor-Radius (FLR) term according to Roberts and Taylor [Phys. Rev. Lett. 8, 197–198 (1962)]. The direct comparison between the pressure tensor and the FLR term shows an agreement. It is also shown that the anisotropicmore » pressure gradient enhanced the linear growth of the KHI when the inner product between the vorticity of the primary velocity shear layer and the magnetic field is negative, which is consistent with the previous FLR-magnetohydrodynamic simulation result. This result suggests that it is not sufficient for reproducing the kinetic simulation result by fluid simulations to include the FLR term (or the pressure tensor) only in the equation of motion for fluid.« less

  17. A new Weyl-like tensor of geometric origin

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Ram Gopal

    2018-04-01

    A set of new tensors of purely geometric origin have been investigated, which form a hierarchy. A tensor of a lower rank plays the role of the potential for the tensor of one rank higher. The tensors have interesting mathematical and physical properties. The highest rank tensor of the hierarchy possesses all the geometrical properties of the Weyl tensor.

  18. Scalar Casimir densities and forces for parallel plates in cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.; Abajyan, S. V.

    2018-04-01

    We analyze the Green function, the Casimir densities and forces associated with a massive scalar quantum field confined between two parallel plates in a higher dimensional cosmic string spacetime. The plates are placed orthogonal to the string, and the field obeys the Robin boundary conditions on them. The boundary-induced contributions are explicitly extracted in the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor for both the single plate and two plates geometries. The VEV of the energy-momentum tensor, in additional to the diagonal components, contains an off diagonal component corresponding to the shear stress. The latter vanishes on the plates in special cases of Dirichlet and Neumann boundary conditions. For points outside the string core the topological contributions in the VEVs are finite on the plates. Near the string the VEVs are dominated by the boundary-free part, whereas at large distances the boundary-induced contributions dominate. Due to the nonzero off diagonal component of the vacuum energy-momentum tensor, in addition to the normal component, the Casimir forces have nonzero component parallel to the boundary (shear force). Unlike the problem on the Minkowski bulk, the normal forces acting on the separate plates, in general, do not coincide if the corresponding Robin coefficients are different. Another difference is that in the presence of the cosmic string the Casimir forces for Dirichlet and Neumann boundary conditions differ. For Dirichlet boundary condition the normal Casimir force does not depend on the curvature coupling parameter. This is not the case for other boundary conditions. A new qualitative feature induced by the cosmic string is the appearance of the shear stress acting on the plates. The corresponding force is directed along the radial coordinate and vanishes for Dirichlet and Neumann boundary conditions. Depending on the parameters of the problem, the radial component of the shear force can be either positive or negative.

  19. Development of the Tensoral Computer Language

    NASA Technical Reports Server (NTRS)

    Ferziger, Joel; Dresselhaus, Eliot

    1996-01-01

    The research scientist or engineer wishing to perform large scale simulations or to extract useful information from existing databases is required to have expertise in the details of the particular database, the numerical methods and the computer architecture to be used. This poses a significant practical barrier to the use of simulation data. The goal of this research was to develop a high-level computer language called Tensoral, designed to remove this barrier. The Tensoral language provides a framework in which efficient generic data manipulations can be easily coded and implemented. First of all, Tensoral is general. The fundamental objects in Tensoral represent tensor fields and the operators that act on them. The numerical implementation of these tensors and operators is completely and flexibly programmable. New mathematical constructs and operators can be easily added to the Tensoral system. Tensoral is compatible with existing languages. Tensoral tensor operations co-exist in a natural way with a host language, which may be any sufficiently powerful computer language such as Fortran, C, or Vectoral. Tensoral is very-high-level. Tensor operations in Tensoral typically act on entire databases (i.e., arrays) at one time and may, therefore, correspond to many lines of code in a conventional language. Tensoral is efficient. Tensoral is a compiled language. Database manipulations are simplified optimized and scheduled by the compiler eventually resulting in efficient machine code to implement them.

  20. On the mathematical modeling of the Reynolds stress's equations

    NASA Technical Reports Server (NTRS)

    Lin, Avi

    1990-01-01

    By considering the Reynolds stress equations as a possible descriptor of complex turbulent fields, pressure-velocity interaction and turbulence dissipation are studied as two of the main physical contributions to Reynolds stress balancing in turbulent flow fields. It is proven that the pressure interaction term contains turbulence generation elements. However, the usual 'return to isotropy' element appears more weakly than in the standard models. In addition, convection-like elements are discovered mathematically, but there is no mathematical evidence that the pressure fluctuations contribute to the turbulent transport mechanism. Calculations of some simple one-dimensional fields indicate that this extra convection, rather than the turbulent transport, is needed mathematically. Similarly, an expression for the turbulence dissipation is developed. The end result is a dynamic equation for the dissipation tensor which is based on the tensorial length scales.

Top