Sample records for full system testing

  1. Technical Bases to Aid in the Decision of Conducting Full Power Ground Nuclear Tests for Space Fission Reactors

    NASA Astrophysics Data System (ADS)

    Hixson, Laurie L.; Houts, Michael G.; Clement, Steven D.

    2004-02-01

    The extent to which, if any, full power ground nuclear testing of space reactors should be performed has been a point of discussion within the industry for decades. Do the benefits outweigh the risks? Are there equivalent alternatives? Can a test facility be constructed (or modified) in a reasonable amount of time? Is the test article an accurate representation of the flight system? Are the costs too restrictive? The obvious benefits of full power ground nuclear testing; obtaining systems integrated reliability data on a full-scale, complete end-to-end system; come at some programmatic risk. Safety related information is not obtained from a full-power ground nuclear test. This paper will discuss and assess these and other technical considerations essential in the decision to conduct full power ground nuclear-or alternative-tests.

  2. Systems for animal exposure in full-scale fire tests

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.; Kourtides, D. A.; Parker, J. A.

    1977-01-01

    Two systems for exposing animals in full-scale fire tests are described. Both systems involve the simultaneous exposure of two animal species, mice and rats, in modular units; determination of mortality, morbidity, and behavioral response; and analysis of the blood for carboxyhemoglobin. The systems described represent two of many possible options for obtaining bioassay data from full-scale fire tests. In situations where the temperatures to which the test animals are exposed can not be controlled, analytical techniques may be more appropriate than bioassay techniques.

  3. Converting Hangar High Expansion Foam Systems to Prevent Cockpit Damage: Full-Scale Validation Tests

    DTIC Science & Technology

    2017-09-01

    AFCEC-CO-TY-TR-2018-0001 CONVERTING HANGAR HIGH EXPANSION FOAM SYSTEMS TO PREVENT COCKPIT DAMAGE: FULL-SCALE VALIDATION TESTS Gerard G...REPORT NUMBER(S) 12. DISTRIBUTION/ AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a. REPORT b...09-2017 Final Test Report May 2017 Converting Hangar High Expansion Foam Systems to Prevent Cockpit Damage: Full-Scale Validation Tests N00173-15-D

  4. Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways

    DTIC Science & Technology

    2007-12-01

    system can only be precisely determined by examining all the materials used in the mat, their structure , orientation, dimensions, etc. and determining...ER D C/ G SL T R- 07 -3 3 Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways Chad...ERDC/GSL TR-07-33 December 2007 Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways Chad A

  5. Ffuzz: Towards full system high coverage fuzz testing on binary executables.

    PubMed

    Zhang, Bin; Ye, Jiaxi; Bi, Xing; Feng, Chao; Tang, Chaojing

    2018-01-01

    Bugs and vulnerabilities in binary executables threaten cyber security. Current discovery methods, like fuzz testing, symbolic execution and manual analysis, both have advantages and disadvantages when exercising the deeper code area in binary executables to find more bugs. In this paper, we designed and implemented a hybrid automatic bug finding tool-Ffuzz-on top of fuzz testing and selective symbolic execution. It targets full system software stack testing including both the user space and kernel space. Combining these two mainstream techniques enables us to achieve higher coverage and avoid getting stuck both in fuzz testing and symbolic execution. We also proposed two key optimizations to improve the efficiency of full system testing. We evaluated the efficiency and effectiveness of our method on real-world binary software and 844 memory corruption vulnerable programs in the Juliet test suite. The results show that Ffuzz can discover software bugs in the full system software stack effectively and efficiently.

  6. An overview of the F-117A avionics flight test program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silz, R.

    1992-02-01

    This paper is an overview of the history of the F-117A avionics flight test program. System design concepts and equipment selections are explored followed by a review of full scale development and full capability development testing. Flight testing the Weapon System Computational Subsystem upgrade and the Offensive Combat Improvement Program are reviewed. Current flight test programs and future system updates are highlighted.

  7. Ffuzz: Towards full system high coverage fuzz testing on binary executables

    PubMed Central

    2018-01-01

    Bugs and vulnerabilities in binary executables threaten cyber security. Current discovery methods, like fuzz testing, symbolic execution and manual analysis, both have advantages and disadvantages when exercising the deeper code area in binary executables to find more bugs. In this paper, we designed and implemented a hybrid automatic bug finding tool—Ffuzz—on top of fuzz testing and selective symbolic execution. It targets full system software stack testing including both the user space and kernel space. Combining these two mainstream techniques enables us to achieve higher coverage and avoid getting stuck both in fuzz testing and symbolic execution. We also proposed two key optimizations to improve the efficiency of full system testing. We evaluated the efficiency and effectiveness of our method on real-world binary software and 844 memory corruption vulnerable programs in the Juliet test suite. The results show that Ffuzz can discover software bugs in the full system software stack effectively and efficiently. PMID:29791469

  8. Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.; Killpatrick, D. H.

    1975-01-01

    The design, fabrication, and testing of a full-size, full-scale TD Ni-20Cr heat shield test array in simulated mission environments is described along with the design and fabrication of two additional full-size, full-scale test arrays to be tested in flowing gas test facilities at the NASA Langley Research Center. Cost and reusability evaluations of TD Ni-20Cr heat shield systems are presented, and weight estimates of a TD Ni-20Cr heat shield system for use on a shuttle orbiter vehicle are made. Safe-line expectancy of a TD Ni-20Cr heat shield system is assessed. Non-destructive test techniques are evaluated to determine their effectiveness in quality assurance checks of TD Ni-20Cr components such as heat shields, heat shield supports, close-out panels, formed cover strips, and edge seals. Results of tests on a braze reinforced full-scale, subsize panel are included. Results show only minor structural degradation in the main TD Ni-20Cr heat shields of the test array during simulated mission test cycles.

  9. Flight test of a full authority Digital Electronic Engine Control system in an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Barrett, W. J.; Rembold, J. P.; Burcham, F. W.; Myers, L.

    1981-01-01

    The Digital Electronic Engine Control (DEEC) system considered is a relatively low cost digital full authority control system containing selectively redundant components and fault detection logic with capability for accommodating faults to various levels of operational capability. The DEEC digital control system is built around a 16-bit, 1.2 microsecond cycle time, CMOS microprocessor, microcomputer system with approximately 14 K of available memory. Attention is given to the control mode, component bench testing, closed loop bench testing, a failure mode and effects analysis, sea-level engine testing, simulated altitude engine testing, flight testing, the data system, cockpit, and real time display.

  10. Safety and Suitability for Service Assessment Testing for Aircraft Launched Munitions

    DTIC Science & Technology

    2013-07-01

    2013 12 benefits in terms of cost and test efficiency that tend to associate the Analytical S3 Test Approach with complex missile systems and the... systems containing expensive, non-safety related components. c. When using the Analytical S3 Test Approach for aircraft launched bombs, full BTCA is...establish safety margin of the system . Details of the Empirical Test Flow with full and reduced BTCA options are provided in Appendix B, Annexes 3 and

  11. 48 CFR 34.005-6 - Full production.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Full production. 34.005-6... OF CONTRACTING MAJOR SYSTEM ACQUISITION General 34.005-6 Full production. Contracts for full production of successfully tested major systems selected from the full-scale development phase may be awarded...

  12. Experimental and analytical studies of advanced air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Lee, E. G. S.; Boghani, A. B.; Captain, K. M.; Rutishauser, H. J.; Farley, H. L.; Fish, R. B.; Jeffcoat, R. L.

    1981-01-01

    Several concepts are developed for air cushion landing systems (ACLS) which have the potential for improving performance characteristics (roll stiffness, heave damping, and trunk flutter), and reducing fabrication cost and complexity. After an initial screening, the following five concepts were evaluated in detail: damped trunk, filled trunk, compartmented trunk, segmented trunk, and roll feedback control. The evaluation was based on tests performed on scale models. An ACLS dynamic simulation developed earlier is updated so that it can be used to predict the performance of full-scale ACLS incorporating these refinements. The simulation was validated through scale-model tests. A full-scale ACLS based on the segmented trunk concept was fabricated and installed on the NASA ACLS test vehicle, where it is used to support advanced system development. A geometrically-scaled model (one third full scale) of the NASA test vehicle was fabricated and tested. This model, evaluated by means of a series of static and dynamic tests, is used to investigate scaling relationships between reduced and full-scale models. The analytical model developed earlier is applied to simulate both the one third scale and the full scale response.

  13. Surrounded by work platforms, the full-scale Orion AFT crew module (center) is undergoing preparations for the first flight test of Orion's launch abort system.

    NASA Image and Video Library

    2008-05-20

    Surrounded by work platforms, NASA's first full-scale Orion abort flight test (AFT) crew module (center) is undergoing preparations at the NASA Dryden Flight Research Center in California for the first flight test of Orion's launch abort system.

  14. 48 CFR 1334.005-6 - Full production.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Full production. 1334.005... CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION General 1334.005-6 Full production. The designee... contract for full production of a successfully tested major system is set forth in CAM 1301.70. ...

  15. Continuous Improvement in Battery Testing at the NASA/JSC Energy System Test Area

    NASA Technical Reports Server (NTRS)

    Boyd, William; Cook, Joseph

    2003-01-01

    The Energy Systems Test Area (ESTA) at the Lyndon B. Johnson Space Center in Houston, Texas conducts development and qualification tests to fulfill Energy System Division responsibilities relevant to ASA programs and projects. EST A has historically called upon a variety of fluid, mechanical, electrical, environmental, and data system capabilities spread amongst five full-service facilities to test human and human supported spacecraft in the areas of propulsion systems, fluid systems, pyrotechnics, power generation, and power distribution and control systems. Improvements at ESTA are being made in full earnest of offering NASA project offices an option to choose a thorough test regime that is balanced with cost and schedule constraints. In order to continue testing of enabling power-related technologies utilized by the Energy System Division, an especially proactive effort has been made to increase the cost effectiveness and schedule responsiveness for battery testing. This paper describes the continuous improvement in battery testing at the Energy Systems Test Area being made through consolidation, streamlining, and standardization.

  16. Rotorcraft research testing in the National Full-Scale Aerodynamics Complex at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Smith, C. A.; Johnson, W.

    1985-01-01

    The unique capabilities of the National Full-Scale Aerodynamics Complex (NFAC) for testing rotorcraft systems are described. The test facilities include the 40- by 80-Foot Wind Tunnel, the 80- by 120-Foot Wind Tunnel, and the Outdoor Aerodynamic Research Facility. The Ames 7- by 10-Foot Subsonic Wind Tunnel is also used in support of the rotor research programs conducted in the NFAC. Detailed descriptions of each of the facilities, with an emphasis on helicopter rotor test capability, are presented. The special purpose rotor test equipment used in conducting helicopter research is reviewed. Test rigs to operate full-scale helicopter main rotors, helicopter tail rotors, and tilting prop-rotors are available, as well as full-scale and small-scale rotor systems for use in various research programs. The test procedures used in conducting rotor experiments are discussed together with representative data obtained from previous test programs. Specific examples are given for rotor performance, loads, acoustics, system interactions, dynamic and aeroelastic stability, and advanced technology and prototype demonstration models.

  17. Testing of a Natural Language Retrieval System for a Full Text Knowledge Base.

    ERIC Educational Resources Information Center

    Bernstein, Lionel M.; Williamson, Robert E.

    1984-01-01

    The Hepatitis Knowledge Base (text of prototype information system) was used for modifying and testing "A Navigator of Natural Language Organized (Textual) Data" (ANNOD), a retrieval system which combines probabilistic, linguistic, and empirical means to rank individual paragraphs of full text for similarity to natural language queries…

  18. Full Scale Drinking Water System Decontamination at the Water Security Test Bed.

    PubMed

    Szabo, Jeffrey; Hall, John; Reese, Steve; Goodrich, Jim; Panguluri, Sri; Meiners, Greg; Ernst, Hiba

    2018-03-20

    The EPA's Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National Laboratory (INL), EPA designed the WSTB facility to support full-scale evaluations of water infrastructure decontamination, real-time sensors, mobile water treatment systems, and decontamination of premise plumbing and appliances. The EPA research focused on decontamination of 1) Bacillus globigii (BG) spores, a non-pathogenic surrogate for Bacillus anthracis and 2) Bakken crude oil. Flushing and chlorination effectively removed most BG spores from the bulk water but BG spores still remained on the pipe wall coupons. Soluble oil components of Bakken crude oil were removed by flushing although oil components persisted in the dishwasher and refrigerator water dispenser. Using this full-scale distribution system allows EPA to 1) test contaminants without any human health or ecological risk and 2) inform water systems on effective methodologies responding to possible contamination incidents.

  19. System-Integrated Finite Element Analysis of a Full-Scale Helicopter Crash Test with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Polanco, Michael A.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26-ft/sec and 40-ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test predictions and continuing through post-test validation.

  20. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Blythe; MariJon Owens

    2007-12-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulkmore » solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.« less

  1. Investigation of correlation between full-scale and fifth-scale wind tunnel tests of a Bell helicopter Textron Model 222

    NASA Technical Reports Server (NTRS)

    Squires, P. K.

    1982-01-01

    Reasons for lack of correlation between data from a fifth-scale wind tunnel test of the Bell Helicopter Textron Model 222 and a full-scale test of the model 222 prototype in the NASA Ames 40-by 80-foot tunnel were investigated. This investigation centered around a carefully designed fifth-scale wind tunnel test of an accurately contoured model of the Model 222 prototype mounted on a replica of the full-scale mounting system. The improvement in correlation for drag characteristics in pitch and yaw with the fifth-scale model mounted on the replica system is shown. Interference between the model and mounting system was identified as a significant effect and was concluded to be a primary cause of the lack of correlation in the earlier tests.

  2. Regeneration of Exhausted Arsenic Adsorptive media of a Full Scale Treatment System

    EPA Science Inventory

    This presentation will describe the method and results of laboratory tests showing the feasibility of regenerating exhausted, iron-based, adsorptive media and the results of a follow up regeneration test at a full scale system in Twentynine Palms CA. The laboratory studies on se...

  3. The requirements for a new full scale subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kelly, M. W.; Mckinney, M. O.; Luidens, R. W.

    1972-01-01

    Justification and requirements are presented for a large subsonic wind tunnel capable of testing full scale aircraft, rotor systems, and advanced V/STOL propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed.

  4. Full System Modeling and Validation of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, James; Gauto, Hernando; Gomez, Carlos

    2014-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes the testing and modeling of various subsystems of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development. The development of the CO2 removal and associated air-drying subsystem hardware under the ARREM project is discussed in a companion paper.

  5. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Blythe

    2007-05-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal.more » The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.« less

  6. Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1998-01-01

    Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.

  7. Structural Similitude and Scaling Laws

    NASA Technical Reports Server (NTRS)

    Simitses, George J.

    1998-01-01

    Aircraft and spacecraft comprise the class of aerospace structures that require efficiency and wisdom in design, sophistication and accuracy in analysis and numerous and careful experimental evaluations of components and prototype, in order to achieve the necessary system reliability, performance and safety. Preliminary and/or concept design entails the assemblage of system mission requirements, system expected performance and identification of components and their connections as well as of manufacturing and system assembly techniques. This is accomplished through experience based on previous similar designs, and through the possible use of models to simulate the entire system characteristics. Detail design is heavily dependent on information and concepts derived from the previous steps. This information identifies critical design areas which need sophisticated analyses, and design and redesign procedures to achieve the expected component performance. This step may require several independent analysis models, which, in many instances, require component testing. The last step in the design process, before going to production, is the verification of the design. This step necessitates the production of large components and prototypes in order to test component and system analytical predictions and verify strength and performance requirements under the worst loading conditions that the system is expected to encounter in service. Clearly then, full-scale testing is in many cases necessary and always very expensive. In the aircraft industry, in addition to full-scale tests, certification and safety necessitate large component static and dynamic testing. Such tests are extremely difficult, time consuming and definitely absolutely necessary. Clearly, one should not expect that prototype testing will be totally eliminated in the aircraft industry. It is hoped, though, that we can reduce full-scale testing to a minimum. Full-scale large component testing is necessary in other industries as well, Ship building, automobile and railway car construction all rely heavily on testing. Regardless of the application, a scaled-down (by a large factor) model (scale model) which closely represents the structural behavior of the full-scale system (prototype) can prove to be an extremely beneficial tool. This possible development must be based on the existence of certain structural parameters that control the behavior of a structural system when acted upon by static and/or dynamic loads. If such structural parameters exist, a scaled-down replica can be built, which will duplicate the response of the full-scale system. The two systems are then said to be structurally similar. The term, then, that best describes this similarity is structural similitude. Similarity of systems requires that the relevant system parameters be identical and these systems be governed by a unique set of characteristic equations. Thus, if a relation or equation of variables is written for a system, it is valid for all systems which are similar to it. Each variable in a model is proportional to the corresponding variable of the prototype. This ratio, which plays an essential role in predicting the relationship between the model and its prototype, is called the scale factor.

  8. Surrounded by work platforms, the full-scale Orion AFT crew module (center) is undergoing preparations for the first flight test of Orion's launch abort system.

    NASA Image and Video Library

    2008-05-20

    Surrounded by work platforms, NASA's first full-scale Orion abort flight test (AFT) crew module (center) is undergoing preparations at the NASA Dryden Flight Research Center in California for the first flight test of Orion's launch abort system. To the left is a space shuttle orbiter purge vehicle sharing the hangar.

  9. Physiologic and Endocrine Correlates of Overweightness in African Americans and Caucasians

    DTIC Science & Technology

    2009-03-27

    aerobic graded exercise test (VO2 max test ) on a treadmill ( Philips StressVue Exercise Stress Testing System with Trackmaster Full Vision Inc...Pediatrics, 118 (6), 2434-42. Wang, J., Thornton, J.C., Bari, S., Williamson, B., Gallagher, D., Heymsfield, S.B., Horlick, M., Kotler , D...on a treadmill ( Philips StressVue Exercise Stress System, Trackmaster Full Vision Inc. Treadmill; Waltham, MA) to assess cardiovascular fitness. The

  10. Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta,Lucas G.

    2011-01-01

    Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.

  11. Development and Testing of a Sorbent-Based Atmosphere Revitalization System 2010/2011

    NASA Technical Reports Server (NTRS)

    Miller, Lee A.; Knox, James C.

    2012-01-01

    Spacecraft being developed for future exploration missions incorporate Environmental Control and Life Support Systems (ECLSS) that limit weight, power, and volume thus requiring systems with higher levels of efficiency while maintaining high dependability and robustness. For air revitalization, an approach that meets those goals utilizes a regenerative Vacuum-Swing Adsorption (VSA) system that removes 100% of the CO2 from the cabin atmosphere as well as 100% of the water. A Sorbent Based Atmosphere Revitalization (SBAR) system is a VSA system that utilizes standard commercial adsorbents that have been proven effective and safe in spacecraft including Skylab and the International Space Station. The SBAR system is the subject of a development, test, and evaluation program that is being conducted at NASA s Marshall Space Flight Center. While previous testing had validated that the technology is a viable option, potential improvements to system design and operation were identified. Modifications of the full-scale SBAR test articles and adsorption cycles have been implemented and have shown significant performance gains resulting in a decrease in the consumables required for a mission as well as improved mission safety. Previous testing had utilized single bed test articles, during this period the test facility was enhanced to allow testing on the full 2-bed SBAR system. The test facility simulates a spacecraft ECLSS and allows testing of the SBAR system over the full range of operational conditions using mission simulations that assess the real-time performance of the SBAR system during scenarios that include the metabolic transients associated with extravehicular activity. Although future manned missions are currently being redefined, the atmosphere revitalization requirements for the spacecraft are expected to be quite similar to the Orion and the Altair vehicles and the SBAR test program addressed validation to the defined mission requirements as well as operation in other potential vehicle architectures. The development program, including test articles, the test facility, and tests and results through early 2011 is discussed.

  12. Pressure Decay Testing Methodology for Quantifying Leak Rates of Full-Scale Docking System Seals

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Daniels, Christopher C.; Wasowski, Janice L.; Garafolo, Nicholas G.; Penney, Nicholas; Steinetz, Bruce M.

    2010-01-01

    NASA is developing a new docking system to support future space exploration missions to low-Earth orbit and the Moon. This system, called the Low Impact Docking System, is a mechanism designed to connect the Orion Crew Exploration Vehicle to the International Space Station, the lunar lander (Altair), and other future Constellation Project vehicles. NASA Glenn Research Center is playing a key role in developing the main interface seal for this docking system. This seal will be relatively large with an outside diameter in the range of 54 to 58 in. (137 to 147 cm). As part of this effort, a new test apparatus has been designed, fabricated, and installed to measure leak rates of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Using this test apparatus, a pressure decay testing and data processing methodology has been developed to quantify full-scale seal leak rates. Tests performed on untreated 54 in. diameter seals at room temperature in a fully compressed state resulted in leak rates lower than the requirement of less than 0.0025 lbm, air per day (0.0011 kg/day).

  13. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan

    2014-01-01

    ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.

  14. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary M. Blythe

    2006-03-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal.more » The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.« less

  15. Analysis and correlation of the test data from an advanced technology rotor system

    NASA Technical Reports Server (NTRS)

    Jepson, D.; Moffitt, R.; Hilzinger, K.; Bissell, J.

    1983-01-01

    Comparisons were made of the performance and blade vibratory loads characteristics for an advanced rotor system as predicted by analysis and as measured in a 1/5 scale model wind tunnel test, a full scale model wind tunnel test and flight test. The accuracy with which the various tools available at the various stages in the design/development process (analysis, model test etc.) could predict final characteristics as measured on the aircraft was determined. The accuracy of the analyses in predicting the effects of systematic tip planform variations investigated in the full scale wind tunnel test was evaluated.

  16. Water impact shock test system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The basic objective was to design, manufacture, and install a shock test system which, in part, would have the ability to subject test articles weighing up to 1,000 pounds to both half sine and/or full sine pulses having peak levels of up to 50 G's with half sine pulse durations of 100 milliseconds or full sine period duration of 200 milliseconds. The tolerances associated with the aforementioned pulses were +20% and -10% for the peak levels and plus or minus 10% for the pulse durations. The subject shock test system was to be capable of accepting test article sizes of up to 4 feet by 4 feet mounting surface by 4 feet in length.

  17. Near Earth Asteroid Scout Solar Sail Engineering Development Unit Test Suite

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Few, Alexander; Wilson, Richard

    2017-01-01

    The Near Earth Asteroid (NEA) Scout project is a 6U reconnaissance mission to investigate a near Earth asteroid utilizing an 86m(sub 2) solar sail as the primary propulsion system. This will be the largest solar sail NASA has launched to date. NEA Scout is currently manifested on the maiden voyage of the Space Launch System in 2018. In development of the solar sail subsystem, design challenges were identified and investigated for packaging within a 6U form factor and deployment in cis-lunar space. Analysis was able to capture understanding of thermal, stress, and dynamics of the stowed system as well as mature an integrated sail membrane model for deployed flight dynamics. Full scale system testing on the ground is the optimal way to demonstrate system robustness, repeatability, and overall performance on a compressed flight schedule. To physically test the system, the team developed a flight sized engineering development unit with design features as close to flight as possible. The test suite included ascent vent, random vibration, functional deployments, thermal vacuum, and full sail deployments. All of these tests contributed towards development of the final flight unit. This paper will address several of the design challenges and lessons learned from the NEA Scout solar sail subsystem engineering development unit. Testing on the component level all the way to the integrated subsystem level. From optical properties of the sail material to fold and spooling the single sail, the team has developed a robust deployment system for the solar sail. The team completed several deployments of the sail system in preparation for flight at half scale (4m) and full scale (6.8m): boom only, half scale sail deployment, and full scale sail deployment. This paper will also address expected and received test results from ascent vent, random vibration, and deployment tests.

  18. Modeling of Revitalization of Atmospheric Water

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, Jim

    2014-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes the testing and modeling of the water desiccant subsystem of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.

  19. Full-aperture x-ray tests of Kirkpatrick-Baez modules: preliminary results

    NASA Astrophysics Data System (ADS)

    Pina, L.; Marsikova, V.; Hudec, R.; Inneman, A.; Marsik, J.; Cash, W.; Shipley, A.; Zeiger, B.

    2011-05-01

    We report on preliminary results of full aperture X-ray optical tests at the X-ray test facility at the University of Colorado (USA) of four test modules of Kirkpatrick-Baez (KB) X-ray optical systems performed in August 2010. Direct experimental comparisons were made between gold-coated optics of two novel substrates: glass foils and silicon wafers. The preliminary results are promising, with full-width half-maxima of full stacks being of order of 30 arcsec in 2D full arrangement. These results justify further efforts to improve KB optics for use in low-cost, high-performance space-borne astronomical imaging instruments for X-ray wavelengths.

  20. SPF Full-scale emissions test method development status ...

    EPA Pesticide Factsheets

    This is a non-technical presentation that is intended to inform ASTM task group members about our intended approach to full-scale emissions testing that includes the application of spray foam in an environmental chamber. The presentation describes the approach to emissions characterization, types of measurement systems employed, and expected outcomes from the planned tests. Purpose of this presentation is to update the ASTM D22.05 work group regarding status of our full-scale emissions test method development.

  1. Neural Network Modeling of UH-60A Pilot Vibration

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi

    2003-01-01

    Full-scale flight-test pilot floor vibration is modeled using neural networks and full-scale wind tunnel test data for low speed level flight conditions. Neural network connections between the wind tunnel test data and the tlxee flight test pilot vibration components (vertical, lateral, and longitudinal) are studied. Two full-scale UH-60A Black Hawk databases are used. The first database is the NASMArmy UH-60A Airloads Program flight test database. The second database is the UH-60A rotor-only wind tunnel database that was acquired in the NASA Ames SO- by 120- Foot Wind Tunnel with the Large Rotor Test Apparatus (LRTA). Using neural networks, the flight-test pilot vibration is modeled using the wind tunnel rotating system hub accelerations, and separately, using the hub loads. The results show that the wind tunnel rotating system hub accelerations and the operating parameters can represent the flight test pilot vibration. The six components of the wind tunnel N/rev balance-system hub loads and the operating parameters can also represent the flight test pilot vibration. The present neural network connections can significandy increase the value of wind tunnel testing.

  2. LS-DYNA Analysis of a Full-Scale Helicopter Crash Test

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26 ft/sec and 40 ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated LS-DYNA finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test and continuing through post test validation.

  3. Reference Gauging System for a Small-Scale Liquid Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Siegwarth, James D.

    2003-01-01

    A system to accurately weigh the fluid contents of a small-scale liquid hydrogen test tank has been experimentally verified. It is intended for use as a reference or benchmark system when testing lowgravity liquid quantity gauging concepts in the terrestrial environment. The reference gauging system has shown a repeatable measurement accuracy of better than 0.5 percent of the full tank liquid weight. With further refinement, the system accuracy can be improved to within 0.10 percent of full scale. This report describes the weighing system design, calibration, and operational results. Suggestions are given for further refinement of the system. An example is given to illustrate additional sources of uncertainty when mass measurements are converted to volume equivalents. Specifications of the companion test tank and its multi-layer insulation system are provided.

  4. Development and test of electromechanical actuators for thrust vector control

    NASA Technical Reports Server (NTRS)

    Weir, Rae A.; Cowan, John R.

    1993-01-01

    A road map of milestones toward the goal of a full scale Redesigned Solid Rocket Motor/Flight Support Motor (RSRM/FSM) hot fire test is discussed. These milestones include: component feasibility, full power system demonstration, SSME hot fire tests, and RSRM hot fire tests. The participation of the Marshall Space Flight Center is emphasized.

  5. Field Testing of a Wet FGD Additive for Enhanced Mercury Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Blythe; MariJon Owens

    2007-12-31

    This document is the final report for DOE-NETL Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project has been to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project was intended to demonstrate whether such additives can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from themore » FGD liquor and bulk solid byproducts for separate disposal. The project involved pilot- and full-scale tests of the additives in wet FGD absorbers. The tests were intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power provided the Texas lignite/PRB co-fired test site for pilot FGD tests and project cost sharing. Southern Company provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested, and project cost sharing. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation provided the TMT-15 additive, and the Nalco Company provided the Nalco 8034 additive. Both companies also supplied technical support to the test program as in-kind cost sharing. The project was conducted in six tasks. Of the six tasks, Task 1 involved project planning and Task 6 involved management and reporting. The other four tasks involved field testing on FGD systems, either at pilot or full scale. These four tasks included: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and the full-scale test using high-sulfur coal was completed in 2006; only the TMT-15 additive was tested in these efforts. The Task 5 full-scale additive tests conducted at Southern Company's Plant Yates Unit 1 were completed in 2007, and both the TMT-15 and Nalco 8034 additives were tested.« less

  6. Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.

    2010-01-01

    A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.

  7. Development of the trickle roof cooling and heating system: Experimental plan

    NASA Astrophysics Data System (ADS)

    Haves, P.; Jankovic, T.; Doderer, E.

    1982-07-01

    A passive system applicable both to retrofit and new construction was developed. This system (the trickle roof system) dissipates heat from a thin film of water flowing over the roof. A small scale trickle roof system dissipator was tested at Trinity University under a range of ambient conditions and operating configurations. The results suggest that trickle roof systems should have comparable performance to roof pond systems. Provided is a review of the trickle roof system concept, several possible configurations, and the benefits the systems can provide. Test module experiments And results are presented in detail. The requirements for full scale testing are discussed and a plan is outlined using the two identical residential scale passive test facility buildings at Trinity University, San Antonio, Texas. Full scale experimental results would be used to validate computer algorithms, provide system optimization, and produce a nationwide performance assessment and design guidelines. This would provide industry with the information necessary to determine the commerical potential of the trickle roof system.

  8. Slanted-edge MTF testing for establishing focus alignment at infinite conjugate of space optical systems with gravity sag effects

    NASA Astrophysics Data System (ADS)

    Newswander, T.; Riesland, David W.; Miles, Duane; Reinhart, Lennon

    2017-09-01

    For space optical systems that image extended scenes such as earth-viewing systems, modulation transfer function (MTF) test data is directly applicable to system optical resolution. For many missions, it is the most direct metric for establishing the best focus of the instrument. Additionally, MTF test products can be combined to predict overall imaging performance. For fixed focus instruments, finding the best focus during ground testing is critical to achieving good imaging performance. The ground testing should account for the full-imaging system, operational parameters, and operational environment. Testing the full-imaging system removes uncertainty caused by breaking configurations and the combination of multiple subassembly test results. For earth viewing, the imaging system needs to be tested at infinite conjugate. Operational environment test conditions should include temperature and vacuum. Optical MTF testing in the presence of operational vibration and gravity release is less straightforward and may not be possible on the ground. Gravity effects are mitigated by testing in multiple orientations. Many space telescope systems are designed and built to have optimum performance in a gravity-free environment. These systems can have imaging performance that is dominated by aberration including astigmatism. This paper discusses how the slanted edge MTF test is applied to determine the best focus of a space optical telescope in ground testing accounting for gravity sag effects. Actual optical system test results and conclusions are presented.

  9. Conduct and Results of YF-16 RPRV Stall/Spin Drop Model Tests

    DTIC Science & Technology

    1977-04-01

    Bomb Recovery System Tests Iron Bird Recovery System Tests Captive Flights Typical Flight Operations Flight Planning and Pilot Training...helicopter tow qualification test, one model tow qualification test, three Iron Bird parachute recovery system verification tests, three captive tests...Corresponding Full-Scale YF-16 Altitude -Reference 1: Woodcock , Robert J., Some Notes on Free-Flight Model Seal- ing, AFFDL-TM-73-123-FCC, Air Force Flight

  10. Oxygen Transfer in Moving Bed Biofilm Reactor and Integrated Fixed Film Activated Sludge Processes.

    PubMed

    2017-11-17

    A demonstrated approach to design the, so-called, medium-bubble air diffusion network for oxygen transfer into the aerobic zone(s) of moving bed biofilm reactor (MBBR) and integrated fixed-film activated sludge (IFAS) processes is described in this paper. Operational full-scale biological water resource recovery systems treating municipal sewerage demonstrate that medium-bubble air diffusion networks designed using the method presented here provide reliable service. Further improvement is possible, however, as knowledge gaps prevent more rational process designs. Filling such knowledge gaps can potentially result in higher performing and more economical systems. Small-scale system testing demonstrates significant enhancement of oxygen transfer capacity due to the presence of media, but quantification of such effects in full-scale systems is lacking, and is needed. Establishment of the relationship between diffuser submergence, aeration rate, and biofilm carrier fill fraction will enhance MBBR and IFAS aerobic process design, cost, and performance. Limited testing of full-scale systems is available to allow computation of alpha valuess. As with clean water testing of full-scale systems, further full-scale testing under actual operating conditions is required to more fully quantify MBBR and IFAS system oxygen transfer performance under a wide range of operating conditions. Control of MBBR and IFAS aerobic zone oxygen transfer systems can be optimized by recognizing that varying residual dissolved oxygen (DO) concentrations are needed, depending on operating conditions. For example, the DO concentration in the aerobic zone of nitrifying IFAS processes can be lowered during warm weather conditions when greater suspended growth nitrification can occur, resulting in the need for reduced nitrification by the biofilm compartment. Further application of oxygen transfer control approaches used in activated sludge systems to MBBR and IFAS systems, such as ammonia-based oxygen transfer system control, has been demonstrated to further improve MBBR and IFAS system energy-efficiency.

  11. SMART Rotor Development and Wind-Tunnel Test

    NASA Technical Reports Server (NTRS)

    Lau, Benton H.; Straub, Friedrich; Anand, V. R.; Birchette, Terry

    2009-01-01

    Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper.

  12. Full-Scaled Advanced Systems Testbed: Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate M.

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration, experiment functionality, overall risk mitigation, flight test approach and results, and lessons learned of adaptive controls research of the Full-Scale Advanced Systems Testbed.

  13. Engineering Development Program of a Closed Aluminum-Oxygen Semi-cell System for an Unmanned Underwater Vehicle: An Update

    NASA Technical Reports Server (NTRS)

    Gregg, Dane W.; Hall, Susan E.

    1996-01-01

    Most emerging unmanned undersea vehicle (UUV) missions require significantly longer range and endurance than is achievable with existing battery technology. The Aluminum-Oxygen (Al-O2) semi-cell is a candidate technology capable of providing a significant improvement in endurance compared to the silver-zinc battery technology currently in use in UUVs and compares favorably to other proposed UUV power systems not only in performance, but also in safety and logistics. An Al-O2 semi-cell system is under development, consisting of a cell stack, gas management, oxygen storage, electrolyte management coolant and controller subsystems. It is designed to replace the existing silver-zinc battery and meet existing weight, volume, electrical and thermal requirements, therefore minimizing modification to the UUV. A detailed system design is complete. A component and material endurance test to evaluate compatibility and reliability of various materials and components is complete. Sub=scale (short stack) system testing is complete. A full-scale demonstration unit is now under construction for testing in the second half of 1995. The full scale demonstration test will simulate environmental conditions of the operational system. This paper summarizes the results of the extensive short stack and endurance test programs, describes the plan for full-scale testing, and concludes with a brief discussion of future directions for this technology.

  14. Test processing system (SEE)

    NASA Technical Reports Server (NTRS)

    Gaulene, P.

    1986-01-01

    The SEE data processing system, developed in 1985, manages and process test results. General information is provided on the SEE system: objectives, characteristics, basic principles, general organization, and operation. Full documentation is accessible by computer using the HELP SEE command.

  15. Advanced recovery systems wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Geiger, R. H.; Wailes, W. K.

    1990-01-01

    Pioneer Aerospace Corporation (PAC) conducted parafoil wind tunnel testing in the NASA-Ames 80 by 120 test sections of the National Full-Scale Aerodynamic Complex, Moffett Field, CA. The investigation was conducted to determine the aerodynamic characteristics of two scale ram air wings in support of air drop testing and full scale development of Advanced Recovery Systems for the Next Generation Space Transportation System. Two models were tested during this investigation. Both the primary test article, a 1/9 geometric scale model with wing area of 1200 square feet and secondary test article, a 1/36 geometric scale model with wing area of 300 square feet, had an aspect ratio of 3. The test results show that both models were statically stable about a model reference point at angles of attack from 2 to 10 degrees. The maximum lift-drag ratio varied between 2.9 and 2.4 for increasing wing loading.

  16. Economic evaluations of point of care testing strategies for active tuberculosis.

    PubMed

    Zwerling, Alice; Dowdy, David

    2013-06-01

    Point of care (POC) diagnostics are often hailed as having the potential to transform tuberculosis (TB) control efforts. However, POC testing is better conceptualized as a system of diagnosis and treatment, not simply a test that can provide rapid, deployable results. Economic evaluations may help decision makers allocate scarce resources for TB control, but evaluations of POC testing face unique challenges that include evaluating the full diagnostic system, incorporating implementation costs, translating diagnostic results into health and accounting for downstream treatment costs. For economic evaluations to reach their full potential as decision-making tools for POC testing in TB, these challenges must be understood and addressed.

  17. Development of a continuous motorcycle protection barrier system using computer simulation and full-scale crash testing.

    PubMed

    Atahan, Ali O; Hiekmann, J Marten; Himpe, Jeffrey; Marra, Joseph

    2018-07-01

    Road restraint systems are designed to minimize the undesirable effects of roadside accidents and improve safety of road users. These systems are utilized at either side or median section of roads to contain and redirect errant vehicles. Although restraint systems are mainly designed against car, truck and bus impacts there is an increasing pressure by the motorcycle industry to incorporate motorcycle protection systems into these systems. In this paper development details of a new and versatile motorcycle barrier, CMPS, coupled with an existing vehicle barrier is presented. CMPS is intended to safely contain and redirect motorcyclists during a collision event. First, crash performance of CMPS design is evaluated by means of a three dimensional computer simulation program LS-DYNA. Then full-scale crash tests are used to verify the acceptability of CMPS design. Crash tests were performed at CSI proving ground facility using a motorcycle dummy in accordance with prEN 1317-8 specification. Full-scale crash test results show that CMPS is able to successfully contain and redirect dummy with minimal injury risk on the dummy. Damage on the barrier is also minimal proving the robustness of the CMPS design. Based on the test findings and further review by the authorities the implementation of CMPS was recommended at highway system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Aeroelastic Deformation: Adaptation of Wind Tunnel Measurement Concepts to Full-Scale Vehicle Flight Testing

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.; Lokos, William A.; Barrows, Danny A.

    2005-01-01

    The adaptation of a proven wind tunnel test technique, known as Videogrammetry, to flight testing of full-scale vehicles is presented. A description is presented of the technique used at NASA's Dryden Flight Research Center for the measurement of the change in wing twist and deflection of an F/A-18 research aircraft as a function of both time and aerodynamic load. Requirements for in-flight measurements are compared and contrasted with those for wind tunnel testing. The methodology for the flight-testing technique and differences compared to wind tunnel testing are given. Measurement and operational comparisons to an older in-flight system known as the Flight Deflection Measurement System (FDMS) are presented.

  19. Computer Simulation and Modeling of CO2 Removal Systems for Exploration 2013-2014

    NASA Technical Reports Server (NTRS)

    Coker, R.; Knox, J.; Gomez, C.

    2015-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project and the follow-on Life Support Systems (LSS) project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper will describes the testing and 1-D modeling of the combined water desiccant and carbon dioxide sorbent subsystems of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.

  20. Model-Driven Test Generation of Distributed Systems

    NASA Technical Reports Server (NTRS)

    Easwaran, Arvind; Hall, Brendan; Schweiker, Kevin

    2012-01-01

    This report describes a novel test generation technique for distributed systems. Utilizing formal models and formal verification tools, spe cifically the Symbolic Analysis Laboratory (SAL) tool-suite from SRI, we present techniques to generate concurrent test vectors for distrib uted systems. These are initially explored within an informal test validation context and later extended to achieve full MC/DC coverage of the TTEthernet protocol operating within a system-centric context.

  1. Shake Test Results and Dynamic Calibration Efforts for the Large Rotor Test Apparatus

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.

    2014-01-01

    A shake test of the Large Rotor Test Apparatus (LRTA) was performed in an effort to enhance NASAscapability to measure dynamic hub loads for full-scale rotor tests. This paper documents the results of theshake test as well as efforts to calibrate the LRTA balance system to measure dynamic loads.Dynamic rotor loads are the primary source of vibration in helicopters and other rotorcraft, leading topassenger discomfort and damage due to fatigue of aircraft components. There are novel methods beingdeveloped to reduce rotor vibrations, but measuring the actual vibration reductions on full-scale rotorsremains a challenge. In order to measure rotor forces on the LRTA, a balance system in the non-rotatingframe is used. The forces at the balance can then be translated to the hub reference frame to measure therotor loads. Because the LRTA has its own dynamic response, the balance system must be calibrated toinclude the natural frequencies of the test rig.

  2. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Bedsun; Debra Lee; Margaret Townsend

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was firstmore » proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.« less

  3. Engineering development program of a closed aluminum-oxygen semi-cell system for an unmanned underwater vehicle: An update

    NASA Astrophysics Data System (ADS)

    Gregg, Dane W.; Hall, Susan E.

    1995-04-01

    Most emerging unmanned undersea vehicle (UUV) missions require significantly longer range and endurance than is achievable with existing battery technology. The Aluminum-Oxygen (Al-O2) semi-cell is a candidate technology capable of providing a significant improvement in endurance compared to the silver-zinc battery technology currently used in UUVs and compares favorably to other proposed UUV power systems not only in performance, but also in safety and logistics. An Al-O2 semi-cell system is under development by Loral Defense Systems-Akron (Loral) for the ARPA/Navy 44 in. diameter UUV test vehicle. The power plant consists of a cell stack, gas management, oxygen storage, electrolyte management, coolant and controller subsystems, designed to replace the existing silver-zinc battery and meet existing weight, volume, electrical and thermal requirements, therefore minimizing modifications to the UUV. A detailed system design is complete. A component and material endurance test to evaluate compatibility and reliability of various material arid components is complete. Sub scale (Short stack) system testing is completed. A full-scale demonstration unit is now under construction in the second half of 1995. The full scale demonstration test will simulate environmental conditions of the operational system. This paper summarizes the results of the extensive short stack and endurance test programs, describes the plan for full-scale testing, and concludes with a brief discussions of future directions for this technology. This program is sponsored by ARPA Maritime Systems Technology Office under NASA contract NAS3-26715.

  4. Comparing Different Fault Identification Algorithms in Distributed Power System

    NASA Astrophysics Data System (ADS)

    Alkaabi, Salim

    A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.

  5. Impact analysis of air gap motion with respect to parameters of mooring system for floating platform

    NASA Astrophysics Data System (ADS)

    Shen, Zhong-xiang; Huo, Fa-li; Nie, Yan; Liu, Yin-dong

    2017-04-01

    In this paper, the impact analysis of air gap concerning the parameters of mooring system for the semi-submersible platform is conducted. It is challenging to simulate the wave, current and wind loads of a platform based on a model test simultaneously. Furthermore, the dynamic equivalence between the truncated and full-depth mooring system is still a tuff work. However, the wind and current loads can be tested accurately in wind tunnel model. Furthermore, the wave can be simulated accurately in wave tank test. The full-scale mooring system and the all environment loads can be simulated accurately by using the numerical model based on the model tests simultaneously. In this paper, the air gap response of a floating platform is calculated based on the results of tunnel test and wave tank. Meanwhile, full-scale mooring system, the wind, wave and current load can be considered simultaneously. In addition, a numerical model of the platform is tuned and validated by ANSYS AQWA according to the model test results. With the support of the tuned numerical model, seventeen simulation cases about the presented platform are considered to study the wave, wind, and current loads simultaneously. Then, the impact analysis studies of air gap motion regarding the length, elasticity, and type of the mooring line are performed in the time domain under the beam wave, head wave, and oblique wave conditions.

  6. Development and test fuel cell powered on-site integrated total energy systems. Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1982-01-01

    The on-site system application analysis is summarized. Preparations were completed for the first test of a full-sized single cell. Emphasis of the methanol fuel processor development program shifted toward the use of commercial shell-and-tube heat exchangers. An improved method for predicting the carbon-monoxide tolerance of anode catalysts is described. Other stack support areas reported include improved ABA bipolar plate bonding technology, improved electrical measurement techniques for specification-testing of stack components, and anodic corrosion behavior of carbon materials.

  7. Insulation systems for liquid methane fuel tanks for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Brady, H. F.; Delduca, D.

    1972-01-01

    Two insulation systems for tanks containing liquid methane in supersonic cruise-type aircraft were designed and tested after an extensive materials investigation. One system is an external insulation and the other is an internal wet-type insulation system. Tank volume was maximized by making the tank shape approach a rectangular parallelopiped. One tank was designed to use the external insulation and the other tank to use the internal insulation. Performance of the external insulation system was evaluated on a full-scale tank under the temperature environment of -320 F to 700 F and ambient pressures of ground-level atmospheric to 1 psia. Problems with installing the internal insulation on the test tank prevented full-scale evaluation of performance; however, small-scale testing verified thermal conductivity, temperature capability, and installed density.

  8. Qualification flight tests of the Viking decelerator system.

    NASA Technical Reports Server (NTRS)

    Moog, R. D.; Bendura, R. J.; Timmons, J. D.; Lau, R. A.

    1973-01-01

    The Balloon Launched Decelerator Test (BLDT) series conducted at White Sands Missile Range (WSMR) during July and August of 1972 flight qualified the NASA Viking '75 decelerator system at conditions bracketing those expected for Mars. This paper discusses the decelerator system design requiremnts, compares the test results with prior work, and discusses significant considerations leading to successful qualification in earth's atmosphere. The Viking decelerator system consists of a single-stage mortar-deployed 53-foot nominal diameter disk-gap-band parachute. Full-scale parachutes were deployed behind a full-scale simulated Viking vehicle at Mach numbers from 0.47 to 2.18 and dynamic pressures from 6.9 to 14.6 psf. Analyses show that the system is qualified with sufficient margin to perform successfully for the Viking mission.

  9. 10 CFR 950.21 - Notification of covered event.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... event; (2) The duration of the delay in the schedule for construction, testing and full power operation... and full power operation, including the dates of system level construction or testing that had been... information is accurate and complete to the sponsor's knowledge and belief. ...

  10. Space Station Freedom environmental control and life support system phase 3 simplified integrated test detailed report

    NASA Technical Reports Server (NTRS)

    Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.

    1990-01-01

    A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.

  11. Hydrogen Infrastructure Testing and Research Facility Animation | Hydrogen

    Science.gov Websites

    at full pressure. This system provides hydrogen to fill fuel cell forklifts and feeds the high pressure compressor. View Photos High Pressure Storage The high pressure hydrogen storage system consists full pressure. This system provides hydrogen to high pressure research projects and for fuel cell

  12. Selecting Measures to Evaluate Complex Sociotechnical Systems: An Empirical Comparison of a Task-based and Constraint-based Method

    DTIC Science & Technology

    2013-07-01

    experimental requirements of the research are described (See Appendix A for a full description of the development and testing ). 3.1.3 The Black...41 3. TEST SYSTEM USED FOR THE RESEARCH ...Chapter 3: Test system used for the research A complex socio-technical system is required to compare the methods. An emulation of a radar warning

  13. SMART-DS: Synthetic Models for Advanced, Realistic Testing: Distribution Systems and Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Bri-Mathias; Palmintier, Bryan

    This presentation provides an overview of full-scale, high-quality, synthetic distribution system data set(s) for testing distribution automation algorithms, distributed control approaches, ADMS capabilities, and other emerging distribution technologies.

  14. Ares I Stage Separation System Design Certification Testing

    NASA Technical Reports Server (NTRS)

    Mayers, Stephen L.; Beard, Bernard B.; Smith, R. Kenneth; Patterson, Alan

    2009-01-01

    NASA is committed to the development of a new crew launch vehicle, the Ares I, that can support human missions to low Earth orbit (LEO) and the moon with unprecedented safety and reliability. NASA's Constellation program comprises the Ares I and Ares V launch vehicles, the Orion crew vehicle, and the Altair lunar lander. Based on historical precedent, stage separation is one of the most significant technical and systems engineering challenges that must be addressed in order to achieve this commitment. This paper surveys historical separation system tests that have been completed in order to ensure staging of other launch vehicles. Key separation system design trades evaluated for Ares I include single vs. dual separation plane options, retro-rockets vs. pneumatic gas actuators, small solid motor quantity/placement/timing, and continuous vs. clamshell interstage configuration options. Both subscale and full-scale tests are required to address the prediction of complex dynamic loading scenarios present during staging events. Test objectives such as separation system functionality, and pyroshock and debris field measurements for the full-scale tests are described. Discussion about the test article, support infrastructure and instrumentation are provided.

  15. EXPERIMENTAL EVALUATION OF A NOVEL FULL-SCALE EVAPORATIVELY COOLED CONDENSER

    EPA Science Inventory

    The report compares the performance of a novel evaporatively cooled condenser with that of a conventional air-cooled condenser for a split-system heat pump. The system was tested in an environmentally controlled test chamber that is able to simulate test conditions as specified b...

  16. SCALE-UP OF RAPID SMALL-SCALE ADSORPTION TESTS TO FIELD-SCALE ADSORBERS: THEORETICAL AND EXPERIMENTAL BASIS

    EPA Science Inventory

    Design of full-scale adsorption systems typically includes expensive and time-consuming pilot studies to simulate full-scale adsorber performance. Accordingly, the rapid small-scale column test (RSSCT) was developed and evaluated experimentally. The RSSCT can simulate months of f...

  17. Development of optimized PPP insulated pipe-cable systems in the commercial voltage range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allam, E.M.; McKean, A.L.

    1992-05-01

    The primary objectives of this project included the development of an alternate domestic source of Paper-Polypropylene-Paper (PPP) laminate and the development of optimized designs for PPP-insulated pipe-type cable systems in the commercial voltage range. The development of a domestic source of PPP laminate was successfully completed. This laminate was utilized throughout the program for fabrication of full-size prototype cables submitted for laboratory qualification tests. Selected cables at rated voltages of 138, 230 and 345kV have been designed, fabricated and subjected to the series of qualification tests leading to full laboratory qualification. An optimized design of 2000 kcmil, 345kV cable insulatedmore » with 600 mils of domestic PPP laminate was fabricated and successfully passed all laboratory qualification tests. This cable design was subsequently installed at Waltz Mill to undergo the series of field tests leading to full commercial qualification.« less

  18. Development of optimized PPP insulated pipe-cable systems in the commercial voltage range. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allam, E.M.; McKean, A.L.

    1992-05-01

    The primary objectives of this project included the development of an alternate domestic source of Paper-Polypropylene-Paper (PPP) laminate and the development of optimized designs for PPP-insulated pipe-type cable systems in the commercial voltage range. The development of a domestic source of PPP laminate was successfully completed. This laminate was utilized throughout the program for fabrication of full-size prototype cables submitted for laboratory qualification tests. Selected cables at rated voltages of 138, 230 and 345kV have been designed, fabricated and subjected to the series of qualification tests leading to full laboratory qualification. An optimized design of 2000 kcmil, 345kV cable insulatedmore » with 600 mils of domestic PPP laminate was fabricated and successfully passed all laboratory qualification tests. This cable design was subsequently installed at Waltz Mill to undergo the series of field tests leading to full commercial qualification.« less

  19. Pretest analysis of Semiscale Mod-3 baseline test S-07-8 and S-07-9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fineman, C.P.; Steiner, J.L.; Snider, D.M.

    This document contains a pretest analysis of the Semiscale Mod-3 system thermal-hydraulic response for the second and third integral tests in Test Series 7 (Tests S-07-8 and S-07-9). Test Series 7 is the first test series to be conducted with the Semiscale Mod-3 system. The design of the Mod-3 system includes an improved representation of certain portions of a pressurized water reactor (PWR) when compared to the previously operated Semiscale Mod-1 system. The improvements include a new vessel which contains a full length (3.66 m) core, a full length upper plenum and upper head, and an external downcomer. An activemore » pump and active steam generator scaled to their pressurized water reactor (PWR) counterparts have been added to the broken loop. The upper head design includes the capability to simulate emergency core coolant (ECC) injection into this region. Test Series 7 is divided into three groups of tests that emphasize the evaluation of the Mod-3 system performance during different phases of the loss-of-coolant experiment (LOCE) transient. The last test group, which includes Tests S-07-8 and S-07-9, will be used to evaluate the integral behavior of the system. The previous two test groups were used to evaluate the blowdown behavior and the reflood behavior of the system. 3 refs., 35 figs., 12 tabs.« less

  20. [Full Sibling Identification by IBS Scoring Method and Establishment of the Query Table of Its Critical Value].

    PubMed

    Li, R; Li, C T; Zhao, S M; Li, H X; Li, L; Wu, R G; Zhang, C C; Sun, H Y

    2017-04-01

    To establish a query table of IBS critical value and identification power for the detection systems with different numbers of STR loci under different false judgment standards. Samples of 267 pairs of full siblings and 360 pairs of unrelated individuals were collected and 19 autosomal STR loci were genotyped by Golden e ye™ 20A system. The full siblings were determined using IBS scoring method according to the 'Regulation for biological full sibling testing'. The critical values and identification power for the detection systems with different numbers of STR loci under different false judgment standards were calculated by theoretical methods. According to the formal IBS scoring criteria, the identification power of full siblings and unrelated individuals was 0.764 0 and the rate of false judgment was 0. The results of theoretical calculation were consistent with that of sample observation. The query table of IBS critical value for identification of full sibling detection systems with different numbers of STR loci was successfully established. The IBS scoring method defined by the regulation has high detection efficiency and low false judgment rate, which provides a relatively conservative result. The query table of IBS critical value for identification of full sibling detection systems with different numbers of STR loci provides an important reference data for the result judgment of full sibling testing and owns a considerable practical value. Copyright© by the Editorial Department of Journal of Forensic Medicine

  1. Sub-Scale Orion Parachute Test Results from the National Full-Scale Aerodynamics Complex 80- By 120-ft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Anderson, Brian P.; Greathouse, James S.; Powell, Jessica M.; Ross, James C.; Schairer, Edward T.; Kushner, Laura; Porter, Barry J.; Goulding, Patrick W., II; Zwicker, Matthew L.; Mollmann, Catherine

    2017-01-01

    A two-week test campaign was conducted in the National Full-Scale Aerodynamics Complex 80 x 120-ft Wind Tunnel in support of Orion parachute pendulum mitigation activities. The test gathered static aerodynamic data using an instrumented, 3-tether system attached to the parachute vent in combination with an instrumented parachute riser. Dynamic data was also gathered by releasing the tether system and measuring canopy performance using photogrammetry. Several canopy configurations were tested and compared against the current Orion parachute design to understand changes in drag performance and aerodynamic stability. These configurations included canopies with varying levels and locations of geometric porosity as well as sails with increased levels of fullness. In total, 37 runs were completed for a total of 392 data points. Immediately after the end of the testing campaign a down-select decision was made based on preliminary data to support follow-on sub-scale air drop testing. A summary of a more rigorous analysis of the test data is also presented.

  2. Full scale technology demonstration of a modern counterrotating unducted fan engine concept. Engine test

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Unducted Fan (UDF) engine is an innovative aircraft engine concept based on an ungeared, counterrotating, unducted, ultra-high-bypass turbofan configuration. This engine is being developed to provide a high thrust-to-weight ratio power plant with exceptional fuel efficiency for subsonic aircraft application. This report covers the successful ground testing of this engine. A test program exceeding 100-hr duration was completed, in which all the major goals were achieved. The following accomplishments were demonstrated: (1) full thrust (25,000 lb); (2) full counterrotating rotor speeds (1393+ rpm); (3) low specific fuel consumption (less than 0.24 lb/hr/lb); (4) new composite fan design; (5) counterrotation of structures, turbines, and fan blades; (6) control system; (7) actuation system; and (8) reverse thrust.

  3. Safe Operation of Mobile Unmanned Ground Vehicle (UGV) Systems

    DTIC Science & Technology

    2010-07-13

    vehicle could go during uncommanded movement and full throttle acceleration. 4. TEST PROCEDURES. 4.1 Vehicle Subsystem Tests. These tests identify...time required to go from straight ahead to full deflection in one direction. (sec) i. Observations on ability of the remote operator to maintain...were well below the lateral acceleration limits of the vehicle resulting in very predictable handling traits. The primary concern , albeit subjective

  4. Flight experience with a fail-operational digital fly-by-wire control system

    NASA Technical Reports Server (NTRS)

    Brown, S. R.; Szalai, K. J.

    1977-01-01

    The NASA Dryden Flight Research Center is flight testing a triply redundant digital fly-by-wire (DFBW) control system installed in an F-8 aircraft. The full-time, full-authority system performs three-axis flight control computations, including stability and command augmentation, autopilot functions, failure detection and isolation, and self-test functions. Advanced control law experiments include an active flap mode for ride smoothing and maneuver drag reduction. This paper discusses research being conducted on computer synchronization, fault detection, fault isolation, and recovery from transient faults. The F-8 DFBW system has demonstrated immunity from nuisance fault declarations while quickly identifying truly faulty components.

  5. Crash response data system for the controlled impact demonstration (CID) of a full scale transport aircraft

    NASA Astrophysics Data System (ADS)

    Calloway, Raymond S.; Knight, Vernie H., Jr.

    NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.

  6. SPES-2, AP600 intergral system test S01007 2 inch CL to core make-up tank pressure balance line break

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacchiani, M.; Medich, C.; Rigamonti, M.

    1995-09-01

    The SPES-2 is a full height, full pressure experimental test facility reproducing the Westinghouse AP600 reactor with a scaling factor of 1/395. The experimental plant, designed and operated by SIET in Piacenza, consists of a full simulation of the AP600 primary core cooling system including all the passive and active safety systems. In 1992, Westinghouse, in cooperation with ENEL (Ente Nazionale per l` Energia Elettrica), ENEA (Enter per le numove Technlogie, l` Energia e l` Ambient), Siet (Societa Informazioni Esperienze Termoidraulich) and ANSALDO developed an experimental program to test the integrated behaviour of the AP600 passive safety systems. The SPES-2more » test matrix, concluded in November 1994, has examined the AP600 passive safety system response for a range of small break LOCAs at different locations on the primary system and on the passive system lines; single steam generator tube ruptures with passive and active safety systems and a main steam line break transient to demonstrate the boration capability of passive safety systems for rapid cooldown. Each of the tests has provided detailed experimental results for verification of the capability of the analysis methods to predict the integrated passive safety system behaviour. Cold and hot shakedown tests have been performed on the facility to check the characteristics of the plant before starting the experimental campaign. The paper first presents a description of the SPES-2 test facility then the main results of S01007 test {open_quotes}2{close_quotes} Cold Leg (CL) to Core Make-up Tank (CMT) pressure balance line break{close_quotes} are reported and compared with predictions performed using RELAP5/mod3/80 obtained by ANSALDO through agreement with U.S.N.R.C. (U.S. Nuclear Regulatory Commission). The SPES-2 nodalization and all the calculations here presented were performed by ANSALDO and sponsored by ENEL as a part of pre-test predictions for SPES-2.« less

  7. Recommendations for Evaluating Multiple Filters in Ballast Water Management Systems for US Type Approval

    DTIC Science & Technology

    2016-01-01

    is extremely unlikely to be practicable . A second approach is to conduct a full suite of TA testing on a BWMS with a “base filter” configuration...that of full TA testing. Here, three land-based tests would be conducted, and O&M and component testing would also occur. If time or practicality ... Practical salinity units SAE Society of Automotive Engineers SDI Silt density index SOP Standard operating procedure STEP Shipboard Technology

  8. Apollo telescope mount thermal systems unit thermal vacuum test

    NASA Technical Reports Server (NTRS)

    Trucks, H. F.; Hueter, U.; Wise, J. H.; Bachtel, F. D.

    1971-01-01

    The Apollo Telescope Mount's thermal systems unit was utilized to conduct a full-scale thermal vacuum test to verify the thermal design and the analytical techniques used to develop the thermal mathematical models. Thermal vacuum test philosophy, test objectives configuration, test monitoring, environment simulation, vehicle test performance, and data correlation are discussed. Emphasis is placed on planning and execution of the thermal vacuum test with particular attention on problems encountered in conducting a test of this maguitude.

  9. Field scale evaluation of spray drift reduction technologies from ground and aerial application systems

    USDA-ARS?s Scientific Manuscript database

    The objective of this work is to evaluate a proposed Test Plan for the validation testing of pesticide spray drift reduction technologies for row and field crops, focusing on the testing of ground and aerial application systems under full-scale field evaluations. The measure of performance for a gi...

  10. 49 CFR 179.16 - Tank-head puncture-resistance systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARS General Design Requirements § 179.16 Tank-head puncture-resistance systems. (a) Performance...; and (3) The impacted tank car is pressurized to at least 6.9 Bar (100 psig). (b) Verification by... design and test requirements of the full-head protection (shields) or full tank-head jackets must meet...

  11. Evaluation of the New York low-tension three-cable barrier on curved alignment.

    DOT National Transportation Integrated Search

    2013-02-01

    Three full-scale crash tests were performed on the New York Department of Transportations (NYSDOTs) curved, lowtension, : three-cable barrier systems utilizing the MASH Test Level 3 safety performance criteria. The cable barrier system : for te...

  12. Simplified Impact Testing of Traffic Barrier Systems (Phase I)

    DOT National Transportation Integrated Search

    2003-06-01

    A simplified impact test configuration was developed to provide a preliminary, economical means of assessing prototype traffic barriers before proceeding to full-scale federal testing. Specifically, the test was configured to assess the federal crite...

  13. Spaceport Command and Control System Automated Testing

    NASA Technical Reports Server (NTRS)

    Stein, Meriel

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administrations (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires high quality testing that will properly measure the capabilities of the system. Automating the test procedures would save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  14. Spaceport Command and Control System Automation Testing

    NASA Technical Reports Server (NTRS)

    Hwang, Andrew

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administrations (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires high quality testing that will properly measure the capabilities of the system. Automating the test procedures would save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  15. Development of a Work Control System for Propulsion Testing at Stennis Space Center (SSC)

    NASA Technical Reports Server (NTRS)

    Messer, Elizabeth A.

    2004-01-01

    In 1996, Stennis Space Center was given management authority for all Propulsion Testing for NASA. Over the next few years several research and development (R&D) test facilities were completed and brought up to full operation in what is known as the E-Complex Test Facility at Stennis Space Center. This paper will explain the requirements and steps taken to develop the current Test Operations' electronic work control system. The Work Control System developed includes work authorization documents such as test preparation sheets, discrepancy reports, pre-test briefing reports, and test requests.

  16. GPM Solar Array Gravity Negated Deployment Testing

    NASA Technical Reports Server (NTRS)

    Penn, Jonathan; Johnson, Chris; Lewis, Jesse; Dear, Trevin; Stewart, Alphonso

    2014-01-01

    NASA Goddard Space Flight Center (GSFC) successfully developed a g-negation support system for use on the solar arrays of the Global Precipitation Measurement (GPM) Satellite. This system provides full deployment capability at the subsystem and observatory levels. In addition, the system provides capability for deployed configuration first mode frequency verification testing. The system consists of air pads, a support structure, an air supply, and support tables. The g-negation support system was used to support all deployment activities for flight solar array deployment testing.

  17. Thrust Vectoring on the NASA F-18 High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.; Pahle, Joseph W.

    1996-01-01

    Investigations into a multiaxis thrust-vectoring system have been conducted on an F-18 configuration. These investigations include ground-based scale-model tests, ground-based full-scale testing, and flight testing. This thrust-vectoring system has been tested on the NASA F-18 High Alpha Research Vehicle (HARV). The system provides thrust vectoring in pitch and yaw axes. Ground-based subscale test data have been gathered as background to the flight phase of the program. Tests investigated aerodynamic interaction and vane control effectiveness. The ground-based full-scale data were gathered from static engine runs with image analysis to determine relative thrust-vectoring effectiveness. Flight tests have been conducted at the NASA Dryden Flight Research Center. Parameter identification input techniques have been developed. Individual vanes were not directly controlled because of a mixer-predictor function built into the flight control laws. Combined effects of the vanes have been measured in flight and compared to combined effects of the vanes as predicted by the cold-jet test data. Very good agreement has been found in the linearized effectiveness derivatives.

  18. 40 CFR 90.407 - Engine inlet and exhaust systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...

  19. 40 CFR 90.407 - Engine inlet and exhaust systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...

  20. 40 CFR 90.407 - Engine inlet and exhaust systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...

  1. 40 CFR 90.407 - Engine inlet and exhaust systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...

  2. 40 CFR 90.407 - Engine inlet and exhaust systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...

  3. A status report on NASA general aviation stall/spin flight testing

    NASA Technical Reports Server (NTRS)

    Patton, J. M., Jr.

    1980-01-01

    The NASA Langley Research Center has undertaken a comprehensive program involving spin tunnel, static and rotary balance wind tunnel, full-scale wind tunnel, free flight radio control model, flight simulation, and full-scale testing. Work underway includes aerodynamic definition of various configurations at high angles of attack, testing of stall and spin prevention concepts, definition of spin and spin recovery characteristics, and development of test techniques and emergency spin recovery systems. This paper presents some interesting results to date for the first aircraft (low-wing, single-engine) in the program, in the areas of tail design, wing leading edge design, mass distribution, center of gravity location, and small airframe changes, with associated pilot observations. The design philosophy of the spin recovery parachute system is discussed in addition to test techniques.

  4. Hover test of a full-scale hingeless helicopter rotor: Aeroelastic stability, performance and loads data. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.; Warmbrodt, W.

    1984-01-01

    A hover test of a full-scale, hingeless rotor system was conducted in the NASA Ames 40- by 80-foot wind tunnel. The rotor was tested on the Ames rotor test apparatus. Rotor aeroelastic stability, performance, and loads at various rotational speeds and thrust coefficients were investigated. The primary objective was to determine the inplane stability characteristics of the rotor system. Rotor inplane damping data were obtained for operation between 350 and 425 rpm (design speed), and for thurst coefficients between 0.0 and 0.12. The rotor was stable for all conditions tested. At constant rotor rotational speed, a minimum inplane dampling level was obtained at a thrust coefficient approximately = 0.02. At constant rotor lift, a minimum in rotor inplane damping was measured at 400 rpm.

  5. Oak Ridge Reservation Public Warning Siren System Annual Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. F. Gee

    2000-10-01

    The full operational test of the Oak Ridge Reservation (ORR) Public Warning Siren System (PWSS) was successfully conducted on September 27, 2000. The annual test is a full-scale sounding of the individual siren systems around each of the three Department of Energy (DOE) sites in Oak Ridge, Tennessee. The purpose of the annual test is to demonstrate and validate the siren systems' ability to alert personnel outdoors in the Immediate Notification Zones (INZ) (approximately two miles) around each site. The success of this test is based on two critical functions of the siren system. The first function is system operability.more » The system is considered operable if 90% of the sirens are operational. System diagnostics and direct field observations were used to validate the operability of the siren systems. Based on the diagnostic results and field observations, greater than 90% of the sirens were considered operational. The second function is system audibility. The system is considered audible if the siren could be heard in the immediate notification zones around each of the three sites. Direct field observations, along with sound level measurements, were used to validate the audibility of the siren system. Based on the direct field observations and sound level measurements, the siren system was considered audible. The combination of field observations, system diagnostic status reports, and sound level measurements provided a high level of confidence that the system met and would meet operational requirements upon demand. As part of the overall system test, the Tennessee Emergency Management Agency (TEMA) activated the Emergency Alerting System (EAS), which utilized area radio stations to make announcements regarding the test and to remind residents of what to do in the event of an actual emergency.« less

  6. Freezable Radiator Coupon Testing and Full Scale Radiator Design

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean T.; Guinn, John; Cognata, Thomas; Navarro, Moses

    2009-01-01

    Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal loads during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. This paper summarizes tests on three test articles that were performed to further empirically quantify the behavior of a simple freezable radiator, and the culmination of those tests into a full scale design. Each test article explored the bounds of freezing and recovery behavior, as well as providing thermo-physical data of the working fluid, a 50-50 mixture of DowFrost HD and water. These results were then used as a tool for developing correlated thermal model in Thermal Desktop which could be used for modeling the behavior of a full scale thermal control system for a lunar mission. The final design of a thermal control system for a lunar mission is also documented in this paper.

  7. Evaluation of the Lateral Performance of Roof Truss-to-Wall Connections in Light-Frame Wood Systems

    Treesearch

    Andrew DeRenzis; Vladimir Kochkin; Xiping Wang

    2012-01-01

    This testing program was designed to benchmark the performance of traditional roof systems and incrementally improved roof-to-wall systems with the goal of developing connection solutions that are optimized for performance and constructability. Nine full-size roof systems were constructed and tested with various levels and types of heel detailing to measure the lateral...

  8. In Situ Soil Venting - Full Scale Test Hill AFB, Guidance Document, Literature Review. Volume 1

    DTIC Science & Technology

    1991-08-01

    AD-A254 924 1’) VOL I IN SITU SOIL VENTING - FULL SCALE TEST HILL AFB, GUIDANCE DOCUMENT, LITERATURE REVIEW D. W. DEPAO, S. E. HERBES, J. H . WILSON...D. K. SOLOMON, AND H . L. JENNINGS MARTIN-MARIETTA ENERGY SYSTEMS OAK RIDGE NATIONAL LABORATORY P. O. BOX 2008 OAK RIDGE TN 37831 OTI AUGUST 1991 S...sificat,cn) (U) In Situ Soil Ver.ting - Full Scale Test Hill AFB, Guidance Document, Literature Review 2 PERSO’.AL AUTH-O’.S, a W ApP li- S_ T’.- erber:. H

  9. Design of lightning protection for a full-authority digital engine control

    NASA Technical Reports Server (NTRS)

    Dargi, M.; Rupke, E.; Wiles, K.

    1991-01-01

    The steps and procedures are described which are necessary to achieve a successful lightning-protection design for a state-of-the-art Full-Authority Digital Engine Control (FADEC) system. The engine and control systems used as examples are fictional, but the design and verification methods are real. Topics discussed include: applicable airworthiness regulation, selection of equipment transient design and control levels for the engine/airframe and intra-engine segments of the system, the use of cable shields, terminal-protection devices and filter circuits in hardware protection design, and software approaches to minimize upset potential. Shield terminations, grounding, and bonding are also discussed, as are the important elements of certification and test plans, and the role of tests and analyses. Also included are examples of multiple-stroke and multiple-burst testing. A review of design pitfalls and challenges, and status of applicable test standards such as RTCA DO-160, Section 22, are presented.

  10. Flight evaluation of a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.

    1982-01-01

    Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.

  11. Space Shuttle Orbital Drag Parachute Design

    NASA Technical Reports Server (NTRS)

    Meyerson, Robert E.

    2001-01-01

    The drag parachute system was added to the Space Shuttle Orbiter's landing deceleration subsystem beginning with flight STS-49 in May 1992. The addition of this subsystem to an existing space vehicle required a detailed set of ground tests and analyses. The aerodynamic design and performance testing of the system consisted of wind tunnel tests, numerical simulations, pilot-in-the-loop simulations, and full-scale testing. This analysis and design resulted in a fully qualified system that is deployed on every flight of the Space Shuttle.

  12. Advanced clinical interpretation of the Delis-Kaplan Executive Function System: multivariate base rates of low scores.

    PubMed

    Karr, Justin E; Garcia-Barrera, Mauricio A; Holdnack, James A; Iverson, Grant L

    2018-01-01

    Multivariate base rates allow for the simultaneous statistical interpretation of multiple test scores, quantifying the normal frequency of low scores on a test battery. This study provides multivariate base rates for the Delis-Kaplan Executive Function System (D-KEFS). The D-KEFS consists of 9 tests with 16 Total Achievement scores (i.e. primary indicators of executive function ability). Stratified by education and intelligence, multivariate base rates were derived for the full D-KEFS and an abbreviated four-test battery (i.e. Trail Making, Color-Word Interference, Verbal Fluency, and Tower Test) using the adult portion of the normative sample (ages 16-89). Multivariate base rates are provided for the full and four-test D-KEFS batteries, calculated using five low score cutoffs (i.e. ≤25th, 16th, 9th, 5th, and 2nd percentiles). Low scores occurred commonly among the D-KEFS normative sample, with 82.6 and 71.8% of participants obtaining at least one score ≤16th percentile for the full and four-test batteries, respectively. Intelligence and education were inversely related to low score frequency. The base rates provided herein allow clinicians to interpret multiple D-KEFS scores simultaneously for the full D-KEFS and an abbreviated battery of commonly administered tests. The use of these base rates will support clinicians when differentiating between normal variations in cognitive performance and true executive function deficits.

  13. Finite Element Simulation of Three Full-Scale Crash Tests for Cessna 172 Aircraft

    NASA Technical Reports Server (NTRS)

    Mason, Brian H.; Warren, Jerry E., Jr.

    2017-01-01

    The NASA Emergency Locator Transmitter Survivability and Reliability (ELT-SAR) project was initiated in 2013 to assess the crash performance standards for the next generation of emergency locator transmitter (ELT) systems. Three Cessna 172 aircraft were acquired to perform crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Full-scale crash tests were conducted in the summer of 2015 and each test article was subjected to severe, but survivable, impact conditions including a flare-to-stall during emergency landing, and two controlled-flight-into-terrain scenarios. Full-scale finite element analyses were performed using a commercial explicit solver, ABAQUS. The first test simulated impacting a concrete surface represented analytically by a rigid plane. Tests 2 and 3 simulated impacting a dirt surface represented analytically by an Eulerian grid of brick elements using a Mohr-Coulomb material model. The objective of this paper is to summarize the test and analysis results for the three full-scale crash tests. Simulation models of the airframe which correlate well with the tests are needed for future studies of alternate ELT mounting configurations.

  14. Full-scale wind-tunnel tests of high-lift system modifications on a carrier based fighter aircraft

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.; Zell, Peter T.; Hagan, John L.; Schoch, David

    1993-01-01

    Modifications to the high-lift system of a full-scale F/A-I8A were tested in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at the NASA Ames Research Center in Moffett Field, California. The objective was to measure the effect of simple modifications on the aerodynamic performance of the high-lift system. The modifications included the placement of a straight fairing in the shroud cove above the trailing-edge flap and the addition of seals to prevent air leakage through the hinge lines of the leading-edge flap, the trailing-edge shroud, and the wing fold. The test was carried out on an actual F/A-18A with it's flaps deployed in the landing approach configuration. The angle of attack ranged from 0 to 16 degrees and the wind speed was 100 knots. At an angle of attack of 8 degrees, the trimmed lift coefficient was improved by 0.09 with all wing seals in place. This corresponds to a reduction in the approach speed for the F/A-I8A of about 5 knots. The seal along the wing fold hinge, a feature present on many naval aircraft, provided one third of the total increment in trimmed lift. A comparison of the full-scale wind-tunnel results with those obtained from flight test is also presented.

  15. Full-scale hingeless rotor performance and loads

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.

    1995-01-01

    A full-scale BO-105 hingeless rotor system was tested in the NASA Ames 40- by 80-Foot Wind Tunnel on the rotor test apparatus. Rotor performance, rotor loads, and aeroelastic stability as functions of both collective and cyclic pitch, tunnel velocity, and shaft angle were investigated. This test was performed in support of the Rotor Data Correlation Task under the U.S. Army/German Memorandum of Understanding on Cooperative Research in the Field of Helicopter Aeromechanics. The primary objective of this test program was to create a data base for full-scale hingeless rotor performance and structural blade loads. A secondary objective was to investigate the ability to match flight test conditions in the wind tunnel. This data base can be used for the experimental and analytical studies of hingeless rotor systems over large variations in rotor thrust and tunnel velocity. Rotor performance and structural loads for tunnel velocities from hover to 170 knots and thrust coefficients (C(sub T)/sigma) from 0.0 to 0.12 are presented in this report. Thrust sweeps at tunnel velocities of 10, 20, and 30 knots are also included in this data set.

  16. [Design of a high-voltage insulation testing system of X-ray high frequency generators].

    PubMed

    Huang, Yong; Mo, Guo-Ming; Wang, Yan; Wang, Hong-Zhi; Yu, Jie-Ying; Dai, Shu-Guang

    2007-09-01

    In this paper, we analyze the transformer of X-ray high-voltage high-frequency generators and, have designed and implemented a high-voltage insulation testing system for its oil tank using full-bridge series resonant soft switching PFM DC-DC converter.

  17. Development and Operation of an Automatic Rotor Trim Control System for use During the UH-60 Individual Blade Control Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Theodore, Colin R.

    2010-01-01

    A full-scale wind tunnel test to evaluate the effects of Individual Blade Control (IBC) on the performance, vibration, noise and loads of a UH-60A rotor was recently completed in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel [1]. A key component of this wind tunnel test was an automatic rotor trim control system that allowed the rotor trim state to be set more precisely, quickly and repeatably than was possible with the rotor operator setting the trim condition manually. The trim control system was also able to maintain the desired trim condition through changes in IBC actuation both in open- and closed-loop IBC modes, and through long-period transients in wind tunnel flow. This ability of the trim control system to automatically set and maintain a steady rotor trim enabled the effects of different IBC inputs to be compared at common trim conditions and to perform these tests quickly without requiring the rotor operator to re-trim the rotor. The trim control system described in this paper was developed specifically for use during the IBC wind tunnel test

  18. Integration Testing of Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Honeycutt, Timothy; Sowards, Stephanie

    2008-01-01

    Based on the previous success' of Multi-Element Integration Testing (MEITs) for the International Space Station Program, these type of integrated tests have also been planned for the Constellation Program: MEIT (1) CEV to ISS (emulated) (2) CEV to Lunar Lander/EDS (emulated) (3) Future: Lunar Surface Systems and Mars Missions Finite Element Integration Test (FEIT) (1) CEV/CLV (2) Lunar Lander/EDS/CaL V Integrated Verification Tests (IVT) (1) Performed as a subset of the FEITs during the flight tests and then performed for every flight after Full Operational Capability (FOC) has been obtained with the flight and ground Systems.

  19. The NASA modern technology rotors program

    NASA Technical Reports Server (NTRS)

    Watts, M. E.; Cross, J. L.

    1986-01-01

    Existing data bases regarding helicopters are based on work conducted on 'old-technology' rotor systems. The Modern Technology Rotors (MTR) Program is to provide extensive data bases on rotor systems using present and emerging technology. The MTR is concerned with modern, four-bladed, rotor systems presently being manufactured or under development. Aspects of MTR philosophy are considered along with instrumentation, the MTR test program, the BV 360 Rotor, and the UH-60 Black Hawk. The program phases include computer modelling, shake test, model-scale test, minimally instrumented flight test, extensively pressure-instrumented-blade flight test, and full-scale wind tunnel test.

  20. Testing Orions Fairing Separation System

    NASA Technical Reports Server (NTRS)

    Martinez, Henry; Cloutier, Chris; Lemmon, Heber; Rakes, Daniel; Oldham, Joe; Schlagel, Keith

    2014-01-01

    Traditional fairing systems are designed to fully encapsulate and protect their payload from the harsh ascent environment including acoustic vibrations, aerodynamic forces and heating. The Orion fairing separation system performs this function and more by also sharing approximately half of the vehicle structural load during ascent. This load-share condition through launch and during jettison allows for a substantial increase in mass to orbit. A series of component-level development tests were completed to evaluate and characterize each component within Orion's unique fairing separation system. Two full-scale separation tests were performed to verify system-level functionality and provide verification data. This paper summarizes the fairing spring, Pyramidal Separation Mechanism and forward seal system component-level development tests, system-level separation tests, and lessons learned.

  1. (Full field) optical coherence tomography and applications

    NASA Astrophysics Data System (ADS)

    Buchroithner, Boris; Hannesschläger, Günther; Leiss-Holzinger, Elisabeth; Prylepa, Andrii; Heise, Bettina

    2018-03-01

    This paper illustrates specific features and use of optical coherence tomography (OCT) in the raster-scanning and in comparison in the full field version of this imaging technique. Cases for nondestructive testing are discussed alongside other application schemes. In particular monitoring time-dependent processes and probing of birefringent specimens are considered here. In the context of polymer testing birefringence mapping may often provide information about internal strain and stress states. Recent results obtained with conventional raster-scanning OCT systems, with (dual and single-shot) full field OCT configurations, and with polarization-sensitive versions of (full field) OCT are presented here.

  2. Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Askins, Bruce R.; Bland, Jeffrey; Davis, Stephan; Holladay, Jon B.; Taylor, James L.; Taylor, Terry L.; Robinson, Kimberly F.; Roberts, Ryan E.; Tuma, Margaret

    2007-01-01

    The Ares I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew access to the International Space Station (ISS) and, together with the Ares V Cargo Launch Vehicle (CaLV), serves as one component of a future launch capability for human exploration of the Moon. During the system requirements definition process and early design cycles, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements: the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine, will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle dynamic test (IVDT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, and a highaltitude actuation of the launch abort system (LAS) following separation. The Orion-1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.

  3. A History of Full-Scale Aircraft and Rotorcraft Crash Testing and Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

    2004-01-01

    This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.

  4. A real-time simulator of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.

    1989-01-01

    A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verification and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.

  5. Outdoor Testing Areas | Energy Systems Integration Facility | NREL

    Science.gov Websites

    of engineers running tests on plug-in hybrid electric vehicles at the Medium-Voltage Outdoor Test large microgrids hub, located in the outdoor low-voltage test yard, includes underground trench access pits for full enclosure of rotating machinery under test. Key Infrastructure Secured underground pits

  6. Feasibility and Testing of Additive Manufactured Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R.; Hummelt, Ed; Solovyeva, Lyudmila

    2016-09-01

    This project focused on demonstrating the ability to fabricate two parts with different geometry: an arc flash interrupter and a hydraulic manifold. Eaton Corporation provided ORNL solid models, information related to tolerances and sensitive parameters of the parts and provided testing and evaluation. ORNL successfully manufactured both components, provided cost models of the manufacturing (materials, labor, time and post processing) and delivered test components for Eaton evaluation. The arc flash suppressor was fabricated using the Renishaw laser powder bed technology in CoCrMo while the manifold was produced from Ti-6Al-4V using the Arcam electron beam melting technology. These manufacturing techniques weremore » selected based on the design and geometrical tolerances required. A full-scale manifold was produced on the Arcam A2 system (nearly 12 inches tall). A portion of the manifold was also produced in the Arcam Q10 system. Although a full scale manifold could not be produced in the system, a full scale manifold is expected to have similar material properties, geometric accuracy, and surface finish as could be fabricated on an Arcam Q20 system that is capable of producing four full scale manifolds in a production environment. In addition to the manifold, mechanical test specimens, geometric tolerance artifacts, and microstructure samples were produced alongside the manifold. The development and demonstration of these two key components helped Eaton understand the impact additive manufacturing can have on many of their existing products. By working within the MDF and leveraging ORNL’s manufacturing and characterization capabilities, the work will ensure the rapid insertion and commercialization of this technology.« less

  7. Avco Lycoming QCGAT program design cycle, demonstrated performance and emissions

    NASA Technical Reports Server (NTRS)

    Fogel, P.; Koschier, A.

    1980-01-01

    A high bypass ratio, twin spool turbofan engine of modular design which incorporates a front fan module driven by a modified LTS101 core engine was tested. The engine is housed in a nacelle incorporating full length fan ducting with sound treatment in both the inlet and fan discharge flow paths. Design goals of components and results of component tests are presented together with full engine test results. The rationale behind the combustor design selected for the engine is presented as well as the emissions test results. Total system (engine and nacelle) test results are included.

  8. Spaceport Command and Control System Software Development

    NASA Technical Reports Server (NTRS)

    Glasser, Abraham

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires a large amount of intensive testing that will properly measure the capabilities of the system. Automating the test procedures would save the project money from human labor costs, as well as making the testing process more efficient. Therefore, the Exploration Systems Division (formerly the Electrical Engineering Division) at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  9. DFVLR rotorcraft: Construction and engineering

    NASA Technical Reports Server (NTRS)

    Langer, H. J.

    1984-01-01

    A helicopter rotor test stand is described. Full scale helicopter components can be tested such as hingeless fiberglass rotors and two blade rotor with flapping hinge, or a hybrid system. The facility is used to test stability, rotor components and downwind components.

  10. Propulsion system tests on a full scale Centaur vehicle to investigate 3-burn mission capability of the D-lT configuration

    NASA Technical Reports Server (NTRS)

    Groesbeck, W. A.; Baud, K. M.; Lacovic, R. F.; Tabata, W. K.; Szabo, S. V., Jr.

    1974-01-01

    Propulsion system tests were conducted on a full scale Centaur vehicle to investigate system capability of the proposed D-lT configuration for a three-burn mission. This particular mission profile requires that the engines be capable of restarting and firing for a final maneuver after a 5-1/2-hour coast to synchronous orbit. The thermal conditioning requirements of the engine and propellant feed system components for engine start under these conditions were investigated. Performance data were also obtained on the D-lT type computer controlled propellant tank pressurization system. The test results demonstrated that the RL-10 engines on the Centaur vehicle could be started and run reliably after being thermally conditioned to predicted engine start conditions for a one, two and three burn mission. Investigation of the thermal margins also indicated that engine starts could be accomplished at the maximum predicted component temperature conditions with prestart durations less than planned for flight.

  11. The center of curvature optical assembly for the JWST primary mirror cryogenic optical test: optical verification

    NASA Astrophysics Data System (ADS)

    Wells, Conrad; Olczak, Gene; Merle, Cormic; Dey, Tom; Waldman, Mark; Whitman, Tony; Wick, Eric; Peer, Aaron

    2010-08-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, allreflective, three-mirror anastigmat. The 18-segment primary mirror (PM) presents unique and challenging assembly, integration, alignment and testing requirements. A full aperture center of curvature optical test is performed in cryogenic vacuum conditions at the integrated observatory level to verify PM performance requirements. The Center of Curvature Optical Assembly (CoCOA), designed and being built by ITT satisfies the requirements for this test. The CoCOA contains a multi wave interferometer, patented reflective null lens, actuation for alignment, full in situ calibration capability, coarse and fine alignment sensing systems, as well as a system for monitoring changes in the PM to CoCOA distance. Two wave front calibration tests are utilized to verify the low and Mid/High spatial frequencies, overcoming the limitations of the standard null/hologram configuration in its ability to resolve mid and high spatial frequencies. This paper will introduce the systems level architecture and optical test layout for the CoCOA.

  12. Max Launch Abort System (MLAS) Landing Parachute Demonstrator (LPD) Drop Test

    NASA Technical Reports Server (NTRS)

    Shreves, Christopher M.

    2011-01-01

    The Landing Parachute Demonstrator (LPD) was conceived as a low-cost, rapidly-developed means of providing soft landing for the Max Launch Abort System (MLAS) crew module (CM). Its experimental main parachute cluster deployment technique and off-the-shelf hardware necessitated a full-scale drop test prior to the MLAS mission in order to reduce overall mission risk. This test was successfully conducted at Wallops Flight Facility on March 6, 2009, with all vehicle and parachute systems functioning as planned. The results of the drop test successfully qualified the LPD system for the MLAS flight test. This document captures the design, concept of operations and results of the drop test.

  13. Air Data Boom System Development for the Max Launch Abort System (MLAS) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Cox, Jeff; Bondurant, Robert; Dupont, Ron; ODonnell, Louise; Vellines, Wesley, IV; Johnston, William M.; Cagle, Christopher M.; Schuster, David M.; Elliott, Kenny B.; hide

    2010-01-01

    In 2007, the NASA Exploration Systems Mission Directorate (ESMD) chartered the NASA Engineering Safety Center (NESC) to demonstrate an alternate launch abort concept as risk mitigation for the Orion project's baseline "tower" design. On July 8, 2009, a full scale and passively, aerodynamically stabilized MLAS launch abort demonstrator was successfully launched from Wallops Flight Facility following nearly two years of development work on the launch abort concept: from a napkin sketch to a flight demonstration of the full-scale flight test vehicle. The MLAS flight test vehicle was instrumented with a suite of aerodynamic sensors. The purpose was to obtain sufficient data to demonstrate that the vehicle demonstrated the behavior predicted by Computational Fluid Dynamics (CFD) analysis and wind tunnel testing. This paper describes development of the Air Data Boom (ADB) component of the aerodynamic sensor suite.

  14. Feasibility of pure EFTR using an innovative new endoscopic suturing device: the Double-arm-bar Suturing System (with video).

    PubMed

    Mori, Hirohito; Kobara, Hideki; Fujihara, Shintaro; Nishiyama, Noriko; Rafiq, Kazi; Oryu, Makoto; Fujiwara, Masao; Suzuki, Yasuyuki; Masaki, Tsutomu

    2014-02-01

    Endoscopic full-thickness resection (EFTR) requires a reliable full-thickness suturing device and an endoscopic counter-traction device to prevent the collapse of the digestive tract. The present study aimed to assess the reliability of newly developed flexible endoscopy suturing devices and the feasibility of pure EFTR. A total of 30 EFTRs were performed and allocated to three groups (N = 10 for each group). The full-thickness sutures were placed using over-the-scope clips (OTSCs), hand-sewn sutures, or the Double-arm-bar Suturing System (DBSS). Air leak tests were conducted in the three groups. The times required for the placement of one OTSC suture and single-stitch simple interrupted sutures (hand-sewn and DBSS sutures, respectively) were also compared. All 30 full-thickness sutures were completely and successfully placed. Regarding the air leak tests, the Mann-Whitney U test showed significant differences between OTSC and hand-sewn sutures (p = 0.003). There was also a significant difference between OTSC and DBSS sutures (p = 0.023). There was no significant difference between hand-sewn and DBSS sutures (p = 0.542). A significant difference was found in the suture time for single-stitch simple interrupted sutures among the OTSC, hand-sewn, and DBSS sutures. The Mann-Whitney U test revealed a significant difference between OTSC and hand-sewn sutures (p = 0.0001). There was no significant difference between OTSC and DBSS sutures (p = 0.533), while a significant difference was found between hand-sewn and DBSS sutures (p = 0.0001). Pure EFTR is feasible if the mechanical counter traction system is used to expand a small operative field and DBSS is used to make full-thickness sutures. The high safety of full-thickness resection and full-thickness suturing allows for clinical applications of this method.

  15. Improved pressure measurement system for calibration of the NASA LeRC 10x10 supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Blumenthal, Philip Z.; Helland, Stephen M.

    1994-01-01

    This paper discusses a method used to provide a significant improvement in the accuracy of the Electronically Scanned Pressure (ESP) Measurement System by means of a fully automatic floating pressure generating system for the ESP calibration and reference pressures. This system was used to obtain test section Mach number and flow angularity measurements over the full envelope of test conditions for the 10 x 10 Supersonic Wind Tunnel. The uncertainty analysis and actual test data demonstrated that, for most test conditions, this method could reduce errors to about one-third to one-half that obtained with the standard system.

  16. ODC-Free Solvent Implementation Issues for Vulcanized Rubber and Bond Systems

    NASA Technical Reports Server (NTRS)

    Hodgson, James R.; McCool, Alex (Technical Monitor)

    2001-01-01

    Thiokol Propulsion has worked extensively to replace 1,1,1-trichloroethane (TCA) with ozone depleting chemicals (ODC)-free solvents for use in the manufacture of the Reusable Solid Rocket Motor (RSRM) for the Space Shuttle Program. As Thiokol has transitioned from sub-scale to full-scale testing and implementation of these new solvents, issues have been discovered which have required special attention. The original intent of Thiokol's solvent replacement strategy was to replace TCA with a single drop-in solvent for all equivalent applications. We have learned that a single candidate does not exist for replacing TCA. Solvent incompatibility with process materials has caused us to seek for niche solvents and/or processing changes that provide an ODC-free solution for special applications. This paper addresses some of the solvent incompatibilities, which have lead to processes changes and possible niche solvent usage. These incompatibilities were discovered during full-scale testing of ODC-free solvents and relate to vulcanized rubber and bond systems in the RSRM. Specifically, the following items are presented: (1) Cure effects of d-limonene based solvents on Silica Filled Ethylene Propylene Diene Monomer (SF-EPDM) rubber. During full-scale test operations, Thiokol discovered that d-limonene (terpene) based solvents inhibit the cure of EPDM rubber. Subsequent testing showed the same issue with Nitrile Butadiene Rubber (NBR). Also discussed are efforts to minimize uncured rubber exposure to solvents; and (2) Cured bond system sensitivity to ODC-free solvents. During full scale testing it was discovered that a natural rubber to steel vulcanized bond could degrade after prolonged exposure to ODC-free solvents. Follow on testing showed that low vapor pressure and residence time seemed to be most likely cause for failure.

  17. Recent "Ground Testing" Experiences in the National Full-Scale Aerodynamics Complex

    NASA Technical Reports Server (NTRS)

    Zell, Peter; Stich, Phil; Sverdrup, Jacobs; George, M. W. (Technical Monitor)

    2002-01-01

    The large test sections of the National Full-scale Aerodynamics Complex (NFAC) wind tunnels provide ideal controlled wind environments to test ground-based objects and vehicles. Though this facility was designed and provisioned primarily for aeronautical testing requirements, several experiments have been designed to utilize existing model mount structures to support "non-flying" systems. This presentation will discuss some of the ground-based testing capabilities of the facility and provide examples of groundbased tests conducted in the facility to date. It will also address some future work envisioned and solicit input from the SATA membership on ways to improve the service that NASA makes available to customers.

  18. Phased Array Noise Source Localization Measurements of an F404 Nozzle Plume at Both Full and Model Scale

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Bridges, James E.; Henderson, Brenda S.

    2010-01-01

    A 48-microphone planar phased array system was used to acquire jet noise source localization data on both a full-scale F404-GE-F400 engine and on a 1/4th scale model of a F400 series nozzle. The full-scale engine test data show the location of the dominant noise sources in the jet plume as a function of frequency for the engine in both baseline (no chevron) and chevron configurations. Data are presented for the engine operating both with and without afterburners. Based on lessons learned during this test, a set of recommendations are provided regarding how the phased array measurement system could be modified in order to obtain more useful acoustic source localization data on high-performance military engines in the future. The data obtained on the 1/4th scale F400 series nozzle provide useful insights regarding the full-scale engine jet noise source mechanisms, and document some of the differences associated with testing at model-scale versus fullscale.

  19. The development, design and test of a 66 W/kg (30-W/lb) roll-up solar array

    NASA Technical Reports Server (NTRS)

    Hasbach, W. A.; Ross, R. G., Jr.

    1972-01-01

    A program to develop a 250 square foot roll-up solar array with a power-to-weight ratio exceeding 30 watts per pound is described. The system design and fabrication of a full scale engineering development model are discussed. The system and development test program results are presented. Special test equipment and test procedures are included, together with comparisons of experimental and analytical results.

  20. Patient Litter System Response in a Full-Scale CH-46 Crash Test.

    PubMed

    Weisenbach, Charles A; Rooks, Tyler; Bowman, Troy; Fralish, Vince; McEntire, B Joseph

    2017-03-01

    U.S. Military aeromedical patient litter systems are currently required to meet minimal static strength performance requirements at the component level. Operationally, these components must function as a system and are subjected to the dynamics of turbulent flight and potentially crash events. The first of two full-scale CH-46 crash tests was conducted at NASA's Langley Research Center and included an experiment to assess patient and litter system response during a severe but survivable crash event. A three-tiered strap and pole litter system was mounted into the airframe and occupied by three anthropomorphic test devices (ATDs). During the crash event, the litter system failed to maintain structural integrity and collapsed. Component structural failures were recorded from the litter support system and the litters. The upper ATD was displaced laterally into the cabin, while the middle ATD was displaced longitudinally into the cabin. Acceleration, force, and bending moment data from the instrumented middle ATD were analyzed using available injury criteria. Results indicated that a patient might sustain a neck injury. The current test illustrates that a litter system, with components designed and tested to static requirements only, experiences multiple component structural failures during a dynamic crash event and does not maintain restraint control of its patients. It is unknown if a modern litter system, with components tested to the same static criteria, would perform differently. A systems level dynamic performance requirement needs to be developed so that patients can be provided with protection levels equivalent to that provided to seated aircraft occupants. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  1. Hartmann test for the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Knight, J. Scott; Feinberg, Lee; Howard, Joseph; Acton, D. Scott; Whitman, Tony L.; Smith, Koby

    2016-07-01

    The James Webb Space Telescope's (JWST) end-to-end optical system will be tested in a cryogenic vacuum environment before launch at NASA Johnson Space Center's (JSC) Apollo-era, historic Chamber A thermal vacuum facility. During recent pre-test runs with a prototype "Pathfinder" telescope, the vibration in this environment was found to be challenging for the baseline test approach, which uses phase retrieval of images created by three sub-apertures of the telescope. To address the vibration, an alternate strategy implemented using classic Hartmann test principles combined with precise mirror mechanisms to provide a testing approach that is insensitive to the dynamics environment of the chamber. The measurements and sensitivities of the Hartmann approach are similar to those using phase retrieval over the original sparse aperture test. The Hartmann test concepts have been implemented on the JWST Test Bed Telescope, which provided the rationale and empirical evidence indicating that this Hartmann style approach would be valuable in supplementing the baseline test approach. This paper presents a Hartmann approach implemented during the recent Pathfinder test along with the test approach that is currently being considered for the full optical system test of JWST. Comparisons are made between the baseline phase retrieval approach and the Hartmann approach in addition to demonstrating how the two test methodologies support each other to reduce risk during the JWST full optical system test.

  2. A Tabletop Tool for Modeling Life Support Systems

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Majumdar, A.; McDaniels, D.; Stewart, E.

    2003-01-01

    This paper describes the development plan for a comprehensive research and diagnostic tool for aspects of advanced life support systems in space-based laboratories. Specifically it aims to build a high fidelity tabletop model that can be used for the purpose of risk mitigation, failure mode analysis, contamination tracking, and testing reliability. We envision a comprehensive approach involving experimental work coupled with numerical simulation to develop this diagnostic tool. It envisions a 10% scale transparent model of a space platform such as the International Space Station that operates with water or a specific matched index of refraction liquid as the working fluid. This allows the scaling of a 10 ft x 10 ft x 10 ft room with air flow to 1 ft x 1 ft x 1 ft tabletop model with water/liquid flow. Dynamic similitude for this length scale dictates model velocities to be 67% of full-scale and thereby the time scale of the model to represent 15% of the full- scale system; meaning identical processes in the model are completed in 15% of the full- scale time. The use of an index matching fluid (fluid that matches the refractive index of cast acrylic, the model material) allows making the entire model (with complex internal geometry) transparent and hence conducive to non-intrusive optical diagnostics. So using such a system one can test environment control parameters such as core flows (axial flows), cross flows (from registers and diffusers), potential problem areas such as flow short circuits, inadequate oxygen content, build up of other gases beyond desirable levels, test mixing processes within the system at local nodes or compartments and assess the overall system performance. The system allows quantitative measurements of contaminants introduced in the system and allows testing and optimizing the tracking process and removal of contaminants. The envisaged system will be modular and hence flexible for quick configuration change and subsequent testing. The data and inferences from the tests will allow for improvements in the development and design of next generation life support systems and configurations.

  3. MASH TL-4 crash testing and evaluation of the RESTORE barrier.

    DOT National Transportation Integrated Search

    2015-11-01

    Three full-scale vehicle crash tests were conducted according to the MASH Test Level 4 (TL-4) safety performance criteria on a : restorable and reusable energy-absorbing roadside/median barrier, designated the RESTORE barrier. The system utilized for...

  4. Space Shuttle Plume and Plume Impingement Study

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Penny, M. M.

    1977-01-01

    The extent of the influence of the propulsion system exhaust plumes on the vehicle performance and control characteristics is a complex function of vehicle geometry, propulsion system geometry, engine operating conditions and vehicle flight trajectory were investigated. Analytical support of the plume technology test program was directed at the two latter problem areas: (1) definition of the full-scale exhaust plume characteristics, (2) application of appropriate similarity parameters; and (3) analysis of wind tunnel test data. Verification of the two-phase plume and plume impingement models was directed toward the definition of the full-scale exhaust plume characteristics and the separation motor impingement problem.

  5. Design and development of Shuttle Get-Away-Special experiment G-0074. [off-load capability for a full-tank propellant acquisition system

    NASA Technical Reports Server (NTRS)

    Orton, G. F.

    1984-01-01

    An experiment to investigate more versatile, lower cost surface tension propellant acquisition approaches for future satellite and spacecraft propellant tanks is designed to demonstrate a propellant off-load capability for a full-tank gallery surface tension device, such as that employed in the shuttle reaction control subsystem, and demonstrate a low-cost refillable trap concept that could be used in future orbit maneuver propulsion systems for multiple engine restarts. A Plexiglas test tank, movie camera and lights, auxiliary liquid accumulator, control electronics, battery pack, and associated valving and plumbing are used. The test liquid is Freon 113, dyed blue for color movie coverage. The fully loaded experiments weighs 106 pounds and is to be installed in a NASA five-cubic-foot flight canister. Vibration tests, acoustic tests, and high and low temperature tests were performed to quality the experiment for flight.

  6. NASA's Space Launch System Booster Passes Major Milestone on Journey to Mars (QM-2)

    NASA Image and Video Library

    2016-06-28

    A booster for the most powerful rocket in the world, NASA’s Space Launch System (SLS), was fired up Tuesday, June 28 at 11:05 a.m. EDT for a second qualification ground test at Orbital ATK's test facilities in Promontory, Utah. This was the last full-scale test for the booster before SLS is ready in 2018 for the first uncrewed test flight with NASA’s Orion spacecraft, marking a key milestone on the agency’s Journey to Mars. The booster was tested at a cold motor conditioning target of 40 degrees Fahrenheit –the colder end of its accepted propellant temperature range. When ignited, temperatures inside the booster reached nearly 6,000 degrees. The two-minute, full-duration ground qualification test provided NASA with critical data on 82 qualification objectives that will support certification of the booster for flight. Engineers now will evaluate test data captured by more than 530 instrumentation channels on the booster.

  7. 40 CFR 53.65 - Test procedure: Loading test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... performing the test in § 53.62 (full wind tunnel test), § 53.63 (wind tunnel inlet aspiration test), or § 53... particle delivery system shall consist of a static chamber or a low velocity wind tunnel having a.... The mean velocity in the test section of the static chamber or wind tunnel shall not exceed 2 km/hr...

  8. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEDESCHI AR; CORBETT JE; WILSON RA

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactivemore » species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.« less

  9. 49 CFR 383.95 - Restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... applicant either fails the air brake component of the knowledge test, or performs the skills test in a... the skills test and the restriction, air brakes include any braking system operating fully or partially on the air brake principle. (b) Full air brake. (1) If an applicant performs the skills test in a...

  10. Full power level development of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Colbo, H. I.

    1982-01-01

    Development of the Space Shuttle main engine for nominal operation at full power level (109 percent rated power) is continuing in parallel with the successful flight testing of the Space Transportation System. Verification of changes made to the rated power level configuration currently being flown on the Orbiter Columbia is in progress and the certification testing of the full power level configuration has begun. The certification test plan includes the accumulation of 10,000 seconds on each of two engines by early 1983. Certification testing includes the simulation of nominal mission duty cycles as well as the two abort thrust profiles: abort to orbit and return to launch site. Several of the certification tests are conducted at 111 percent power to demonstrate additional safety margins. In addition to the flight test and development program results, future plans for life demonstration and engine uprating will be discussed.

  11. Digital Platform for Wafer-Level MEMS Testing and Characterization Using Electrical Response

    PubMed Central

    Brito, Nuno; Ferreira, Carlos; Alves, Filipe; Cabral, Jorge; Gaspar, João; Monteiro, João; Rocha, Luís

    2016-01-01

    The uniqueness of microelectromechanical system (MEMS) devices, with their multiphysics characteristics, presents some limitations to the borrowed test methods from traditional integrated circuits (IC) manufacturing. Although some improvements have been performed, this specific area still lags behind when compared to the design and manufacturing competencies developed over the last decades by the IC industry. A complete digital solution for fast testing and characterization of inertial sensors with built-in actuation mechanisms is presented in this paper, with a fast, full-wafer test as a leading ambition. The full electrical approach and flexibility of modern hardware design technologies allow a fast adaptation for other physical domains with minimum effort. The digital system encloses a processor and the tailored signal acquisition, processing, control, and actuation hardware control modules, capable of the structure position and response analysis when subjected to controlled actuation signals in real time. The hardware performance, together with the simplicity of the sequential programming on a processor, results in a flexible and powerful tool to evaluate the newest and fastest control algorithms. The system enables measurement of resonant frequency (Fr), quality factor (Q), and pull-in voltage (Vpi) within 1.5 s with repeatability better than 5 ppt (parts per thousand). A full-wafer with 420 devices under test (DUTs) has been evaluated detecting the faulty devices and providing important design specification feedback to the designers. PMID:27657087

  12. Digital Platform for Wafer-Level MEMS Testing and Characterization Using Electrical Response.

    PubMed

    Brito, Nuno; Ferreira, Carlos; Alves, Filipe; Cabral, Jorge; Gaspar, João; Monteiro, João; Rocha, Luís

    2016-09-21

    The uniqueness of microelectromechanical system (MEMS) devices, with their multiphysics characteristics, presents some limitations to the borrowed test methods from traditional integrated circuits (IC) manufacturing. Although some improvements have been performed, this specific area still lags behind when compared to the design and manufacturing competencies developed over the last decades by the IC industry. A complete digital solution for fast testing and characterization of inertial sensors with built-in actuation mechanisms is presented in this paper, with a fast, full-wafer test as a leading ambition. The full electrical approach and flexibility of modern hardware design technologies allow a fast adaptation for other physical domains with minimum effort. The digital system encloses a processor and the tailored signal acquisition, processing, control, and actuation hardware control modules, capable of the structure position and response analysis when subjected to controlled actuation signals in real time. The hardware performance, together with the simplicity of the sequential programming on a processor, results in a flexible and powerful tool to evaluate the newest and fastest control algorithms. The system enables measurement of resonant frequency (Fr), quality factor (Q), and pull-in voltage (Vpi) within 1.5 s with repeatability better than 5 ppt (parts per thousand). A full-wafer with 420 devices under test (DUTs) has been evaluated detecting the faulty devices and providing important design specification feedback to the designers.

  13. The E-3 Test Facility at Stennis Space Center: Research and Development Testing for Cryogenic and Storable Propellant Combustion Systems

    NASA Technical Reports Server (NTRS)

    Pazos, John T.; Chandler, Craig A.; Raines, Nickey G.

    2009-01-01

    This paper will provide the reader a broad overview of the current upgraded capabilities of NASA's John C. Stennis Space Center E-3 Test Facility to perform testing for rocket engine combustion systems and components using liquid and gaseous oxygen, gaseous and liquid methane, gaseous hydrogen, hydrocarbon based fuels, hydrogen peroxide, high pressure water and various inert fluids. Details of propellant system capabilities will be highlighted as well as their application to recent test programs and accomplishments. Data acquisition and control, test monitoring, systems engineering and test processes will be discussed as part of the total capability of E-3 to provide affordable alternatives for subscale to full scale testing for many different requirements in the propulsion community.

  14. Flow Quality Measurements in the NASA Ames Upgraded 11-by 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Amaya, Max A.; Murthy, Sreedhara V.; George, M. W. (Technical Monitor)

    2000-01-01

    Among the many upgrades designed and implemented in the NASA Ames 11-by 11-Foot Transonic Wind Tunnel over the past few years, several directly affect flow quality in the test section: a turbulence reduction system with a honeycomb and two screens, a flow smoothing system in the back leg diffusers, an improved drive motor control system, and a full replacement set of composite blades for the compressor. Prior to the shut-down of the tunnel for construction activities, an 8-foot span rake populated with flow instrumentation was traversed in the test section to fully document the flow quality and establish a baseline against which the upgrades could be characterized. A similar set of measurements was performed during the recent integrated system test trials, but the scope was somewhat limited in accordance with the primary objective of such tests, namely to return the tunnel to a fully operational status. These measurements clearly revealed substantial improvements in flow angularity and significant reductions in turbulence level for both full-span and semi-span testing configurations, thus making the flow quality of the tunnel one of the best among existing transonic facilities.

  15. Energy Absorbing Seat System for an Agricultural Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jones, Lisa E. (Technical Monitor)

    2002-01-01

    A task was initiated to improve the energy absorption capability of an existing aircraft seat through cost-effective retrofitting, while keeping seat-weight increase to a minimum. This task was undertaken as an extension of NASA ongoing safety research and commitment to general aviation customer needs. Only vertical crash scenarios have been considered in this task which required the energy absorbing system to protect the seat occupant in a range of crash speeds up to 31 ft/sec. It was anticipated that, the forward and/or side crash accelerations could be attenuated with the aid of airbags, the technology of which is currently available in automobiles and military helicopters. Steps which were followed include, preliminary crush load determination, conceptual design of cost effective energy absorbers, fabrication and testing (static and dynamic) of energy absorbers, system analysis, design and fabrication of dummy seat/rail assembly, dynamic testing of dummy seat/rail assembly, and finally, testing of actual modified seat system with a dummy occupant. A total of ten full scale tests have been performed including three of the actual aircraft seat. Results from full-scale tests indicated that occupant loads were attenuated successfully to survivable levels.

  16. Instrumentation and data acquisition for full-scale aircraft crash testing

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E.; Fasanella, Edwin L.

    1993-01-01

    The Landing and Impact Dynamics Branch of the NASA Langley Research Center has been conducting full-scale aircraft crash tests since the 1970s. Using a pendulum method, aircraft are suspended by cables from a 240-ft high gantry and swung into the impact surface at various attitudes and velocities. Instrumentation for these tests include on-board high-speed cameras, strain gages, load cells, displacement transducers, and accelerometers. Transducers in the aircraft are hard-wired through a long umbilical cable to the data acquisition room. Up to 96 channels of data can be collected at a typical rate of 4000 samples per second. Data acquisition using an FM multiplexed analog system and a high-speed personal computer based digital system is described.

  17. Blade Deflection Measurements of a Full-Scale UH-60A Rotor System

    NASA Technical Reports Server (NTRS)

    Olson, Lawrence E.; Abrego, Anita; Barrows, Danny A.; Burner, Alpheus W.

    2010-01-01

    Blade deflection (BD) measurements using stereo photogrammetry have been made during the individual blade control (IBC) testing of a UH-60A 4-bladed rotor system in the 40 by 80-foot test section of the National Full-Scale Aerodynamic Complex (NFAC). Measurements were made in quadrants one and two, encompassing advance ratios from 0.15 to 0.40, thrust coefficient/solidities from 0.05 to 0.12 and rotor-system drive shaft angles from 0.0 to -9.6 deg. The experiment represents a significant step toward providing benchmark databases to be utilized by theoreticians in the development and validation of rotorcraft prediction techniques. In addition to describing the stereo measurement technique and reporting on preliminary measurements made to date, the intent of this paper is to encourage feedback from the rotorcraft community concerning continued analysis of acquired data and to solicit suggestions for improved test technique and areas of emphasis for measurements in the upcoming UH-60A Airloads test at the NFAC.

  18. Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.; Killpatrick, D. H.

    1976-01-01

    The results obtained in a program to evaluate dispersion-strengthened nickel-base alloys for use in a metallic radiative thermal protection system operating at surface temperatures to 1477 K for the space shuttle were presented. Vehicle environments having critical effects on the thermal protection system are defined; TD Ni-20Cr characteristics of material used in the current study are compared with previous results; cyclic load, temperature, and pressure effects on sheet material residual strength are investigated; the effects of braze reinforcement in improving the efficiency of spotwelded joints are evaluated; parametric studies of metallic radiative thermal protection systems are reported; and the design, instrumentation, and testing of full scale subsize heat shield panels in two configurations are described. Initial tests of full scale subsize panels included simulated meteoroid impact tests, simulated entry flight aerodynamic heating, programmed differential pressure loads and temperatures simulating mission conditions, and acoustic tests simulating sound levels experienced during boost flight.

  19. US-CERT Control System Center Input/Output (I/O) Conceputal Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-02-01

    This document was prepared for the US-CERT Control Systems Center of the National Cyber Security Division (NCSD) of the Department of Homeland Security (DHS). DHS has been tasked under the Homeland Security Act of 2002 to coordinate the overall national effort to enhance the protection of the national critical infrastructure. Homeland Security Presidential Directive HSPD-7 directs the federal departments to identify and prioritize critical infrastructure and protect it from terrorist attack. The US-CERT National Strategy for Control Systems Security was prepared by the NCSD to address the control system security component addressed in the National Strategy to Secure Cyberspace andmore » the National Strategy for the Physical Protection of Critical Infrastructures and Key Assets. The US-CERT National Strategy for Control Systems Security identified five high-level strategic goals for improving cyber security of control systems; the I/O upgrade described in this document supports these goals. The vulnerability assessment Test Bed, located in the Information Operations Research Center (IORC) facility at Idaho National Laboratory (INL), consists of a cyber test facility integrated with multiple test beds that simulate the nation's critical infrastructure. The fundamental mission of the Test Bed is to provide industry owner/operators, system vendors, and multi-agency partners of the INL National Security Division a platform for vulnerability assessments of control systems. The Input/Output (I/O) upgrade to the Test Bed (see Work Package 3.1 of the FY-05 Annual Work Plan) will provide for the expansion of assessment capabilities within the IORC facility. It will also provide capabilities to connect test beds within the Test Range and other Laboratory resources. This will allow real time I/O data input and communication channels for full replications of control systems (Process Control Systems [PCS], Supervisory Control and Data Acquisition Systems [SCADA], and components). This will be accomplished through the design and implementation of a modular infrastructure of control system, communications, networking, computing and associated equipment, and measurement/control devices. The architecture upgrade will provide a flexible patching system providing a quick ''plug and play''configuration through various communication paths to gain access to live I/O running over specific protocols. This will allow for in-depth assessments of control systems in a true-to-life environment. The full I/O upgrade will be completed through a two-phased approach. Phase I, funded by DHS, expands the capabilities of the Test Bed by developing an operational control system in two functional areas, the Science & Technology Applications Research (STAR) Facility and the expansion of various portions of the Test Bed. Phase II (see Appendix A), funded by other programs, will complete the full I/O upgrade to the facility.« less

  20. Rotor blade boundary layer measurement hardware feasibility demonstration

    NASA Technical Reports Server (NTRS)

    Clark, D. R.; Lawton, T. D.

    1972-01-01

    A traverse mechanism which allows the measurement of the three dimensional boundary layers on a helicopter rotor blade has been built and tested on a full scale rotor to full scale conditions producing centrifugal accelerations in excess of 400 g and Mach numbers of 0.6 and above. Boundary layer velocity profiles have been measured over a range of rotor speeds and blade collective pitch angles. A pressure scanning switch and transducer were also tested on the full scale rotor and found to be insensitive to centrifugal effects within the normal main rotor operating range. The demonstration of the capability to measure boundary layer behavior on helicopter rotor blades represents the first step toward obtaining, in the rotating system, data of a quality comparable to that already existing for flows in the fixed system.

  1. The Mars Science Laboratory Touchdown Test Facility

    NASA Technical Reports Server (NTRS)

    White, Christopher; Frankovich, John; Yates, Phillip; Wells Jr, George H.; Losey, Robert

    2009-01-01

    In the Touchdown Test Program for the Mars Science Laboratory (MSL) mission, a facility was developed to use a full-scale rover vehicle and an overhead winch system to replicate the Skycrane landing event.

  2. Electrochromic Radiator Coupon Level Testing and Full Scale Thermal Math Modeling for Use on Altair Lunar Lander

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik; Bannon, Erika; Bower, Chad

    2009-01-01

    In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system.. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat being rejected by a radiator. Coupon level tests were performed to test the feasibility of the technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios during a mission profile for Altair Lunar Lander. This paper summarizes results from coupon level tests as well as thermal math models developed to investigate how electrochromics can be used to provide the largest turn down ratio for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.

  3. Electrochromic Radiator Coupon Level Testing and Full Scale Thermal Math Modeling for Use on Altair Lunar Lander

    NASA Technical Reports Server (NTRS)

    Bannon, Erika T.; Bower, Chad E.; Sheth, Rubik; Stephan, Ryan

    2010-01-01

    In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat rejected by a radiator. Coupon level tests were performed to test the feasibility of this technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios encountered during a mission profile for the Altair Lunar Lander. This paper summarizes results from coupon level tests as well as the thermal math models developed to investigate how electrochromics can be used to increase turn down ratios for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.

  4. System identification of the JPL micro-precision interferometer truss - Test-analysis reconciliation

    NASA Technical Reports Server (NTRS)

    Red-Horse, J. R.; Marek, E. L.; Levine-West, M.

    1993-01-01

    The JPL Micro-Precision Interferometer (MPI) is a testbed for studying the use of control-structure interaction technology in the design of space-based interferometers. A layered control architecture will be employed to regulate the interferometer optical system to tolerances in the nanometer range. An important aspect of designing and implementing the control schemes for such a system is the need for high fidelity, test-verified analytical structural models. This paper focuses on one aspect of the effort to produce such a model for the MPI structure, test-analysis model reconciliation. Pretest analysis, modal testing, and model refinement results are summarized for a series of tests at both the component and full system levels.

  5. Systems safety monitoring using the National Full-Scale Aerodynamic Complex Bar Chart Monitor

    NASA Technical Reports Server (NTRS)

    Jung, Oscar

    1990-01-01

    Attention is given to the Bar Chart Monitor system designed for safety monitoring of all model and facility test-related articles in wind tunnels. The system's salient features and its integration into the data acquisition system are discussed.

  6. Space Laboratory on a Table Top: A Next Generative ECLSS design and diagnostic tool

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    2005-01-01

    This paper describes the development plan for a comprehensive research and diagnostic tool for aspects of advanced life support systems in space-based laboratories. Specifically it aims to build a high fidelity tabletop model that can be used for the purpose of risk mitigation, failure mode analysis, contamination tracking, and testing reliability. We envision a comprehensive approach involving experimental work coupled with numerical simulation to develop this diagnostic tool. It envisions a 10% scale transparent model of a space platform such as the International Space Station that operates with water or a specific matched index of refraction liquid as the working fluid. This allows the scaling of a 10 ft x 10 ft x 10 ft room with air flow to 1 ft x 1 ft x 1 ft tabletop model with water/liquid flow. Dynamic similitude for this length scale dictates model velocities to be 67% of full-scale and thereby the time scale of the model to represent 15% of the full- scale system; meaning identical processes in the model are completed in 15% of the full- scale-time. The use of an index matching fluid (fluid that matches the refractive index of cast acrylic, the model material) allows making the entire model (with complex internal geometry) transparent and hence conducive to non-intrusive optical diagnostics. So using such a system one can test environment control parameters such as core flows (axial flows), cross flows (from registers and diffusers), potential problem areas such as flow short circuits, inadequate oxygen content, build up of other gases beyond desirable levels, test mixing processes within the system at local nodes or compartments and assess the overall system performance. The system allows quantitative measurements of contaminants introduced in the system and allows testing and optimizing the tracking process and removal of contaminants. The envisaged system will be modular and hence flexible for quick configuration change and subsequent testing. The data and inferences from the tests will allow for improvements in the development and design of next generation life support systems and configurations. Preliminary experimental and modeling work in this area will be presented. This involves testing of a single inlet-exit model with detailed 3-D flow visualization and quantitative diagnostics and computational modeling of the system.

  7. Affordable Development and Optimization of CERMET Fuels for NTP Ground Testing

    NASA Technical Reports Server (NTRS)

    Hickman, Robert R.; Broadway, Jeramie W.; Mireles, Omar R.

    2014-01-01

    CERMET fuel materials for Nuclear Thermal Propulsion (NTP) are currently being developed at NASA's Marshall Space Flight Center. The work is part of NASA's Advanced Space Exploration Systems Nuclear Cryogenic Propulsion Stage (NCPS) Project. The goal of the FY12-14 project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of an NTP system. A key enabling technology for an NCPS system is the fabrication of a stable high temperature nuclear fuel form. Although much of the technology was demonstrated during previous programs, there are currently no qualified fuel materials or processes. The work at MSFC is focused on developing critical materials and process technologies for manufacturing robust, full-scale CERMET fuels. Prototypical samples are being fabricated and tested in flowing hot hydrogen to understand processing and performance relationships. As part of this initial demonstration task, a final full scale element test will be performed to validate robust designs. The next phase of the project will focus on continued development and optimization of the fuel materials to enable future ground testing. The purpose of this paper is to provide a detailed overview of the CERMET fuel materials development plan. The overall CERMET fuel development path is shown in Figure 2. The activities begin prior to ATP for a ground reactor or engine system test and include materials and process optimization, hot hydrogen screening, material property testing, and irradiation testing. The goal of the development is to increase the maturity of the fuel form and reduce risk. One of the main accomplishmens of the current AES FY12-14 project was to develop dedicated laboratories at MSFC for the fabrication and testing of full length fuel elements. This capability will enable affordable, near term development and optimization of the CERMET fuels for future ground testing. Figure 2 provides a timeline of the development and optimization tasks for the AES FY15-17 follow on program.

  8. Develop and test fuel cell powered on-site integrated total energy systems. Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    Feigenbaum, H.; Kaufman, A.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1983-01-01

    Operating experience with a 5kW methanol-air integrated system is described. On-going test results for a 24-cell, two-sq ft (4kW) stack are reported. The main activity for this stack is currently the evaluation of developmental non-metalic cooling plates. Single-cell test results are presented for a promising developmental cathode catalyst.

  9. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80- by 120-Foot Wind Tunnel. Vol. 1

    NASA Technical Reports Server (NTRS)

    Shinoda, Patrick M.

    1996-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.

  10. Variations in laser energy outputs over a series of simulated treatments.

    PubMed

    Lister, T S; Brewin, M P

    2014-10-01

    Test patches are routinely employed to determine the likely efficacy and the risk of adverse effects from cutaneous laser treatments. However, the degree to which these represent a full treatment has not been investigated in detail. This study aimed to determine the variability in pulse-to-pulse output energy from a representative selection of cutaneous laser systems in order to assess the value of laser test patches. The output energies of each pulse from seven cutaneous laser systems were measured using a pyroelectric measurement head over a 2-h period, employing a regime of 10-min simulated treatments followed by a 5-min rest period (between patients). Each laser system appeared to demonstrate a different pattern of variation in output energy per pulse over the period measured. The output energies from a range of cutaneous laser systems have been shown to vary considerably between a representative test patch and a full treatment, and over the course of an entire simulated clinic list. © 2014 British Association of Dermatologists.

  11. Optical properties of current ceramics systems for laminate veneers.

    PubMed

    Bagis, Bora; Turgut, Sedanur

    2013-08-01

    Full-ceramic systems can be produced by different techniques (layering, heatpressing, CAD/CAM) and have various compositions with different crystalline contents that may affect the optical properties of laminate restorations. A total of 60 specimens were prepared from e.max Press, e.max CAD, Empress Esthetic, e.max Ceram, Inline, and ZirPress systems (A1 shade; diameter 10mm; thickness 0.5 ± 0.05mm). The L*, a*, and b* values, chroma and translucency (TP) of each system were recorded before and after ageing. The statistical analyses were performed by ANOVA, Tukey's tests and the paired sample t-test (p<0.05). The L* value of the shade guide was significantly different from those of the full-ceramic systems; however, there were no significant differences between the a* values of Ceram, Esthetic, Inline and Zirpress. There were significant differences between the b* values of the shade guide compared with the full-ceramics except for e.max Press. The L* values decreased, and the a* and b* values increased after the ageing process for all groups. There were no significant differences between the ΔE values of the ceramic systems (p>0.05). The TP values decreased, and the chroma value increased significantly after the ageing process (p>0.05). The chroma of the shade guide was found to be the highest. None of the full-ceramic systems was able to match the color of the shade guide. The chemical structures of the ceramic systems were more effective for determining the optical parameters than the fabrication techniques. Ageing caused full-ceramics to become more opaque, darker, reddish and yellowish. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staunton, R. H.; Ayers, C. W.; Marlino, L. D.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200–1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economymore » compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) – Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available. This report summarizes vehicle-level and subsystem-level test results obtained for the 2004 Prius and various electrical and mechanical subassemblies of its hybrid electric drive system. The primary objective of these tests was to (1) characterize the electrical and mechanical performance of the 2004 Prius, and (2) map the performance of the inverter/motor system over the full design speed and load ranges.« less

  13. Addressing case specific biogas plant tasks: industry oriented methane yields derived from 5L Automatic Methane Potential Test Systems in batch or semi-continuous tests using realistic inocula, substrate particle sizes and organic loading.

    PubMed

    Kolbl, Sabina; Paloczi, Attila; Panjan, Jože; Stres, Blaž

    2014-02-01

    The primary aim of the study was to develop and validate an in-house upscale of Automatic Methane Potential Test System II for studying real-time inocula and real-scale substrates in batch, codigestion and enzyme enhanced hydrolysis experiments, in addition to semi-continuous operation of the developed equipment and experiments testing inoculum functional quality. The successful upscale to 5L enabled comparison of different process configurations in shorter preparation times with acceptable accuracy and high-through put intended for industrial decision making. The adoption of the same scales, equipment and methodologies in batch and semi-continuous tests mirroring those at full scale biogas plants resulted in matching methane yields between the two laboratory tests and full-scale, confirming thus the increased decision making value of the approach for industrial operations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT; UV DISINFECTION FOR REUSE APPLICATION, AQUIONICS, INC. BERSONINLINE 4250 UV SYSTEM

    EPA Science Inventory

    Verification testing of the Aquionics, Inc. bersonInLine® 4250 UV System to develop the UV delivered dose flow relationship was conducted at the Parsippany-Troy Hills Wastewater Treatment Plant test site in Parsippany, New Jersey. Two full-scale reactors were mounted in series. T...

  15. Spaceport Command and Control System Automation Testing

    NASA Technical Reports Server (NTRS)

    Plano, Tom

    2017-01-01

    The goal of automated testing is to create and maintain a cohesive infrastructure of robust tests that could be run independently on a software package in its entirety. To that end, the Spaceport Command and Control System (SCCS) project at the National Aeronautics and Space Administration's (NASA) Kennedy Space Center (KSC) has brought in a large group of interns to work side-by-side with full time employees to do just this work. Thus, our job is to implement the tests that will put SCCS through its paces.

  16. OB's high voltage laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1966-01-01

    The January issue of Hi-Tension News provides a detailed description of the advanced surge test facilities and procedures in daily operation at the OB High Voltage Laboratory in Barberton, Ohio. Technical competences achieved in this laboratory contribute to the essential factors of design confirmation to basic studies of ehv insulation systems, conductor and hardware performance, and optimum tower construction. Known throughout the industry for authenticity of its full scale, all weather outdoor testing, OB's High Voltage Laboratory is a full-fledged participant in the NEMA-sponsored program to make testing facilities available on a cooperative basis.

  17. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Test act system description

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The engineering and fabrication of the test ACT system, produced in the third program element of the IAAC Project is documented. The system incorporates pitch-augmented stability and wing-load alleviation, plus full authority fly-by-wire control of the elevators. The pitch-augmented stability is designed to have reliability sufficient to allow flight with neutral or negative inherent longitudinal stability.

  18. Overview of the Space Launch System Ascent Aeroacoustic Environment Test Program

    NASA Technical Reports Server (NTRS)

    Herron, Andrew J.; Crosby, William A.; Reed, Darren K.

    2016-01-01

    Characterization of accurate flight vehicle unsteady aerodynamics is critical for component and secondary structure vibroacoustic design. The Aerosciences Branch at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center has conducted a test at the NASA Ames Research Center (ARC) Unitary Plan Wind Tunnels (UPWT) to determine such ascent aeroacoustic environments for the Space Launch System (SLS). Surface static pressure measurements were also collected to aid in determination of local environments for venting, CFD substantiation, and calibration of the flush air data system located on the launch abort system. Additionally, this test supported a NASA Engineering and Safety Center study of alternate booster nose caps. Testing occurred during two test campaigns: August - September 2013 and December 2013 - January 2014. Four primary model configurations were tested for ascent aeroacoustic environment definition. The SLS Block 1 vehicle was represented by a 2.5% full stack model and a 4% truncated model. Preliminary Block 1B payload and manned configurations were also tested, using 2.5% full stack and 4% truncated models respectively. This test utilized the 11 x 11 foot transonic and 9 x 7 foot supersonic tunnel sections at the ARC UPWT to collect data from Mach 0.7 through 2.5 at various total angles of attack. SLS Block 1 design environments were developed primarily using these data. SLS Block 1B preliminary environments have also been prepared using these data. This paper discusses the test and analysis methodology utilized, with a focus on the unsteady data collection and processing.

  19. Full-Scale System for Quantifying Leakage of Docking System Seals for Space Applications

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Daniels, Christopher C.; Steinetz, Bruce M.; Erker, Arthur H.; Robbie, Malcolm G.; Wasowski, Janice L.; Drlik, Gary J.; Tong, Michael T.; Penney, Nicholas

    2007-01-01

    NASA is developing a new docking and berthing system to support future space exploration missions to low-Earth orbit, the Moon, and Mars. This mechanism, called the Low Impact Docking System, is designed to connect pressurized space vehicles and structures. NASA Glenn Research Center is playing a key role in developing advanced technology for the main interface seal for this new docking system. The baseline system is designed to have a fully androgynous mating interface, thereby requiring a seal-on-seal configuration when two systems mate. These seals will be approximately 147 cm (58 in.) in diameter. NASA Glenn has designed and fabricated a new test fixture which will be used to evaluate the leakage of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. This includes testing under seal-on-seal or seal-on-plate configurations, temperatures from -50 to 50 C (-58 to 122 F), operational and pre-flight checkout pressure gradients, and vehicle misalignment (plus or minus 0.381 cm (0.150 in.)) and gapping (up to 0.10 cm (0.040 in.)) conditions. This paper describes the main design features of the test rig and techniques used to overcome some of the design challenges.

  20. Active transmission isolation/rotor loads measurement system

    NASA Technical Reports Server (NTRS)

    Kenigsberg, I. J.; Defelice, J. J.

    1973-01-01

    Modifications were incorporated into a helicopter active transmission isolation system to provide the capability of utilizing the system as a rotor force measuring device. These included; (1) isolator redesign to improve operation and minimize friction, (2) installation of pressure transducers in each isolator, and (3) load cells in series with each torque restraint link. Full scale vibration tests performed during this study on a CH-53A helicopter airframe verified that these modifications do not degrade the systems wide band isolation characteristics. Bench tests performed on each isolator unit indicated that steady and transient loads can be measured to within 1 percent of applied load. Individual isolator vibratory load measurement accuracy was determined to be 4 percent. Load measurement accuracy was found to be independent of variations in all basic isolator operating characteristics. Full scale system load calibration tests on the CH-53A airframe established the feasibility of simultaneously providing wide band vibration isolation and accurate measurement of rotor loads. Principal rotor loads (lift, propulsive force, and torque) were measured to within 2 percent of applied load.

  1. SIRTF primary mirror design, analysis, and testing

    NASA Technical Reports Server (NTRS)

    Sarver, George L., III; Maa, Scott; Chang, LI

    1990-01-01

    The primary mirror assembly (PMA) requirements and concepts for the Space Infrared Telescope Facility (SIRTF) program are discussed. The PMA studies at NASA/ARC resulted in the design of two engineering test articles, the development of a mirror mount cryogenic static load testing system, and the procurement and partial testing of a full scale spherical mirror mounting system. Preliminary analysis and testing of the single arch mirror with conical mount design and the structured mirror with the spherical mount design indicate that the designs will meet all figure and environmental requirements of the SIRTF program.

  2. Aeroacoustic Validation of Installed Low Noise Propulsion for NASA's N+2 Supersonic Airliner

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2018-01-01

    An aeroacoustic test was conducted at NASA Glenn Research Center on an integrated propulsion system designed to meet noise regulations of ICAO Chapter 4 with 10EPNdB cumulative margin. The test had two objectives: to demonstrate that the aircraft design did meet the noise goal, and to validate the acoustic design tools used in the design. Variations in the propulsion system design and its installation were tested and the results compared against predictions. Far-field arrays of microphones measured the acoustic spectral directivity, which was transformed to full scale as noise certification levels. Phased array measurements confirmed that the shielding of the installation model adequately simulated the full aircraft and provided data for validating RANS-based noise prediction tools. Particle image velocimetry confirmed that the flow field around the nozzle on the jet rig mimicked that of the full aircraft and produced flow data to validate the RANS solutions used in the noise predictions. The far-field acoustic measurements confirmed the empirical predictions for the noise. Results provided here detail the steps taken to ensure accuracy of the measurements and give insights into the physics of exhaust noise from installed propulsion systems in future supersonic vehicles.

  3. Slope Stability of Geosynthetic Clay Liner Test Plots

    EPA Science Inventory

    Fourteen full-scale field test plots containing five types of geosynthetic clay liners (GCLs) were constructed on 2H:IV and 3H:IV slopes for the purpose of assessing slope stability. The test plots were designed to simulate typical final cover systems for landfill. Slides occurr...

  4. Optimization of a pavement instrumentation plan for a full-scale test road : evaluation.

    DOT National Transportation Integrated Search

    2014-04-01

    A 2.5-mile, concrete test road is planned for construction by the Florida Department of Transportation (FDOT) in : 2016. To support the goals of the test road, a comprehensive instrumentation system is required to provide : reliable data over a long ...

  5. Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas

    2011-01-01

    Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements

  6. Comparison of flight results with digital simulation for a digital electronic engine control in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1983-01-01

    Substantial benefits of a full authority digital electronic engine control on an air breathing engine were demonstrated repeatedly in simulation studies, ground engine tests, and engine altitude test facilities. A digital engine electronic control system showed improvements in efficiency, performance, and operation. An additional benefit of full authority digital controls is the capability of detecting and correcting failures and providing engine health diagnostics.

  7. High-temperature deformation field measurement by combining transient aerodynamic heating simulation system and reliability-guided digital image correlation

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Wu, Dafang; Xia, Yong

    2010-09-01

    To determine the full-field high-temperature thermal deformation of the structural materials used in high-speed aerospace flight vehicles, a novel non-contact high-temperature deformation measurement system is established by combining transient aerodynamic heating simulation device with the reliability-guided digital image correlation (RG-DIC). The test planar sample with size varying from several mm 2 to several hundreds mm 2 can be heated from room temperature to 1100 °C rapidly and accurately using the infrared radiator of the transient aerodynamic heating simulation system. The digital images of the test sample surface at various temperatures are recorded using an ordinary optical imaging system. To cope with the possible local decorrelated regions caused by black-body radiation within the deformed images at the temperatures over 450 °C, the RG-DIC technique is used to extract full-field in-plane thermal deformation from the recorded images. In validation test, the thermal deformation fields and the values of coefficient of thermal expansion (CTEs) of a chromiumnickel austenite stainless steel sample from room temperature to 550 °C is measured and compared with the well-established handbook value, confirming the effectiveness and accuracy of the proposed technique. The experimental results reveal that the present system using an ordinary optical imaging system, is able to accurately measure full-field thermal deformation of metals and alloys at temperatures not exceeding 600 °C.

  8. A 200kW central receiver CPV system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasich, John, E-mail: jbl@raygen.com; Thomas, Ian, E-mail: ithomas@raygen.com; Hertaeg, Wolfgang

    2015-09-28

    Raygen Resources has recently completed a Central Receiver CPV (CSPV) pilot plant in Central Victoria, Australia. The system is under final commissioning and initial operation is expected in late April 2015. The pilot demonstrates a full scale CSPV repeatable unit in a form that is representative of a commercial product and provides a test bed to prove out performance and reliability of the CSPV technology. Extensive testing of the system key components: dense array module, wireless solar powered heliostat and control system has been performed in the laboratory and on sun. Results from this key component testing are presented herein.

  9. Centaur space vehicle pressurized propellant feed system tests

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Engine firing tests, using a full-scale flight-weight vehicle, were performed to evaluate a pressurized propellant feed system for the Centaur. The pressurant gases used were helium and hydrogen. The system was designed to replace the boost pumps currently used on Centaur. Two liquid oxygen tank pressurization modes were studied: (1) directly into the ullage and (2) below the propellant surface. Test results showed the two Centaur RL10 engines could be started and run over the range of expected flight variables. No system instabilities were encountered. Measured pressurization gas quantities agreed well with analytically predicted values.

  10. Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise

    2016-01-01

    A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.

  11. Louisiana experimental base project : interim report No. 1.

    DOT National Transportation Integrated Search

    1979-11-01

    The Louisiana Experimental Base Project is a research study evaluating the design/performance characteristics of three types of base courses as incorporated into comparable flexible pavement systems on a full-scale test road. Fourteen different test ...

  12. The Max Launch Abort System - Concept, Flight Test, and Evolution

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) is an independent engineering analysis and test organization providing support across the range of NASA programs. In 2007 NASA was developing the launch escape system for the Orion spacecraft that was evolved from the traditional tower-configuration escape systems used for the historic Mercury and Apollo spacecraft. The NESC was tasked, as a programmatic risk-reduction effort to develop and flight test an alternative to the Orion baseline escape system concept. This project became known as the Max Launch Abort System (MLAS), named in honor of Maxime Faget, the developer of the original Mercury escape system. Over the course of approximately two years the NESC performed conceptual and tradeoff analyses, designed and built full-scale flight test hardware, and conducted a flight test demonstration in July 2009. Since the flight test, the NESC has continued to further develop and refine the MLAS concept.

  13. The Location GNSS Modules for the Components of Proteus System

    NASA Astrophysics Data System (ADS)

    Brzostowski, K.; Darakchiev, R.; Foks-Ryznar, A.; Sitek, P.

    2012-01-01

    The Proteus system - the Integrated Mobile System for Counterterrorism and Rescue Operations is a complex innovative project. To assure the best possible localization of mobile components of the system, many different Global Navigation Satellite System (GNSS) modules were taken into account. In order to chose the best solution many types of tests were done. Full results and conclusions are presented in this paper. The idea of measurements was to test modules in GPS Standard Positioning Service (SPS) with EGNOS system specification according to certain algorithms. The tests had to answer the question: what type of GNSS modules should be used on different components with respect to specific usage of Proteus system. The second goal of tests was to check the solution quality of integrated GNSS/INS (Inertial Navigation System) and its possible usage in some Proteus system components.

  14. Passive detection of vehicle loading

    NASA Astrophysics Data System (ADS)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Salvaggio, Philip S.; McKeown, Donald M.; Garrett, Alfred J.; Coleman, David H.; Koffman, Larry D.

    2012-01-01

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  15. Measuring the Internal Environment of Solid Rocket Motors During Ignition

    NASA Technical Reports Server (NTRS)

    Weisenberg, Brent; Smith, Doug; Speas, Kyle; Corliss, Adam

    2003-01-01

    A new instrumentation system has been developed to measure the internal environment of solid rocket test motors during motor ignition. The system leverages conventional, analog gages with custom designed, electronics modules to provide safe, accurate, high speed data acquisition capability. To date, the instrumentation system has been demonstrated in a laboratory environment and on subscale static fire test motors ranging in size from 5-inches to 24-inches in diameter. Ultimately, this system is intended to be installed on a full-scale Reusable Solid Rocket Motor. This paper explains the need for the data, the components and capabilities of the system, and the test results.

  16. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) was constructed to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test the performance of a complete solar heating and cooling system, (3) investigate component interactions, and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is printed along with the objectives, test approach, expected system performance, and some preliminary results.

  17. Response of a 2-story test-bed structure for the seismic evaluation of nonstructural systems

    NASA Astrophysics Data System (ADS)

    Soroushian, Siavash; Maragakis, E. "Manos"; Zaghi, Arash E.; Rahmanishamsi, Esmaeel; Itani, Ahmad M.; Pekcan, Gokhan

    2016-03-01

    A full-scale, two-story, two-by-one bay, steel braced-frame was subjected to a number of unidirectional ground motions using three shake tables at the UNR-NEES site. The test-bed frame was designed to study the seismic performance of nonstructural systems including steel-framed gypsum partition walls, suspended ceilings and fire sprinkler systems. The frame can be configured to perform as an elastic or inelastic system to generate large floor accelerations or large inter story drift, respectively. In this study, the dynamic performance of the linear and nonlinear test-beds was comprehensively studied. The seismic performance of nonstructural systems installed in the linear and nonlinear test-beds were assessed during extreme excitations. In addition, the dynamic interactions of the test-bed and installed nonstructural systems are investigated.

  18. iLIDS Simulations and Videos for Docking TIM

    NASA Technical Reports Server (NTRS)

    Lewis, James L.

    2010-01-01

    The video shows various aspects of the International Low Impact Docking System, including team members, some production, configuration, mated androgynous iLIDS, SCS Lockdown system, thermal analysis, electrical engineering aspects, the iLIDS control box and emulator, radiation testing at BNL, component environmental testing, component vibration testing, 3G processor board delivery system, GTA vibe test, EMA testbed, hook and hook disassembly, flex shaftdrive assembly, GSE cradle MISSE-6 Columbus, MISSE 6 and 7 seal experiments, actuated full scale seal test rig, LIDS on Hubble, dynamics test prep, EDU 54 mass emulation and SCS, load ring characterization, 6DOF proof test, SCS at 6DOF, machining EEMS and inner ring assembly, APAS assembly, inner ring fitting, rotation stand assembly, EEMS mating, and EEMS proof of concept demonstration.

  19. Development of a Work Control System for Propulsion Testing at NASA Stennis

    NASA Technical Reports Server (NTRS)

    Messer, Elizabeth A.

    2005-01-01

    In 1996 Stennis Space Center was given management authority for all Propulsion Testing for NASA. Over the next few years several research and development (R&D) test facilities were completed and brought up to full operation in what is known as the E-Complex Test Facility at Stennis Space Center. To construct, activate and operate these test facilities, a manual paper-based work control system was created. After utilizing this paper-based work control system for approximately three years, it became apparent that the research and development test area needed a better method to execute, monitor, and report on tasks required to further propulsion testing. The paper based system did not provide the engineers adequate visibility into work tasks or the tracking of testing or hardware discrepancies. This system also restricted the engineer s ability to utilize and access past knowledge and experiences given the severe schedule limitations for most R&D propulsion testing projects. Therefore a system was developed to meet the growing need of Test Operations called the Propulsion Test Directorate (PTD) Work Control System. This system is used to plan, perform, and track tasks that support testing and also to capture lessons learned while doing so.

  20. USB environment measurements based on full-scale static engine ground tests

    NASA Technical Reports Server (NTRS)

    Sussman, M. B.; Harkonen, D. L.; Reed, J. B.

    1976-01-01

    Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle, and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons.

  1. The Importance of Detailed Component Simulations in the Feedsystem Development for a Two-Stage-to Orbit Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Mazurkivich, Pete; Chandler, Frank; Grayson, Gary

    2005-01-01

    To meet the requirements for the 2nd Generation Reusable Launch Vehicle (RLV), a unique propulsion feed system concept was identified using crossfeed between the booster and orbiter stages that could reduce the Two-Stage-to-Orbit (TSTO) vehicle weight and development cost by approximately 25%. A Main Propulsion System (MPS) crossfeed water demonstration test program was configured to address all the activities required to reduce the risks for the MPS crossfeed system. A transient, one-dimensional system simulation was developed for the subscale crossfeed water flow tests. To ensure accurate representation of the crossfeed valve's dynamics in the system model, a high-fidelity, three-dimensional, computational fluid-dynamics (CFD) model was employed. The results from the CFD model were used to specify the valve's flow characteristics in the system simulation. This yielded a crossfeed system model that was anchored to the specific valve hardware and achieved good agreement with the measured test data. These results allowed the transient models to be correlated and validated and used for full scale mission predictions. The full scale model simulations indicate crossfeed is ' viable with the system pressure disturbances at the crossfeed transition being less than experienced by the propulsion system during engine start and shutdown transients.

  2. Design, Development, Pre-Testing and Preparation for Full Scale Cold Testing of a System for Field Remediation of Vertical Pipe Units at the Hanford Site 618-10 Burial Grounds -12495

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halliwell, Stephen

    2012-07-01

    At the Hanford site, in the 1950's and 60's, radioactive waste materials, including Transuranic (TRU) wastes from a number of laboratories were stored in vertical pipe units (VPUs) in what are now the 618-10 and 618-11 burial grounds. Although the current physical condition of the VPUs is unknown, initial R and D studies had shown that in-ground size reduction and stabilization of VPU contents was feasible. This paper describes the R and D work and testing activities to validate the concept of in-ground size reduction and stabilization of VPU contents, and the design and pre-testing of major plant items andmore » augering systems on full size simulated VPUs. The paper also describes the full size prototype equipment which will be used in full size cold testing of simulated VPUs off the Hanford site, to prove the equipment, develop operating procedures, and train operators prior to deployment on site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. (authors)« less

  3. Fastrac Nozzle Design, Performance and Development

    NASA Technical Reports Server (NTRS)

    Peters, Warren; Rogers, Pat; Lawrence, Tim; Davis, Darrell; DAgostino, Mark; Brown, Andy

    2000-01-01

    With the goal of lowering the cost of payload to orbit, NASA/MSFC (Marshall Space Flight Center) researched ways to decrease the complexity and cost of an engine system and its components for a small two-stage booster vehicle. The composite nozzle for this Fastrac Engine was designed, built and tested by MSFC with fabrication support and engineering from Thiokol-SEHO (Science and Engineering Huntsville Operation). The Fastrac nozzle uses materials, fabrication processes and design features that are inexpensive, simple and easily manufactured. As the low cost nozzle (and injector) design matured through the subscale tests and into full scale hot fire testing, X-34 chose the Fastrac engine for the propulsion plant for the X-34. Modifications were made to nozzle design in order to meet the new flight requirements. The nozzle design has evolved through subscale testing and manufacturing demonstrations to full CFD (Computational Fluid Dynamics), thermal, thermomechanical and dynamic analysis and the required component and engine system tests to validate the design. The Fastrac nozzle is now in final development hot fire testing and has successfully accumulated 66 hot fire tests and 1804 seconds on 18 different nozzles.

  4. Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo; Romander, Ethan A.; Norman, Thomas R.

    2010-01-01

    A full-scale wind tunnel test was recently conducted (March 2009) in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-FootWind Tunnel to evaluate the potential of an individual blade control (IBC) system to improve rotor performance and reduce vibrations, loads, and noise for a UH-60A rotor system [1]. This test was the culmination of a long-termcollaborative effort between NASA, U.S. Army, Sikorsky Aircraft Corporation, and ZF Luftfahrttechnik GmbH (ZFL) to demonstrate the benefits of IBC for a UH-60Arotor. Figure 1 shows the UH-60Arotor and IBC system mounted on the NFAC Large Rotor Test Apparatus (LRTA). The IBC concept used in the current study utilizes actuators placed in the rotating frame, one per blade. In particular, the pitch link of the rotor blade was replacedwith an actuator, so that the blade root pitch can be changed independently. This concept, designed for a full-scale UH-60A rotor, was previously tested in the NFAC 80- by 120-FootWind Tunnel in September 2001 at speeds up to 85 knots [2]. For the current test, the same UH-60A rotor and IBC system were tested in the 40- by 80-FootWind Tunnel at speeds up to 170 knots. Figure 2 shows the servo-hydraulic IBC actuator installed between the swashplate and the blade pitch horn. Although previous wind tunnel experiments [3, 4] and analytical studies on IBC [5, 6] have shown the promise to improve the rotor s performance, in-depth correlation studies have not been performed. Thus, the current test provides a unique resource that can be used to assess the accuracy and reliability of prediction methods and refine theoretical models, with the ultimate goal of providing the technology for timely and cost-effective design and development of new rotors. In this paper, rotor performance and loads calculations are carried out using the analyses CAMRAD II and coupled OVERFLOW-2/CAMRAD II and the results are compared with these UH-60A/IBC wind tunnel test data.

  5. Develop and test fuel cell powered on-site integrated total energy system. Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1981-01-01

    An integrated 5 kW power system based upon methanol fuel and a phosphoric acid fuel cell operating at about 473 K is described. Description includes test results of advanced fuel cell catalysts, a semiautomatic acid replenishment system and a completed 5 kW methanol/system reformer. The results of a preliminary system test on a reformer/stack/inverter combination are reported. An initial design for a 25 kW stack is presented. Experimental plans are outlined for data acquisition necessary for design of a 50 kW methanol/steam reformer. Activities related to complete mathematical modelling of the integrated power system, including wasteheat utilization, are described.

  6. A NASA technician paints NASA's first Orion full-scale abort flight test crew module.

    NASA Image and Video Library

    2008-03-31

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  7. Sporting a fresh paint job, NASA's first Orion full-scale abort flight test crew module awaits avionics and other equipment installation.

    NASA Image and Video Library

    2008-04-01

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  8. RS-25 Engines Powered to Highest Level Ever During Stennis Test

    NASA Image and Video Library

    2018-02-21

    Operators powered NASA’s Space Launch System (SLS) engine to 113 percent thrust level, the highest RS-25 power level yet achieved, for 50 seconds of a 260-second test on February 21 at Stennis Space Center. This was the third full-duration test conducted on the A-1 Test Stand at Stennis this year.

  9. RS-25 Engines Powered to Highest Level Ever during Stennis Test

    NASA Image and Video Library

    2018-02-21

    Operators powered NASA’s Space Launch System (SLS) engine to 113 percent thrust level, the highest RS-25 power level yet achieved, for 50 seconds of a 260-second test on February 21 at Stennis Space Center. This was the third full-duration test conducted on the A-1 Test Stand at Stennis this year.

  10. Enabling UAS Research at the NASA EAV Laboratory

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey A.

    2015-01-01

    The Exploration Aerial Vehicles (EAV) Laboratory at NASA Ames Research Center leads research into intelligent autonomy and advanced control systems, bridging the gap between simulation and full-scale technology through flight test experimentation on unmanned sub-scale test vehicles.

  11. James Webb Space Telescope: Frequently Asked Questions for Scientists and Engineers

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2008-01-01

    JWST will be tested incrementally during its construction, starting with individual mirrors and instruments (including cameras and spectrometers) and building up to the full observatory. JWST's mirrors and the telescope structure are first each tested individually, including optical testing of the mirrors and alignment testing of the structure inside a cold thermal-vacuum chamber. The mirrors are then installed on the telescope structure in a clean room at Goddard Space Flight Center (GSFC). In parallel to the telescope assembly and alignment, the instruments are being built and tested, again first individually, and then as part of an integrated instrument assembly. The integrated instrument assembly will be tested in a thermal-vacuum chamber at GSFC using an optical simulator of the telescope. This testing makes sure the instruments are properly aligned relative to each other and also provides an independent check of the individual tests. After both the telescope and the integrated instrument module are successfully assembled, the integrated instrument module will be installed onto the telescope, and the combined system will be sent to Johnson Space Flight Center (JSC) where it will be optically tested in one of the JSC chambers. The process includes testing the 18 primary mirror segments acting as a single primary mirror, and testing the end-to-end system. The final system test will assure that the combined telescope and instruments are focused and aligned properly, and that the alignment, once in space, will be within the range of the actively controlled optics. In general, the individual optical tests of instruments and mirrors are the most accurate. The final system tests provide a cost-effective check that no major problem has occurred during assembly. In addition, independent optical checks of earlier tests will be made as the full system is assembled, providing confidence that there are no major problems.

  12. Flight test results for the Digital Integrated Automatic Landing Systems (DIALS): A modern control full-state feedback design

    NASA Technical Reports Server (NTRS)

    Hueschen, R. M.

    1984-01-01

    The Digital Integrated Automatic Landing System (DIALS) is discussed. The DIALS is a modern control theory design performing all the maneuver modes associated with current autoland systems: localizer capture and track, glideslope capture and track, decrab, and flare. The DIALS is an integrated full-state feedback system which was designed using direct-digital methods. The DIALS uses standard aircraft sensors and the digital Microwave Landing System (MLS) signals as measurements. It consists of separately designed longitudinal and lateral channels although some cross-coupling variables are fed between channels for improved state estimates and trajectory commands. The DIALS was implemented within the 16-bit fixed-point flight computers of the ATOPS research aircraft, a small twin jet commercial transport outfitted with a second research cockpit and a fly-by-wire system. The DIALS became the first modern control theory design to be successfully flight tested on a commercial-type aircraft. Flight tests were conducted in late 1981 using a wide coverage MLS on Runway 22 at Wallops Flight Center. All the modes were exercised including the capture and track of steep glidescopes up to 5 degrees.

  13. Joint Space Operations Center (JSpOC) Mission System Increment 2 (JMS Inc 2)

    DTIC Science & Technology

    2016-03-01

    Defense Acquisition Executive DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY...date has slipped from September 2016 to December 2016 and FDD has slipped from October 2016 to March 2017 since the last MAIS Annual Report...testing. This added test time, in combination with funding reductions and the US Government furlough and shutdown in FY13, caused a total FDD slip

  14. Advanced E-O test capability for Army Next-Generation Automated Test System (NGATS)

    NASA Astrophysics Data System (ADS)

    Errea, S.; Grigor, J.; King, D. F.; Matis, G.; McHugh, S.; McKechnie, J.; Nehring, B.

    2015-05-01

    The Future E-O (FEO) program was established to develop a flexible, modular, automated test capability as part of the Next Generation Automatic Test System (NGATS) program to support the test and diagnostic needs of currently fielded U.S. Army electro-optical (E-O) devices, as well as being expandable to address the requirements of future Navy, Marine Corps and Air Force E-O systems. Santa Barbara infrared (SBIR) has designed, fabricated, and delivered three (3) prototype FEO for engineering and logistics evaluation prior to anticipated full-scale production beginning in 2016. In addition to presenting a detailed overview of the FEO system hardware design, features and testing capabilities, the integration of SBIR's EO-IR sensor and laser test software package, IRWindows 4™, into FEO to automate the test execution, data collection and analysis, archiving and reporting of results is also described.

  15. Laboratory Information Systems in Molecular Diagnostics: Why Molecular Diagnostics Data are Different.

    PubMed

    Lee, Roy E; Henricks, Walter H; Sirintrapun, Sahussapont J

    2016-03-01

    Molecular diagnostic testing presents new challenges to information management that are yet to be sufficiently addressed by currently available information systems for the molecular laboratory. These challenges relate to unique aspects of molecular genetic testing: molecular test ordering, informed consent issues, diverse specimen types that encompass the full breadth of specimens handled by traditional anatomic and clinical pathology information systems, data structures and data elements specific to molecular testing, varied testing workflows and protocols, diverse instrument outputs, unique needs and requirements of molecular test reporting, and nuances related to the dissemination of molecular pathology test reports. By satisfactorily addressing these needs in molecular test data management, a laboratory information system designed for the unique needs of molecular diagnostics presents a compelling reason to migrate away from the current paper and spreadsheet information management that many molecular laboratories currently use. This paper reviews the issues and challenges of information management in the molecular diagnostics laboratory.

  16. Development and Validation of a Pressurization System Model for a Crossfeed Subscale Water Test Article

    NASA Technical Reports Server (NTRS)

    Nguyen, Han; Mazurkivich, Pete

    2006-01-01

    A pressurization system model was developed for a crossfeed subscale water test article using the EASY5 modeling software. The model consisted of an integrated tank pressurization and pressurization line model. The tank model was developed using the general purpose library, while the line model was assembled from the gas dynamic library. The pressurization system model was correlated to water test data obtained from nine test runs conducted on the crossfeed subscale test article. The model was first correlated to a representative test run and frozen. The correlated model was then used to predict the tank pressures and compared with the test data for eight other runs. The model prediction showed excellent agreement with the test data, allowing it to be used in a later study to analyze the pressurization system performance of a full-scale bimese vehicle with cryogenic propellants.

  17. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    NASA Technical Reports Server (NTRS)

    Barr, W. L.; Doggett, J. N.; Hamilton, G. W.; Kinney, J. D.; Moir, R. W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H(+) component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques.

  18. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Welch, Joseph V.; Hardy, Robin C.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). An important element of the air bag system design process is proper modeling of the proposed configuration to determine if the resulting performance meets requirements. Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations. The efforts presented here surround a second generation of the airbag design developed by ILC Dover, and is based on previous design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley's Landing and Impact Research (LandIR) facility. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, construct the simulations, and make comparisons to experimental data are discussed.

  19. TALARIS project update: Overview of flight testing and development of a prototype planetary surface exploration hopper

    NASA Astrophysics Data System (ADS)

    Rossi, Christopher; Cunio, Phillip M.; Alibay, Farah; Morrow, Joe; Nothnagel, Sarah L.; Steiner, Ted; Han, Christopher J.; Lanford, Ephraim; Hoffman, Jeffrey A.

    2012-12-01

    The TALARIS (Terrestrial Artificial Lunar And Reduced GravIty Simulator) project is intended to test GNC (Guidance, Navigation, and Control) algorithms on a prototype planetary surface exploration hopper in a dynamic environment with simulated reduced gravity. The vehicle is being developed by the Charles Stark Draper Laboratory and Massachusetts Institute of Technology in support of efforts in the Google Lunar X-Prize contest. This paper presents progress achieved since September 2010 in vehicle development and flight testing. Upgrades to the vehicle are described, including a redesign of the power train for the gravity-offset propulsion system and a redesign of key elements of the spacecraft emulator propulsion system. The integration of flight algorithms into modular flight software is also discussed. Results are reported for restricted degree of freedom (DOF) tests used to tune GNC algorithms on the path to a full 6-DOF hover-hop flight profile. These tests include 3-DOF tests on flat surfaces restricted to horizontal motion, and 2-DOF vertical tests restricted to vertical motion and 1-DOF attitude control. The results of tests leading up to full flight operations are described, as are lessons learned and future test plans.

  20. Advanced support systems development and supporting technologies for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Li, Ku-Yen; Yaws, Carl L.; Mei, Harry T.; Nguyen, Vinh D.; Chu, Hsing-Wei

    1994-01-01

    A methyl acetate reactor was developed to perform a subscale kinetic investigation in the design and optimization of a full-scale metabolic simulator for long term testing of life support systems. Other tasks in support of the closed ecological life support system test program included: (1) heating, ventilation and air conditioning analysis of a variable pressure growth chamber, (2) experimental design for statistical analysis of plant crops, (3) resource recovery for closed life support systems, and (4) development of data acquisition software for automating an environmental growth chamber.

  1. Test and evaluation of load converter topologies used in the Space Station Freedom Power Management and distribution DC test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station Freedom dc Electrical Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switchmode converter, and a switching full-bridge forward converter. The topology, operation principles, and tests results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  2. Measurement of the UH-60A Hub Large Rotor Test Apparatus Control System Stiffness

    NASA Technical Reports Server (NTRS)

    Kufeld, Robert M.

    2014-01-01

    This purpose of this report is to provides details of the measurement of the control system stiffness of the UH-60A rotor hub mounted on the Large Rotor Test Apparatus (UH-60A/LRTA). The UH-60A/LRTA was used in the 40- by 80-Foot Wind Tunnel to complete the full-scale wind tunnel test portion of the NASA / ARMY UH-60A Airloads Program. This report describes the LRTA control system and highlights the differences between the LRTA and UH-60A aircraft. The test hardware, test setup, and test procedures are also described. Sample results are shown, including the azimuthal variation of the measured control system stiffness for three different loadings and two different dynamic actuator settings. Finally, the azimuthal stiffness is converted to fixed system values using multi-blade transformations for input to comprehensive rotorcraft prediction codes.

  3. Thermal Insulation Test Apparatuses

    NASA Technical Reports Server (NTRS)

    Berman, Brion

    2005-01-01

    The National Aeronautics and Space Administration (NASA) seeks to license its Thermal Insulation Test Apparatuses. Designed by the Cryogenics Test Laboratory at the John F. Kennedy Space Center (KSC) in Florida, these patented technologies (U.S. Patent Numbers: Cryostat 1 - 6,742,926, Cryostat 2 - 6,487,866, and Cryostat 4 - 6,824,306) allow manufacturers to fabricate and test cryogenic insulation at their production and/or laboratory facilities. These new inventions allow for the thermal performance characterization of cylindrical and flat specimens (e.g., bulk-fill, flat-panel, multilayer, or continuously rolled) over the full range of pressures, from high vacuum to no vacuum, and over the full range of temperatures from 77K to 300K. In today's world, efficient, low-maintenance, low-temperature refrigeration is taking a more significant role, from the food industry, transportation, energy, and medical applications to the Space Shuttle. Most countries (including the United States) have laws requiring commercially available insulation materials to be tested and rated by an accepted methodology. The new Cryostat methods go beyond the formal capabilities of the ASTM methods to provide testing for real systems, including full-temperature differences plus full-range vacuum conditions.

  4. Calibration and assessment of full-field optical strain measurement procedures and instrumentation

    NASA Astrophysics Data System (ADS)

    Kujawinska, Malgorzata; Patterson, E. A.; Burguete, R.; Hack, E.; Mendels, D.; Siebert, T.; Whelan, Maurice

    2006-09-01

    There are no international standards or norms for the use of optical techniques for full-field strain measurement. In the paper the rationale and design of a reference material and a set of standarized materials for the calibration and evaluation of optical systems for full-field measurements of strain are outlined. A classification system for the steps in the measurement process is also proposed and allows the development of a unified approach to diagnostic testing of components in an optical system for strain measurement based on any optical technique. The results described arise from a European study known as SPOTS whose objectives were to begin to fill the gap caused by a lack of standards.

  5. The Viking parachute qualification test technique.

    NASA Technical Reports Server (NTRS)

    Raper, J. L.; Lundstrom, R. R.; Michel, F. C.

    1973-01-01

    The parachute system for NASA's Viking '75 Mars lander was flight qualified in four high-altitude flight tests at the White Sands Missile range (WSMR). A balloon system lifted a full-scale simulated Viking spacecraft to an altitude where a varying number of rocket motors were used to propel the high drag, lifting test vehicle to test conditions which would simulate the range of entry conditions expected at Mars. A ground-commanded cold gas pointing system located on the balloon system provided powered vehicle azimuth control to insure that the flight trajectory remained within the WSMR boundaries. A unique ground-based computer-radar system was employed to monitor inflight performance of the powered vehicle and insure that command ignition of the parachute mortar occurred at the required test conditions of Mach number and dynamic pressure. Performance data were obtained from cameras, telemetry, and radar.

  6. First Generation Least Expensive Approach to Fission (FiGLEAF) Testing Results

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail. Pat; Ring, Peter; Schmidt, George R. (Technical Monitor)

    2000-01-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. The paper describes the SAFE test series, which includes test article descriptions, test results and conclusions, and future test plans.

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT; RECHARGEABLE ALKALINE HOUSEHOLD BATTERY SYSTEM; RAYOVAC CORPORATION, RENEWAL

    EPA Science Inventory

    The EPA's ETV Program, in partnership with recognized testing organizations, objectively and systematically documents the performance of commercial ready technologies. Together, with the full participation of the technology developer, develop plans, conduct tests, collect and ana...

  8. Repair of Budd Pioneer Coach car crush zones

    DOT National Transportation Integrated Search

    2007-05-01

    The research team conducted a project to repair cars for use in a full-scale train-to-train collision test with crash energy management systems. The two cars had been damaged in previous dynamic tests. Several components required replacement, and som...

  9. Flight Research into Simple Adaptive Control on the NASA FAST Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.

    2011-01-01

    A series of simple adaptive controllers with varying levels of complexity were designed, implemented and flight tested on the NASA Full-Scale Advanced Systems Testbed (FAST) aircraft. Lessons learned from the development and flight testing are presented.

  10. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory (PSL): Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a full scale ice crystal icing turbofan engine test in the NASA Glenn Research Centers Propulsion Systems Laboratory (PSL) Facility in February 2013. Honeywell Engines supplied the test article, an obsolete, unmodified Lycoming ALF502-R5 turbofan engine serial number LF01 that experienced an un-commanded loss of thrust event while operating at certain high altitude ice crystal icing conditions. These known conditions were duplicated in the PSL for this testing.

  11. Cyclic Symmetry Finite Element Forced Response Analysis of a Distortion-Tolerant Fan with Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Reddy, T. S. R.; Bakhle, M. A.; Coroneos, R. M.; Stefko, G. L.; Provenza, A. J.; Duffy, K. P.

    2018-01-01

    Accurate prediction of the blade vibration stress is required to determine overall durability of fan blade design under Boundary Layer Ingestion (BLI) distorted flow environments. Traditional single blade modeling technique is incapable of representing accurate modeling for the entire rotor blade system subject to complex dynamic loading behaviors and vibrations in distorted flow conditions. A particular objective of our work was to develop a high-fidelity full-rotor aeromechanics analysis capability for a system subjected to a distorted inlet flow by applying cyclic symmetry finite element modeling methodology. This reduction modeling method allows computationally very efficient analysis using a small periodic section of the full rotor blade system. Experimental testing by the use of the 8-foot by 6-foot Supersonic Wind Tunnel Test facility at NASA Glenn Research Center was also carried out for the system designated as the Boundary Layer Ingesting Inlet/Distortion-Tolerant Fan (BLI2DTF) technology development. The results obtained from the present numerical modeling technique were evaluated with those of the wind tunnel experimental test, toward establishing a computationally efficient aeromechanics analysis modeling tool facilitating for analyses of the full rotor blade systems subjected to a distorted inlet flow conditions. Fairly good correlations were achieved hence our computational modeling techniques were fully demonstrated. The analysis result showed that the safety margin requirement set in the BLI2DTF fan blade design provided a sufficient margin with respect to the operating speed range.

  12. Dynamic testing for shuttle design verification

    NASA Technical Reports Server (NTRS)

    Green, C. E.; Leadbetter, S. A.; Rheinfurth, M. H.

    1972-01-01

    Space shuttle design verification requires dynamic data from full scale structural component and assembly tests. Wind tunnel and other scaled model tests are also required early in the development program to support the analytical models used in design verification. Presented is a design philosophy based on mathematical modeling of the structural system strongly supported by a comprehensive test program; some of the types of required tests are outlined.

  13. Impact Testing and Simulation of Composite Airframe Structures

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Horta, Lucas G.; Annett, Martin S.; Fasanella, Edwin L.; Seal, Michael D., II

    2014-01-01

    Dynamic tests were performed at NASA Langley Research Center on composite airframe structural components of increasing complexity to evaluate their energy absorption behavior when subjected to impact loading. A second objective was to assess the capabilities of predicting the dynamic response of composite airframe structures, including damage initiation and progression, using a state-of-the-art nonlinear, explicit transient dynamic finite element code, LS-DYNA. The test specimens were extracted from a previously tested composite prototype fuselage section developed and manufactured by Sikorsky Aircraft Corporation under the US Army's Survivable Affordable Repairable Airframe Program (SARAP). Laminate characterization testing was conducted in tension and compression. In addition, dynamic impact tests were performed on several components, including I-beams, T-sections, and cruciform sections. Finally, tests were conducted on two full-scale components including a subfloor section and a framed fuselage section. These tests included a modal vibration and longitudinal impact test of the subfloor section and a quasi-static, modal vibration, and vertical drop test of the framed fuselage section. Most of the test articles were manufactured of graphite unidirectional tape composite with a thermoplastic resin system. However, the framed fuselage section was constructed primarily of a plain weave graphite fabric material with a thermoset resin system. Test data were collected from instrumentation such as accelerometers and strain gages and from full-field photogrammetry.

  14. From lab to full-scale ultrafiltration in microalgae harvesting

    NASA Astrophysics Data System (ADS)

    Wenten, I. G.; Steven, S.; Dwiputra, A.; Khoiruddin; Hakim, A. N.

    2017-07-01

    Ponding system is generally used for microalgae cultivation. However, selection of appropriate technology for the harvesting process is challenging due to the low cell density of cultivated microalgae from the ponding system and the large volume of water to be handled. One of the promising technologies for microalgae harvesting is ultrafiltration (UF). In this study, the performance of UF during harvesting of microalgae in a lab- and a full-scale test is investigated. The performances of both scales are compared and analyzed to provide an understanding of several aspects which affect the yield produced from lab and actual conditions. Furthermore, a unique self-standing non-modular UF is introduced in the full-scale test. The non-modular UF exhibits several advantages, such as simple piping and connection, single pump for filtration and backwashing, and smaller footprint. With those advantages, the non-modular UF could be a promising technology for microalgae harvesting in industrial-scale.

  15. Structural Testing at the NWTC Helps Improve Blade Design and Increase System Reliability; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-08-01

    Since 1990, the National Renewable Energy Laboratory’s (NREL's) National Wind Technology Center (NWTC) has tested more than 150 wind turbine blades. NWTC researchers can test full-scale and subcomponent articles, conduct data analyses, and provide engineering expertise on best design practices. Structural testing of wind turbine blades enables designers, manufacturers, and owners to validate designs and assess structural performance to specific load conditions. Rigorous structural testing can reveal design and manufacturing problems at an early stage of development that can lead to overall improvements in design and increase system reliability.

  16. Integrated Strategic Planning and Analysis Network Increment 4 (ISPAN Inc 4)

    DTIC Science & Technology

    2016-03-01

    Defense Acquisition Executive DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY...Inc 4 will achieve FDD completion criteria when: 1) the system meets all the KPP thresholds as verified through an Initial Operational Test and

  17. 49 CFR 570.5 - Service brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CFR 571.105, on every new passenger car manufactured on or after January 1, 1968, and on other types... equipment manufacturer's specifications. Note the left to right brake force variance. (2) Road test. The..., inspecting front brake hoses through all wheel positions from full left to full right for conditions...

  18. 49 CFR 570.5 - Service brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CFR 571.105, on every new passenger car manufactured on or after January 1, 1968, and on other types... equipment manufacturer's specifications. Note the left to right brake force variance. (2) Road test. The..., inspecting front brake hoses through all wheel positions from full left to full right for conditions...

  19. Application of Simulated Reactivity Feedback in Nonnuclear Testing of a Direct-Drive Gas-Cooled Reactor

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Webster, K. L.

    2007-01-01

    Nonnuclear testing can be a valuable tool in the development of an in-space nuclear power or propulsion system. In a nonnuclear test facility, electric heaters are used to simulate heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response and response characteristics, and assess potential design improvements with a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE 100a heat pipe cooled, electrically heated reactor and heat exchanger hardware. This Technical Memorandum discusses the status of the planned dynamic test methodology for implementation in the direct-drive gas-cooled reactor testing and assesses the additional instrumentation needed to implement high-fidelity dynamic testing.

  20. Overview of Propellant Delivery Systems at the NASA John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Haselmaier, L. Haynes; Field, Robert E.; Ryan, Harry M.; Dickey, Jonathan C.

    2006-01-01

    A wide range of rocket propulsion test work occurs at he NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2. E-3 and E-4) test facilities. One of the greatest challenges associated with operating a test facility is maintaining the health of the primary propellant system and test-critical support systems. The challenge emerges due to the fact that the operating conditions of the various system components are extreme (e.g., low temperatures, high pressures) and due to the fact that many of the components and systems are unique. The purpose of this paper is to briefly describe the experience and modeling techniques that are used to operate the unique test facilities at NASA SSC that continue to support successful propulsion testing.

  1. Assessing Arsenic Removal by Metal (Hydr)Oxide Adsorptive Media Using Rapid Small Scale Column Tests

    EPA Science Inventory

    The rapid small scale column test (RSSCT) was use to evaluate the the performance of eight commercially available adsorptive media for the removal of arsenic. Side-by-side tests were conducted using RSSCTs and pilot/full-scale systems either in the field or in the laboratory. ...

  2. Ground Vehicle Power and Mobility Overview - Germany Visit

    DTIC Science & Technology

    2011-11-10

    the current and future force Survivability Robotics – Intelligent Systems Vehicle Electronics & Architecture Fuel, Water, Bridging ...Test Cell • Engine Generator Test Lab • Full Vehicle Environmental Test Cell • Hybrid Electric Reconfigurable Moveable Integration Testbed (HERMIT...Converter Conducted competitive runoff evaluations on Bridging Boat engine candidates Completed independent durability assessment of OEM

  3. Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.; Killpatrick, D. H.

    1973-01-01

    The work reported constitutes the first phase of a two-phase program. Vehicle environments having critical effects on the thermal protection system are defined; TD Ni-20Cr material characteristics are reviewed and compared with TD Ni-20Cr produced in previous development efforts; cyclic load, temperature, and pressure effects on TD Ni-20Cr sheet material are investigated; the effects of braze reinforcement in improving the efficiency of spotwelded, diffusion-bonded, or seam-welded joints are evaluated through tests of simple lap-shear joint samples; parametric studies of metallic radiative thermal protection systems are reported; and the design, instrumentation, and testing of full-scale subsize heat shield panels are described. Tests of full-scale subsize panels included simulated meteoroid impact tests; simulated entry flight aerodynamic heating in an arc-heated plasma stream; programmed differential pressure loads and temperatures simulating mission conditions; and acoustic tests simulating sound levels experienced by heat shields during about boost flight. Test results are described, and the performances of two heat shield designs are compared and evaluated.

  4. NASA's first Orion full-scale abort flight test crew module was placed in NASA Dryden's Abort Flight Test integration area for equipment installation.

    NASA Image and Video Library

    2008-04-01

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  5. Use of thermal sieve to allow optical testing of cryogenic optical systems.

    PubMed

    Kim, Dae Wook; Cai, Wenrui; Burge, James H

    2012-05-21

    Full aperture testing of large cryogenic optical systems has been impractical due to the difficulty of operating a large collimator at cryogenic temperatures. The Thermal Sieve solves this problem by acting as a thermal barrier between an ambient temperature collimator and the cryogenic system under test. The Thermal Sieve uses a set of thermally controlled baffles with array of holes that are lined up to pass the light from the collimator without degrading the wavefront, while attenuating the thermal background by nearly 4 orders of magnitude. This paper provides the theory behind the Thermal Sieve system, evaluates the optimization for its optical and thermal performance, and presents the design and analysis for a specific system.

  6. The Altitude Wind Tunnel (AWT): A unique facility for propulsion system and adverse weather testing

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.

    1985-01-01

    A need has arisen for a new wind tunnel facility with unique capabilities for testing propulsion systems and for conducting research in adverse weather conditions. New propulsion system concepts, new aircraft configurations with an unprecedented degree of propulsion system/aircraft integration, and requirements for aircraft operation in adverse weather dictate the need for a new test facility. Required capabilities include simulation of both altitude pressure and temperature, large size, full subsonic speed range, propulsion system operation, and weather simulation (i.e., icing, heavy rain). A cost effective rehabilitation of the NASA Lewis Research Center's Altitude Wind Tunnel (AWT) will provide a facility with all these capabilities.

  7. Research on the full life cycle management system of smart electric energy meter

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu

    2018-02-01

    At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.

  8. Development of full scale testing of an alternate foundation system for post and panel retaining walls.

    DOT National Transportation Integrated Search

    2009-03-01

    The alternate post system offers benefits such as ease of construction, reduced construction time, and : lower wall costs. While this system seems feasible, there are concerns regarding its performance, in : particular the amount of bending in the po...

  9. NASA's Evolutionary Xenon Thruster (NEXT) Prototype Model 1R (PM1R) Ion Thruster and Propellant Management System Wear Test Results

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Soulas, George C.; Sovey, James S.

    2010-01-01

    The results of the NEXT wear test are presented. This test was conducted with a 36-cm ion engine (designated PM1R) and an engineering model propellant management system. The thruster operated with beam extraction for a total of 1680 hr and processed 30.5 kg of xenon during the wear test, which included performance testing and some operation with an engineering model power processing unit. A total of 1312 hr was accumulated at full power, 277 hr at low power, and the remainder was at intermediate throttle levels. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, was steady with no indications of performance degradation. The propellant management system performed without incident during the wear test. The ion engine and propellant management system were also inspected following the test with no indication of anomalous hardware degradation from operation.

  10. Development of a School Bus Fuel System Integrity Compliance Procedure. Final Report.

    ERIC Educational Resources Information Center

    Morrow, G. W.; Johnson, N. B.

    This report presents a program that derived a compliance test procedure for school buses with a gross vehicle weight of 10,000 pounds or greater. The objective of this program was to evaluate Fuel System Integrity (FMVSS 301) in relation to school buses, conduct a limited state-of-the-art survey and run full-scale dynamic tests to produce an…

  11. Advancing Blade Concept (ABC) Technology Demonstrator

    DTIC Science & Technology

    1981-04-01

    simulated 40-knot full-scale speed were conducted in Phase 0 on the Princeton dynamic model tract (Reference 7). Forward flight tests to a...laterally and longitudinally but also to control the thrust sharing between the rotors are presented in Figure 28. Phase II Tests : This model test phase...were rigged to the required values. Control system linearity and hysteresis tests were conducted to determine

  12. Phase 1 space fission propulsion system testing and development progress

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter

    2001-02-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified, MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired, they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans. .

  13. Experimental Photogrammetric Techniques Used on Five Full-Scale Aircraft Crash Tests

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2016-01-01

    Between 2013 and 2015, full-scale crash tests were conducted on five aircraft at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). Two tests were conducted on CH-46E airframes as part of the Transport Rotorcraft Airframe Crash Testbed (TRACT) project, and three tests were conduced on Cessna 172 aircraft as part of the Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project. Each test served to evaluate a variety of crashworthy systems including: seats, occupants, restraints, composite energy absorbing structures, and Emergency Locator Transmitters. As part of each test, the aircraft were outfitted with a variety of internal and external cameras that were focused on unique aspects of the crash event. A subset of three camera was solely used in the acquisition of photogrammetric test data. Examples of this data range from simple two-dimensional marker tracking for the determination of aircraft impact conditions to entire full-scale airframe deformation to markerless tracking of Anthropomorphic Test Devices (ATDs, a.k.a. crash test dummies) during the crash event. This report describes and discusses the techniques used and implications resulting from the photogrammetric data acquired from each of the five tests.

  14. USB environment measurements based on full-scale static engine ground tests. [Upper Surface Blowing for YC-14

    NASA Technical Reports Server (NTRS)

    Sussman, M. B.; Harkonen, D. L.; Reed, J. B.

    1976-01-01

    Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive-lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data and to establish a basis for future flight test comparisons.

  15. Comparing the Document Representations of Two IR-Systems: CLARIT and TOPIC.

    ERIC Educational Resources Information Center

    Paijmans, Hans

    1993-01-01

    Compares two information retrieval systems, CLARIT and TOPIC, in terms of assigned versus derived and precoordinate versus postcoordinate indexing. Models of information retrieval systems are discussed, and a test of the systems using a demonstration database of full-text articles from the "Wall Street Journal" is described. (Contains 21…

  16. Thrust vectoring systems

    NASA Technical Reports Server (NTRS)

    King, H. J.; Schnelker, D.; Ward, J. W.; Dulgeroff, C.; Vahrenkamp, R.

    1972-01-01

    The design, fabrication, and testing of thrust vectorable ion optical systems capable of controlling the thrust direction from both 5- and 30-cm diameter ion thrusters is described. Both systems are capable of greater than 10 deg thrust deflection in any azimuthal direction. The 5-cm system is electrostatic and hence has a short response time and minimal power consumption. It has recently been tested for more than 7500 hours on an operational thruster. The 30-cm system is mechanical, has a response time of the order of 1 min, and consumes less than 0.3% of the total system input power at full deflection angle.

  17. Implementation of the Enhanced Flight Termination System at National Aeronautics and Space Administration Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Tow, David

    2010-01-01

    This paper discusses the methodology, requirements, tests, and results of the implementation of the current operating capability for the Enhanced Flight Termination System (EFTS) at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC). The implementation involves the development of the EFTS at NASA DFRC starting from the requirements to system safety review to full end to end system testing, and concluding with the acceptance of the system as an operational system. The paper discusses the first operational usage and subsequent flight utilizing EFTS successfully.

  18. Development and Initial Testing of the Tiltrotor Test Rig

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Sheikman, A. L.

    2018-01-01

    The NASA Tiltrotor Test Rig (TTR) is a new, large-scale proprotor test system, developed jointly with the U.S. Army and Air Force, to develop a new, large-scale proprotor test system for the National Full-Scale Aerodynamics Complex (NFAC). The TTR is designed to test advanced proprotors up to 26 feet in diameter at speeds up to 300 knots, and even larger rotors at lower airspeeds. This combination of size and speed is unprecedented and is necessary for research into 21st-century tiltrotors and other advanced rotorcraft concepts. The TTR will provide critical data for validation of state-of-the-art design and analysis tools.

  19. Development of precast bridge deck overhang system : technical report.

    DOT National Transportation Integrated Search

    2011-07-01

    The implementation of full-depth, precast overhang panel systems has the potential to improve constructability, : productivity, and make bridges more economical. Initial testing and analyses reported in the 0-6100-2 report resulted in : a design that...

  20. Integrated Testing Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Taylor, James L.; Cockrell, Charles E.; Tuma, Margaret L.; Askins, Bruce R.; Bland, Jeff D.; Davis, Stephan R.; Patterson, Alan F.; Taylor, Terry L.; Robinson, Kimberly L.

    2008-01-01

    The Ares I crew launch vehicle is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew and cargo access to the International Space Station (ISS) and, together with the Ares V cargo launch vehicle, serves as a critical component of NASA's future human exploration of the Moon. During the preliminary design phase, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements - including the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine - will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the upper stage Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle ground vibration test (IVGVT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, validate the ability of the upper stage to manage cryogenic propellants to achieve upper stage engine start conditions, and a high-altitude demonstration of the launch abort system (LAS) following stage separation. The Orion 1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.

  1. Flowpath evaluation and reconnaissance by remote field Eddy current testing (FERRET)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smoak, A.E.; Zollinger, W.T.

    1993-12-31

    This document describes the design and development of FERRET (Flowpath Evaluation and Reconnaisance by Remote-field Eddy current Testing). FERRET is a system for inspecting the steel pipes which carry cooling water to underground nuclear waste storage tanks. The FERRET system has been tested in a small scale cooling pipe mock-up, an improved full scale mock-up, and in flaw detection experiments. Early prototype designs of FERRET and the FERRET launcher (a device which inserts, moves, and retrieves probes from a piping system) as well as the field-ready design are discussed.

  2. Strain monitoring of a newly developed precast concrete track for high speed railway traffic using embedded fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Crail, Stephanie; Reichel, D.; Schreiner, U.; Lindner, E.; Habel, Wolfgang R.; Hofmann, Detlef; Basedau, Frank; Brandes, K.; Barner, A.; Ecke, Wolfgang; Schroeder, Kerstin

    2002-07-01

    In a German slab track system (Feste Fahrbahn FF, system Boegl) for speeds up to 300 km/h and more different fiber optic sensors have been embedded in several levels and locations of the track system. The track system consists of prestressed precast panels of steel fiber concrete which are supported by a cat-in-situ concrete or asphalt base course. The sensors are to measure the bond behavior or the stress transfer in the track system. For that, tiny fiber-optic sensors - fiber Fabry-Perot and Bragg grating sensors - have been embedded very near to the interface of the layers. Measurements were taken on a full scale test sample (slab track panel of 6.45 m length) as well as on a real high speed track. The paper describes the measurement task and discusses aspects with regard to sensor design and prefabrication of the sensor frames as well as the embedding procedure into the concrete track. Results from static and dynamic full scale tests carried out in the testing laboratory of BAM and from measurements on a track are given.

  3. Design and Modeling of a Liquid Lithium LiMIT Loop

    NASA Astrophysics Data System (ADS)

    Szott, Matthew; Christenson, Michael; Stemmley, Steven; Ahn, Chisung; Andruczyk, Daniel; Ruzic, David

    2017-10-01

    The use of flowing liquid lithium in plasma facing components has been shown to reduce erosion and thermal stress damage, prolong device lifetime, decrease edge recycling, reduce impurities, and increase plasma performance, all while providing a clean and self-healing surface. The Liquid Metal Infused Trench (LiMIT) system has proven the concept of controlled thermoelectric magnetohydrodynamic-driven lithium flow for use in fusion relevant conditions, through tests at UIUC, HT-7, and Magnum PSI. As the use of liquid lithium in fusion devices progresses, emphasis must now be placed on full systems integration of flowing liquid metal concepts. The LiMIT system will be upgraded to include a full liquid lithium loop, which will pump lithium into the fusion device, utilize TEMHD to drive lithium through the vessel, and remove lithium for filtration and degassing. Flow control concepts recently developed at UIUC - including wetting control, dryout control, and flow velocity control - will be tested in conjunction in order to demonstrate a robust system. Lithium loop system requirements, designs, and modeling work will be presented, along with plans for installation and testing on the HIDRA device at UIUC. This work is supported by DOE/ALPS DE-FG02-99ER54515.

  4. Engineering behavior of small-scale foundation piers constructed from alternative materials

    NASA Astrophysics Data System (ADS)

    Prokudin, Maxim Mikhaylovich

    Testing small-scale prototype pier foundations to evaluate engineering behavior is an alternative to full-scale testing that facilitates testing of several piers and pier groups at relatively low cost. In this study, various pier systems and pier groups at one tenth scale were subjected to static vertical loading under controlled conditions to evaluate stiffness, bearing capacity, and group efficiency. Pier length, material properties and methods of installation were evaluated. Pier length to diameter ratios varied between four and eight. A unique soil pit with dimensions of 2.1 m in width, 1.5 m in length and 2.0 m in depth was designed to carry out this research. The test pit was filled with moisture conditioned and compacted Western Iowa loess. A special load test frame was designed and fabricated to provide up to 25,000 kg vertical reaction force for load testing. A load cell and displacement instrumentation was setup to capture the load test data. Alternative materials to conventional cement concrete were studied. The pier materials evaluated in this study included compacted aggregate, cement stabilized silt, cementitious grouts, and fiber reinforced silt. Key findings from this study demonstrated that (1) the construction method influences the behavior of aggregate piers, (2) the composition of the pier has a significant impact on the stiffness, (3) group efficiencies were found to be a function of pier length and pier material, (4) in comparison to full-scale testing the scaled piers were found to produce a stiffer response with load-settlement and bearing capacities to be similar. Further, although full-scale test results were not available for all pier materials, the small-scale testing provided a means for comparing results between pier systems. Finally, duplicate pier tests for a given length and material were found to be repeatable.

  5. The application of the Luus-Jaakola direct search method to the optimization of a hybrid renewable energy system

    NASA Astrophysics Data System (ADS)

    Jatzeck, Bernhard Michael

    2000-10-01

    The application of the Luus-Jaakola direct search method to the optimization of stand-alone hybrid energy systems consisting of wind turbine generators (WTG's), photovoltaic (PV) modules, batteries, and an auxiliary generator was examined. The loads for these systems were for agricultural applications, with the optimization conducted on the basis of minimum capital, operating, and maintenance costs. Five systems were considered: two near Edmonton, Alberta, and one each near Lethbridge, Alberta, Victoria, British Columbia, and Delta, British Columbia. The optimization algorithm used hourly data for the load demand, WTG output power/area, and PV module output power. These hourly data were in two sets: seasonal (summer and winter values separated) and total (summer and winter values combined). The costs for the WTG's, PV modules, batteries, and auxiliary generator fuel were full market values. To examine the effects of price discounts or tax incentives, these values were lowered to 25% of the full costs for the energy sources and two-thirds of the full cost for agricultural fuel. Annual costs for a renewable energy system depended upon the load, location, component costs, and which data set (seasonal or total) was used. For one Edmonton load, the cost for a renewable energy system consisting of 27.01 m2 of WTG area, 14 PV modules, and 18 batteries (full price, total data set) was 6873/year. For Lethbridge, a system with 22.85 m2 of WTG area, 47 PV modules, and 5 batteries (reduced prices, seasonal data set) cost 2913/year. The performance of renewable energy systems based on the obtained results was tested in a simulation using load and weather data for selected days. Test results for one Edmonton load showed that the simulations for most of the systems examined ran for at least 17 hours per day before failing due to either an excessive load on the auxiliary generator or a battery constraint being violated. Additional testing indicated that increasing the generator capacity and reducing the maximum allowed battery charge current during the time of the day at which these failures occurred allowed the simulation to successfully operate.

  6. NASA Agricultural Aircraft Research Program in the Langley Vortex Research Facility and the Langley Full Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.; Mclemore, H. C.; Bragg, M. B.

    1978-01-01

    The current status of aerial applications technology research at the Langley's Vortex Research Facility and Full-Scale Wind Tunnel is reviewed. Efforts have been directed mainly toward developing and validating the required experimental and theoretical research tools. A capability to simulate aerial dispersal of materials from agricultural airplanes with small-scale airplane models, numerical methods, and dynamically scaled test particles was demonstrated. Tests on wake modification concepts have proved the feasibility of tailoring wake properties aerodynamically to produce favorable changes in deposition and to provide drift control. An aerodynamic evaluation of the Thrush Commander 800 agricultural airplane with various dispersal systems installed is described. A number of modifications intended to provide system improvement to both airplane and dispersal system are examined, and a technique for documenting near-field spray characteristics is evaluated.

  7. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Tim; Slezak, Lee; Johnson, Chris

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selectionsmore » and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.« less

  8. Integrated Locomotor Function Tests for Countermeasure Evaluation

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Landsness, E. C.; Black, F. O.

    2005-01-01

    Following spaceflight crewmembers experience locomotor dysfunction due to inflight adaptive alterations in sensorimotor function. Countermeasures designed to mitigate these postflight gait alterations need to be assessed with a new generation of tests that evaluate the interaction of various sensorimotor sub-systems central to locomotor control. The goal of the present study was to develop new functional tests of locomotor control that could be used to test the efficacy of countermeasures. These tests were designed to simultaneously examine the function of multiple sensorimotor systems underlying the control of locomotion and be operationally relevant to the astronaut population. Traditionally, gaze stabilization has been studied almost exclusively in seated subjects performing target acquisition tasks requiring only the involvement of coordinated eye-head movements. However, activities like walking involve full-body movement and require coordination between lower limbs and the eye-head-trunk complex to achieve stabilized gaze during locomotion. Therefore the first goal of this study was to determine how the multiple, interdependent, full-body sensorimotor gaze stabilization subsystems are functionally coordinated during locomotion. In an earlier study we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects walked on a treadmill and either focused on a central point target or read numeral characters. We measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. In comparison to the point target fixation condition, the results of the number reading task showed that compensatory head pitch movements increased, peak head acceleration was reduced and knee flexion at heel-strike was increased. In a more recent study we investigated the adaptive remodeling of the full-body gaze control systems following exposure to visual-vestibular conflict. Subjects walked on a treadmill before and after a 30- minute exposure to 0.5X minifying during which self-generated sinusoidal vertical head rotations were performed while seated. Following exposure to visual-vestibular conflict subjects showed a restriction in compensatory head movements, increased knee and ankle flexion after heel-strike and a decrease in the rate of body loading during the rapid weight transfer phase after the heel strike event. Taken together, results from both studies provide evidence that the full body contributes to gaze stabilization during locomotion, and that different functional elements are responsive to changes in visual task constraints and are subject to adaptive alterations following exposure to visual-vestibular conflict. This information provides the basis for the design of a new generation of integrative tests that incorporate the evaluation of multiple neural control systems relevant to astronaut operational performance.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Rick; van Dam, Jeroen

    The objective of the test was to obtain a baseline characterization of the mechanical loads of the DOE 1.5 wind turbine located at NREL. The test was conducted in accordance with the International Electrotechnical Commission (IEC) Technical Specification, IEC 61400-13 Wind Turbine Generator Systems – Part 13: Measurement of mechanical loads; First Edition 2001-06 [1]. The National Wind Technology Center (NWTC) at NREL conducted this test in accordance with its quality system procedures so that the final test report meets the full requirements of its accreditation by the American Association for Laboratory Accreditation (A2LA). NREL’s quality system requires that allmore » applicable requirements specified by A2LA and International Standards Organization/IEC 17025 be met or to note any exceptions in the test report.« less

  10. Aeroservoelastic Wind-Tunnel Tests of a Free-Flying, Joined-Wing SensorCraft Model for Gust Load Alleviation

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Castelluccio, Mark A.; Coulson, David A.; Heeg, Jennifer

    2011-01-01

    A team comprised of the Air Force Research Laboratory (AFRL), Boeing, and the NASA Langley Research Center conducted three aeroservoelastic wind-tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, exible vehicles. In the first of these three tests, a full-span, aeroelastically scaled, wind-tunnel model of a joined-wing SensorCraft vehicle was mounted to a force balance to acquire a basic aerodynamic data set. In the second and third tests, the same wind-tunnel model was mated to a new, two-degree-of-freedom, beam mount. This mount allowed the full-span model to translate vertically and pitch. Trimmed flight at -10% static margin and gust load alleviation were successfully demonstrated. The rigid body degrees of freedom required that the model be own in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort. The balance and free ying wind-tunnel tests will be summarized. The design of the trim and gust load alleviation control laws along with the associated results will also be discussed.

  11. Test and evaluation of load converter topologies used in the Space Station Freedom power management and distribution dc test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  12. Preliminary investigations of design philosophies and features applicable to large magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.; Fortescue, P. W.; Allcock, G. A.; Goodyer, M. J.

    1979-01-01

    The technology which is required to allow the principles of magnetic suspension and balance systems (MSBS) to be applied to the high Reynolds number transonic testing of aircraft models is examined. A test facility is presented as comprising a pressurized transonic cryogenic wind tunnel, with the MSBS providing full six degree of freedom control. The electro-magnets which are superconducting and fed from quiet, bipolar power supplies are examined. A model control system having some self adaptive characteristics is discussed.

  13. Braided Composite Technologies for Rotorcraft Structures

    NASA Technical Reports Server (NTRS)

    Jessie, Nathan

    2015-01-01

    A&P Technology has developed a braided material approach for fabricating lightweight, high-strength hybrid gears for aerospace drive systems. The conventional metallic web was replaced with a composite element made from A&P's quasi-isotropic braid. The 0deg, +/-60deg braid architecture was chosen so that inplane stiffness properties and strength would be nearly equal in all directions. The test results from the Phase I Small Spur Gear program demonstrated satisfactory endurance and strength while providing a 20 percent weight savings. (Greater weight savings is anticipated with structural optimization.) The hybrid gears were subjected to a proof-of-concept test of 1 billion cycles in a gearbox at 10,000 revolutions per minute and 490 in-lb torque with no detectable damage to the gears. After this test the maximum torque capability was also tested, and the static strength capability of the gears was 7x the maximum operating condition. Additional proof-of-concept tests are in progress using a higher oil temperature, and a loss-of-oil test is planned. The success of Phase I led to a Phase II program to develop, fabricate, and optimize full-scale gears, specifically Bull Gears. The design of these Bull Gears will be refined using topology optimization, and the full-scale Bull Gears will be tested in a full-scale gear rig. The testing will quantify benefits of weight savings, as well as noise and vibration reduction. The expectation is that vibration and noise will be reduced through the introduction of composite material in the vibration transmission path between the contacting gear teeth and the shaft-and-bearing system.

  14. Braided Composite Technologies for Rotorcraft Structures

    NASA Technical Reports Server (NTRS)

    Jessie, Nathan

    2014-01-01

    A&P Technology has developed a braided material approach for fabricating lightweight, high-strength hybrid gears for aerospace drive systems. The conventional metallic web was replaced with a composite element made from A&P's quasi-isotropic braid. The 0deg, plus or minus 60 deg braid architecture was chosen so that inplane stiffness properties and strength would be nearly equal in all directions. The test results from the Phase I Small Spur Gear program demonstrated satisfactory endurance and strength while providing a 20 percent weight savings. (Greater weight savings is anticipated with structural optimization.) The hybrid gears were subjected to a proof-of-concept test of 1 billion cycles in a gearbox at 10,000 revolutions per minute and 490 in-lb torque with no detectable damage to the gears. After this test the maximum torque capability was also tested, and the static strength capability of the gears was 7x the maximum operating condition. Additional proof-of-concept tests are in progress using a higher oil temperature, and a loss-of-oil test is planned. The success of Phase I led to a Phase II program to develop, fabricate, and optimize full-scale gears, specifically Bull Gears. The design of these Bull Gears will be refined using topology optimization, and the full-scale Bull Gears will be tested in a full-scale gear rig. The testing will quantify benefits of weight savings, as well as noise and vibration reduction. The expectation is that vibration and noise will be reduced through the introduction of composite material in the vibration transmission path between the contacting gear teeth and the shaft-and-bearing system.

  15. Regeneration of Full Scale Adsorptive Media Systems - Update

    EPA Science Inventory

    Presentation provides an update of the regeneration studies conducted at Twentynine Palms, CA. Following a short introduction, the presentation summarizes the results of the three regeneration tests conducted on the exhausted media of the arsenic removal system at Twentynine Pal...

  16. Safer bridge railings, volume 1 summary report.

    DOT National Transportation Integrated Search

    1984-06-01

    This study consisted of strength analyses of five in-service bridge railing systems, thirty full-scale vehicle crash tests on those railing systems and on a load measuring wall, the development of recommended design guidelines and deve1opment of reco...

  17. 48 CFR 3017.9000 - Clauses (USCG).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Clauses (USCG). 3017.9000 Section 3017.9000 Federal Acquisition Regulations System DEPARTMENT OF HOMELAND SECURITY, HOMELAND... and acceptance tests will afford full protection to the Government in ascertaining conformance to...

  18. 48 CFR 1217.7001 - Clauses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Clauses. 1217.7001 Section 1217.7001 Federal Acquisition Regulations System DEPARTMENT OF TRANSPORTATION CONTRACTING METHODS AND... acceptance tests will afford full protection to the Government in ascertaining conformance to specifications...

  19. Design and development of data acquisition system for the Louisiana accelerated loading device : final report.

    DOT National Transportation Integrated Search

    1992-09-01

    The Louisiana Transportation Research Center has established a Pavement Research Facility (PRF). The core of the PRF is a testing machine that is capable of conducting full-scale simulated and accelerated load testing of pavement materials, construct...

  20. Space Fission Propulsion Testing and Development Progress. Phase 1

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems we expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans.

  1. In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions.

    PubMed

    Ender, Andreas; Mehl, Albert

    2015-01-01

    To investigate the accuracy of conventional and digital impression methods used to obtain full-arch impressions by using an in-vitro reference model. Eight different conventional (polyether, POE; vinylsiloxanether, VSE; direct scannable vinylsiloxanether, VSES; and irreversible hydrocolloid, ALG) and digital (CEREC Bluecam, CER; CEREC Omnicam, OC; Cadent iTero, ITE; and Lava COS, LAV) full-arch impressions were obtained from a reference model with a known morphology, using a highly accurate reference scanner. The impressions obtained were then compared with the original geometry of the reference model and within each test group. A point-to-point measurement of the surface of the model using the signed nearest neighbour method resulted in a mean (10%-90%)/2 percentile value for the difference between the impression and original model (trueness) as well as the difference between impressions within a test group (precision). Trueness values ranged from 11.5 μm (VSE) to 60.2 μm (POE), and precision ranged from 12.3 μm (VSE) to 66.7 μm (POE). Among the test groups, VSE, VSES, and CER showed the highest trueness and precision. The deviation pattern varied with the impression method. Conventional impressions showed high accuracy across the full dental arch in all groups, except POE and ALG. Conventional and digital impression methods show differences regarding full-arch accuracy. Digital impression systems reveal higher local deviations of the full-arch model. Digital intraoral impression systems do not show superior accuracy compared to highly accurate conventional impression techniques. However, they provide excellent clinical results within their indications applying the correct scanning technique.

  2. Test and Evaluation for Enhanced Security: A Quantitative Method to Incorporate Expert Knowledge into Test Planning Decisions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Davinia; Blackburn, Mark

    Complex systems are comprised of technical, social, political and environmental factors as well as the programmatic factors of cost, schedule and risk. Testing these systems for enhanced security requires expert knowledge in many different fields. It is important to test these systems to ensure effectiveness, but testing is limited to due cost, schedule, safety, feasibility and a myriad of other reasons. Without an effective decision framework for Test and Evaluation (T&E) planning that can take into consideration technical as well as programmatic factors and leverage expert knowledge, security in complex systems may not be assessed effectively. Therefore, this paper coversmore » the identification of the current T&E planning problem and an approach to include the full variety of factors and leverage expert knowledge in T&E planning through the use of Bayesian Networks (BN).« less

  3. Characteristics of aeroelastic instabilities in turbomachinery - NASA full scale engine test results

    NASA Technical Reports Server (NTRS)

    Lubomski, J. F.

    1979-01-01

    Several aeromechanical programs were conducted in the NASA/USAF Joint Engine System Research Programs. The scope of these programs, the instrumentation, data acquisition and reduction, and the test results are discussed. Data pertinent to four different instabilities were acquired; two types of stall flutter, choke flutter and a system mode instability. The data indicates that each instability has its own unique characteristics. These characteristics are described.

  4. Design ATE systems for complex assemblies

    NASA Astrophysics Data System (ADS)

    Napier, R. S.; Flammer, G. H.; Moser, S. A.

    1983-06-01

    The use of ATE systems in radio specification testing can reduce the test time by approximately 90 to 95 percent. What is more, the test station does not require a highly trained operator. Since the system controller has full power over all the measurements, human errors are not introduced into the readings. The controller is immune to any need to increase output by allowing marginal units to pass through the system. In addition, the software compensates for predictable, repeatable system errors, for example, cabling losses, which are an inherent part of the test setup. With no variation in test procedures from unit to unit, there is a constant repeatability factor. Preparing the software, however, usually entails considerable expense. It is pointed out that many of the problems associated with ATE system software can be avoided with the use of a software-intensive, or computer-intensive, system organization. Its goal is to minimize the user's need for software development, thereby saving time and money.

  5. Practical Application of a Subscale Transport Aircraft for Flight Research in Control Upset and Failure Conditions

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Foster, John V.; Morelli, Eugene A.; Murch, Austin M.

    2008-01-01

    Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.

  6. Emergency Locator Transmitter System Performance During Three Full-Scale General Aviation Crash Tests

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Stimson, Chad M.

    2016-01-01

    Full-scale crash tests were conducted on three Cessna 172 aircraft at NASA Langley Research Center's Landing and Impact Research facility during the summer of 2015. The purpose of the three tests was to evaluate the performance of commercially available Emergency Locator Transmitter (ELT) systems and support development of enhanced installation guidance. ELTs are used to provide location information to Search and Rescue (SAR) organizations in the event of an aviation distress situation, such as a crash. The crash tests simulated three differing severe but survivable crash conditions, in which it is expected that the onboard occupants have a reasonable chance of surviving the accident and would require assistance from SAR personnel. The first simulated an emergency landing onto a rigid surface, while the second and third simulated controlled flight into terrain. Multiple ELT systems were installed on each airplane according to federal regulations. The majority of the ELT systems performed nominally. In the systems which did not activate, post-test disassembly and inspection offered guidance for non-activation cause in some cases, while in others, no specific cause could be found. In a subset of installations purposely disregarding best practice guidelines, failure of the ELT-to-antenna cabling connections were found. Recommendations for enhanced installation guidance of ELT systems will be made to the Radio Technical Commission for Aeronautics (RTCA) Special Committee 229 for consideration for adoption in a future release of ELT minimum operational performance specifications. These recommendations will be based on the data gathered during this test series as well as a larger series of crash simulations using computer models that will be calibrated based on these data

  7. Dust-penetrating (DUSPEN) see-through lidar for helicopter situational awareness in DVE

    NASA Astrophysics Data System (ADS)

    Murray, James T.; Seely, Jason; Plath, Jeff; Gotfredson, Eric; Engel, John; Ryder, Bill; Van Lieu, Neil; Goodwin, Ron; Wagner, Tyler; Fetzer, Greg; Kridler, Nick; Melancon, Chris; Panici, Ken; Mitchell, Anthony

    2013-10-01

    Areté Associates recently developed and flight tested a next-generation low-latency near real-time dust-penetrating (DUSPEN) imaging lidar system. These tests were accomplished for Naval Air Warfare Center (NAWC) Aircraft Division (AD) 4.5.6 (EO/IR Sensor Division) under the Office of Naval Research (ONR) Future Naval Capability (FNC) Helicopter Low-Level Operations (HELO) Product 2 program. Areté's DUSPEN system captures full lidar waveforms and uses sophisticated real-time detection and filtering algorithms to discriminate hard target returns from dust and other obscurants. Down-stream 3D image processing methods are used to enhance pilot visualization of threat objects and ground features during severe DVE conditions. This paper presents results from these recent flight tests in full brown-out conditions at Yuma Proving Grounds (YPG) from a CH-53E Super Stallion helicopter platform.

  8. Dust-Penetrating (DUSPEN) "see-through" lidar for helicopter situational awareness in DVE

    NASA Astrophysics Data System (ADS)

    Murray, James T.; Seely, Jason; Plath, Jeff; Gotfreson, Eric; Engel, John; Ryder, Bill; Van Lieu, Neil; Goodwin, Ron; Wagner, Tyler; Fetzer, Greg; Kridler, Nick; Melancon, Chris; Panici, Ken; Mitchell, Anthony

    2013-05-01

    Areté Associates recently developed and flight tested a next-generation low-latency near real-time dust-penetrating (DUSPEN) imaging lidar system. These tests were accomplished for Naval Air Warfare Center (NAWC) Aircraft Division (AD) 4.5.6 (EO/IR Sensor Division) under the Office of Naval Research (ONR) Future Naval Capability (FNC) Helicopter Low-Level Operations (HELO) Product 2 program. Areté's DUSPEN system captures full lidar waveforms and uses sophisticated real-time detection and filtering algorithms to discriminate hard target returns from dust and other obscurants. Down-stream 3D image processing methods are used to enhance pilot visualization of threat objects and ground features during severe DVE conditions. This paper presents results from these recent flight tests in full brown-out conditions at Yuma Proving Grounds (YPG) from a CH-53E Super Stallion helicopter platform.

  9. Adaptive-passive vibration control systems for industrial applications

    NASA Astrophysics Data System (ADS)

    Mayer, D.; Pfeiffer, T.; Vrbata, J.; Melz, T.

    2015-04-01

    Tuned vibration absorbers have become common for passive vibration reduction in many industrial applications. Lightly damped absorbers (also called neutralizers) can be used to suppress narrowband disturbances by tuning them to the excitation frequency. If the resonance is adapted in-operation, the performance of those devices can be significantly enhanced, or inertial mass can be decreased. However, the integration of actuators, sensors and control electronics into the system raises new design challenges. In this work, the development of adaptive-passive systems for vibration reduction at an industrial scale is presented. As an example, vibration reduction of a ship engine was studied in a full scale test. Simulations were used to study the feasibility and evaluate the system concept at an early stage. Several ways to adjust the resonance of the neutralizer were evaluated, including piezoelectric actuation and common mechatronic drives. Prototypes were implemented and tested. Since vibration absorbers suffer from high dynamic loads, reliability tests were used to assess the long-term behavior under operational conditions and to improve the components. It was proved that the adaptive systems are capable to withstand the mechanical loads in an industrial application. Also a control strategy had to be implemented in order to track the excitation frequency. The most mature concepts were integrated into the full scale test. An imbalance exciter was used to simulate the engine vibrations at a realistic level experimentally. The neutralizers were tested at varying excitation frequencies to evaluate the tracking capabilities of the control system. It was proved that a significant vibration reduction is possible.

  10. The Computing And Interdisciplinary Systems Office: Annual Review and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    2003-01-01

    The goal of this research is to develop an advanced engineering analysis system that enables high-fidelity, multi-disciplinary, full propulsion system simulations to be performed early in the design process (a virtual test cell that integrates propulsion and information technologies). This will enable rapid, high-confidence, cost-effective design of revolutionary systems.

  11. Improving Realism in Reduced Gravity Simulators

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew; Harvil, Lauren; Clowers, Kurt; Clark, Timothy; Rajulu, Sudhakar

    2010-01-01

    Since man was first determined to walk on the moon, simulating the lunar environment became a priority. Providing an accurate reduced gravity environment is crucial for astronaut training and hardware testing. This presentation will follow the development of reduced gravity simulators to a final comparison of environments between the currently used systems. During the Apollo program era, multiple systems were built and tested, with several NASA centers having their own unique device. These systems ranged from marionette-like suspension devices where the subject laid on his side, to pneumatically driven offloading harnesses, to parabolic flights. However, only token comparisons, if any, were made between systems. Parabolic flight allows the entire body to fall at the same rate, giving an excellent simulation of reduced gravity as far as the biomechanics and physical perceptions are concerned. While the effects are accurate, there is limited workspace, limited time, and high cost associated with these tests. With all mechanical offload systems only the parts of the body that are actively offloaded feel any reduced gravity effects. The rest of the body still feels the full effect of gravity. The Partial Gravity System (Pogo) is the current ground-based offload system used to training and testing at the NASA Johnson Space Center. The Pogo is a pneumatic type system that allows for offloaded motion in the z-axis and free movement in the x-axis, but has limited motion in the y-axis. The pneumatic system itself is limited by cylinder stroke length and response time. The Active Response Gravity Offload System (ARGOS) is a next generation groundbased offload system, currently in development, that is based on modern robotic manufacturing lines. This system is projected to provide more z-axis travel and full freedom in both the x and y-axes. Current characterization tests are underway to determine how the ground-based offloading systems perform, how they compare to parabolic flights, and which of the systems is preferable for specific uses. These tests were conducted with six degree of freedom robots and manual inputs. Initial results show a definitive difference in abilities of the two offload systems.

  12. The Development and Implementation of a Cryogenic Pressure Sensitive Paint System in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Oglesby, Donald M.; Goodman, Kyle Z.; Goad, William K.; Goad, Linda R.; Massey, Edward A.

    2009-01-01

    The Pressure Sensitive Paint (PSP) method was used to measure global surface pressures on a model at full-scale flight Reynolds numbers. In order to achieve these conditions, the test was carried out at the National Transonic Facility (NTF) operating under cryogenic conditions in a nitrogen environment. The upper surface of a wing on a full-span 0.027 scale commercial transport was painted with a porous PSP formulation and tested at 120K. Data was acquired at Mach 0.8 with a total pressure of 200 kPa, resulting in a Reynolds number of 65 x 106/m. Oxygen, which is required for PSP operation, was injected using dry air so that the oxygen concentration in the flow was approximately 1535 ppm. Results show qualitative agreement with expected results. This preliminary test is the first time that PSP has been successfully deployed to measure global surface pressures at cryogenic condition in the NTF. This paper will describe the system as installed, the results obtained from the test, as well as proposed upgrades and future tests.

  13. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Hardy, Robin C.; Willey, Cliff E.; Welch, Joseph V.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations, while meeting crew and vehicle safety requirements. The analyses and associated testing presented here surround a second generation of the airbag design developed by ILC Dover, building off of relevant first-generation design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley s Landing and Impact Research (LandIR) facility in Hampton, Virginia. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, develop the simulations, and make comparisons to experimental data are discussed.

  14. NASA Dryden Flight Research Center personnel accompany NASA's first Orion full-scale abort flight test crew module as it heads to its new home.

    NASA Image and Video Library

    2008-04-01

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  15. A NASA painter applies the first primer coat to NASA's Orion full-scale abort flight test crew module in the Edwards Air Force Base paint hangar.

    NASA Image and Video Library

    2008-03-29

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  16. Air Force loadmasters oversee unloading of the full-scale Orion abort test crew module mockup from a C-17 cargo aircraft at Edwards Air Force Base March 28.

    NASA Image and Video Library

    2008-03-28

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  17. Paint shop technicians carefully apply masking prior to painting the Orion full-scale abort flight test crew module in the Edwards Air Force Base paint hangar.

    NASA Image and Video Library

    2008-03-29

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  18. NASA paint shop technicians prepare the Orion full-scale flight test crew module for painting in the Edwards Air Force Base paint hangar.

    NASA Image and Video Library

    2008-03-29

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  19. In-Flight Suppression of a De-Stabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb

    2015-01-01

    Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.

  20. ATCA-based ATLAS FTK input interface system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okumura, Yasuyuki; Liu, Tiehui Ted; Olsen, Jamieson

    The first stage of the ATLAS Fast TracKer (FTK) is an ATCA-based input interface system, where hits from the entire silicon tracker are clustered and organized into overlapping eta-phi trigger towers before being sent to the tracking engines. First, FTK Input Mezzanine cards receive hit data and perform clustering to reduce data volume. Then, the ATCA-based Data Formatter system will organize the trigger tower data, sharing data among boards over full mesh backplanes and optic fibers. The board and system level design concepts and implementation details, as well as the operation experiences from the FTK full-chain testing, will be presented.

  1. Heatpipe space power and propulsion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, M.G.; Poston, D.I.; Ranken, W.A.

    1995-07-01

    Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: the Heatpipe Power System (HPS) that provides power only, and the Heatpipe Bimodal System (HBS) that provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, greatly facilitating system fabrication and handling. Third, full electrically heated system testing is possible, with minimal operations required to replace the heaters with fuel and ready the system for launch. Fourth, the systemsmore » are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single point failures during power mode operation. Eighth, fuel burnup rate is quite low to help ensure greater than 10-year system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, a full ground nuclear test is not needed, and development costs will be low. The baseline HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of about 500 kg. The unicouple thermoelectric converters have a hot shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program, demonstrating an operational lifetime of decades. At higher thermal power, the same core can produce over 10 kWe using thermoelectric converters, and over 50 kWe using advanced power conversion systems.« less

  2. Determination of the maximum MGS mounting height : phase II detailed analysis with LS-DYNA.

    DOT National Transportation Integrated Search

    2012-12-01

    Determination of the maximum Midwest Guardrail System (MGS) mounting height was performed in two phases. : Phase I concentrated on crash testing: two full-scale crash tests were performed on the MGS with top-rail mounting heights : of 34 in. (864 mm)...

  3. A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools

    PubMed Central

    2012-01-01

    Background We introduce the linguistic annotation of a corpus of 97 full-text biomedical publications, known as the Colorado Richly Annotated Full Text (CRAFT) corpus. We further assess the performance of existing tools for performing sentence splitting, tokenization, syntactic parsing, and named entity recognition on this corpus. Results Many biomedical natural language processing systems demonstrated large differences between their previously published results and their performance on the CRAFT corpus when tested with the publicly available models or rule sets. Trainable systems differed widely with respect to their ability to build high-performing models based on this data. Conclusions The finding that some systems were able to train high-performing models based on this corpus is additional evidence, beyond high inter-annotator agreement, that the quality of the CRAFT corpus is high. The overall poor performance of various systems indicates that considerable work needs to be done to enable natural language processing systems to work well when the input is full-text journal articles. The CRAFT corpus provides a valuable resource to the biomedical natural language processing community for evaluation and training of new models for biomedical full text publications. PMID:22901054

  4. Large Liquid Rocket Testing: Strategies and Challenges

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim A.; Hebert, Bartt J.

    2005-01-01

    Rocket propulsion development is enabled by rigorous ground testing in order to mitigate the propulsion systems risks that are inherent in space flight. This is true for virtually all propulsive devices of a space vehicle including liquid and solid rocket propulsion, chemical and non-chemical propulsion, boost stage and in-space propulsion and so forth. In particular, large liquid rocket propulsion development and testing over the past five decades of human and robotic space flight has involved a combination of component-level testing and engine-level testing to first demonstrate that the propulsion devices were designed to meet the specified requirements for the Earth to Orbit launchers that they powered. This was followed by a vigorous test campaign to demonstrate the designed propulsion articles over the required operational envelope, and over robust margins, such that a sufficiently reliable propulsion system is delivered prior to first flight. It is possible that hundreds of tests, and on the order of a hundred thousand test seconds, are needed to achieve a high-reliability, flight-ready, liquid rocket engine system. This paper overviews aspects of earlier and recent experience of liquid rocket propulsion testing at NASA Stennis Space Center, where full scale flight engines and flight stages, as well as a significant amount of development testing has taken place in the past decade. The liquid rocket testing experience discussed includes testing of engine components (gas generators, preburners, thrust chambers, pumps, powerheads), as well as engine systems and complete stages. The number of tests, accumulated test seconds, and years of test stand occupancy needed to meet varying test objectives, will be selectively discussed and compared for the wide variety of ground test work that has been conducted at Stennis for subscale and full scale liquid rocket devices. Since rocket propulsion is a crucial long-lead element of any space system acquisition or development, the appropriate plan and strategy must be put in place at the outset of the development effort. A deferment of this test planning, or inattention to strategy, will compromise the ability of the development program to achieve its systems reliability requirements and/or its development milestones. It is important for the government leadership and support team, as well as the vehicle and propulsion development team, to give early consideration to this aspect of space propulsion and space transportation work.

  5. Centaur Rocket in Space Propulsion Research Facility (B-2)

    NASA Image and Video Library

    1969-07-21

    A Centaur second-stage rocket in the Space Propulsion Research Facility, better known as B‒2, operating at NASA’s Plum Brook Station in Sandusky, Ohio. Centaur was designed to be used with an Atlas booster to send the Surveyor spacecraft to the moon in the mid-1960s. After those missions, the rocket was modified to launch a series of astronomical observation satellites into orbit and send space probes to other planets. Researchers conducted a series of systems tests at the Plum Brook test stands to improve the Centaur fuel pumping system. Follow up full-scale tests in the B-2 facility led to the eventual removal of the boost pumps from the design. This reduced the system’s complexity and significantly reduced the cost of a Centaur rocket. The Centaur tests were the first use of the new B-2 facility. B‒2 was the world's only high altitude test facility capable of full-scale rocket engine and launch vehicle system level tests. It was created to test rocket propulsion systems with up to 100,000 pounds of thrust in a simulated space environment. The facility has the unique ability to maintain a vacuum at the rocket’s nozzle while the engine is firing. The rocket fires into a 120-foot deep spray chamber which cools the exhaust before it is ejected outside the facility. B‒2 simulated space using giant diffusion pumps to reduce chamber pressure 10-6 torr, nitrogen-filled cold walls create cryogenic temperatures, and quartz lamps replicate the radiation of the sun.

  6. Implementation of the WICS Wall Interference Correction System at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit; Everhart, Joel L.; Bir, Pamela J.; Ulbrich, Norbert

    2000-01-01

    The Wall Interference Correction System (WICS) is operational at the National Transonic Facility (NTF) of NASA Langley Research Center (NASA LaRC) for semispan and full span tests in the solid wall (slots covered) configuration. The method is based on the wall pressure signature method for computing corrections to the measured parameters. It is an adaptation of the WICS code operational at the 12 ft pressure wind tunnel (12ft PWT) of NASA Ames Research Center (NASA ARC). This paper discusses the details of implementation of WICS at the NTF including tunnel calibration, code modifications for tunnel and support geometry, changes made for the NTF wall orifices layout, details of interfacing with the tunnel data processing system, and post-processing of results. Example results of applying WICS to a semispan test and a full span test are presented. Comparison with classical correction results and an analysis of uncertainty in the corrections are also given. As a special application of the code, the Mach number calibration data from a centerline pipe test was computed by WICS. Finally, future work for expanding the applicability of the code including online implementation is discussed.

  7. X-33 Reusable Launch Vehicle Demonstrator, Spaceport and Range

    NASA Technical Reports Server (NTRS)

    Letchworth, Gary F.

    2011-01-01

    The X-33 was a suborbital reusable spaceplane demonstrator, in development from 1996 to early 2001. The intent of the demonstrator was to lower the risk of building and operating a full-scale reusable vehicle fleet. Reusable spaceplanes offered the potential to lower the cost of access to space by an order of magnitude, compared with conventional expendable launch vehicles. Although a cryogenic tank failure during testing ultimately led to the end of the effort, the X-33 team celebrated many successes during the development. This paper summarizes some of the accomplishments and milestones of this X-vehicle program, from the perspective of an engineer who was a member of the team throughout the development. X-33 Program accomplishments include rapid, flight hardware design, subsystem testing and fabrication, aerospike engine development and testing, Flight Operations Center and Operations Control Center ground systems design and construction, rapid Environmental Impact Statement NEPA process approval, Range development and flight plan approval for test flights, and full-scale system concept design and refinement. Lessons from the X-33 Program may have potential application to new RLV and other aerospace systems being developed a decade later.

  8. Implementation of the WICS Wall Interference Correction System at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit; Martin, Lockheed; Everhart, Joel L.; Bir, Pamela J.; Ulbrich, Norbert

    2000-01-01

    The Wall Interference Correction System (WICS) is operational at the National Transonic Facility (NTF) of NASA Langley Research Center (NASA LaRC) for semispan and full span tests in the solid wall (slots covered) configuration, The method is based on the wall pressure signature method for computing corrections to the measured parameters. It is an adaptation of the WICS code operational at the 12 ft pressure wind tunnel (12ft PWT) of NASA Ames Research Center (NASA ARC). This paper discusses the details of implementation of WICS at the NTF including, tunnel calibration, code modifications for tunnel and support geometry, changes made for the NTF wall orifices layout, details of interfacing with the tunnel data processing system, and post-processing of results. Example results of applying WICS to a semispan test and a full span test are presented. Comparison with classical correction results and an analysis of uncertainty in the corrections are also given. As a special application of the code, the Mach number calibration data from a centerline pipe test was computed by WICS. Finally, future work for expanding the applicability of the code including online implementation is discussed.

  9. Zero Boil-Off System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to their high specific impulse for rocket motors of upper stages suitable for transporting 10s to 100s of metric tons of payload mass to destinations outside of low earth orbit and for their return. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several months. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler to control tank pressure. The active thermal control technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center, in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. Testing consisted of three passive tests with the active cryocooler system off, and 7 active tests, with the cryocooler powered up. The test matrix included zero boil-off tests performed at 90 full and 25 full, and several demonstrations at excess cooling capacity and reduced cooling capacity. From this, the tank pressure response with varied cryocooler power inputs was determined. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  10. Performance evaluation of Space Shuttle SRB parachutes from air drop and scaled model wind tunnel tests. [Solid Rocket Booster recovery system

    NASA Technical Reports Server (NTRS)

    Moog, R. D.; Bacchus, D. L.; Utreja, L. R.

    1979-01-01

    The aerodynamic performance characteristics have been determined for the Space Shuttle Solid Rocket Booster drogue, main, and pilot parachutes. The performance evaluation on the 20-degree conical ribbon parachutes is based primarily on air drop tests of full scale prototype parachutes. In addition, parametric wind tunnel tests were performed and used in parachute configuration development and preliminary performance assessments. The wind tunnel test data are compared to the drop test results and both sets of data are used to determine the predicted performance of the Solid Rocket Booster flight parachutes. Data from other drop tests of large ribbon parachutes are also compared with the Solid Rocket Booster parachute performance characteristics. Parameters assessed include full open terminal drag coefficients, reefed drag area, opening characteristics, clustering effects, and forebody interference.

  11. Modified Light Duty AM2 Capability Assessment

    DTIC Science & Technology

    The Modified Light -Duty AM2 matting was designed specifically for lightweight, remote-piloted aircraft (RPA) applications. An in- depth study was... Ratio (CBR) of 6. To understand the full potential of the Modified Light -Duty AM2, a full- scale evaluation was performed with contingency C-17 and...stir welding for use in fabrication of the lightweight RPA matting in conjunction with a full- scale test on the Modified Light -Duty AM2 matting system

  12. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets

    NASA Astrophysics Data System (ADS)

    Miller, Michael F.; Kessler, William J.; Allen, Mark G.

    1996-08-01

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.

  13. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype electric power management and thruster control system for a 30 cm ion thruster is described. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The power management and control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete power management and control system measures 45.7 cm (18 in.) x 15.2 cm (6 in.) x 114.8 cm (45.2 in.) and weighs 36.2 kg (79.7 lb). At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  14. ASTP fluid transfer measurement experiment. [using breadboard model

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1974-01-01

    The ASTP fluid transfer measurement experiment flight system design concept was verified by the demonstration and test of a breadboard model. In addition to the breadboard effort, a conceptual design of the corresponding flight system was generated and a full scale mockup fabricated. A preliminary CEI specification for the flight system was also prepared.

  15. Evaluation of Stiffness Changes in a High-Rise Building by Measurements of Lateral Displacements Using GPS Technology

    PubMed Central

    Choi, Se Woon; Kim, Ill Soo; Park, Jae Hwan; Kim, Yousok; Sohn, Hong Gyoo; Park, Hyo Seon

    2013-01-01

    The outrigger truss system is one of the most frequently used lateral load resisting structural systems. However, little research has been reported on the effect of installation of outrigger trusses on improvement of lateral stiffness of a high-rise building through full-scale measurements. In this paper, stiffness changes of a high-rise building due to installation of outrigger trusses have been evaluated by measuring lateral displacements using a global positioning system (GPS). To confirm the error range of the GPS measurement system used in the full-scale measurement tests, the GPS displacement monitoring system is investigated through a free vibration test of the experimental model. Then, for the evaluation of lateral stiffness of a high-rise building under construction, the GPS displacement monitoring system is applied to measurements of lateral displacements of a 66-story high-rise building before and after installation of outrigger truss. The stiffness improvement of the building before and after the installation is confirmed through the changes of the natural frequencies and the ratios of the base shear forces to the roof displacements. PMID:24233025

  16. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    NASA Technical Reports Server (NTRS)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  17. The ISS Increments 3 and 4 Test Report: For the Active Rack Isolation System ISS Characterization Experiment (ARIS-ICE)

    NASA Technical Reports Server (NTRS)

    Quraishi, Naveed; Allen, Jim; Bushnell, Glenn; Fialho, Ian

    2003-01-01

    The purpose of ARIS-ICE is to improve, optimize then operationally test and document the performance of the ARIS system on the International Space Station. The ICE program required testing across a full 3 increments (2 through 4). This paper represents the operational report summarizing our accomplishments through the third and fourth increment of testing. The main objectives and results of the increment two testing are discussed in The Increment two Operational Report. This report can be obtained from the ISS Payloads Office or from (http://iss-www.isc.nasa.gov/sslissapt/payofc/OZ3/ARIS.html). In summary these were to ensure the smooth and successful activation of the system and correct operational issues related to long term testing. Then the follow on increment 3 & 4 testing encompassed the majority of the on orbit performance assessments and improvements made to the ARIS system. The intent here is to report these preliminary results of the increment 3 & 4 ARIS-ICE testing as well as the ARIS system improvements made for our users and customers.

  18. Infrared Imagery of Shuttle (IRIS). Task 2. [indium antimonide sensors

    NASA Technical Reports Server (NTRS)

    Chocol, C. J.

    1978-01-01

    An opto-electronic breadboard of 10 channels of the IR temperature measuring system was produced as well as a scaled up portion of the tracking system reticle in order to verify Task 1 assumptions. The breadboards and the tests performed on them are described and both raw and reduced data are presented. Tests show that the electronics portion of the imaging system will provide a dc to 10,000 Hz bandwidth that is flat and contributes no more than 0.4% of full-scale uncertainty to the measurement. Conventional packaging is adequate for the transresistance amplifier design. Measurement errors expected from all sources tested are discussed.

  19. Development of advanced fuel cell system, phase 2

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1973-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Development and characterization of a very stable gold alloy catalyst was continued from Phase I of the program. A polymer material for fabrication of cell structural components was identified and its long term compatibility with the fuel cell environment was demonstrated in cell tests. Full scale partial cell stacks, with advanced design closed cycle evaporative coolers, were tested. The characteristics demonstrated in these tests verified the feasibility of developing the engineering model system concept into an advanced lightweight long life powerplant.

  20. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.

  1. Vibration Testing of Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey

    2003-01-01

    The NASA John H. Glenn Research Center (GRC) and the U.S. Department of Energy (DOE) are currently developing a high efficient, long life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC), developed by Stirling Technology Company (STC) for DOE, was vibration tested at GRC s Structural Dynamics Laboratory (SDU7735) in November- December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hertz) seen during a typical spacecraft launch and survive with no structural damage or functional power performance degradation, thereby enabling its usage in future spacecraft power systems. The Stirling Vibration Test Team at NASA GRC and STC personnel conducted tests on a single 55 electric watt TDC. The purpose was to characterize the TDC s structural response to vibration and determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory (JPL) for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing. The TDC was tested in two orientations, with the direction of vibration parallel and perpendicular to the TDC s moving components (displacer and piston). The TDC successfully passed a series of sine and random vibration tests. The most severe test was a 12.3 Grms random vibration test (peak vibration level of 0.2 g2/Hz from 50 to 250 Hertz) with test durations of 3 minutes per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. As a result of this very successful vibration testing and successful evaluations in other key technical readiness areas, the Stirling power system is now considered a viable technology for future application for NASA spacecraft missions. Possible usage of the Stirling power system would be to supply on- board electric spacecraft power for future NASA Deep-Space Missions, performing as an attractive alternative to Radioisotope Thermoelectric Generators (RTG). Usage of the Stirling technology is also being considered as the electric power source for future Mars rovers, whose mission profiles may exclude the use of photovoltaic power systems (such as exploring at high Martian latitudes or for missions of lengthy durations). GRC s Thermo-Mechanical Systems Branch (5490) provides Stirling technology expertise under a Space Act Agreement with the DOE. Additional vibration testing, by GRC s Structural Systems Dynamics Branch (7733, is planned to continue to demonstrate the Stirling power system s vibration capability as its technology and flight system designs progress.

  2. High-performance space shuttle auxiliary propellant valve system

    NASA Technical Reports Server (NTRS)

    Smith, G. M.

    1973-01-01

    Several potential valve closures for the space shuttle auxiliary propulsion system (SS/APS) were investigated analytically and experimentally in a modeling program. The most promising of these were analyzed and experimentally evaluated in a full-size functional valve test fixture of novel design. The engineering investigations conducted for both model and scale evaluations of the SS/APS valve closures and functional valve fixture are described. Preliminary designs, laboratory tests, and overall valve test fixture designs are presented, and a final recommended flightweight SS/APS valve design is presented.

  3. Fission Surface Power Systems (FSPS) Project Final Report for the Exploration Technology Development Program (ETDP): Fission Surface Power, Transition Face to Face

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.

    2011-01-01

    The Fission Surface Power Systems Project became part of the ETDP on October 1, 2008. Its goal was to demonstrate fission power system technology readiness in an operationally relevant environment, while providing data on fission system characteristics pertinent to the use of a fission power system on planetary surfaces. During fiscal years 08 to 10, the FSPS project activities were dominated by hardware demonstrations of component technologies, to verify their readiness for inclusion in the fission surface power system. These Pathfinders demonstrated multi-kWe Stirling power conversion operating with heat delivered via liquid metal NaK, composite Ti/H2O heat pipe radiator panel operations at 400 K input water temperature, no-moving-part electromagnetic liquid metal pump operation with NaK at flight-like temperatures, and subscale performance of an electric resistance reactor simulator capable of reproducing characteristics of a nuclear reactor for the purpose of system-level testing, and a longer list of component technologies included in the attached report. Based on the successful conclusion of Pathfinder testing, work began in 2010 on design and development of the Technology Demonstration Unit (TDU), a full-scale 1/4 power system-level non-nuclear assembly of a reactor simulator, power conversion, heat rejection, instrumentation and controls, and power management and distribution. The TDU will be developed and fabricated during fiscal years 11 and 12, culminating in initial testing with water cooling replacing the heat rejection system in 2012, and complete testing of the full TDU by the end of 2014. Due to its importance for Mars exploration, potential applicability to missions preceding Mars missions, and readiness for an early system-level demonstration, the Enabling Technology Development and Demonstration program is currently planning to continue the project as the Fission Power Systems project, including emphasis on the TDU completion and testing.

  4. Summary of CPAS EDU Testing Analysis Results

    NASA Technical Reports Server (NTRS)

    Romero, Leah M.; Bledsoe, Kristin J.; Davidson, John.; Engert, Meagan E.; Fraire, Usbaldo, Jr.; Galaviz, Fernando S.; Galvin, Patrick J.; Ray, Eric S.; Varela, Jose

    2015-01-01

    The Orion program's Capsule Parachute Assembly System (CPAS) project is currently conducting its third generation of testing, the Engineering Development Unit (EDU) series. This series utilizes two test articles, a dart-shaped Parachute Compartment Drop Test Vehicle (PCDTV) and capsule-shaped Parachute Test Vehicle (PTV), both of which include a full size, flight-like parachute system and require a pallet delivery system for aircraft extraction. To date, 15 tests have been completed, including six with PCDTVs and nine with PTVs. Two of the PTV tests included the Forward Bay Cover (FBC) provided by Lockheed Martin. Advancements in modeling techniques applicable to parachute fly-out, vehicle rate of descent, torque, and load train, also occurred during the EDU testing series. An upgrade from a composite to an independent parachute simulation allowed parachute modeling at a higher level of fidelity than during previous generations. The complexity of separating the test vehicles from their pallet delivery systems necessitated the use the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulator for modeling mated vehicle aircraft extraction and separation. This paper gives an overview of each EDU test and summarizes the development of CPAS analysis tools and techniques during EDU testing.

  5. Testing Strategies and Methodologies for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Schaible, Dawn M.; Yuchnovicz, Daniel E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) was tasked to develop an alternate, tower-less launch abort system (LAS) as risk mitigation for the Orion Project. The successful pad abort flight demonstration test in July 2009 of the "Max" launch abort system (MLAS) provided data critical to the design of future LASs, while demonstrating the Agency s ability to rapidly design, build and fly full-scale hardware at minimal cost in a "virtual" work environment. Limited funding and an aggressive schedule presented a challenge for testing of the complex MLAS system. The successful pad abort flight demonstration test was attributed to the project s systems engineering and integration process, which included: a concise definition of, and an adherence to, flight test objectives; a solid operational concept; well defined performance requirements, and a test program tailored to reducing the highest flight test risks. The testing ranged from wind tunnel validation of computational fluid dynamic simulations to component ground tests of the highest risk subsystems. This paper provides an overview of the testing/risk management approach and methodologies used to understand and reduce the areas of highest risk - resulting in a successful flight demonstration test.

  6. Test matrices for evaluating cable median barriers placed in v-ditches.

    DOT National Transportation Integrated Search

    2012-07-01

    Cable barrier systems designed to be used in median ditches have been traditionally full-scale crash tested placed either : within 4 ft from the slope break point (SBP) of a 4H:1V front slope or near the bottom of the ditch. Recently, there has been ...

  7. 40 CFR 86.884-9 - Smoke measurement system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Schematic drawing. The Figure I84-1 is a schematic drawing of the optical system of the light extinction... the exhaust from the test site. (2) Smokemeter (light extinction meter)—continuous recording, full...) Light extinction meters employing substantially identical measurement principles and producing...

  8. NASA Tests 2nd RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2018-01-16

    On Jan. 16, 2018, engineers at NASA’s Stennis Space Center in Mississippi conducted a certification test of another RS-25 engine flight controller on the A-1 Test Stand at Stennis Space Center. The 365-second, full-duration test came a month after the space agency capped a year of RS-25 testing with a flight controller test in mid-December. For the “green run” test the flight controller was installed on RS-25 developmental engine E0528 and fired just as during an actual launch. Once certified, the flight controller will be removed and installed on a flight engine for use by NASA’s new deep-space rocket, the Space Launch System (SLS).

  9. Low thrust rocket test facility

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Schneider, Steven J.

    1990-01-01

    A low thrust chemical rocket test facility has recently become operational at the NASA-Lewis. The new facility is used to conduct both long duration and performance tests at altitude over a thruster's operating envelope using hydrogen and oxygen gas for propellants. The facility provides experimental support for a broad range of objectives, including fundamental modeling of fluids and combustion phenomena, the evaluation of thruster components, and life testing of full rocket designs. The major mechanical and electrical systems are described along with aspects of the various optical diagnostics available in the test cell. The electrical and mechanical systems are designed for low down time between tests and low staffing requirements for test operations. Initial results are also presented which illustrate the various capabilities of the cell.

  10. Development and Preliminary Testing of a High Precision Long Stroke Slit Change Mechanism for the SPICE Instrument

    NASA Technical Reports Server (NTRS)

    Paciotti, Gabriel; Humphries, Martin; Rottmeier, Fabrice; Blecha, Luc

    2014-01-01

    In the frame of ESA's Solar Orbiter scientific mission, Almatech has been selected to design, develop and test the Slit Change Mechanism of the SPICE (SPectral Imaging of the Coronal Environment) instrument. In order to guaranty optical cleanliness level while fulfilling stringent positioning accuracies and repeatability requirements for slit positioning in the optical path of the instrument, a linear guiding system based on a double flexible blade arrangement has been selected. The four different slits to be used for the SPICE instrument resulted in a total stroke of 16.5 mm in this linear slit changer arrangement. The combination of long stroke and high precision positioning requirements has been identified as the main design challenge to be validated through breadboard models testing. This paper presents the development of SPICE's Slit Change Mechanism (SCM) and the two-step validation tests successfully performed on breadboard models of its flexible blade support system. The validation test results have demonstrated the full adequacy of the flexible blade guiding system implemented in SPICE's Slit Change Mechanism in a stand-alone configuration. Further breadboard test results, studying the influence of the compliant connection to the SCM linear actuator on an enhanced flexible guiding system design have shown significant enhancements in the positioning accuracy and repeatability of the selected flexible guiding system. Preliminary evaluation of the linear actuator design, including a detailed tolerance analyses, has shown the suitability of this satellite roller screw based mechanism for the actuation of the tested flexible guiding system and compliant connection. The presented development and preliminary testing of the high-precision long-stroke Slit Change Mechanism for the SPICE Instrument are considered fully successful such that future tests considering the full Slit Change Mechanism can be performed, with the gained confidence, directly on a Qualification Model. The selected linear Slit Change Mechanism design concept, consisting of a flexible guiding system driven by a hermetically sealed linear drive mechanism, is considered validated for the specific application of the SPICE instrument, with great potential for other special applications where contamination and high precision positioning are dominant design drivers.

  11. Test systems of the STS-XYTER2 ASIC: from wafer-level to in-system verification

    NASA Astrophysics Data System (ADS)

    Kasinski, Krzysztof; Zubrzycka, Weronika

    2016-09-01

    The STS/MUCH-XYTER2 ASIC is a full-size prototype chip for the Silicon Tracking System (STS) and Muon Chamber (MUCH) detectors in the new fixed-target experiment Compressed Baryonic Matter (CBM) at FAIR-center, Darmstadt, Germany. The STS assembly includes more than 14000 ASICs. The complicated, time-consuming, multi-step assembly process of the detector building blocks and tight quality assurance requirements impose several intermediate testing to be performed for verifying crucial assembly steps (e.g. custom microcable tab-bonding before wire-bonding to the PCB) and - if necessary - identifying channels or modules for rework. The chip supports the multi-level testing with different probing / contact methods (wafer probe-card, pogo-probes, in-system tests). A huge number of ASICs to be tested restricts the number and kind of tests possible to be performed within a reasonable time. The proposed architectures of test stand equipment and a brief summary of methodologies are presented in this paper.

  12. Flight Testing the X-36: The Test Pilots Perspective

    NASA Technical Reports Server (NTRS)

    Walker, Laurence A.

    1997-01-01

    The X-36 is a 28% scale, remotely piloted research aircraft, designed to demonstrate tailless fighter agility. Powered by a modified Williams International F-112 jet engine, the X-36 uses thrust vectoring and a fly-by-wire control system. Although too small for an onboard pilot, a full-sized remote cockpit was designed to virtually place the test pilot into the aircraft using a variety of innovative techniques. To date, 22 flights have been flown, successfully completing the second phase of testing. Handling qualities have been matching predictions; the test operation is flown similarly to that for full sized manned aircraft. All takeoffs, test maneuvers and landings are flown by the test pilot, affording a greater degree of flexibility and the ability to handle the inevitable unknowns which may occur during highly experimental test programs. The cockpit environment, cues, and display techniques used in this effort have proven to enhance the 'virtual' test pilot's awareness and have helped ensure a successful RPV test program.

  13. Desiccant humidity control system. [for space shuttle cabins

    NASA Technical Reports Server (NTRS)

    Lunde, P. J.; Kester, F. L.

    1975-01-01

    A water vapor and carbon dioxide sorbent material (designated HS-C) was developed for potential application to the space shuttle and tested at full scale. Capacities of two percent for carbon dioxide and four percent for water vapor were achieved using space shuttle cabin adsorption conditions and a space vacuum for desorption. Performance testing shows that water vapor can be controlled by varying the air process flow, while maintaining the ability to remove carbon dioxide. A 2000 hour life test was successfully completed, as were tests for sensitivity to cleaning solvent vapors, vibration resistance, and flammability. A system design for the space shuttle shows a 200 pound weight advantage over competitive systems and an even larger advantage for longer missions.

  14. Phase change thermal storage for a solar total energy system

    NASA Technical Reports Server (NTRS)

    Rice, R. E.; Cohen, B. M.

    1978-01-01

    An analytical and experimental program is being conducted on a one-tenth scale model of a high-temperature (584 K) phase-change thermal energy storage system for installation in a solar total energy test facility at Albuquerque, New Mexico, U.S.A. The thermal storage medium is anhydrous sodium hydroxide with 8% sodium nitrate. The program will produce data on the dynamic response of the system to repeated cycles of charging and discharging simulating those of the test facility. Data will be correlated with a mathematical model which will then be used in the design of the full-scale system.

  15. Breadboard Solid Amine Water Desorbed CO2 Control System

    NASA Technical Reports Server (NTRS)

    Colling, A. K.; Hultman, M. M.

    1980-01-01

    A regenerable CO2 removal system was developed for potential use on the shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. It uses a solid amine material to adsorb CO2 from the atmosphere. The material is regenerated by heating it with steam from a zero gravity water evaporator. A full sized, thermally representative breadboard canister and a preprototype water evaporator were built and tested to shuttle requirements for CO2 control. The test program was utilized to evaluate and verify the operation and performance of these two primary components of the SAWD system.

  16. Development of a Microphone Phased Array Capability for the Langley 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Humphreys, William M.; Brooks, Thomas F.; Bahr, Christopher J.; Spalt, Taylor B.; Bartram, Scott M.; Culliton, William G.; Becker, Lawrence E.

    2014-01-01

    A new aeroacoustic measurement capability has been developed for use in open-jet testing in the NASA Langley 14- by 22-Foot Subsonic Tunnel (14x22 tunnel). A suite of instruments has been developed to characterize noise source strengths, locations, and directivity for both semi-span and full-span test articles in the facility. The primary instrument of the suite is a fully traversable microphone phased array for identification of noise source locations and strengths on models. The array can be mounted in the ceiling or on either side of the facility test section to accommodate various test article configurations. Complementing the phased array is an ensemble of streamwise traversing microphones that can be placed around the test section at defined locations to conduct noise source directivity studies along both flyover and sideline axes. A customized data acquisition system has been developed for the instrumentation suite that allows for command and control of all aspects of the array and microphone hardware, and is coupled with a comprehensive data reduction system to generate information in near real time. This information includes such items as time histories and spectral data for individual microphones and groups of microphones, contour presentations of noise source locations and strengths, and hemispherical directivity data. The data acquisition system integrates with the 14x22 tunnel data system to allow real time capture of facility parameters during acquisition of microphone data. The design of the phased array system has been vetted via a theoretical performance analysis based on conventional monopole beamforming and DAMAS deconvolution. The performance analysis provides the ability to compute figures of merit for the array as well as characterize factors such as beamwidths, sidelobe levels, and source discrimination for the types of noise sources anticipated in the 14x22 tunnel. The full paper will summarize in detail the design of the instrumentation suite, the construction of the hardware system, and the results of the performance analysis. Although the instrumentation suite is designed to characterize noise for a variety of test articles in the 14x22 tunnel, this paper will concentrate on description of the instruments for two specific test campaigns in the facility, namely a full-span NASA Hybrid Wing Body (HWB) model entry and a semi-span Gulfstream aircraft model entry, tested in the facility in the winter of 2012 and spring of 2013, respectively.

  17. Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A total of 59 tail first drops were made. Model entry conditions simulated full scale vertical velocities of approximately 75 to 110 ft/sec with horizontal velocities up to 45 ft/sec and impact angles to + or - 10 deg. These tests were conducted at scaled atmospheric pressures (1.26 psia or 65 mm.Hg). The model, test program, test facility, test equipment, instrumentation system, data reduction procedures, and test results are described.

  18. Development and Evaluation of a Prototype Wheeled Ultra-High Pressure Extinguisher System with Novec 1230

    DTIC Science & Technology

    2016-01-01

    Fire Tests Pool fire tests were conducted as outlined below, and consisted of a pretest phase, in which the F-100 engine nacelle was first...the nacelle during the test phase. Pretest Phase  Determine and record extinguisher full weight.  Initiate flow of jet fuel through the...extinguisher after test. 3.4.2. Rear Engine Fire Tests Rear engine fire tests were conducted as outlined below, and consisted of a pretest phase

  19. Abbreviated Full-Scale Flight Test Investigation of the Lockheed L1011 Trailing Vortex System Using Tower Fly-By Technique

    DTIC Science & Technology

    1976-05-01

    film airflow anemometry used for vortex measurements in the series of tests is described in reference 6. However, there were two major differences in...LOCKHEED 11011 TRAILING VORTEX SYSTEM USING TOWER FLY-BY TECHNIQUE Leo J. fiarodz ,OtTt4V MAY 1976 FINAL REPORT D k ■?tp r~ "ft UElaibu u...THE LOCKHEED L1011 TRAILING VORTEX SYSTEM USING TOWER FLY-BY TECHNIQUE 7. Authc Leo J. Garodz 9. Performing Orgoni lotion Nome ond Address

  20. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    PubMed

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  1. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    PubMed Central

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  2. Development of ECT/UT inspection system for bottom mounted instrumentation nozzle of PWR reactor vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, H.; Fukui, S.; Iwahashi, Y.

    1994-12-31

    The development of inspection technique and tool for Bottom Mounted Instrument (BMI) nozzle of PWR plant was performed for countermeasure of leakage accident at incore instrument nozzle of Hamaoka-1 (BWR). MHI achieved the following development, of which object was PWR Plant R/V: (1) development of ECT/UT Multi-sensored Probe; (2) development of Inspection System (3) development of Data Processing System. The Inspection System had been functionally tested using full scale mock-up. As the result of the functional test, this system was confirmed to be very effective, and assumed to be hopeful for the actual application on site.

  3. A cyclic ground test of an ion auxiliary propulsion system: Description and operational considerations

    NASA Technical Reports Server (NTRS)

    Ling, Jerri S.; Kramer, Edward H.

    1988-01-01

    The Ion Auxiliary Propulsion System (IAPS) experiment is designed for launch on an Air Force Space Test Program satellite (NASA-TM-78859; AIAA Paper No. 78-647). The primary objective of the experiment is to flight qualify the 8 cm mercury ion thruster system for stationkeeping applications. Secondary objectives are measuring the interactions between operating ion thruster systems and host spacecraft, and confirming the design performance of the thruster systems. Two complete 8 cm mercury ion thruster subsystems will be flown. One of these will be operated for 2557 on and off cycles and 7057 hours at full thrust. Tests are currently under way in support of the IAPS flight experiment. In this test an IAPS thruster is being operated through a series of startup/run/shut-down cycles which simulate thruster operation during the planned flight experiment. A test facility description and operational considerations of this testing using an engineering model 8 cm thruster (S/N 905) is the subject of this paper. Final results will be published at a later date when the ground test has been concluded.

  4. Experimental Assessment of the Reciprocating Feed System

    NASA Technical Reports Server (NTRS)

    Eddleman, David E.; Blackmon, James B.; Morton, Christopher D.

    2006-01-01

    The primary goal of this project was to design, construct, and test a full scale, high pressure simulated propellant feed system test bed that could evaluate the ability of the Reciprocating Feed System (RFS) to provide essentially constant flow rates and pressures to a rocket engine. The two key issues addressed were the effects of the transition of the drain cycle from tank to tank and the benefits of other hardware such as accumulators to provide a constant pressure flow rate out of the RFS. The test bed provided 500 psi flow at rates of the order of those required for engines in the 20,000 lbf thrust class (e.g., 20 to 40 lb/sec). A control system was developed in conjunction with the test article and automated system operation was achieved. Pre-test planning and acceptance activities such as a documented procedure and hazard analysis were conducted and the operation of the test article was approved by, and conducted in coordination with, appropriate NASA Marshall Space Flight Center personnel under a Space Act Agreement. Tests demonstrated successful control of flow rates and pressures.

  5. Multiblob coarse-graining for mixtures of long polymers and soft colloids

    NASA Astrophysics Data System (ADS)

    Locatelli, Emanuele; Capone, Barbara; Likos, Christos N.

    2016-11-01

    Soft nanocomposites represent both a theoretical and an experimental challenge due to the high number of the microscopic constituents that strongly influence the behaviour of the systems. An effective theoretical description of such systems invokes a reduction of the degrees of freedom to be analysed, hence requiring the introduction of an efficient, quantitative, coarse-grained description. We here report on a novel coarse graining approach based on a set of transferable potentials that quantitatively reproduces properties of mixtures of linear and star-shaped homopolymeric nanocomposites. By renormalizing groups of monomers into a single effective potential between a f-functional star polymer and an homopolymer of length N0, and through a scaling argument, it will be shown how a substantial reduction of the to degrees of freedom allows for a full quantitative description of the system. Our methodology is tested upon full monomer simulations for systems of different molecular weight, proving its full predictive potential.

  6. Precast concrete elements for accelerated bridge construction : laboratory testing of precast substructure components, Boone County bridge.

    DOT National Transportation Integrated Search

    2009-01-01

    Vol. 1-1: In July 2006, construction began on an accelerated bridge project in Boone County, Iowa that was composed of precast substructure : elements and an innovative, precast deck panel system. The superstructure system consisted of full-depth dec...

  7. Blade Displacement Measurements of the Full-Scale UH-60A Airloads Rotor

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Burner, Alpheus W.; Abrego, Anita I.; Olson, Lawrence E.

    2011-01-01

    Blade displacement measurements were acquired during a wind tunnel test of the full-scale UH-60A Airloads rotor. The test was conducted in the 40- by 80-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at NASA Ames Research Center. Multi-camera photogrammetry was used to measure the blade displacements of the four-bladed rotor. These measurements encompass a range of test conditions that include advance ratios from 0.15 to unique slowed-rotor simulations as high as 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective of these measurements is to provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft computational tools. The methodology, system development, measurement techniques, and preliminary sample blade displacement measurements are presented.

  8. Design techniques for developing a computerized instrumentation test plan. [for wind tunnel test data acquisition system

    NASA Technical Reports Server (NTRS)

    Burnett, S. Kay; Forsyth, Theodore J.; Maynard, Everett E.

    1987-01-01

    The development of a computerized instrumentation test plan (ITP) for the NASA/Ames Research Center National Full Scale Aerodynamics Complex (NFAC) is discussed. The objective of the ITP program was to aid the instrumentation engineer in documenting the configuration and calibration of data acquisition systems for a given test at any of four low speed wind tunnel facilities (Outdoor Aerodynamic Research Facility, 7 x 10, 40 x 80, and 80 x 120) at the NFAC. It is noted that automation of the ITP has decreased errors, engineering hours, and setup time while adding a higher level of consistency and traceability.

  9. Active vibration control of a full scale aircraft wing using a reconfigurable controller

    NASA Astrophysics Data System (ADS)

    Prakash, Shashikala; Renjith Kumar, T. G.; Raja, S.; Dwarakanathan, D.; Subramani, H.; Karthikeyan, C.

    2016-01-01

    This work highlights the design of a Reconfigurable Active Vibration Control (AVC) System for aircraft structures using adaptive techniques. The AVC system with a multichannel capability is realized using Filtered-X Least Mean Square algorithm (FxLMS) on Xilinx Virtex-4 Field Programmable Gate Array (FPGA) platform in Very High Speed Integrated Circuits Hardware Description Language, (VHDL). The HDL design is made based on Finite State Machine (FSM) model with Floating point Intellectual Property (IP) cores for arithmetic operations. The use of FPGA facilitates to modify the system parameters even during runtime depending on the changes in user's requirements. The locations of the control actuators are optimized based on dynamic modal strain approach using genetic algorithm (GA). The developed system has been successfully deployed for the AVC testing of the full-scale wing of an all composite two seater transport aircraft. Several closed loop configurations like single channel and multi-channel control have been tested. The experimental results from the studies presented here are very encouraging. They demonstrate the usefulness of the system's reconfigurability for real time applications.

  10. Breadboard CO2 and humidity control system

    NASA Technical Reports Server (NTRS)

    Boehm, A. M.

    1976-01-01

    A regenerable CO2 and humidity control system is being developed for potential use on shuttle as an alternate to the baseline lithium hydroxide (LiOH)/condensing heat exchanger system. The system utilizes a sorbent material, designated HS-C, to adsorb CO2 and water vapor from the cabin atmosphere. The material is regenerated by exposing it to space vacuum. A half-size breadboard system, utilizing a flight representative HS-C canister, was designed, built, and performance tested to shuttle requirements for total CO2 and total humidity removal. The use of a new chemical matrix material allowed significant optimization of the system design by packing the HS-C chemical into the core of a heat exchanger which is manifolded to form two separate and distinct beds. Breadboard system performance was proven by parametric testing and simulated mission testing over the full range of shuttle crew sizes and metabolic loadings. Vacuum desorption testing demonstrated considerable savings in previously projected shuttle vacuum duct sizing.

  11. Simulating the Impact Response of Full-Scale Composite Airframe Structures

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Littell, Justin D.; Seal, Michael D.

    2012-01-01

    NASA Langley Research Center obtained a composite helicopter cabin structure in 2010 from the US Army's Survivable Affordable Repairable Airframe Program (SARAP) that was fabricated by Sikorsky Aircraft Corporation. The cabin had been subjected to a vertical drop test in 2008 to evaluate a tilting roof concept to limit the intrusion of overhead masses into the fuselage cabin. Damage to the cabin test article was limited primarily to the roof. Consequently, the roof area was removed and the remaining structure was cut into test specimens including a large subfloor section and a forward framed fuselage section. In 2011, NASA and Sikorsky entered into a cooperative research agreement to study the impact responses of composite airframe structures and to evaluate the capabilities of the explicit transient dynamic finite element code, LS-DYNA®, to simulate these responses including damage initiation and progressive failure. Most of the test articles were manufactured of graphite unidirectional tape composite with a thermoplastic resin system. However, the framed fuselage section was constructed primarily of a plain weave graphite fabric material with a thermoset resin system. Test data were collected from accelerometers and full-field photogrammetry. The focus of this paper will be to document impact testing and simulation results for the longitudinal impact of the subfloor section and the vertical drop test of the forward framed fuselage section.

  12. Centaur Standard Shroud (CSS) cryogenic unlatch tests

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Cryogenic tanking and partial jettison (unlatch) tests were performed on a full scale Centaur vehicle and Centaur Standard Shroud (CSS) to develop and qualify the CSS insulation system, the CSS and Centaur ground-hold purge systems, and the Centaur hydrogen tank flight vent system. Operation of the shroud/Centaur pyrotechnic systems, seals, and the shroud jettison springs, hinges, and other separation systems was demonstrated by a partial jettison of the shroud into catch nets. The Centaur tanks were filled with liquid hydrogen and liquid nitrogen. Prelaunch operations were performed, and data taken to establish system performances. Results from the initial tests showed a higher than expected heat transfer rate to the Centaur hydrogen tank. In addition, the release mechanism for the forward seal between the Centaur and the CSS did not function properly, and the seal was torn during jettison of the shroud.

  13. Development of an inflatable radiator system. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Leach, J. W.

    1976-01-01

    Conceptual designs of an inflatable radiator system developed for supplying short duration supplementary cooling of space vehicles are described along with parametric trade studies, materials evaluation/selection studies, thermal and structural analyses, and numerous element tests. Fabrication techniques developed in constructing the engineering models and performance data from the model thermal vacuum tests are included. Application of these data to refining the designs of the flight articles and to constructing a full scale prototype radiator is discussed.

  14. The development and testing of a regenerable CO2 and humidity control system for Shuttle

    NASA Technical Reports Server (NTRS)

    Boehm, A. M.

    1977-01-01

    A regenerable CO2 and humidity control system is presently being developed for potential use on Shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. The system utilizes a sorbent material (designated 'HS-C') to adsorb CO2 and water vapor from the cabin atmosphere and desorb the CO2 and water vapor overboard when exposed to a space vacuum. Continuous operation is achieved by utilizing two beds which are alternately cycled between adsorption and desorption. This paper presents the significant hardware development and test accomplishments of the past year. A half-size breadboard system utilizing a flight configuration canister was successfully performance tested in simulated Shuttle missions. A vacuum desorption test provided considerable insight into the desorption phenomena and allowed a significant reduction of the Shuttle vacuum duct size. The fabrication and testing of a flight prototype canister and flight prototype vacuum valves have proven the feasibility of these full-size, flight-weight components.

  15. Development and Calibration of a System-Integrated Rotorcraft Finite Element Model for Impact Scenarios

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta, Lucas G.; Jackson, Karen E.; Polanco, Michael A.; Littell, Justin D.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber (DEA) under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. The presence of this energy absorbing device reduced the peak impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to a system-integrated finite element model of the test article developed in parallel with the test program. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests were conducted to evaluate the impact performances of various components and subsystems, including new crush tubes and the DEA blocks. Parameters defined for the system-integrated finite element model were determined from these tests. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the full-scale crash test without the DEA. This combination of heuristic and quantitative methods identified modeling deficiencies, evaluated parameter importance, and proposed required model changes. The multidimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and copilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. One lesson learned was that this approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and pretest predictions. Complete crash simulations with validated finite element models can be used to satisfy crash certification requirements, potentially reducing overall development costs.

  16. Shape memory alloy actuation for a variable area fan nozzle

    NASA Astrophysics Data System (ADS)

    Rey, Nancy; Tillman, Gregory; Miller, Robin M.; Wynosky, Thomas; Larkin, Michael J.; Flamm, Jeffrey D.; Bangert, Linda S.

    2001-06-01

    The ability to control fan nozzle exit area is an enabling technology for next generation high-bypass-ratio turbofan engines. Performance benefits for such designs are estimated at up to 9% in thrust specific fuel consumption (TSFC) relative to current fixed-geometry engines. Conventionally actuated variable area fan nozzle (VAN) concepts tend to be heavy and complicated, with significant aircraft integration, reliability and packaging issues. The goal of this effort was to eliminate these undesirable features and formulate a design that meets or exceeds leakage, durability, reliability, maintenance and manufacturing cost goals. A Shape Memory Alloy (SMA) bundled cable actuator acting to move an array of flaps around the fan nozzle annulus is a concept that meets these requirements. The SMA bundled cable actuator developed by the United Technologies Corporation (Patents Pending) provides significant work output (greater than 2200 in-lb per flap, through the range of motion) in a compact package and minimizes system complexity. Results of a detailed design study indicate substantial engine performance, weight, and range benefits. The SMA- based actuation system is roughly two times lighter than a conventional mechanical system, with significant aircraft direct operating cost savings (2-3%) and range improvements (5-6%) relative to a fixed-geometry nozzle geared turbofan. A full-scale sector model of this VAN system was built and then tested at the Jet Exit Test Facility at NASA Langley to demonstrate the system's ability to achieve 20% area variation of the nozzle under full scale aerodynamic loads. The actuator exceeded requirements, achieving repeated actuation against full-scale loads representative of typical cruise as well as greater than worst-case (ultimate) aerodynamic conditions. Based on these encouraging results, work is continuing with the goal of a flight test on a C-17 transport aircraft.

  17. Ferrographic analysis of wear debris from full-scale bearing fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Loewenthal, S. H.

    1979-01-01

    The Ferrograph was used to determine the types and quantities of wear particles generated during full scale bearing fatigue tests. Deep-groove ball bearings made from steel were used. A tetraester lubricant was used in a recirculating lubricant system containing a 49 micrometers absolute filter. Test conditions include a maximum Hertz stress of 2.4 GPa, a shaft speed of 15,000 rpm, and a lubricant supply temperature of 74 C (165 F). Four fatigue failures were detected by accelerometers in this test set. In general, the Ferrograph was more sensitive (up to 23 hr) in detecting spall initiation than either accelerometers or the normal spectrographic oil analysis. Four particle types were observed: normal rubbing weather particles, spheres, nonferrous particles, and severe wear (spall) fragments.

  18. Analysis of wear-debris from full-scale bearing fatigue tests using the ferrograph

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Loewenthal, S. H.

    1980-01-01

    The ferrograph was used to determine the types and quantities of wear particles generated during full-scale bearing fatigue tests. Deep-groove ball bearings made from AISI 52100 steel were used. A MIL-L-23699 tetraester lubricant was used in a recirculating lubrication system containing a 49 mm absolute filter. Test conditions included a maximum Hertz stress of 2.4 GPa, a shaft speed of 15,000 rpm, and a lubricant supply temperature of 74 C (165 F). Four fatigue failures were detected by accelerometers in this test set. In general, the ferrograph was more sensitive (up to 23 hr) in detecting spall initiation than either accelerometers or the normal spectrographic oil analysis. Four particle types were observed: normal rubbing wear particles, spheres, nonferrous particles, and severe wear (spall) fragments.

  19. KSC-2012-2590

    NASA Image and Video Library

    2012-04-09

    CAPE CANAVERAL, Fla. – NASA’s Freedom Star boat is heading back to Port Canaveral in Florida, after a full day of testing NASA’s Mobile Aerospace Reconnaissance System, or MARS, in the Atlantic Ocean. MARS, run by NASA’s Langley Research Center in Hampton, Va., with its spatial, hyperspectral, thermal, and directed energy capabilities will be used for thermal imaging testing for the upcoming SpaceX Falcon 9 and Dragon capsule test flight to the International Space Station. During today’s test, the MARS X-band radar and kineto tracking mount KTM were tested to ensure that they were synchronized to receive a rocket launch feed. The radar was used to identify an object to see if the KTM could lock on to and track it. The MARS team performed maintenance on the system, confirmed communications links, and tested the design of the mounting system and environmental enclosure. Photo credit: NASA/Cory Huston

  20. KSC-2012-2591

    NASA Image and Video Library

    2012-04-09

    CAPE CANAVERAL, Fla. – NASA’s Freedom Star boat is heading back to Port Canaveral in Florida, after a full day of testing NASA’s Mobile Aerospace Reconnaissance System, or MARS, in the Atlantic Ocean. MARS, run by NASA’s Langley Research Center in Hampton, Va., with its spatial, hyperspectral, thermal, and directed energy capabilities will be used for thermal imaging testing for the upcoming SpaceX Falcon 9 and Dragon capsule test flight to the International Space Station. During today’s test, the MARS X-band radar and kineto tracking mount KTM were tested to ensure that they were synchronized to receive a rocket launch feed. The radar was used to identify an object to see if the KTM could lock on to and track it. The MARS team performed maintenance on the system, confirmed communications links, and tested the design of the mounting system and environmental enclosure. Photo credit: NASA/Cory Huston

  1. KSC-2012-2593

    NASA Image and Video Library

    2012-04-09

    CAPE CANAVERAL, Fla. – NASA’s Freedom Star boat is heading back to Port Canaveral in Florida, after a full day of testing NASA’s Mobile Aerospace Reconnaissance System, or MARS, in the Atlantic Ocean. MARS, run by NASA’s Langley Research Center in Hampton, Va., with its spatial, hyperspectral, thermal, and directed energy capabilities will be used for thermal imaging testing for the upcoming SpaceX Falcon 9 and Dragon capsule test flight to the International Space Station. During today’s test, the MARS X-band radar and kineto tracking mount KTM were tested to ensure that they were synchronized to receive a rocket launch feed. The radar was used to identify an object to see if the KTM could lock on to and track it. The MARS team performed maintenance on the system, confirmed communications links, and tested the design of the mounting system and environmental enclosure. Photo credit: NASA/Cory Huston

  2. KSC-2012-2589

    NASA Image and Video Library

    2012-04-09

    CAPE CANAVERAL, Fla. – NASA’s Freedom Star boat is heading back to Port Canaveral in Florida, after a full day of testing NASA’s Mobile Aerospace Reconnaissance System, or MARS, in the Atlantic Ocean. MARS, run by NASA’s Langley Research Center in Hampton, Va., with its spatial, hyperspectral, thermal, and directed energy capabilities will be used for thermal imaging testing for the upcoming SpaceX Falcon 9 and Dragon capsule test flight to the International Space Station. During today’s test, the MARS X-band radar and kineto tracking mount KTM were tested to ensure that they were synchronized to receive a rocket launch feed. The radar was used to identify an object to see if the KTM could lock on to and track it. The MARS team performed maintenance on the system, confirmed communications links, and tested the design of the mounting system and environmental enclosure. Photo credit: NASA/Cory Huston

  3. KSC-2012-2592

    NASA Image and Video Library

    2012-04-09

    CAPE CANAVERAL, Fla. – NASA’s Freedom Star boat is heading back to Port Canaveral in Florida, after a full day of testing NASA’s Mobile Aerospace Reconnaissance System, or MARS, in the Atlantic Ocean. MARS, run by NASA’s Langley Research Center in Hampton, Va., with its spatial, hyperspectral, thermal, and directed energy capabilities will be used for thermal imaging testing for the upcoming SpaceX Falcon 9 and Dragon capsule test flight to the International Space Station. During today’s test, the MARS X-band radar and kineto tracking mount KTM were tested to ensure that they were synchronized to receive a rocket launch feed. The radar was used to identify an object to see if the KTM could lock on to and track it. The MARS team performed maintenance on the system, confirmed communications links, and tested the design of the mounting system and environmental enclosure. Photo credit: NASA/Cory Huston

  4. Fiber Optic System Test Results In A Tactical Military Aircraft

    NASA Astrophysics Data System (ADS)

    Uhlhorn, Roger W.; Greenwell, Roger A.

    1980-09-01

    The YAV-8B Electromagnetic Immunity and Flight-Test Program was established to evaluate the susceptibility of wire and optical fiber signal transmission lines to electromagnetic interference when these lines are installed in a graphite/epoxy composite wing and to demonstrate the flightworthiness of fiber optics interconnects in the vertical/ short takeoff and landing aircraft environment. In response, two fiber optic systems were designed, fabricated, and flight tested by McDonnell Aircraft Co. (MCAIR), a division of the McDonnell Douglas Corporation, on the two YAV-8B V/STOL flight test aircraft. The program successfully demonstrated that fiber optics are compatible with the attack aircraft environment. As a result, the full scale development AV-8B will incorporate fiber optics in a point-to-point data link. We describe here the fiber optic systems designs, test equipment development, cabling and connection requirements, fabrication and installation experience, and flight test program results.

  5. 76 FR 33981 - Special Conditions: Pratt and Whitney Canada Model PW210S Turboshaft Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... system includes a dual channel full authority digital electronic control. The engine will incorporate a... mode operation. The commenter stated that the 400 cycle dynamic braking test is inappropriate for this engine certification program, that engine dynamics will be difficult to simulate in a test stand, and...

  6. Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Garrison, Matthew; Cottingham, Christine; Peabody, Sharon

    2010-01-01

    The theory shown here can provide thermal stability criteria based on physics and a goal steady state error rather than on an arbitrary "X% Q/mC(sub P)" method. The ability to accurately predict steady-state temperatures well before thermal balance is reached could be very useful during testing. This holds true for systems where components are changing temperature at different rates, although it works better for the components closest to the sink. However, the application to these test cases shows some significant limitations: This theory quickly falls apart if the thermal control system in question is tightly coupled to a large mass not accounted for in the calculations, so it is more useful in subsystem-level testing than full orbiter tests. Tight couplings to a fluctuating sink causes noise in the steady state temperature predictions.

  7. Spatial and numerical abilities without a complete natural language.

    PubMed

    Hyde, Daniel C; Winkler-Rhoades, Nathan; Lee, Sang-Ah; Izard, Veronique; Shapiro, Kevin A; Spelke, Elizabeth S

    2011-04-01

    We studied the cognitive abilities of a 13-year-old deaf child, deprived of most linguistic input from late infancy, in a battery of tests designed to reveal the nature of numerical and geometrical abilities in the absence of a full linguistic system. Tests revealed widespread proficiency in basic symbolic and non-symbolic numerical computations involving the use of both exact and approximate numbers. Tests of spatial and geometrical abilities revealed an interesting patchwork of age-typical strengths and localized deficits. In particular, the child performed extremely well on navigation tasks involving geometrical or landmark information presented in isolation, but very poorly on otherwise similar tasks that required the combination of the two types of spatial information. Tests of number- and space-specific language revealed proficiency in the use of number words and deficits in the use of spatial terms. This case suggests that a full linguistic system is not necessary to reap the benefits of linguistic vocabulary on basic numerical tasks. Furthermore, it suggests that language plays an important role in the combination of mental representations of space. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Spur-Gear-System Efficiency at Part and Full Load

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1980-01-01

    A simple method for predicting the part- and full-load power loss of a steel spur gearset of arbitrary geometry supported by ball bearings is described. The analysis algebraically accounts for losses due to gear sliding, rolling traction, and windage in addition to support-ball-bearing losses. The analysis compares favorably with test data. A theoretical comparison of the component losses indicates that losses due to gear rolling traction, windage, and support bearings are significant and should be included along with gear sliding loss in a calculation of gear-system power loss.

  9. High order filtering methods for approximating hyperbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Lafon, F.; Osher, S.

    1991-01-01

    The essentially nonoscillatory (ENO) schemes, while potentially useful in the computation of discontinuous solutions of hyperbolic conservation-law systems, are computationally costly relative to simple central-difference methods. A filtering technique is presented which employs central differencing of arbitrarily high-order accuracy except where a local test detects the presence of spurious oscillations and calls upon the full ENO apparatus to remove them. A factor-of-three speedup is thus obtained over the full-ENO method for a wide range of problems, with high-order accuracy in regions of smooth flow.

  10. Crash test and evaluation of temporary wood sign support system for large guide signs.

    DOT National Transportation Integrated Search

    2016-07-01

    The objective of this research task was to evaluate the impact performance of a temporary wood sign support : system for large guide signs. It was desired to use existing TxDOT sign hardware in the design to the extent possible. : The full-scale cras...

  11. Performance Tests of High Speed ZRV Oil Skimmer.

    DTIC Science & Technology

    1980-06-01

    clarified by recirculation through a 2,000 gpm diatomaceous earth filter system to permit full use of a sophisticated underwater photography and video...generator and beach, and a filter system. The wave generator and adsorber beach have capabilities of producing regular waves to 2.25 feet high and to 92

  12. Initial Results From the USNO Dispersed Fourier Transform Spectrograph

    DTIC Science & Technology

    2007-01-25

    the full instrument bandpass. 5.2. k Andromedae and Geminorum To test whether the dFTS system can accurately detect RV variations in a stellar...prototype dFTS can measure stellar RVs with sufficient accuracy to find exoplanets. We also observed Andromedae (a three-planet system) and

  13. Use of elastomers in regenerative braking systems

    NASA Astrophysics Data System (ADS)

    The storage of potential energy as strain energy in elastomers was investigated. The evolution of the preferred stressing scheme is described, and test results on full-size elastomeric energy storage units sized for an automotive regenerative braking system application are presented. The need for elastomeric material improvements is also discussed.

  14. Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 2: A Centerline Supported Fullspan Model Tested for Gust Load Alleviation

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer

    2014-01-01

    This is part 2 of a two part document. Part 1 is titled: "Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 1: A Sidewall Supported Semispan Model Tested for Gust Load Alleviation and Flutter Suppression." A team comprised of the Air Force Research Laboratory (AFRL), Boeing, and the NASA Langley Research Center conducted three aeroservoelastic wind tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, flexible vehicles. In the first of these three tests, a full-span, aeroelastically scaled, wind tunnel model of a joined wing SensorCraft vehicle was mounted to a force balance to acquire a basic aerodynamic data set. In the second and third tests, the same wind tunnel model was mated to a new, two degree of freedom, beam mount. This mount allowed the full-span model to translate vertically and pitch. Trimmed flight at10 percent static margin and gust load alleviation were successfully demonstrated. The rigid body degrees of freedom required that the model be flown in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort. The balance and free flying wind tunnel tests will be summarized. The design of the trim and gust load alleviation control laws along with the associated results will also be discussed.

  15. Delivery of Colloid Micro-Newton Thrusters for the Space Technology 7 Mission

    NASA Technical Reports Server (NTRS)

    Ziemer, John K.; Randolph, Thomas M.; Franklin, Garth W.; Hruby, Vlad; Spence, Douglas; Demmons, Nathaniel; Roy, Thomas; Ehrbar, Eric; Zwahlen, Jurg; Martin, Roy; hide

    2008-01-01

    Two flight-qualified clusters of four Colloid Micro-Newton Thruster (CMNT) systems have been delivered to the Jet Propulsion Laboratory (JPL). The clusters will provide precise spacecraft control for the drag-free technology demonstration mission, Space Technology 7 (ST7). The ST7 mission is sponsored by the NASA New Millennium Program and will demonstrate precision formation flying technologies for future missions such as the Laser Interferometer Space Antenna (LISA) mission. The ST7 disturbance reduction system (DRS) will be on the ESA LISA Pathfinder spacecraft using the European gravitational reference sensor (GRS) as part of the ESA LISA Technology Package (LTP). Developed by Busek Co. Inc., with support from JPL in design and testing, the CMNT has been developed over the last six years into a flight-ready and flight-qualified microthruster system, the first of its kind. Recent flight-unit qualification tests have included vibration and thermal vacuum environmental testing, as well as performance verification and acceptance tests. All tests have been completed successfully prior to delivery to JPL. Delivery of the first flight unit occurred in February of 2008 with the second unit following in May of 2008. Since arrival at JPL, the units have successfully passed through mass distribution, magnetic, and EMI/EMC measurements and tests as part of the integration and test (I&T) activities including the integrated avionics unit (IAU). Flight software sequences have been tested and validated with the full flight DRS instrument successfully to the extent possible in ground testing, including full functional and 72 hour autonomous operations tests. Delivery of the cluster assemblies along with the IAU to ESA for integration into the LISA Pathfinder spacecraft is planned for the summer of 2008 with a planned launch and flight demonstration in late 2010.

  16. Facility Activation and Characterization for IPD Workhorse Preburner and Oxidizer Turbopump Hot-Fire Testing at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; Raines, N. G.; Ryan, H. M.

    2004-01-01

    The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program recently achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) hot-fire test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in June 2003. A total of nine IPD Workhorse Preburner tests were completed, and subsequently 12 IPD OTP hot-fire tests were completed. The next phase of development involves IPD integrated engine system testing also at the NASA SSC E-1 test facility scheduled to begin in late 2004. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and testing of the IPD Workhorse Preburner and the IPD Oxidizer Turbopump. In addition, some of the facility challenges encountered during the test project shall be addressed.

  17. An Overview of Research Activity at the Launch Systems Testbed

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Kandula, Max

    2003-01-01

    This paper summarizes the acoustic testing and analysis activities at the Launch System Testbed (LST) of Kennedy Space Center (KSC). A major goal is to develop passive methods of mitigation of sound from rocket exhaust jets with ducted systems devoid of traditional water injection. Current testing efforts are concerned with the launch-induced vibroacoustic behavior of scaled exhaust jets. Numerical simulations are also developed to study the sound propagation from supersonic jets in free air and through enclosed ducts. Scaling laws accounting for the effects of important parameters such as jet Mach number, jet velocity, and jet temperature on the far-field noise are investigated in order to deduce full-scale environment from small-scale tests.

  18. Structural Element Testing in Support of the Design of the NASA Composite Crew Module

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Wade C.; Thesken, John C.; Schleicher, Eric; Wagner, Perry; Kirsch, Michael T.

    2012-01-01

    In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). For the design and manufacturing of the CCM, the team adopted the building block approach where design and manufacturing risks were mitigated through manufacturing trials and structural testing at various levels of complexity. Following NASA's Structural Design Verification Requirements, a further objective was the verification of design analysis methods and the provision of design data for critical structural features. Test articles increasing in complexity from basic material characterization coupons through structural feature elements and large structural components, to full-scale structures were evaluated. This paper discusses only four elements tests three of which include joints and one that includes a tapering honeycomb core detail. For each test series included are specimen details, instrumentation, test results, a brief analysis description, test analysis correlation and conclusions.

  19. Slosh Baffle Design and Test for Spherical Liquid Oxygen and Liquid Methane Propellant Tank for a Lander

    NASA Technical Reports Server (NTRS)

    Strahan, Alan; Hernandez, Humberto

    2011-01-01

    A Vertical Test Bed (VTB) is being developed to investigate exploration technologies with earth-based landing trajectories. During this activity, a concern emerged that the VTB, with large liquid tanks, could experience unstable slosh interaction between the propellant fluid motion and the control system, leading to an investigation of slosh characteristics of the VTB. As such, slosh modeling, analysis and testing were performed, that both verified models and lead to the conclusion that baffles would be required for the full-scale vehicle. Follow-on design and testing supported development of these baffles and measurement of their performance. The majority of the tests conducted, including both subscale and full, involved the use of clear tanks containing water as a reasonable substitute for the cryogenic propellants, though a few tests involved the actual liquid oxygen and methane. Along the way, some unique test and data recording methods were employed to reduce testing complexity and cost.

  20. Stirling Space Engine Program. Volume 2; Appendixes A, B, C and D

    NASA Technical Reports Server (NTRS)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Volume 2 of the report includes the following appendices: Appendix A: Heater Head Development (Starfish Heater Head Program, 1/10th Segment and Full-Scale Heat Pipes, and Sodium Filling and Processing); Appendix B: Component Test Power Converter (CTPC) Component Development (High-temperature Organic Materials, Heat Exchanger Fabrication, Beryllium Issues, Sodium Issues, Wear Couple Tests, Pressure Boundary Penetrations, Heating System Heaters, and Cooler Flow Test); Appendix C: Udimet Testing (Selection of the Reference Material for the Space Stirling Engine Heater Head, Udimet 720LI Creep Test Result Update, Final Summary of Space Stirling Endurance Engine Udimet 720L1 Fatigue Testing Results, Udimet 720l1 Weld Development Summary, and Udimet 720L1 Creep Test Final Results Summary), and Appendix D: CTPC Component Development Photos.

  1. An expert system executive for automated assembly of large space truss structures

    NASA Technical Reports Server (NTRS)

    Allen, Cheryl L.

    1993-01-01

    Langley Research Center developed a unique test bed for investigating the practical problems associated with the assembly of large space truss structures using robotic manipulators. The test bed is the result of an interdisciplinary effort that encompasses the full spectrum of assembly problems - from the design of mechanisms to the development of software. The automated structures assembly test bed and its operation are described, the expert system executive and its development are detailed, and the planned system evolution is discussed. Emphasis is on the expert system implementation of the program executive. The executive program must direct and reliably perform complex assembly tasks with the flexibility to recover from realistic system errors. The employment of an expert system permits information that pertains to the operation of the system to be encapsulated concisely within a knowledge base. This consolidation substantially reduced code, increased flexibility, eased software upgrades, and realized a savings in software maintenance costs.

  2. Ares I-X Flight Test Vehicle: Stack 5 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Danel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA's Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the first modal test that was performed on the top section of the vehicle referred to as Stack 5, which consisted of the spacecraft adapter, service module, crew module and launch abort system simulators. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 5 modal test.

  3. Towards integrated modelling: full image simulations for WEAVE

    NASA Astrophysics Data System (ADS)

    Dalton, Gavin; Ham, Sun Jeong; Trager, Scott; Abrams, Don Carlos; Bonifacio, Piercarlo; Aguerri, J. A. L.; Middleton, Kevin; Benn, Chris; Rogers, Kevin; Stuik, Remko; Carrasco, Esperanza; Vallenari, Antonella; Jin, Shoko; Lewis, Jim

    2016-08-01

    We present an integrated end-end simulation of the spectral images that will be obtained by the weave spectrograph, which aims to include full modelling of all effects from the top of the atmosphere to the detector. These data are based in input spectra from a combination of library spectra and synthetic models, and will be used to provide inputs for an endend test of the full weave data pipeline and archive systems, prior to 1st light of the instrument.

  4. The EX-SHADWELL-Full Scale Fire Research and Test Ship

    DTIC Science & Technology

    1988-01-20

    If shipboard testing is necessary after the large scale land tests at China Lake, the EX-SHADWELL has a helo pad and well deck available which makes...8217 *,~. *c ’q.. ~ I b. Data acquistion system started. c. Fire started d. Data is recorded until all fire activity has ceased. 3.0 THE TEST AREA 3.1 Test...timing clocks will be started at the instant the fuel is lighted. That instant will be time zero . The time the cables become involved will be recorded

  5. Rural ITS toolbox

    DOT National Transportation Integrated Search

    2001-11-01

    This document identifies successful rural Intelligent Transportation Systems (ITS) projects and statewide applications. These applications are referred to as "tools" and include those in the process of being tested prior to full deployment. The tools...

  6. A Capable and Temporary Test Facility on a Shoestring Budget: The MSL Touchdown Test Facility

    NASA Technical Reports Server (NTRS)

    White, Christopher V.; Frankovich, John K.; Yates, Philip; Wells, George, Jr.; Robert, Losey

    2008-01-01

    The Mars Science Laboratory mission (MSL) has undertaken a developmental Touchdown Test Program that utilizes a full-scale rover vehicle and an overhead winch system to replicate the skycrane landing event. Landing surfaces consisting of flat and sloped granular media, planar, rigid surfaces, and various combinations of rocks and slopes were studied. Information gathered from these tests was vital for validating the rover analytical model, validating certain design or system behavior assumptions, and for exploring events and phenomenon that are either very difficult or too costly to model in a credible way. This paper describes this test program, with a focus on the creation of test facility, daily test operations, and some of the challenges faced and lessons learned along the way.

  7. A whole process quality control system for energy measuring instruments inspection based on IOT technology

    NASA Astrophysics Data System (ADS)

    Yin, Bo; Liu, Li; Wang, Jiahan; Li, Xiran; Liu, Zhenbo; Li, Dewei; Wang, Jun; Liu, Lu; Wu, Jun; Xu, Tingting; Cui, He

    2017-10-01

    Electric energy measurement as a basic work, an accurate measurements play a vital role for the economic interests of both parties of power supply, the standardized management of the measurement laboratory at all levels is a direct factor that directly affects the fairness of measurement. Currently, the management of metering laboratories generally uses one-dimensional bar code as the recognition object, advances the testing process by manual management, most of the test data requires human input to generate reports. There are many problems and potential risks in this process: Data cannot be saved completely, cannot trace the status of inspection, the inspection process isn't completely controllable and so on. For the provincial metrology center's actual requirements of the whole process management for the performance test of the power measuring appliances, using of large-capacity RF tags as a process management information media, we developed a set of general measurement experiment management system, formulated a standardized full performance test process, improved the raw data recording mode of experimental process, developed a storehouse automatic inventory device, established a strict test sample transfer and storage system, ensured that all the raw data of the inspection can be traced back, achieved full life-cycle control of the sample, significantly improved the quality control level and the effectiveness of inspection work.

  8. Cluster Development Test 2: An Assessment of a Failed Test

    NASA Technical Reports Server (NTRS)

    Machin, Ricardo A.; Evans, Carol T.

    2009-01-01

    On 31 July 2008 the National Aeronautics and Space Administration Crew Exploration Vehicle Parachute Assembly System team conducted the final planned cluster test of the first generation parachute recovery system design. The two primary test objectives were to demonstrate the operation of the complete parachute system deployed from a full scale capsule simulator and to demonstrate the test technique of separating the capsule simulator from the Low Velocity Air Drop pallet used to extract the test article from a United States Air Force C-17 aircraft. The capsule simulator was the Parachute Test Vehicle with an accurate heat shield outer mold line and forward bay compartment of the Crew Exploration Vehicle Command Module. The Parachute Test Vehicle separated cleanly from the pallet following extraction, but failed to reach test conditions resulting in the failure of the test and the loss of the test assets. No personnel were injured. This paper will discuss the design of the test and the findings of the team that investigated the test, including a discussion of what were determined to be the root causes of the failure.

  9. Systems tunnel linear shaped charge lightning strike

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the systems tunnel linear shaped charge (LSC) was performed at the Thiokol Lightning Test Complex in Wendover, Utah, on 23 Jun. 1989. The test article consisted of a 160-in. section of the LSC enclosed within a section of the systems tunnel. The systems tunnel was bonded to a section of a solid rocket motor case. All test article components were full scale. The systems tunnel cover of the test article was subjected to three discharges (each discharge was over a different grounding strap) from the high-current generator. The LSC did not detonate. All three grounding straps debonded and violently struck the LSC through the openings in the systems tunnel floor plates. The LSC copper surface was discolored around the areas of grounding strap impact, and arcing occurred at the LSC clamps and LSC ends. This test verified that the present flight configuration of the redesigned solid rocket motor systems tunnel, when subjected to simulated lightning strikes with peak current levels within 71 percent of the worst-case lightning strike condition of NSTS-07636, is adequate to prevent LSC ignition. It is therefore recommended that the design remain unchanged.

  10. A minimum drives automatic target definition procedure for multi-axis random control testing

    NASA Astrophysics Data System (ADS)

    Musella, Umberto; D'Elia, Giacomo; Carrella, Alex; Peeters, Bart; Mucchi, Emiliano; Marulo, Francesco; Guillaume, Patrick

    2018-07-01

    Multiple-Input Multiple-Output (MIMO) vibration control tests are able to closely replicate, via shakers excitation, the vibration environment that a structure needs to withstand during its operational life. This feature is fundamental to accurately verify the experienced stress state, and ultimately the fatigue life, of the tested structure. In case of MIMO random tests, the control target is a full reference Spectral Density Matrix in the frequency band of interest. The diagonal terms are the Power Spectral Densities (PSDs), representative for the acceleration operational levels, and the off-diagonal terms are the Cross Spectral Densities (CSDs). The specifications of random vibration tests are however often given in terms of PSDs only, coming from a legacy of single axis testing. Information about the CSDs is often missing. An accurate definition of the CSD profiles can further enhance the MIMO random testing practice, as these terms influence both the responses and the shaker's voltages (the so-called drives). The challenges are linked to the algebraic constraint that the full reference matrix must be positive semi-definite in the entire bandwidth, with no flexibility in modifying the given PSDs. This paper proposes a newly developed method that automatically provides the full reference matrix without modifying the PSDs, considered as test specifications. The innovative feature is the capability of minimizing the drives required to match the reference PSDs and, at the same time, to directly guarantee that the obtained full matrix is positive semi-definite. The drives minimization aims on one hand to reach the fixed test specifications without stressing the delicate excitation system; on the other hand it potentially allows to further increase the test levels. The detailed analytic derivation and implementation steps of the proposed method are followed by real-life testing considering different scenarios.

  11. Refurbishment cost study of the thermal protection system of a space shuttle vehicle, phase 2

    NASA Technical Reports Server (NTRS)

    Haas, D. W.

    1972-01-01

    The labor costs and techniques associated with the refurbishment and maintenance of representative thermal protection system (TPS) components and their attachment concepts suitable for space shuttle application are defined, characterized, and evaluated from the results of an experimental test program. This program consisted of designing selected TPS concepts, fabricating and assembling test hardware, and performing a time and motion study of specific maintenance functions of the test hardware on a full-scale- mockup. Labor requirements and refurbishment techniques, as they relate to the maintenance functions of inspection, repair, removal, and replacement were identified.

  12. Configuration of separability and tests for multipartite entanglement in bell-type experiments.

    PubMed

    Nagata, Koji; Koashi, Masato; Imoto, Nobuyuki

    2002-12-23

    We derive tight quadratic inequalities for all kinds of hybrid separable-inseparable n-particle density operators on an arbitrary dimensional space. This methodology enables us to derive a tight quadratic inequality as tests for full n-partite entanglement in various Bell-type correlation experiments on the systems that may not be identified as a collection of qubits, e.g., those involving photons measured by incomplete detectors. It is also proved that when the two measured observables are assumed to precisely anticommute, a stronger quadratic inequality can be used as a witness of full n-partite entanglement.

  13. Preliminary Full-Scale Wind-Tunnel Investigation of Wing Ducts for Radiators, Special Report

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Nickle, F. R.

    1938-01-01

    Wing ducts for liquid-cooled engine radiators have been investigated in the N.A.C.A. full-scale wind tunnel on a large model airplane. Th e tests were made to determine the relative merits of several types of duct and radiator installations for an airplane of a particular des ign. In the test program the principal duct dimensions were system atically varied, and the results are therefore somewhat applicable to the general problems of wing duct design, although they should be co nsidered as preliminary and only indicative of the inherent possibil ities.

  14. A summary of NASA/Air Force full scale engine research programs using the F100 engine

    NASA Technical Reports Server (NTRS)

    Deskin, W. J.; Hurrell, H. G.

    1979-01-01

    A full scale engine research (FSER) program conducted with the F100 engine is presented. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items were addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology and distortion sensitivity. The associated test programs are described. The FSER approach utilizes existing state of the art engine hardware to evaluate advanced technology concepts and problem areas. Aerodynamic phenomenon previously not considered by design systems were identified and incorporated into industry design tools.

  15. Pseudo-dynamic tests on masonry residential buildings seismically retrofitted by precast steel reinforced concrete walls

    NASA Astrophysics Data System (ADS)

    Li, Wenfeng; Wang, Tao; Chen, Xi; Zhong, Xiang; Pan, Peng

    2017-07-01

    A retrofitting technology using precast steel reinforced concrete (PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests.

  16. Cold-end Subsystem Testing for the Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell; Gibson, Marc; Ellis, David; Sanzi, James

    2013-01-01

    The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodium-potassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated cold-end fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to high-cost composite radiators in an end-to-end TDU test.

  17. Cold-End Subsystem Testing for the Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Briggs, Mazwell; Gibson, Marc; Ellis, David; Sanzi, James

    2013-01-01

    The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodiumpotassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated coldend fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to highcost composite radiators in an end-to-end TDU test.

  18. Early Flight Fission Test Facilities (EFF-TF) and Concepts That Support Near-Term Space Fission Missions

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Martin, James

    2003-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fusion propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system pe$ormance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the Early Flight Fission Test Facilities (EFF-TF) at the Marshall Space Flight Center. The EFF-TF is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers.

  19. Beam test results of a monolithic pixel sensor in the 0.18 μm tower-jazz technology with high resistivity epitaxial layer

    NASA Astrophysics Data System (ADS)

    Mattiazzo, S.; Aimo, I.; Baudot, J.; Bedda, C.; La Rocca, P.; Perez, A.; Riggi, F.; Spiriti, E.

    2015-10-01

    The ALICE experiment at CERN will undergo a major upgrade in the second Long LHC Shutdown in the years 2018-2019; this upgrade includes the full replacement of the Inner Tracking System (ITS), deploying seven layers of Monolithic Active Pixel Sensors (MAPS). For the development of the new ALICE ITS, the Tower-Jazz 0.18 μm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel and different silicon wafers (including high resistivity epitaxial layers). A large test campaign has been carried out on several small prototype chips, designed to optimize the pixel sensor layout and the front-end electronics. Results match the target requirements both in terms of performance and of radiation hardness. Following this development, the first full scale chips have been designed, submitted and are currently under test, with promising results. A telescope composed of 4 planes of Mimosa-28 and 2 planes of Mimosa-18 chips is under development at the DAFNE Beam Test Facility (BTF) at the INFN Laboratori Nazionali di Frascati (LNF) in Italy with the final goal to perform a comparative test of the full scale prototypes. The telescope has been recently used to test a Mimosa-22THRb chip (a monolithic pixel sensor built in the 0.18 μm Tower-Jazz process) and we foresee to perform tests on the full scale chips for the ALICE ITS upgrade at the beginning of 2015. In this contribution we will describe some first measurements of spatial resolution, fake hit rate and detection efficiency of the Mimosa-22THRb chip obtained at the BTF facility in June 2014 with an electron beam of 500 MeV.

  20. Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.

    2014-09-01

    The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPSmore » eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.« less

  1. Orion Boiler Plate Airdrop Test System

    NASA Technical Reports Server (NTRS)

    Machin, Ricardo A.; Evans, Carol T.

    2013-01-01

    On the 29th of February 2012 the Orion Capsule Parachute Assembly System (CPAS) project attempted to perform an airdrop test of a boilerplate test article for the second time. The first attempt (Cluster Development Test 2, July 2008) to deliver a similar boilerplate from a C-17 using the Low Velocity Air Drop (LVAD) technique resulted in the programmer parachute failing to properly inflate, the test article failing to achieve the desired test initiation conditions, and the test article a total loss. This paper will pick up where the CDT-2 failure investigation left off, describing the test technique that was adopted, and outline the modeling that was performed to gain confidence that the second attempt would be successful. The second boiler plate test (Cluster Development Test 3-3) was indeed a complete success and has subsequently been repeated several times, allowing the CPAS project to proceed with the full scale system level development testing required to integrate the hardware to the first Entry Flight Test vehicle as well as go into the Critical Design Review with minimum risk and a mature design.

  2. Non-invasive, non-radiological quantification of anteroposterior knee joint ligamentous laxity

    PubMed Central

    Russell, D. F.; Deakin, A. H.; Fogg, Q. A.; Picard, F.

    2013-01-01

    Objectives We performed in vitro validation of a non-invasive skin-mounted system that could allow quantification of anteroposterior (AP) laxity in the outpatient setting. Methods A total of 12 cadaveric lower limbs were tested with a commercial image-free navigation system using trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° of knee flexion and 100 N of force was applied perpendicular to the tibia. Acceptable coefficient of repeatability (CR) and limits of agreement (LOA) of 3 mm were set based on diagnostic criteria for anterior cruciate ligament (ACL) insufficiency. Results Reliability and precision within the individual invasive and non-invasive systems was acceptable throughout the range of flexion tested (intra-class correlation coefficient 0.88, CR 1.6 mm). Agreement between the two systems was acceptable measuring AP laxity between full extension and 40° knee flexion (LOA 2.9 mm). Beyond 40° of flexion, agreement between the systems was unacceptable (LOA > 3 mm). Conclusions These results indicate that from full knee extension to 40° flexion, non-invasive navigation-based quantification of AP tibial translation is as accurate as the standard validated commercial system, particularly in the clinically and functionally important range of 20° to 30° knee flexion. This could be useful in diagnosis and post-operative evaluation of ACL pathology. Cite this article: Bone Joint Res 2013;2:233–7. PMID:24184443

  3. System For Surveillance Of Spectral Signals

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Criss-Puszkiewicz, Cynthia; Wilks, Alan D.

    2004-10-12

    A method and system for monitoring at least one of a system, a process and a data source. A method and system have been developed for carrying out surveillance, testing and modification of an ongoing process or other source of data, such as a spectroscopic examination. A signal from the system under surveillance is collected and compared with a reference signal, a frequency domain transformation carried out for the system signal and reference signal, a frequency domain difference function established. The process is then repeated until a full range of data is accumulated over the time domain and a Sequential Probability Ratio Test ("SPRT") methodology applied to determine a three-dimensional surface plot characteristic of the operating state of the system under surveillance.

  4. System For Surveillance Of Spectral Signals

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan; Criss-Puszkiewicz, Cynthia; Wilks, Alan D.

    2003-04-22

    A method and system for monitoring at least one of a system, a process and a data source. A method and system have been developed for carrying out surveillance, testing and modification of an ongoing process or other source of data, such as a spectroscopic examination. A signal from the system under surveillance is collected and compared with a reference signal, a frequency domain transformation carried out for the system signal and reference signal, a frequency domain difference function established. The process is then repeated until a full range of data is accumulated over the time domain and a Sequential Probability Ratio Test methodology applied to determine a three-dimensional surface plot characteristic of the operating state of the system under surveillance.

  5. System for surveillance of spectral signals

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Criss-Puszkiewicz, Cynthia; Wilks, Alan D.

    2006-02-14

    A method and system for monitoring at least one of a system, a process and a data source. A method and system have been developed for carrying out surveillance, testing and modification of an ongoing process or other source of data, such as a spectroscopic examination. A signal from the system under surveillance is collected and compared with a reference signal, a frequency domain transformation carried out for the system signal and reference signal, a frequency domain difference function established. The process is then repeated until a full range of data is accumulated over the time domain and a Sequential Probability Ratio Test ("SPRT") methodology applied to determine a three-dimensional surface plot characteristic of the operating state of the system under surveillance.

  6. System for surveillance of spectral signals

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Criss-Puszkiewicz, Cynthia; Wilks, Alan D.

    2001-01-01

    A method and system for monitoring at least one of a system, a process and a data source. A method and system have been developed for carrying out surveillance, testing and modification of an ongoing process or other source of data, such as a spectroscopic examination. A signal from the system under surveillance is collected and compared with a reference signal, a frequency domain transformation carried out for the system signal and reference signal, a frequency domain difference function established. The process is then repeated until a full range of data is accumulated over the time domain and a SPRT sequential probability ratio test methodology applied to determine a three-dimensional surface plot characteristic of the operating state of the system under surveillance.

  7. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  8. Training System Device Certification and Qualification Process

    DTIC Science & Technology

    2013-09-01

    Engineering IPT Integrated Product Team ISD Instructional Systems Development ISEO In-Service Engineering Office KSAs Knowledge, Skills, and Attributes...Plan TES Tactical Engagement Simulation TPM Training Pipeline Managers T&R Training and Readiness TRR Test Readiness Review TS Training System...NAWCTSD) is the Navy’s source for a full range of innovative products and services that provide complete training solutions. This includes

  9. Systems 1 and 2 thinking processes and cognitive reflection testing in medical students

    PubMed Central

    Tay, Shu Wen; Ryan, Paul; Ryan, C Anthony

    2016-01-01

    Background Diagnostic decision-making is made through a combination of Systems 1 (intuition or pattern-recognition) and Systems 2 (analytic) thinking. The purpose of this study was to use the Cognitive Reflection Test (CRT) to evaluate and compare the level of Systems 1 and 2 thinking among medical students in pre-clinical and clinical programs. Methods The CRT is a three-question test designed to measure the ability of respondents to activate metacognitive processes and switch to System 2 (analytic) thinking where System 1 (intuitive) thinking would lead them astray. Each CRT question has a correct analytical (System 2) answer and an incorrect intuitive (System 1) answer. A group of medical students in Years 2 & 3 (pre-clinical) and Years 4 (in clinical practice) of a 5-year medical degree were studied. Results Ten percent (13/128) of students had the intuitive answers to the three questions (suggesting they generally relied on System 1 thinking) while almost half (44%) answered all three correctly (indicating full analytical, System 2 thinking). Only 3–13% had incorrect answers (i.e. that were neither the analytical nor the intuitive responses). Non-native English speaking students (n = 11) had a lower mean number of correct answers compared to native English speakers (n = 117: 1.0 s 2.12 respectfully: p < 0.01). As students progressed through questions 1 to 3, the percentage of correct System 2 answers increased and the percentage of intuitive answers decreased in both the pre-clinical and clinical students. Conclusions Up to half of the medical students demonstrated full or partial reliance on System 1 (intuitive) thinking in response to these analytical questions. While their CRT performance has no claims to make as to their future expertise as clinicians, the test may be used in helping students to understand the importance of awareness and regulation of their thinking processes in clinical practice. PMID:28344696

  10. Systems 1 and 2 thinking processes and cognitive reflection testing in medical students.

    PubMed

    Tay, Shu Wen; Ryan, Paul; Ryan, C Anthony

    2016-10-01

    Diagnostic decision-making is made through a combination of Systems 1 (intuition or pattern-recognition) and Systems 2 (analytic) thinking. The purpose of this study was to use the Cognitive Reflection Test (CRT) to evaluate and compare the level of Systems 1 and 2 thinking among medical students in pre-clinical and clinical programs. The CRT is a three-question test designed to measure the ability of respondents to activate metacognitive processes and switch to System 2 (analytic) thinking where System 1 (intuitive) thinking would lead them astray. Each CRT question has a correct analytical (System 2) answer and an incorrect intuitive (System 1) answer. A group of medical students in Years 2 & 3 (pre-clinical) and Years 4 (in clinical practice) of a 5-year medical degree were studied. Ten percent (13/128) of students had the intuitive answers to the three questions (suggesting they generally relied on System 1 thinking) while almost half (44%) answered all three correctly (indicating full analytical, System 2 thinking). Only 3-13% had incorrect answers (i.e. that were neither the analytical nor the intuitive responses). Non-native English speaking students (n = 11) had a lower mean number of correct answers compared to native English speakers (n = 117: 1.0 s 2.12 respectfully: p < 0.01). As students progressed through questions 1 to 3, the percentage of correct System 2 answers increased and the percentage of intuitive answers decreased in both the pre-clinical and clinical students. Up to half of the medical students demonstrated full or partial reliance on System 1 (intuitive) thinking in response to these analytical questions. While their CRT performance has no claims to make as to their future expertise as clinicians, the test may be used in helping students to understand the importance of awareness and regulation of their thinking processes in clinical practice.

  11. Technical Evaluation Motor no. 5 (TEM-5)

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Technical Evaluation Motor No. 5 (TEM-5) was static test fired at the Thiokol Corporation Static Test Bay T-97. TEM-5 was a full scale, full duration static test fire of a high performance motor (HPM) configuration solid rocket motor (SRM). The primary purpose of TEM static tests is to recover SRM case and nozzle hardware for use in the redesigned solid rocket motor (RSRM) flight program. Inspection and instrumentation data indicate that the TEM-5 static test firing was successful. The ambient temperature during the test was 41 F and the propellant mean bulk temperature (PMBT) was 72 F. Ballistics performance values were within the specified requirements. The overall performance of the TEM-5 components and test equipment was nominal. Dissembly inspection revealed that joint putty was in contact with the inner groove of the inner primary seal of the ignitor adapter-to-forward dome (inner) joint gasket; this condition had not occurred on any previous static test motor or flight RSRM. While no qualification issues were addressed on TEM-5, two significant component changes were evaluated. Those changes were a new vented assembly process for the case-to-nozzle joint and the installation of two redesigned field joint protection systems. Performance of the vented case-to-nozzle joint assembly was successful, and the assembly/performance differences between the two field joint protection system (FJPS) configurations were compared.

  12. Improvement and scale-up of the NASA Redox storage system

    NASA Technical Reports Server (NTRS)

    Reid, M. A.; Thaller, L. H.

    1980-01-01

    A preprototype full-function 1.0 kW Redox system (2 kW peak) with 11 kW storage capacity has been built and integrated with the NASA/DOE photovoltaic test facility. The system includes four substacks of 39 cells each (1/3 sq ft active area) which are connected hydraulically in parallel and electrically in series. An open circuit voltage cell and a set of rebalance cells are used to continuously monitor the system state of charge and automatically maintain the anode and cathode reactants electrochemically in balance. Technological advances in membrane and electrodes and results of multicell stack tests are reviewed.

  13. 2017 Guralp Affinity Digitizer Evaluation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.

    Sandia National Laboratories has tested and evaluated two Guralp Affinity digitizers. The Affinity digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self- noise, dynamic range, system noise, response, passband, and timing. The Affinity digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).

  14. Power electronics for the flywheel system EMAFER

    NASA Astrophysics Data System (ADS)

    Offringa, Lodewijk J. J.; Sluiters, Hans E.; Smits, Eugenio J.

    1988-10-01

    A novel power electronic converter has been designed for the EMAFER (electromechanical accumulator for energy reuse) flywheel system to meet the requirements of the synchronous permanent magnet three-phase motor/generator drive. A new type of current source inverter with forced commutation by means of a commutation bridge has been developed and tested. This converter is capable of driving and braking the machine at full rated power in an operating range from 8,500 to 17,000 rpm. Test results are presented.

  15. Precision of guided scanning procedures for full-arch digital impressions in vivo.

    PubMed

    Zimmermann, Moritz; Koller, Christina; Rumetsch, Moritz; Ender, Andreas; Mehl, Albert

    2017-11-01

    System-specific scanning strategies have been shown to influence the accuracy of full-arch digital impressions. Special guided scanning procedures have been implemented for specific intraoral scanning systems with special regard to the digital orthodontic workflow. The aim of this study was to evaluate the precision of guided scanning procedures compared to conventional impression techniques in vivo. Two intraoral scanning systems with implemented full-arch guided scanning procedures (Cerec Omnicam Ortho; Ormco Lythos) were included along with one conventional impression technique with irreversible hydrocolloid material (alginate). Full-arch impressions were taken three times each from 5 participants (n = 15). Impressions were then compared within the test groups using a point-to-surface distance method after best-fit model matching (OraCheck). Precision was calculated using the (90-10%)/2 quantile and statistical analysis with one-way repeated measures ANOVA and post hoc Bonferroni test was performed. The conventional impression technique with alginate showed the lowest precision for full-arch impressions with 162.2 ± 71.3 µm. Both guided scanning procedures performed statistically significantly better than the conventional impression technique (p < 0.05). Mean values for group Cerec Omnicam Ortho were 74.5 ± 39.2 µm and for group Ormco Lythos 91.4 ± 48.8 µm. The in vivo precision of guided scanning procedures exceeds conventional impression techniques with the irreversible hydrocolloid material alginate. Guided scanning procedures may be highly promising for clinical applications, especially for digital orthodontic workflows.

  16. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal fired boilers. Second quarterly technical progress report, [April--June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions onmore » other combustion parameters such as particulate characteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO{sub x} emission levels to be approximately 0.65 lb/MBtu with flyash LOI values of approximately 8 percent. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. For comparison, the long-term full-load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB plus AOFA configuration began in May 1993 and is scheduled to end during August 1993. As of June 30, the diagnostic, performance, chemical emissions tests segments for this configuration have been conducted and 29 days of long-term, emissions data collected. Preliminary results from the May--June 1993 tests of the LNB plus AOFA system show that the full load NO{sub x} emissions are approximately 0.42 lb/MBtu with corresponding fly ash LOI values near 8 percent. This is a substantial improvement in both NO{sub x} emissions and LOI values when compared to the results obtained during the February--March 1992 abbreviated testing of this system.« less

  17. Semi-physical simulation test for micro CMOS star sensor

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhang, Guang-jun; Jiang, Jie; Fan, Qiao-yun

    2008-03-01

    A designed star sensor must be extensively tested before launching. Testing star sensor requires complicated process with much time and resources input. Even observing sky on the ground is a challenging and time-consuming job, requiring complicated and expensive equipments, suitable time and location, and prone to be interfered by weather. And moreover, not all stars distributed on the sky can be observed by this testing method. Semi-physical simulation in laboratory reduces the testing cost and helps to debug, analyze and evaluate the star sensor system while developing the model. The test system is composed of optical platform, star field simulator, star field simulator computer, star sensor and the central data processing computer. The test system simulates the starlight with high accuracy and good parallelism, and creates static or dynamic image in FOV (Field of View). The conditions of the test are close to observing real sky. With this system, the test of a micro star tracker designed by Beijing University of Aeronautics and Astronautics has been performed successfully. Some indices including full-sky autonomous star identification time, attitude update frequency and attitude precision etc. meet design requirement of the star sensor. Error source of the testing system is also analyzed. It is concluded that the testing system is cost-saving, efficient, and contributes to optimizing the embed arithmetic, shortening the development cycle and improving engineering design processes.

  18. Flight Testing the Rotor Systems Research Aircraft (RSRA)

    NASA Technical Reports Server (NTRS)

    Hall, G. W.; Merrill, R. K.

    1983-01-01

    In the late 1960s, efforts to advance the state-of-the-art in rotor systems technology indicated a significant gap existed between our ability to accurately predict the characteristics of a complex rotor system and the results obtained through flight verification. Even full scale wind tunnel efforts proved inaccurate because of the complex nature of a rotating, maneuvering rotor system. The key element missing, which prevented significant advances, was our inability to precisely measure the exact rotor state as a function of time and flight condition. Two Rotor Research Aircraft (RSRA) were designed as pure research aircraft and dedicated rotor test vehicles whose function is to fill the gap between theory, wind tunnel testing, and flight verification. The two aircraft, the development of the piloting techniques required to safely fly the compound helicopter, the government flight testing accomplished to date, and proposed future research programs.

  19. Shake Table Testing of an Elevator System in a Full-Scale Five-Story Building

    PubMed Central

    Wang, Xiang; Hutchinson, Tara C.; Astroza, Rodrigo; Conte, Joel P.; Restrepo, José I.; Hoehler, Matthew S.; Ribeiro, Waldir

    2016-01-01

    SUMMARY This paper investigates the seismic performance of a functional traction elevator as part of a full-scale five-story building shake table test program. The test building was subjected to a suite of earthquake input motions of increasing intensity, first while the building was isolated at its base, and subsequently while it was fixed to the shake table platen. In addition, low-amplitude white noise base excitation tests were conducted while the elevator system was placed in three different configurations, namely, by varying the vertical location of its cabin and counterweight, to study the acceleration amplifications of the elevator components due to dynamic excitations. During the earthquake tests, detailed observation of the physical damage and operability of the elevator as well as its measured response are reported. Although the cabin and counterweight sustained large accelerations due to impact during these tests, the use of well-restrained guide shoes demonstrated its effectiveness in preventing the cabin and counterweight from derailment during high-intensity earthquake shaking. However, differential displacements induced by the building imposed undesirable distortion of the elevator components and their surrounding support structure, which caused damage and inoperability of the elevator doors. It is recommended that these aspects be explicitly considered in elevator seismic design. PMID:28242957

  20. Shake Table Testing of an Elevator System in a Full-Scale Five-Story Building.

    PubMed

    Wang, Xiang; Hutchinson, Tara C; Astroza, Rodrigo; Conte, Joel P; Restrepo, José I; Hoehler, Matthew S; Ribeiro, Waldir

    2017-03-01

    This paper investigates the seismic performance of a functional traction elevator as part of a full-scale five-story building shake table test program. The test building was subjected to a suite of earthquake input motions of increasing intensity, first while the building was isolated at its base, and subsequently while it was fixed to the shake table platen. In addition, low-amplitude white noise base excitation tests were conducted while the elevator system was placed in three different configurations, namely, by varying the vertical location of its cabin and counterweight, to study the acceleration amplifications of the elevator components due to dynamic excitations. During the earthquake tests, detailed observation of the physical damage and operability of the elevator as well as its measured response are reported. Although the cabin and counterweight sustained large accelerations due to impact during these tests, the use of well-restrained guide shoes demonstrated its effectiveness in preventing the cabin and counterweight from derailment during high-intensity earthquake shaking. However, differential displacements induced by the building imposed undesirable distortion of the elevator components and their surrounding support structure, which caused damage and inoperability of the elevator doors. It is recommended that these aspects be explicitly considered in elevator seismic design.

  1. Solid Propulsion Systems, Subsystems, and Components Service Life Extension

    NASA Technical Reports Server (NTRS)

    Hundley, Nedra H.; Jones, Connor

    2011-01-01

    The service life extension of solid propulsion systems, subsystems, and components will be discussed based on the service life extension of the Space Transportation System Reusable Solid Rocket Motor (RSRM) and Booster Separation Motors (BSM). The RSRM is certified for an age life of five years. In the aftermath of the Columbia accident there were a number of motors that were approaching the end of their five year service life certification. The RSRM Project initiated an assessment to determine if the service life of these motors could be extended. With the advent of the Constellation Program, a flight test was proposed that would utilize one of the RSRMs which had been returned from the launch site due to the expiration of its five year service life certification and twelve surplus Chemical Systems Division BSMs which had exceeded their eight year service life. The RSRM age life tracking philosophy which establishes when the clock starts for age life tracking will be described. The role of the following activities in service life extension will be discussed: subscale testing, accelerated aging, dissecting full scale aged hardware, static testing full scale aged motors, data mining industry data, and using the fleet leader approach. The service life certification and extension of the BSMs will also be presented.

  2. Design and Validation Testing of TruckScan to Assay Large Sacks of Fukushima Radioactive Debris on a Truck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Atsuo; Bronson, Frazier

    As a result of the March 2011 earthquake and resulting tsunami in Japan, there was a serious accident at the Fukushima Dai-ichi Nuclear Power Plant. This accident has contaminated soil and vegetation in a wide area around the plant. Decontamination projects over the last 4 years have resulted in large numbers of 1 cubic meter canvas bags of debris, commonly called Super Sacks [SS]. These are currently stored nearby where they were generated, but starting in 2015, they will be moved to various Interim Storage Facilities [ISF]. Trucks will typically carry 8-20 of these SSs. When the trucks arrive atmore » the ISF they need to be rapidly sorted into groups according to radioactivity level, for efficient subsequent processing. Canberra Industries, Inc. [CI] has designed a new truck monitoring system 'TruckScan' for use at these ISFs. The TruckScan system must measure the entire truck loaded with multiple closely packed SSs, and generate a nuclide specific assay report showing the radioactivity in each individual SS. The Canberra-Japan office, along with Obayashi Corporation have performed validation testing to demonstrate to the regulatory authorities that the proposed technique was sufficiently accurate. These validation tests were conducted at a temporary storage area in Fukushima prefecture. Decontaminated waste of various representative types and of various levels of radioactivity was gathered and mixed to create homogeneous volumes. These volumes were sampled multiple times and assayed with laboratory HPGe detectors to determine the reference concentration of each pile. Multiple SSs were loaded from each pile. Some of the SSs were filled 50% full, others 75% full, and others 100% full, to represent the typical loading configuration of the existing SSs in the field. The content of the SSs are either sand, soil, or vegetation with densities ranging from 0.3 g/cc - 1.6 g/cc. These SSs with known concentrations of Cs-134 and Cs-137 were then loaded onto trucks in a variety of configurations, typical of how they might be on the real trucks. A partial system was installed at the site and used to assay these trucks with the various loading configurations. Whereas the full system will have 8 collimated 3 x 3'' NaI detectors, the test system only had two detectors; therefore the truck was moved and counted 4 times. The data were acquired and analyzed with the Canberra Genie software to determine the peak counts for both Cesium nuclides. That data was then analyzed with a prototype version of a Maximum Entropy algorithm, to determine the individual SS activity. The goal of the validation tests was to demonstrate that the system could detect 1000 Bq/kg in 15 seconds, and to determine how accurately it could quantify individual SSs. The validation tests demonstrated that the product would perform as predicted. The TruckScan results were consistent with the sample assay results [y = 1.0029 x, R{sup 2} = 0.914]. The Total Propagated Uncertainty, including both uncertainties from these tests and others that were estimated but not tested was 16.6% percent. (authors)« less

  3. Liquid Oxygen (LO2) propellant conditioning concept testing

    NASA Technical Reports Server (NTRS)

    Perry, Gretchen L. E.; Orth, Michael S.; Mehta, Gopal K.

    1993-01-01

    Marshall Space Flight Center (MSFC) and industry contractors have undertaken activities to develop a simplified liquid oxygen (LO2) propellant conditioning concept for future expendable launch vehicles. The objective of these activities is to reduce operations costs and timelines and to improve safety of these vehicles. The approach followed has been to identify novel concepts through system level studies and demonstrate the feasibility of these concepts through small-scale and full-scale testing. Testing will also provide data for design guidelines and validation of analytical models. Four different concepts are being investigated: no-bleed, low-bleed, use of a recirculation line, and helium (He) bubbling. This investigation is being done under a Joint Institutional Research and Development (JIRAD) program currently in effect between MSFC and General Dynamics Space Systems (GDSS). A full-scale test article, which is a facsimile of a propellant feed duct with an attached section to simulate heat input from a LO2 turbopump, will be tested at the Cold Flow Facility at MSFC's West Test Area. Liquid nitrogen (LN2), which has similar properties to LO2, will be used in place of LO2 for safety and budget reasons. Work to date includes design and fabrication of the test article, design of the test facility and initial fabrication, development of a test matrix and test procedures, initial predictions of test output, and heat leak calibration and heat exchanger tests on the test article. The tests for all propellant conditioning concepts will be conducted in the summer of 1993, with the final report completed by October, 1993.

  4. 47 CFR 73.875 - Modification of transmission systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... test operations at the full authorized ERP may commence immediately upon installation pursuant to § 73... the transmitter operating power (TPO) from the authorized value, but not the ERP, must be reported in...

  5. Human Rating the Orion Parachute System

    NASA Technical Reports Server (NTRS)

    Machin, Ricardo A.; Fisher, Timothy E.; Evans, Carol T.; Stewart, Christine E.

    2011-01-01

    Human rating begins with design. Converging on the requirements and identifying the risks as early as possible in the design process is essential. Understanding of the interaction between the recovery system and the spacecraft will in large part dictate the achievable reliability of the final design. Component and complete system full-scale flight testing is critical to assure a realistic evaluation of the performance and reliability of the parachute system. However, because testing is so often difficult and expensive, comprehensive analysis of test results and correlation to accurate modeling completes the human rating process. The National Aeronautics and Space Administration (NASA) Orion program uses parachutes to stabilize and decelerate the Crew Exploration Vehicle (CEV) spacecraft during subsonic flight in order to deliver a safe water landing. This paper describes the approach that CEV Parachute Assembly System (CPAS) will take to human rate the parachute recovery system for the CEV.

  6. Experimental system, and its evaluation for the control of surgically inducted infections

    NASA Technical Reports Server (NTRS)

    Tevebaugh, M. D.; Nelson, J. P.

    1972-01-01

    The effect is reported to design, fabricate, test and evaluate a prototype experimental system for the control of surgically induced infections. The purpose is to provide the cleanest possible environment within a hospital surgery room and eliminate contamination sources that could cause infections during surgery. The system design is described. The system provides for a portable laminar flow clean room, a full bubble helmet system with associated communications and ventilation subsystems for operating room personnel, and surgical gowns that minimize the migration of bacteria. The development test results consisting of portability, laminar flowrate, air flow pattern, electrostatic buildup, noise level, ventilation, human factors, electrical and material compatibility tests are summarized. The conclusions are that the experimental system is effective in reducing the airborne and wound contamination although the helmets and gowns may not be a significant part of this reduction. Definitive conclusions with regard to the infection rate cannot be made at this time.

  7. Reciprocating sliding wear evaluation of a polymeric/coating tribological system

    NASA Astrophysics Data System (ADS)

    Braza, J. F.; Furst, R. E.

    1993-04-01

    Reciprocating screening tests aimed at simulating a control bearing in a contaminated environment to discern the optimum polymeric/coating combination are described. The polymeric/coating systems were compared with the wear of a baseline phenolic impregnated polytetrafluoroethylene (PTFE) polyester woven fabric composite against an uncoated stainless steel substrate. The polymeric composites under consideration include a polyamide-imide (PAI), a polybenzimidazole, and an injection-moldable PEEK. Results indicate that the system of either PEEK or PAI with an E-Ni-PTFE- or TiN-coated substrate produced the best tribological system. These two composites also exhibited a significant improvement over the baseline fabric when tested against the high-velocity oxygen-fuel thermal spray coating. To discern better the optimum polymeric composite/coating system, full-scale testing must be conducted to study system dynamics, vibrations, counterface hardness and roughness, temperature, external environment and application specific conditions.

  8. A summary of NASA/Air Force Full Scale Engine Research programs using the F100 engine

    NASA Technical Reports Server (NTRS)

    Deskin, W. J.; Hurrell, H. G.

    1979-01-01

    This paper summarizes a joint NASA/Air Force Full Scale Engine Research (FSER) program conducted with the F100 engine during the period 1974 through 1979. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items which have been addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology, and distortion sensitivity are identified and the associated test programs conducted at the NASA-Lewis Research Center are described. Results presented show that the FSER approach, which utilizes existing state-of-the-art engine hardware to evaluate advanced technology concepts and problem areas, can contribute a significant data base for future system applications. Aerodynamic phenomenon previously not considered by current design systems have been identified and incorporated into current industry design tools.

  9. Hypersonic propulsion flight tests as essential to air-breathing aerospace plane development

    NASA Astrophysics Data System (ADS)

    Mehta, U.

    Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric acclerators for transportation from low Earth orbits (LEOs). The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. Near-full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computation-design technology that can be used in designing that system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.

  10. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economymore » compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].« less

  11. Energy Efficient Engine: Control system component performance report

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Bennett, G. W.

    1984-01-01

    An Energy Efficient Engine (E3) program was established to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, General Electric designed and tested a new engine. The design, fabrication, bench and engine testing of the Full Authority Digital Electronic Control (FADEC) system used for controlling the E3 Demonstrator Engine is described. The system design was based on many of the proven concepts and component designs used on the General Electric family of engines. One significant difference is the use of the FADEC in place of hydromechanical computation currently used.

  12. A Unique Software System For Simulation-to-Flight Research

    NASA Technical Reports Server (NTRS)

    Chung, Victoria I.; Hutchinson, Brian K.

    2001-01-01

    "Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.

  13. Liquid Methane/Liquid Oxygen Propellant Conditioning Feed System (PCFS) Test Rigs

    NASA Technical Reports Server (NTRS)

    Skaff, A.; Grasl, S.; Nguyen, C.; Hockenberry S.; Schubert, J.; Arrington, L.; Vasek, T.

    2008-01-01

    As part of their Propulsion and Cryogenic Advanced Development (PCAD) program, NASA has embarked upon an effort to develop chemical rocket engines which utilize non-toxic, cryogenic propellants such as liquid oxygen (LO2) and liquid methane (LCH4). This effort includes the development and testing of a 100 lbf Reaction Control Engine (RCE) that will be used to evaluate the performance of a LO2/LCH4 rocket engine over a broad range of propellant temperatures and pressures. This testing will take place at NASA-Glenn Research Center's (GRC) Research Combustion Laboratory (RCL) test facility in Cleveland, OH, and is currently scheduled to begin in late 2008. While the initial tests will be performed at sea level, follow-on testing will be performed at NASA-GRC's Altitude Combustion Stand (ACS) for altitude testing. In support of these tests, Sierra Lobo, Inc. (SLI) has designed, developed, and fabricated two separate portable propellant feed systems under the Propellant Conditioning and Feed System (PCFS) task: one system for LCH4, and one for LO2. These systems will be capable of supplying propellants over a large range of conditions from highly densified to several hundred pounds per square inch (psi) saturated. This paper presents the details of the PCFS design and explores the full capability of these propellant feed systems.

  14. Summary of design considerations for airplane spin-recovery parachute systems

    NASA Technical Reports Server (NTRS)

    Burk, S. M., Jr.

    1972-01-01

    A compilation of design considerations applicable to spin-recovery parachute systems for military airplanes has been made so that the information will be readily available to persons responsible for the design of such systems. This information was obtained from a study of available documents and from discussions with persons in both government and industry experienced in parachute technology, full-scale and model spin testing, and related systems.

  15. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  16. Full-Scale Crash Tests and Analyses of Three High-Wing Single

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Littell, Justin D.; Stimson, Chad M.; Jackson, Karen E.; Mason, Brian H.

    2015-01-01

    The NASA Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project was initiated in 2014 to assess the crash performance standards for the next generation of ELT systems. Three Cessna 172 aircraft have been acquired to conduct crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Testing is scheduled for the summer of 2015 and will simulate three crash conditions; a flare to stall while emergency landing, and two controlled flight into terrain scenarios. Instrumentation and video coverage, both onboard and external, will also provide valuable data of airframe response. Full-scale finite element analyses will be performed using two separate commercial explicit solvers. Calibration and validation of the models will be based on the airframe response under these varying crash conditions.

  17. Evaluation of a 40 to 1 scale model of a low pressure engine

    NASA Technical Reports Server (NTRS)

    Cooper, C. E., Jr.; Thoenes, J.

    1972-01-01

    An evaluation of a scale model of a low pressure rocket engine which is used for secondary injection studies was conducted. Specific objectives of the evaluation were to: (1) assess the test conditions required for full scale simulations; (2) recommend fluids to be used for both primary and secondary flows; and (3) recommend possible modifications to be made to the scale model and its test facility to achieve the highest possible degree of simulation. A discussion of the theoretical and empirical scaling laws which must be observed to apply scale model test data to full scale systems is included. A technique by which the side forces due to secondary injection can be analytically estimated is presented.

  18. [Integrated Development of Full-automatic Fluorescence Analyzer].

    PubMed

    Zhang, Mei; Lin, Zhibo; Yuan, Peng; Yao, Zhifeng; Hu, Yueming

    2015-10-01

    In view of the fact that medical inspection equipment sold in the domestic market is mainly imported from abroad and very expensive, we developed a full-automatic fluorescence analyzer in our center, presented in this paper. The present paper introduces the hardware architecture design of FPGA/DSP motion controlling card+PC+ STM32 embedded micro processing unit, software system based on C# multi thread, design and implementation of double-unit communication in detail. By simplifying the hardware structure, selecting hardware legitimately and adopting control system software to object-oriented technology, we have improved the precision and velocity of the control system significantly. Finally, the performance test showed that the control system could meet the needs of automated fluorescence analyzer on the functionality, performance and cost.

  19. Full-scale Transport Controlled Impact Demonstration Program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Federal Aviation Administration (FAA) and NASA conducted a full-scale air-to-surface impact-survivable impact demonstration with a remotely piloted transport aircraft on 1 December 1984, at Edwards Air Force Base, California. The test article consisted of experiments, special equipment, and supporting systems, such as antimisting kerosene (AMK), crashworthiness structural/restraint, analytical modeling, cabin fire safety, flight data recorders, post-impact investigation, instrumentation/data acquisition systems, remotely piloted vehicle/flight control systems, range and flight safety provisions, etc. This report describes the aircraft, experiments, systems, activities, and events which lead up to the Controlled Impact Demonstration (CID). An overview of the final unmanned remote control flight and sequence of impact events are delineated. Preliminary post CID observations are presented.

  20. Tests of Halon 1301 test gas simulants

    NASA Astrophysics Data System (ADS)

    Carhart, H. W.; Leonard, J. T.; Dinenno, P. J.; Starchville, M. D.; Forssell, E. W.; Wong, J. T.

    1989-02-01

    All new and retrofit installations of Halon 1301 (CBrF3) total flooding fire protection systems in shipboard machinery spaces require full acceptance discharge test. It is desirable to use a suitable simulant test gas in these tests in view of current and future regulation of Halon 1301. Sulfur hexafluoride, SF6, and chlorodifluromethane R-22, were identified as candidate simulants on the basis of their similarity in physical properties to Halon 1301. These two candidates were then evaluated on the basis of leakage from an enclosure. SF6 was determined to be an excellent simulant for Halon 1301 when considering leakage from an enclosure. Further testing of SF6 and R-22 is planned for other important aspects of Halon 1301 systems, i.e., flow hydraulics, initial mixing.

  1. Runway Incursion Prevention System Simulation Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.

    2002-01-01

    A Runway Incursion Prevention System (RIPS) was evaluated in a full mission simulation study at the NASA Langley Research center in March 2002. RIPS integrates airborne and ground-based technologies to provide (1) enhanced surface situational awareness to avoid blunders and (2) alerts of runway conflicts in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted in a high fidelity simulator. The purpose of the study was to evaluate the RIPS airborne incursion detection algorithms and associated alerting and airport surface display concepts. Eight commercial airline crews participated as test subjects completing 467 test runs. This paper gives an overview of the RIPS, simulation study, and test results.

  2. Voice control of the space shuttle video system

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Dotson, R. S.; Brown, J. W.; Lewis, J. L.

    1981-01-01

    A pilot voice control system developed at the Jet Propulsion Laboratory (JPL) to test and evaluate the feasibility of controlling the shuttle TV cameras and monitors by voice commands utilizes a commercially available discrete word speech recognizer which can be trained to the individual utterances of each operator. Successful ground tests were conducted using a simulated full-scale space shuttle manipulator. The test configuration involved the berthing, maneuvering and deploying a simulated science payload in the shuttle bay. The handling task typically required 15 to 20 minutes and 60 to 80 commands to 4 TV cameras and 2 TV monitors. The best test runs show 96 to 100 percent voice recognition accuracy.

  3. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to the vacuum unit to achieve full diaphragm displacement. Seal vacuum source to unit. There shall be no visible loss of diaphragm displacement or drop in vacuum gauge reading after a 15 second observation. Vacuum purge system and diaphragm displacement adjusting screw holes should be temporarily sealed...

  4. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to the vacuum unit to achieve full diaphragm displacement. Seal vacuum source to unit. There shall be no visible loss of diaphragm displacement or drop in vacuum gauge reading after a 15 second observation. Vacuum purge system and diaphragm displacement adjusting screw holes should be temporarily sealed...

  5. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to the vacuum unit to achieve full diaphragm displacement. Seal vacuum source to unit. There shall be no visible loss of diaphragm displacement or drop in vacuum gauge reading after a 15 second observation. Vacuum purge system and diaphragm displacement adjusting screw holes should be temporarily sealed...

  6. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to the vacuum unit to achieve full diaphragm displacement. Seal vacuum source to unit. There shall be no visible loss of diaphragm displacement or drop in vacuum gauge reading after a 15 second observation. Vacuum purge system and diaphragm displacement adjusting screw holes should be temporarily sealed...

  7. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to the vacuum unit to achieve full diaphragm displacement. Seal vacuum source to unit. There shall be no visible loss of diaphragm displacement or drop in vacuum gauge reading after a 15 second observation. Vacuum purge system and diaphragm displacement adjusting screw holes should be temporarily sealed...

  8. Spatial and Numerical Abilities without a Complete Natural Language

    ERIC Educational Resources Information Center

    Hyde, Daniel C.; Winkler-Rhoades, Nathan; Lee, Sang-Ah; Izard, Veronique; Shapiro, Kevin A.; Spelke, Elizabeth S.

    2011-01-01

    We studied the cognitive abilities of a 13-year-old deaf child, deprived of most linguistic input from late infancy, in a battery of tests designed to reveal the nature of numerical and geometrical abilities in the absence of a full linguistic system. Tests revealed widespread proficiency in basic symbolic and non-symbolic numerical computations…

  9. The Status of the Cms Experiment

    NASA Astrophysics Data System (ADS)

    Green, Dan

    The CMS experiment was completely assembled in the fall of 2008 after a decade of design, construction and installation. During the last two years, cosmic ray data were taken on a regular basis. These data have enabled CMS to align the detector components, both spatially and temporally. Initial use of muons has also established the relative alignment of the CMS tracking and muon systems. In addition, the CMS calorimetry has been crosschecked with test beam data, thus providing an initial energy calibration of CMS calorimetry to about 5%. The CMS magnet has been powered and field mapped. The trigger and data acquisition systems have been installed and run at full speed. The tiered data analysis system has been exercised at full design bandwidth for Tier0, Tier1 and Tier2 sites. Monte Carlo simulation of the CMS detector has been constructed at a detailed geometric level and has been tuned to test beam and other production data to provide a realistic model of the CMS detector prior to first collisions.

  10. 5 MV 30 mA industrial electron processing system

    NASA Astrophysics Data System (ADS)

    Hoshi, Y.; Mizusawa, K.

    1991-05-01

    Industrial electron beam processing systems have been in use in various application fields such as: improving heat resistivity of wire insulation; controlling quality of automobile rubber tires and melt index characteristics of PE foams; and curing paintings or printing inks. Recently, there has come up a need for electron beam with an energy higher than 3 MV in order to disinfect salmonella in chicken meat, to kill bugs in fruits, and to sterilize medical disposables. To meet this need we developed a 5 MV 30 mA electron processing system with an X-ray conversion target. The machine was tested in NHV's plant in Kyoto at continuous operation of full voltage and full current. It proved to be very steady in operation with a high efficiency (as much as 72%). Also, the X-ray target was tested in a continuous run of 5 MV 30 mA (150 kW). It proved to be viable in industrial utilization. This paper introduces the process and the results of the development.

  11. Tracking control of a marine surface vessel with full-state constraints

    NASA Astrophysics Data System (ADS)

    Yin, Zhao; He, Wei; Yang, Chenguang

    2017-02-01

    In this paper, a trajectory tracking control law is proposed for a class of marine surface vessels in the presence of full-state constraints and dynamics uncertainties. A barrier Lyapunov function (BLF) based control is employed to prevent states from violating the constraints. Neural networks are used to approximate the system uncertainties in the control design, and the control law is designed by using the Moore-Penrose inverse. The proposed control is able to compensate for the effects of full-state constraints. Meanwhile, the signals in the closed-loop system are guaranteed to be semiglobally uniformly bounded, with the asymptotic tracking being achieved. Finally, the performance of the proposed control has been tested and verified by simulation studies.

  12. Allegany Ballistics Lab: sensor test target system

    NASA Astrophysics Data System (ADS)

    Eaton, Deran S.

    2011-06-01

    Leveraging the Naval Surface Warfare Center, Indian Head Division's historical experience in weapon simulation, Naval Sea Systems Command commissioned development of a remote-controlled, digitally programmable Sensor Test Target as part of a modern, outdoor hardware-in-the-loop test system for ordnance-related guidance, navigation and control systems. The overall Target system design invokes a sciences-based, "design of automated experiments" approach meant to close the logistical distance between sensor engineering and developmental T&E in outdoor conditions over useful real world distances. This enables operating modes that employ broad spectrum electromagnetic energy in many a desired combination, variably generated using a Jet Engine Simulator, a multispectral infrared emitter array, optically enhanced incandescent Flare Simulators, Emitter/Detector mounts, and an RF corner reflector kit. As assembled, the recently tested Sensor Test Target prototype being presented can capably provide a full array of useful RF and infrared target source simulations for RDT&E use with developmental and existing sensors. Certain Target technologies are patent pending, with potential spinoffs in aviation, metallurgy and biofuels processing, while others are variations on well-established technology. The Sensor Test Target System is planned for extended installation at Allegany Ballistics Laboratory (Rocket Center, WV).

  13. Railing systems for use on timber deck bridges

    Treesearch

    Ronald K. Faller; Michael A. Ritter; Barry T. Rosson; Sheila R. Duwadi

    1999-01-01

    Bridge railing systems in the United States have historically been designed based on static load criteria given in the AASHTO Standard Specifications for Highway Bridges. In the past decade, full-scale vehicle crash testing has been recognized as a more appropriate and reliable method of evaluating bridge railing acceptability. In 1989. AASHTO published the Guide...

  14. Making Use of a Decade of Widely Varying Historical Data: SARP Project "Full Life-cycle Defect Management"

    NASA Technical Reports Server (NTRS)

    Shull, Forrest; Bechtel, Andre; Feldmann, Raimund L.; Regardie, Myrna; Seaman, Carolyn

    2008-01-01

    This viewgraph presentation addresses the question of inspection and verification and validation (V&V) effectiveness of developing computer systems. A specific question is the relation between V&V effectiveness in the early lifecycle of development and the later testing of the developed system.

  15. 49 CFR 570.6 - Brake power unit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Brake power unit. 570.6 Section 570.6... Pounds or Less § 570.6 Brake power unit. (a) Vacuum hoses shall not be collapsed, abraded, broken... power assist system. This test is not applicable to vehicles equipped with full power brake system as...

  16. Full Flight Envelope Inner Loop Control Law Development for the Unmanned K-MAX

    DTIC Science & Technology

    2011-05-03

    LaMontagne , T., "System Identification and Control System Design for the BURRO Autonomous UAV," Proceedings of the American Helicopter Society 56th...Annual Forum, Virginia Beach, Virginia, May 2000. 2. Frost, C., Tischler, M., Bielefield, M., & LaMontagne , T., "Design and Test of Flight Control

  17. Non-destructive analysis of flake properties in automotive paints with full-field optical coherence tomography and 3D segmentation.

    PubMed

    Zhang, Jinke; Williams, Bryan M; Lawman, Samuel; Atkinson, David; Zhang, Zijian; Shen, Yaochun; Zheng, Yalin

    2017-08-07

    Automotive coating systems are designed to protect vehicle bodies from corrosion and enhance their aesthetic value. The number, size and orientation of small metallic flakes in the base coat of the paint has a significant effect on the appearance of automotive bodies. It is important for quality assurance (QA) to be able to measure the properties of these small flakes, which are approximately 10μm in radius, yet current QA techniques are limited to measuring layer thickness. We design and develop a time-domain (TD) full-field (FF) optical coherence tomography (OCT) system to scan automotive panels volumetrically, non-destructively and without contact. We develop and integrate a segmentation method to automatically distinguish flakes and allow measurement of their properties. We test our integrated system on nine sections of five panels and demonstrate that this integrated approach can characterise small flakes in automotive coating systems in 3D, calculating the number, size and orientation accurately and consistently. This has the potential to significantly impact QA testing in the automotive industry.

  18. Relative efficacy for radiation reducing methods in scoliotic patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikenhead, J.; Triano, J.; Baker, J.

    Radiation dosages to sensitive organs in full spine radiography have in recent years been a concern of physicians as well as the general public. The spine is the prime target for exposure in scoliosis radiography, though the exposure usually necessitates irradiation of several radio-sensitive organs. In recent studies, various protection techniques have been used including various lead and aluminum filtration systems, altered patient positioning and varied tube-film distances. The purpose of this study was to evaluate the efficiency for radiation dosage reduction of three filtration systems used frequently in the chiropractic profession. The systems tested were the Nolan Multiple X-raymore » Filters, the Clear-Pb system and the Sportelli Wedge system. These systems were tested in seven configurations varying breast shielding, distance and patient positioning. All systems tested demonstrated significant radiation reductions to organs, especially breast tissue. The Clear-Pb system appeared to be the most effective for all organs except the breast, and the Sportelli Wedge system demonstrated the greatest reduction to breast tissue.« less

  19. Analysis of wear debris from full-scale bearing fatigue tests using the Ferrograph

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Loewenthal, S. H.

    1980-01-01

    The Ferrograph was used to determine the types of quantities of wear particles generated during full-scale bearing fatigue tests. Deep-groove ball bearings made from AISI 52100 steel were used. A MIL-L-23699 tetraester lubricant was used in a recirculating lubrication system containing a 49-micron absolute filter. Test conditions included a maximum Hertz stress of 2.4 GPa, a shaft speed of 15,000 rpm and a lubricant supply temperature of 74 C (165 F). Four fatigue failures were detected by accelerometers in this test set. In general, the Ferrograph was more sensitive (up to 23 h) in detecting spall initiation than either accelerometers or the normal spectrographic oil analysis (SOAP). Four particle types were observed: normal rubbing wear particles, spheres, nonferrous particles, and severe wear (spall) fragments.

  20. A new test environment for the SOFIA secondary mirror assembly to reduce the required time for in-flight testing

    NASA Astrophysics Data System (ADS)

    Lammen, Yannick; Reinacher, Andreas; Brewster, Rick; Greiner, Benjamin; Graf, Friederike; Krabbe, Alfred

    2016-07-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) reached its full operational capability in 2014 and takes off from the NASA Armstrong Flight Research Center to explore the universe about three times a week. Maximizing the program's scientific output naturally leaves very little flight time for implementation and test of improved soft- and hardware. Consequently, it is very important to have a comparable test environment and infrastructure to perform troubleshooting, verifications and improvements on ground without interfering with science missions. SOFIA's Secondary Mirror Mechanism is one of the most complex systems of the observatory. In 2012 a first simple laboratory mockup of the mechanism was built to perform basic controller tests in the lower frequency band of up to 50Hz. This was a first step to relocate required engineering tests from the active observatory into the laboratory. However, to test and include accurate filters and damping methods as well as to evaluate hardware modifications a more precise mockup is required that represents the system characteristics over a much larger frequency range. Therefore the mockup has been improved in several steps to a full test environment representing the system dynamics with high accuracy. This new ground equipment allows moving almost the entire secondary mirror test activities away from the observatory. As fast actuator in the optical path, the SMM also plays a major role in SOFIA's pointing stabilization concept. To increase the steering bandwidth, hardware changes are required that ultimately need to be evaluated using the telescope optics. One interesting concept presented in this contribution is the in- stallation of piezo stack actuators between the mirror and the chopping mechanism. First successful baseline tests are presented. An outlook is given about upcoming performance tests of the actively controlled piezo stage with local metrology and optical feedback. To minimize the impact on science time, the laboratory test setup will be expanded with an optical measurement system so that it can be used for the vast majority of testing.

  1. Dewatering Treatment Scale-up Testing Results of Hanford Tank Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedeschi, A.R.; May, T.H.; Bryan, W.E.

    2008-07-01

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualifiedmore » the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process. (authors)« less

  2. An Extended IEEE 118-Bus Test System With High Renewable Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena, Ivonne; Martinez-Anido, Carlo Brancucci; Hodge, Bri-Mathias

    This article describes a new publicly available version of the IEEE 118-bus test system, named NREL-118. The database is based on the transmission representation (buses and lines) of the IEEE 118-bus test system, with a reconfigured generation representation using three regions of the US Western Interconnection from the latest Western Electricity Coordination Council (WECC) 2024 Common Case [1]. Time-synchronous hourly load, wind, and solar time series are provided for over one year (8784 hours). The public database presented and described in this manuscript will allow researchers to model a test power system using detailed transmission, generation, load, wind, and solarmore » data. This database includes key additional features that add to the current IEEE 118-bus test model, such as: the inclusion of 10 generation technologies with different heat rate functions, minimum stable levels and ramping rates, GHG emissions rates, regulation and contingency reserves, and hourly time series data for one full year for load, wind and solar generation.« less

  3. The development of an augmentor wing jet STOL research aircraft (modified C-8A). Volume 2: Analysis of contractor's flight test

    NASA Technical Reports Server (NTRS)

    Skavdahl, H.; Patterson, D. H.

    1972-01-01

    The initial flight test phase of the modified C-8A airplane was conducted. The primary objective of the testing was to establish the basic airworthiness of the research vehicle. This included verification of the structural design and evaluation of the aircraft's systems. Only a minimum amount of performance testing was scheduled; this has been used to provide a preliminary indication of the airplane's performance and flight characteristics for future flight planning. The testing included flutter and loads investigations up to the maximum design speed. The operational characteristics of all systems were assessed including hydraulics, environmental control system, air ducts, the vectoring conical nozzles, and the stability augmentation system (SAS). Approaches to stall were made at three primary flap settings: up, 30 deg and 65 deg, but full stalls were not scheduled. Minimum control speeds and maneuver margins were checked. All takeoffs and landings were conventional, and STOL performance was not scheduled during this phase of the evaluation.

  4. Spinning Reserve From Hotel Load Response: Initial Progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kueck, John D; Kirby, Brendan J

    2008-11-01

    This project was motivated by the fundamental match between hotel space conditioning load response capability and power system contingency response needs. As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. At ORNL s suggestion, Digital Solutions Inc. adapted its hotel air conditioning control technology to supply power system spinning reserve. This energy saving technology is primarily designed to provide the hotel operator with the ability to control individual room temperature set-points based upon occupancy (25% to 50% energy savings based on an earlier study [Kirby andmore » Ally, 2002]). DSI added instantaneous local load shedding capability in response to power system frequency and centrally dispatched load shedding capability in response to power system operator command. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host the spinning reserve test. The Tennessee Valley Authority supplied real-time metering equipment in the form of an internet connected Dranetz-BMI power quality meter and monitoring expertise to record total hotel load during both normal operations and test results. The Sevier County Electric System installed the metering. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. These results are prior to implementing control over the common area air conditioning loads. Testing was also not at times of highest system or hotel loading. Full response occurred in 12 to 60 seconds from when the system operator s command to shed load was issued. The load drop was very rapid, essentially as fast as the 2 second metering could detect, with all units responding essentially simultaneously. Load restoration was ramped back in over several minutes. The restoration ramp can be adjusted to the power system needs. Frequency response testing was not completed. Initial testing showed that the units respond very quickly. Problems with local power quality generated false low frequency signals which required testing to be stopped. This should not be a problem in actual operation since the frequency trip points will be staggered to generate a droop curve which mimics generator governor response. The actual trip frequencies will also be low enough to avoid power quality problems. The actual trip frequencies are too low to generate test events with sufficient regularity to complete testing in a reasonable amount of time. Frequency response testing will resume once the local power quality problem is fully understood and reasonable test frequency settings can be determined. Overall the preliminary testing was extremely successful. The hotel response capability matches the power system reliability need, being faster than generation response and inherently available when the power system is under the most stress (times of high system and hotel load). Periodic testing is scheduled throughout the winter and spring to characterize hotel response capability under a full range of conditions. More extensive testing will resume when summer outdoor temperatures are again high enough to fully test hotel response.« less

  5. Thermal Behavior of Aerospace Spur Gears in Normal and Loss-of-Lubrication Conditions

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2015-01-01

    Testing of instrumented spur gears operating at aerospace rotorcraft conditions was conducted. The instrumented gears were operated in a normal and in a loss-of-lubrication environment. Thermocouples were utilized to measure the temperature at various locations on the test gears and a test utilized a full-field, high-speed infrared thermal imaging system. Data from thermocouples was recorded during all testing at 1 hertz. One test had the gears shrouded and a second test was run without the shrouds to permit the infrared thermal imaging system to take data during loss-of-lubrication operation. Both tests using instrumented spur gears were run in normal and loss-of-lubrication conditions. Also the result from four other loss-of-lubrication tests will be presented. In these tests two different torque levels were used while operating at the same rotational speed (10000 revolutions per minute).

  6. Thermal Behavior of Aerospace Spur Gears in Normal and Loss-of-Lubrication Conditions

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2015-01-01

    Testing of instrumented spur gears operating at aerospace rotorcraft conditions was conducted. The instrumented gears were operated in a normal and in a loss-of-lubrication environment. Thermocouples were utilized to measure the temperature at various locations on the test gears and a test utilized a full-field, high-speed infrared thermal imaging system. Data from thermocouples was recorded during all testing at 1 Hz. One test had the gears shrouded and a second test was run without the shrouds to permit the infrared thermal imaging system to take date during loss-of-lubrication operation. Both tests using instrumented spur gears were run in normal and loss-of-lubrication conditions. Also the result from four other loss-of-lubrication tests will be presented. In these tests two different torque levels were used while operating at the same rotational speed (10000 rpm).

  7. DACS II - A distributed thermal/mechanical loads data acquisition and control system

    NASA Technical Reports Server (NTRS)

    Zamanzadeh, Behzad; Trover, William F.; Anderson, Karl F.

    1987-01-01

    A distributed data acquisition and control system has been developed for the NASA Flight Loads Research Facility. The DACS II system is composed of seven computer systems and four array processors configured as a main computer system, three satellite computer systems, and 13 analog input/output systems interconnected through three independent data networks. Up to three independent heating and loading tests can be run concurrently on different test articles or the entire system can be used on a single large test such as a full scale hypersonic aircraft. Thermal tests can include up to 512 independent adaptive closed loop control channels. The control system can apply up to 20 MW of heating to a test specimen while simultaneously applying independent mechanical loads. Each thermal control loop is capable of heating a structure at rates of up to 150 F per second over a temperature range of -300 to +2500 F. Up to 64 independent mechanical load profiles can be commanded along with thermal control. Up to 1280 analog inputs monitor temperature, load, displacement and strain on the test specimens with real time data displayed on up to 15 terminals as color plots and tabular data displays. System setup and operation is accomplished with interactive menu-driver displays with extensive facilities to assist the users in all phases of system operation.

  8. Remote control of microcontroller-based infant stimulating system.

    PubMed

    Burunkaya, M; Güler, I

    2000-04-01

    In this paper, a remote-controlled and microcontroller-based cradle is designed and constructed. This system is also called Remote Control of Microcontroller-Based Infant Stimulation System or the RECOMBIS System. Cradle is an infant stimulating system that provides relaxation and sleeping for the baby. RECOMBIS system is designed for healthy full-term newborns to provide safe infant care and provide relaxation and sleeping for the baby. A microcontroller-based electronic circuit was designed and implemented for RECOMBIS system. Electromagnets were controlled by 8-bit PIC16F84 microcontroller, which is programmed using MPASM package. The system works by entering preset values from the keyboard, or pulse code modulated radio frequency remote control system. The control of the system and the motion range were tested. The test results showed that the system provided a good performance.

  9. Tests of NASA ceramic thermal barrier coating for gas-turbine engines

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1979-01-01

    A two-layer thermal barrier coating system with a bond coating of nickel-chromium-aluminum-yttrium and a ceramic coating of yttria-stabilized zirconia was tested for corrosion protection, thermal protection and durability. Full-scale gas-turbine engine tests demonstrated that this coating eliminated burning, melting, and warping of uncoated parts. During cyclic corrosion resistance tests made in marine diesel fuel products of combustion in a burner rig, the ceramic cracked on some specimens. Metallographic examination showed no base metal deterioration.

  10. Motion-base simulator results of advanced supersonic transport handling qualities with active controls

    NASA Technical Reports Server (NTRS)

    Feather, J. B.; Joshi, D. S.

    1981-01-01

    Handling qualities of the unaugmented advanced supersonic transport (AST) are deficient in the low-speed, landing approach regime. Consequently, improvement in handling with active control augmentation systems has been achieved using implicit model-following techniques. Extensive fixed-based simulator evaluations were used to validate these systems prior to tests with full motion and visual capabilities on a six-axis motion-base simulator (MBS). These tests compared the handling qualities of the unaugmented AST with several augmented configurations to ascertain the effectiveness of these systems. Cooper-Harper ratings, tracking errors, and control activity data from the MBS tests have been analyzed statistically. The results show the fully augmented AST handling qualities have been improved to an acceptable level.

  11. Wind-Tunnel Evaluation of the Effect of Blade Nonstructural Mass Distribution on Helicopter Fixed-System Loads

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Singleton, Jeffrey D.; Mirick, Paul H.; Wilkie, W. Keats

    1998-01-01

    This report provides data obtained during a wind-tunnel test conducted to investigate parametrically the effect of blade nonstructural mass on helicopter fixed-system vibratory loads. The data were obtained with aeroelastically scaled model rotor blades that allowed for the addition of concentrated nonstructural masses at multiple locations along the blade radius. Testing was conducted for advance ratios ranging from 0.10 to 0.35 for 10 blade-mass configurations. Three thrust levels were obtained at representative full-scale shaft angles for each blade-mass configuration. This report provides the fixed-system forces and moments measured during testing. The comprehensive database obtained is well-suited for use in correlation and development of advanced rotorcraft analyses.

  12. Two self-test methods applied to an inertial system problem. [estimating gyroscope and accelerometer bias

    NASA Technical Reports Server (NTRS)

    Willsky, A. S.; Deyst, J. J.; Crawford, B. S.

    1975-01-01

    The paper describes two self-test procedures applied to the problem of estimating the biases in accelerometers and gyroscopes on an inertial platform. The first technique is the weighted sum-squared residual (WSSR) test, with which accelerator bias jumps are easily isolated, but gyro bias jumps are difficult to isolate. The WSSR method does not take full advantage of the knowledge of system dynamics. The other technique is a multiple hypothesis method developed by Buxbaum and Haddad (1969). It has the advantage of directly providing jump isolation information, but suffers from computational problems. It might be possible to use the WSSR to detect state jumps and then switch to the BH system for jump isolation and estimate compensation.

  13. Facility Activation and Characterization for IPD Oxidizer Turbopump Cold-Flow Testing at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; Raines, N. G.; Farner, B. R.; Ryan, H. M.

    2004-01-01

    The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) cold-flow test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in November 2001. A total of 11 IPD OTP cold-flow tests were completed. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and the cold-flow testing of the IPD OTP. In addition, some of the facility challenges encountered during the test project are addressed.

  14. Protocol Gas Verification Program Audit Reports

    EPA Pesticide Factsheets

    View the full reports from 2010 and 2013 of the PGVP audits, which tested the EPA Protocol gases that are used to calibrate continuous emission monitoring systems (CEMS), and the instruments used in EPA reference methods.

  15. Heatpipe space power and propulsion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, M.G.; Poston, D.I.; Ranken, W.A.

    1996-03-01

    Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: the Heatpipe Power System (HPS), which provides power only; and the Heatpipe Bimodal System (HBS), which provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, which greatly facilitates system fabrication and handling. Third, full electrically heated system testing of all modes is possible, with minimal operations required to replace the heaters with fuel and to ready the systemmore » for launch. Fourth, the systems are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single-point failures during power mode operation. Eighth, the fuel burnup rate is quite low to help ensure {approx_gt}10-yr system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, full ground nuclear test is not needed, and development costs will be low. One design for a low-power HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of {approximately}500 kg. The unicouple thermoelectric converters have a hot-shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program and has demonstrated an operational lifetime of decades. A core with a larger number of smaller modules (same overall size) can be used to provide up to 500 kWt to a power conversion subsystem, and a slightly larger core using a higher heatpipe to fuel ratio can provide {approx_gt}1 MWt. (Abstract Truncated)« less

  16. Heatpipe space power and propulsion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, M.G.; Poston, D.I.; Ranken, W.A.

    1995-12-01

    Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: The Heatpipe Power System (HPS), which provides power only; and the Heatpipe Bimodal System (HBS), which provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, which greatly facilitates system fabrication and handling. Third, full electrically heated system testing of all modes is possible, with minimal operations required to replace the heaters with fuel and to ready the systemmore » for launch. Fourth, the systems are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single-point failures during power mode operation. Eighth, the fuel burnup rate is quite low to help ensure >10-yr system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, full ground nuclear test is not needed, and development costs will be low. One design for a low-power HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of {approximately}500 kg. The unicouple thermoelectric converters have a hot-shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program and has demonstrated an operational lifetime of decades. A core with a larger number of smaller modules (same overall size) can be used to provide up to 500 kWt to a power conversion subsystem, and a slightly larger core using a higher heatpipe to fuel ratio can provide >1 MWt.« less

  17. Test Plan for the Technology Maturation of Supersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Kelly, Jenny R.; Cruz, Juan R.

    2009-01-01

    Supersonic inflatable aerodynamic decelerators (IADs) are drag devices intended to be deployed at high Mach numbers. In the application considered here they assist in the descent and landing of spacecraft on Mars. Although promising, present IAD technology is not yet sufficiently mature for use in the near future. This paper describes a technology maturation plan for tension cone IADs using subscale test articles to reduce development costs. As envisioned, the proposed test plan includes three phases: wind tunnel tests (subsonic), unpowered high-altitude flight tests (transonic), and powered high-altitude tests (supersonic). This test plan is based on a building block approach in which successful completion of each phase adds to the understanding of the behavior of IADs and reduces the risk of the subsequent, more expensive phases. By properly scaling the IADs, test articles of the same size and nearly the same construction can be used for all three phases. The final phase is a dynamically scaled flight test with IAD deployment at the same Mach number as the full-scale vehicle on Mars. Two full-scale example cases are presented: one for a single-stage system (15 m dia. IAD to subsonic retropropulsion), and another for a two-stage system (10.5 m dia. IAD to subsonic parachute). Using scale factors of 0.333 and 0.476 yield subscale test IADs of 5 m dia. The dynamically scaled powered flight test starts at Mach 4 and an altitude of 33.5 km. Existing balloons and rocket motors are shown to be adequate to meet the required test conditions.

  18. The Outer Solar System Origin Survey full data release orbit catalog and characterization.

    NASA Astrophysics Data System (ADS)

    Kavelaars, J. J.; Bannister, Michele T.; Gladman, Brett; Petit, Jean-Marc; Gwyn, Stephen; Alexandersen, Mike; Chen, Ying-Tung; Volk, Kathryn; OSSOS Collaboration.

    2017-10-01

    The Outer Solar System Origin Survey (OSSOS) completed main data acquisition in February 2017. Here we report the release of our full orbit sample, which include 836 TNOs with high precision orbit determination and classification. We combine the OSSOS orbit sample with previously release Canada-France Ecliptic Plane Survey (CFEPS) and a precursor survey to OSSOS by Alexandersen et al. to provide a sample of over 1100 TNO orbits with high precision classified orbits and precisely determined discovery and tracking circumstances (characterization). We are releasing the full sample and characterization to the world community, along with software for conducting ‘Survey Simulations’, so that this sample of orbits can be used to test models of the formation of our outer solar system against the observed sample. Here I will present the characteristics of the data set and present a parametric model for the structure of the classical Kuiper belt.

  19. A full-scale wind tunnel investigation of a helicopter bearingless main rotor. [Ames 40 by 80 Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Mccloud, J. L., II

    1981-01-01

    A helicopter bearingless main rotor was tested. Areas of investigation included aeroelastic stability, aerodynamic performance, and rotor loads as a function of collective pitch setting, RPM, airspeed and shaft angle. The rotor/support system was tested with the wind tunnel balance dampers installed and, subsequently, removed. Modifications to the rotor hub were tested. These included a reduction in the rotor control system stiffness and increased flexbeam structural damping. The primary objective of the test was to determine aeroelastic stability of the fundamental flexbeam/blade chordwise bending mode. The rotor was stable for all conditions. Damping of the rotor chordwise bending mode increases with increased collective pitch angle at constant operating conditions. No significant decrease in rotor damping occured due to frequency coalescence between the blade chordwise fundamental bending mode and the support system.

  20. Free-piston Stirling component test power converter

    NASA Technical Reports Server (NTRS)

    Dochat, George; Dhar, Manmohan

    1991-01-01

    The National Aeronautics and Space Administration (NASA) has been evaluating free-piston Stirling power converters (FPSPCs) for use on a wide variety of space missions. They provide high reliability, long life, and efficient operation and can be coupled with all potential heat sources, various heat input and heat rejection systems, and various power management and distribution systems. FPSPCs can compete favorably with alternative power conversion systems over a range of hundreds of watts to megawatts. Mechanical Technology Incorporated (MTI) is developing FPSPC technology under contract to NASA Lewis Research Center and will demonstrate this technology in two full-scale power converters operating at space temperature conditions. The testing of the first of these, the component test power converter (CTPC), was initiated in Spring 1991 to evaluate mechanical operation at space operating temperatures. The CTPC design, hardware fabrication, and initial test results are reviewed.

  1. Experimental investigation of an ejector-powered free-jet facility

    NASA Technical Reports Server (NTRS)

    Long, Mary JO

    1992-01-01

    NASA Lewis Research Center's (LeRC) newly developed Nozzle Acoustic Test Rig (NATR) is a large free-jet test facility powered by an ejector system. In order to assess the pumping performance of this ejector concept and determine its sensitivity to various design parameters, a 1/5-scale model of the NATR was built and tested prior to the operation of the actual facility. This paper discusses the results of the 1/5-scale model tests and compares them with the findings from the full-scale tests.

  2. Issues associated with manipulator-based waste retrieval from Hanford underground storage tanks with a preliminary review of commercial concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, E.J.

    1996-09-17

    Westinghouse Hanford Company (WHC) is exploring commercial methods for retrieving waste from the underground storage tanks at the Hanford site in south central Washington state. WHC needs data on commercial retrieval systems equipment in order to make programmatic decisions for waste retrieval. Full system testing of retrieval processes is to be demonstrated in phases through September 1997 in support of programs aimed to Acquire Commercial Technology for Retrieval (ACTR) and at the Hanford Tanks Initiative (HTI). One of the important parts of the integrated testing will be the deployment of retrieval tools using manipulator-based systems. WHC requires an assessment ofmore » a number of commercial deployment systems that have been identified by the ACTR program as good candidates to be included in an integrated testing effort. Included in this assessment should be an independent evaluation of manipulator tests performed to date, so that WHC can construct an integrated test based on these systems. The objectives of this document are to provide a description of the need, requirements, and constraints for a manipulator-based retrieval system; to evaluate manipulator-based concepts and testing performed to date by a number of commercial organizations; and to identify issues to be resolved through testing and/or analysis for each concept.« less

  3. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system. Volume 3, phase 3: Full size heat shield data correlation and design criteria. [reentry

    NASA Technical Reports Server (NTRS)

    Cramer, B. A.; Davis, J. W.

    1975-01-01

    Analysis methods for predicting cyclic creep deflection in stiffened metal panel structures, were applied to full size panels. Results were compared with measured deflections from cyclic tests of thin gage L605, Rene' 41, and TDNiCr full size corrugation stiffened panels. A design criteria was then formulated for metallic thermal protection panels subjected to creep. A computer program was developed to calculate creep deflections.

  4. Balloon launched decelerator test program: Post-test test report

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Schlemmer, J.; Hicks, F.; Michel, F.; Moog, R. D.

    1972-01-01

    Balloon Launched Decelerator Test (BLDT) flights were conducted during the summer of 1972 over the White Sands Missile Range. The purpose of these tests was to qualify the Viking disk-gap band parachute system behind a full-scale simulator of the Viking Entry Vehicle over the maximum range of entry conditions anticipated in the Viking '75 soft landing on Mars. Test concerns centered on the ability of a minimum weight parachute system to operate without structural damage in the turbulent wake of the blunt-body entry vehicle (140 deg, 11.5 diameter cone). This is the first known instance of parachute operation at supersonic speeds in the wake of such a large blunt body. The flight tests utilized the largest successful balloon-payload weight combination known to get to high altitude (120kft) where rocket engines were employed to boost the test vehicle to supersonic speeds and dynamic pressures simulating the range of conditions on Mars.

  5. Developments for the ICRH System of the Ignitor Machine

    NASA Astrophysics Data System (ADS)

    Sassi, M.; Mantovani, S.; Coppi, B.

    2014-10-01

    The ICRH system that is suitable for the high-density plasmas to be produced by the Ignitor machine has been designed and components of it have been tested. This system will operate over the range 80-120 MHz, consistently with magnetic fields in the range 9-13 T. The maximum delivered power is in the interval 8 MW (at 80 MHz) to 6 MW (at 120 MHz) distributed over 4 ports. A full size prototype of the VTL between the port flange and the antenna straps, with the external support and precise guiding system has been constructed. The innovative quick latching system located at the end of the coaxial cable has been successfully tested, providing perfect interference with the spring Be-Cu electrical contacts. Vacuum levels of 10-6, compatible with the limit of material degassing, and electrical tests up to 12 kV without discharges have been obtained. Sponsored in part by the US DOE.

  6. Disturbance Reduction Control Design for the ST7 Flight Validation Experiment

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Hsu, O. C.; Markley, F. L.; Houghton, M. B.

    2003-01-01

    The Space Technology 7 experiment will perform an on-orbit system-level validation of two specific Disturbance Reduction System technologies: a gravitational reference sensor employing a free-floating test mass, and a set of micro-Newton colloidal thrusters. The ST7 Disturbance Reduction System is designed to maintain the spacecraft's position with respect to a free-floating test mass to less than 10 nm/Hz, over the frequency range of 1 to 30 mHz. This paper presents the design and analysis of the coupled, drag-free and attitude control systems that close the loop between the gravitational reference sensor and the micro-Newton thrusters, while incorporating star tracker data at low frequencies. A full 18 degree-of-freedom model, which incorporates rigid-body models of the spacecraft and two test masses, is used to evaluate the effects of actuation and measurement noise and disturbances on the performance of the drag-free system.

  7. Report on Distance Learning Technologies.

    DTIC Science & Technology

    1995-09-01

    26 cities. The CSX system includes full-motion video, animations , audio, and interactive examples and testing to teach the use of a new computer...video. The change to all-digital media now permits the use of full-motion video, animation , and audio on networks. It is possible to have independent...is possible to download entire multimedia presentations from the network. To date there is not a great deal known about teaching courses using the

  8. Research and Development for Robotic Transportable Waste to Energy System (TWES)

    DTIC Science & Technology

    2012-01-01

    Engineers, April 2003. NFESC UG-2039-ENV, Qualified Recycling Program (QRP) Guide; July 2000 (NOTAL) Paisley, M.A., Anson, D., “ Biomass Gasification ...Full Load Biomass Simulation .............................19 Figure 9. Spreadsheet-Based Heat and Mass Balance—Diesel Operation at 5:00 p.m...diesel fuel. Based on simulation of full-load biomass operation, the diesel-fueled test was expected to demonstrate a 75% net fuel-to-steam efficiency

  9. Development of a DC propulsion system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Kelledes, W. L.

    1984-01-01

    The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.

  10. Radiated Emissions from a Remote-Controlled Airplane-Measured in a Reverberation Chamber

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Koppen, Sandra V.; Nguyen, Truong X.; Dudley, Kenneth L.; Szatkowski, George N.; Quach, Cuong C.; Vazquez, Sixto L.; Mielnik, John J.; Hogge, Edward F.; Hill, Boyd L.; hide

    2011-01-01

    A full-vehicle, subscale all-electric model airplane was tested for radiated emissions, using a reverberation chamber. The mission of the NASA model airplane is to test in-flight airframe damage diagnosis and battery prognosis algorithms, and provide experimental data for other aviation safety research. Subscale model airplanes are economical experimental tools, but assembling their systems from hobbyist and low-cost components may lead to unforseen electromagnetic compatibility problems. This report provides a guide for accommodating the on-board radio systems, so that all model airplane systems may be operated during radiated emission testing. Radiated emission data are provided for on-board systems being operated separately and together, so that potential interferors can be isolated and mitigated. The report concludes with recommendations for EMI/EMC best practices for subscale model airplanes and airships used for research.

  11. AMO Teledioptric System for age-related macular degeneration

    NASA Astrophysics Data System (ADS)

    Chou, Jim-Son; Ting, Albert C.

    1994-05-01

    A 2.5 X magnification system consisting of a two-zone intraocular implant and a spectacle was developed, tested, and clinically tried by fifty patients with cataract ad age-related macular degeneration. Optical bench testing results and clinical data confirmed that the field of view of the system was 2.6 times wider than an equivalent external telescope. The study also demonstrated that the implant itself was clinically equivalent to a standard monofocal intraocular lens for cataract. The clinical study indicated that higher magnification without compromising the compactness and optical quality was needed as the disease progressed. Also, a sound vision rehabilitation process is important to provide patients the full benefits of the system.

  12. Water depth measurement using an airborne pulsed neon laser system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Frederick, E. B.

    1980-01-01

    The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.

  13. Improvement and scale-up of the NASA Redox storage system

    NASA Technical Reports Server (NTRS)

    Reid, M. A.; Thaller, L. H.

    1980-01-01

    A preprototype 1.0 kW redox system (2 kW peak) with 11 kWh storage capacity was built and integrated with the NASA/DOE photovoltaic test facility at NASA Lewis. This full function redox system includes four substacks of 39 cells each (1/3 cu ft active area) which are connected hydraulically in parallel and electrically in series. An open circuit voltage cell and a set of rebalance cells are used to continuously monitor the system state of charge and automatically maintain the anode and cathode reactants electrochemically in balance. Recent membrane and electrode advances are summarized and the results of multicell stack tests of 1 cu ft are described.

  14. SOFIA 2 model telescope wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Keas, Paul

    1995-01-01

    This document outlines the tests performed to make aerodynamic force and torque measurements on the SOFIA wind tunnel model telescope. These tests were performed during the SOFIA 2 wind tunnel test in the 14 ft wind tunnel during the months of June through August 1994. The test was designed to measure the dynamic cross elevation moment acting on the SOFIA model telescope due to aerodynamic loading. The measurements were taken with the telescope mounted in an open cavity in the tail section of the SOFIA model 747. The purpose of the test was to obtain an estimate of the full scale aerodynamic disturbance spectrum, by scaling up the wind tunnel results (taking into account differences in sail area, air density, cavity dimension, etc.). An estimate of the full scale cross elevation moment spectrum was needed to help determine the impact this disturbance would have on the telescope positioning system requirements. A model of the telescope structure, made of a light weight composite material, was mounted in the open cavity of the SOFIA wind tunnel model. This model was mounted via a force balance to the cavity bulkhead. Despite efforts to use a 'stiff' balance, and a lightweight model, the balance/telescope system had a very low resonant frequency (37 Hz) compared to the desired measurement bandwidth (1000 Hz). Due to this mechanical resonance of the balance/telescope system, the balance alone could not provide an accurate measure of applied aerodynamic force at the high frequencies desired. A method of measurement was developed that incorporated accelerometers in addition to the balance signal, to calculate the aerodynamic force.

  15. The Influence of Restraint Systems on Panel Behavior

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    2011-01-01

    When a panel is tested in uniaxial compression in a test machine, the boundary conditions are not quite the same as they would be if it were part of a complete structure. A restraint system may be used to simulate conditions found in a complete vehicle. Quantifying the quality of the restraint with only point-measurement devices can leave an inadequate characterization of the out-of-plane behavior. However, today s full-field displacement monitoring techniques allow for much more accurate views of the global panel deformation and strain, and therefore allow for a better understanding of panel behavior. In the current study, the behavior of a hat-stiffened and two rod-stiffened carbon-epoxy panels is considered. Panels were approximately 2 meters tall and 0.76 to 1.06 m wide. Unloaded edges were supported by knife edges and stiffeners were attached to a support structure at selected locations to restrain out-of-plane motion. A comparison is made between test results based on full-field measurements and analyses based on assumptions of boundary conditions of a completely rigid edge restraint and the absence of any edge restraint. Results indicate that motion at the restrained edges must be considered to obtain accurate test-analysis correlation.

  16. A leading edge heating array and a flat surface heating array: Final design. [for testing the thermal protection system of the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A heating array is described for testing full-scale sections of the leading edge and lower fuselage surfaces of the shuttle. The heating array was designed to provide a tool for development and acceptance testing of leading edge segments and large flat sections of the main body thermal protection system. The array was designed using a variable length module concept to meet test requirements using interchangeable components from one test configuration in another configuration. Heat generating modules and heat absorbing modules were employed to achieve the thermal gradient around the leading edge. A support was developed to hold the modules to form an envelope around a variety of leading edges; to supply coolant to each module; the support structure and to hold the modules in the flat surface heater configuration. An optical pyrometer system mounted within the array was designed to monitor specimen surface temperatures without altering the test article's surface.

  17. Universal breakaway steel post for other applications.

    DOT National Transportation Integrated Search

    2014-04-01

    The Universal Breakaway Steel Post (UBSP) was developed and evaluated to replace the existing Controlled Release : Terminal (CRT) wood posts which were used in the original bullnose guardrail system. Previously, three full-scale crash : tests were pe...

  18. 77 FR 29757 - Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... Discharge Elimination System (NPDES) program, issue permits with conditions designed to ensure compliance... completion of a full inter-laboratory validation study designed to fully characterize the performance of...

  19. Air-breathing aerospace plane development essential: Hypersonic propulsion flight tests

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1994-01-01

    Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric accelerators for low earth-to-orbit and return transportation. The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. It is proposed that near full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computational-design technology so that it can be used for designing this system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.

  20. PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN THE VAB SHOWS OPEN PARACHUTE

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.

Top