Sample records for full-length cdna sequence

  1. [Cloning and sequence analysis of full-length cDNA of secoisolariciresinol dehydrogenase of Dysosma versipellis].

    PubMed

    Xu, Li; Ding, Zhi-Shan; Zhou, Yun-Kai; Tao, Xue-Fen

    2009-06-01

    To obtain the full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene from Dysosma versipellis by RACE PCR,then investigate the character of Secoisolariciresinol Dehydrogenase gene. The full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene was obtained by 3'-RACE and 5'-RACE from Dysosma versipellis. We first reported the full cDNA sequences of Secoisolariciresinol Dehydrogenase in Dysosma versipellis. The acquired gene was 991bp in full length, including 5' untranslated region of 42bp, 3' untranslated region of 112bp with Poly (A). The open reading frame (ORF) encoding 278 amino acid with molecular weight 29253.3 Daltons and isolectric point 6.328. The gene accession nucleotide sequence number in GeneBank was EU573789. Semi-quantitative RT-PCR analysis revealed that the Secoisolariciresinol Dehydrogenase gene was highly expressed in stem. Alignment of the amino acid sequence of Secoisolariciresinol Dehydrogenase indicated there may be some significant amino acid sequence difference among different species. Obtain the full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene from Dysosma versipellis.

  2. Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly.

    PubMed

    Kuroshu, Reginaldo M; Watanabe, Junichi; Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka; Kasahara, Masahiro

    2010-05-07

    Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.

  3. Cost-Effective Sequencing of Full-Length cDNA Clones Powered by a De Novo-Reference Hybrid Assembly

    PubMed Central

    Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka

    2010-01-01

    Background Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. Methodology We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence ∼800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. Conclusions The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only ∼US$3 per clone, demonstrating a significant advantage over previous approaches. PMID:20479877

  4. [cDNA library construction from panicle meristem of finger millet].

    PubMed

    Radchuk, V; Pirko, Ia V; Isaenkov, S V; Emets, A I; Blium, Ia B

    2014-01-01

    The protocol for production of full-size cDNA using SuperScript Full-Length cDNA Library Construction Kit II (Invitrogen) was tested and high quality cDNA library from meristematic tissue of finger millet panicle (Eleusine coracana (L.) Gaertn) was created. The titer of obtained cDNA library comprised 3.01 x 10(5) CFU/ml in avarage. In average the length of cDNA insertion consisted about 1070 base pairs, the effectivity of cDNA fragment insertions--99.5%. The selective sequencing of cDNA clones from created library was performed. The sequences of cDNA clones were identified with usage of BLAST-search. The results of cDNA library analysis and selective sequencing represents prove good functionality and full length character of inserted cDNA clones. Obtained cDNA library from meristematic tissue of finger millet panicle represents good and valuable source for isolation and identification of key genes regulating metabolism and meristematic development and for mining of new molecular markers to conduct out high quality genetic investigations and molecular breeding as well.

  5. Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations.

    PubMed

    Oikonomopoulos, Spyros; Wang, Yu Chang; Djambazian, Haig; Badescu, Dunarel; Ragoussis, Jiannis

    2016-08-24

    To assess the performance of the Oxford Nanopore Technologies MinION sequencing platform, cDNAs from the External RNA Controls Consortium (ERCC) RNA Spike-In mix were sequenced. This mix mimics mammalian mRNA species and consists of 92 polyadenylated transcripts with known concentration. cDNA libraries were generated using a template switching protocol to facilitate the direct comparison between different sequencing platforms. The MinION performance was assessed for its ability to sequence the cDNAs directly with good accuracy in terms of abundance and full length. The abundance of the ERCC cDNA molecules sequenced by MinION agreed with their expected concentration. No length or GC content bias was observed. The majority of cDNAs were sequenced as full length. Additionally, a complex cDNA population derived from a human HEK-293 cell line was sequenced on an Illumina HiSeq 2500, PacBio RS II and ONT MinION platforms. We observed that there was a good agreement in the measured cDNA abundance between PacBio RS II and ONT MinION (rpearson = 0.82, isoforms with length more than 700bp) and between Illumina HiSeq 2500 and ONT MinION (rpearson = 0.75). This indicates that the ONT MinION can sequence quantitatively both long and short full length cDNA molecules.

  6. Integrating De Novo Transcriptome Assembly and Cloning to Obtain Chicken Ovocleidin-17 Full-Length cDNA

    PubMed Central

    Ning, ZhongHua; Hincke, Maxwell T.; Yang, Ning; Hou, ZhuoCheng

    2014-01-01

    Efficiently obtaining full-length cDNA for a target gene is the key step for functional studies and probing genetic variations. However, almost all sequenced domestic animal genomes are not ‘finished’. Many functionally important genes are located in these gapped regions. It can be difficult to obtain full-length cDNA for which only partial amino acid/EST sequences exist. In this study we report a general pipeline to obtain full-length cDNA, and illustrate this approach for one important gene (Ovocleidin-17, OC-17) that is associated with chicken eggshell biomineralization. Chicken OC-17 is one of the best candidates to control and regulate the deposition of calcium carbonate in the calcified eggshell layer. OC-17 protein has been purified, sequenced, and has had its three-dimensional structure solved. However, researchers still cannot conduct OC-17 mRNA related studies because the mRNA sequence is unknown and the gene is absent from the current chicken genome. We used RNA-Seq to obtain the entire transcriptome of the adult hen uterus, and then conducted de novo transcriptome assembling with bioinformatics analysis to obtain candidate OC-17 transcripts. Based on this sequence, we used RACE and PCR cloning methods to successfully obtain the full-length OC-17 cDNA. Temporal and spatial OC-17 mRNA expression analyses were also performed to demonstrate that OC-17 is predominantly expressed in the adult hen uterus during the laying cycle and barely at immature developmental stages. Differential uterine expression of OC-17 was observed in hens laying eggs with weak versus strong eggshell, confirming its important role in the regulation of eggshell mineralization and providing a new tool for genetic selection for eggshell quality parameters. This study is the first one to report the full-length OC-17 cDNA sequence, and builds a foundation for OC-17 mRNA related studies. We provide a general method for biologists experiencing difficulty in obtaining candidate gene full-length cDNA sequences. PMID:24676480

  7. Integrating de novo transcriptome assembly and cloning to obtain chicken Ovocleidin-17 full-length cDNA.

    PubMed

    Zhang, Quan; Liu, Long; Zhu, Feng; Ning, ZhongHua; Hincke, Maxwell T; Yang, Ning; Hou, ZhuoCheng

    2014-01-01

    Efficiently obtaining full-length cDNA for a target gene is the key step for functional studies and probing genetic variations. However, almost all sequenced domestic animal genomes are not 'finished'. Many functionally important genes are located in these gapped regions. It can be difficult to obtain full-length cDNA for which only partial amino acid/EST sequences exist. In this study we report a general pipeline to obtain full-length cDNA, and illustrate this approach for one important gene (Ovocleidin-17, OC-17) that is associated with chicken eggshell biomineralization. Chicken OC-17 is one of the best candidates to control and regulate the deposition of calcium carbonate in the calcified eggshell layer. OC-17 protein has been purified, sequenced, and has had its three-dimensional structure solved. However, researchers still cannot conduct OC-17 mRNA related studies because the mRNA sequence is unknown and the gene is absent from the current chicken genome. We used RNA-Seq to obtain the entire transcriptome of the adult hen uterus, and then conducted de novo transcriptome assembling with bioinformatics analysis to obtain candidate OC-17 transcripts. Based on this sequence, we used RACE and PCR cloning methods to successfully obtain the full-length OC-17 cDNA. Temporal and spatial OC-17 mRNA expression analyses were also performed to demonstrate that OC-17 is predominantly expressed in the adult hen uterus during the laying cycle and barely at immature developmental stages. Differential uterine expression of OC-17 was observed in hens laying eggs with weak versus strong eggshell, confirming its important role in the regulation of eggshell mineralization and providing a new tool for genetic selection for eggshell quality parameters. This study is the first one to report the full-length OC-17 cDNA sequence, and builds a foundation for OC-17 mRNA related studies. We provide a general method for biologists experiencing difficulty in obtaining candidate gene full-length cDNA sequences.

  8. Evaluation of vector-primed cDNA library production from microgram quantities of total RNA.

    PubMed

    Kuo, Jonathan; Inman, Jason; Brownstein, Michael; Usdin, Ted B

    2004-12-15

    cDNA sequences are important for defining the coding region of genes, and full-length cDNA clones have proven to be useful for investigation of the function of gene products. We produced cDNA libraries containing 3.5-5 x 10(5) primary transformants, starting with 5 mug of total RNA prepared from mouse pituitary, adrenal, thymus, and pineal tissue, using a vector-primed cDNA synthesis method. Of approximately 1000 clones sequenced, approximately 20% contained the full open reading frames (ORFs) of known transcripts, based on the presence of the initiating methionine residue codon. The libraries were complex, with 94, 91, 83 and 55% of the clones from the thymus, adrenal, pineal and pituitary libraries, respectively, represented only once. Twenty-five full-length clones, not yet represented in the Mammalian Gene Collection, were identified. Thus, we have produced useful cDNA libraries for the isolation of full-length cDNA clones that are not yet available in the public domain, and demonstrated the utility of a simple method for making high-quality libraries from small amounts of starting material.

  9. Subtraction of cap-trapped full-length cDNA libraries to select rare transcripts.

    PubMed

    Hirozane-Kishikawa, Tomoko; Shiraki, Toshiyuki; Waki, Kazunori; Nakamura, Mari; Arakawa, Takahiro; Kawai, Jun; Fagiolini, Michela; Hensch, Takao K; Hayashizaki, Yoshihide; Carninci, Piero

    2003-09-01

    The normalization and subtraction of highly expressed cDNAs from relatively large tissues before cloning dramatically enhanced the gene discovery by sequencing for the mouse full-length cDNA encyclopedia, but these methods have not been suitable for limited RNA materials. To normalize and subtract full-length cDNA libraries derived from limited quantities of total RNA, here we report a method to subtract plasmid libraries excised from size-unbiased amplified lambda phage cDNA libraries that avoids heavily biasing steps such as PCR and plasmid library amplification. The proportion of full-length cDNAs and the gene discovery rate are high, and library diversity can be validated by in silico randomization.

  10. Construction and EST sequencing of full-length, drought stress cDNA libraries for common beans (Phaseolus vulgaris L.)

    PubMed Central

    2011-01-01

    Background Common bean is an important legume crop with only a moderate number of short expressed sequence tags (ESTs) made with traditional methods. The goal of this research was to use full-length cDNA technology to develop ESTs that would overlap with the beginning of open reading frames and therefore be useful for gene annotation of genomic sequences. The library was also constructed to represent genes expressed under drought, low soil phosphorus and high soil aluminum toxicity. We also undertook comparisons of the full-length cDNA library to two previous non-full clone EST sets for common bean. Results Two full-length cDNA libraries were constructed: one for the drought tolerant Mesoamerican genotype BAT477 and the other one for the acid-soil tolerant Andean genotype G19833 which has been selected for genome sequencing. Plants were grown in three soil types using deep rooting cylinders subjected to drought and non-drought stress and tissues were collected from both roots and above ground parts. A total of 20,000 clones were selected robotically, half from each library. Then, nearly 10,000 clones from the G19833 library were sequenced with an average read length of 850 nucleotides. A total of 4,219 unigenes were identified consisting of 2,981 contigs and 1,238 singletons. These were functionally annotated with gene ontology terms and placed into KEGG pathways. Compared to other EST sequencing efforts in common bean, about half of the sequences were novel or represented the 5' ends of known genes. Conclusions The present full-length cDNA libraries add to the technological toolbox available for common bean and our sequencing of these clones substantially increases the number of unique EST sequences available for the common bean genome. All of this should be useful for both functional gene annotation, analysis of splice site variants and intron/exon boundary determination by comparison to soybean genes or with common bean whole-genome sequences. In addition the library has a large number of transcription factors and will be interesting for discovery and validation of drought or abiotic stress related genes in common bean. PMID:22118559

  11. Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon

    PubMed Central

    2011-01-01

    Background Melon (Cucumis melo), an economically important vegetable crop, belongs to the Cucurbitaceae family which includes several other important crops such as watermelon, cucumber, and pumpkin. It has served as a model system for sex determination and vascular biology studies. However, genomic resources currently available for melon are limited. Result We constructed eleven full-length enriched and four standard cDNA libraries from fruits, flowers, leaves, roots, cotyledons, and calluses of four different melon genotypes, and generated 71,577 and 22,179 ESTs from full-length enriched and standard cDNA libraries, respectively. These ESTs, together with ~35,000 ESTs available in public domains, were assembled into 24,444 unigenes, which were extensively annotated by comparing their sequences to different protein and functional domain databases, assigning them Gene Ontology (GO) terms, and mapping them onto metabolic pathways. Comparative analysis of melon unigenes and other plant genomes revealed that 75% to 85% of melon unigenes had homologs in other dicot plants, while approximately 70% had homologs in monocot plants. The analysis also identified 6,972 gene families that were conserved across dicot and monocot plants, and 181, 1,192, and 220 gene families specific to fleshy fruit-bearing plants, the Cucurbitaceae family, and melon, respectively. Digital expression analysis identified a total of 175 tissue-specific genes, which provides a valuable gene sequence resource for future genomics and functional studies. Furthermore, we identified 4,068 simple sequence repeats (SSRs) and 3,073 single nucleotide polymorphisms (SNPs) in the melon EST collection. Finally, we obtained a total of 1,382 melon full-length transcripts through the analysis of full-length enriched cDNA clones that were sequenced from both ends. Analysis of these full-length transcripts indicated that sizes of melon 5' and 3' UTRs were similar to those of tomato, but longer than many other dicot plants. Codon usages of melon full-length transcripts were largely similar to those of Arabidopsis coding sequences. Conclusion The collection of melon ESTs generated from full-length enriched and standard cDNA libraries is expected to play significant roles in annotating the melon genome. The ESTs and associated analysis results will be useful resources for gene discovery, functional analysis, marker-assisted breeding of melon and closely related species, comparative genomic studies and for gaining insights into gene expression patterns. PMID:21599934

  12. 3G vector-primer plasmid for constructing full-length-enriched cDNA libraries.

    PubMed

    Zheng, Dong; Zhou, Yanna; Zhang, Zidong; Li, Zaiyu; Liu, Xuedong

    2008-09-01

    We designed a 3G vector-primer plasmid for the generation of full-length-enriched complementary DNA (cDNA) libraries. By employing the terminal transferase activity of reverse transcriptase and the modified strand replacement method, this plasmid (assembled with a polydT end and a deoxyguanosine [dG] end) combines priming full-length cDNA strand synthesis and directional cDNA cloning. As a result, the number of steps involved in cDNA library preparation is decreased while simplifying downstream gene manipulation, sequencing, and subcloning. The 3G vector-primer plasmid method yields fully represented plasmid primed libraries that are equivalent to those made by the SMART (switching mechanism at 5' end of RNA transcript) approach.

  13. Large-Scale Collection and Analysis of Full-Length cDNAs from Brachypodium distachyon and Integration with Pooideae Sequence Resources

    PubMed Central

    Mochida, Keiichi; Uehara-Yamaguchi, Yukiko; Takahashi, Fuminori; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo

    2013-01-01

    A comprehensive collection of full-length cDNAs is essential for correct structural gene annotation and functional analyses of genes. We constructed a mixed full-length cDNA library from 21 different tissues of Brachypodium distachyon Bd21, and obtained 78,163 high quality expressed sequence tags (ESTs) from both ends of ca. 40,000 clones (including 16,079 contigs). We updated gene structure annotations of Brachypodium genes based on full-length cDNA sequences in comparison with the latest publicly available annotations. About 10,000 non-redundant gene models were supported by full-length cDNAs; ca. 6,000 showed some transcription unit modifications. We also found ca. 580 novel gene models, including 362 newly identified in Bd21. Using the updated transcription start sites, we searched a total of 580 plant cis-motifs in the −3 kb promoter regions and determined a genome-wide Brachypodium promoter architecture. Furthermore, we integrated the Brachypodium full-length cDNAs and updated gene structures with available sequence resources in wheat and barley in a web-accessible database, the RIKEN Brachypodium FL cDNA database. The database represents a “one-stop” information resource for all genomic information in the Pooideae, facilitating functional analysis of genes in this model grass plant and seamless knowledge transfer to the Triticeae crops. PMID:24130698

  14. Production of a full-length infectious GFP-tagged cDNA clone of Beet mild yellowing virus for the study of plant-polerovirus interactions.

    PubMed

    Stevens, Mark; Viganó, Felicita

    2007-04-01

    The full-length cDNA of Beet mild yellowing virus (Broom's Barn isolate) was sequenced and cloned into the vector pLitmus 29 (pBMYV-BBfl). The sequence of BMYV-BBfl (5721 bases) shared 96% and 98% nucleotide identity with the other complete sequences of BMYV (BMYV-2ITB, France and BMYV-IPP, Germany respectively). Full-length capped RNA transcripts of pBMYV-BBfl were synthesised and found to be biologically active in Arabidopsis thaliana protoplasts following electroporation or PEG inoculation when the protoplasts were subsequently analysed using serological and molecular methods. The BMYV sequence was modified by inserting DNA that encoded the jellyfish green fluorescent protein (GFP) into the P5 gene close to its 3' end. A. thaliana protoplasts electroporated with these RNA transcripts were biologically active and up to 2% of transfected protoplasts showed GFP-specific fluorescence. The exploitation of these cDNA clones for the study of the biology of beet poleroviruses is discussed.

  15. HUNT: launch of a full-length cDNA database from the Helix Research Institute.

    PubMed

    Yudate, H T; Suwa, M; Irie, R; Matsui, H; Nishikawa, T; Nakamura, Y; Yamaguchi, D; Peng, Z Z; Yamamoto, T; Nagai, K; Hayashi, K; Otsuki, T; Sugiyama, T; Ota, T; Suzuki, Y; Sugano, S; Isogai, T; Masuho, Y

    2001-01-01

    The Helix Research Institute (HRI) in Japan is releasing 4356 HUman Novel Transcripts and related information in the newly established HUNT database. The institute is a joint research project principally funded by the Japanese Ministry of International Trade and Industry, and the clones were sequenced in the governmental New Energy and Industrial Technology Development Organization (NEDO) Human cDNA Sequencing Project. The HUNT database contains an extensive amount of annotation from advanced analysis and represents an essential bioinformatics contribution towards understanding of the gene function. The HRI human cDNA clones were obtained from full-length enriched cDNA libraries constructed with the oligo-capping method and have resulted in novel full-length cDNA sequences. A large fraction has little similarity to any proteins of known function and to obtain clues about possible function we have developed original analysis procedures. Any putative function deduced here can be validated or refuted by complementary analysis results. The user can also extract information from specific categories like PROSITE patterns, PFAM domains, PSORT localization, transmembrane helices and clones with GENIUS structure assignments. The HUNT database can be accessed at http://www.hri.co.jp/HUNT.

  16. Rapid and efficient cDNA library screening by self-ligation of inverse PCR products (SLIP).

    PubMed

    Hoskins, Roger A; Stapleton, Mark; George, Reed A; Yu, Charles; Wan, Kenneth H; Carlson, Joseph W; Celniker, Susan E

    2005-12-02

    cDNA cloning is a central technology in molecular biology. cDNA sequences are used to determine mRNA transcript structures, including splice junctions, open reading frames (ORFs) and 5'- and 3'-untranslated regions (UTRs). cDNA clones are valuable reagents for functional studies of genes and proteins. Expressed Sequence Tag (EST) sequencing is the method of choice for recovering cDNAs representing many of the transcripts encoded in a eukaryotic genome. However, EST sequencing samples a cDNA library at random, and it recovers transcripts with low expression levels inefficiently. We describe a PCR-based method for directed screening of plasmid cDNA libraries. We demonstrate its utility in a screen of libraries used in our Drosophila EST projects for 153 transcription factor genes that were not represented by full-length cDNA clones in our Drosophila Gene Collection. We recovered high-quality, full-length cDNAs for 72 genes and variously compromised clones for an additional 32 genes. The method can be used at any scale, from the isolation of cDNA clones for a particular gene of interest, to the improvement of large gene collections in model organisms and the human. Finally, we discuss the relative merits of directed cDNA library screening and RT-PCR approaches.

  17. Construction and Evaluation of Normalized cDNA Libraries Enriched with Full-Length Sequences for Rapid Discovery of New Genes from Sisal (Agave sisalana Perr.) Different Developmental Stages

    PubMed Central

    Zhou, Wen-Zhao; Zhang, Yan-Mei; Lu, Jun-Ying; Li, Jun-Feng

    2012-01-01

    To provide a resource of sisal-specific expressed sequence data and facilitate this powerful approach in new gene research, the preparation of normalized cDNA libraries enriched with full-length sequences is necessary. Four libraries were produced with RNA pooled from Agave sisalana multiple tissues to increase efficiency of normalization and maximize the number of independent genes by SMART™ method and the duplex-specific nuclease (DSN). This procedure kept the proportion of full-length cDNAs in the subtracted/normalized libraries and dramatically enhanced the discovery of new genes. Sequencing of 3875 cDNA clones of libraries revealed 3320 unigenes with an average insert length about 1.2 kb, indicating that the non-redundancy of libraries was about 85.7%. These unigene functions were predicted by comparing their sequences to functional domain databases and extensively annotated with Gene Ontology (GO) terms. Comparative analysis of sisal unigenes and other plant genomes revealed that four putative MADS-box genes and knotted-like homeobox (knox) gene were obtained from a total of 1162 full-length transcripts. Furthermore, real-time PCR showed that the characteristics of their transcripts mainly depended on the tight expression regulation of a number of genes during the leaf and flower development. Analysis of individual library sequence data indicated that the pooled-tissue approach was highly effective in discovering new genes and preparing libraries for efficient deep sequencing. PMID:23202944

  18. Cloning, sequencing, and expression of cDNA for human. beta. -glucuronidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshima, A.; Kyle, J.W.; Miller, R.D.

    1987-02-01

    The authors report here the cDNA sequence for human placental ..beta..-glucuronidase (..beta..-D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) and demonstrate expression of the human enzyme in transfected COS cells. They also sequenced a partial cDNA clone from human fibroblasts that contained a 153-base-pair deletion within the coding sequence and found a second type of cDNA clone from placenta that contained the same deletion. Nuclease S1 mapping studies demonstrated two types of mRNAs in human placenta that corresponded to the two types of cDNA clones isolated. The NH/sub 2/-terminal amino acid sequence determined for human spleen ..beta..-glucuronidase agreed with that inferred from the DNAmore » sequence of the two placental clones, beginning at amino acid 23, suggesting a cleaved signal sequence of 22 amino acids. When transfected into COS cells, plasmids containing either placental clone expressed an immunoprecipitable protein that contained N-linked oligosaccharides as evidenced by sensitivity to endoglycosidase F. However, only transfection with the clone containing the 153-base-pair segment led to expression of human ..beta..-glucuronidase activity. These studies provide the sequence for the full-length cDNA for human ..beta..-glucuronidase, demonstrate the existence of two populations of mRNA for ..beta..-glucuronidase in human placenta, only one of which specifies a catalytically active enzyme, and illustrate the importance of expression studies in verifying that a cDNA is functionally full-length.« less

  19. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    PubMed Central

    Marques, M Carmen; Alonso-Cantabrana, Hugo; Forment, Javier; Arribas, Raquel; Alamar, Santiago; Conejero, Vicente; Perez-Amador, Miguel A

    2009-01-01

    Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new EST collection denotes an important step towards the identification of all genes in the citrus genome. Furthermore, public availability of the cDNA clones generated in this study, and not only their sequence, enables testing of the biological function of the genes represented in the collection. Expression of the citrus SEP3 homologue, CitrSEP, in Arabidopsis results in early flowering, along with other phenotypes resembling the over-expression of the Arabidopsis SEPALLATA genes. Our findings suggest that the members of the SEP gene family play similar roles in these quite distant plant species. PMID:19747386

  20. Massive Collection of Full-Length Complementary DNA Clones and Microarray Analyses:. Keys to Rice Transcriptome Analysis

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shoshi

    2009-02-01

    Completion of the high-precision genome sequence analysis of rice led to the collection of about 35,000 full-length cDNA clones and the determination of their complete sequences. Mapping of these full-length cDNA sequences has given us information on (1) the number of genes expressed in the rice genome; (2) the start and end positions and exon-intron structures of rice genes; (3) alternative transcripts; (4) possible encoded proteins; (5) non-protein-coding (np) RNAs; (6) the density of gene localization on the chromosome; (7) setting the parameters of gene prediction programs; and (8) the construction of a microarray system that monitors global gene expression. Manual curation for rice gene annotation by using mapping information on full-length cDNA and EST assemblies has revealed about 32,000 expressed genes in the rice genome. Analysis of major gene families, such as those encoding membrane transport proteins (pumps, ion channels, and secondary transporters), along with the evolution from bacteria to higher animals and plants, reveals how gene numbers have increased through adaptation to circumstances. Family-based gene annotation also gives us a new way of comparing organisms. Massive amounts of data on gene expression under many kinds of physiological conditions are being accumulated in rice oligoarrays (22K and 44K) based on full-length cDNA sequences. Cluster analyses of genes that have the same promoter cis-elements, that have similar expression profiles, or that encode enzymes in the same metabolic pathways or signal transduction cascades give us clues to understanding the networks of gene expression in rice. As a tool for that purpose, we recently developed "RiCES", a tool for searching for cis-elements in the promoter regions of clustered genes.

  1. Minimap2: pairwise alignment for nucleotide sequences.

    PubMed

    Li, Heng

    2018-05-10

    Recent advances in sequencing technologies promise ultra-long reads of ∼100 kilo bases (kb) in average, full-length mRNA or cDNA reads in high throughput and genomic contigs over 100 mega bases (Mb) in length. Existing alignment programs are unable or inefficient to process such data at scale, which presses for the development of new alignment algorithms. Minimap2 is a general-purpose alignment program to map DNA or long mRNA sequences against a large reference database. It works with accurate short reads of ≥ 100bp in length, ≥1kb genomic reads at error rate ∼15%, full-length noisy Direct RNA or cDNA reads, and assembly contigs or closely related full chromosomes of hundreds of megabases in length. Minimap2 does split-read alignment, employs concave gap cost for long insertions and deletions (INDELs) and introduces new heuristics to reduce spurious alignments. It is 3-4 times as fast as mainstream short-read mappers at comparable accuracy, and is ≥30 times faster than long-read genomic or cDNA mappers at higher accuracy, surpassing most aligners specialized in one type of alignment. https://github.com/lh3/minimap2. hengli@broadinstitute.org.

  2. Molecular cloning, sequence analysis and phylogeny of first caudata g-type lysozyme in axolotl (Ambystoma mexicanum).

    PubMed

    Yu, Haining; Gao, Jiuxiang; Lu, Yiling; Guang, Huijuan; Cai, Shasha; Zhang, Songyan; Wang, Yipeng

    2013-11-01

    Lysozymes are key proteins that play important roles in innate immune defense in many animal phyla by breaking down the bacterial cell-walls. In this study, we report the molecular cloning, sequence analysis and phylogeny of the first caudate amphibian g-lysozyme: a full-length spleen cDNA library from axolotl (Ambystoma mexicanum). A goose-type (g-lysozyme) EST was identified and the full-length cDNA was obtained using RACE-PCR. The axolotl g-lysozyme sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 184 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein are 21523.0 Da and 4.37, respectively. Expression of g-lysozyme mRNA is predominantly found in skin, with lower levels in spleen, liver, muscle, and lung. Phylogenetic analysis revealed that caudate amphibian g-lysozyme had distinct evolution pattern for being juxtaposed with not only anura amphibian, but also with the fish, bird and mammal. Although the first complete cDNA sequence for caudate amphibian g-lysozyme is reported in the present study, clones encoding axolotl's other functional immune molecules in the full-length cDNA library will have to be further sequenced to gain insight into the fundamental aspects of antibacterial mechanisms in caudate.

  3. Characterization of full-length sequenced cDNA inserts (FLIcs) from Atlantic salmon (Salmo salar)

    PubMed Central

    Andreassen, Rune; Lunner, Sigbjørn; Høyheim, Bjørn

    2009-01-01

    Background Sequencing of the Atlantic salmon genome is now being planned by an international research consortium. Full-length sequenced inserts from cDNAs (FLIcs) are an important tool for correct annotation and clustering of the genomic sequence in any species. The large amount of highly similar duplicate sequences caused by the relatively recent genome duplication in the salmonid ancestor represents a particular challenge for the genome project. FLIcs will therefore be an extremely useful resource for the Atlantic salmon sequencing project. In addition to be helpful in order to distinguish between duplicate genome regions and in determining correct gene structures, FLIcs are an important resource for functional genomic studies and for investigation of regulatory elements controlling gene expression. In contrast to the large number of ESTs available, including the ESTs from 23 developmental and tissue specific cDNA libraries contributed by the Salmon Genome Project (SGP), the number of sequences where the full-length of the cDNA insert has been determined has been small. Results High quality full-length insert sequences from 560 pre-smolt white muscle tissue specific cDNAs were generated, accession numbers [GenBank: BT043497 - BT044056]. Five hundred and ten (91%) of the transcripts were annotated using Gene Ontology (GO) terms and 440 of the FLIcs are likely to contain a complete coding sequence (cCDS). The sequence information was used to identify putative paralogs, characterize salmon Kozak motifs, polyadenylation signal variation and to identify motifs likely to be involved in the regulation of particular genes. Finally, conserved 7-mers in the 3'UTRs were identified, of which some were identical to miRNA target sequences. Conclusion This paper describes the first Atlantic salmon FLIcs from a tissue and developmental stage specific cDNA library. We have demonstrated that many FLIcs contained a complete coding sequence (cCDS). This suggests that the remaining cDNA libraries generated by SGP represent a valuable cCDS FLIc source. The conservation of 7-mers in 3'UTRs indicates that these motifs are functionally important. Identity between some of these 7-mers and miRNA target sequences suggests that they are miRNA targets in Salmo salar transcripts as well. PMID:19878547

  4. Construction of Infectious cDNA Clone of a Chrysanthemum stunt viroid Korean Isolate

    PubMed Central

    Yoon, Ju-Yeon; Cho, In-Sook; Choi, Gug-Seoun; Choi, Seung-Kook

    2014-01-01

    Chrysanthemum stunt viroid (CSVd), a noncoding infectious RNA molecule, causes seriously economic losses of chrysanthemum for 3 or 4 years after its first infection. Monomeric cDNA clones of CSVd isolate SK1 (CSVd-SK1) were constructed in the plasmids pGEM-T easy vector and pUC19 vector. Linear positive-sense transcripts synthesized in vitro from the full-length monomeric cDNA clones of CSVd-SK1 could infect systemically tomato seedlings and chrysanthemum plants, suggesting that the linear CSVd RNA transcribed from the cDNA clones could be replicated as efficiently as circular CSVd in host species. However, direct inoculation of plasmid cDNA clones containing full-length monomeric cDNA of CSVd-SK1 failed to infect tomato and chrysanthemum and linear negative-sense transcripts from the plasmid DNAs were not infectious in the two plant species. The cDNA sequences of progeny viroid in systemically infected tomato and chrysanthemum showed a few substitutions at a specific nucleotide position, but there were no deletions and insertions in the sequences of the CSVd progeny from tomato and chrysanthemum plants. PMID:25288987

  5. Characterization and chromosomal mapping of the human TFG gene involved in thyroid carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mencinger, M.; Panagopoulos, I.; Andreasson, P.

    1997-05-01

    Homology searches in the Expressed Sequence Tag Database were performed using SPYGQ-rich regions as query sequences to find genes encoding protein regions similar to the N-terminal parts of the sarcoma-associated EWS and FUS proteins. Clone 22911 (T74973), encoding a SPYGQ-rich region in its 5{prime} end, and several other clones that overlapped 22911 were selected. The combined data made it possible to assemble a full-length cDNA sequence. This cDNA sequence is 1677 bp, containing an initiation codon ATG, an open reading frame of 400 amino acids, a poly(A) signal, and a poly(A) tail. We found 100% identity between the 5{prime} partmore » of the consensus sequence and the 598-bp-long sequence named TFG. The TFG sequence is fused to the 3{prime} end of NTRK1, generating the TRK-T3 fusion transcript found in papillary thyroid carcinoma. The cDNA therefore represents the full-length transcript of the TFG gene. TFG was localized to 3q11-q12 by fluorescence in situ hybridization. The 3{prime} and the 5{prime} ends of the TFG cDNA probe hybridized to a 2.2-kb band on Northern blot filters in all tissues examined. 28 refs., 5 figs., 1 tab.« less

  6. Isolation and characterization of full-length putative alcohol dehydrogenase genes from polygonum minus

    NASA Astrophysics Data System (ADS)

    Hamid, Nur Athirah Abd; Ismail, Ismanizan

    2013-11-01

    Polygonum minus, locally named as Kesum is an aromatic herb which is high in secondary metabolite content. Alcohol dehydrogenase is an important enzyme that catalyzes the reversible oxidation of alcohol and aldehyde with the presence of NAD(P)(H) as co-factor. The main focus of this research is to identify the gene of ADH. The total RNA was extracted from leaves of P. minus which was treated with 150 μM Jasmonic acid. Full-length cDNA sequence of ADH was isolated via rapid amplification cDNA end (RACE). Subsequently, in silico analysis was conducted on the full-length cDNA sequence and PCR was done on genomic DNA to determine the exon and intron organization. Two sequences of ADH, designated as PmADH1 and PmADH2 were successfully isolated. Both sequences have ORF of 801 bp which encode 266 aa residues. Nucleotide sequence comparison of PmADH1 and PmADH2 indicated that both sequences are highly similar at the ORF region but divergent in the 3' untranslated regions (UTR). The amino acid is differ at the 107 residue; PmADH1 contains Gly (G) residue while PmADH2 contains Cys (C) residue. The intron-exon organization pattern of both sequences are also same, with 3 introns and 4 exons. Based on in silico analysis, both sequences contain "classical" short chain alcohol dehydrogenases/reductases ((c) SDRs) conserved domain. The results suggest that both sequences are the members of short chain alcohol dehydrogenase family.

  7. Hibiscus latent Fort Pierce virus in Brazil and synthesis of its biologically active full-length cDNA clone.

    PubMed

    Gao, Ruimin; Niu, Shengniao; Dai, Weifang; Kitajima, Elliot; Wong, Sek-Man

    2016-10-01

    A Brazilian isolate of Hibiscus latent Fort Pierce virus (HLFPV-BR) was firstly found in a hibiscus plant in Limeira, SP, Brazil. RACE PCR was carried out to obtain the full-length sequences of HLFPV-BR which is 6453 nucleotides and has more than 99.15 % of complete genomic RNA nucleotide sequence identity with that of HLFPV Japanese isolate. The genomic structure of HLFPV-BR is similar to other tobamoviruses. It includes a 5' untranslated region (UTR), followed by open reading frames encoding for a 128-kDa protein and a 188-kDa readthrough protein, a 38-kDa movement protein, 18-kDa coat protein, and a 3' UTR. Interestingly, the unique feature of poly(A) tract is also found within its 3'-UTR. Furthermore, from the total RNA extracted from the local lesions of HLFPV-BR-infected Chenopodium quinoa leaves, a biologically active, full-length cDNA clone encompassing the genome of HLFPV-BR was amplified and placed adjacent to a T7 RNA polymerase promoter. The capped in vitro transcripts from the cloned cDNA were infectious when mechanically inoculated into C. quinoa and Nicotiana benthamiana plants. This is the first report of the presence of an isolate of HLFPV in Brazil and the successful synthesis of a biologically active HLFPV-BR full-length cDNA clone.

  8. The Drosophila gene collection: Identification of putative full-length cDNAs for 70 percent of D. melanogaster genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapleton, Mark; Liao, Guochun; Brokstein, Peter

    2002-08-12

    Collections of full-length nonredundant cDNA clones are critical reagents for functional genomics. The first step toward these resources is the generation and single-pass sequencing of cDNA libraries that contain a high proportion of full-length clones. The first release of the Drosophila Gene Collection Release 1 (DGCr1) was produced from six libraries representing various tissues, developmental stages, and the cultured S2 cell line. Nearly 80,000 random 5prime expressed sequence tags (EST) from these libraries were collapsed into a nonredundant set of 5849 cDNAs, corresponding to {approx}40 percent of the 13,474 predicted genes in Drosophila. To obtain cDNA clones representing the remainingmore » genes, we have generated an additional 157,835 5prime ESTs from two previously existing and three new libraries. One new library is derived from adult testis, a tissue we previously did not exploit for gene discovery; two new cap-trapped normalized libraries are derived from 0-22hr embryos and adult heads. Taking advantage of the annotated D. melanogaster genome sequence, we clustered the ESTs by aligning them to the genome. Clusters that overlap genes not already represented by cDNA clones in the DGCr1 were analyzed further, and putative full-length clones were selected for inclusion in the new DGC. This second release of the DGC (DGCr2) contains 5061 additional clones, extending the collection to 10,910 cDNAs representing >70 percent of the predicted genes in Drosophila.« less

  9. Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence.

    PubMed Central

    DeWitt, D L; Smith, W L

    1988-01-01

    Prostaglandin G/H synthase (8,11,14-icosatrienoate, hydrogen-donor:oxygen oxidoreductase, EC 1.14.99.1) catalyzes the first step in the formation of prostaglandins and thromboxanes, the conversion of arachidonic acid to prostaglandin endoperoxides G and H. This enzyme is the site of action of nonsteroidal anti-inflammatory drugs. We have isolated a 2.7-kilobase complementary DNA (cDNA) encompassing the entire coding region of prostaglandin G/H synthase from sheep vesicular glands. This cDNA, cloned from a lambda gt 10 library prepared from poly(A)+ RNA of vesicular glands, hybridizes with a single 2.75-kilobase mRNA species. The cDNA clone was selected using oligonucleotide probes modeled from amino acid sequences of tryptic peptides prepared from the purified enzyme. The full-length cDNA encodes a protein of 600 amino acids, including a signal sequence of 24 amino acids. Identification of the cDNA as coding for prostaglandin G/H synthase is based on comparison of amino acid sequences of seven peptides comprising 103 amino acids with the amino acid sequence deduced from the nucleotide sequence of the cDNA. The molecular weight of the unglycosylated enzyme lacking the signal peptide is 65,621. The synthase is a glycoprotein, and there are three potential sites for N-glycosylation, two of them in the amino-terminal half of the molecule. The serine reported to be acetylated by aspirin is at position 530, near the carboxyl terminus. There is no significant similarity between the sequence of the synthase and that of any other protein in amino acid or nucleotide sequence libraries, and a heme binding site(s) is not apparent from the amino acid sequence. The availability of a full-length cDNA clone coding for prostaglandin G/H synthase should facilitate studies of the regulation of expression of this enzyme and the structural features important for catalysis and for interaction with anti-inflammatory drugs. Images PMID:3125548

  10. cDNA cloning, functional expression and cellular localization of rat liver mitochondrial electron-transfer flavoprotein-ubiquinone oxidoreductase protein.

    PubMed

    Huang, Shengbing; Song, Wei; Lin, Qishui

    2005-08-01

    A membrane-bound protein was purified from rat liver mitochondria. After being digested with V8 protease, two peptides containing identical 14 amino acid residue sequences were obtained. Using the 14 amino acid peptide derived DNA sequence as gene specific primer, the cDNA of correspondent gene 5'-terminal and 3'-terminal were obtained by RACE technique. The full-length cDNA that encoded a protein of 616 amino acids was thus cloned, which included the above mentioned peptide sequence. The full length cDNA was highly homologous to that of human ETF-QO, indicating that it may be the cDNA of rat ETF-QO. ETF-QO is an iron sulfur protein located in mitochondria inner membrane containing two kinds of redox center: FAD and [4Fe-4S] center. After comparing the sequence from the cDNA of the 616 amino acids protein with that of the mature protein of rat liver mitochondria, it was found that the N terminal 32 amino acid residues did not exist in the mature protein, indicating that the cDNA was that of ETF-QOp. When the cDNA was expressed in Saccharomyces cerevisiae with inducible vectors, the protein product was enriched in mitochondrial fraction and exhibited electron transfer activity (NBT reductase activity) of ETF-QO. Results demonstrated that the 32 amino acid peptide was a mitochondrial targeting peptide, and both FAD and iron-sulfur cluster were inserted properly into the expressed ETF-QO. ETF-QO had a high level expression in rat heart, liver and kidney. The fusion protein of GFP-ETF-QO co-localized with mitochondria in COS-7 cells.

  11. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning

    PubMed Central

    Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-01-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion® Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure. PMID:26633465

  12. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning.

    PubMed

    Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-12-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion(®) Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.

  13. Molecular Cloning and Characterization of cDNA Encoding a Putative Stress-Induced Heat-Shock Protein from Camelus dromedarius

    PubMed Central

    Elrobh, Mohamed S.; Alanazi, Mohammad S.; Khan, Wajahatullah; Abduljaleel, Zainularifeen; Al-Amri, Abdullah; Bazzi, Mohammad D.

    2011-01-01

    Heat shock proteins are ubiquitous, induced under a number of environmental and metabolic stresses, with highly conserved DNA sequences among mammalian species. Camelus dromedaries (the Arabian camel) domesticated under semi-desert environments, is well adapted to tolerate and survive against severe drought and high temperatures for extended periods. This is the first report of molecular cloning and characterization of full length cDNA of encoding a putative stress-induced heat shock HSPA6 protein (also called HSP70B′) from Arabian camel. A full-length cDNA (2417 bp) was obtained by rapid amplification of cDNA ends (RACE) and cloned in pET-b expression vector. The sequence analysis of HSPA6 gene showed 1932 bp-long open reading frame encoding 643 amino acids. The complete cDNA sequence of the Arabian camel HSPA6 gene was submitted to NCBI GeneBank (accession number HQ214118.1). The BLAST analysis indicated that C. dromedaries HSPA6 gene nucleotides shared high similarity (77–91%) with heat shock gene nucleotide of other mammals. The deduced 643 amino acid sequences (accession number ADO12067.1) showed that the predicted protein has an estimated molecular weight of 70.5 kDa with a predicted isoelectric point (pI) of 6.0. The comparative analyses of camel HSPA6 protein sequences with other mammalian heat shock proteins (HSPs) showed high identity (80–94%). Predicted camel HSPA6 protein structure using Protein 3D structural analysis high similarities with human and mouse HSPs. Taken together, this study indicates that the cDNA sequences of HSPA6 gene and its amino acid and protein structure from the Arabian camel are highly conserved and have similarities with other mammalian species. PMID:21845074

  14. Molecular cloning and characterization of a cDNA encoding the gibberellin biosynthetic enzyme ent-kaurene synthase B from pumpkin (Cucurbita maxima L.).

    PubMed

    Yamaguchi, S; Saito, T; Abe, H; Yamane, H; Murofushi, N; Kamiya, Y

    1996-08-01

    The first committed step in the formation of diterpenoids leading to gibberellin (GA) biosynthesis is the conversion of geranylgeranyl diphosphate (GGDP) to ent-kaurene. ent-Kaurene synthase A (KSA) catalyzes the conversion of GGDP to copalyl diphosphate (CDP), which is subsequently converted to ent-kaurene by ent-kaurene synthase B (KSB). A full-length KSB cDNA was isolated from developing cotyledons in immature seeds of pumpkin (Cucurbita maxima L.). Degenerate oligonucleotide primers were designed from the amino acid sequences obtained from the purified protein to amplify a cDNA fragment, which was used for library screening. The isolated full-length cDNA was expressed in Escherichia coli as a fusion protein, which demonstrated the KSB activity to cyclize [3H]CDP to [3H]ent-kaurene. The KSB transcript was most abundant in growing tissues, but was detected in every organ in pumpkin seedlings. The deduced amino acid sequence shares significant homology with other terpene cyclases, including the conserved DDXXD motif, a putative divalent metal ion-diphosphate complex binding site. A putative transit peptide sequence that may target the translated product into the plastids is present in the N-terminal region.

  15. Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response

    PubMed Central

    Sakurai, Tetsuya; Plata, Germán; Rodríguez-Zapata, Fausto; Seki, Motoaki; Salcedo, Andrés; Toyoda, Atsushi; Ishiwata, Atsushi; Tohme, Joe; Sakaki, Yoshiyuki; Shinozaki, Kazuo; Ishitani, Manabu

    2007-01-01

    Background Cassava, an allotetraploid known for its remarkable tolerance to abiotic stresses is an important source of energy for humans and animals and a raw material for many industrial processes. A full-length cDNA library of cassava plants under normal, heat, drought, aluminum and post harvest physiological deterioration conditions was built; 19968 clones were sequence-characterized using expressed sequence tags (ESTs). Results The ESTs were assembled into 6355 contigs and 9026 singletons that were further grouped into 10577 scaffolds; we found 4621 new cassava sequences and 1521 sequences with no significant similarity to plant protein databases. Transcripts of 7796 distinct genes were captured and we were able to assign a functional classification to 78% of them while finding more than half of the enzymes annotated in metabolic pathways in Arabidopsis. The annotation of sequences that were not paired to transcripts of other species included many stress-related functional categories showing that our library is enriched with stress-induced genes. Finally, we detected 230 putative gene duplications that include key enzymes in reactive oxygen species signaling pathways and could play a role in cassava stress response features. Conclusion The cassava full-length cDNA library here presented contains transcripts of genes involved in stress response as well as genes important for different areas of cassava research. This library will be an important resource for gene discovery, characterization and cloning; in the near future it will aid the annotation of the cassava genome. PMID:18096061

  16. Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain-length substrates.

    PubMed Central

    Knutzon, D S; Lardizabal, K D; Nelsen, J S; Bleibaum, J L; Davies, H M; Metz, J G

    1995-01-01

    Immature coconut (Cocos nucifera) endosperm contains a 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT) activity that shows a preference for medium-chain-length fatty acyl-coenzyme A substrates (H.M. Davies, D.J. Hawkins, J.S. Nelsen [1995] Phytochemistry 39:989-996). Beginning with solubilized membrane preparations, we have used chromatographic separations to identify a polypeptide with an apparent molecular mass of 29 kD, whose presence in various column fractions correlates with the acyltransferase activity detected in those same fractions. Amino acid sequence data obtained from several peptides generated from this protein were used to isolate a full-length clone from a coconut endosperm cDNA library. Clone pCGN5503 contains a 1325-bp cDNA insert with an open reading frame encoding a 308-amino acid protein with a calculated molecular mass of 34.8 kD. Comparison of the deduced amino acid sequence of pCGN5503 to sequences in the data banks revealed significant homology to other putative LPAAT sequences. Expression of the coconut cDNA in Escherichia coli conferred upon those cells a novel LPAAT activity whose substrate activity profile matched that of the coconut enzyme. PMID:8552723

  17. The cDNA-derived amino acid sequence of hemoglobin II from Lucina pectinata.

    PubMed

    Torres-Mercado, Elineth; Renta, Jessicca Y; Rodríguez, Yolanda; López-Garriga, Juan; Cadilla, Carmen L

    2003-11-01

    Hemoglobin II from the clam Lucina pectinata is an oxygen-reactive protein with a unique structural organization in the heme pocket involving residues Gln65 (E7), Tyr30 (B10), Phe44 (CD1), and Phe69 (E11). We employed the reverse transcriptase-polymerase chain reaction (RT-PCR) and methods to synthesize various cDNA(HbII). An initial 300-bp cDNA clone was amplified from total RNA by RT-PCR using degenerate oligonucleotides. Gene-specific primers derived from the HbII-partial cDNA sequence were used to obtain the 5' and 3' ends of the cDNA by RACE. The length of the HbII cDNA, estimated from overlapping clones, was approximately 2114 bases. Northern blot analysis revealed that the mRNA size of HbII agrees with the estimated size using cDNA data. The coding region of the full-length HbII cDNA codes for 151 amino acids. The calculated molecular weight of HbII, including the heme group and acetylated N-terminal residue, is 17,654.07 Da.

  18. The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)

    PubMed Central

    2004-01-01

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5′-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline. PMID:15489334

  19. Characterization of full-length MHC class II sequences in Indonesian and Vietnamese cynomolgus macaques.

    PubMed

    Creager, Hannah M; Becker, Ericka A; Sandman, Kelly K; Karl, Julie A; Lank, Simon M; Bimber, Benjamin N; Wiseman, Roger W; Hughes, Austin L; O'Connor, Shelby L; O'Connor, David H

    2011-09-01

    In recent years, the use of cynomolgus macaques in biomedical research has increased greatly. However, with the exception of the Mauritian population, knowledge of the MHC class II genetics of the species remains limited. Here, using cDNA cloning and Sanger sequencing, we identified 127 full-length MHC class II alleles in a group of 12 Indonesian and 12 Vietnamese cynomolgus macaques. Forty two of these were completely novel to cynomolgus macaques while 61 extended the sequence of previously identified alleles from partial to full length. This more than doubles the number of full-length cynomolgus macaque MHC class II alleles available in GenBank, significantly expanding the allele library for the species and laying the groundwork for future evolutionary and functional studies.

  20. An integrated PCR colony hybridization approach to screen cDNA libraries for full-length coding sequences.

    PubMed

    Pollier, Jacob; González-Guzmán, Miguel; Ardiles-Diaz, Wilson; Geelen, Danny; Goossens, Alain

    2011-01-01

    cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) is a commonly used technique for genome-wide expression analysis that does not require prior sequence knowledge. Typically, quantitative expression data and sequence information are obtained for a large number of differentially expressed gene tags. However, most of the gene tags do not correspond to full-length (FL) coding sequences, which is a prerequisite for subsequent functional analysis. A medium-throughput screening strategy, based on integration of polymerase chain reaction (PCR) and colony hybridization, was developed that allows in parallel screening of a cDNA library for FL clones corresponding to incomplete cDNAs. The method was applied to screen for the FL open reading frames of a selection of 163 cDNA-AFLP tags from three different medicinal plants, leading to the identification of 109 (67%) FL clones. Furthermore, the protocol allows for the use of multiple probes in a single hybridization event, thus significantly increasing the throughput when screening for rare transcripts. The presented strategy offers an efficient method for the conversion of incomplete expressed sequence tags (ESTs), such as cDNA-AFLP tags, to FL-coding sequences.

  1. Isolation and Expression Profile of the Ca2+-Activated Chloride Channel-like Membrane Protein 6 Gene in Xenopus laevis

    PubMed Central

    Lee, Ra Mi; Ryu, Rae Hyung; Jeong, Seong Won; Oh, Soo Jin; Huang, Hue; Han, Jin Soo; Lee, Chi Ho; Lee, C. Justin; Jan, Lily Yeh

    2011-01-01

    To clone the first anion channel from Xenopus laevis (X. laevis), we isolated a calcium-activated chloride channel (CLCA)-like membrane protein 6 gene (CMP6) in X. laevis. As a first step in gene isolation, an expressed sequence tags database was screened to find the partial cDNA fragment. A putative partial cDNA sequence was obtained by comparison with rat CLCAs identified in our laboratory. First stranded cDNA was synthesized by reverse transcription polymerase-chain reaction (RT-PCR) using a specific primer designed for the target cDNA. Repeating the 5' and 3' rapid amplification of cDNA ends, full-length cDNA was constructed from the cDNA pool. The full-length CMP6 cDNA completed via 5'- and 3'-RACE was 2,940 bp long and had an open reading frame (ORF) of 940 amino acids. The predicted 940 polypeptides have four major transmembrane domains and showed about 50% identity with that of rat brain CLCAs in our previously published data. Semi-quantification analysis revealed that CMP6 was most abundantly expressed in small intestine, colon and liver. However, all tissues except small intestine, colon and liver had undetectable levels. This result became more credible after we did real-time PCR quantification for the target gene. In view of all CLCA studies focused on human or murine channels, this finding suggests a hypothetical protein as an ion channel, an X. laevis CLCA. PMID:21826170

  2. Molecular cloning and nucleotide sequence of CYP6BF1 from the diamondback moth, Plutella xylostella

    PubMed Central

    Li, Hongshan; Dai, Huaguo; Wei, Hui

    2005-01-01

    A novel cDNA clong encoding a cytochrome P450 was screened from the insecticide-susceptible strain of Plutella xylostella (L.) (Lepidoptera:Yponomeutidae). The nucleotide sequence of the clone, designated CYP6BF1, was determined. This is the first full-length sequence of the CYP6 family from Plutella xylostella (L.). The cDNA is 1661bp in length and contains an open reading frame from base pairs 26 to 1570, encoding a protein of 514 amino acid residues. It is similar to the other insect P450s in gene family 6, including CYP6AE1 from Depressaria pastinacella, (46%). The GenBank accession number is AY971374. PMID:17119627

  3. Large-Scale Concatenation cDNA Sequencing

    PubMed Central

    Yu, Wei; Andersson, Björn; Worley, Kim C.; Muzny, Donna M.; Ding, Yan; Liu, Wen; Ricafrente, Jennifer Y.; Wentland, Meredith A.; Lennon, Greg; Gibbs, Richard A.

    1997-01-01

    A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7–2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (>20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (≥98% identity), and 16 clones generated nonexact matches (57%–97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching. [All 65 cDNA clone sequences described in this paper have been submitted to the GenBank data library under accession nos. U79240–U79304.] PMID:9110174

  4. Molecular Cloning and Characterization of Novel Morus alba Germin-Like Protein Gene Which Encodes for a Silkworm Gut Digestion-Resistant Antimicrobial Protein

    PubMed Central

    Patnaik, Bharat Bhusan; Kim, Dong Hyun; Oh, Seung Han; Song, Yong-Su; Chanh, Nguyen Dang Minh; Kim, Jong Sun; Jung, Woo-jin; Saha, Atul Kumar; Bindroo, Bharat Bhushan; Han, Yeon Soo

    2012-01-01

    Background Silkworm fecal matter is considered one of the richest sources of antimicrobial and antiviral protein (substances) and such economically feasible and eco-friendly proteins acting as secondary metabolites from the insect system can be explored for their practical utility in conferring broad spectrum disease resistance against pathogenic microbial specimens. Methodology/Principal Findings Silkworm fecal matter extracts prepared in 0.02 M phosphate buffer saline (pH 7.4), at a temperature of 60°C was subjected to 40% saturated ammonium sulphate precipitation and purified by gel-filtration chromatography (GFC). SDS-PAGE under denaturing conditions showed a single band at about 21.5 kDa. The peak fraction, thus obtained by GFC wastested for homogeneityusing C18reverse-phase high performance liquid chromatography (HPLC). The activity of the purified protein was tested against selected Gram +/− bacteria and phytopathogenic Fusarium species with concentration-dependent inhibitionrelationship. The purified bioactive protein was subjected to matrix-assisted laser desorption and ionization-time of flight mass spectrometry (MALDI-TOF-MS) and N-terminal sequencing by Edman degradation towards its identification. The N-terminal first 18 amino acid sequence following the predicted signal peptide showed homology to plant germin-like proteins (Glp). In order to characterize the full-length gene sequence in detail, the partial cDNA was cloned and sequenced using degenerate primers, followed by 5′- and 3′-rapid amplification of cDNA ends (RACE-PCR). The full-length cDNA sequence composed of 630 bp encoding 209 amino acids and corresponded to germin-like proteins (Glps) involved in plant development and defense. Conclusions/Significance The study reports, characterization of novel Glpbelonging to subfamily 3 from M. alba by the purification of mature active protein from silkworm fecal matter. The N-terminal amino acid sequence of the purified protein was found similar to the deduced amino acid sequence (without the transit peptide sequence) of the full length cDNA from M. alba. PMID:23284650

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feyereisen-Koener, J.M.

    Double-stranded cDNA was prepared from infectious hematopoietic necrosis virus mRNA and cloned into the plasmid vector pUC8. A coprotein (G-protein) of infectious hematopoietic necrosis virus was selected by hybridization to a /sup 32/P-labeled probe. The restriction map and nucleotide sequence of the mRNA encoding the glycoprotein of infectious hematopoietic necrosis virus was determined using this full-length cDNA clone.

  6. Isolation and characterization of two cDNA clones encoding for glutamate dehydrogenase in Nicotiana plumbaginifolia.

    PubMed

    Ficarelli, A; Tassi, F; Restivo, F M

    1999-03-01

    We have isolated two full length cDNA clones encoding Nicotiana plumbaginifolia NADH-glutamate dehydrogenase. Both clones share amino acid boxes of homology corresponding to conserved GDH catalytic domains and putative mitochondrial targeting sequence. One clone shows a putative EF-hand loop. The level of the two transcripts is affected differently by carbon source.

  7. Metatranscriptomics of Soil Eukaryotic Communities.

    PubMed

    Yadav, Rajiv K; Bragalini, Claudia; Fraissinet-Tachet, Laurence; Marmeisse, Roland; Luis, Patricia

    2016-01-01

    Functions expressed by eukaryotic organisms in soil can be specifically studied by analyzing the pool of eukaryotic-specific polyadenylated mRNA directly extracted from environmental samples. In this chapter, we describe two alternative protocols for the extraction of high-quality RNA from soil samples. Total soil RNA or mRNA can be converted to cDNA for direct high-throughput sequencing. Polyadenylated mRNA-derived full-length cDNAs can also be cloned in expression plasmid vectors to constitute soil cDNA libraries, which can be subsequently screened for functional gene categories. Alternatively, the diversity of specific gene families can also be explored following cDNA sequence capture using exploratory oligonucleotide probes.

  8. Cloning and characterization of full-length mouse thymidine kinase 2: the N-terminal sequence directs import of the precursor protein into mitochondria.

    PubMed Central

    Wang, L; Eriksson, S

    2000-01-01

    The subcellular localization of mitochondrial thymidine kinase (TK2) has been questioned, since no mitochondrial targeting sequences have been found in cloned human TK2 cDNAs. Here we report the cloning of mouse TK2 cDNA from a mouse full-length enriched cDNA library. The mouse TK2 cDNA codes for a protein of 270 amino acids, with a 40-amino-acid presumed N-terminal mitochondrial targeting signal. In vitro translation and translocation experiments with purified rat mitochondria confirmed that the N-terminal sequence directed import of the precursor TK2 into the mitochondrial matrix. A single 2.4 kb mRNA transcript was detected in most tissues examined, except in liver, where an additional shorter (1.0 kb) transcript was also observed. There was no correlation between the tissue distribution of TK2 activity and the expression of TK2 mRNA. Full-length mouse TK2 protein and two N-terminally truncated forms, one of which corresponds to the mitochondrial form of TK2 and a shorter form corresponding to the previously characterized recombinant human TK2, were expressed in Escherichia coli and affinity purified. All three forms of TK2 phosphorylated thymidine, deoxycytidine and 2'-deoxyuridine, but with different kinetic efficiencies. A number of cytostatic pyrimidine nucleoside analogues were also tested and shown to be good substrates for the various forms of TK2. The active form of full-length mouse TK2 was a dimer, as judged by Superdex 200 chromatography. These results enhance our understanding of the structure and function of TK2, and may help to explain the mitochondrial disorder, mitochondrial neurogastrointestinal encephalomyopathy. PMID:11023833

  9. Complementary DNA libraries: an overview.

    PubMed

    Ying, Shao-Yao

    2004-07-01

    The generation of complete and full-length cDNA libraries for potential functional assays of specific gene sequences is essential for most molecules in biotechnology and biomedical research. The field of cDNA library generation has changed rapidly in the past 10 yr. This review presents an overview of the method available for the basic information of generating cDNA libraries, including the definition of the cDNA library, different kinds of cDNA libraries, difference between methods for cDNA library generation using conventional approaches and a novel strategy, and the quality of cDNA libraries. It is anticipated that the high-quality cDNA libraries so generated would facilitate studies involving genechips and the microarray, differential display, subtractive hybridization, gene cloning, and peptide library generation.

  10. Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries.

    PubMed

    Otsuki, Tetsuji; Ota, Toshio; Nishikawa, Tetsuo; Hayashi, Koji; Suzuki, Yutaka; Yamamoto, Jun-ichi; Wakamatsu, Ai; Kimura, Kouichi; Sakamoto, Katsuhiko; Hatano, Naoto; Kawai, Yuri; Ishii, Shizuko; Saito, Kaoru; Kojima, Shin-ichi; Sugiyama, Tomoyasu; Ono, Tetsuyoshi; Okano, Kazunori; Yoshikawa, Yoko; Aotsuka, Satoshi; Sasaki, Naokazu; Hattori, Atsushi; Okumura, Koji; Nagai, Keiichi; Sugano, Sumio; Isogai, Takao

    2005-01-01

    We have developed an in silico method of selection of human full-length cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries. Fullness rates were increased to about 80% by combination of the oligo-capping method and ATGpr, software for prediction of translation start point and the coding potential. Then, using 5'-end single-pass sequences, cDNAs having the signal sequence were selected by PSORT ('signal sequence trap'). We also applied 'secretion or membrane protein-related keyword trap' based on the result of BLAST search against the SWISS-PROT database for the cDNAs which could not be selected by PSORT. Using the above procedures, 789 cDNAs were primarily selected and subjected to full-length sequencing, and 334 of these cDNAs were finally selected as novel. Most of the cDNAs (295 cDNAs: 88.3%) were predicted to encode secretion or membrane proteins. In particular, 165(80.5%) of the 205 cDNAs selected by PSORT were predicted to have signal sequences, while 70 (54.2%) of the 129 cDNAs selected by 'keyword trap' preserved the secretion or membrane protein-related keywords. Many important cDNAs were obtained, including transporters, receptors, and ligands, involved in significant cellular functions. Thus, an efficient method of selecting secretion or membrane protein-encoding cDNAs was developed by combining the above four procedures.

  11. Sequencing and analysis of 10,967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis reveals post-tetraploidization transcriptome remodeling

    PubMed Central

    Morin, Ryan D.; Chang, Elbert; Petrescu, Anca; Liao, Nancy; Griffith, Malachi; Kirkpatrick, Robert; Butterfield, Yaron S.; Young, Alice C.; Stott, Jeffrey; Barber, Sarah; Babakaiff, Ryan; Dickson, Mark C.; Matsuo, Corey; Wong, David; Yang, George S.; Smailus, Duane E.; Wetherby, Keith D.; Kwong, Peggy N.; Grimwood, Jane; Brinkley, Charles P.; Brown-John, Mabel; Reddix-Dugue, Natalie D.; Mayo, Michael; Schmutz, Jeremy; Beland, Jaclyn; Park, Morgan; Gibson, Susan; Olson, Teika; Bouffard, Gerard G.; Tsai, Miranda; Featherstone, Ruth; Chand, Steve; Siddiqui, Asim S.; Jang, Wonhee; Lee, Ed; Klein, Steven L.; Blakesley, Robert W.; Zeeberg, Barry R.; Narasimhan, Sudarshan; Weinstein, John N.; Pennacchio, Christa Prange; Myers, Richard M.; Green, Eric D.; Wagner, Lukas; Gerhard, Daniela S.; Marra, Marco A.; Jones, Steven J.M.; Holt, Robert A.

    2006-01-01

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection Initiative. Here we present 10,967 full ORF verified cDNA clones (8049 from X. laevis and 2918 from X. tropicalis) as a community resource. Because the genome of X. laevis, but not X. tropicalis, has undergone allotetraploidization, comparison of coding sequences from these two clawed (pipid) frogs provides a unique angle for exploring the molecular evolution of duplicate genes. Within our clone set, we have identified 445 gene trios, each comprised of an allotetraploidization-derived X. laevis gene pair and their shared X. tropicalis ortholog. Pairwise dN/dS, comparisons within trios show strong evidence for purifying selection acting on all three members. However, dN/dS ratios between X. laevis gene pairs are elevated relative to their X. tropicalis ortholog. This difference is highly significant and indicates an overall relaxation of selective pressures on duplicated gene pairs. We have found that the paralogs that have been lost since the tetraploidization event are enriched for several molecular functions, but have found no such enrichment in the extant paralogs. Approximately 14% of the paralogous pairs analyzed here also show differential expression indicative of subfunctionalization. PMID:16672307

  12. Characterization of a full-length infectious cDNA clone and a GFP reporter derivative of the oncolytic picornavirus SVV-001.

    PubMed

    Poirier, John T; Reddy, P Seshidhar; Idamakanti, Neeraja; Li, Shawn S; Stump, Kristine L; Burroughs, Kevin D; Hallenbeck, Paul L; Rudin, Charles M

    2012-12-01

    Seneca Valley virus (SVV-001) is an oncolytic picornavirus with selective tropism for a subset of human cancers with neuroendocrine differentiation. To characterize further the specificity of SVV-001 and its patterns and kinetics of intratumoral spread, bacterial plasmids encoding a cDNA clone of the full-length wild-type virus and a derivative virus expressing GFP were generated. The full-length cDNA of the SVV-001 RNA genome was cloned into a bacterial plasmid under the control of the T7 core promoter sequence to create an infectious cDNA clone, pNTX-09. A GFP reporter virus cDNA clone, pNTX-11, was then generated by cloning a fusion protein of GFP and the 2A protein from foot-and-mouth disease virus immediately following the native SVV-001 2A sequence. Recombinant GFP-expressing reporter virus, SVV-GFP, was rescued from cells transfected with in vitro RNA transcripts from pNTX-11 and propagated in cell culture. The proliferation kinetics of SVV-001 and SVV-GFP were indistinguishable. The SVV-GFP reporter virus was used to determine that a subpopulation of permissive cells is present in small-cell lung cancer cell lines previously thought to lack permissivity to SVV-001. Finally, it was shown that SVV-GFP administered to tumour-bearing animals homes in to and infects tumours whilst having no detectable tropism for normal mouse tissues at 1×10(11) viral particles kg(-1), a dose equivalent to that administered in ongoing clinical trials. These infectious clones will be of substantial value in further characterizing the biology of this virus and as a backbone for the generation of additional oncolytic derivatives.

  13. Cloning a Chymotrypsin-Like 1 (CTRL-1) Protease cDNA from the Jellyfish Nemopilema nomurai

    PubMed Central

    Heo, Yunwi; Kwon, Young Chul; Bae, Seong Kyeong; Hwang, Duhyeon; Yang, Hye Ryeon; Choudhary, Indu; Lee, Hyunkyoung; Yum, Seungshic; Shin, Kyoungsoon; Yoon, Won Duk; Kang, Changkeun; Kim, Euikyung

    2016-01-01

    An enzyme in a nematocyst extract of the Nemopilema nomurai jellyfish, caught off the coast of the Republic of Korea, catalyzed the cleavage of chymotrypsin substrate in an amidolytic kinetic assay, and this activity was inhibited by the serine protease inhibitor, phenylmethanesulfonyl fluoride. We isolated the full-length cDNA sequence of this enzyme, which contains 850 nucleotides, with an open reading frame of 801 encoding 266 amino acids. A blast analysis of the deduced amino acid sequence showed 41% identity with human chymotrypsin-like (CTRL) and the CTRL-1 precursor. Therefore, we designated this enzyme N. nomurai CTRL-1. The primary structure of N. nomurai CTRL-1 includes a leader peptide and a highly conserved catalytic triad of His69, Asp117, and Ser216. The disulfide bonds of chymotrypsin and the substrate-binding sites are highly conserved compared with the CTRLs of other species, including mammalian species. Nemopilema nomurai CTRL-1 is evolutionarily more closely related to Actinopterygii than to Scyphozoan (Aurelia aurita) or Hydrozoan (Hydra vulgaris). The N. nomurai CTRL1 was amplified from the genomic DNA with PCR using specific primers designed based on the full-length cDNA, and then sequenced. The N. nomurai CTRL1 gene contains 2434 nucleotides and four distinct exons. The 5′ donor splice (GT) and 3′ acceptor splice sequences (AG) are wholly conserved. This is the first report of the CTRL1 gene and cDNA structures in the jellyfish N. nomurai. PMID:27399771

  14. Cloning a Chymotrypsin-Like 1 (CTRL-1) Protease cDNA from the Jellyfish Nemopilema nomurai.

    PubMed

    Heo, Yunwi; Kwon, Young Chul; Bae, Seong Kyeong; Hwang, Duhyeon; Yang, Hye Ryeon; Choudhary, Indu; Lee, Hyunkyoung; Yum, Seungshic; Shin, Kyoungsoon; Yoon, Won Duk; Kang, Changkeun; Kim, Euikyung

    2016-07-05

    An enzyme in a nematocyst extract of the Nemopilema nomurai jellyfish, caught off the coast of the Republic of Korea, catalyzed the cleavage of chymotrypsin substrate in an amidolytic kinetic assay, and this activity was inhibited by the serine protease inhibitor, phenylmethanesulfonyl fluoride. We isolated the full-length cDNA sequence of this enzyme, which contains 850 nucleotides, with an open reading frame of 801 encoding 266 amino acids. A blast analysis of the deduced amino acid sequence showed 41% identity with human chymotrypsin-like (CTRL) and the CTRL-1 precursor. Therefore, we designated this enzyme N. nomurai CTRL-1. The primary structure of N. nomurai CTRL-1 includes a leader peptide and a highly conserved catalytic triad of His(69), Asp(117), and Ser(216). The disulfide bonds of chymotrypsin and the substrate-binding sites are highly conserved compared with the CTRLs of other species, including mammalian species. Nemopilema nomurai CTRL-1 is evolutionarily more closely related to Actinopterygii than to Scyphozoan (Aurelia aurita) or Hydrozoan (Hydra vulgaris). The N. nomurai CTRL1 was amplified from the genomic DNA with PCR using specific primers designed based on the full-length cDNA, and then sequenced. The N. nomurai CTRL1 gene contains 2434 nucleotides and four distinct exons. The 5' donor splice (GT) and 3' acceptor splice sequences (AG) are wholly conserved. This is the first report of the CTRL1 gene and cDNA structures in the jellyfish N. nomurai.

  15. Construction of a Full-Length Enriched cDNA Library and Preliminary Analysis of Expressed Sequence Tags from Bengal Tiger Panthera tigris tigris

    PubMed Central

    Liu, Changqing; Liu, Dan; Guo, Yu; Lu, Taofeng; Li, Xiangchen; Zhang, Minghai; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2013-01-01

    In this study, a full-length enriched cDNA library was successfully constructed from Bengal tiger, Panthera tigris tigris, the most well-known wild Animal. Total RNA was extracted from cultured Bengal tiger fibroblasts in vitro. The titers of primary and amplified libraries were 1.28 × 106 pfu/mL and 1.56 × 109 pfu/mL respectively. The percentage of recombinants from unamplified library was 90.2% and average length of exogenous inserts was 0.98 kb. A total of 212 individual ESTs with sizes ranging from 356 to 1108 bps were then analyzed. The BLASTX score revealed that 48.1% of the sequences were classified as a strong match, 45.3% as nominal and 6.6% as a weak match. Among the ESTs with known putative function, 26.4% ESTs were found to be related to all kinds of metabolisms, 19.3% ESTs to information storage and processing, 11.3% ESTs to posttranslational modification, protein turnover, chaperones, 11.3% ESTs to transport, 9.9% ESTs to signal transducer/cell communication, 9.0% ESTs to structure protein, 3.8% ESTs to cell cycle, and only 6.6% ESTs classified as novel genes. By EST sequencing, a full-length gene coding ferritin was identified and characterized. The recombinant plasmid pET32a-TAT-Ferritin was constructed, coded for the TAT-Ferritin fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-Ferritin recombinant protein was 2.32 ± 0.12 mg/mL. These results demonstrated that the reliability and representativeness of the cDNA library attained to the requirements of a standard cDNA library. This library provided a useful platform for the functional genome and transcriptome research of Bengal tigers. PMID:23708105

  16. Construction of a full-length enriched cDNA library and preliminary analysis of expressed sequence tags from Bengal Tiger Panthera tigris tigris.

    PubMed

    Liu, Changqing; Liu, Dan; Guo, Yu; Lu, Taofeng; Li, Xiangchen; Zhang, Minghai; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2013-05-24

    In this study, a full-length enriched cDNA library was successfully constructed from Bengal tiger, Panthera tigris tigris, the most well-known wild Animal. Total RNA was extracted from cultured Bengal tiger fibroblasts in vitro. The titers of primary and amplified libraries were 1.28 × 106 pfu/mL and 1.56 × 109 pfu/mL respectively. The percentage of recombinants from unamplified library was 90.2% and average length of exogenous inserts was 0.98 kb. A total of 212 individual ESTs with sizes ranging from 356 to 1108 bps were then analyzed. The BLASTX score revealed that 48.1% of the sequences were classified as a strong match, 45.3% as nominal and 6.6% as a weak match. Among the ESTs with known putative function, 26.4% ESTs were found to be related to all kinds of metabolisms, 19.3% ESTs to information storage and processing, 11.3% ESTs to posttranslational modification, protein turnover, chaperones, 11.3% ESTs to transport, 9.9% ESTs to signal transducer/cell communication, 9.0% ESTs to structure protein, 3.8% ESTs to cell cycle, and only 6.6% ESTs classified as novel genes. By EST sequencing, a full-length gene coding ferritin was identified and characterized. The recombinant plasmid pET32a-TAT-Ferritin was constructed, coded for the TAT-Ferritin fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-Ferritin recombinant protein was 2.32 ± 0.12 mg/mL. These results demonstrated that the reliability and representativeness of the cDNA library attained to the requirements of a standard cDNA library. This library provided a useful platform for the functional genome and transcriptome research of Bengal tigers.

  17. Cloning and sequence analysis of a full-length cDNA of SmPP1cb encoding turbot protein phosphatase 1 beta catalytic subunit

    NASA Astrophysics Data System (ADS)

    Qi, Fei; Guo, Huarong; Wang, Jian

    2008-02-01

    Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is an important and versatile mechanism by which eukaryotic cells regulate almost all the signaling processes. Protein phosphatase 1 (PP1) is the first and well-characterized member of the protein serine/threonine phosphatase family. In the present study, a full-length cDNA encoding the beta isoform of the catalytic subunit of protein phosphatase 1(PP1cb), was for the first time isolated and sequenced from the skin tissue of flatfish turbot Scophthalmus maximus, designated SmPP1cb, by the rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of SmPP1cb we obtained contains a 984 bp open reading frame (ORF), flanked by a complete 39 bp 5' untranslated region and 462 bp 3' untranslated region. The ORF encodes a putative 327 amino acid protein, and the N-terminal section of this protein is highly acidic, Met-Ala-Glu-Gly-Glu-Leu-Asp-Val-Asp, a common feature for PP1 catalytic subunit but absent in protein phosphatase 2B (PP2B). And its calculated molecular mass is 37 193 Da and pI 5.8. Sequence analysis indicated that, SmPP1cb is extremely conserved in both amino acid and nucleotide acid levels compared with the PP1cb of other vertebrates and invertebrates, and its Kozak motif contained in the 5'UTR around ATG start codon is GXXAXXGXX ATGG, which is different from mammalian in two positions A-6 and G-3, indicating the possibility of different initiation of translation in turbot, and also the 3'UTR of SmPP1cb is highly diverse in the sequence similarity and length compared with other animals, especially zebrafish. The cloning and sequencing of SmPP1cb gene lays a good foundation for the future work on the biological functions of PP1 in the flatfish turbot.

  18. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution

    PubMed Central

    Modahl, Cassandra M.; Mackessy, Stephen P.

    2016-01-01

    Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides access to cDNA sequences in the absence of living specimens, even from commercial venom sources, to evaluate important regional differences in venom composition and to study snake venom protein evolution. PMID:27280639

  19. FOX-superroots of Lotus corniculatus, overexpressing Arabidopsis full-length cDNA, show stable variations in morphological traits.

    PubMed

    Himuro, Yasuyo; Tanaka, Hidenori; Hashiguchi, Masatsugu; Ichikawa, Takanari; Nakazawa, Miki; Seki, Motoaki; Fujita, Miki; Shinozaki, Kazuo; Matsui, Minami; Akashi, Ryo; Hoffmann, Franz

    2011-01-15

    Using the full-length cDNA overexpressor (FOX) gene-hunting system, we have generated 130 Arabidopsis FOX-superroot lines in bird's-foot trefoil (Lotus corniculatus) for the systematic functional analysis of genes expressed in roots and for the selection of induced mutants with interesting root growth characteristics. We used the Arabidopsis-FOX Agrobacterium library (constructed by ligating pBIG2113SF) for the Agrobacterium-mediated transformation of superroots (SR) and the subsequent selection of gain-of-function mutants with ectopically expressed Arabidopsis genes. The original superroot culture of L. corniculatus is a unique host system displaying fast root growth in vitro, allowing continuous root cloning, direct somatic embryogenesis and mass regeneration of plants under entirely hormone-free culture conditions. Several of the Arabidopsis FOX-superroot lines show interesting deviations from normal growth and morphology of roots from SR-plants, such as differences in pigmentation, growth rate, length or diameter. Some of these mutations are of potential agricultural interest. Genomic PCR analysis revealed that 100 (76.9%) out of the 130 transgenic lines showed the amplification of single fragments. Sequence analysis of the PCR fragments from these 100 lines identified full-length cDNA in 74 of them. Forty-three out of 74 full-length cDNA carried known genes. The Arabidopsis FOX-superroot lines of L. corniculatus, produced in this study, expand the FOX hunting system and provide a new tool for the genetic analysis and control of root growth in a leguminous forage plant. Copyright © 2010 Elsevier GmbH. All rights reserved.

  20. Generation of a reliable full-length cDNA of infectiousTembusu virus using a PCR-based protocol.

    PubMed

    Liang, Te; Liu, Xiaoxiao; Cui, Shulin; Qu, Shenghua; Wang, Dan; Liu, Ning; Wang, Fumin; Ning, Kang; Zhang, Bing; Zhang, Dabing

    2016-02-02

    Full-length cDNA of Tembusu virus (TMUV) cloned in a plasmid has been found instable in bacterial hosts. Using a PCR-based protocol, we generated a stable full-length cDNA of TMUV. Different cDNA fragments of TMUV were amplified by reverse transcription (RT)-PCR, and cloned into plasmids. Fragmented cDNAs were amplified and assembled by fusion PCR to produce a full-length cDNA using the recombinant plasmids as templates. Subsequently, a full-length RNA was transcribed from the full-length cDNA in vitro and transfected into BHK-21 cells; infectious viral particles were rescued successfully. Following several passages in BKH-21 cells, the rescued virus was compared with the parental virus by genetic marker checks, growth curve determinations and animal experiments. These assays clearly demonstrated the genetic and biological stabilities of the rescued virus. The present work will be useful for future investigations on the molecular mechanisms involved in replication and pathogenesis of TMUV. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates

    PubMed Central

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R.; Bett, Andrew J.

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses. PMID:27008550

  2. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    PubMed

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R; Bett, Andrew J

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  3. Molecular cloning and characterization of SoxB2 gene from Zhikong scallop Chlamys farreri

    NASA Astrophysics Data System (ADS)

    He, Yan; Bao, Zhenmin; Guo, Huihui; Zhang, Yueyue; Zhang, Lingling; Wang, Shi; Hu, Jingjie; Hu, Xiaoli

    2013-11-01

    The Sox proteins play critical roles during the development of animals, including sex determination and central nervous system development. In this study, the SoxB2 gene was cloned from a mollusk, the Zhikong scallop ( Chlamys farreri), and characterized with respect to phylogeny and tissue distribution. The full-length cDNA and genomic DNA sequences of C. farreri SoxB2 ( Cf SoxB2) were obtained by rapid amplification of cDNA ends and genome walking, respectively, using a partial cDNA fragment from the highly conserved DNA-binding domain, i.e., the High Mobility Group (HMG) box. The full-length cDNA sequence of Cf SoxB2 was 2 048 bp and encoded 268 amino acids protein. The genomic sequence was 5 551 bp in length with only one exon. Several conserved elements, such as the TATA-box, GC-box, CAAT-box, GATA-box, and Sox/sry-sex/testis-determining and related HMG box factors, were found in the promoter region. Furthermore, real-time quantitative reverse transcription PCR assays were carried out to assess the mRNA expression of Cf SoxB 2 in different tissues. SoxB2 was highly expressed in the mantle, moderately in the digestive gland and gill, and weakly expressed in the gonad, kidney and adductor muscle. In male and female gonads at different developmental stages of reproduction, the expression levels of Cf SoxB2 were similar. Considering the specific expression and roles of SoxB 2 in other animals, in particular vertebrates, and the fact that there are many pallial nerves in the mantle, cerebral ganglia in the digestive gland and gill nerves in gill, we propose a possible essential role in nervous tissue function for Sox B 2 in C. farreri.

  4. Characterization and mapping of cDNA encoding aspartate aminotransferase in rice, Oryza sativa L.

    PubMed

    Song, J; Yamamoto, K; Shomura, A; Yano, M; Minobe, Y; Sasaki, T

    1996-10-31

    Fifteen cDNA clones, putatively identified as encoding aspartate aminotransferase (AST, EC 2.6.1.1.), were isolated and partially sequenced. Together with six previously isolated clones putatively identified to encode ASTs (Sasaki, et al. 1994, Plant Journal 6, 615-624), their sequences were characterized and classified into 4 cDNA species. Two of the isolated clones, C60213 and C2079, were full-length cDNAs, and their complete nucleotide sequences were determined. C60213 was 1612 bp long and its deduced amino acid sequence showed 88% homology with that of Panicum miliaceum L. mitochondrial AST. The C60213-encoded protein had an N-terminal amino acid sequence that was characteristic of a mitochondrial transit peptide. On the other hand, C2079 was 1546 bp long and had 91% amino acid sequence homology with P. miliaceum L. cytosolic AST but lacked in the transit peptide sequence. The homologies of nucleotide sequences and deduced amino acid sequences of C2079 and C60213 were 54% and 52%, respectively. C2079 and C60213 were mapped on chromosomes 1 and 6, respectively, by restriction fragment length polymorphism linkage analysis. Northern blot analysis using C2079 as a probe revealed much higher transcript levels in callus and root than in green and etiolated shoots, suggesting tissue-specific variations of AST gene expression.

  5. The nop gene from Phanerochaete chrysosporium encodes a peroxidase with novel structural features

    Treesearch

    Luis F. Larrondo; Angel Gonzalez; Tomas Perez-Acle; Dan Cullen; Rafael Vicuna

    2005-01-01

    Inspection of the genome of the ligninolytic basidiomycete Phanerochaete chrysosporium revealed an unusual peroxidase-like sequence. The corresponding full length cDNA was sequenced and an archetypal secretion signal predicted. The deduced mature protein (NoP, novel peroxidase) contains 295 aa residues and is therefore considerably shorter than other Class II (fungal)...

  6. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.

    1987-06-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from lambdagt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. Inmore » RNA blots of poly(A)/sup +/ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species.« less

  7. Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome

    PubMed Central

    2010-01-01

    Background Salmonids are one of the most intensely studied fish, in part due to their economic and environmental importance, and in part due to a recent whole genome duplication in the common ancestor of salmonids. This duplication greatly impacts species diversification, functional specialization, and adaptation. Extensive new genomic resources have recently become available for Atlantic salmon (Salmo salar), but documentation of allelic versus duplicate reference genes remains a major uncertainty in the complete characterization of its genome and its evolution. Results From existing expressed sequence tag (EST) resources and three new full-length cDNA libraries, 9,057 reference quality full-length gene insert clones were identified for Atlantic salmon. A further 1,365 reference full-length clones were annotated from 29,221 northern pike (Esox lucius) ESTs. Pairwise dN/dS comparisons within each of 408 sets of duplicated salmon genes using northern pike as a diploid out-group show asymmetric relaxation of selection on salmon duplicates. Conclusions 9,057 full-length reference genes were characterized in S. salar and can be used to identify alleles and gene family members. Comparisons of duplicated genes show that while purifying selection is the predominant force acting on both duplicates, consistent with retention of functionality in both copies, some relaxation of pressure on gene duplicates can be identified. In addition, there is evidence that evolution has acted asymmetrically on paralogs, allowing one of the pair to diverge at a faster rate. PMID:20433749

  8. Sequencing and characterization of asclepain f: the first cysteine peptidase cDNA cloned and expressed from Asclepias fruticosa latex.

    PubMed

    Trejo, Sebastián A; López, Laura M I; Caffini, Néstor O; Natalucci, Claudia L; Canals, Francesc; Avilés, Francesc X

    2009-07-01

    Asclepain f is a papain-like protease previously isolated and characterized from latex of Asclepias fruticosa. This enzyme is a member of the C1 family of cysteine proteases that are synthesized as preproenzymes. The enzyme belongs to the alpha + beta class of proteins, with two disulfide bridges (Cys22-Cys63 and Cys56-Cys95) in the alpha domain, and another one (Cys150-Cys201) in the beta domain, as was determined by molecular modeling. A full-length 1,152 bp cDNA was cloned by RT-RACE-PCR from latex mRNA. The sequence was predicted as an open reading frame of 340 amino acid residues, of which 16 residues belong to the signal peptide, 113 to the propeptide and 211 to the mature enzyme. The full-length cDNA was ligated to pPICZalpha vector and expressed in Pichia pastoris. Recombinant asclepain f showed endopeptidase activity on pGlu-Phe-Leu-p-nitroanilide and was identified by PMF-MALDI-TOF MS. Asclepain f is the first peptidase cloned and expressed from mRNA isolated from plant latex, confirming the presence of the preprocysteine peptidase in the latex.

  9. Structure, organization and expression of common carp (Cyprinus carpio L.) SLP-76 gene.

    PubMed

    Huang, Rong; Sun, Xiao-Feng; Hu, Wei; Wang, Ya-Ping; Guo, Qiong-Lin

    2008-05-01

    SLP-76 is an important member of the SLP-76 family of adapters, and it plays a key role in TCR signaling and T cell function. Partial cDNA sequence of SLP-76 of common carp (Cyprinus carpio L.) was isolated from thymus cDNA library by the method of suppression subtractive hybridization (SSH). Subsequently, the full length cDNA of carp SLP-76 was obtained by means of 3' RACE and 5' RACE, respectively. The full length cDNA of carp SLP-76 was 2007 bp, consisting of a 5'-terminal untranslated region (UTR) of 285 bp, a 3'-terminal UTR of 240 bp, and an open reading frame of 1482 bp. Sequence comparison showed that the deduced amino acid sequence of carp SLP-76 had an overall similarity of 34-73% to that of other species homologues, and it was composed of an NH2-terminal domain, a central proline-rich domain, and a C-terminal SH2 domain. Amino acid sequence analysis indicated the existence of a Gads binding site R-X-X-K, a 10-aa-long sequence which binds to the SH3 domain of LCK in vitro, and three conserved tyrosine-containing sequence in the NH2-terminal domain. Then we used PCR to obtain a genomic DNA which covers the entire coding region of carp SLP-76. In the 9.2k-long genomic sequence, twenty one exons and twenty introns were identified. RT-PCR results showed that carp SLP-76 was expressed predominantly in hematopoietic tissues, and was upregulated in thymus tissue of four-month carp compared to one-year old carp. RT-PCR and virtual northern hybridization results showed that carp SLP-76 was also upregulated in thymus tissue of GH transgenic carp at the age of four-months. These results suggest that the expression level of SLP-76 gene may be related to thymocyte development in teleosts.

  10. Cloning of novel cellulases from cellulolytic fungi: heterologous expression of a family 5 glycoside hydrolase from Trametes versicolor in Pichia pastoris.

    PubMed

    Salinas, Alejandro; Vega, Marcela; Lienqueo, María Elena; Garcia, Alejandro; Carmona, Rene; Salazar, Oriana

    2011-12-10

    Total cDNA isolated from cellulolytic fungi cultured in cellulose was examined for the presence of sequences encoding for endoglucanases. Novel sequences encoding for glycoside hydrolases (GHs) were identified in Fusarium oxysporum, Ganoderma applanatum and Trametes versicolor. The cDNA encoding for partial sequences of GH family 61 cellulases from F. oxysporum and G. applanatum shares 58 and 68% identity with endoglucanases from Glomerella graminicola and Laccaria bicolor, respectively. A new GH family 5 endoglucanase from T. versicolor was also identified. The cDNA encoding for the mature protein was completely sequenced. This enzyme shares 96% identity with Trametes hirsuta endoglucanase and 22% with Trichoderma reesei endoglucanase II (EGII). The enzyme, named TvEG, has N-terminal family 1 carbohydrate binding module (CBM1). The full length cDNA was cloned into the pPICZαB vector and expressed as an active, extracellular enzyme in the methylotrophic yeast Pichia pastoris. Preliminary studies suggest that T. versicolor could be useful for lignocellulose degradation. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Reverse transcription polymerase chain reaction protocols for cloning small circular RNAs.

    PubMed

    Navarro, B; Daròs, J A; Flores, R

    1998-07-01

    A protocol is described for general application for cloning small circular RNAs which requires only minimal amounts of template (approximately 50 ng) of unknown sequence. Both cDNA strands are synthesized with a 26-mer primer whose six 3'-terminal positions are totally degenerate in two consecutive reactions catalyzed by reverse transcriptase and DNA polymerase, respectively. The cDNAs are then PCR-amplified, using a 20-mer primer with the non-degenerate sequence of the previous primer, cloned and sequenced. This information permits the synthesis of one or more pairs of specific and adjacent primers for obtaining full-length cDNA clones by a protocol which is also described.

  12. Complementary DNA cloning and functional characterization of cytochrome P450 3A138 in common carp (Cyprinus carpio L.).

    PubMed

    Ma, Junguo; Bu, Yanzhen; Li, Yao; Niu, Daichun; Li, Xiaoyu

    2014-06-01

    The full-length sequence of a cytochrome P450 3A 138 (CYP3A138) cDNA in common carp was cloned and sequenced. The transcriptional and microsome enzyme activities of CYP3A138 in the fish liver after rifampicin exposure were also determined in this study. The results showed that the full-length CYP3A138 cDNA is 1912 base pairs (bp) long and contains an open reading frame of 1551 bp encoding a protein of 517 amino acids. Sequence analysis revealed that CYP3A138 is highly conserved in fish. Furthermore, the results of quantitative real-time PCR revealed that CYP3A138 in common carp is constitutively expressed in all tissues, but mainly in the liver and intestine. Additionally, rifampicin exposure promoted both the expression of CYP3A138 at the transcriptional level and the activity of the protein, suggesting that CYP3A138 is a member of the CYP3A subfamily. © 2014 Wiley Periodicals, Inc.

  13. Digital transcriptome profiling using selective hexamer priming for cDNA synthesis.

    PubMed

    Armour, Christopher D; Castle, John C; Chen, Ronghua; Babak, Tomas; Loerch, Patrick; Jackson, Stuart; Shah, Jyoti K; Dey, John; Rohl, Carol A; Johnson, Jason M; Raymond, Christopher K

    2009-09-01

    We developed a procedure for the preparation of whole transcriptome cDNA libraries depleted of ribosomal RNA from only 1 microg of total RNA. The method relies on a collection of short, computationally selected oligonucleotides, called 'not-so-random' (NSR) primers, to obtain full-length, strand-specific representation of nonribosomal RNA transcripts. In this study we validated the technique by profiling human whole brain and universal human reference RNA using ultra-high-throughput sequencing.

  14. Generation of an infectious clone of a new Korean isolate of apple chlorotic leaf spot virus (ACLSV) driven by dual 35S and T7 promoters in a versatile binary vector

    USDA-ARS?s Scientific Manuscript database

    The full-length sequence of a new isolate of Apple chlorotic leaf spot virus (ACLSV) from Korea was divergent, but most closely related to the Japanese isolate A4, at 84% nucleotide identity. The full-length cDNA of the Korean isolate of ACLSV was cloned into a binary vector downstream of the bacter...

  15. Bovine adipose triglyceride lipase is not altered and adipocyte fatty acid binding protein is increased by dietary flaxseed

    USDA-ARS?s Scientific Manuscript database

    In this paper, we report the full length coding sequence of bovine ATGL cDNA are reported and analyze its expression in bovine tissues. Similar to human, mouse, and pig ATGL sequences, bovine ATGL has a highly conserved patatin domain that is necessary for lipolytic function in mice and humans. Thi...

  16. Identification and transcription profiling of NDUFS8 in Aedes taeniorhynchus (Diptera:Culididae): developmental regulation and environmental response

    USDA-ARS?s Scientific Manuscript database

    The cDNA of a NADH dehydrogenase -ubiquinone Fe-S protein 8 subunit (NDUFS8) gene from Aedes (Ochlerotatus) taeniorhynchus Wiedemann has been cloned and sequenced. The full-length mRNA sequence (824 bp) of AetNDUFS8 encodes an open reading region of 651 bp (i.e., 217 amino acids). To detect whether ...

  17. Development of three full-length infectious cDNA clones of distinct brassica yellows virus genotypes for agrobacterium-mediated inoculation.

    PubMed

    Zhang, Xiao-Yan; Dong, Shu-Wei; Xiang, Hai-Ying; Chen, Xiang-Ru; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2015-02-02

    Brassica yellows virus is a newly identified species in the genus of Polerovirus within the family Luteoviridae. Brassica yellows virus (BrYV) is prevalently distributed throughout Mainland China and South Korea, is an important virus infecting cruciferous crops. Based on six BrYV genomic sequences of isolates from oilseed rape, rutabaga, radish, and cabbage, three genotypes, BrYV-A, BrYV-B, and BrYV-C, exist, which mainly differ in the 5' terminal half of the genome. BrYV is an aphid-transmitted and phloem-limited virus. The use of infectious cDNA clones is an alternative means of infecting plants that allows reverse genetic studies to be performed. In this study, full-length cDNA clones of BrYV-A, recombinant BrYV5B3A, and BrYV-C were constructed under control of the cauliflower mosaic virus 35S promoter. An agrobacterium-mediated inoculation system of Nicotiana benthamiana was developed using these cDNA clones. Three days after infiltration with full-length BrYV cDNA clones, necrotic symptoms were observed in the inoculated leaves of N. benthamiana; however, no obvious symptoms appeared in the upper leaves. Reverse transcription-PCR (RT-PCR) and western blot detection of samples from the upper leaves showed that the maximum infection efficiency of BrYVs could reach 100%. The infectivity of the BrYV-A, BrYV-5B3A, and BrYV-C cDNA clones was further confirmed by northern hybridization. The system developed here will be useful for further studies of BrYV, such as host range, pathogenicity, viral gene functions, and plant-virus-vector interactions, and especially for discerning the differences among the three genotypes. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Identification of cDNAs encoding viper venom hyaluronidases: cross-generic sequence conservation of full-length and unusually short variant transcripts.

    PubMed

    Harrison, Robert A; Ibison, Frances; Wilbraham, Davina; Wagstaff, Simon C

    2007-05-01

    The immobilisation of prey by snakes is most efficiently achieved by the rapid dissemination of venom from its site of injection into the blood stream. Hyaluronidase is a common component of snake venoms and has been termed the "venom spreading factor". In the absence of nucleotide or protein sequence data to confirm the functional identity of this venom component, we interrogated a venom gland EST database for the saw-scaled viper, Echis ocellatus (Nigeria), using the gene ontology (GO) term "carbohydrate metabolism". A single hyalurononglucosaminadase-activity matching sequence (EOC00242) was found and used to design PCR primers to acquire the full-length cDNA sequence. Although very different from the bee venom and mammalian hyaluronidase sequences, the E. ocellatus sequence retained all the catalytic, positional and structural residues that characterise this class of carbohydrate metabolising hydrolases. An extraordinarily high level of sequence identity (>95%) was observed in analogous venom gland cDNA sequences isolated (by PCR) from another saw-scaled viper species, E. pyramidum leakeyi (Kenya), and from the sahara horned viper, Cerastes cerastes cerastes (Egypt) and the puff adder, Bitis arietans (Nigeria). Smaller amplicons, lacking hyaluronidase catalytic residues because of 768 bp or 855 bp central deletions, appear to encode either truncated peptides without hyaluronidase activity, or are non-translated transcripts because they lack consensus translation initiating motifs.

  19. Molecular cloning and characterization of Hymenolepis diminuta alpha-tubulin gene.

    PubMed

    Mohajer-Maghari, Behrokh; Amini-Bavil-Olyaee, Samad; Webb, Rodney A; Coe, Imogen R

    2007-02-01

    To isolate a full-length alpha-tubulin cDNA from an eucestode, Hymenolepis diminuta, a lambda phage cDNA library was constructed. The alpha-tubulin gene was cloned, sequenced and characterized. The H. diminuta alpha-tubulin consisted of 450 amino acids. This protein contained putative sites for all posttranslational modifications as detyrosination/tyrosination at the carboxyl-terminal of protien, phosphorylation at residues R79 and K336, glycylation/glutamylation at residue G445 and acetylation at residue K40. Comparisons of H. diminuta alpha-tubulin with all full-length alpha-tubulin proteins revealed that H. diminuta alpha-tubulin possesses 10 distinctive residues, which are not found in any other alpha-tubulins. Phylogenetic analysis showed that H. diminuta alpha-tubulin has grouped in a separated branch adjacent eucestode and trematodes branch with 92% bootstrap value (1000 replicates). In conclusion, this is the first report of H. diminuta cDNA library construction, cloning and characterization of H. diminuta alpha-tubulin gene.

  20. Analysis and Functional Annotation of an Expressed Sequence Tag Collection for Tropical Crop Sugarcane

    PubMed Central

    Vettore, André L.; da Silva, Felipe R.; Kemper, Edson L.; Souza, Glaucia M.; da Silva, Aline M.; Ferro, Maria Inês T.; Henrique-Silva, Flavio; Giglioti, Éder A.; Lemos, Manoel V.F.; Coutinho, Luiz L.; Nobrega, Marina P.; Carrer, Helaine; França, Suzelei C.; Bacci, Maurício; Goldman, Maria Helena S.; Gomes, Suely L.; Nunes, Luiz R.; Camargo, Luis E.A.; Siqueira, Walter J.; Van Sluys, Marie-Anne; Thiemann, Otavio H.; Kuramae, Eiko E.; Santelli, Roberto V.; Marino, Celso L.; Targon, Maria L.P.N.; Ferro, Jesus A.; Silveira, Henrique C.S.; Marini, Danyelle C.; Lemos, Eliana G.M.; Monteiro-Vitorello, Claudia B.; Tambor, José H.M.; Carraro, Dirce M.; Roberto, Patrícia G.; Martins, Vanderlei G.; Goldman, Gustavo H.; de Oliveira, Regina C.; Truffi, Daniela; Colombo, Carlos A.; Rossi, Magdalena; de Araujo, Paula G.; Sculaccio, Susana A.; Angella, Aline; Lima, Marleide M.A.; de Rosa, Vicente E.; Siviero, Fábio; Coscrato, Virginia E.; Machado, Marcos A.; Grivet, Laurent; Di Mauro, Sonia M.Z.; Nobrega, Francisco G.; Menck, Carlos F.M.; Braga, Marilia D.V.; Telles, Guilherme P.; Cara, Frank A.A.; Pedrosa, Guilherme; Meidanis, João; Arruda, Paulo

    2003-01-01

    To contribute to our understanding of the genome complexity of sugarcane, we undertook a large-scale expressed sequence tag (EST) program. More than 260,000 cDNA clones were partially sequenced from 26 standard cDNA libraries generated from different sugarcane tissues. After the processing of the sequences, 237,954 high-quality ESTs were identified. These ESTs were assembled into 43,141 putative transcripts. Of the assembled sequences, 35.6% presented no matches with existing sequences in public databases. A global analysis of the whole SUCEST data set indicated that 14,409 assembled sequences (33% of the total) contained at least one cDNA clone with a full-length insert. Annotation of the 43,141 assembled sequences associated almost 50% of the putative identified sugarcane genes with protein metabolism, cellular communication/signal transduction, bioenergetics, and stress responses. Inspection of the translated assembled sequences for conserved protein domains revealed 40,821 amino acid sequences with 1415 Pfam domains. Reassembling the consensus sequences of the 43,141 transcripts revealed a 22% redundancy in the first assembling. This indicated that possibly 33,620 unique genes had been identified and indicated that >90% of the sugarcane expressed genes were tagged. PMID:14613979

  1. Horse cDNA clones encoding two MHC class I genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbis, D.P.; Maher, J.K.; Stanek, J.

    1994-12-31

    Two full-length clones encoding MHC class I genes were isolated by screening a horse cDNA library, using a probe encoding in human HLA-A2.2Y allele. The library was made in the pcDNA1 vector (Invitrogen, San Diego, CA), using mRNA from peripheral blood lymphocytes obtained from a Thoroughbred stallion (No. 0834) homozygous for a common horse MHC haplotype (ELA-A2, -B2, -D2; Antczak et al. 1984; Donaldson et al. 1988). The clones were sequenced, using SP6 and T7 universal primers and horse-specific oligonucleotides designed to extend previously determined sequences.

  2. Cloning, expression and activity analysis of a novel fibrinolytic serine protease from Arenicola cristata

    NASA Astrophysics Data System (ADS)

    Zhao, Chunling; Ju, Jiyu

    2015-06-01

    The full-length cDNA of a protease gene from a marine annelid Arenicola cristata was amplified through rapid amplification of cDNA ends technique and sequenced. The size of the cDNA was 936 bp in length, including an open reading frame encoding a polypeptide of 270 amino acid residues. The deduced amino acid sequnce consisted of pro- and mature sequences. The protease belonged to the serine protease family because it contained the highly conserved sequence GDSGGP. This protease was novel as it showed a low amino acid sequence similarity (< 40%) to other serine proteases. The gene encoding the active form of A. cristata serine protease was cloned and expressed in E. coli. Purified recombinant protease in a supernatant could dissolve an artificial fibrin plate with plasminogen-rich fibrin, whereas the plasminogen-free fibrin showed no clear zone caused by hydrolysis. This result suggested that the recombinant protease showed an indirect fibrinolytic activity of dissolving fibrin, and was probably a plasminogen activator. A rat model with venous thrombosis was established to demonstrate that the recombinant protease could also hydrolyze blood clot in vivo. Therefore, this recombinant protease may be used as a thrombolytic agent for thrombosis treatment. To our knowledge, this study is the first of reporting the fibrinolytic serine protease gene in A. cristata.

  3. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues.

    PubMed Central

    Prody, C A; Zevin-Sonkin, D; Gnatt, A; Goldberg, O; Soreq, H

    1987-01-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase (BtChoEase; EC 3.1.1.8) and Torpedo electric organ "true" acetylcholinesterase (AcChoEase; EC 3.1.1.7). Using these probes, we isolated several cDNA clones from lambda gt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. In RNA blots of poly(A)+ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These findings demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species. Images PMID:3035536

  4. Cloning and expression of a cDNA coding for catalase from zebrafish (Danio rerio).

    PubMed

    Ken, C F; Lin, C T; Wu, J L; Shaw, J F

    2000-06-01

    A full-length complementary DNA (cDNA) clone encoding a catalase was amplified by the rapid amplication of cDNA ends-polymerase chain reaction (RACE-PCR) technique from zebrafish (Danio rerio) mRNA. Nucleotide sequence analysis of this cDNA clone revealed that it comprised a complete open reading frame coding for 526 amino acid residues and that it had a molecular mass of 59 654 Da. The deduced amino acid sequence showed high similarity with the sequences of catalase from swine (86.9%), mouse (85.8%), rat (85%), human (83.7%), fruit fly (75.6%), nematode (71.1%), and yeast (58.6%). The amino acid residues for secondary structures are apparently conserved as they are present in other mammal species. Furthermore, the coding region of zebrafish catalase was introduced into an expression vector, pET-20b(+), and transformed into Escherichia coli expression host BL21(DE3)pLysS. A 60-kDa active catalase protein was expressed and detected by Coomassie blue staining as well as activity staining on polyacrylamide gel followed electrophoresis.

  5. Sequence of Spider Aciniform and Piriform Silks

    DTIC Science & Technology

    2001-09-19

    7/98nd subtan-6/01 4. TITLE AND SUBTITLE Sequence of Spider Aciniform and Piriform Silks 5. FUNDING NUMBERS DAAD19-01-1-0569 6...aciniform glands from Argiope trifasciata were used to construct a cDNA library. The library was probed with various DNA probes based on known spider silk ...sequence in a number of other spider silks . The 5’end of the clone still appears to be repetitive sequence and thus it is unlikely to be a full-length

  6. Cotesia vestalis parasitization suppresses expression of a Plutella xylostella thioredoxin

    USDA-ARS?s Scientific Manuscript database

    Thioredoxins (Trxs) are a family of small, highly conserved and ubiquitous proteins involved in protecting organisms against toxic reactive oxygen species (ROS). In this study, a typical thioredoxin gene, PxTrx, was isolated from Plutella xylostella. The full-length cDNA sequence is composed of 959 ...

  7. Expressed sequence tag analysis of adult human lens for the NEIBank Project: over 2000 non-redundant transcripts, novel genes and splice variants.

    PubMed

    Wistow, Graeme; Bernstein, Steven L; Wyatt, M Keith; Behal, Amita; Touchman, Jeffrey W; Bouffard, Gerald; Smith, Don; Peterson, Katherine

    2002-06-15

    To explore the expression profile of the human lens and to provide a resource for microarray studies, expressed sequence tag (EST) analysis has been performed on cDNA libraries from adult lenses. A cDNA library was constructed from two adult (40 year old) human lenses. Over two thousand clones were sequenced from the unamplified, un-normalized library. The library was then normalized and a further 2200 sequences were obtained. All the data were analyzed using GRIST (GRouping and Identification of Sequence Tags), a procedure for gene identification and clustering. The lens library (by) contains a low percentage of non-mRNA contaminants and a high fraction (over 75%) of apparently full length cDNA clones. Approximately 2000 reads from the unamplified library yields 810 clusters, potentially representing individual genes expressed in the lens. After normalization, the content of crystallins and other abundant cDNAs is markedly reduced and a similar number of reads from this library (fs) yields 1455 unique groups of which only two thirds correspond to named genes in GenBank. Among the most abundant cDNAs is one for a novel gene related to glutamine synthetase, which was designated "lengsin" (LGS). Analyses of ESTs also reveal examples of alternative transcripts, including a major alternative splice form for the lens specific membrane protein MP19. Variant forms for other transcripts, including those encoding the apoptosis inhibitor Livin and the armadillo repeat protein ARVCF, are also described. The lens cDNA libraries are a resource for gene discovery, full length cDNAs for functional studies and microarrays. The discovery of an abundant, novel transcript, lengsin, and a major novel splice form of MP19 reflect the utility of unamplified libraries constructed from dissected tissue. Many novel transcripts and splice forms are represented, some of which may be candidates for genetic diseases.

  8. cDNA cloning of the human peroxisomal enoyl-CoA hydratase: 3-Hydroxyacyl-CoA dehydrogenase bifunctional enzyme and localization to chromosome 3q26. 3-3q28: A free left Alu arm is inserted in the 3[prime] noncoding region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoefler, G.; Forstner, M.; Hulla, W.

    1994-01-01

    Enoyl-CoA hydratase:3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme is one of the four enzymes of the peroxisomal, [beta]-oxidation pathway. Here, the authors report the full-length human cDNA sequence and the localization of the corresponding gene on chromosome 3q26.3-3q28. The cDNA sequence spans 3779 nucleotides with an open reading frame of 2169 nucleotides. The tripeptide SKL at the carboxy terminus, known to serve as a peroxisomal targeting signal, is present. DNA sequence comparison of the coding region showed an 80% homology between human and rat bifunctional enzyme cDNA. The 3[prime] noncoding sequence contains 117 nucleotides homologous to an Alu repeat. Based on sequence comparison,more » they propose that these nucleotides are a free left Alu arm with 86% homology to the Alu-J family. RNA analysis shows one band with highest intensity in liver and kidney. This cDNA will allow in-depth studies of molecular defects in patients with defective peroxisomal bifunctional enzyme. Moreover, it will also provide a means for studying the regulation of peroxisomal [beta]-oxidation in humans. 33 refs., 5 figs.« less

  9. Purification, characterization, and cDNA cloning of a novel acidic endoglycoceramidase from the jellyfish, Cyanea nozakii.

    PubMed

    Horibata, Y; Okino, N; Ichinose, S; Omori, A; Ito, M

    2000-10-06

    Endoglycoceramidase (EC ) is an enzyme capable of cleaving the glycosidic linkage between oligosaccharides and ceramides in various glycosphingolipids. We report here the purification, characterization, and cDNA cloning of a novel endoglycoceramidase from the jellyfish, Cyanea nozakii. The purified enzyme showed a single protein band estimated to be 51 kDa on SDS-polyacrylamide gel electrophoresis. The enzyme showed a pH optimum of 3.0 and was activated by Triton X-100 and Lubrol PX but not by sodium taurodeoxycholate. This enzyme preferentially hydrolyzed gangliosides, especially GT1b and GQ1b, whereas neutral glycosphingolipids were somewhat resistant to hydrolysis by the enzyme. A full-length cDNA encoding the enzyme was cloned by 5'- and 3'-rapid amplification of cDNA ends using a partial amino acid sequence of the purified enzyme. The open reading frame of 1509 nucleotides encoded a polypeptide of 503 amino acids including a signal sequence of 25 residues and six potential N-glycosylation sites. Interestingly, the Asn-Glu-Pro sequence, which is the putative active site of Rhodococcus endoglycoceramidase, was conserved in the deduced amino acid sequences. This is the first report of the cloning of an endoglycoceramidase from a eukaryote.

  10. Characterization of cDNA encoding molt-inhibiting hormone of the crab, Cancer pagurus; expression of MIH in non-X-organ tissues.

    PubMed

    Lu, W; Wainwright, G; Olohan, L A; Webster, S G; Rees, H H; Turner, P C

    2001-10-31

    Synthesis of ecdysteroids (molting hormones) by crustacean Y-organs is regulated by a neuropeptide, molt-inhibiting hormone (MIH), produced in eyestalk neural ganglia. We report here the molecular cloning of a cDNA encoding MIH of the edible crab, Cancer pagurus. Full-length MIH cDNA was obtained by using reverse transcription-polymerase chain reaction (RT-PCR) with degenerate oligonucleotides based upon the amino acid sequence of MIH, in conjunction with 5'- and 3'-RACE. Full-length clones of MIH cDNA were obtained that encoded a 35 amino acid putative signal peptide and the mature 78 amino acid peptide. Of various tissues examined by Northern blot analysis, the X-organ was the sole major site of expression of the MIH gene. However, a nested-PCR approach using non-degenerate MIH-specific primers indicated the presence of MIH transcripts in other tissues. Southern blot analysis indicated a simple gene arrangement with at least two copies of the MIH gene in the genome of C. pagurus. Additional Southern blotting experiments detected MIH-hybridizing bands in another Cancer species, Cancer antennarius and another crab species, Carcinus maenas.

  11. Isolation and cloning of a metalloproteinase from king cobra snake venom.

    PubMed

    Guo, Xiao-Xi; Zeng, Lin; Lee, Wen-Hui; Zhang, Yun; Jin, Yang

    2007-06-01

    A 50 kDa fibrinogenolytic protease, ohagin, from the venom of Ophiophagus hannah was isolated by a combination of gel filtration, ion-exchange and heparin affinity chromatography. Ohagin specifically degraded the alpha-chain of human fibrinogen and the proteolytic activity was completely abolished by EDTA, but not by PMSF, suggesting it is a metalloproteinase. It dose-dependently inhibited platelet aggregation induced by ADP, TMVA and stejnulxin. The full sequence of ohagin was deduced by cDNA cloning and confirmed by protein sequencing and peptide mass fingerprinting. The full-length cDNA sequence of ohagin encodes an open reading frame of 611 amino acids that includes signal peptide, proprotein and mature protein comprising metalloproteinase, disintegrin-like and cysteine-rich domains, suggesting it belongs to P-III class metalloproteinase. In addition, P-III class metalloproteinases from the venom glands of Naja atra, Bungarus multicinctus and Bungarus fasciatus were also cloned in this study. Sequence analysis and phylogenetic analysis indicated that metalloproteinases from elapid snake venoms form a new subgroup of P-III SVMPs.

  12. RICD: a rice indica cDNA database resource for rice functional genomics.

    PubMed

    Lu, Tingting; Huang, Xuehui; Zhu, Chuanrang; Huang, Tao; Zhao, Qiang; Xie, Kabing; Xiong, Lizhong; Zhang, Qifa; Han, Bin

    2008-11-26

    The Oryza sativa L. indica subspecies is the most widely cultivated rice. During the last few years, we have collected over 20,000 putative full-length cDNAs and over 40,000 ESTs isolated from various cDNA libraries of two indica varieties Guangluai 4 and Minghui 63. A database of the rice indica cDNAs was therefore built to provide a comprehensive web data source for searching and retrieving the indica cDNA clones. Rice Indica cDNA Database (RICD) is an online MySQL-PHP driven database with a user-friendly web interface. It allows investigators to query the cDNA clones by keyword, genome position, nucleotide or protein sequence, and putative function. It also provides a series of information, including sequences, protein domain annotations, similarity search results, SNPs and InDels information, and hyperlinks to gene annotation in both The Rice Annotation Project Database (RAP-DB) and The TIGR Rice Genome Annotation Resource, expression atlas in RiceGE and variation report in Gramene of each cDNA. The online rice indica cDNA database provides cDNA resource with comprehensive information to researchers for functional analysis of indica subspecies and for comparative genomics. The RICD database is available through our website http://www.ncgr.ac.cn/ricd.

  13. Targeting a Complex Transcriptome: The Construction of the Mouse Full-Length cDNA Encyclopedia

    PubMed Central

    Carninci, Piero; Waki, Kazunori; Shiraki, Toshiyuki; Konno, Hideaki; Shibata, Kazuhiro; Itoh, Masayoshi; Aizawa, Katsunori; Arakawa, Takahiro; Ishii, Yoshiyuki; Sasaki, Daisuke; Bono, Hidemasa; Kondo, Shinji; Sugahara, Yuichi; Saito, Rintaro; Osato, Naoki; Fukuda, Shiro; Sato, Kenjiro; Watahiki, Akira; Hirozane-Kishikawa, Tomoko; Nakamura, Mari; Shibata, Yuko; Yasunishi, Ayako; Kikuchi, Noriko; Yoshiki, Atsushi; Kusakabe, Moriaki; Gustincich, Stefano; Beisel, Kirk; Pavan, William; Aidinis, Vassilis; Nakagawara, Akira; Held, William A.; Iwata, Hiroo; Kono, Tomohiro; Nakauchi, Hiromitsu; Lyons, Paul; Wells, Christine; Hume, David A.; Fagiolini, Michela; Hensch, Takao K.; Brinkmeier, Michelle; Camper, Sally; Hirota, Junji; Mombaerts, Peter; Muramatsu, Masami; Okazaki, Yasushi; Kawai, Jun; Hayashizaki, Yoshihide

    2003-01-01

    We report the construction of the mouse full-length cDNA encyclopedia,the most extensive view of a complex transcriptome,on the basis of preparing and sequencing 246 libraries. Before cloning,cDNAs were enriched in full-length by Cap-Trapper,and in most cases,aggressively subtracted/normalized. We have produced 1,442,236 successful 3′-end sequences clustered into 171,144 groups, from which 60,770 clones were fully sequenced cDNAs annotated in the FANTOM-2 annotation. We have also produced 547,149 5′ end reads,which clustered into 124,258 groups. Altogether, these cDNAs were further grouped in 70,000 transcriptional units (TU),which represent the best coverage of a transcriptome so far. By monitoring the extent of normalization/subtraction, we define the tentative equivalent coverage (TEC),which was estimated to be equivalent to >12,000,000 ESTs derived from standard libraries. High coverage explains discrepancies between the very large numbers of clusters (and TUs) of this project,which also include non-protein-coding RNAs,and the lower gene number estimation of genome annotations. Altogether,5′-end clusters identify regions that are potential promoters for 8637 known genes and 5′-end clusters suggest the presence of almost 63,000 transcriptional starting points. An estimate of the frequency of polyadenylation signals suggests that at least half of the singletons in the EST set represent real mRNAs. Clones accounting for about half of the predicted TUs await further sequencing. The continued high-discovery rate suggests that the task of transcriptome discovery is not yet complete. PMID:12819125

  14. Molecular characterization of a nuclear topoisomerase II from Nicotiana tabacum that functionally complements a temperature-sensitive topoisomerase II yeast mutant.

    PubMed

    Singh, B N; Mudgil, Yashwanti; Sopory, S K; Reddy, M K

    2003-07-01

    We have successfully expressed enzymatically active plant topoisomerase II in Escherichia coli for the first time, which has enabled its biochemical characterization. Using a PCR-based strategy, we obtained a full-length cDNA and the corresponding genomic clone of tobacco topoisomerase II. The genomic clone has 18 exons interrupted by 17 introns. Most of the 5' and 3' splice junctions follow the typical canonical consensus dinucleotide sequence GU-AG present in other plant introns. The position of introns and phasing with respect to primary amino acid sequence in tobacco TopII and Arabidopsis TopII are highly conserved, suggesting that the two genes are evolved from the common ancestral type II topoisomerase gene. The cDNA encodes a polypeptide of 1482 amino acids. The primary amino acid sequence shows a striking sequence similarity, preserving all the structural domains that are conserved among eukaryotic type II topoisomerases in an identical spatial order. We have expressed the full-length polypeptide in E. coli and purified the recombinant protein to homogeneity. The full-length polypeptide relaxed supercoiled DNA and decatenated the catenated DNA in a Mg(2+)- and ATP-dependent manner, and this activity was inhibited by 4'-(9-acridinylamino)-3'-methoxymethanesulfonanilide (m-AMSA). The immunofluorescence and confocal microscopic studies, with antibodies developed against the N-terminal region of tobacco recombinant topoisomerase II, established the nuclear localization of topoisomerase II in tobacco BY2 cells. The regulated expression of tobacco topoisomerase II gene under the GAL1 promoter functionally complemented a temperature-sensitive TopII(ts) yeast mutant.

  15. Human mRNA polyadenylate binding protein: evolutionary conservation of a nucleic acid binding motif.

    PubMed Central

    Grange, T; de Sa, C M; Oddos, J; Pictet, R

    1987-01-01

    We have isolated a full length cDNA (cDNA) coding for the human poly(A) binding protein. The cDNA derived 73 kd basic translation product has the same Mr, isoelectric point and peptidic map as the poly(A) binding protein. DNA sequence analysis reveals a 70,244 dalton protein. The N terminal part, highly homologous to the yeast poly(A) binding protein, is sufficient for poly(A) binding activity. This domain consists of a four-fold repeated unit of approximately 80 amino acids present in other nucleic acid binding proteins. In the C terminal part there is, as in the yeast protein, a sequence of approximately 150 amino acids, rich in proline, alanine and glutamine which together account for 48% of the residues. A 2,9 kb mRNA corresponding to this cDNA has been detected in several vertebrate cell types and in Drosophila melanogaster at every developmental stage including oogenesis. Images PMID:2885805

  16. A putative peroxidase cDNA from turnip and analysis of the encoded protein sequence.

    PubMed

    Romero-Gómez, S; Duarte-Vázquez, M A; García-Almendárez, B E; Mayorga-Martínez, L; Cervantes-Avilés, O; Regalado, C

    2008-12-01

    A putative peroxidase cDNA was isolated from turnip roots (Brassica napus L. var. purple top white globe) by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Total RNA extracted from mature turnip roots was used as a template for RT-PCR, using a degenerated primer designed to amplify the highly conserved distal motif of plant peroxidases. The resulting partial sequence was used to design the rest of the specific primers for 5' and 3' RACE. Two cDNA fragments were purified, sequenced, and aligned with the partial sequence from RT-PCR, and a complete overlapping sequence was obtained and labeled as BbPA (Genbank Accession No. AY423440, named as podC). The full length cDNA is 1167bp long and contains a 1077bp open reading frame (ORF) encoding a 358 deduced amino acid peroxidase polypeptide. The putative peroxidase (BnPA) showed a calculated Mr of 34kDa, and isoelectric point (pI) of 4.5, with no significant identity with other reported turnip peroxidases. Sequence alignment showed that only three peroxidases have a significant identity with BnPA namely AtP29a (84%), and AtPA2 (81%) from Arabidopsis thaliana, and HRPA2 (82%) from horseradish (Armoracia rusticana). Work is in progress to clone this gene into an adequate host to study the specific role and possible biotechnological applications of this alternative peroxidase source.

  17. Cloning and characterization of full length of a novel zebrafish gene Zsrg abundantly expressed in the germline stem cells.

    PubMed

    Lv, Daoyuan; Song, Ping; Chen, Yungui; Gong, Wuming; Mo, Saijun

    2005-04-08

    Using the digital differential display program of the National Center for Biotechnology Information, we identified a contig of expression sequence tags (ESTs) (Accession No. BM316936), which came from zebrafish ovary and testis libraries. The full-length cDNA of this transcript was cloned and further confirmed by polymerase chain reaction and sequencing. The full-length cDNA of the novel gene is 807bp and encodes a novel protein of 187 amino acids, which shares no significant homology with any other known proteins. Characterization of genomic sequences of the gene revealed that it spans 6kb on the linkage group 3 and is composed of five exons and four introns. RT-PCR analysis showed that it was expressed in mature oocytes and one-cell stage, and persisted until 24h of development. RT-PCR also revealed that it is expressed in gonad and kidney, with the highest level of expression in the testis. The expression sites of the novel gene in adult gonad were further localized by in situ hybridization to oogonia and growing oocytes in ovary and to spermatogonia, spermatocytes but not to spermatids in testis. Based on its abundance in testis and the germline stem cell-spermatogonia and oogonia, we hypothesize that it may function as a testicular development and gametogenesis related gene that plays important roles in spermatogenesis, and named it Zsrg (zebrafish testis spermatogenesis related gene, Zsrg).

  18. Unit-length line-1 transcripts in human teratocarcinoma cells.

    PubMed Central

    Skowronski, J; Fanning, T G; Singer, M F

    1988-01-01

    We have characterized the approximately 6.5-kilobase cytoplasmic poly(A)+ Line-1 (L1) RNA present in a human teratocarcinoma cell line, NTera2D1, by primer extension and by analysis of cloned cDNAs. The bulk of the RNA begins (5' end) at the residue previously identified as the 5' terminus of the longest known primate genomic L1 elements, presumed to represent "unit" length. Several of the cDNA clones are close to 6 kilobase pairs, that is, close to full length. The partial sequences of 18 cDNA clones and full sequence of one (5,975 base pairs) indicate that many different genomic L1 elements contribute transcripts to the 6.5-kilobase cytoplasmic poly(A)+ RNA in NTera2D1 cells because no 2 of the 19 cDNAs analyzed had identical sequences. The transcribed elements appear to represent a subset of the total genomic L1s, a subset that has a characteristic consensus sequence in the 3' noncoding region and a high degree of sequence conservation throughout. Two open reading frames (ORFs) of 1,122 (ORF1) and 3,852 (ORF2) bases, flanked by about 800 and 200 bases of sequence at the 5' and 3' ends, respectively, can be identified in the cDNAs. Both ORFs are in the same frame, and they are separated by 33 bases bracketed by two conserved in-frame stop codons. ORF 2 is interrupted by at least one randomly positioned stop codon in the majority of the cDNAs. The data support proposals suggesting that the human L1 family includes one or more functional genes as well as an extraordinarily large number of pseudogenes whose ORFs are broken by stop codons. The cDNA structures suggest that both genes and pseudogenes are transcribed. At least one of the cDNAs (cD11), which was sequenced in its entirety, could, in principle, represent an mRNA for production of the ORF1 polypeptide. The similarity of mammalian L1s to several recently described invertebrate movable elements defines a new widely distributed class of elements which we term class II retrotransposons. Images PMID:2454389

  19. Molecular characterization and phylogenetic analysis of a yak (Bos grunniens) κ-casein cDNA from lactating mammary gland.

    PubMed

    Bai, W L; Yin, R H; Dou, Q L; Jiang, W Q; Zhao, S J; Ma, Z J; Luo, G B; Zhao, Z H

    2011-04-01

    κ-Casein is one of the major proteins in the milk of mammals. It plays an important role in determining the size and specific function of milk micelles. We have previously identified and characterized a genetic variant of yak κ-casein by evaluating genomic DNA. Here, we isolate and characterize a yak κ-casein cDNA harboring the full-length open reading frame (ORF) from lactating mammary gland. Total RNA was extracted from mammary tissue of lactating female yak, and the κ-casein cDNA were synthesized by RT-PCR technique, then cloned and sequenced. The obtained cDNA of 660-bp contained an ORF sufficient to encode the entire amino acid sequence of κ-casein precursor protein consisting of 190 amino acids with a signal peptide of 21 amino acids. Yak κ-casein has a predicted molecular mass of 19,006.588 Da with a calculated isoelectric point of 7.245. Compared with the corresponding sequences in GenBank of cattle, buffalo, sheep, goat, Arabian camel, horse, and rabbit, yak κ-casein sequence had identity of 64.76-98.78% in cDNA, and identity of 44.79-98.42% and similarity of 53.65-98.42% in deduced amino acids, revealing a high homology with the other livestock species. Based on κ-casein cDNA sequences, the phylogenetic analysis indicated that yak κ-casein had a close relationship with that of cattle. This work might be useful in the genetic engineering researches for yak κ-casein.

  20. Capsicum annuum dehydrin, an osmotic-stress gene in hot pepper plants.

    PubMed

    Chung, Eunsook; Kim, Soo-Yong; Yi, So Young; Choi, Doil

    2003-06-30

    Osmotic stress-related genes were selected from an EST database constructed from 7 cDNA libraries from different tissues of the hot pepper. A full-length cDNA of Capsicum annuum dehydrin (Cadhn), a late embryogenesis abundant (lea) gene, was selected from the 5' single pass sequenced cDNA clones and sequenced. The deduced polypeptide has 87% identity with potato dehydrin C17, but very little identity with the dehydrin genes of other organisms. It contains a serine-tract (S-segment) and 3 conserved lysine-rich domains (K-segments). Southern blot analysis showed that 2 copies are present in the hot pepper genome. Cadhn was induced by osmotic stress in leaf tissues as well as by the application of abscisic acid. The RNA was most abundant in green fruit. The expression of several osmotic stress-related genes was examined and Cadhn proved to be the most abundantly expressed of these in response to osmotic stress.

  1. Immune-Related Transcriptome of Coptotermes formosanus Shiraki Workers: The Defense Mechanism

    PubMed Central

    Hussain, Abid; Li, Yi-Feng; Cheng, Yu; Liu, Yang; Chen, Chuan-Cheng; Wen, Shuo-Yang

    2013-01-01

    Formosan subterranean termites, Coptotermes formosanus Shiraki, live socially in microbial-rich habitats. To understand the molecular mechanism by which termites combat pathogenic microbes, a full-length normalized cDNA library and four Suppression Subtractive Hybridization (SSH) libraries were constructed from termite workers infected with entomopathogenic fungi (Metarhizium anisopliae and Beauveria bassiana), Gram-positive Bacillus thuringiensis and Gram-negative Escherichia coli, and the libraries were analyzed. From the high quality normalized cDNA library, 439 immune-related sequences were identified. These sequences were categorized as pattern recognition receptors (47 sequences), signal modulators (52 sequences), signal transducers (137 sequences), effectors (39 sequences) and others (164 sequences). From the SSH libraries, 27, 17, 22 and 15 immune-related genes were identified from each SSH library treated with M. anisopliae, B. bassiana, B. thuringiensis and E. coli, respectively. When the normalized cDNA library was compared with the SSH libraries, 37 immune-related clusters were found in common; 56 clusters were identified in the SSH libraries, and 259 were identified in the normalized cDNA library. The immune-related gene expression pattern was further investigated using quantitative real time PCR (qPCR). Important immune-related genes were characterized, and their potential functions were discussed based on the integrated analysis of the results. We suggest that normalized cDNA and SSH libraries enable us to discover functional genes transcriptome. The results remarkably expand our knowledge about immune-inducible genes in C. formosanus Shiraki and enable the future development of novel control strategies for the management of Formosan subterranean termites. PMID:23874972

  2. Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa x Populus deltoides) phenylalanine ammonia-lyase genes.

    PubMed Central

    Subramaniam, R; Reinold, S; Molitor, E K; Douglas, C J

    1993-01-01

    A heterologous probe encoding phenylalanine ammonia-lyase (PAL) was used to identify PAL clones in cDNA libraries made with RNA from young leaf tissue of two Populus deltoides x P. trichocarpa F1 hybrid clones. Sequence analysis of a 2.4-kb cDNA confirmed its identity as a full-length PAl clone. The predicted amino acid sequence is conserved in comparison with that of PAL genes from several other plants. Southern blot analysis of popular genomic DNA from parental and hybrid individuals, restriction site polymorphism in PAL cDNA clones, and sequence heterogeneity in the 3' ends of several cDNA clones suggested that PAL is encoded by at least two genes that can be distinguished by HindIII restriction site polymorphisms. Clones containing each type of PAL gene were isolated from a poplar genomic library. Analysis of the segregation of PAL-specific HindIII restriction fragment-length polymorphisms demonstrated the existence of two independently segregating PAL loci, one of which was mapped to a linkage group of the poplar genetic map. Developmentally regulated PAL expression in poplar was analyzed using RNA blots. Highest expression was observed in young stems, apical buds, and young leaves. Expression was lower in older stems and undetectable in mature leaves. Cellular localization of PAL expression by in situ hybridization showed very high levels of expression in subepidermal cells of leaves early during leaf development. In stems and petioles, expression was associated with subepidermal cells and vascular tissues. PMID:8108506

  3. Informatic and genomic analysis of melanocyte cDNA libraries as a resource for the study of melanocyte development and function.

    PubMed

    Baxter, Laura L; Hsu, Benjamin J; Umayam, Lowell; Wolfsberg, Tyra G; Larson, Denise M; Frith, Martin C; Kawai, Jun; Hayashizaki, Yoshihide; Carninci, Piero; Pavan, William J

    2007-06-01

    As part of the RIKEN mouse encyclopedia project, two cDNA libraries were prepared from melanocyte-derived cell lines, using techniques of full-length clone selection and subtraction/normalization to enrich for rare transcripts. End sequencing showed that these libraries display over 83% complete coding sequence at the 5' end and 96-97% complete coding sequence at the 3' end. Evaluation of the libraries, derived from B16F10Y tumor cells and melan-c cells, revealed that they contain clones for a majority of the genes previously demonstrated to function in melanocyte biology. Analysis of genomic locations for transcripts revealed that the distribution of melanocyte genes is non-random throughout the genome. Three genomic regions identified that showed significant clustering of melanocyte-expressed genes contain one or more genes previously shown to regulate melanocyte development or function. A catalog of genes expressed in these libraries is presented, providing a valuable resource of cDNA clones and sequence information that can be used for identification of new genes important for melanocyte development, function, and disease.

  4. Cloning, characterization, and expression of Cytochrome b ( Cytb)—a key mitochondrial gene from Prorocentrum donghaiense

    NASA Astrophysics Data System (ADS)

    Zhao, Liyuan; Mi, Tiezhu; Zhen, Yu; Yu, Zhigang

    2012-05-01

    Mitochondrial cytochrome b (Cytb), one of the few proteins encoded by the mitochondrial DNA, plays an important role in transferring electrons. As a mitochondrial gene, it has been widely used for phylogenetic analysis. Previously, a 949-bp fragment of the coding gene and mRNA editing were characterized from Prorocentrum donghaiense, which might prove useful for resolving P. donghaiense from closely related species. However, the full-length coding region has not been characterized. In this study, we used rapid amplification of cDNA ends (RACE) to obtain full-length, 1 124 bp cDNA. Cytb transcript contained a standard initiation codon ATG, but did not have a recognizable stop codon. Homology comparison showed that the P. donghaiense Cytb had a high sequence identity to Cytb sequences from other dinoflagellate species. Phylogenetic analysis placed Cytb from P. donghaiense in the clade of dinoflagellates and it clustered together strongly with that from P. minimum. Based on the full-length sequence, we inferred 32 editing events at different positions, accounting for 2.93% of the Cytb gene. 34.4% (11) of the changes were A to G, 25% (8) were T to C, and 25% (8) were C to U, with smaller proportions of G to C and G to A edits (9.4% (3) and 6.2% (2), respectively). The expression level of the Cytb transcript was quantified by real-time PCR with a TaqMan probe at different times during the whole growth phase. The average Cytb transcript was present at 39.27±7.46 copies of cDNA per cell during the whole growth cycle, and the expression of Cytb was relatively stable over the different phases. These results deepen our understanding of the structure and characteristics of Cytb in P. donghaiense, and confirmed that Cytb in P. donghaiense is a candidate reference gene for studying the expression of other genes.

  5. Molecular cloning of hsf1 and hsbp1 cDNAs, and the expression of hsf1, hsbp1 and hsp70 under heat stress in the sea cucumber Apostichopus japonicus.

    PubMed

    Xu, Dongxue; Sun, Lina; Liu, Shilin; Zhang, Libin; Yang, Hongsheng

    2016-08-01

    The heat shock response (HSR) is known for the elevated synthesis of heat shock proteins (HSPs) under heat stress, which is mediated primarily by heat shock factor 1 (HSF1). Heat shock factor binding protein 1 (HSBP1) and feedback control of heat shock protein 70 (HSP70) are major regulators of the activity of HSF1. We obtained full-length cDNA of genes hsf1 and hsbp1 in the sea cucumber Apostichopus japonicus, which are the second available for echinoderm (after Strongylocentrotus purpuratus), and the first available for holothurian. The full-length cDNA of hsf1 was 2208bp, containing a 1326bp open reading frame encoding 441 amino acids. The full-length cDNA of hsbp1 was 2850bp, containing a 225bp open reading frame encoding 74 amino acids. The similarities of A. japonicus HSF1 with other species are low, and much higher similarity identities of A. japonicus HSBP1 were shared. Phylogenetic trees showed that A. japonicus HSF1 and HSBP1 were clustered with sequences from S. purpuratus, and fell into distinct clades with sequences from mollusca, arthropoda and vertebrata. Analysis by real-time PCR showed hsf1 and hsbp1 mRNA was expressed constitutively in all tissues examined. The expression of hsf1, hsbp1 and hsp70 in the intestine at 26°C was time-dependent. The results of this study might provide new insights into the regulation of heat shock response in this species. Copyright © 2016. Published by Elsevier Inc.

  6. Characterization of capsaicin synthase and identification of its gene (csy1) for pungency factor capsaicin in pepper (Capsicum sp.)

    PubMed Central

    Prasad, B. C. Narasimha; Kumar, Vinod; Gururaj, H. B.; Parimalan, R.; Giridhar, P.; Ravishankar, G. A.

    2006-01-01

    Capsaicin is a unique alkaloid of the plant kingdom restricted to the genus Capsicum. Capsaicin is the pungency factor, a bioactive molecule of food and of medicinal importance. Capsaicin is useful as a counterirritant, antiarthritic, analgesic, antioxidant, and anticancer agent. Capsaicin biosynthesis involves condensation of vanillylamine and 8-methyl nonenoic acid, brought about by capsaicin synthase (CS). We found that CS activity correlated with genotype-specific capsaicin levels. We purified and characterized CS (≈35 kDa). Immunolocalization studies confirmed that CS is specifically localized to the placental tissues of Capsicum fruits. Western blot analysis revealed concomitant enhancement of CS levels and capsaicin accumulation during fruit development. We determined the N-terminal amino acid sequence of purified CS, cloned the CS gene (csy1) and sequenced full-length cDNA (981 bp). The deduced amino acid sequence of CS from full-length cDNA was 38 kDa. Functionality of csy1 through heterologous expression in recombinant Escherichia coli was also demonstrated. Here we report the gene responsible for capsaicin biosynthesis, which is unique to Capsicum spp. With this information on the CS gene, speculation on the gene for pungency is unequivocally resolved. Our findings have implications in the regulation of capsaicin levels in Capsicum genotypes. PMID:16938870

  7. Constructing and detecting a cDNA library for mites.

    PubMed

    Hu, Li; Zhao, YaE; Cheng, Juan; Yang, YuanJun; Li, Chen; Lu, ZhaoHui

    2015-10-01

    RNA extraction and construction of complementary DNA (cDNA) library for mites have been quite challenging due to difficulties in acquiring tiny living mites and breaking their hard chitin. The present study is to explore a better method to construct cDNA library for mites that will lay the foundation on transcriptome and molecular pathogenesis research. We selected Psoroptes cuniculi as an experimental subject and took the following steps to construct and verify cDNA library. First, we combined liquid nitrogen grinding with TRIzol for total RNA extraction. Then, switching mechanism at 5' end of the RNA transcript (SMART) technique was used to construct full-length cDNA library. To evaluate the quality of cDNA library, the library titer and recombination rate were calculated. The reliability of cDNA library was detected by sequencing and analyzing positive clones and genes amplified by specific primers. The results showed that the RNA concentration was 836 ng/μl and the absorbance ratio at 260/280 nm was 1.82. The library titer was 5.31 × 10(5) plaque-forming unit (PFU)/ml and the recombination rate was 98.21%, indicating that the library was of good quality. In the 33 expressed sequence tags (ESTs) of P. cuniculi, two clones of 1656 and 1658 bp were almost identical with only three variable sites detected, which had an identity of 99.63% with that of Psoroptes ovis, indicating that the cDNA library was reliable. Further detection by specific primers demonstrated that the 553-bp Pso c II gene sequences of P. cuniculi had an identity of 98.56% with those of P. ovis, confirming that the cDNA library was not only reliable but also feasible.

  8. Virtual Northern analysis of the human genome.

    PubMed

    Hurowitz, Evan H; Drori, Iddo; Stodden, Victoria C; Donoho, David L; Brown, Patrick O

    2007-05-23

    We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale. We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes were similar in both human and yeast. Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes.

  9. Construction of cDNA library and preliminary analysis of expressed sequence tags from Siberian tiger

    PubMed Central

    Liu, Chang-Qing; Lu, Tao-Feng; Feng, Bao-Gang; Liu, Dan; Guan, Wei-Jun; Ma, Yue-Hui

    2010-01-01

    In this study we successfully constructed a full-length cDNA library from Siberian tiger, Panthera tigris altaica, the most well-known wild Animal. Total RNA was extracted from cultured Siberian tiger fibroblasts in vitro. The titers of primary and amplified libraries were 1.30×106 pfu/ml and 1.62×109 pfu/ml respectively. The proportion of recombinants from unamplified library was 90.5% and average length of exogenous inserts was 1.13 kb. A total of 282 individual ESTs with sizes ranging from 328 to 1,142bps were then analyzed the BLASTX score revealed that 53.9% of the sequences were classified as strong match, 38.6% as nominal and 7.4% as weak match. 28.0% of them were found to be related to enzyme/catalytic protein, 20.9% ESTs to metabolism, 13.1% ESTs to transport, 12.1% ESTs to signal transducer/cell communication, 9.9% ESTs to structure protein, 3.9% ESTs to immunity protein/defense metabolism, 3.2% ESTs to cell cycle, and 8.9 ESTs classified as novel genes. These results demonstrated that the reliability and representativeness of the cDNA library attained to the requirements of a standard cDNA library. This library provided a useful platform for the functional genomic research of Siberian tigers. PMID:20941376

  10. Heat-shock response in a molluscan cell line: characterization of the response and cloning of an inducible HSP70 cDNA.

    PubMed

    Laursen, J R; di Liu, H; Wu, X J; Yoshino, T P

    1997-11-01

    Sublethal heat-shock of cells of the Bge (Biomphalaria glabrata embryonic) snail cell line resulted in increased or new expression of metabolically labeled polypeptides of approximately 21.5, 41, 70, and 74 kDa molecular mass. Regulation of this response appeared to be at the transcriptional level since a similar protein banding pattern was seen upon SDS-PAGE/fluorographic analysis of polypeptides produced by in vitro translation of total RNA from cells subjected to heat shock. Using a yeast (Saccharomyces cerevisiae) 70-kDa heat-shock protein (HSP70) probe to screen a cDNA library from heat-treated Bge cells, we isolated a full-length cDNA clone encoding a putative Bge HSP70. The cDNA was 2453 bp in length and contained an open reading frame of 1908 bp encoding a 636-amino-acid polypeptide with calculated molecular mass of 70,740 Da. Comparison of a conserved region of 209 amino acid residues revealed > 80% identity between the deduced amino acid sequence of Bge HSP70 and that of yeast (81%), the human blood fluke Schistosoma mansoni (for which B. glabrata serves as intermediate host) (81%), Drosophila (81%), human (84%), and the marine gastropod Aplysia californica (88%, 90%). In addition to the extensive sharing of sequence homology, the identification of several eukaryotic HSP70 signature sequences and an N-linked glycosylation site characteristic of cytoplasmic HSPs strongly support the identity of the Bge cDNA as encoding an authentic HSP70. Results of a Northern blot analysis, using Bge HSP70 clone-specific probes, indicated that gene expression was heat inducible and not constitutively expressed. This is the first reported sequence of an inducible HSP70 from cells originating from a freshwater gastropod and provides a first step in the development of a genetic transformation system for molluscs of medical importance.

  11. Cloning and characterization of a cDNA encoding topoisomerase II in pea and analysis of its expression in relation to cell proliferation.

    PubMed

    Reddy, M K; Nair, S; Tewari, K K; Mudgil, Y; Yadav, B S; Sopory, S K

    1999-09-01

    We have isolated and sequenced four overlapping cDNA clones to identify the full-length cDNA for topoisomerase II (PsTopII) from pea. Using degenerate primers, based on the conserved amino acid sequences of other eukaryotic type II topoisomerases, a 680 bp fragment was PCR-amplified with pea cDNA as template. This fragment was used as a probe to screen an oligo-dT-primed pea cDNA library. A partial cDNA clone was isolated that was truncated at the 3' end. RACE-PCR was employed to isolate the remaining portion of the gene. The total size of PsTopII is 4639 bp with an open reading frame of 4392 bp. The deduced amino acid sequence shows a strong homology to other eukaryotic topoisomerase II (topo II) at the N-terminus end. The topo II transcript was abundant in proliferative tissues. We also show that the level of topo II transcripts could be stimulated by exogenous application of growth factors that induced proliferation in vitro cultures. Light irradiation to etiolated tissue strongly stimulated the expression of topo II. These results suggest that topo II gene expression is up-regulated in response to light and hormones and correlates with cell proliferation. Besides, we have also isolated and analysed the 5'-flanking region of the pea TopII gene. This is first report on the isolation of a putative promoter for topoisomerase II from plants.

  12. Identification and characterization of a DnaJ gene from red alga Pyropia yezoensis (Bangiales, Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Liu, Jiao; Li, Xianchao; Tang, Xuexi; Zhou, Bin

    2016-03-01

    Members of the DnaJ family are proteins that play a pivotal role in various cellular processes, such as protein folding, protein transport and cellular responses to stress. In the present study, we identified and characterized the full-length DnaJ cDNA sequence from expressed sequence tags of Pyropia yezoensis ( PyDnaJ) via rapid identification of cDNA ends. This cDNA encoded a protein of 429 amino acids, which shared high sequence similarity with other identified DnaJ proteins, such as a heat shock protein 40/DnaJ from Pyropia haitanensis. The relative mRNA expression level of PyDnaJ was investigated using real-time PCR to determine its specific expression during the algal life cycle and during desiccation. The relative mRNA expression level in sporophytes was higher than that in gametophytes and significantly increased during the whole desiccation process. These results indicate that PyDnaJ is an authentic member of the DnaJ family in plants and red algae and might play a pivotal role in mitigating damage to P. yezoensis during desiccation.

  13. Saponin Biosynthesis in Saponaria vaccaria. cDNAs Encoding β-Amyrin Synthase and a Triterpene Carboxylic Acid Glucosyltransferase1[OA

    PubMed Central

    Meesapyodsuk, Dauenpen; Balsevich, John; Reed, Darwin W.; Covello, Patrick S.

    2007-01-01

    Saponaria vaccaria (Caryophyllaceae), a soapwort, known in western Canada as cowcockle, contains bioactive oleanane-type saponins similar to those found in soapbark tree (Quillaja saponaria; Rosaceae). To improve our understanding of the biosynthesis of these saponins, a combined polymerase chain reaction and expressed sequence tag approach was taken to identify the genes involved. A cDNA encoding a β-amyrin synthase (SvBS) was isolated by reverse transcription-polymerase chain reaction and characterized by expression in yeast (Saccharomyces cerevisiae). The SvBS gene is predominantly expressed in leaves. A S. vaccaria developing seed expressed sequence tag collection was developed and used for the isolation of a full-length cDNA bearing sequence similarity to ester-forming glycosyltransferases. The gene product of the cDNA, classified as UGT74M1, was expressed in Escherichia coli, purified, and identified as a triterpene carboxylic acid glucosyltransferase. UGT74M1 is expressed in roots and leaves and appears to be involved in monodesmoside biosynthesis in S. vaccaria. PMID:17172290

  14. Cloning of a cDNA encoding rat aldehyde dehydrogenase with high activity for retinal oxidation.

    PubMed

    Bhat, P V; Labrecque, J; Boutin, J M; Lacroix, A; Yoshida, A

    1995-12-12

    Retinoic acid (RA), an important regulator of cell differentiation, is biosynthesized from retinol via retinal by a two-step oxidation process. We previously reported the purification and partial amino acid (aa) sequence of a rat kidney aldehyde dehydrogenase (ALDH) isozyme that catalyzed the oxidation of 9-cis and all-trans retinal to corresponding RA with high efficiency [Labrecque et al. Biochem. J. 305 (1995) 681-684]. A rat kidney cDNA library was screened using a 291-bp PCR product generated from total kidney RNA using a pair of oligodeoxyribonucleotide primers matched with the aa sequence. The full-length rat kidney ALDH cDNA contains a 2315-bp (501 aa) open reading frame (ORF). The aa sequence of rat kidney ALDH is 89, 96 and 87% identical to that of the rat cytosolic ALDH, the mouse cytosolic ALDH and human cytosolic ALDH, respectively. Northern blot and RT-PCR-mediated analysis demonstrated that rat kidney ALDH is strongly expressed in kidney, lung, testis, intestine, stomach and trachea, but weakly in the liver.

  15. Generation and Analysis of a Large-Scale Expressed Sequence Tag Database from a Full-Length Enriched cDNA Library of Developing Leaves of Gossypium hirsutum L

    PubMed Central

    Pang, Chaoyou; Fan, Shuli; Song, Meizhen; Yu, Shuxun

    2013-01-01

    Background Cotton (Gossypium hirsutum L.) is one of the world’s most economically-important crops. However, its entire genome has not been sequenced, and limited resources are available in GenBank for understanding the molecular mechanisms underlying leaf development and senescence. Methodology/Principal Findings In this study, 9,874 high-quality ESTs were generated from a normalized, full-length cDNA library derived from pooled RNA isolated from throughout leaf development during the plant blooming stage. After clustering and assembly of these ESTs, 5,191 unique sequences, representative 1,652 contigs and 3,539 singletons, were obtained. The average unique sequence length was 682 bp. Annotation of these unique sequences revealed that 84.4% showed significant homology to sequences in the NCBI non-redundant protein database, and 57.3% had significant hits to known proteins in the Swiss-Prot database. Comparative analysis indicated that our library added 2,400 ESTs and 991 unique sequences to those known for cotton. The unigenes were functionally characterized by gene ontology annotation. We identified 1,339 and 200 unigenes as potential leaf senescence-related genes and transcription factors, respectively. Moreover, nine genes related to leaf senescence and eleven MYB transcription factors were randomly selected for quantitative real-time PCR (qRT-PCR), which revealed that these genes were regulated differentially during senescence. The qRT-PCR for three GhYLSs revealed that these genes express express preferentially in senescent leaves. Conclusions/Significance These EST resources will provide valuable sequence information for gene expression profiling analyses and functional genomics studies to elucidate their roles, as well as for studying the mechanisms of leaf development and senescence in cotton and discovering candidate genes related to important agronomic traits of cotton. These data will also facilitate future whole-genome sequence assembly and annotation in G. hirsutum and comparative genomics among Gossypium species. PMID:24146870

  16. Human somatostatin I: sequence of the cDNA.

    PubMed Central

    Shen, L P; Pictet, R L; Rutter, W J

    1982-01-01

    RNA has been isolated from a human pancreatic somatostatinoma and used to prepare a cDNA library. After prescreening, clones containing somatostatin I sequences were identified by hybridization with an anglerfish somatostatin I-cloned cDNA probe. From the nucleotide sequence of two of these clones, we have deduced an essentially full-length mRNA sequence, including the preprosomatostatin coding region, 105 nucleotides from the 5' untranslated region and the complete 150-nucleotide 3' untranslated region. The coding region predicts a 116-amino acid precursor protein (Mr, 12.727) that contains somatostatin-14 and -28 at its COOH terminus. The predicted amino acid sequence of human somatostatin-28 is identical to that of somatostatin-28 isolated from the porcine and ovine species. A comparison of the amino acid sequences of human and anglerfish preprosomatostatin I indicated that the COOH-terminal region encoding somatostatin-14 and the adjacent 6 amino acids are highly conserved, whereas the remainder of the molecule, including the signal peptide region, is more divergent. However, many of the amino acid differences found in the pro region of the human and anglerfish proteins are conservative changes. This suggests that the propeptides have a similar secondary structure, which in turn may imply a biological function for this region of the molecule. Images PMID:6126875

  17. Identification and expression analysis of duck interleukin-17D in Riemeralla anatipestifer infection

    USDA-ARS?s Scientific Manuscript database

    Interleukin (IL)-17D is a proinflammatory cytokine with limited information on its biological functions. Here we provide the description of the sequence, bioactivity, and mRNA expression profile of duck IL-17D homologue. A full-length duck IL-17D (duIL-17D) cDNA with a 624-bp coding region was ident...

  18. [Cloning of Chinese Banna minipig inbred-line alpha1,3-galactosyltransferase gene and construction of its recombinant eukaryotic expression vector].

    PubMed

    Zhu, Shengming; Wang, Yanping; Zheng, Hong; Cheng, Jingqiu; Lu, Yanrong; Zeng, Yangzhi; Wang, Yu; Wang, Zhu

    2009-04-01

    This study sought to clone Chinese Banna minipig inbred-line (BMI) alpha1,3-galactosyltransferase (alpha1,3-GT) gene and construct its recombinant eukaryotic expression vector. Total RNA was isolated from BMI liver. Full length cDNA of alpha1,3-GT gene was amplified by RT-PCR and cloned into pMD18-T vector to sequence. Subsequently, alpha1,3-GT gene was inserted into pEGFP-N1 to construct eukaryotic expression vector pEGFP-N1-GT. Then the reconstructed plasmid pEGFP-N1-GT was transiently transfected into human lung cancer cell line A549. The expression of alpha1,3-GT mRNA in transfected cells was detected by RT-PCR. FITC-BS-IB4 lectin was used in the direct immunofluorescence method, which was performed to observe the alpha-Gal synthesis function of BMI alpha1,3-GT in transfected cells. The results showed that full length of BMI alpha1,3-GT cDNA was 1116 bp. BMI alpha1,3-GT cDNA sequence was highly homogenous with those of mouse and bovine, and was exactly the same as the complete sequence of those of swine, pEGFP-N1-GT was confirmed by enzyme digestion and PCR. The expression of alpha1,3-GT mRNA was detected in A549 cells transfected by pEGFP-N1-GT. The expression of alpha-Gal was observed on the membrane of A549 cells transfected by pEGFP-N1-GT. Successful cloning of BMI alpha1,3-GT cDNA and construction of its eukaryotic expression vector have established a foundation for further research and application of BMI alpha1,3-GT in the fields of xenotransplantation and immunological therapy of cancer.

  19. Molecular characterization and expression analysis of ubiquitin-activating enzyme E1 gene in Citrus reticulata.

    PubMed

    Miao, Hong-Xia; Qin, Yong-Hua; Ye, Zi-Xing; Hu, Gui-Bing

    2013-01-25

    Ubiquitin-activating enzyme E1 (UBE1) catalyzes the first step in the ubiquitination reaction, which targets a protein for degradation via a proteasome pathway. UBE1 plays an important role in metabolic processes. In this study, full-length cDNA and DNA sequences of UBE1 gene, designated CrUBE1, were obtained from 'Wuzishatangju' (self-incompatible, SI) and 'Shatangju' (self-compatible, SC) mandarins. 5 amino acids and 8 bases were different in cDNA and DNA sequences of CrUBE1 between 'Wuzishatangju' and 'Shatangju', respectively. Southern blot analysis showed that there existed only one copy of the CrUBE1 gene in genome of 'Wuzishatangju' and 'Shatangju'. The temporal and spatial expression characteristics of the CrUBE1 gene were investigated using semi-quantitative RT-PCR (SqPCR) and quantitative real-time PCR (qPCR). The expression level of the CrUBE1 gene in anthers of 'Shatangju' was approximately 10-fold higher than in anthers of 'Wuzishatangju'. The highest expression level of CrUBE1 was detected in pistils at 7days after self-pollination of 'Wuzishatangju', which was approximately 5-fold higher than at 0 h. To obtain CrUBE1 protein, the full-length cDNA of CrUBE1 genes from 'Wuzishatangju' and 'Shatangju' were successfully expressed in Pichia pastoris. Pollen germination frequency of 'Wuzishatangju' was significantly inhibited with increasing of CrUBE1 protein concentrations from 'Wuzishatangju'. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Cloning of the cDNA for U1 small nuclear ribonucleoprotein particle 70K protein from Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Czernik, A. J.; An, G.; Poovaiah, B. W.

    1992-01-01

    We cloned and sequenced a plant cDNA that encodes U1 small nuclear ribonucleoprotein (snRNP) 70K protein. The plant U1 snRNP 70K protein cDNA is not full length and lacks the coding region for 68 amino acids in the amino-terminal region as compared to human U1 snRNP 70K protein. Comparison of the deduced amino acid sequence of the plant U1 snRNP 70K protein with the amino acid sequence of animal and yeast U1 snRNP 70K protein showed a high degree of homology. The plant U1 snRNP 70K protein is more closely related to the human counter part than to the yeast 70K protein. The carboxy-terminal half is less well conserved but, like the vertebrate 70K proteins, is rich in charged amino acids. Northern analysis with the RNA isolated from different parts of the plant indicates that the snRNP 70K gene is expressed in all of the parts tested. Southern blotting of genomic DNA using the cDNA indicates that the U1 snRNP 70K protein is coded by a single gene.

  1. Deciphering of the Dual oxidase (Nox family) gene from kuruma shrimp, Marsupenaeus japonicus: full-length cDNA cloning and characterization.

    PubMed

    Inada, Mari; Kihara, Keisuke; Kono, Tomoya; Sudhakaran, Raja; Mekata, Tohru; Sakai, Masahiro; Yoshida, Terutoyo; Itami, Toshiaki

    2013-02-01

    In many physiological processes, including the innate immune system, free radicals such as nitric oxide (NO) and reactive oxygen species (ROS) play significant roles. In humans, 2 homologs of Dual oxidases (Duox) generate hydrogen peroxide (H(2)O(2)), which is a type of ROS. Here, we report the identification and characterization of a Duox from kuruma shrimp, Marsupenaeus japonicus. The full-length cDNA sequence of the M. japonicus Dual oxidase (MjDuox) gene contains 4695 bp and was generated using reverse transcriptase-polymerase chain reaction (RT-PCR) and random amplification of cDNA ends (RACE). The open reading frame of MjDuox encodes a protein of 1498 amino acids with an estimated mass of 173 kDa. In a homology analysis using amino acid sequences, MjDuox exhibited 69.3% sequence homology with the Duox of the red flour beetle, Tribolium castaneum. A transcriptional analysis revealed that the MjDuox mRNA is highly expressed in the gills of healthy kuruma shrimp. In the gills, MjDuox expression reached its peak 60 h after injection with WSSV and decreased to its normal level at 72 h. In gene knockdown experiments of free radical-generating enzymes, the survival rates decreased during the early stages of a white spot syndrome virus (WSSV) infection following the knockdown of the NADPH oxidase (MjNox) or MjDuox genes. In the present study, the identification, cloning and gene knockdown of the kuruma shrimp MjDuox are reported. Duoxes have been identified in vertebrates and some insects; however, few reports have investigated Duoxes in crustaceans. This study is the first to identify and clone a Dual oxidase from a crustacean species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Characterization of Toll-like receptor 3 gene in large yellow croaker, Pseudosciaena crocea.

    PubMed

    Huang, Xue-Na; Wang, Zhi-Yong; Yao, Cui-Luan

    2011-07-01

    Toll-like receptor 3 (TLR3) plays an important role in innate immune responses. In this report, the full-length cDNA sequence and genomic structure of Pseudosciaena crocea TLR3 (PcTLR3) were identified and characterized. The full-length cDNA of PcTLR3 was of 3384 bp, including a 5'-terminal untranslated region (UTR) of 65 bp, a 3'-terminal UTR of 589 bp and an open reading frame (ORF) of 2730 bp encoding a polypeptide of 909 amino acid residues. The full-length genome sequence of PcTLR3 was composed of 5721 nucleotides, including five exons and four introns. The putative PcTLR3 protein contained a signal peptide sequence, 16 leucine-rich repeat (LRR) motifs, a transmembrane region and a Toll/interleukin-1 receptor (TIR) domain. Quantitative real-time reverse transcription PCR analysis revealed a broad expression of PcTLR3 in most tissues, with the predominant expression in liver, then intestine, and the weakest expression in blood cells. The expression of PcTLR3 after injection with poly inosinic:cytidylic (I:C) and Vibrio parahemolyticus was tested in spleen, blood cells and liver. The results indicated that PcTLR3 transcripts could be induced in the three tissues by injection with poly I:C. The highest expression was in the blood cells with 43.5 times (at 6h) greater expression than in the control (p<0.05). In addition, after V. parahemolyticus challenge, a moderate up-regulation and down-regulation of PcTLR3 was found in blood cells and liver, respectively. Our results suggested that PcTLR3 might play an important role in fish's defense against both viral and bacterial infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Genomic Analysis of Vaccine-Derived Poliovirus Strains in Stool Specimens by Combination of Full-Length PCR and Oligonucleotide Microarray Hybridization

    PubMed Central

    Laassri, Majid; Dragunsky, Eugenia; Enterline, Joan; Eremeeva, Tatiana; Ivanova, Olga; Lottenbach, Kathleen; Belshe, Robert; Chumakov, Konstantin

    2005-01-01

    Sabin strains of poliovirus used in the manufacture of oral poliovirus vaccine (OPV) are prone to genetic variations that occur during growth in cell cultures and the organisms of vaccine recipients. Such derivative viruses often have increased neurovirulence and transmissibility, and in some cases they can reestablish chains of transmission in human populations. Monitoring for vaccine-derived polioviruses is an important part of the worldwide campaign to eradicate poliomyelitis. Analysis of vaccine-derived polioviruses requires, as a first step, their isolation in cell cultures, which takes significant time and may yield viral stocks that are not fully representative of the strains present in the original sample. Here we demonstrate that full-length viral cDNA can be PCR amplified directly from stool samples and immediately subjected to genomic analysis by oligonucleotide microarray hybridization and nucleotide sequencing. Most fecal samples from healthy children who received OPV were found to contain variants of Sabin vaccine viruses. Sequence changes in the 5′ untranslated region were common, as were changes in the VP1-coding region, including changes in a major antigenic site. Analysis of stool samples taken from cases of acute flaccid paralysis revealed the presence of mixtures of recombinant polioviruses, in addition to the emergence of new sequence variants. Avoiding the need for cell culture isolation dramatically shortened the time needed for identification and analysis of vaccine-derived polioviruses and could be useful for preliminary screening of clinical samples. The amplified full-length viral cDNA can be archived and used to recover live virus for further virological studies. PMID:15956413

  4. Sequence of a cDNA and expression of the gene encoding a putative epidermal chitin synthase of Manduca sexta.

    PubMed

    Zhu, Yu-Cheng; Specht, Charles A; Dittmer, Neal T; Muthukrishnan, Subbaratnam; Kanost, Michael R; Kramer, Karl J

    2002-11-01

    Glycosyltransferases are enzymes that synthesize oligosaccharides, polysaccharides and glycoconjugates. One type of glycosyltransferase is chitin synthase, a very important enzyme in biology, which is utilized by insects, fungi, and other invertebrates to produce chitin, a polysaccharide of beta-1,4-linked N-acetylglucosamine. Chitin is an important component of the insect's exoskeletal cuticle and gut lining. To identify and characterize a chitin synthase gene of the tobacco hornworm, Manduca sexta, degenerate primers were designed from two highly conserved regions in fungal and nematode chitin synthase protein sequences and then used to amplify a similar region from Manduca cDNA. A full-length cDNA of 5152 nucleotides was assembled for the putative Manduca chitin synthase gene, MsCHS1, and sequencing of genomic DNA verified the contiguity of the sequence. The MsCHS1 cDNA has an ORF of 4692 nucleotides that encodes a transmembrane protein of 1564 amino acid residues with a mass of approximately 179 kDa (GenBank no. AY062175). It is most similar, over its entire length of protein sequence, to putative chitin synthases from other insects and nematodes, with 68% identity to enzymes from both the blow fly, Lucilia cuprina, and the fruit fly, Drosophila melanogaster. The similarity with fungal chitin synthases is restricted to the putative catalytic domain, and the MsCHS1 protein has, at equivalent positions, several amino acids that are essential for activity as revealed by mutagenesis of the fungal enzymes. A 5.3-kb transcript of MsCHS1 was identified by northern blot hybridization of RNA from larval epidermis, suggesting that the enzyme functions to make chitin deposited in the cuticle. Further examination by RT-PCR showed that MsCHS1 expression is regulated in the epidermis, with the amount of transcript increasing during phases of cuticle deposition.

  5. Characterization of infectious Murray Valley encephalitis virus derived from a stably cloned genome-length cDNA.

    PubMed

    Hurrelbrink, R J; Nestorowicz, A; McMinn, P C

    1999-12-01

    An infectious cDNA clone of Murray Valley encephalitis virus prototype strain 1-51 (MVE-1-51) was constructed by stably inserting genome-length cDNA into the low-copy-number plasmid vector pMC18. Designated pMVE-1-51, the clone consisted of genome-length cDNA of MVE-1-51 under the control of a T7 RNA polymerase promoter. The clone was constructed by using existing components of a cDNA library, in addition to cDNA of the 3' terminus derived by RT-PCR of poly(A)-tailed viral RNA. Upon comparison with other flavivirus sequences, the previously undetermined sequence of the 3' UTR was found to contain elements conserved throughout the genus FLAVIVIRUS: RNA transcribed from pMVE-1-51 and subsequently transfected into BHK-21 cells generated infectious virus. The plaque morphology, replication kinetics and antigenic profile of clone-derived virus (CDV-1-51) was similar to the parental virus in vitro. Furthermore, the virulence properties of CDV-1-51 and MVE-1-51 (LD(50) values and mortality profiles) were found to be identical in vivo in the mouse model. Through site-directed mutagenesis, the infectious clone should serve as a valuable tool for investigating the molecular determinants of virulence in MVE virus.

  6. Development and analysis of a tick-borne encephalitis virus infectious clone using a novel and rapid strategy.

    PubMed

    Gritsun, T S; Gould, E A

    1998-12-01

    In less than 1 month we have constructed an infectious clone of attenuated tick-borne encephalitis virus (strain Vasilchenko) from 100 microl of unpurified virus suspension using long high fidelity PCR and a modified bacterial cloning system. Optimization of the 3' antisense primer concentration was essential to achieve PCR synthesis of an 11 kb cDNA copy of RNA from infectious virus. A novel system utilising two antisense primers, a 14-mer for reverse transcription and a 35-mer for long PCR, produced high yields of genomic length cDNA. Use of low copy number Able K cells and an incubation temperature of 28 degrees C increased the genetic stability of cloned cDNA. Clones containing 11 kb cDNA inserts produced colonies of reduced size, thus providing a positive selection system for full length clones. Sequencing of the infectious clone emphasised the improved fidelity of the method compared with conventional PCR and cloning methods. A simple and rapid strategy for genetic manipulation of the infectious clone is also described. These developments represent a significant advance in recombinant technology and should be applicable to positive stranded RNA viruses which cannot easily be purified or genetically manipulated.

  7. Virtual Northern Analysis of the Human Genome

    PubMed Central

    Hurowitz, Evan H.; Drori, Iddo; Stodden, Victoria C.; Donoho, David L.; Brown, Patrick O.

    2007-01-01

    Background We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale. Methodology/Principal Findings We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes were similar in both human and yeast. Conclusions/Significance Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes. PMID:17520019

  8. Wound induced Beta vulgaris polygalacturonase-inhibiting protein genes encode a longer leucine-rich repeat domain and inhibit fungal polygalacturonases

    USDA-ARS?s Scientific Manuscript database

    Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins involved in plant defense. Sugar beet (Beta vulgaris L.) PGIP genes, BvPGIP1, BvPGIP2 and BvPGIP3, were isolated from two breeding lines, F1016 and F1010. Full-length cDNA sequences of the three BvPGIP genes encod...

  9. Molecular cloning, sequence analysis and homology modeling of the first caudata amphibian antifreeze-like protein in axolotl (Ambystoma mexicanum).

    PubMed

    Zhang, Songyan; Gao, Jiuxiang; Lu, Yiling; Cai, Shasha; Qiao, Xue; Wang, Yipeng; Yu, Haining

    2013-08-01

    Antifreeze proteins (AFPs) refer to a class of polypeptides that are produced by certain vertebrates, plants, fungi, and bacteria and which permit their survival in subzero environments. In this study, we report the molecular cloning, sequence analysis and three-dimensional structure of the axolotl antifreeze-like protein (AFLP) by homology modeling of the first caudate amphibian AFLP. We constructed a full-length spleen cDNA library of axolotl (Ambystoma mexicanum). An EST having highest similarity (∼42%) with freeze-responsive liver protein Li16 from Rana sylvatica was identified, and the full-length cDNA was subsequently obtained by RACE-PCR. The axolotl antifreeze-like protein sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 93 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein were 10128.6 Da and 8.97, respectively. The molecular characterization of this gene and its deduced protein were further performed by detailed bioinformatics analysis. The three-dimensional structure of current AFLP was predicted by homology modeling, and the conserved residues required for functionality were identified. The homology model constructed could be of use for effective drug design. This is the first report of an antifreeze-like protein identified from a caudate amphibian.

  10. ILG1 : a new integrase-like gene that is a marker of bacterial contamination by the laboratory Escherichia coli strain TOP10F'.

    PubMed Central

    Tian, Wenzhi; Chua, Kevin; Strober, Warren; Chu, Charles C.

    2002-01-01

    BACKGROUND: Identification of differentially expressed genes between normal and diseased states is an area of intense current medical research that can lead to the discovery of new therapeutic targets. However, isolation of differentially expressed genes by subtraction often suffers from unreported contamination of the resulting subtraction library with clones containing DNA sequences not from the original RNA samples. MATERIALS AND METHODS: Subtraction using cDNA representational difference analysis (RDA) was performed on human B cells from normal or common variable immunodeficiency patients. The material remaining after the subtraction was cloned and individual clones were sequenced. The sequence of one clone with similarity to integrases (ILG1, integrase-like gene-1) was used to obtain the full length cDNA sequence and as a probe for the presence of this sequence in RNA or genomic DNA samples. RESULTS: After five rounds of cDNA RDA, 23.3% of the clones from the resulting subtraction library contained Escherichia coli DNA. In addition, three clones contained the sequence of a new integrase, ILG1. The full length cDNA sequence of ILG1 exhibits prokaryotic, but not eukaryotic, features. At the DNA level, ILG1 is not similar to any known gene. At the protein level, ILG1 has 58% similarity to integrases from the cryptic P4 bacteriophage family (S clade). The catalytic domain of ILG1 contains the conserved features found in site-specific recombinases. The critical residues that form the catalytic active site pocket are conserved, including the highly conserved R-H-R-Y hallmark of these recombinases. Interestingly, ILG1 was not present in the original B cell populations. By probing genomic DNA, ILG1 could only be detected in the E. coli TOP10F' strain used in our laboratory for molecular cloning, but not in any of its precursor strains, including TOP10. Furthermore, bacteria cultured from the mouth of the laboratory worker who performed cDNA RDA were also positive for ILG1. CONCLUSIONS: In the course of our studies using cDNA RDA, we have isolated and identified ILG1, a likely active site-specific recombinase and new member of the bacteriophage P4 family of integrases. This family of integrases is implicated in the horizontal DNA transfer of pathogenic genes between bacterial species, such as those found in pathogenic strains of E. coli, Shigella, Yersinia, and Vibrio cholera. Using ILG1 as a marker of our laboratory E. coli strain TOP10F', our evidence suggests that contaminating bacterial DNA in our subtraction experiment is due to this laboratory bacterial strain, which colonized exposed surfaces of the laboratory worker. Thus, identification of differentially expressed genes between normal and diseased states could be dramatically improved by using extra precaution to prevent bacterial contamination of samples. PMID:12393938

  11. The Lipopolysaccharide and β-1,3-Glucan Binding Protein Gene Is Upregulated in White Spot Virus-Infected Shrimp (Penaeus stylirostris)

    PubMed Central

    Roux, Michelle M.; Pain, Arnab; Klimpel, Kurt R.; Dhar, Arun K.

    2002-01-01

    Pattern recognition proteins such as lipopolysaccharide and β-1,3-glucan binding protein (LGBP) play an important role in the innate immune response of crustaceans and insects. Random sequencing of cDNA clones from a hepatopancreas cDNA library of white spot virus (WSV)-infected shrimp provided a partial cDNA (PsEST-289) that showed similarity to the LGBP gene of crayfish and insects. Subsequently full-length cDNA was cloned by the 5′-RACE (rapid amplification of cDNA ends) technique and sequenced. The shrimp LGBP gene is 1,352 bases in length and is capable of encoding a polypeptide of 376 amino acids that showed significant similarity to homologous genes from crayfish, insects, earthworms, and sea urchins. Analysis of the shrimp LGBP deduced amino acid sequence identified conserved features of this gene family including a potential recognition motif for β-(1→3) linkage of polysaccharides and putative RGD cell adhesion sites. It is known that LGBP gene expression is upregulated in bacterial and fungal infection and that the binding of lipopolysaccharide and β-1,3-glucan to LGBP activates the prophenoloxidase (proPO) cascade. The temporal expression of LGBP and proPO genes in healthy and WSV-challenged Penaeus stylirostris shrimp was measured by real-time quantitative reverse transcription-PCR, and we showed that LGBP gene expression in shrimp was upregulated as the WSV infection progressed. Interestingly, the proPO expression was upregulated initially after infection followed by a downregulation as the viral infection progressed. The downward trend in the expression of proPO coincided with the detection of WSV in the infected shrimp. Our data suggest that shrimp LGBP is an inducible acute-phase protein that may play a critical role in shrimp-WSV interaction and that the WSV infection regulates the activation and/or activity of the proPO cascade in a novel way. PMID:12072514

  12. Trees Containing Built-In Pulping Catalysts - Final Report - 08/18/1997 - 08/18/2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pullman, G.; Dimmel, D.; Peter, G.

    2000-08-18

    Several hardwood and softwood trees were analyzed for the presence of anthraquinone-type molecules. Low levels of anthraquinone (AQ) and anthrone components were detected using gas chromatography-mass spectroscopy and sensitive selected-ion monitoring techniques. Ten out of seventeen hardwood samples examined contained AQ-type components; however, the levels were typically below {approximately}6 ppm. No AQs were observed in the few softwood samples that were examined. The AQs were more concentrated in the heartwood of teak than in the sapwood. The delignification of pine was enhanced by the addition of teak chips ({approximately}0.7% AQ-equivalence content) to the cook, suggesting that endogenous AQs can bemore » released from wood during pulping and can catalyze delignification reactions. Eastern cottonwood contained AQ, methyl AQ, and dimethyl AQ, all useful for wood pulping. This is the first time unsubstituted AQ has been observed in wood extracts. Due to the presence of these pulping catalysts, rapid growth rates in plantation settings, and the ease of genetic transformation, eastern cottonwood is a suitable candidate for genetic engineering studies to enhance AQ content. To achieve effective catalytic pulping activity, poplar and cottonwood, respectively, require {approximately}100 and 1000 times more for pulping catalysts. A strategy to increase AQ concentration in natural wood was developed and is currently being tested. This strategy involves ''turning up'' isochorismate synthase (ICS) through genetic engineering. Isochorismate synthase is the first enzyme in the AQ pathway branching from the shikimic acid pathway. In general, the level of enzyme activity at the first branch point or committed step controls the flux through a biosynthetic pathway. To test if the level of ICS regulates AQ biosynthesis in plant tissues, we proposed to over-express this synthase in plant cells. A partial cDNA encoding a putative ICS was available from the random cDNA sequencing project carried out with Arabidopsis thaliana. We used this putative plant ICS gene fragment to isolate and sequence a full-length ICS cDNA from Arabidopsis thaliana. The putative full-length cDNA encodes for a 569 amino acid protein of {approximately}62kDa. This sequence represents the first full-length ICS cDNA isolated from a plant. When inserted into E. coli, our isolated cDNA over-expressed ICS protein in the insoluble inclusion bodies. A plant expression vector containing the ICS cDNA, NP II for selection on the antibiotic kanamycin, and duplicated 35S-cauliflower mosaic virus promoter were inserted into Agrobacterium tumefaciens strain GV3101. Transformation experiments for insertion of these foreign genes into Populus deltoides 'C175' resulted in eight lines able to regenerate shoots and grow roots in the presence of kanamycin. Plants from these eight lines have acclimated to growth in sterile soil and will be moved to a greenhouse environment in spring 2001. Non rooted shoots from each line are currently being multiplied by shoot culture. When enough shoot tissue and/or greenhouse plant stem tissue is available, AQ analysis will be done and compared with non transformed control tissue.« less

  13. WebPrInSeS: automated full-length clone sequence identification and verification using high-throughput sequencing data.

    PubMed

    Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart

    2010-07-01

    High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users.

  14. WebPrInSeS: automated full-length clone sequence identification and verification using high-throughput sequencing data

    PubMed Central

    Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart

    2010-01-01

    High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users. PMID:20501601

  15. Sequencing and analysis of 10967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, R D; Chang, E; Petrescu, A

    2005-10-31

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection initiative. Here we present an analysis of 10967 clones (8049 from X. laevis and 2918 from X. tropicalis). The clone set contains 2013 orthologs between X. laevis and X. tropicalis as well as 1795 paralog pairs within X. laevis. 1199 are in-paralogs, believed to have resulted from an allotetraploidization event approximately 30 million years ago, and the remaining 546 are likely out-paralogs that have resulted from more ancient gene duplications, prior to the divergence betweenmore » the two species. We do not detect any evidence for positive selection by the Yang and Nielsen maximum likelihood method of approximating d{sub N}/d{sub S}. However, d{sub N}/d{sub S} for X. laevis in-paralogs is elevated relative to X. tropicalis orthologs. This difference is highly significant, and indicates an overall relaxation of selective pressures on duplicated gene pairs. Within both groups of paralogs, we found evidence of subfunctionalization, manifested as differential expression of paralogous genes among tissues, as measured by EST information from public resources. We have observed, as expected, a higher instance of subfunctionalization in out-paralogs relative to in-paralogs.« less

  16. Isolation and characterisation of a pod dehiscence zone-specific polygalacturonase from Brassica napus.

    PubMed

    Petersen, M; Sander, L; Child, R; van Onckelen, H; Ulvskov, P; Borkhardt, B

    1996-06-01

    Seven distinct partial cDNAs, similar in sequence to previously described polygalacturonases (PGs), were amplified from cDNA derived from rape pod wall, dehiscence zone and leaves by the polymerase chain reaction. Northern analysis showed that one clone, PG35-8, was expressed at low levels in the dehiscence zone during the first five weeks after anthesis but was very abundantly expressed at week 6. In contrast, no PG35-8-related RNA was detected in the pod wall. Our data suggest that there are temporal and spatial correlations between the breakdown of the middle lamella, of the dehiscence zone cells and the pattern of synthesis of PG35-8 transcripts which may indicate a role for this particular PG in rape pod dehiscence. PG35-8 was used to isolate five cDNA clones from a rape dehiscence zone cDNA library. Restriction enzyme analysis and partial sequencing revealed that they were derived from four highly homologous transcripts which are probably allelic forms of a single gene. One full-length clone, RDPG1, was completely sequenced. The predicted protein of RDPG1 showed its highest identity with PG from apple fruit with an identity of 52%.

  17. A novel gene, RSD-3/HSD-3.1, encodes a meiotic-related protein expressed in rat and human testis.

    PubMed

    Zhang, Xiaodong; Liu, Huixian; Zhang, Yan; Qiao, Yuan; Miao, Shiying; Wang, Linfang; Zhang, Jianchao; Zong, Shudong; Koide, S S

    2003-06-01

    The expression of stage-specific genes during spermatogenesis was determined by isolating two segments of rat seminiferous tubule at different stages of the germinal epithelium cycle delineated by transillumination-delineated microdissection, combined with differential display polymerase chain reaction to identify the differential transcripts formed. A total of 22 cDNAs were identified and accepted by GenBank as new expressed sequence tags. One of the expressed sequence tags was radiolabeled and used as a probe to screen a rat testis cDNA library. A novel full-length cDNA composed of 2228 bp, designated as RSD-3 (rat sperm DNA no.3, GenBank accession no. AF094609) was isolated and characterized. The reading frame encodes a polypeptide consisting of 526 amino acid residues, containing a number of DNA binding motifs and phosphorylation sites for PKC, CK-II, and p34cdc2. Northern blot of mRNA prepared from various tissues of adult rats showed that RSD-3 is expressed only in the testis. The initial expression of the RSD-3 gene was detected in the testis on the 30th postnatal day and attained adult level on the 60th postnatal day. Immunolocalization of RSD-3 in germ cells of rat testis showed that its expression is restricted to primary spermatocytes, undergoing meiosis division I. A human testis homologue of RSD-3 cDNA, designated as HSD-3.1 (GenBank accession no. AF144487) was isolated by screening the Human Testis Rapid-Screen arrayed cDNA library panels by RT-PCR. The exon-intron boundaries of HSD-3.1 gene were determined by aligning the cDNA sequence with the corresponding genome sequence. The cDNA consisted of 12 exons that span approximately 52.8 kb of the genome sequence and was mapped to chromosome 14q31.3.

  18. Complete nucleotide sequences and construction of full-length infectious cDNA clones of Cucumber green mottle virus (CGMMV) in a versatile newly developed binary vector including both 35S and T7 promoters

    USDA-ARS?s Scientific Manuscript database

    Seed-transmitted viruses have caused significant damage to watermelon crops in Korea in recent years, with Cucumber green mottle mosaic virus (CGMMV) infection widespread as a result of infected seed lots. To determine the likely origin of CGMMV infection, we collected CGMMV isolates from watermelon...

  19. Identification and characterization of a novel serine-threonine kinase gene from the Xp22 region.

    PubMed

    Montini, E; Andolfi, G; Caruso, A; Buchner, G; Walpole, S M; Mariani, M; Consalez, G; Trump, D; Ballabio, A; Franco, B

    1998-08-01

    Eukaryotic protein kinases are part of a large and expanding family of proteins. Through our transcriptional mapping effort in the Xp22 region, we have isolated and sequenced the full-length transcript of STK9, a novel cDNA highly homologous to serine-threonine kinases. A number of human genetic disorders have been mapped to the region where STK9 has been localized including Nance-Horan (NH) syndrome, oral-facial-digital syndrome type 1 (OFD1), and a novel locus for nonsyndromic sensorineural deafness (DFN6). To evaluate the possible involvement of STK9 in any of the above-mentioned disorders, a 2416-bp full-length cDNA was assembled. The entire genomic structure of the gene, which is composed of 20 coding exons, was determined. Northern analysis revealed a transcript larger than 9.5 kb in several tissues including brain, lung, and kidney. The mouse homologue (Stk9) was identified and mapped in the mouse in the region syntenic to human Xp. This location is compatible with the location of the Xcat mutant, which shows congenital cataracts very similar to those observed in NH patients. Sequence homologies, expression pattern, and mapping information in both human and mouse make STK9 a candidate gene for the above-mentioned disorders. Copyright 1998 Academic Press.

  20. Molecular cloning of allelopathy related genes and their relation to HHO in Eupatorium adenophorum.

    PubMed

    Guo, Huiming; Pei, Xixiang; Wan, Fanghao; Cheng, Hongmei

    2011-10-01

    In this study, conserved sequence regions of HMGR, DXR, and CHS (encoding 3-hydroxy-3-methylglutaryl-CoA reductase, 1-deoxyxylulose-5-phosphate reductoisomerase and chalcone synthase, respectively) were amplified by reverse transcriptase (RT)-PCR from Eupatorium adenophorum. Quantitative real-time PCR showed that the expression of CHS was related to the level of HHO, an allelochemical isolated from E. adenophorum. Semi-quantitative RT-PCR showed that there was no significant difference in expression of genes among three different tissues, except for CHS. Southern blotting indicated that at least three CHS genes are present in the E. adenophorum genome. A full-length cDNA from CHS genes (named EaCHS1, GenBank ID: FJ913888) was cloned. The 1,455 bp cDNA contained an open reading frame (1,206 bp) encoding a protein of 401 amino acids. Preliminary bioinformatics analysis of EaCHS1 revealed that EaCHS1 was a member of CHS family, the subcellular localization predicted that EaCHS1 was a cytoplasmic protein. To the best of our knowledge, this is the first report of conserved sequences of these genes and of a full-length EaCHS1 gene in E. adenophorum. The results indicated that CHS gene is related to allelopathy of E. adenophorum.

  1. The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60.

    PubMed

    Gadkar, Vijay; Rillig, Matthias C

    2006-10-01

    Work on glomalin-related soil protein produced by arbuscular mycorrhizal (AM) fungi (AMF) has been limited because of the unknown identity of the protein. A protein band cross-reactive with the glomalin-specific antibody MAb32B11 from the AM fungus Glomus intraradices was partially sequenced using tandem liquid chromatography-mass spectrometry. A 17 amino acid sequence showing similarity to heat shock protein 60 (hsp 60) was obtained. Based on degenerate PCR, a full-length cDNA of 1773 bp length encoding the hsp 60 gene was isolated from a G. intraradices cDNA library. The ORF was predicted to encode a protein of 590 amino acids. The protein sequence had three N-terminal glycosylation sites and a string of GGM motifs at the C-terminal end. The GiHsp 60 ORF had three introns of 67, 76 and 131 bp length. The GiHsp 60 was expressed using an in vitro translation system, and the protein was purified using the 6xHis-tag system. A dot-blot assay on the purified protein showed that it was highly cross-reactive with the glomalin-specific antibody MAb32B11. The present work provides the first evidence for the identity of the glomalin protein in the model AMF G. intraradices, thus facilitating further characterization of this protein, which is of great interest in soil ecology.

  2. Genomic organization, sequence characterization and expression analysis of Tenebrio molitor apolipophorin-III in response to an intracellular pathogen, Listeria monocytogenes.

    PubMed

    Noh, Ju Young; Patnaik, Bharat Bhusan; Tindwa, Hamisi; Seo, Gi Won; Kim, Dong Hyun; Patnaik, Hongray Howrelia; Jo, Yong Hun; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung; Han, Yeon Soo

    2014-01-25

    Apolipophorin III (apoLp-III) is a well-known hemolymph protein having a functional role in lipid transport and immune response of insects. We cloned full-length cDNA encoding putative apoLp-III from larvae of the coleopteran beetle, Tenebrio molitor (TmapoLp-III), by identification of clones corresponding to the partial sequence of TmapoLp-III, subsequently followed with full length sequencing by a clone-by-clone primer walking method. The complete cDNA consists of 890 nucleotides, including an ORF encoding 196 amino acid residues. Excluding a putative signal peptide of the first 20 amino acid residues, the 176-residue mature apoLp-III has a calculated molecular mass of 19,146Da. Genomic sequence analysis with respect to its cDNA showed that TmapoLp-III was organized into four exons interrupted by three introns. Several immune-related transcription factor binding sites were discovered in the putative 5'-flanking region. BLAST and phylogenetic analyses reveal that TmapoLp-III has high sequence identity (88%) with Tribolium castaneum apoLp-III but shares little sequence homologies (<26%) with other apoLp-IIIs. Homology modeling of Tm apoLp-III shows a bundle of five amphipathic alpha helices, including a short helix 3'. The 'helix-short helix-helix' motif was predicted to be implicated in lipid binding interactions, through reversible conformational changes and accommodating the hydrophobic residues to the exterior for stability. Highest level of TmapoLp-III mRNA was detected at late pupal stages, albeit it is expressed in the larval and adult stages at lower levels. The tissue specific expression of the transcripts showed significantly higher numbers in larval fat body and adult integument. In addition, TmapoLp-III mRNA was found to be highly upregulated in late stages of L. monocytogenes or E. coli challenge. These results indicate that TmapoLp-III may play an important role in innate immune responses against bacterial pathogens in T. molitor. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Molecular characterization of an ependymin precursor from goldfish brain.

    PubMed

    Königstorfer, A; Sterrer, S; Eckerskorn, C; Lottspeich, F; Schmidt, R; Hoffmann, W

    1989-01-01

    Ependymins are thought to be implicated in fundamental processes involved in plasticity of the goldfish CNS. Gas-phase sequencing of purified ependymins beta and gamma revealed that they share the same N-terminal sequence. Each sequence displays microheterogeneities at several positions. Based on the protein sequences obtained, we constructed synthetic oligonucleotides and used them as hybridization probes for screening cDNA libraries of goldfish brain. In this article we describe the full-length sequence of a mRNA encoding a precursor of ependymins. A cleavable signal sequence characteristic of secretory proteins is located at the N-terminal end, followed directly by the ependymin sequence. Also, two potential N-glycosylation sites were detected. A computer search revealed that ependymins form a novel family of unique proteins.

  4. A large-scale full-length cDNA analysis to explore the budding yeast transcriptome

    PubMed Central

    Miura, Fumihito; Kawaguchi, Noriko; Sese, Jun; Toyoda, Atsushi; Hattori, Masahira; Morishita, Shinichi; Ito, Takashi

    2006-01-01

    We performed a large-scale cDNA analysis to explore the transcriptome of the budding yeast Saccharomyces cerevisiae. We sequenced two cDNA libraries, one from the cells exponentially growing in a minimal medium and the other from meiotic cells. Both libraries were generated by using a vector-capping method that allows the accurate mapping of transcription start sites (TSSs). Consequently, we identified 11,575 TSSs associated with 3,638 annotated genomic features, including 3,599 ORFs, to suggest that most yeast genes have two or more TSSs. In addition, we identified 45 previously undescribed introns, including those affecting current ORF annotations and those spliced alternatively. Furthermore, the analysis revealed 667 transcription units in the intergenic regions and transcripts derived from antisense strands of 367 known features. We also found that 348 ORFs carry TSSs in their 3′-halves to generate sense transcripts starting from inside the ORFs. These results indicate that the budding yeast transcriptome is considerably more complex than previously thought, and it shares many recently revealed characteristics with the transcriptomes of mammals and other higher eukaryotes. Thus, the genome-wide active transcription that generates novel classes of transcripts appears to be an intrinsic feature of the eukaryotic cells. The budding yeast will serve as a versatile model for the studies on these aspects of transcriptome, and the full-length cDNA clones can function as an invaluable resource in such studies. PMID:17101987

  5. Cloning and characterization of transferrin cDNA and rapid detection of transferrin gene polymorphism in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Tange, N; Jong-Young, L; Mikawa, N; Hirono, I; Aoki, T

    1997-12-01

    A cDNA clone of rainbow trout (Oncorhynchus mykiss) transferrin was obtained from a liver cDNA library. The 2537-bp cDNA sequence contained an open reading frame encoding 691 amino acids and the 5' and 3' noncoding regions. The amino acid sequences at the iron-binding sites and the two N-linked glycosylation sites, and the cysteine residues were consistent with known, conserved vertebrate transferrin cDNA sequences. Single N-linked glycosylation sites existed on the N- and C-lobe. The deduced amino acid sequence of the rainbow trout transferrin cDNA had 92.9% identities with transferrin of coho salmon (Oncorhynchus kisutch); 85%, Atlantic salmon (Salmo salar); 67.3%, medaka (Oryzias latipes); 61.3% Atlantic cod (Gadus morhua); and 59.7%, Japanese flounder (Paralichthys olivaceus). The long and accurate polymerase chain reaction (LA-PCR) was used to amplify approximately 6.5 kb of the transferrin gene from rainbow trout genomic DNA. Restriction fragment length polymorphisms (RFLPs) of the LA-PCR products revealed three digestion patterns in 22 samples.

  6. LIFEdb: a database for functional genomics experiments integrating information from external sources, and serving as a sample tracking system

    PubMed Central

    Bannasch, Detlev; Mehrle, Alexander; Glatting, Karl-Heinz; Pepperkok, Rainer; Poustka, Annemarie; Wiemann, Stefan

    2004-01-01

    We have implemented LIFEdb (http://www.dkfz.de/LIFEdb) to link information regarding novel human full-length cDNAs generated and sequenced by the German cDNA Consortium with functional information on the encoded proteins produced in functional genomics and proteomics approaches. The database also serves as a sample-tracking system to manage the process from cDNA to experimental read-out and data interpretation. A web interface enables the scientific community to explore and visualize features of the annotated cDNAs and ORFs combined with experimental results, and thus helps to unravel new features of proteins with as yet unknown functions. PMID:14681468

  7. Recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones by a swine kidney cell line expressing bacteriophage T7 RNA polymerase.

    PubMed

    van Gennip, H G; van Rijn, P A; Widjojoatmodjo, M N; Moormann, R J

    1999-03-01

    A new method for the recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones of the C-strain was developed. Classical reverse genetics is based on transfection of in vitro transcribed RNA to target cells to recover RNA viruses. However, the specific infectivity of such in vitro transcribed RNA in swine kidney cells is usually low. To improve reverse genetics for CSFV, a stable swine kidney cell line was established that expresses cytoplasmic bacteriophage T7 RNA polymerase (SK6.T7). A 200-fold increased virus titre was obtained from SK6.T7 cells transfected with linearized full-length cDNA compared to in vitro transcribed RNA, whereas transfection of circular full-length cDNA resulted in 20-fold increased virus titres. Viruses generated on the SK6.T7 cells are indistinguishable from the viruses generated by the classical reverse genetic procedures. These results show the improved recovery of infectious CSFV directly from full-length cDNAs. Furthermore, the reverse genetic procedures are simplified to a faster, one step protocol. We conclude that the SK6.T7 cell line will be a valuable tool for recovering mutant CSFV and will contribute to future pestivirus research.

  8. Organization of the murine Cd22 locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Che-Leung; Torres, R.M.; Sundeberg, H.A.

    1993-07-01

    Murine CD22 (mCD22) is a B cell-associated adhesion protein with seven extracellular Ig-like domains that has 62% amino acid identify to its human homologue. Southern analysis on genomic DNA isolated from tissues and cell lines from several mouse strains using mCD22 cDNA demonstrated that the Cd22 locus encoding mCD22 is a single copy gene of [le]30 kb. Digestion of genomic DNA preparations with four restriction endonucleases revealed the presence of restriction fragment length polymorphisms (RFLP) in BALB/c, C57BL/6, and C3H strains vs DBA/2j, NZB, and NZC strains, suggesting the presence of two or more Cd22 alleles. Using a mCD22 cDNAmore » clone derived from the BALB/c strain, the authors isolated genomic clones from a DBA/2 genomic library that contained all the exons necessary to encode the full length mCD22 cDNA. Fifteen exons, including exon 3 that encodes the translation start codon, were identified. Each extracellular Ig-like domain of mCD22 is encoded by a single exon. A comparison between the nucleotide sequences of the BALB/c CD22 cDNA and the exons of the DBA/2j CD22 genomic clones revealed an 18-nucleotide deletion in exon 4 (encoding the most distal Ig-like domain 1 of mCD22) of the DBA/2j genomic sequence in addition to a number of substitutions, insertions, and deletions in other exons. These nucleotide differences were also present in a cDNA clone isolated from total RNA of LPS-activated DBA/2j splenocytes mosome 7, a region sytenic to human chromosome 19q, close to the previously reported loci, Lyb-8 and Mag (a homologue of Cd22). An antibody (CY34) against the Lyb-8.2 B cell marker reacted with a BHK transfectant expressing the full length mCd22 cDNA, thus demonstrating that Lyb-8 and Cd22 loci are identical. Furthermore, a rat anti-mCD22 mAb, NIM-R6, bound to slgM[sup +] DBA/2j B cells, confirming the expression of a CD22 protein by the Cd22[sup a]/lyb-8[sup a] allele. 63 refs., 7 figs., 1 tab.« less

  9. Insights from computational analysis of full-length β-ketoacyl-[ACP] synthase-II cDNA isolated from American and African oil palms

    PubMed Central

    Bhore, Subhash J.; Cha, Thye S.; Amelia, Kassim; Shah, Farida H.

    2014-01-01

    Background: Palm oil derived from fruits (mesocarp) of African oil palm (Elaeis guineensis Jacq. Tenera) and American oil palm (E. oleifera) is important for food industry. Due to high yield, Elaeis guineensis (Tenera) is cultivated on commercial scale, though its oil contains high (~54%) level of saturated fatty acids. The rate-limiting activity of beta-ketoacyl-[ACP] synthase-II (KAS-II) is considered mainly responsible for the high (44%) level of palmitic acid (C16:0) in the oil obtained from E. guineensis. Objective: The objective of this study was to annotate KAS-II cDNA isolated from American and African oil palms. Materials and Methods: The full-length E. oleifera KAS-II (EoKAS-II) cDNA clone was isolated using random method of gene isolation. Whereas, the E. guineensis KAS-II (EgTKAS-II) cDNA was isolated using reverse transcriptase polymerase chain reaction (RT-PCR) technique; and missing ends were obtained by employing 5’and 3’ RACE technique. Results: The results show that EoKAS-II and EgTKAS-II open reading frames (ORFs) are of 1689 and 1721 bp in length, respectively. Further analysis of the both EoKAS-II and EgTKAS-II predicted protein illustrates that they contains conserved domains for ‘KAS-I and II’, ‘elongating’ condensing enzymes, ‘condensing enzymes super-family’, and ‘3-oxoacyl-[ACP] synthase II’. The predicted protein sequences shows 95% similarity with each other. Consecutively, the three active sites (Cys, His, and His) were identified in both proteins. However, difference in positions of two active Histidine (His) residues was noticed. Conclusion: These insights may serve as the foundation in understanding the variable activity of KAS-II in American and African oil palms; and cDNA clones could be useful in the genetic engineering of oil palms. PMID:24678202

  10. RNA circularization reveals terminal sequence heterogeneity in a double-stranded RNA virus.

    PubMed

    Widmer, G

    1993-03-01

    Double-stranded RNA viruses (dsRNA), termed LRV1, have been found in several strains of the protozoan parasite Leishmania. With the aim of constructing a full-length cDNA copy of the viral genome, including its terminal sequences, a protocol based on PCR amplification across the 3'-5' junction of circularized RNA was developed. This method proved to be applicable to dsRNA. It provided a relatively simple alternative to one-sided PCR, without loss of specificity inherent in the use of generic primers. LRV1 terminal nucleotide sequences obtained by this method showed a considerable variation in length, particularly at the 5' end of the positive strand, as well as the potential for forming 3' overhangs. The opposite genomic end terminates in 0, 1, or 2 TCA trinucleotide repeats. These results are compared with terminal sequences derived from one-sided PCR experiments.

  11. Construction of a full-length cDNA Library from Chinese oak silkworm pupa and identification of a KK-42-binding protein gene in relation to pupa-diapause termination.

    PubMed

    Li, Yu-Ping; Xia, Run-Xi; Wang, Huan; Li, Xi-Sheng; Liu, Yan-Qun; Wei, Zhao-Jun; Lu, Cheng; Xiang, Zhong-Huai

    2009-06-24

    In this study we successfully constructed a full-length cDNA library from Chinese oak silkworm, Antheraea pernyi, the most well-known wild silkworm used for silk production and insect food. Total RNA was extracted from a single fresh female pupa at the diapause stage. The titer of the library was 5 x 10(5) cfu/ml and the proportion of recombinant clones was approximately 95%. Expressed sequence tag (EST) analysis was used to characterize the library. A total of 175 clustered ESTs consisting of 24 contigs and 151 singlets were generated from 250 effective sequences. Of the 175 unigenes, 97 (55.4%) were known genes but only five from A. pernyi, 37 (21.2%) were known ESTs without function annotation, and 41 (23.4%) were novel ESTs. By EST sequencing, a gene coding KK-42-binding protein in A. pernyi (named as ApKK42-BP; GenBank accession no. FJ744151) was identified and characterized. Protein sequence analysis showed that ApKK42-BP was not a membrane protein but an extracellular protein with a signal peptide at position 1-18, and contained two putative conserved domains, abhydro_lipase and abhydrolase_1, suggesting it may be a member of lipase superfamily. Expression analysis based on number of ESTs showed that ApKK42-BP was an abundant gene in the period of diapause stage, suggesting it may also be involved in pupa-diapause termination.

  12. Construction of a full-length cDNA Library from Chinese oak silkworm pupa and identification of a KK-42-binding protein gene in relation to pupa-diapause termination

    PubMed Central

    Li, Yu-Ping; Xia, Run-Xi; Wang, Huan; Li, Xi-Sheng; Liu, Yan-Qun; Wei, Zhao-Jun; Lu, Cheng; Xiang, Zhong-Huai

    2009-01-01

    In this study we successfully constructed a full-length cDNA library from Chinese oak silkworm, Antheraea pernyi, the most well-known wild silkworm used for silk production and insect food. Total RNA was extracted from a single fresh female pupa at the diapause stage. The titer of the library was 5 × 105 cfu/ml and the proportion of recombinant clones was approximately 95%. Expressed sequence tag (EST) analysis was used to characterize the library. A total of 175 clustered ESTs consisting of 24 contigs and 151 singlets were generated from 250 effective sequences. Of the 175 unigenes, 97 (55.4%) were known genes but only five from A. pernyi, 37 (21.2%) were known ESTs without function annotation, and 41 (23.4%) were novel ESTs. By EST sequencing, a gene coding KK-42-binding protein in A. pernyi (named as ApKK42-BP; GenBank accession no. FJ744151) was identified and characterized. Protein sequence analysis showed that ApKK42-BP was not a membrane protein but an extracellular protein with a signal peptide at position 1-18, and contained two putative conserved domains, abhydro_lipase and abhydrolase_1, suggesting it may be a member of lipase superfamily. Expression analysis based on number of ESTs showed that ApKK42-BP was an abundant gene in the period of diapause stage, suggesting it may also be involved in pupa-diapause termination. PMID:19564928

  13. Characterization of the cod (Gadus morhua) steroidogenic acute regulatory protein (StAR) sheds light on StAR gene structure in fish.

    PubMed

    Goetz, Frederick W; Norberg, Birgitta; McCauley, Linda A R; Iliev, Dimitar B

    2004-03-01

    The full-length cDNA for the cod (Gadus morhua) StAR was cloned by RT-PCR and library screening using ovarian RNA. From the library screening, 2 size classes of cDNA were obtained; a 1577 bp cDNA (cStAR1) and a 2851 bp cDNA (cStAR2). The cStAR1 cDNA presumably encodes a protein of 286 amino acids. The cStAR2 cDNA was composed of 6 separated sequences that contained all of the coding regions of cStAR1 when added together, but also contained 5 noncoding regions not observed in cStAR1. Polymerase chain reactions of cod genomic DNA produced products slightly larger than cStAR2. The sequence of these products were the same as cStAR2 but revealed one additional noncoding region (intron). Thus, the fish StAR gene contains the same number of exons (7) and introns (6) as observed in mammals, but is approximately half the size of the mammalian gene. Using Northern analysis and RT-PCR, cStAR1 expression was observed only in testes, ovaries and head kidneys. Polymerase chain reaction products were also observed using cDNA from steroidogenic tissues and primers designed to regions specific for cStAR2, indicating that cStAR2 is expressed in tissues and may account for the presence of larger transcripts observed on Northern blots.

  14. Sequence characterization of cDNA sequence of encoding of an antimicrobial Peptide with no disulfide bridge from the Iranian mesobuthus eupeus venomous glands.

    PubMed

    Farajzadeh-Sheikh, Ahmad; Jolodar, Abbas; Ghaemmaghami, Shamsedin

    2013-01-01

    Scorpion venom glands produce some antimicrobial peptides (AMP) that can rapidly kill a broad range of microbes and have additional activities that impact on the quality and effectiveness of innate responses and inflammation. In this study, we reported the identification of a cDNA sequence encoding cysteine-free antimicrobial peptides isolated from venomous glands of this species. Total RNA was extracted from the Iranian mesobuthus eupeus venom glands, and cDNA was synthesized by using the modified oligo (dT). The cDNA was used as the template for applying Semi-nested RT- PCR technique. PCR Products were used for direct nucleotide sequencing and the results were compared with Gen Bank database. A 213 BP cDNA fragment encoding the entire coding region of an antimicrobial toxin from the Iranian scorpion M. Eupeus venom glands were isolated. The full-length sequence of the coding region was 210 BP contained an open reading frame of 70 amino with a predicted molecular mass of 7970.48 Da and theoretical Pi of 9.10. The open reading frame consists of 210 BP encoding a precursor of 70 amino acid residues, including a signal peptide of 23 residues a propertied of 7 residues, and a mature peptide of 34 residues with no disulfide bridge. The peptide has detectable sequence identity to the Lesser Asian mesobuthus eupeus MeVAMP-2 (98%), MeVAMP-9 (60%) and several previously described AMPs from other scorpion venoms including mesobuthus martensii (94%) and buthus occitanus Israelis (82%). The secondary structure of the peptide mainly consisted of α-helical structure which was generally conserved by previously reported scorpion counterparts. The phylogenetic analysis showed that the Iranian MeAMP-like toxin was similar but not identical with that of venom antimicrobial peptides from lesser Asian scorpion mesobuthus eupeus.

  15. Large-scale collection of full-length cDNA and transcriptome analysis in Hevea brasiliensis

    PubMed Central

    Makita, Yuko; Ng, Kiaw Kiaw; Veera Singham, G.; Kawashima, Mika; Hirakawa, Hideki; Sato, Shusei

    2017-01-01

    Abstract Natural rubber has unique physical properties that cannot be replaced by products from other latex-producing plants or petrochemically produced synthetic rubbers. Rubber from Hevea brasiliensis is the main commercial source for this natural rubber that has a cis-polyisoprene configuration. For sustainable production of enough rubber to meet demand elucidation of the molecular mechanisms involved in the production of latex is vital. To this end, we firstly constructed rubber full-length cDNA libraries of RRIM 600 cultivar and sequenced around 20,000 clones by the Sanger method and over 15,000 contigs by Illumina sequencer. With these data, we updated around 5,500 gene structures and newly annotated around 9,500 transcription start sites. Second, to elucidate the rubber biosynthetic pathways and their transcriptional regulation, we carried out tissue- and cultivar-specific RNA-Seq analysis. By using our recently published genome sequence, we confirmed the expression patterns of the rubber biosynthetic genes. Our data suggest that the cytoplasmic mevalonate (MVA) pathway is the main route for isoprenoid biosynthesis in latex production. In addition to the well-studied polymerization factors, we suggest that rubber elongation factor 8 (REF8) is a candidate factor in cis-polyisoprene biosynthesis. We have also identified 39 transcription factors that may be key regulators in latex production. Expression profile analysis using two additional cultivars, RRIM 901 and PB 350, via an RNA-Seq approach revealed possible expression differences between a high latex-yielding cultivar and a disease-resistant cultivar. PMID:28431015

  16. Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    PubMed Central

    Imanishi, Tadashi; Itoh, Takeshi; Suzuki, Yutaka; O'Donovan, Claire; Fukuchi, Satoshi; Koyanagi, Kanako O; Barrero, Roberto A; Tamura, Takuro; Yamaguchi-Kabata, Yumi; Tanino, Motohiko; Yura, Kei; Miyazaki, Satoru; Ikeo, Kazuho; Homma, Keiichi; Kasprzyk, Arek; Nishikawa, Tetsuo; Hirakawa, Mika; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Ashurst, Jennifer; Jia, Libin; Nakao, Mitsuteru; Thomas, Michael A; Mulder, Nicola; Karavidopoulou, Youla; Jin, Lihua; Kim, Sangsoo; Yasuda, Tomohiro; Lenhard, Boris; Eveno, Eric; Suzuki, Yoshiyuki; Yamasaki, Chisato; Takeda, Jun-ichi; Gough, Craig; Hilton, Phillip; Fujii, Yasuyuki; Sakai, Hiroaki; Tanaka, Susumu; Amid, Clara; Bellgard, Matthew; Bonaldo, Maria de Fatima; Bono, Hidemasa; Bromberg, Susan K; Brookes, Anthony J; Bruford, Elspeth; Carninci, Piero; Chelala, Claude; Couillault, Christine; de Souza, Sandro J.; Debily, Marie-Anne; Devignes, Marie-Dominique; Dubchak, Inna; Endo, Toshinori; Estreicher, Anne; Eyras, Eduardo; Fukami-Kobayashi, Kaoru; R. Gopinath, Gopal; Graudens, Esther; Hahn, Yoonsoo; Han, Michael; Han, Ze-Guang; Hanada, Kousuke; Hanaoka, Hideki; Harada, Erimi; Hashimoto, Katsuyuki; Hinz, Ursula; Hirai, Momoki; Hishiki, Teruyoshi; Hopkinson, Ian; Imbeaud, Sandrine; Inoko, Hidetoshi; Kanapin, Alexander; Kaneko, Yayoi; Kasukawa, Takeya; Kelso, Janet; Kersey, Paul; Kikuno, Reiko; Kimura, Kouichi; Korn, Bernhard; Kuryshev, Vladimir; Makalowska, Izabela; Makino, Takashi; Mano, Shuhei; Mariage-Samson, Regine; Mashima, Jun; Matsuda, Hideo; Mewes, Hans-Werner; Minoshima, Shinsei; Nagai, Keiichi; Nagasaki, Hideki; Nagata, Naoki; Nigam, Rajni; Ogasawara, Osamu; Ohara, Osamu; Ohtsubo, Masafumi; Okada, Norihiro; Okido, Toshihisa; Oota, Satoshi; Ota, Motonori; Ota, Toshio; Otsuki, Tetsuji; Piatier-Tonneau, Dominique; Poustka, Annemarie; Ren, Shuang-Xi; Saitou, Naruya; Sakai, Katsunaga; Sakamoto, Shigetaka; Sakate, Ryuichi; Schupp, Ingo; Servant, Florence; Sherry, Stephen; Shiba, Rie; Shimizu, Nobuyoshi; Shimoyama, Mary; Simpson, Andrew J; Soares, Bento; Steward, Charles; Suwa, Makiko; Suzuki, Mami; Takahashi, Aiko; Tamiya, Gen; Tanaka, Hiroshi; Taylor, Todd; Terwilliger, Joseph D; Unneberg, Per; Veeramachaneni, Vamsi; Watanabe, Shinya; Wilming, Laurens; Yasuda, Norikazu; Yoo, Hyang-Sook; Stodolsky, Marvin; Makalowski, Wojciech; Go, Mitiko; Nakai, Kenta; Takagi, Toshihisa; Kanehisa, Minoru; Sakaki, Yoshiyuki; Quackenbush, John; Okazaki, Yasushi; Hayashizaki, Yoshihide; Hide, Winston; Chakraborty, Ranajit; Nishikawa, Ken; Sugawara, Hideaki; Tateno, Yoshio; Chen, Zhu; Oishi, Michio; Tonellato, Peter; Apweiler, Rolf; Okubo, Kousaku; Wagner, Lukas; Wiemann, Stefan; Strausberg, Robert L; Isogai, Takao; Auffray, Charles; Nomura, Nobuo; Sugano, Sumio

    2004-01-01

    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology. PMID:15103394

  17. Automated sample-preparation technologies in genome sequencing projects.

    PubMed

    Hilbert, H; Lauber, J; Lubenow, H; Düsterhöft, A

    2000-01-01

    A robotic workstation system (BioRobot 96OO, QIAGEN) and a 96-well UV spectrophotometer (Spectramax 250, Molecular Devices) were integrated in to the process of high-throughput automated sequencing of double-stranded plasmid DNA templates. An automated 96-well miniprep kit protocol (QIAprep Turbo, QIAGEN) provided high-quality plasmid DNA from shotgun clones. The DNA prepared by this procedure was used to generate more than two mega bases of final sequence data for two genomic projects (Arabidopsis thaliana and Schizosaccharomyces pombe), three thousand expressed sequence tags (ESTs) plus half a mega base of human full-length cDNA clones, and approximately 53,000 single reads for a whole genome shotgun project (Pseudomonas putida).

  18. Giardia canis: ultrastructural analysis of G. canis trophozoites transfected with full length G. canis virus cDNA transcripts

    USDA-ARS?s Scientific Manuscript database

    Giardia canis virus (GCV) is a double-stranded RNA (dsRNA) virus of the family Totiviridae. In this study, the full-length cDNA of the G. canis virus was constructed in pPoly2/sfinot vector and RNA was transcribed in vitro. Virus-free G. canis trophozoites were transfected with in vitro transcribed ...

  19. The contribution of 700,000 ORF sequence tags to the definition of the human transcriptome

    PubMed Central

    Camargo, Anamaria A.; Samaia, Helena P. B.; Dias-Neto, Emmanuel; Simão, Daniel F.; Migotto, Italo A.; Briones, Marcelo R. S.; Costa, Fernando F.; Aparecida Nagai, Maria; Verjovski-Almeida, Sergio; Zago, Marco A.; Andrade, Luis Eduardo C.; Carrer, Helaine; El-Dorry, Hamza F. A.; Espreafico, Enilza M.; Habr-Gama, Angelita; Giannella-Neto, Daniel; Goldman, Gustavo H.; Gruber, Arthur; Hackel, Christine; Kimura, Edna T.; Maciel, Rui M. B.; Marie, Suely K. N.; Martins, Elizabeth A. L.; Nóbrega, Marina P.; Paçó-Larson, Maria Luisa; Pardini, Maria Inês M. C.; Pereira, Gonçalo G.; Pesquero, João Bosco; Rodrigues, Vanderlei; Rogatto, Silvia R.; da Silva, Ismael D. C. G.; Sogayar, Mari C.; Sonati, Maria de Fátima; Tajara, Eloiza H.; Valentini, Sandro R.; Alberto, Fernando L.; Amaral, Maria Elisabete J.; Aneas, Ivy; Arnaldi, Liliane A. T.; de Assis, Angela M.; Bengtson, Mário Henrique; Bergamo, Nadia Aparecida; Bombonato, Vanessa; de Camargo, Maria E. R.; Canevari, Renata A.; Carraro, Dirce M.; Cerutti, Janete M.; Corrêa, Maria Lucia C.; Corrêa, Rosana F. R.; Costa, Maria Cristina R.; Curcio, Cyntia; Hokama, Paula O. M.; Ferreira, Ari J. S.; Furuzawa, Gilberto K.; Gushiken, Tsieko; Ho, Paulo L.; Kimura, Elza; Krieger, José E.; Leite, Luciana C. C.; Majumder, Paromita; Marins, Mozart; Marques, Everaldo R.; Melo, Analy S. A.; Melo, Monica; Mestriner, Carlos Alberto; Miracca, Elisabete C.; Miranda, Daniela C.; Nascimento, Ana Lucia T. O.; Nóbrega, Francisco G.; Ojopi, Élida P. B.; Pandolfi, José Rodrigo C.; Pessoa, Luciana G.; Prevedel, Aline C.; Rahal, Paula; Rainho, Claudia A.; Reis, Eduardo M. R.; Ribeiro, Marcelo L.; da Rós, Nancy; de Sá, Renata G.; Sales, Magaly M.; Sant'anna, Simone Cristina; dos Santos, Mariana L.; da Silva, Aline M.; da Silva, Neusa P.; Silva, Wilson A.; da Silveira, Rosana A.; Sousa, Josane F.; Stecconi, Daniella; Tsukumo, Fernando; Valente, Valéria; Soares, Fernando; Moreira, Eloisa S.; Nunes, Diana N.; Correa, Ricardo G.; Zalcberg, Heloisa; Carvalho, Alex F.; Reis, Luis F. L.; Brentani, Ricardo R.; Simpson, Andrew J. G.; de Souza, Sandro J.

    2001-01-01

    Open reading frame expressed sequences tags (ORESTES) differ from conventional ESTs by providing sequence data from the central protein coding portion of transcripts. We generated a total of 696,745 ORESTES sequences from 24 human tissues and used a subset of the data that correspond to a set of 15,095 full-length mRNAs as a means of assessing the efficiency of the strategy and its potential contribution to the definition of the human transcriptome. We estimate that ORESTES sampled over 80% of all highly and moderately expressed, and between 40% and 50% of rarely expressed, human genes. In our most thoroughly sequenced tissue, the breast, the 130,000 ORESTES generated are derived from transcripts from an estimated 70% of all genes expressed in that tissue, with an equally efficient representation of both highly and poorly expressed genes. In this respect, we find that the capacity of the ORESTES strategy both for gene discovery and shotgun transcript sequence generation significantly exceeds that of conventional ESTs. The distribution of ORESTES is such that many human transcripts are now represented by a scaffold of partial sequences distributed along the length of each gene product. The experimental joining of the scaffold components, by reverse transcription–PCR, represents a direct route to transcript finishing that may represent a useful alternative to full-length cDNA cloning. PMID:11593022

  20. The contribution of 700,000 ORF sequence tags to the definition of the human transcriptome.

    PubMed

    Camargo, A A; Samaia, H P; Dias-Neto, E; Simão, D F; Migotto, I A; Briones, M R; Costa, F F; Nagai, M A; Verjovski-Almeida, S; Zago, M A; Andrade, L E; Carrer, H; El-Dorry, H F; Espreafico, E M; Habr-Gama, A; Giannella-Neto, D; Goldman, G H; Gruber, A; Hackel, C; Kimura, E T; Maciel, R M; Marie, S K; Martins, E A; Nobrega, M P; Paco-Larson, M L; Pardini, M I; Pereira, G G; Pesquero, J B; Rodrigues, V; Rogatto, S R; da Silva, I D; Sogayar, M C; Sonati, M F; Tajara, E H; Valentini, S R; Alberto, F L; Amaral, M E; Aneas, I; Arnaldi, L A; de Assis, A M; Bengtson, M H; Bergamo, N A; Bombonato, V; de Camargo, M E; Canevari, R A; Carraro, D M; Cerutti, J M; Correa, M L; Correa, R F; Costa, M C; Curcio, C; Hokama, P O; Ferreira, A J; Furuzawa, G K; Gushiken, T; Ho, P L; Kimura, E; Krieger, J E; Leite, L C; Majumder, P; Marins, M; Marques, E R; Melo, A S; Melo, M B; Mestriner, C A; Miracca, E C; Miranda, D C; Nascimento, A L; Nobrega, F G; Ojopi, E P; Pandolfi, J R; Pessoa, L G; Prevedel, A C; Rahal, P; Rainho, C A; Reis, E M; Ribeiro, M L; da Ros, N; de Sa, R G; Sales, M M; Sant'anna, S C; dos Santos, M L; da Silva, A M; da Silva, N P; Silva, W A; da Silveira, R A; Sousa, J F; Stecconi, D; Tsukumo, F; Valente, V; Soares, F; Moreira, E S; Nunes, D N; Correa, R G; Zalcberg, H; Carvalho, A F; Reis, L F; Brentani, R R; Simpson, A J; de Souza, S J; Melo, M

    2001-10-09

    Open reading frame expressed sequences tags (ORESTES) differ from conventional ESTs by providing sequence data from the central protein coding portion of transcripts. We generated a total of 696,745 ORESTES sequences from 24 human tissues and used a subset of the data that correspond to a set of 15,095 full-length mRNAs as a means of assessing the efficiency of the strategy and its potential contribution to the definition of the human transcriptome. We estimate that ORESTES sampled over 80% of all highly and moderately expressed, and between 40% and 50% of rarely expressed, human genes. In our most thoroughly sequenced tissue, the breast, the 130,000 ORESTES generated are derived from transcripts from an estimated 70% of all genes expressed in that tissue, with an equally efficient representation of both highly and poorly expressed genes. In this respect, we find that the capacity of the ORESTES strategy both for gene discovery and shotgun transcript sequence generation significantly exceeds that of conventional ESTs. The distribution of ORESTES is such that many human transcripts are now represented by a scaffold of partial sequences distributed along the length of each gene product. The experimental joining of the scaffold components, by reverse transcription-PCR, represents a direct route to transcript finishing that may represent a useful alternative to full-length cDNA cloning.

  1. Differentially expressed genes of Coptotermes formosanus (Isoptera: Rhinotermitidae) challenged by chemical insecticides.

    PubMed

    Zhang, Yi; Zhao, Yuanyuan; Qiu, Xuehong; Han, Richou

    2013-08-01

    Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) termites are harmful social insects to wood constructions. The current control methods heavily depend on the chemical insecticides with increasing resistance. Analysis of the differentially expressed genes mediated by chemical insecticides will contribute to the understanding of the termite resistance to chemicals and to the establishment of alternative control measures. In the present article, a full-length cDNA library was constructed from the termites induced by a mixture of commonly used insecticides (0.01% sulfluramid and 0.01% triflumuron) for 24 h, by using the RNA ligase-mediated Rapid Amplification cDNA End method. Fifty-eight differentially expressed clones were obtained by polymerase chain reaction and confirmed by dot-blot hybridization. Forty-six known sequences were obtained, which clustered into 33 unique sequences grouped in 6 contigs and 27 singlets. Sixty-seven percent (22) of the sequences had counterpart genes from other organisms, whereas 33% (11) were undescribed. A Gene Ontology analysis classified 33 unique sequences into different functional categories. In general, most of the differential expression genes were involved in binding and catalytic activity.

  2. Comparison of next generation sequencing technologies for transcriptome characterization

    PubMed Central

    2009-01-01

    Background We have developed a simulation approach to help determine the optimal mixture of sequencing methods for most complete and cost effective transcriptome sequencing. We compared simulation results for traditional capillary sequencing with "Next Generation" (NG) ultra high-throughput technologies. The simulation model was parameterized using mappings of 130,000 cDNA sequence reads to the Arabidopsis genome (NCBI Accession SRA008180.19). We also generated 454-GS20 sequences and de novo assemblies for the basal eudicot California poppy (Eschscholzia californica) and the magnoliid avocado (Persea americana) using a variety of methods for cDNA synthesis. Results The Arabidopsis reads tagged more than 15,000 genes, including new splice variants and extended UTR regions. Of the total 134,791 reads (13.8 MB), 119,518 (88.7%) mapped exactly to known exons, while 1,117 (0.8%) mapped to introns, 11,524 (8.6%) spanned annotated intron/exon boundaries, and 3,066 (2.3%) extended beyond the end of annotated UTRs. Sequence-based inference of relative gene expression levels correlated significantly with microarray data. As expected, NG sequencing of normalized libraries tagged more genes than non-normalized libraries, although non-normalized libraries yielded more full-length cDNA sequences. The Arabidopsis data were used to simulate additional rounds of NG and traditional EST sequencing, and various combinations of each. Our simulations suggest a combination of FLX and Solexa sequencing for optimal transcriptome coverage at modest cost. We have also developed ESTcalc http://fgp.huck.psu.edu/NG_Sims/ngsim.pl, an online webtool, which allows users to explore the results of this study by specifying individualized costs and sequencing characteristics. Conclusion NG sequencing technologies are a highly flexible set of platforms that can be scaled to suit different project goals. In terms of sequence coverage alone, the NG sequencing is a dramatic advance over capillary-based sequencing, but NG sequencing also presents significant challenges in assembly and sequence accuracy due to short read lengths, method-specific sequencing errors, and the absence of physical clones. These problems may be overcome by hybrid sequencing strategies using a mixture of sequencing methodologies, by new assemblers, and by sequencing more deeply. Sequencing and microarray outcomes from multiple experiments suggest that our simulator will be useful for guiding NG transcriptome sequencing projects in a wide range of organisms. PMID:19646272

  3. Cloning and molecular characterization of scorpion Buthus martensi venom hyaluronidases: a novel full-length and diversiform noncoding isoforms.

    PubMed

    Xia, Xichao; Liu, Rongzhi; Li, Yi; Xue, Shipeng; Liu, Qingchun; Jiang, Xiao; Zhang, Wenjuan; Ding, Ke

    2014-09-01

    Hyaluronidase is a common component of scorpion venom and has been considered as "spreading factor" that promotes a fast penetration of the venom in the anaphylactic reaction. In the current study, a novel full-length of hyaluronidase BmHYI and three noncoding isoforms of BmHYII, BmHYIII and BmHYIV were cloned by using a combined strategy based on peptide sequencing and Rapid Amplification of cDNA Ends (RACE). BmHYI has 410 amino acid residues containing the catalytic, positional and five potential N-glycosylation sites. The deduced protein sequence of BmHYI shares significant identity with venom hyaluronidases from bees and snakes. The phylogenetic analysis showed early divergence and independent evolution of BmHYI from other hyaluronidases. An extraordinarily high level of sequence similarity was detected among four sequences. But, BmHYII, BmHYIII and BmHYIV were short of stop-codon in the open reading frame and poly(A) signal in the 3' end. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Molecular cloning of a putative gene encoding isopentenyltransferase from pingyitiancha (Malus hupehensis) and characterization of its response to nitrate.

    PubMed

    Peng, Jing; Peng, Futian; Zhu, Chunfu; Wei, Shaochong

    2008-06-01

    A putative isopentenyltransferase (IPT) encoding gene was identified from a pingyitiancha (Malus hupehensis Rehd.) expressed sequence tag database, and the full-length gene was cloned by RACE. Based on expression profile and sequence alignment, the nucleotide sequence of the clone, named MhIPT3, was most similar to AtIPT3, an IPT gene in Arabidopsis. The full-length cDNA contained a 963-bp open reading frame encoding a protein of 321 amino acids with a molecular mass of 37.3 kDa. Sequence analysis of genomic DNA revealed the absence of introns in the frame. Quantitative real-time PCR analysis demonstrated that the gene was expressed in roots, stems and leaves. Application of nitrate to roots of nitrogen-deprived seedlings strongly induced expression of MhIPT3 and was accompanied by the accumulation of cytokinins, whereas MhIPT3 expression was little affected by ammonium application to roots of nitrogen-deprived seedlings. Application of nitrate to leaves also up-regulated the expression of MhIPT3 and corresponded closely with the accumulation of isopentyladenine and isopentyladenosine in leaves.

  5. Molecular cloning of the heat shock protein 20 gene from Paphia textile and its expression in response to heat shock

    NASA Astrophysics Data System (ADS)

    Li, Jiakai; Wu, Xiangwei; Tan, Jing; Zhao, Ruixiang; Deng, Lingwei; Liu, Xiande

    2015-07-01

    P. textile is an important aquaculture species in China and is mainly distributed in Fujian, Guangdong, and Guangxi Provinces. In this study, an HSP20 cDNA designated PtHSP20 was cloned from P. textile. The full-length cDNA of PtHSP20 is 1 090 bp long and contains a 5' untranslated region (UTR) of 93 bp, a 3' UTR of 475 bp, and an open reading frame (ORF) of 522 bp. The PtHSP20 cDNA encodes 173 amino acid residues and has a molecular mass of 20.22 kDa and an isoelectric point of 6.2. Its predicted amino acid sequence shows that PtHSP20 contains a typical α-crystallin domain (residues 77-171) and three polyadenylation signal-sequences at the C-terminus. According to an amino acid sequence alignment, PtHSP20 shows moderate homology to other mollusk sHSPs. PtHSP20 mRNA was present in all of the test tissues including the heart, digestive gland, adductor muscle, gonad, gill, and mantle, with the highest concentration found in the gonad. Under the stress of high temperature, the expression of PtHSP20 mRNA was down-regulated in all of the tissues except the adductor muscle and gonad.

  6. Molecular cloning and characterization of novel phytocystatin gene from turmeric, Curcuma longa.

    PubMed

    Chan, Seow-Neng; Abu Bakar, Norliza; Mahmood, Maziah; Ho, Chai-Ling; Shaharuddin, Noor Azmi

    2014-01-01

    Phytocystatin, a type of protease inhibitor (PI), plays major roles in plant defense mechanisms and has been reported to show antipathogenic properties and plant stress tolerance. Recombinant plant PIs are gaining popularity as potential candidates in engineering of crop protection and in synthesizing medicine. It is therefore crucial to identify PI from novel sources like Curcuma longa as it is more effective in combating against pathogens due to its novelty. In this study, a novel cDNA fragment encoding phytocystatin was isolated using degenerate PCR primers, designed from consensus regions of phytocystatin from other plant species. A full-length cDNA of the phytocystatin gene, designated CypCl, was acquired using 5'/3' rapid amplification of cDNA ends method and it has been deposited in NCBI database (accession number KF545954.1). It has a 687 bp long open reading frame (ORF) which encodes 228 amino acids. BLAST result indicated that CypCl is similar to cystatin protease inhibitor from Cucumis sativus with 74% max identity. Sequence analysis showed that CypCl contains most of the motifs found in a cystatin, including a G residue, LARFAV-, QxVxG sequence, PW dipeptide, and SNSL sequence at C-terminal extension. Phylogenetic studies also showed that CypCl is related to phytocystatin from Elaeis guineensis.

  7. Molecular Cloning and Characterization of Novel Phytocystatin Gene from Turmeric, Curcuma longa

    PubMed Central

    Chan, Seow-Neng; Abu Bakar, Norliza; Mahmood, Maziah; Ho, Chai-Ling

    2014-01-01

    Phytocystatin, a type of protease inhibitor (PI), plays major roles in plant defense mechanisms and has been reported to show antipathogenic properties and plant stress tolerance. Recombinant plant PIs are gaining popularity as potential candidates in engineering of crop protection and in synthesizing medicine. It is therefore crucial to identify PI from novel sources like Curcuma longa as it is more effective in combating against pathogens due to its novelty. In this study, a novel cDNA fragment encoding phytocystatin was isolated using degenerate PCR primers, designed from consensus regions of phytocystatin from other plant species. A full-length cDNA of the phytocystatin gene, designated CypCl, was acquired using 5′/3′ rapid amplification of cDNA ends method and it has been deposited in NCBI database (accession number KF545954.1). It has a 687 bp long open reading frame (ORF) which encodes 228 amino acids. BLAST result indicated that CypCl is similar to cystatin protease inhibitor from Cucumis sativus with 74% max identity. Sequence analysis showed that CypCl contains most of the motifs found in a cystatin, including a G residue, LARFAV-, QxVxG sequence, PW dipeptide, and SNSL sequence at C-terminal extension. Phylogenetic studies also showed that CypCl is related to phytocystatin from Elaeis guineensis. PMID:25853138

  8. 5' Rapid Amplification of cDNA Ends and Illumina MiSeq Reveals B Cell Receptor Features in Healthy Adults, Adults With Chronic HIV-1 Infection, Cord Blood, and Humanized Mice.

    PubMed

    Waltari, Eric; Jia, Manxue; Jiang, Caroline S; Lu, Hong; Huang, Jing; Fernandez, Cristina; Finzi, Andrés; Kaufmann, Daniel E; Markowitz, Martin; Tsuji, Moriya; Wu, Xueling

    2018-01-01

    Using 5' rapid amplification of cDNA ends, Illumina MiSeq, and basic flow cytometry, we systematically analyzed the expressed B cell receptor (BCR) repertoire in 14 healthy adult PBMCs, 5 HIV-1+ adult PBMCs, 5 cord blood samples, and 3 HIS-CD4/B mice, examining the full-length variable region of μ, γ, α, κ, and λ chains for V-gene usage, somatic hypermutation (SHM), and CDR3 length. Adding to the known repertoire of healthy adults, Illumina MiSeq consistently detected small fractions of reads with high mutation frequencies including hypermutated μ reads, and reads with long CDR3s. Additionally, the less studied IgA repertoire displayed similar characteristics to that of IgG. Compared to healthy adults, the five HIV-1 chronically infected adults displayed elevated mutation frequencies for all μ, γ, α, κ, and λ chains examined and slightly longer CDR3 lengths for γ, α, and λ. To evaluate the reconstituted human BCR sequences in a humanized mouse model, we analyzed cord blood and HIS-CD4/B mice, which all lacked the typical SHM seen in the adult reference. Furthermore, MiSeq revealed identical unmutated IgM sequences derived from separate cell aliquots, thus for the first time demonstrating rare clonal members of unmutated IgM B cells by sequencing.

  9. Bitis gabonica (Gaboon viper) snake venom gland: toward a catalog for the full- length transcripts (cDNA) and proteins

    PubMed Central

    Francischetti, Ivo M. B.; My-Pham, Van; Harrison, Jim; Garfield, Mark K.; Ribeiro, José M. C.

    2010-01-01

    The venom gland of the snake Bitis gabonica (Gaboon viper) was used for the first time to construct a unidirectional cDNA phage library followed by high-throughput sequencing and bioinformatic analysis. Hundreds of cDNAs were obtained and clustered into contigs. We found mostly novel full-length cDNA coding for metalloproteases (P-II and P-III classes), Lys49-phospholipase A2, serine proteases with essential mutations in the active site, Kunitz protease inhibitors, several C-type lectins, bradykinin-potentiating peptide, vascular endothelial growth factor, nucleotidases and nucleases, nerve growth factor, and L-amino acid oxidases. Two new members of the recently described short coding region family of disintegrin, displaying RGD and MLD motifs are reported. In addition, we have identified for the first time a cytokine-like molecule and a multi-Kunitz protease inhibitor in snake venoms. The CLUSTAL alignment and the unrooted cladograms for selected families of B. gabonica venom proteins are also presented. A significant number of sequences were devoid of database matches, suggesting that their biologic function remains to be identified. This paper also reports the N-terminus of the 15 most abundant venom proteins and the sequences matching their corresponding transcripts. The electronic version of this manuscript, available on request, contains spreadsheets with hyperlinks to FASTA-formatted files for each contig and the best match to the GenBank and Conserved Domain Databases, in addition to CLUSTAL alignments of each contig. We have thus generated a comprehensive catalog of the B. gabonica venom gland, containing for each secreted protein: i) the predicted molecular weight, ii) the predicted isoelectric point, iii) the accession number, and iv) the putative function. The role of these molecules is discussed in the context of the envenomation caused by the Gaboon viper. PMID:15276202

  10. The Dermatophagoides farinae group 22 allergen: cloning and expression in Escherichia coli.

    PubMed

    Cui, Yu-bao; Cai, Hong-xing; Zhou, Ying; Wang, Nan; Yu, Li-li; Yang, Li; Zhang, Cheng-bo

    2015-09-01

    Dermatophagoides farinae (Hughes) (Acari: Pyroglyphidae) and other domestic mites produce allergens that affect people worldwide. Here, the complementary DNA (cDNA) coding for group 22 allergen of D. farinae (Der f 22) from China was cloned, sequenced, and expressed successfully. The cDNA encoding Der f 22 was synthesized by reverse transcription polymerase chain reaction (RT-PCR), then ligated to the pCold-TF for expression in Escherichia coli BL21 cells. The purified recombinant fusion protein was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western-blotting, and tandem matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF/TOF). The full-length cDNA comprised 468 nucleotides and was 99.57% (466/468) identical with the reference sequence (GenBank: DQ643992). After the plasmid pCold-TF-Der f 22 was transformed into E. coli BL21 and expressed with the induction of IPTG, SDS-PAGE showed a specific band for the recombinant fusion protein. The recombinant fusion protein, which was purified by chromatography, bound with a His-tagged antibody by Western blotting. MALDI-TOF/TOF mass spectrometry revealed that the structure of the recombinant protein was identical to the predicted Der f 22 structure. The hydrophilic protein contains a signal peptide of 20 amino acids, and the mature Der f 22 consists of 135 amino acid residues with a molecular weight of 14.7 kDa and theoretical isoelectric points (pI) of 6.38. Its secondary structure comprises an alpha helix (38.5%), beta-sheet (45.9%), random coils (11.85%), and beta-turns (11.1%). This work represents the first reported full-length sequence and successful cloning of Der f 22 from D. farinae in China; bioinformatics analysis can be used to further study the allergenicity and clinical utility of the recombinant Der f 22. © 2015 ARS-AAOA, LLC.

  11. [Identification of genes that are specifically/preferentially expressed in developing cotton fibers by mRNA fluorescence differential display (FDD)].

    PubMed

    Sun, Jie; Li, Yuan-Li; Wang, Ruo-Hai; Xia, Gui-Xian

    2004-01-01

    Fluorescence differential display (FDD) technique was used to identify genes that are specifically or preferentially expressed in different developmental stages of cotton fiber cells. One hundred and nine differentially displayed cDNA fragments were isolated using 9, 21 and 27 DPA (days postanthesis) fibers as experimental materials. By a combination of two rounds of reverse Northern hybridization and Northern blot analyses, a number of such cDNA fragments were proved to represent fiber-specific/preferential genes. Sequencing determination and database searching indicated that most of these genes are novel. This work is an important step towards cloning the full-length cDNAs and characterizing the cellular functions of aforementioned genes in fiber development.

  12. Mammalian cDNA Library from the NIH Mammalian Gene Collection (MGC) | Office of Cancer Genomics

    Cancer.gov

    The MGC provides the research community full-length clones for most of the defined (as of 2006) human and mouse genes, along with selected clones of cow and rat genes. Clones were designed to allow easy transfer of the ORF sequences into nearly any type of expression vector. MGC provides protein ‘expression-ready’ clones for each of the included human genes. MGC is part of the ORFeome Collaboration (OC).

  13. Alternative Splicing Profile and Sex-Preferential Gene Expression in the Female and Male Pacific Abalone Haliotis discus hannai.

    PubMed

    Kim, Mi Ae; Rhee, Jae-Sung; Kim, Tae Ha; Lee, Jung Sick; Choi, Ah-Young; Choi, Beom-Soon; Choi, Ik-Young; Sohn, Young Chang

    2017-03-09

    In order to characterize the female or male transcriptome of the Pacific abalone and further increase genomic resources, we sequenced the mRNA of full-length complementary DNA (cDNA) libraries derived from pooled tissues of female and male Haliotis discus hannai by employing the Iso-Seq protocol of the PacBio RSII platform. We successfully assembled whole full-length cDNA sequences and constructed a transcriptome database that included isoform information. After clustering, a total of 15,110 and 12,145 genes that coded for proteins were identified in female and male abalones, respectively. A total of 13,057 putative orthologs were retained from each transcriptome in abalones. Overall Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyzed in each database showed a similar composition between sexes. In addition, a total of 519 and 391 isoforms were genome-widely identified with at least two isoforms from female and male transcriptome databases. We found that the number of isoforms and their alternatively spliced patterns are variable and sex-dependent. This information represents the first significant contribution to sex-preferential genomic resources of the Pacific abalone. The availability of whole female and male transcriptome database and their isoform information will be useful to improve our understanding of molecular responses and also for the analysis of population dynamics in the Pacific abalone.

  14. Alternative Splicing Profile and Sex-Preferential Gene Expression in the Female and Male Pacific Abalone Haliotis discus hannai

    PubMed Central

    Kim, Mi Ae; Rhee, Jae-Sung; Kim, Tae Ha; Lee, Jung Sick; Choi, Ah-Young; Choi, Beom-Soon; Choi, Ik-Young; Sohn, Young Chang

    2017-01-01

    In order to characterize the female or male transcriptome of the Pacific abalone and further increase genomic resources, we sequenced the mRNA of full-length complementary DNA (cDNA) libraries derived from pooled tissues of female and male Haliotis discus hannai by employing the Iso-Seq protocol of the PacBio RSII platform. We successfully assembled whole full-length cDNA sequences and constructed a transcriptome database that included isoform information. After clustering, a total of 15,110 and 12,145 genes that coded for proteins were identified in female and male abalones, respectively. A total of 13,057 putative orthologs were retained from each transcriptome in abalones. Overall Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyzed in each database showed a similar composition between sexes. In addition, a total of 519 and 391 isoforms were genome-widely identified with at least two isoforms from female and male transcriptome databases. We found that the number of isoforms and their alternatively spliced patterns are variable and sex-dependent. This information represents the first significant contribution to sex-preferential genomic resources of the Pacific abalone. The availability of whole female and male transcriptome database and their isoform information will be useful to improve our understanding of molecular responses and also for the analysis of population dynamics in the Pacific abalone. PMID:28282934

  15. Drug resistance is conferred on the model yeast Saccharomyces cerevisiae by expression of full-length melanoma-associated human ATP-binding cassette transporter ABCB5.

    PubMed

    Keniya, Mikhail V; Holmes, Ann R; Niimi, Masakazu; Lamping, Erwin; Gillet, Jean-Pierre; Gottesman, Michael M; Cannon, Richard D

    2014-10-06

    ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-β mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.

  16. Isolation, expression, and characterization of blue light receptor AUREOCHROME gene from Saccharina japonica (Laminariales, Phaeophyceae).

    PubMed

    Deng, Yunyan; Yao, Jianting; Fu, Gang; Guo, Hui; Duan, Delin

    2014-04-01

    Photosynthetic stramenopile have chloroplasts of secondary endosymbiotic origin and are significant as aquatic primary productivity and biomass production. In marine environments, many photosynthetic stramenopiles utilize blue light to regulate growth, development, and organelle movement. Aureochrome (AUREO) is a new type blue light photoreceptor specific in photosynthetic stramenopiles. Previously, several AUREO orthologs were reported in genomes of stramenopile members, but the full-length cDNA sequences were completed only in Vaucheria frigida (Xanthophyceae), Fucus distichus (Phaeophyceae), and Ochromonas danica (Chrysophyceae). In this study, the full-length cDNA of AUREO from Saccharina japonica (designated as SjAUREO) was isolated based on homologous cloning and the rapid amplification of cDNA ends (RACE). It characterized by the full length of 1,013 bp with an open reading frame of 612 bp, which encoded a polypeptide of 203 amino acids with predicted molecular weight of 23.08 kDa and theoretical isoelectric point of 7.63. The deduced amino acid sequence of SjAUREO contained one N-terminal basic region/leucine zipper (bZIP) transcription regulation domain and a single light-, oxygen-, or voltage-sensitive (LOV) domain near the C-terminus. Homologous analysis showed that SjAUREO shared 40-92 % similarities with those of other photosynthetic stramenopiles. Phylogenetic analysis revealed close phylogenetic affinity between SjAUREO and AUREO4 of brown alga Ectocarpus siliculosus. Real-time PCR detection revealed that the SjAUREO transcription was markedly increased under BL exposure and dramatically upregulated in the 1-month juvenile sporophyte than those in the 2 and 3-month materials, which indirectly reflected the SjAUREO associated with the BL-mediated photomorphogenesis during the growth and early development of juvenile sporophytes. In vitro expression showed one distinct band existed at ∼27 kDa, and western blot detection proved that it was positive to the anti-His antibody with high specificity. Our results enriched the knowledge of AUREO properties in S. japonica and provided clues to explore the mechanisms underlying diverse physiological responses mediated by BL photoreceptors AUREO in the photosynthetic stramenopiles.

  17. Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus dromedarius

    PubMed Central

    Al-Swailem, Abdulaziz M.; Shehata, Maher M.; Abu-Duhier, Faisel M.; Al-Yamani, Essam J.; Al-Busadah, Khalid A.; Al-Arawi, Mohammed S.; Al-Khider, Ali Y.; Al-Muhaimeed, Abdullah N.; Al-Qahtani, Fahad H.; Manee, Manee M.; Al-Shomrani, Badr M.; Al-Qhtani, Saad M.; Al-Harthi, Amer S.; Akdemir, Kadir C.; Otu, Hasan H.

    2010-01-01

    Despite its economical, cultural, and biological importance, there has not been a large scale sequencing project to date for Camelus dromedarius. With the goal of sequencing complete DNA of the organism, we first established and sequenced camel EST libraries, generating 70,272 reads. Following trimming, chimera check, repeat masking, cluster and assembly, we obtained 23,602 putative gene sequences, out of which over 4,500 potentially novel or fast evolving gene sequences do not carry any homology to other available genomes. Functional annotation of sequences with similarities in nucleotide and protein databases has been obtained using Gene Ontology classification. Comparison to available full length cDNA sequences and Open Reading Frame (ORF) analysis of camel sequences that exhibit homology to known genes show more than 80% of the contigs with an ORF>300 bp and ∼40% hits extending to the start codons of full length cDNAs suggesting successful characterization of camel genes. Similarity analyses are done separately for different organisms including human, mouse, bovine, and rat. Accompanying web portal, CAGBASE (http://camel.kacst.edu.sa/), hosts a relational database containing annotated EST sequences and analysis tools with possibility to add sequences from public domain. We anticipate our results to provide a home base for genomic studies of camel and other comparative studies enabling a starting point for whole genome sequencing of the organism. PMID:20502665

  18. The delta-subunit of murine guanine nucleotide exchange factor eIF-2B. Characterization of cDNAs predicts isoforms differing at the amino-terminal end.

    PubMed

    Henderson, R A; Krissansen, G W; Yong, R Y; Leung, E; Watson, J D; Dholakia, J N

    1994-12-02

    Protein synthesis in mammalian cells is regulated at the level of the guanine nucleotide exchange factor, eIF-2B, which catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP. We have isolated and sequenced cDNA clones encoding the delta-subunit of murine eIF-2B. The cDNA sequence encodes a polypeptide of 544 amino acids with molecular mass of 60 kDa. Antibodies against a synthetic polypeptide of 30 amino acids deduced from the cDNA sequence specifically react with the delta-subunit of mammalian eIF-2B. The cDNA-derived amino acid sequence shows significant homology with the yeast translational regulator Gcd2, supporting the hypothesis that Gcd2 may be the yeast homolog of the delta-subunit of mammalian eIF-2B. Primer extension studies and anchor polymerase chain reaction analysis were performed to determine the 5'-end of the transcript for the delta-subunit of eIF-2B. Results of these experiments demonstrate two different mRNAs for the delta-subunit of eIF-2B in murine cells. The isolation and characterization of two different full-length cDNAs also predicts the presence of two alternate forms of the delta-subunit of eIF-2B in murine cells. These differ at their amino-terminal end but have identical nucleotide sequences coding for amino acids 31-544.

  19. Display of a maize cDNA library on baculovirus infected insect cells.

    PubMed

    Meller Harel, Helene Y; Fontaine, Veronique; Chen, Hongying; Jones, Ian M; Millner, Paul A

    2008-08-12

    Maize is a good model system for cereal crop genetics and development because of its rich genetic heritage and well-characterized morphology. The sequencing of its genome is well advanced, and new technologies for efficient proteomic analysis are needed. Baculovirus expression systems have been used for the last twenty years to express in insect cells a wide variety of eukaryotic proteins that require complex folding or extensive posttranslational modification. More recently, baculovirus display technologies based on the expression of foreign sequences on the surface of Autographa californica (AcMNPV) have been developed. We investigated the potential of a display methodology for a cDNA library of maize young seedlings. We constructed a full-length cDNA library of young maize etiolated seedlings in the transfer vector pAcTMVSVG. The library contained a total of 2.5 x 10(5) independent clones. Expression of two known maize proteins, calreticulin and auxin binding protein (ABP1), was shown by western blot analysis of protein extracts from insect cells infected with the cDNA library. Display of the two proteins in infected insect cells was shown by selective biopanning using magnetic cell sorting and demonstrated proof of concept that the baculovirus maize cDNA display library could be used to identify and isolate proteins. The maize cDNA library constructed in this study relies on the novel technology of baculovirus display and is unique in currently published cDNA libraries. Produced to demonstrate proof of principle, it opens the way for the development of a eukaryotic in vivo display tool which would be ideally suited for rapid screening of the maize proteome for binding partners, such as proteins involved in hormone regulation or defence.

  20. Cloning of cytochrome P450 3A137 complementary DNA in silver carp and expression induction by ionic liquid.

    PubMed

    Li, Xiaoyu; Ma, Junguo; Lei, Wenlong; Li, Jie; Zhang, Yaning; Li, Yuanlong

    2013-08-01

    Cytochrome P450 (CYP) enzymes, especially CYP 3A, are responsible for metabolizing of various kinds of endogenous and exogenous compounds in animals. In the present study, a full-length sequence of CYP 3A137 cDNA in silver carp was cloned and sequenced, and then a phylogenetic tree of CYP 3A was structured. Additionally, the acute toxicity of the ionic liquid 1-octyl-3-methylimidazolium bromide ([C8mim]Br) on silver carp and transcription and microsome enzyme activity of CYP 3A137 in the liver of silver fish after rifampicin or [C8mim]Br exposure were also determined in this study. The results show that the full length of CYP 3A137 cDNA is 1810 base pair (bp) long and contains an open reading frame of 1539bp encoding a protein of 513 amino acids. Sequence analysis reveals that CYP 3A137 is highly conserved in fish. Moreover, the results of quantitative real-time polymerase chain reaction reveal that CYP 3A137 in silver carp is constitutively expressed in all tissues examined and the sequence of expression rate is liver>intestine>kidney>spleen>brain>heart>muscle. Finally, the results of acute toxicity tests indicate that both rifampicin and [C8mim]Br significantly up-regulate the expression of CYP 3A137 at mRNA level and increase CYP 3A137 enzyme activity in fish liver, suggesting that CYP 3A137 be involved in metabolism of [C8mim]Br in silver carp. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. cDNA cloning, expression and immune function analysis of a novel Rac1 gene (AjRac1) in the sea cucumber Apostichopus japonicus.

    PubMed

    Li, Kaiquan; Liu, Lin; Shang, Shengnan; Wang, Yi; Zhan, Yaoyao; Song, Jian; Zhang, Xiangxiang; Chang, Yaqing

    2017-10-01

    The ras-related C3 botulinum toxin substrate 1 (Rac1) belongs to Ras homolog (Rho) small GTPases subfamily. As an important molecular switch, Rac1 regulates various processes in the cell, especially in cellular immune response. With attempt to clarify characters and functions of Rac1 in sea cucumbers, full length cDNA of a Rac1 homolog in the sea cucumber Apostichopus japonicus (AjRac1) was cloned by transcriptome database mining and rapid amplification of cDNA ends (RACE) techniques. The open reading frame of AjRac1 is 579 bp encoding a protein with a length of 192 aa. Sequence analysis showed that AjRac1 is highly conserved as compared to those from other eukaryotic species. Phylogenetic analysis revealed that amino acid sequence of AjRac1 closely related to those from Strongylocentrotus purpuratus. Results of expression analysis showed that AjRac1 exhibited a relative high expression in blastula stage, adult coelomocytes and respiratory tree in A. japonicus. The transcription of AjRac1 in adult coelomocytes altered significantly at 4 h- and 12 h-after Vibrio splendidus infection, respectively, which indicated that AjRac1 involved in sea cucumber innate immunity. All data presented in this study will deepen our understanding of characterizations and immunological functions of Rac1 in sea cucumbers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Isolation of a complementary DNA clone for the human complement protein C2 and its use in the identification of a restriction fragment length polymorphism.

    PubMed Central

    Woods, D E; Edge, M D; Colten, H R

    1984-01-01

    Complementary DNA (cDNA) clones corresponding to the major histocompatibility (MHC) class III antigen, complement protein C2, have been isolated from human liver cDNA libraries with the use of a complex mixture of synthetic oligonucleotides (17 mer) that contains 576 different oligonucleotide sequences. The C2 cDNA were used to identify a DNA restriction enzyme fragment length polymorphism that provides a genetic marker within the MHC that was not detectable at the protein level. An extensive search for genomic polymorphisms using a cDNA clone for another MHC class III gene, factor B, failed to reveal any DNA variants. The genomic variants detected with the C2 cDNA probe provide an additional genetic marker for analysis of MHC-linked diseases. Images PMID:6086718

  3. Cloning, expression and N-terminal myristoylation of CpCPK1, a calcium-dependent protein kinase from zucchini (Cucurbita pepo L.).

    PubMed

    Ellard-Ivey, M; Hopkins, R B; White, T J; Lomax, T L

    1999-01-01

    We have isolated a full-length cDNA clone (CpCDPK1) encoding a calcium-dependent protein kinase (CDPK) gene from zucchini (Cucurbita pepo L.). The predicted amino acid sequence of the cDNA shows a remarkably high degree of similarity to members of the CDPK gene family from Arabidopsis thaliana, especially AtCPK1 and AtCPK2. Northern analysis of steady-state mRNA levels for CpCPK1 in etiolated and light-grown zucchini seedlings shows that the transcript is most abundant in etiolated hypocotyls and overall expression is suppressed by light. As described for other members of the CDPK gene family from different species, the CpCPK1 clone has a putative N-terminal myristoylation sequence. In this study, site-directed mutagenesis and an in vitro coupled transcription/translation system were used to demonstrate that the protein encoded by this cDNA is specifically myristoylated by a plant N-myristoyl transferase. This is the first demonstration of myristoylation of a CDPK protein which may contribute to the mechanism by which this protein is localized to the plasma membrane.

  4. Recovery of infectious type Asia1 foot-and-mouth disease virus from suckling mice directly inoculated with an RNA polymerase I/II-driven unidirectional transcription plasmid.

    PubMed

    Lian, Kaiqi; Yang, Fan; Zhu, Zixiang; Cao, Weijun; Jin, Ye; Li, Dan; Zhang, Keshan; Guo, Jianhong; Zheng, Haixue; Liu, Xiangtao

    2015-10-02

    We developed an RNA polymerase (pol) I- and II-driven plasmid-based reverse genetics system to rescue infectious foot-and-mouth disease virus (FMDV) from cloned cDNA. In this plasmid-based transfection, the full-length viral cDNA was flanked by hammerhead ribozyme (HamRz) and hepatitis delta ribozyme (HdvRz) sequences, which were arranged downstream of the two promoters (cytomegalovirus (CMV) and pol I promoter) and upstream of the terminators and polyadenylation signal, respectively. The utility of this method was demonstrated by the recovery of FMDV Asia1 HN/CHA/06 in BHK-21 cells transfected with cDNA plasmids. Furthermore, infectious FMDV Asia1 HN/CHA/06 could be rescued from suckling mice directly inoculated with cDNA plasmids. Thus, this reverse genetics system can be applied to fundamental research and vaccine studies, most notably to rescue those viruses for which there is currently an absence of a suitable cell culture system. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Large-scale collection of full-length cDNA and transcriptome analysis in Hevea brasiliensis.

    PubMed

    Makita, Yuko; Ng, Kiaw Kiaw; Veera Singham, G; Kawashima, Mika; Hirakawa, Hideki; Sato, Shusei; Othman, Ahmad Sofiman; Matsui, Minami

    2017-04-01

    Natural rubber has unique physical properties that cannot be replaced by products from other latex-producing plants or petrochemically produced synthetic rubbers. Rubber from Hevea brasiliensis is the main commercial source for this natural rubber that has a cis-polyisoprene configuration. For sustainable production of enough rubber to meet demand elucidation of the molecular mechanisms involved in the production of latex is vital. To this end, we firstly constructed rubber full-length cDNA libraries of RRIM 600 cultivar and sequenced around 20,000 clones by the Sanger method and over 15,000 contigs by Illumina sequencer. With these data, we updated around 5,500 gene structures and newly annotated around 9,500 transcription start sites. Second, to elucidate the rubber biosynthetic pathways and their transcriptional regulation, we carried out tissue- and cultivar-specific RNA-Seq analysis. By using our recently published genome sequence, we confirmed the expression patterns of the rubber biosynthetic genes. Our data suggest that the cytoplasmic mevalonate (MVA) pathway is the main route for isoprenoid biosynthesis in latex production. In addition to the well-studied polymerization factors, we suggest that rubber elongation factor 8 (REF8) is a candidate factor in cis-polyisoprene biosynthesis. We have also identified 39 transcription factors that may be key regulators in latex production. Expression profile analysis using two additional cultivars, RRIM 901 and PB 350, via an RNA-Seq approach revealed possible expression differences between a high latex-yielding cultivar and a disease-resistant cultivar. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  6. Construction of cDNA expression library of watermelon for isolation of ClWRKY1 transcription factors gene involved in resistance to Fusarium wilt.

    PubMed

    Yang, Bing-Yan; Huo, Xiu-Ai; Li, Peng-Fei; Wang, Cui-Xia; Duan, Hui-Jun

    2014-08-01

    Full-length cDNAs are very important for genome annotation and functional analysis of genes. The number of full-length cDNAs from watermelon remains limited. Here we report first the construction of a full-length enriched cDNA library from Fusarium wilt stressed watermelon (Citrullus lanatus Thunb.) cultivar PI296341 root tissues using the SMART method. The titer of primary cDNA library and amplified library was 2.21 x 10(6) and 2.0 x 10(10) pfu/ml, respectively and the rate of recombinant was above 85%. The size of insert fragment ranged from 0.3 to 2.0 kb. In this study, we first cloned a gene named ClWRKY1, which was 1981 bp long and encoded a protein consisting of 394 amino acids. It contained two characteristic WRKY domains and two zinc finger motifs. Quantitative real-time PCR showed that ClWRKY1 expression levels reached maximum level at 12 h after inoculation with Fusarium oxysporum f. sp. niveum. The full-length cDNA library of watermelon root tissues is not only essential for the cloning of genes which are known, but also an initial key for the screening and cloning of new genes that might be involved in resistance to Fusarium wilt.

  7. Molecular Cloning of an Immunogenic Protein of Baylisascaris procyonis and Expression in Escherichia coli for Use in Developing Improved Serodiagnostic Assays▿

    PubMed Central

    Dangoudoubiyam, Sriveny; Vemulapalli, Ramesh; Hancock, Kathy; Kazacos, Kevin R.

    2010-01-01

    Larva migrans caused by Baylisascaris procyonis is an important zoonotic disease. Current serological diagnostic assays for this disease depend on the use of the parasite's larval excretory-secretory (ES) antigens. In order to identify genes encoding ES antigens and to generate recombinant antigens for use in diagnostic assays, construction and immunoscreening of a B. procyonis third-stage larva cDNA expression library was performed and resulted in identification of a partial-length cDNA clone encoding an ES antigen, designated repeat antigen 1 (RAG1). The full-length rag1 cDNA contained a 753-bp open reading frame that encoded a protein of 250 amino acids with 12 tandem repeats of a 12-amino-acid long sequence. The rag1 genomic DNA revealed a single intron of 837 bp that separated the 753-bp coding sequence into two exons delimited by canonical splice sites. No nucleotide or amino acid sequences present in the GenBank databases had significant similarity with those of RAG1. We have cloned, expressed, and purified the recombinant RAG1 (rRAG1) and analyzed its diagnostic potential by enzyme-linked immunosorbent assay. Anti-Baylisascaris species-specific rabbit serum showed strong reactivity to rRAG1, while only minimal to no reactivity was observed with sera against the related ascarids Toxocara canis and Ascaris suum, strongly suggesting the specificity of rRAG1. On the basis of these results, the identified RAG1 appears to be a promising diagnostic antigen for the development of serological assays for specific detection of B. procyonis larva migrans. PMID:20926699

  8. Characterization of defensin gene from abalone Haliotis discus hannai and its deduced protein

    NASA Astrophysics Data System (ADS)

    Hong, Xuguang; Sun, Xiuqin; Zheng, Minggang; Qu, Lingyun; Zan, Jindong; Zhang, Jinxing

    2008-11-01

    Defensin is one of preserved ancient host defensive materials formed in biological evolution. As a regulator and effector molecule, it is very important in animals’ acquired immune system. This paper reports the defensin gene from the mixed liver and kidney cDNA library of abalone Haliotis discus hannai Ino. Sequence analysis shows that the gene sequence of full-length cDNA encodes 42 mature peptides (including six Cys), molecular weight of 4 323 Da, and pI of 8.02. Amino acid sequence homology analysis shows that the peptides are highly similar (70% in common) to other insects defensin. Because of a typical insect-defensin structural character of mature peptide in the secondary structure, the polypeptide named Haliotis discus defensin (hd-def), a novel of antimicrobial peptides, belongs to insects defensin subfamily. The RT-PCR result of Haliotis discus defensin shows that the gene can be expressed only in the hepatopancreas by Gram-negative and positive bacteria stimulation, which is ascribed to inducible expression. Therefore, it is revealed that the Haliotis discus defensin gene expression was related to the antibacterial infection of Haliotis discus hannai Ino.

  9. Construction of C35 gene bait recombinants and T47D cell cDNA library.

    PubMed

    Yin, Kun; Xu, Chao; Zhao, Gui-Hua; Liu, Ye; Xiao, Ting; Zhu, Song; Yan, Ge

    2017-11-20

    C35 is a novel tumor biomarker associated with metastasis progression. To investigate the interaction factors of C35 in its high expressed breast cancer cell lines, we constructed bait recombinant plasmids of C35 gene and T47D cell cDNA library for yeast two-hybrid screening. Full length C35 sequences were subcloned using RT-PCR from cDNA template extracted from T47D cells. Based on functional domain analysis, the full-length C35 1-348bp was also truncated into two fragments C351-153bp and C35154-348bp to avoid auto-activation. The three kinds of C35 genes were successfully amplified and inserted into pGBKT7 to construct bait recombinant plasmids pGBKT7-C351-348bp, pGBKT7-C351-153bp and pGBKT7-C35154-348bp, then transformed into Y187 yeast cells by the lithium acetate method. Auto-activation and toxicity of C35 baits were detected using nutritional deficient medium and X-α-Gal assays. The T47D cell ds cDNA was generated by SMART TM technology and the library was constructed using in vivo recombination-mediated cloning in the AH109 yeast strain using a pGADT7-Rec plasmid. The transformed Y187/pGBKT7-C351-348bp line was intensively inhibited while the truncated Y187/pGBKT7-C35 lines had no auto-activation and toxicity in yeast cells. The titer of established cDNA library was 2 × 10 7 pfu/mL with high transformation efficiency of 1.4 × 10 6 , and the insert size of ds cDNA was distributed homogeneously between 0.5-2.0 kb. Our research generated a T47D cell cDNA library with high titer, and the constructed two C35 "baits" contained a respective functional immunoreceptor tyrosine based activation motif (ITAM) and the conserved last four amino acids Cys-Ile-Leu-Val (CILV) motif, and therefore laid a foundation for screening the C35 interaction factors in a BC cell line.

  10. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis.

    PubMed

    Phillips, A L; Ward, D A; Uknes, S; Appleford, N E; Lange, T; Huttly, A K; Gaskin, P; Graebe, J E; Hedden, P

    1995-07-01

    Using degenerate oligonucleotide primers based on a pumpkin (Cucurbita maxima) gibberellin (GA) 20-oxidase sequence, six different fragments of dioxygenase genes were amplified by polymerase chain reaction from arabidopsis thaliana genomic DNA. One of these was used to isolate two different full-length cDNA clones, At2301 and At2353, from shoots of the GA-deficient Arabidopsis mutant ga1-2. A third, related clone, YAP169, was identified in the Database of Expressed Sequence Tags. The cDNA clones were expressed in Escherichia coli as fusion proteins, each of which oxidized GA12 at C-20 to GA15, GA24, and the C19 compound GA9, a precursor of bioactive GAs; the C20 tricarboxylic acid compound GA25 was formed as a minor product. The expression products also oxidized the 13-hydroxylated substrate GA53, but less effectively than GA12. The three cDNAs hybridized to mRNA species with tissue-specific patterns of accumulation, with At2301 being expressed in stems and inflorescences, At2353 in inflorescences and developing siliques, and YAP169 in siliques only. In the floral shoots of the ga1-2 mutant, transcript levels corresponding to each cDNA decreased dramatically after GA3 application, suggesting that GA biosynthesis may be controlled, at least in part, through down-regulation of the expression of the 20-oxidase genes.

  11. Solution Hybrid Selection Capture for the Recovery of Functional Full-Length Eukaryotic cDNAs From Complex Environmental Samples

    PubMed Central

    Bragalini, Claudia; Ribière, Céline; Parisot, Nicolas; Vallon, Laurent; Prudent, Elsa; Peyretaillade, Eric; Girlanda, Mariangela; Peyret, Pierre; Marmeisse, Roland; Luis, Patricia

    2014-01-01

    Eukaryotic microbial communities play key functional roles in soil biology and potentially represent a rich source of natural products including biocatalysts. Culture-independent molecular methods are powerful tools to isolate functional genes from uncultured microorganisms. However, none of the methods used in environmental genomics allow for a rapid isolation of numerous functional genes from eukaryotic microbial communities. We developed an original adaptation of the solution hybrid selection (SHS) for an efficient recovery of functional complementary DNAs (cDNAs) synthesized from soil-extracted polyadenylated mRNAs. This protocol was tested on the Glycoside Hydrolase 11 gene family encoding endo-xylanases for which we designed 35 explorative 31-mers capture probes. SHS was implemented on four soil eukaryotic cDNA pools. After two successive rounds of capture, >90% of the resulting cDNAs were GH11 sequences, of which 70% (38 among 53 sequenced genes) were full length. Between 1.5 and 25% of the cloned captured sequences were expressed in Saccharomyces cerevisiae. Sequencing of polymerase chain reaction-amplified GH11 gene fragments from the captured sequences highlighted hundreds of phylogenetically diverse sequences that were not yet described, in public databases. This protocol offers the possibility of performing exhaustive exploration of eukaryotic gene families within microbial communities thriving in any type of environment. PMID:25281543

  12. Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper, Nilaparvata lugens.

    PubMed

    Small, G J; Hemingway, J

    2000-12-01

    Widespread resistance to organophosphorus insecticides (OPs) in Nilaparvata lugens is associated with elevation of carboxylesterase activity. A cDNA encoding a carboxylesterase, Nl-EST1, has been isolated from an OP-resistant Sri Lankan strain of N. lugens. The full-length cDNA codes for a 547-amino acid protein with high homology to other esterases/lipases. Nl-EST1 has an N-terminal hydrophobic signal peptide sequence of 24 amino acids which suggests that the mature protein is secreted from cells expressing it. The nucleotide sequence of the homologue of Nl-EST1 in an OP-susceptible, low esterase Sri Lankan strain of N. lugens is identical to Nl-EST1. Southern analysis of genomic DNA from the Sri Lankan OP-resistant and susceptible strains suggests that Nl-EST1 is amplified in the resistant strain. Therefore, resistance to OPs in the Sri Lankan strain is through amplification of a gene identical to that found in the susceptible strain.

  13. Identification of the full-length β-actin sequence and expression profiles in the tree shrew (Tupaia belangeri).

    PubMed

    Zheng, Yu; Yun, Chenxia; Wang, Qihui; Smith, Wanli W; Leng, Jing

    2015-02-01

    The tree shrew (Tupaia belangeri) diverges from the primate order (Primates) and is classified as a separate taxonomic group of mammals - Scandentia. It has been suggested that the tree shrew can be used as an animal model for studying human diseases; however, the genomic sequence of the tree shrew is largely unidentified. In the present study, we reported the full-length cDNA sequence of the housekeeping gene, β-actin, in the tree shrew. The amino acid sequence of β-actin in the tree shrew was compared to that of humans and other species; a simple phylogenetic relationship was discovered. Quantitative polymerase chain reaction (qPCR) and western blot analysis further demonstrated that the expression profiles of β-actin, as a general conservative housekeeping gene, in the tree shrew were similar to those in humans, although the expression levels varied among different types of tissue in the tree shrew. Our data provide evidence that the tree shrew has a close phylogenetic association with humans. These findings further enhance the potential that the tree shrew, as a species, may be used as an animal model for studying human disorders.

  14. Cloning and expression of UDP-glucose: flavonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis.

    PubMed

    Hirotani, M; Kuroda, R; Suzuki, H; Yoshikawa, T

    2000-05-01

    A cDNA encoding UDP-glucose: baicalein 7-O-glucosyltransferase (UBGT) was isolated from a cDNA library from hairy root cultures of Scutellaria baicalensis Georgi probed with a partial-length cDNA clone of a UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) from grape (Vitis vinifera L.). The heterologous probe contained a glucosyltransferase consensus amino acid sequence which was also present in the Scutellaria cDNA clones. The complete nucleotide sequence of the 1688-bp cDNA insert was determined and the deduced amino acid sequences are presented. The nucleotide sequence analysis of UBGT revealed an open reading frame encoding a polypeptide of 476 amino acids with a calculated molecular mass of 53,094 Da. The reaction product for baicalein and UDP-glucose catalyzed by recombinant UBGT in Escherichia coli was identified as authentic baicalein 7-O-glucoside using high-performance liquid chromatography and proton nuclear magnetic resonance spectroscopy. The enzyme activities of recombinant UBGT expressed in E. coli were also detected towards flavonoids such as baicalein, wogonin, apigenin, scutellarein, 7,4'-dihydroxyflavone and kaempferol, and phenolic compounds. The accumulation of UBGT mRNA in hairy roots was in response to wounding or salicylic acid treatments.

  15. Cloning and expression of trehalose-6-phosphate synthase 1 from Rhizopus oryzae.

    PubMed

    Ozer Uyar, Ebru; Yücel, Meral; Hamamcı, Haluk

    2016-05-01

    Trehalose is a reducing disaccharide acting as a protectant against environmental stresses in many organisms. In fungi, Trehalose-6-phosphate synthase 1 (TPS1) plays a key role in the biosynthesis of trehalose. In this study, a full-length cDNA from Rhizopus oryzae encoding TPS1 (designated as RoTPS1) was isolated. The RoTPS1 cDNA is composed of 2505 nucleotides and encodes a protein of 834 amino acids with a molecular mass of 97.8 kDa. The amino acid sequence of RoTPS1 has a relatively high homology with the TPS1s in several other filamentous fungi. RoTPS1 was cloned into Saccharomyces cerevisiae and secretively expressed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Production, gene structure and characterization of two orthologs of leptin and a leptin receptor in tilapia.

    PubMed

    Shpilman, Michal; Hollander-Cohen, Lian; Ventura, Tomer; Gertler, Arieh; Levavi-Sivan, Berta

    2014-10-01

    Full-length cDNA encoding two leptin sequences (tLepA and tLepB) and one leptin receptor sequence (tLepR) were identified in tilapia (Oreochromis niloticus). The full-length cDNA of tLepR was 3423bp, encoding a protein of 1140 amino acid (aa) which contained all functionally important domains conserved among vertebrate leptin receptors. The cDNAs of tLepA and tLepB were 486bp and 459bp in length, encoding proteins of 161 aa and 152 aa, respectively. Modeling the three-dimensional structures of tLepA and tLepB predicted strong conservation of tertiary structure with that of human leptin, comprised of four helixes. Using synteny, the tLeps were found near common genes, such as IMPDH1 and LLRC4. The cDNA for tLepA and tLepB was cloned and synthetic cDNA optimized for expression in Escherichia coli was prepared according to the cloned sequence. The tLepA- and tLepB-expressing plasmids were transformed into E. coli and expressed as recombinant proteins upon induction with nalidixic acid, found almost entirely in insoluble inclusion bodies (IBs). The proteins were solubilized, refolded and purified to homogeneity by anion-exchange chromatography. In the case of tLepA, the fraction eluted contained a mixture of monomers and dimers. The purified tLepA and tLepB monomers and tLepA dimer showed a single band of ∼15kDa on an SDS-polyacrylamide gel in the presence of reducing agent, whereas the tLepA dimer showed one band of ∼30kDa in the absence of reducing agent, indicating its formation by S-S bonds. The three tLeps were biologically active in promoting proliferation of BAF/3 cells stably transfected with the long form of human leptin receptor (hLepR), but their activity was four orders of magnitude lower than that of mammalian leptin. Furthermore, the three tLeps were biologically active in promoting STAT-LUC activation in COS7 cells transfected with the identified tLepR but not in cells transfected with hLepR. tLepA was more active than tLepB. Low or no activity likely resulted from low identity (9-22%) to mammalian leptins. In an in vivo experiment in which tilapia were fed ad libitum or fasted, there was no significant difference in the expressions of tLepA, tLepB or tLepR in the brain between the two groups examined both by real-time PCR and RNA next generation sequencing. In conclusion, in the present report we show novel, previously unknown sequences of tilapia leptin receptor and two leptins and prepare two biologically active recombinant leptin proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Agroinoculation of Beet necrotic yellow vein virus cDNA clones results in plant systemic infection and efficient Polymyxa betae transmission.

    PubMed

    Delbianco, Alice; Lanzoni, Chiara; Klein, Elodie; Rubies Autonell, Concepcion; Gilmer, David; Ratti, Claudio

    2013-05-01

    Agroinoculation is a quick and easy method for the infection of plants with viruses. This method involves the infiltration of tissue with a suspension of Agrobacterium tumefaciens carrying binary plasmids harbouring full-length cDNA copies of viral genome components. When transferred into host cells, transcription of the cDNA produces RNA copies of the viral genome that initiate infection. We produced full-length cDNA corresponding to Beet necrotic yellow vein virus (BNYVV) RNAs and derived replicon vectors expressing viral and fluorescent proteins in pJL89 binary plasmid under the control of the Cauliflower mosaic virus 35S promoter. We infected Nicotiana benthamiana and Beta macrocarpa plants with BNYVV by leaf agroinfiltration of combinations of agrobacteria carrying full-length cDNA clones of BNYVV RNAs. We validated the ability of agroclones to reproduce a complete viral cycle, from replication to cell-to-cell and systemic movement and, finally, plant-to-plant transmission by its plasmodiophorid vector. We also showed successful root agroinfection of B. vulgaris, a new tool for the assay of resistance to rhizomania, the sugar beet disease caused by BNYVV. © 2013 BSPP AND BLACKWELL PUBLISHING LTD.

  18. An infectious full-length cDNA clone of duck Tembusu virus, a newly emerging flavivirus causing duck egg drop syndrome in China.

    PubMed

    Li, Shuang; Zhang, Lijiao; Wang, Yongyue; Wang, Shuxia; Sun, Haigang; Su, Wenliang; He, Weiyong; Han, Bo; Su, Jingliang

    2013-01-01

    Duck Tembusu virus (TMUV) is a recently identified pathogenic flavivirus that causes severe egg drop and encephalitis in Chinese ducks and geese. It has been found to be most closely related to the mosquito-origin Tembusu virus and chicken Sitiawan virus reported in Malaysia. However, the ecological characteristics and the pathogenesis of duck TMUV are largely unknown. We report the construction of full-length cDNA clone of duck TMUV strain JXSP. The virus genome was reverse transcribed, amplified as seven overlapping fragments and successively ligated into the low copy number vector pWSK29 under the control of a T7 promoter. Transfection of BHK-21 cells with the transcribed RNA from the full-length cDNA clone resulted in production of highly infectious progeny virus. In vitro growth characteristics in BHK-21 cells and virulence in ducklings and BALB/c mice were similar for the rescued and parental viruses. This stable infectious cDNA clone will be a valuable tool for studying the genetic determinants of duck TMUV. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Inferring Higher Functional Information for RIKEN Mouse Full-Length cDNA Clones With FACTS

    PubMed Central

    Nagashima, Takeshi; Silva, Diego G.; Petrovsky, Nikolai; Socha, Luis A.; Suzuki, Harukazu; Saito, Rintaro; Kasukawa, Takeya; Kurochkin, Igor V.; Konagaya, Akihiko; Schönbach, Christian

    2003-01-01

    FACTS (Functional Association/Annotation of cDNA Clones from Text/Sequence Sources) is a semiautomated knowledge discovery and annotation system that integrates molecular function information derived from sequence analysis results (sequence inferred) with functional information extracted from text. Text-inferred information was extracted from keyword-based retrievals of MEDLINE abstracts and by matching of gene or protein names to OMIM, BIND, and DIP database entries. Using FACTS, we found that 47.5% of the 60,770 RIKEN mouse cDNA FANTOM2 clone annotations were informative for text searches. MEDLINE queries yielded molecular interaction-containing sentences for 23.1% of the clones. When disease MeSH and GO terms were matched with retrieved abstracts, 22.7% of clones were associated with potential diseases, and 32.5% with GO identifiers. A significant number (23.5%) of disease MeSH-associated clones were also found to have a hereditary disease association (OMIM Morbidmap). Inferred neoplastic and nervous system disease represented 49.6% and 36.0% of disease MeSH-associated clones, respectively. A comparison of sequence-based GO assignments with informative text-based GO assignments revealed that for 78.2% of clones, identical GO assignments were provided for that clone by either method, whereas for 21.8% of clones, the assignments differed. In contrast, for OMIM assignments, only 28.5% of clones had identical sequence-based and text-based OMIM assignments. Sequence, sentence, and term-based functional associations are included in the FACTS database (http://facts.gsc.riken.go.jp/), which permits results to be annotated and explored through web-accessible keyword and sequence search interfaces. The FACTS database will be a critical tool for investigating the functional complexity of the mouse transcriptome, cDNA-inferred interactome (molecular interactions), and pathome (pathologies). PMID:12819151

  20. BRICHOS domain-containing leukocyte cell-derived chemotaxin 1-like cDNA from disk abalone Haliotis discus discus.

    PubMed

    Kim, Yucheol; De Zoysa, Mahanama; Lee, Youngdeuk; Whang, Ilson; Lee, Jehee

    2010-11-01

    A BRICHOS domain-containing leukocyte cell-derived chemotaxin 1-like cDNA was cloned from the disk abalone (Haliotis discus discus) and designated as AbLECT-1. A full-length (705 bp) of AbLECT-1 cDNA was composed of a 576 bp open reading frame that translates into a putative peptide of 192 amino acids. Deduced amino acid sequence of AbLECT-1 had 15.5- and 27.8% identity and similarity to human LECT-1, respectively. Quantitative real-time PCR analysis results showed that the mRNA of AbLECT-1 was constitutively expressed in abalone hemocytes, gills, mantle, muscle, digestive tract and hepatopancreas in a tissue-specific manner. Moreover, the AbLECT-1 transcription level was induced in hemocytes after challenge with Vibrio alginolyticus, Vibrio parahemolyticus, and Listeria monocytogenes suggesting that it may be involved in immune response reactions in abalone. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Vesicular monoamine transporter-1 (VMAT-1) mRNA and immunoreactive proteins in mouse brain.

    PubMed

    Ashe, Karen M; Chiu, Wan-Ling; Khalifa, Ahmed M; Nicolas, Antoine N; Brown, Bonnie L; De Martino, Randall R; Alexander, Clayton P; Waggener, Christopher T; Fischer-Stenger, Krista; Stewart, Jennifer K

    2011-01-01

    Vesicular monoamine transporter 1 (VMAT-1) mRNA and protein were examined (1) to determine whether adult mouse brain expresses full-length VMAT-1 mRNA that can be translated to functional transporter protein and (2) to compare immunoreactive VMAT-1 proteins in brain and adrenal. VMAT-1 mRNA was detected in mouse brain with RT-PCR. The cDNA was sequenced, cloned into an expression vector, transfected into COS-1 cells, and cell protein was assayed for VMAT-1 activity. Immunoreactive proteins were examined on western blots probed with four different antibodies to VMAT-1. Sequencing confirmed identity of the entire coding sequences of VMAT-1 cDNA from mouse medulla oblongata/pons and adrenal to a Gen-Bank reference sequence. Transfection of the brain cDNA into COS-1 cells resulted in transporter activity that was blocked by the VMAT inhibitor reserpine and a proton ionophore, but not by tetrabenazine, which has a high affinity for VMAT-2. Antibodies to either the C- or N- terminus of VMAT-1 detected two proteins (73 and 55 kD) in transfected COS-1 cells. The C-terminal antibodies detected both proteins in extracts of mouse medulla/pons, cortex, hypothalamus, and cerebellum but only the 73 kD protein and higher molecular weight immunoreactive proteins in mouse adrenal and rat PC12 cells, which are positive controls for rodent VMAT-1. These findings demonstrate that a functional VMAT-1 mRNA coding sequence is expressed in mouse brain and suggest processing of VMAT-1 protein differs in mouse adrenal and brain.

  2. JAK and STAT members of yellow catfish Pelteobagrus fulvidraco and their roles in leptin affecting lipid metabolism.

    PubMed

    Wu, Kun; Tan, Xiao-Ying; Xu, Yi-Huan; Chen, Qi-Liang; Pan, Ya-Xiong

    2016-01-15

    The present study clones and characterizes the full-length cDNA sequences of members in JAK-STAT pathway, explores their mRNA tissue expression and the biological role in leptin influencing lipid metabolism in yellow catfish Pelteobagrus fulvidraco. Full-length cDNA sequences of five JAKs and seven STAT members, including some splicing variants, were obtained from yellow catfish. Compared to mammals, more members of the JAKs and STATs family were found in yellow catfish, which provided evidence that the JAK and STAT family members had arisen by the whole genome duplications during vertebrate evolution. All of these members were widely expressed across the eleven tissues (liver, white muscle, spleen, brain, gill, mesenteric fat, anterior intestine, heart, mid-kidney, testis and ovary) but at the variable levels. Intraperitoneal injection in vivo and incubation in vitro of recombinant human leptin changed triglyceride content and mRNA expression of several JAKs and STATs members, and genes involved in lipid metabolism. AG490, a specific inhibitor of JAK2-STAT pathway, partially reversed leptin-induced effects, indicating that the JAK2a/b-STAT3 pathway exerts main regulating actions of leptin on lipid metabolism at transcriptional level. Meanwhile, the different splicing variants were differentially regulated by leptin incubation. Thus, our data suggest that leptin activated the JAK/STAT pathway and increases the expression of target genes, which partially accounts for the leptin-induced changes in lipid metabolism in yellow catfish. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. [Molecular cloning and characterization of a novel Clonorchis sinensis antigenic protein containing tandem repeat sequences].

    PubMed

    Liu, Qian; Xu, Xue-Nian; Zhou, Yan; Cheng, Na; Dong, Yu-Ting; Zheng, Hua-Jun; Zhu, Yong-Qiang; Zhu, Yong-Qiang

    2013-08-01

    To find and clone new antigen genes from the lambda-ZAP cDNA expression library of adult Clonorchis sinensis, and determine the immunological characteristics of the recombinant proteins. The cDNA expression library of adult C. sinensis was screened by pooled sera of clonorchiasis patients. The sequences of the positive phage clones were compared with the sequences in EST database, and the full-length sequence of the gene (Cs22 gene) was obtained by RT-PCR. cDNA fragments containing 2 and 3 times tandem repeat sequences were generated by jumping PCR. The sequence encoding the mature peptide or the tandem repeat sequence was respectively cloned into the prokaryotic expression vector pET28a (+), and then transformed into E. coli Rosetta DE3 cells for expression. The recombinant proteins (rCs22-2r, rCs22-3r, rCs22M-2r, and rCs22M-3r) were purified by His-bind-resin (Ni-NTA) affinity chromatography. The immunogenicity of rCs22-2r and rCs22-3r was identified by ELISA. To evaluate the immunological diagnostic value of rCs22-2r and rCs22-3r, serum samples from 35 clonorchiasis patients, 31 healthy individuals, 15 schistosomiasis patients, 15 paragonimiasis westermani patients and 13 cysticercosis patients were examined by ELISA. To locate antigenic determinants, the pooled sera of clonorchiasis patients and healthy persons were analyzed for specific antibodies by ELISA with recombinant protein rCs22M-2r and rCs22M-3r containing the tandem repeat sequences. The full-length sequence of Cs22 antigen gene of C. sinensis was obtained. It contained 13 times tandem repeat sequences of EQQDGDEEGMGGDGGRGKEKGKVEGEDGAGEQKEQA. Bioinformatics analysis indicated that the protein (Cs22) belonged to GPI-anchored proteins family. The recombinant proteins rCs22-2r and rCs22-3r showed a certain level of immunogenicity. The positive rate by ELISA coated with the purified PrCs22-2r and PrCs22-3r for sera of clonorchiasis patients both were 45.7% (16/35), and 3.2% (1/31) for those of healthy persons. There was no cross reaction with sera of schistosomiasis and cysticercosis patients. The cross reaction with sera of paragonimiasis westermani patients was 1/15. The recombinant proteins rCs22M-2r and rCs22M-3r which only contained tandem repeats were specifically recognized by pooled sera of clonorchiasis patients. The Cs22 antigen gene of Clonorchis sinensis is obtained, and the recombinant proteins have certain diagnostic value. The antigenic determinant is located in tandem repeat sequences.

  4. Analysis of beta-carotene hydroxylase gene cDNA isolated from the American oil-palm (Elaeis oleifera) mesocarp tissue cDNA library

    PubMed Central

    Bhore, Subhash J; Kassim, Amelia; Loh, Chye Ying; Shah, Farida H

    2010-01-01

    It is well known that the nutritional quality of the American oil-palm (Elaeis oleifera) mesocarp oil is superior to that of African oil-palm (Elaeis guineensis Jacq. Tenera) mesocarp oil. Therefore, it is of important to identify the genetic features for its superior value. This could be achieved through the genome sequencing of the oil-palm. However, the genome sequence is not available in the public domain due to commercial secrecy. Hence, we constructed a cDNA library and generated expressed sequence tags (3,205) from the mesocarp tissue of the American oil-palm. We continued to annotate each of these cDNAs after submitting to GenBank/DDBJ/EMBL. A rough analysis turned our attention to the beta-carotene hydroxylase (Chyb) enzyme encoding cDNA. Then, we completed the full sequencing of cDNA clone for its both strands using M13 forward and reverse primers. The full nucleotide and protein sequence was further analyzed and annotated using various Bioinformatics tools. The analysis results showed the presence of fatty acid hydroxylase superfamily domain in the protein sequence. The multiple sequence alignment of selected Chyb amino acid sequences from other plant species and algal members with E. oleifera Chyb using ClustalW and its phylogenetic analysis suggest that Chyb from monocotyledonous plant species, Lilium hubrid, Crocus sativus and Zea mays are the most evolutionary related with E. oleifera Chyb. This study reports the annotation of E. oleifera Chyb. Abbreviations ESTs - expressed sequence tags, EoChyb - Elaeis oleifera beta-carotene hydroxylase, MC - main cluster PMID:21364789

  5. Molecular cloning and functional expression of bovine spleen ecto-NAD+ glycohydrolase: structural identity with human CD38.

    PubMed Central

    Augustin, A; Muller-Steffner, H; Schuber, F

    2000-01-01

    Bovine spleen ecto-NAD(+) glycohydrolase, an archetypal member of the mammalian membrane-associated NAD(P)(+) glycohydrolase enzyme family (EC 3.2.2.6), displays catalytic features similar to those of CD38, i.e. a protein originally described as a lymphocyte differentiation marker involved in the metabolism of cyclic ADP-ribose and signal transduction. Using amino acid sequence information obtained from NAD(+) glycohydrolase and from a truncated and hydrosoluble form of the enzyme (hNADase) purified to homogeneity, a full-length cDNA clone was obtained. The deduced sequence indicates a protein of 278 residues with a molecular mass of 31.5 kDa. It predicts that bovine ecto-NAD(+) glycohydrolase is a type II transmembrane protein, with a very short intracellular tail. The bulk of the enzyme, which is extracellular and contains two potential N-glycosylation sites, yields the fully catalytically active hNADase which is truncated by 71 residues. Transfection of HeLa cells with the full-length cDNA resulted in the expression of the expected NAD(+) glycohydrolase, ADP-ribosyl cyclase and GDP-ribosyl cyclase activities at the surface of the cells. The bovine enzyme, which is the first 'classical' NAD(P)(+) glycohydrolase whose structure has been established, presents a particularly high sequence identity with CD38, including the presence of 10 strictly conserved cysteine residues in the ectodomain and putative catalytic residues. However, it lacks two otherwise conserved cysteine residues near its C-terminus. Thus hNADase, the truncated protein of 207 amino acids, represents the smallest functional domain endowed with all the catalytic activities of CD38/NAD(+) glycohydrolases so far identified. Altogether, our data strongly suggest that the cloned bovine spleen ecto-NAD(+) glycohydrolase is the bovine equivalent of CD38. PMID:10600637

  6. Alternative polyadenylation of the gene transcripts encoding a rat DNA polymerase beta.

    PubMed

    Konopiński, R; Nowak, R; Siedlecki, J A

    1996-10-17

    Rat cells produce two different transcripts of DNA polymerase beta (beta-Pol). The low-molecular-weight transcript (1.4 kb) was already sequenced. We report here the cloning and sequencing of the full-length cDNA, corresponding to the high-molecular-weight (HMW) transcript (4.0 kb) of beta-Pol. Sequence data strongly suggest that both transcripts are produced from a single gene by alternative polyadenylation. The HMW transcript contains the entire 1.4 kb transcript sequence and additional 2.2 kb on the 3' end. The 3' UTR of the HMW transcript contains some regulatory sequences which are not present in the 1.4-kb transcript. The A + U-rich fragment and (GU)21 sequence are believed to influence the stability of the mRNA. The functional significance of the A-rich region locally destabilizing double-stranded secondary structure remains unknown.

  7. Molecular cloning of the Coch gene of guinea pig inner ear and its expression analysis in cultured fibrocytes of the spiral ligament.

    PubMed

    Li, Lishu; Ikezono, Tetsuo; Sekine, Kuwon; Shindo, Susumu; Matsumura, Tomohiro; Pawankar, Ruby; Ichimiya, Issei; Yagi, Toshiaki

    2010-08-01

    We have cloned guinea pig Coch cDNA and the sequence information will be useful for future molecular study combined with physiological experiments. Proper Coch gene expression appears to be dependent on the unique extracellular micro-environment of the inner ear in vivo. These results provide insight into the Coch gene expression and its regulation. To characterize the guinea pig Coch gene, we performed molecular cloning and expression analysis in the inner ear and cultured fibrocytes of the spiral ligament. The Coch cDNA was isolated using RACE. Cochlin isofoms were studied by Western blot using three different types of mammalian inner ear. The cochlear fibrocytes were cultured and characterized by immunostaining. Coch gene expression in the fibrocytes was investigated and the influence of cytokine stimulation was evaluated. The full-length 1991 bp Coch cDNA that encodes a 553 amino acid protein was isolated. The sequence had significant homology with other mammals, and the sizes of the Cochlin isoforms were identical. In the cultured fibrocytes, Coch mRNA was expressed in a very small amount and the isoform production was different, compared with the results in vivo. Cytokine stimulation did not alter the level of mRNA expression or isoform formation.

  8. Lipoxygenase in Caragana jubata responds to low temperature, abscisic acid, methyl jasmonate and salicylic acid.

    PubMed

    Bhardwaj, Pardeep Kumar; Kaur, Jagdeep; Sobti, Ranbir Chander; Ahuja, Paramvir Singh; Kumar, Sanjay

    2011-09-01

    Lipoxygenase (LOX) catalyses oxygenation of free polyunsaturated fatty acids into oxylipins, and is a critical enzyme of the jasmonate signaling pathway. LOX has been shown to be associated with biotic and abiotic stress responses in diverse plant species, though limited data is available with respect to low temperature and the associated cues. Using rapid amplification of cDNA ends, a full-length cDNA (CjLOX) encoding lipoxygenase was cloned from apical buds of Caragana jubata, a temperate plant species that grows under extreme cold. The cDNA obtained was 2952bp long consisting of an open reading frame of 2610bp encoding 869 amino acids protein. Multiple alignment of the deduced amino acid sequence with those of other plants demonstrated putative LH2/ PLAT domain, lipoxygenase iron binding catalytic domain and lipoxygenase_2 signature sequences. CjLOX exhibited up- and down-regulation of gene expression pattern in response to low temperature (LT), abscisic acid (ABA), methyl jasmonate (MJ) and salicylic acid (SA). Among all the treatments, a strong up-regulation was observed in response to MJ. Data suggests an important role of jasmonate signaling pathway in response to LT in C. jubata. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. [Molecular cloning and characterization of cDNA of the rpc10+ gene encoding the smallest subunit of nuclear RNA polymerases of Schizosaccharomyces pombe].

    PubMed

    Shpakovskiĭ, G V; Lebedenko, E N

    1997-05-01

    The full-length cDNA of the rpc10+ gene encoding mini-subunit Rpc10, which is common for all three nuclear RNA polymerases of the fission yeast Schizosaccharomyces pombe, was cloned and sequenced. The Rpc10 subunit of Sz. pombe and its homologs from S. cerevisiae and H. sapiens are positively charged proteins with a highly conserved C-terminal region and an invariant zinc-binding domain (Zn-finger) of a typical amino acid composition: YxCx2Cx12RCx2CGxR. Functional tests of heterospecific complementation, using tetrad analysis or plasmid shuffling, showed that the Rpc10 subunit of Sz. pombe can successfully replace the homologous ABC10 alpha subunit in nuclear RNA polymerases I-III of S. cerevisiae.

  10. Molecular cloning and expression analysis of jasmonic acid dependent but salicylic acid independent LeWRKY1.

    PubMed

    Lu, M; Wang, L F; Du, X H; Yu, Y K; Pan, J B; Nan, Z J; Han, J; Wang, W X; Zhang, Q Z; Sun, Q P

    2015-11-30

    Various plant genes can be activated or inhibited by phytohormones under conditions of biotic and abiotic stress, especially in response to jasmonic acid (JA) and salicylic acid (SA). Interactions between JA and SA may be synergistic or antagonistic, depending on the stress condition. In this study, we cloned a full-length cDNA (LeWRKY1, GenBank accession No. FJ654265) from Lycopersicon esculentum by rapid amplification of cDNA ends. Sequence analysis showed that this gene is a group II WRKY transcription factor. Analysis of LeWRKY1 mRNA expression in various tissues by qRT-PCR showed that the highest and lowest expression occurred in the leaves and stems, respectively. In addition, LeWRKY1 expression was induced by JA and Botrytis cinerea Pers., but not by SA.

  11. HOXBES2: a novel epididymal HOXB2 homeoprotein and its domain-specific association with spermatozoa.

    PubMed

    Prabagaran, E; Bandivdekar, A H; Dighe, V; Raghavan, V P

    2007-02-01

    The sperm from the testis acquires complete fertilizing ability and forward progressive motility following its transit through the epididymis. Acquisition of these characteristics results from the modification of the sperm proteome following interactions with epididymal secretions. In our attempts to identify epididymis-specific sperm plasma membrane proteins, a partial 2.83-kb clone was identified by immunoscreening a monkey epididymal cDNA library with an agglutinating monoclonal antibody raised against washed human spermatozoa. The sequence of the 2.83-kb clone exhibited homology to the region between 1 and 1097 bp of the homeobox gene, Hoxb2. This sequence was found to be species conserved, as revealed by RT-PCR analysis. To obtain a full-length clone of the sequence, 5' RACE-PCR (rapid amplification of cDNA ends PCR) was carried out using rat epididymal RNA as the template. It resulted in a full-length 1.657-kb cDNA encoding a 32.9-kDa putative protein. The protein designated HOXBES2 exhibited homology to the conserved 61-amino acid homeodomain region of the HOXB2 homeoprotein. However, characteristic differences were noted in its amino and carboxyl termini compared with HOXB2. A putative 30-kDa protein was detected in the tissue extracts from adult rat epididymis and caudal spermatozoa, and a 37-kDa protein was detected in the rat embryo when probed with a polyclonal antibody against HOXB2 protein. Multiple tissue Western blot and immunohistochemical analysis further indicated its expression in the cytoplasm of the principal and basal epithelial cells, with maximal expression in the distal epididymal segments. Northern blot analysis detected a single approximately 2.5-kb transcript from the adult epididymis. Indirect immunofluorescence localized the protein to the acrosome, midpiece, and equatorial segments of rat caudal and ejaculated human and monkey spermatozoa, respectively. In conclusion, we have identified and characterized a novel epididymal homeoprotein different from HOXB2 protein and hereafter referred to as HOXBES2, (HOXB2 homeodomain containing epididymis-specific sperm protein) with a probable role in fertilization.

  12. Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics.

    PubMed

    Aoki, Koh; Yano, Kentaro; Suzuki, Ayako; Kawamura, Shingo; Sakurai, Nozomu; Suda, Kunihiro; Kurabayashi, Atsushi; Suzuki, Tatsuya; Tsugane, Taneaki; Watanabe, Manabu; Ooga, Kazuhide; Torii, Maiko; Narita, Takanori; Shin-I, Tadasu; Kohara, Yuji; Yamamoto, Naoki; Takahashi, Hideki; Watanabe, Yuichiro; Egusa, Mayumi; Kodama, Motoichiro; Ichinose, Yuki; Kikuchi, Mari; Fukushima, Sumire; Okabe, Akiko; Arie, Tsutomu; Sato, Yuko; Yazawa, Katsumi; Satoh, Shinobu; Omura, Toshikazu; Ezura, Hiroshi; Shibata, Daisuke

    2010-03-30

    The Solanaceae family includes several economically important vegetable crops. The tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance. To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs) was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706) was estimated to be 0.061%. The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the tomato whole-genome sequence and aid in tomato functional genomics and molecular breeding. Full-length cDNA sequences and their annotations are provided in the database KaFTom http://www.pgb.kazusa.or.jp/kaftom/ via the website of the National Bioresource Project Tomato http://tomato.nbrp.jp.

  13. Molecular cloning and sequence analysis of heat shock proteins 70 (HSP70) and 90 (HSP90) and their expression analysis when exposed to benzo(a)pyrene in the clam Ruditapes philippinarum.

    PubMed

    Liu, Tong; Pan, Luqing; Cai, Yuefeng; Miao, Jingjing

    2015-01-25

    HSP70 and HSP90 are the most important heat shock proteins (HSPs), which play the key roles in the cell as molecular chaperones and may involve in metabolic detoxification. The present research has obtained full-length cDNAs of genes HSP70 and HSP90 from the clam Ruditapes philippinarum and studied the transcriptional responses of the two genes when exposed to benzo(a)pyrene (BaP). The full-length RpHSP70 cDNA was 2336bp containing a 5' untranslated region (UTR) of 51bp, a 3' UTR of 335bp and an open reading frame (ORF) of 1950bp encoding 650 amino acid residues. The full-length RpHSP90 cDNA was 2839bp containing a 107-bp 5' UTR, a 554-bp 3' UTR and a 2178-bp ORF encoding 726 amino acid residues. The deduced amino acid sequences of RpHSP70 and RpHSP90 shared the highest identity with the sequences of Paphia undulata, and the phylogenetic trees showed that the evolutions of RpHSP70 and RpHSP90 were almost in accord with the evolution of species. The RpHSP70 and RpHSP90 mRNA expressions were detected in all tested tissues in the adult clams (digestive gland, gill, adductor muscle and mantle) and the highest mRNA expression level was observed in the digestive gland compared to other tissues. Quantitative real-time RT-PCR analysis revealed that mRNA expression levels of the clam RpHSP70, RpHSP90 and other xenobiotic metabolizing enzymes (XMEs) (AhR, DD, GST, GPx) in the digestive gland of R. philippinarum were induced by benzo(a)pyrene (BaP) and the absolute expression levels of these genes showed a temporal and dose-dependent response. The results suggested that RpHSP70 and RpHSP90 were involved in the metabolic detoxification of BaP in the clam R. philippinarum. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Soldier caste-specific gene expression in the mandibular glands of Hodotermopsis japonica (Isoptera: Termopsidae)

    PubMed Central

    Miura, Toru; Kamikouchi, Azusa; Sawata, Miyuki; Takeuchi, Hideaki; Natori, Syunji; Kubo, Takeo; Matsumoto, Tadao

    1999-01-01

    Although “polymorphic castes” in social insects are well known as one of the most important phenomena of polyphenism, few studies of caste-specific gene expressions have been performed in social insects. To identify genes specifically expressed in the soldier caste of the Japanese damp-wood termite Hodotermopsis japonica, we employed the differential-display method using oligo(dT) and arbitrary primers, compared mRNA from the heads of mature soldiers and pseudergates (worker caste), and identified a clone (PCR product) 329 bp in length termed SOL1. Northern blot analysis showed that the SOL1 mRNA is about 1.0 kb in length and is expressed specifically in mature soldiers, but not in pseudergates, even in the presoldier induction by juvenile hormone analogue, suggesting that the product is specific for terminally differentiated soldiers. By using the method of 5′- and 3′-rapid amplification of cDNA ends, we isolated the full length of SOL1 cDNA, which contained an ORF with a putative signal peptide at the N terminus. The sequence showed no significant homology with any other known protein sequences. In situ hybridization analysis showed that SOL1 is expressed specifically in the mandibular glands. These results strongly suggest that the SOL1 gene encodes a secretory protein specifically synthesized in the mandibular glands of the soldiers. Histological observations revealed that the gland actually develops during the differentiation into the soldier caste. PMID:10570166

  15. A Rapid Method for Engineering Recombinant Polioviruses or Other Enteroviruses.

    PubMed

    Bessaud, Maël; Pelletier, Isabelle; Blondel, Bruno; Delpeyroux, Francis

    2016-01-01

    The cloning of large enterovirus RNA sequences is labor-intensive because of the frequent instability in bacteria of plasmidic vectors containing the corresponding cDNAs. In order to circumvent this issue we have developed a PCR-based method that allows the generation of highly modified or chimeric full-length enterovirus genomes. This method relies on fusion PCR which enables the concatenation of several overlapping cDNA amplicons produced separately. A T7 promoter sequence added upstream the fusion PCR products allows its transcription into infectious genomic RNAs directly in transfected cells constitutively expressing the phage T7 RNA polymerase. This method permits the rapid recovery of modified viruses that can be subsequently amplified on adequate cell-lines.

  16. An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van De Loo, F.J.; Broun, P.; Turner, S.

    1995-07-18

    Recent spectroscopic evidence implicating a binuclear iron site at the reaction center of fatty acyl desaturases suggested to us that certain fatty acyl hydroxylases may share significant amino acid sequence similarity with desaturases. To test this theory, we prepared a cDNA library from developing endosperm of the castor-oil plant (Ricinus communis L.) and obtained partial nucleotide sequences for 468 anonymous clones that were not expressed at high levels in leaves, a tissue deficient in 12-hydroxyoleic acid. This resulted in the identification of several cDNA clones encoding a polypeptide of 387 amino acids with a predicted molecular weight of 44,407 andmore » with {approx}67% sequence homology to microsomal oleate desaturase from Arabidopsis. Expression of a full-length clone under control of the cauliflower mosaic virus 35S promoter in transgenic tobacco resulted in the accumulation of low levels of 12-hydroxyoleic acid in seeds, indicating that the clone encodes the castor oleate hydroxylase. These results suggest that fatty acyl desaturases and hydroxylases share similar reaction mechanisms and provide an example of enzyme evolution. 26 refs., 6 figs., 1 tab.« less

  17. Molecular Characterization of a Catalase from Hydra vulgaris

    PubMed Central

    Dash, Bhagirathi; Phillips, Timothy D.

    2012-01-01

    Catalase, an antioxidant and hydroperoxidase enzyme protects the cellular environment from harmful effects of hydrogen peroxide by facilitating its degradation to oxygen and water. Molecular information on a cnidarian catalase and/or peroxidase is, however, limited. In this work an apparent full length cDNA sequence coding for a catalase (HvCatalase) was isolated from Hydra vulgaris using 3’- and 5’- (RLM) RACE approaches. The 1859 bp HvCatalase cDNA included an open reading frame of 1518 bp encoding a putative protein of 505 amino acids with a predicted molecular mass of 57.44 kDa. The deduced amino acid sequence of HvCatalase contained several highly conserved motifs including the heme-ligand signature sequence RLFSYGDTH and the active site signature FXRERIPERVVHAKGXGA. A comparative analysis showed the presence of conserved catalytic amino acids [His(71), Asn(145), and Tyr(354)] in HvCatalase as well. Homology modeling indicated the presence of the conserved features of mammalian catalase fold. Hydrae exposed to thermal, starvation, metal and oxidative stress responded by regulating its catalase mRNA transcription. These results indicated that the HvCatalase gene is involved in the cellular stress response and (anti)oxidative processes triggered by stressor and contaminant exposure. PMID:22521743

  18. Isolation and genetic mapping of a Coffea canephora phenylalanine ammonia-lyase gene (CcPAL1) and its involvement in the accumulation of caffeoyl quinic acids.

    PubMed

    Mahesh, Venkataramaiah; Rakotomalala, Jean Jacques; Le Gal, Lénaïg; Vigne, Hélène; de Kochko, Alexandre; Hamon, Serge; Noirot, Michel; Campa, Claudine

    2006-09-01

    Biosynthesis of caffeoylquinic acids occurs via the phenylpropanoid pathway in which the phenylalanine ammonia-lyase (PAL) acts as a key-control enzyme. A full-length cDNA (pF6), corresponding to a PAL gene (CcPAL1), was isolated by screening a Coffea canephora fruit cDNA library and its corresponding genomic sequence was characterized. Amplification of total DNA from seven Coffea species revealed differences in intronic length. This interspecific polymorphism was used to locate the gene on a genetic map established for a backcross progeny between Coffea pseudozanguebariae and C. dewevrei. The CcPAL1 gene was found on the same linkage group, but genetically independent, as a caffeoyl-coenzyme A-O-methyltransferase gene, another gene intervening in the phenylpropanoid pathway. In the same backcross, a lower caffeoylquinic acid content was observed in seeds harvested from plants harbouring the C. pseudozanguebariae CcPAL1 allele. Involvement of the CcPAL1 allelic form in the differential accumulation of caffeoylquinic acids in coffee green beans is then discussed.

  19. Sequence analysis and gene expression of putative exo- and endo-glucanases from oil palm (Elaeis guineensis) during fungal infection.

    PubMed

    Yeoh, Keat-Ai; Othman, Abrizah; Meon, Sariah; Abdullah, Faridah; Ho, Chai-Ling

    2012-10-15

    Glucanases are enzymes that hydrolyze a variety β-d-glucosidic linkages. Plant β-1,3-glucanases are able to degrade fungal cell walls; and promote the release of cell-wall derived fungal elicitors. In this study, three full-length cDNA sequences encoding oil palm (Elaeis guineensis) glucanases were analyzed. Sequence analyses of the cDNA sequences suggested that EgGlc1-1 is a putative β-d-glucan exohydolase belonging to glycosyl hydrolase (GH) family 3 while EgGlc5-1 and EgGlc5-2 are putative glucan endo-1,3-β-glucosidases belonging to GH family 17. The transcript abundance of these genes in the roots and leaves of oil palm seedlings treated with Ganoderma boninense and Trichoderma harzianum was profiled to investigate the involvement of these glucanases in oil palm during fungal infection. The gene expression of EgGlc1-1 in the root of oil palm seedlings was increased by T. harzianum but suppressed by G. boninense; while the gene expression of both EgGlc5-1 and EgGlc5-2 in the roots of oil palm seedlings was suppressed by G. boninense or/and T. harzianum. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. Molecular characterization and expression analysis of osteopontin cDNA from lactating mammary gland in yak (Bos grunniens).

    PubMed

    Bai, W L; Yang, R J; Yin, R H; Jiang, W Q; Luo, G B; Yin, R L; Zhao, S J; Li, C; Zhao, Z H

    2012-04-01

    Osteopontin (OPN) is a secreted phosphorylated glycoprotein. It has an important role in mammary gland development and lactation, as well as, is thought to be a potential candidate gene for lactation traits. In the present work, we isolated and characterized a full-length open reading frame (ORF) of yak OPN cDNA from lactating mammary tissue, and examined its expression pattern in mammary gland during different stages of lactation, as well as, the recombinant OPN protein of yak was expressed successfully in E. coli. The sequencing results indicated that the isolated cDNA was 1132-bp in length containing a complete ORF of 837-bp. It encoded a precursor protein of yak OPN consisting of 278 amino acid with a signal peptide of 16 amino acids. Yak OPN has a predicted molecular mass of 29285.975 Da and an isoelectric point of 4.245. It had an identity of 65.50-99.16% in cDNA, identity of 52.06-98.56% and similarity of 65.40-98.56% in deduced amino acids with the corresponding sequences of cattle, buffalo, sheep, goat, pig, human, and rabbit. The phylogenetic analysis indicated that yak OPN had the closest evolutionary relationship with that of cattle, and next buffalo. In mammary gland, yak OPN was generally transcribed in a declining pattern from colostrum period to dry period with an apparent increase of OPN expression being present in the late period of lactation compared with peak period of lactation. Western blot analysis indicated that His-tagged yak OPN protein expressed in E. coli could be recognized not only by an anti-His-tag antibody but also by an anti-human OPN antibody. These results from the present work provided a foundation for further insight into the role of OPN gene in yak lactation.

  1. Characterization and expression analysis of Toll-like receptor 3 cDNA from Atlantic salmon (Salmo salar).

    PubMed

    Vidal, R; González, R; Gil, F

    2015-06-10

    Innate pathway activation is fundamental for early anti-viral defense in fish, but currently there is insufficient understanding of how salmonid fish identify viral molecules and activate these pathways. The Toll-like receptor (TLR) is believed to play a crucial role in host defense of pathogenic microbes in the innate immune system. In the present study, the full-length cDNA of Salmo salar TLR3 (ssTLR3) was cloned. The ssTLR3 cDNA sequence was 6071 bp long, containing an open reading frame of 2754 bp and encoding 971 amino acids. The TLR group motifs, such as leucine-rich repeat (LRR) domains and Toll-interleukin-1 receptor (TIR) domains, were maintained in ssTLR3, with sixteen LRR domains and one TIR domain. In contrast to descriptions of the TLR3 in rainbow trout and the murine (TATA-less), we found a putative TATA box in the proximal promoter region 29 bp upstream of the transcription start point of ssTLR3. Multiple-sequence alignment analysis of the ssTLR3 protein-coding sequence with other known TLR3 sequences showed the sequence to be conserved among all species analyzed, implying that the function of the TLR3 had been sustained throughout evolution. The ssTLR3 mRNA expression patterns were measured using real-time PCR. The results revealed that TLR3 is widely expressed in various healthy tissues. Individuals challenged with infectious pancreatic necrosis virus and immunostimulated with polyinosinic:polycytidylic acid exhibited increased expression of TLR3 at the mRNA level, indicating that ssTLR3 may be involved in pathogen recognition in the early innate immune system.

  2. Novel Cell Culture-Adapted Genotype 2a Hepatitis C Virus Infectious Clone

    PubMed Central

    Date, Tomoko; Kato, Takanobu; Kato, Junko; Takahashi, Hitoshi; Morikawa, Kenichi; Akazawa, Daisuke; Murayama, Asako; Tanaka-Kaneko, Keiko; Sata, Tetsutaro; Tanaka, Yasuhito; Mizokami, Masashi

    2012-01-01

    Although the recently developed infectious hepatitis C virus system that uses the JFH-1 clone enables the study of whole HCV viral life cycles, limited particular HCV strains have been available with the system. In this study, we isolated another genotype 2a HCV cDNA, the JFH-2 strain, from a patient with fulminant hepatitis. JFH-2 subgenomic replicons were constructed. HuH-7 cells transfected with in vitro transcribed replicon RNAs were cultured with G418, and selected colonies were isolated and expanded. From sequencing analysis of the replicon genome, several mutations were found. Some of the mutations enhanced JFH-2 replication; the 2217AS mutation in the NS5A interferon sensitivity-determining region exhibited the strongest adaptive effect. Interestingly, a full-length chimeric or wild-type JFH-2 genome with the adaptive mutation could replicate in Huh-7.5.1 cells and produce infectious virus after extensive passages of the virus genome-replicating cells. Virus infection efficiency was sufficient for autonomous virus propagation in cultured cells. Additional mutations were identified in the infectious virus genome. Interestingly, full-length viral RNA synthesized from the cDNA clone with these adaptive mutations was infectious for cultured cells. This approach may be applicable for the establishment of new infectious HCV clones. PMID:22787209

  3. Macaca specific exon creation event generates a novel ZKSCAN5 transcript.

    PubMed

    Kim, Young-Hyun; Choe, Se-Hee; Song, Bong-Seok; Park, Sang-Je; Kim, Myung-Jin; Park, Young-Ho; Yoon, Seung-Bin; Lee, Youngjeon; Jin, Yeung Bae; Sim, Bo-Woong; Kim, Ji-Su; Jeong, Kang-Jin; Kim, Sun-Uk; Lee, Sang-Rae; Park, Young-Il; Huh, Jae-Won; Chang, Kyu-Tae

    2016-02-15

    ZKSCAN5 (also known as ZFP95) is a zinc-finger protein belonging to the Krűppel family. ZKSCAN5 contains a SCAN box and a KRAB A domain and is proposed to play a distinct role during spermatogenesis. In humans, alternatively spliced ZKSCAN5 transcripts with different 5'-untranslated regions (UTRs) have been identified. However, investigation of our Macaca UniGene Database revealed novel alternative ZKSCAN5 transcripts that arose due to an exon creation event. Therefore, in this study, we identified the full-length sequences of ZKSCAN5 and its alternative transcripts in Macaca spp. Additionally, we investigated different nonhuman primate sequences to elucidate the molecular mechanism underlying the exon creation event. We analyzed the evolutionary features of the ZKSCAN5 transcripts by reverse transcription polymerase chain reaction (RT-PCR) and genomic PCR, and by sequencing various nonhuman primate DNA and RNA samples. The exon-created transcript was only detected in the Macaca lineage (crab-eating monkey and rhesus monkey). Full-length sequence analysis by rapid amplification of cDNA ends (RACE) identified ten full-length transcripts and four functional isoforms of ZKSCAN5. Protein sequence analyses revealed the presence of two groups of isoforms that arose because of differences in start-codon usage. Together, our results demonstrate that there has been specific selection for a discrete set of ZKSCAN5 variants in the Macaca lineage. Furthermore, study of this locus (and perhaps others) in Macaca spp. might facilitate our understanding of the evolutionary pressures that have shaped the mechanism of exon creation in primates. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. A diverse family of serine proteinase genes expressed in cotton boll weevil (Anthonomus grandis): implications for the design of pest-resistant transgenic cotton plants.

    PubMed

    Oliveira-Neto, Osmundo B; Batista, João A N; Rigden, Daniel J; Fragoso, Rodrigo R; Silva, Rodrigo O; Gomes, Eliane A; Franco, Octávio L; Dias, Simoni C; Cordeiro, Célia M T; Monnerat, Rose G; Grossi-De-Sá, Maria F

    2004-09-01

    Fourteen different cDNA fragments encoding serine proteinases were isolated by reverse transcription-PCR from cotton boll weevil (Anthonomus grandis) larvae. A large diversity between the sequences was observed, with a mean pairwise identity of 22% in the amino acid sequence. The cDNAs encompassed 11 trypsin-like sequences classifiable into three families and three chymotrypsin-like sequences belonging to a single family. Using a combination of 5' and 3' RACE, the full-length sequence was obtained for five of the cDNAs, named Agser2, Agser5, Agser6, Agser10 and Agser21. The encoded proteins included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Southern blotting analysis suggested that one or two copies of these serine proteinase genes exist in the A. grandis genome. Northern blotting analysis of Agser2 and Agser5 showed that for both genes, expression is induced upon feeding and is concentrated in the gut of larvae and adult insects. Reverse northern analysis of the 14 cDNA fragments showed that only two trypsin-like and two chymotrypsin-like were expressed at detectable levels. Under the effect of the serine proteinase inhibitors soybean Kunitz trypsin inhibitor and black-eyed pea trypsin/chymotrypsin inhibitor, expression of one of the trypsin-like sequences was upregulated while expression of the two chymotrypsin-like sequences was downregulated. Copyright 2004 Elsevier Ltd.

  5. RiceFOX: a database of Arabidopsis mutant lines overexpressing rice full-length cDNA that contains a wide range of trait information to facilitate analysis of gene function.

    PubMed

    Sakurai, Tetsuya; Kondou, Youichi; Akiyama, Kenji; Kurotani, Atsushi; Higuchi, Mieko; Ichikawa, Takanari; Kuroda, Hirofumi; Kusano, Miyako; Mori, Masaki; Saitou, Tsutomu; Sakakibara, Hitoshi; Sugano, Shoji; Suzuki, Makoto; Takahashi, Hideki; Takahashi, Shinya; Takatsuji, Hiroshi; Yokotani, Naoki; Yoshizumi, Takeshi; Saito, Kazuki; Shinozaki, Kazuo; Oda, Kenji; Hirochika, Hirohiko; Matsui, Minami

    2011-02-01

    Identification of gene function is important not only for basic research but also for applied science, especially with regard to improvements in crop production. For rapid and efficient elucidation of useful traits, we developed a system named FOX hunting (Full-length cDNA Over-eXpressor gene hunting) using full-length cDNAs (fl-cDNAs). A heterologous expression approach provides a solution for the high-throughput characterization of gene functions in agricultural plant species. Since fl-cDNAs contain all the information of functional mRNAs and proteins, we introduced rice fl-cDNAs into Arabidopsis plants for systematic gain-of-function mutation. We generated >30,000 independent Arabidopsis transgenic lines expressing rice fl-cDNAs (rice FOX Arabidopsis mutant lines). These rice FOX Arabidopsis lines were screened systematically for various criteria such as morphology, photosynthesis, UV resistance, element composition, plant hormone profile, metabolite profile/fingerprinting, bacterial resistance, and heat and salt tolerance. The information obtained from these screenings was compiled into a database named 'RiceFOX'. This database contains around 18,000 records of rice FOX Arabidopsis lines and allows users to search against all the observed results, ranging from morphological to invisible traits. The number of searchable items is approximately 100; moreover, the rice FOX Arabidopsis lines can be searched by rice and Arabidopsis gene/protein identifiers, sequence similarity to the introduced rice fl-cDNA and traits. The RiceFOX database is available at http://ricefox.psc.riken.jp/.

  6. RiceFOX: A Database of Arabidopsis Mutant Lines Overexpressing Rice Full-Length cDNA that Contains a Wide Range of Trait Information to Facilitate Analysis of Gene Function

    PubMed Central

    Sakurai, Tetsuya; Kondou, Youichi; Akiyama, Kenji; Kurotani, Atsushi; Higuchi, Mieko; Ichikawa, Takanari; Kuroda, Hirofumi; Kusano, Miyako; Mori, Masaki; Saitou, Tsutomu; Sakakibara, Hitoshi; Sugano, Shoji; Suzuki, Makoto; Takahashi, Hideki; Takahashi, Shinya; Takatsuji, Hiroshi; Yokotani, Naoki; Yoshizumi, Takeshi; Saito, Kazuki; Shinozaki, Kazuo; Oda, Kenji; Hirochika, Hirohiko; Matsui, Minami

    2011-01-01

    Identification of gene function is important not only for basic research but also for applied science, especially with regard to improvements in crop production. For rapid and efficient elucidation of useful traits, we developed a system named FOX hunting (Full-length cDNA Over-eXpressor gene hunting) using full-length cDNAs (fl-cDNAs). A heterologous expression approach provides a solution for the high-throughput characterization of gene functions in agricultural plant species. Since fl-cDNAs contain all the information of functional mRNAs and proteins, we introduced rice fl-cDNAs into Arabidopsis plants for systematic gain-of-function mutation. We generated >30,000 independent Arabidopsis transgenic lines expressing rice fl-cDNAs (rice FOX Arabidopsis mutant lines). These rice FOX Arabidopsis lines were screened systematically for various criteria such as morphology, photosynthesis, UV resistance, element composition, plant hormone profile, metabolite profile/fingerprinting, bacterial resistance, and heat and salt tolerance. The information obtained from these screenings was compiled into a database named ‘RiceFOX’. This database contains around 18,000 records of rice FOX Arabidopsis lines and allows users to search against all the observed results, ranging from morphological to invisible traits. The number of searchable items is approximately 100; moreover, the rice FOX Arabidopsis lines can be searched by rice and Arabidopsis gene/protein identifiers, sequence similarity to the introduced rice fl-cDNA and traits. The RiceFOX database is available at http://ricefox.psc.riken.jp/. PMID:21186176

  7. A novel protein involved in heart development in Ambystoma mexicanum is localized in endoplasmic reticulum.

    PubMed

    Jia, P; Zhang, C; Huang, X P; Poda, M; Akbas, F; Lemanski, S L; Erginel-Unaltuna, N; Lemanski, L F

    2008-11-01

    The discovery of the naturally occurring cardiac non-function (c) animal strain in Ambystoma mexicanum (axolotl) provides a valuable animal model to study cardiomyocyte differentiation. In homozygous mutant animals (c/c), rhythmic contractions of the embryonic heart are absent due to a lack of organized myofibrils. We have previously cloned a partial sequence of a peptide cDNA (N1) from an anterior-endoderm-conditioned-medium RNA library that had been shown to be able to rescue the mutant phenotype. In the current studies we have fully cloned the N1 full length cDNA sequence from the library. N1 protein has been detected in both adult heart and skeletal muscle but not in any other adult tissues. GFP-tagged expression of the N1 protein has revealed localization of the N1 protein in the endoplasmic reticulum (ER). Results from in situ hybridization experiments have confirmed the dramatic decrease of expression of N1 mRNA in mutant (c/c) embryos indicating that the N1 gene is involved in heart development.

  8. Improved coverage of cDNA-AFLP by sequential digestion of immobilized cDNA.

    PubMed

    Weiberg, Arne; Pöhler, Dirk; Morgenstern, Burkhard; Karlovsky, Petr

    2008-10-13

    cDNA-AFLP is a transcriptomics technique which does not require prior sequence information and can therefore be used as a gene discovery tool. The method is based on selective amplification of cDNA fragments generated by restriction endonucleases, electrophoretic separation of the products and comparison of the band patterns between treated samples and controls. Unequal distribution of restriction sites used to generate cDNA fragments negatively affects the performance of cDNA-AFLP. Some transcripts are represented by more than one fragment while other escape detection, causing redundancy and reducing the coverage of the analysis, respectively. With the goal of improving the coverage of cDNA-AFLP without increasing its redundancy, we designed a modified cDNA-AFLP protocol. Immobilized cDNA is sequentially digested with several restriction endonucleases and the released DNA fragments are collected in mutually exclusive pools. To investigate the performance of the protocol, software tool MECS (Multiple Enzyme cDNA-AFLP Simulation) was written in Perl. cDNA-AFLP protocols described in the literature and the new sequential digestion protocol were simulated on sets of cDNA sequences from mouse, human and Arabidopsis thaliana. The redundancy and coverage, the total number of PCR reactions, and the average fragment length were calculated for each protocol and cDNA set. Simulation revealed that sequential digestion of immobilized cDNA followed by the partitioning of released fragments into mutually exclusive pools outperformed other cDNA-AFLP protocols in terms of coverage, redundancy, fragment length, and the total number of PCRs. Primers generating 30 to 70 amplicons per PCR provided the highest fraction of electrophoretically distinguishable fragments suitable for normalization. For A. thaliana, human and mice transcriptome, the use of two marking enzymes and three sequentially applied releasing enzymes for each of the marking enzymes is recommended.

  9. Genome-wide analysis of esterase-like genes in the striped rice stem borer, Chilo suppressalis.

    PubMed

    Wang, Baoju; Wang, Ying; Zhang, Yang; Han, Ping; Li, Fei; Han, Zhaojun

    2015-06-01

    The striped rice stem borer, Chilo suppressalis, a destructive pest of rice, has developed high levels of resistance to certain insecticides. Esterases are reported to be involved in insecticide resistance in several insects. Therefore, this study systematically analyzed esterase-like genes in C. suppressalis. Fifty-one esterase-like genes were identified in the draft genomic sequences of the species, and 20 cDNA sequences were derived which encoded full- or nearly full-length proteins. The putative esterase proteins derived from these full-length genes are overall highly diversified. However, key residues that are functionally important including the serine residue in the active site are conserved in 18 out of the 20 proteins. Phylogenetic analysis revealed that most of these genes have homologues in other lepidoptera insects. Genes CsuEst6, CsuEst10, CsuEst11, and CsuEst51 were induced by the insecticide triazophos, and genes CsuEst9, CsuEst11, CsuEst14, and CsuEst51 were induced by the insecticide chlorantraniliprole. Our results provide a foundation for future studies of insecticide resistance in C. suppressalis and for comparative research with esterase genes from other insect species.

  10. Molecular characterization of a gene POLR2H encoded an essential subunit for RNA polymerase II from the Giant Panda (Ailuropoda Melanoleuca).

    PubMed

    Du, Yu-Jie; Hou, Yi-Ling; Hou, Wan-Ru

    2013-02-01

    The Giant Panda is an endangered and valuable gene pool in genetic, its important functional gene POLR2H encodes an essential shared peptide H of RNA polymerases. The genomic DNA and cDNA sequences were cloned successfully for the first time from the Giant Panda (Ailuropoda melanoleuca) adopting touchdown-PCR and reverse transcription polymerase chain reaction (RT-PCR), respectively. The length of the genomic sequence of the Giant Panda is 3,285 bp, including five exons and four introns. The cDNA fragment cloned is 509 bp in length, containing an open reading frame of 453 bp encoding 150 amino acids. Alignment analysis indicated that both the cDNA and its deduced amino acid sequence were highly conserved. Protein structure prediction showed that there was one protein kinase C phosphorylation site, four casein kinase II phosphorylation sites and one amidation site in the POLR2H protein, further shaping advanced protein structure. The cDNA cloned was expressed in Escherichia coli, which indicated that POLR2H fusion with the N-terminally His-tagged form brought about the accumulation of an expected 20.5 kDa polypeptide in line with the predicted protein. On the basis of what has already been achieved in this study, further deep-in research will be conducted, which has great value in theory and practical significance.

  11. Pyrin gene and mutants thereof, which cause familial Mediterranean fever

    DOEpatents

    Kastner, Daniel L [Bethesda, MD; Aksentijevichh, Ivona [Bethesda, MD; Centola, Michael [Tacoma Park, MD; Deng, Zuoming [Gaithersburg, MD; Sood, Ramen [Rockville, MD; Collins, Francis S [Rockville, MD; Blake, Trevor [Laytonsville, MD; Liu, P Paul [Ellicott City, MD; Fischel-Ghodsian, Nathan [Los Angeles, CA; Gumucio, Deborah L [Ann Arbor, MI; Richards, Robert I [North Adelaide, AU; Ricke, Darrell O [San Diego, CA; Doggett, Norman A [Santa Cruz, NM; Pras, Mordechai [Tel-Hashomer, IL

    2003-09-30

    The invention provides the nucleic acid sequence encoding the protein associated with familial Mediterranean fever (FMF). The cDNA sequence is designated as MEFV. The invention is also directed towards fragments of the DNA sequence, as well as the corresponding sequence for the RNA transcript and fragments thereof. Another aspect of the invention provides the amino acid sequence for a protein (pyrin) associated with FMF. The invention is directed towards both the full length amino acid sequence, fusion proteins containing the amino acid sequence and fragments thereof. The invention is also directed towards mutants of the nucleic acid and amino acid sequences associated with FMF. In particular, the invention discloses three missense mutations, clustered in within about 40 to 50 amino acids, in the highly conserved rfp (B30.2) domain at the C-terminal of the protein. These mutants include M6801, M694V, K695R, and V726A. Additionally, the invention includes methods for diagnosing a patient at risk for having FMF and kits therefor.

  12. cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis).

    PubMed

    Zhang, Li-Feng; Li, Wan-Feng; Han, Su-Ying; Yang, Wen-Hua; Qi, Li-Wang

    2013-10-15

    A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis. © 2013.

  13. Shark (Scyliorhinus torazame) metallothionein: cDNA cloning, genomic sequence, and expression analysis.

    PubMed

    Cho, Young Sun; Choi, Buyl Nim; Ha, En-Mi; Kim, Ki Hong; Kim, Sung Koo; Kim, Dong Soo; Nam, Yoon Kwon

    2005-01-01

    Novel metallothionein (MT) complementary DNA and genomic sequences were isolated from a cartilaginous shark species, Scyliorhinus torazame. The full-length open reading frame (ORF) of shark MT cDNA encoded 68 amino acids with a high cysteine content (29%). The genomic ORF sequence (932 bp) of shark MT isolated by polymerase chain reaction (PCR) comprised 3 exons with 2 interventing introns. Shark MT sequence shared many conserved features with other vertebrate MTs: overall amino acid identities of shark MT ranged from 47% to 57% with fish MTs, and 41% to 62% with mammalian MTs. However, in addition to these conserved characteristics, shark MT sequence exhibited some unique characteristics. It contained 4 extra amino acids (Lys-Ala-Gly-Arg) at the end of the beta-domain, which have not been reported in any other vertebrate MTs. The last amino acid residue at the C-terminus was Ser, which also has not been reported in fish and mammalian MTs. The MT messenger RNA levels in shark liver and kidney, assessed by semiquantitative reverse transcriptase PCR and RNA blot hybridization, were significantly affected by experimental exposures to heavy metals (cadmium, copper, and zinc). Generally, the transcriptional activation of shark MT gene was dependent on the dose (0-10 mg/kg body weight for injection and 0-20 microM for immersion) and duration (1-10 days); zinc was a more potent inducer than copper and cadmium.

  14. Isolation and Characterization of a Sex-Specific Lectin in a Marine Red Alga, Aglaothamnion oosumiense Itono

    PubMed Central

    Han, Jong Won; Klochkova, Tatyana A.; Shim, Jun Bo; Yoon, Kangsup

    2012-01-01

    In red algae, spermatial binding to female trichogynes is mediated by a lectin-carbohydrate complementary system. Aglaothamnion oosumiense is a microscopic filamentous red alga. The gamete recognition and binding occur at the surface of the hairlike trichogyne on the female carpogonium. Male spermatia are nonmotile. Previous studies suggested the presence of a lectin responsible for gamete recognition on the surface of female trychogynes. A novel N-acetyl-d-galactosamine-specific protein was isolated from female plants of A. oosumiense by affinity chromatography and named AOL1. The lectin was monomeric and did not agglutinate horse blood or human erythrocytes. The N-terminal amino acid sequence of the protein was analyzed, and degenerate primers were designed. A full-length cDNA encoding the lectin was obtained using rapid amplification of cDNA ends-PCR (RACE-PCR). The cDNA was 1,095 bp in length and coded for a protein of 259 amino acids with a deduced molecular mass of 21.4 kDa, which agreed well with the protein data. PCR analysis using genomic DNA showed that both male and female plants have this gene. However, Northern blotting and two-dimensional electrophoresis showed that this protein was expressed 12 to 15 times more in female plants. The lectin inhibited spermatial binding to the trichogynes when preincubated with spermatia, suggesting its involvement in gamete binding. PMID:22865077

  15. Sequence of a cDNA encoding pancreatic preprosomatostatin-22.

    PubMed Central

    Magazin, M; Minth, C D; Funckes, C L; Deschenes, R; Tavianini, M A; Dixon, J E

    1982-01-01

    We report the nucleotide sequence of a precursor to somatostatin that upon proteolytic processing may give rise to a hormone of 22 amino acids. The nucleotide sequence of a cDNA from the channel catfish (Ictalurus punctatus) encodes a precursor to somatostatin that is 105 amino acids (Mr, 11,500). The cDNA coding for somatostatin-22 consists of 36 nucleotides in the 5' untranslated region, 315 nucleotides that code for the precursor to somatostatin-22, 269 nucleotides at the 3' untranslated region, and a variable length of poly(A). The putative preprohormone contains a sequence of hydrophobic amino acids at the amino terminus that has the properties of a "signal" peptide. A connecting sequence of approximately 57 amino acids is followed by a single Arg-Arg sequence, which immediately precedes the hormone. Somatostatin-22 is homologous to somatostatin-14 in 7 of the 14 amino acids, including the Phe-Trp-Lys sequence. Hybridization selection of mRNA, followed by its translation in a wheat germ cell-free system, resulted in the synthesis of a single polypeptide having a molecular weight of approximately 10,000 as estimated on Na-DodSO4/polyacrylamide gels. Images PMID:6127673

  16. A transcription map of the regions surrounding the CSF1R locus on human chromosome 5q31: Candidate genes for diastrophic dysplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clines, G.; Lovett, M.

    1994-09-01

    Diastrophic dysplasia (DTD) is an autosomal recessive disorder of unknown pathogenesis that is characterized by abnormal skeletal and cartilage growth. Phenotypic characteristics of the disorder include short stature, scoliosis, and deformation of the first metacarpal. The diastrophic dysplasia gene has been localized to chromosome 5q31-33, within {approximately}60 kb of the colony stimulating factor 1 receptor gene (CSF1R). We have used direct cDNA selection to build a transcription map across {approximately}250 kb surrounding and including the CSF1R locus. cDNA pools from human placenta, activated T cells, cerebellum, Hela cells, fetal brain, chondrocytes, chondrosarcomas and osteosarcomas were multiplexed in these selections. Aftermore » two rounds of selection, an analysis revealed that {approximately}70% of the selected cDNAs were contained within the contig. DNA sequencing and cosmid mapping data from a collection of 310 clones revealed the presence of three new genes in this region that show no appreciable homologies on sequence database searches, as well as cDNA clones from the CSF1R and the PDGFRB loci (another of the known genes in the region). An additional cDNA was found with 100% homology to the gene encoding human ribosomal protein L7 (RPL7). This cDNA comprised {approximately}25% of all selected clones. However, further analysis of the genomic contig revealed the presence of an RPL7 processed pseudogene in very close proximity to the CSF1R and PDGFRB genes. The selection of processed pseudogenes is one previously anticipated artifact of selection metholodolgies, but has not been previously observed. Mutational analysis of the three new genes is underway in diastrophic dysplasia families, as is derivation of full length cDNA clones and the expansion of this detailed transcription map into a larger genomic contig.« less

  17. Isolation, nucleotide sequence and expression of a cDNA encoding feline granulocyte colony-stimulating factor.

    PubMed

    Dunham, S P; Onions, D E

    2001-06-21

    A cDNA encoding feline granulocyte colony stimulating factor (fG-CSF) was cloned from alveolar macrophages using the reverse transcriptase-polymerase chain reaction. The cDNA is 949 bp in length and encodes a predicted mature protein of 174 amino acids. Recombinant fG-CSF was expressed as a glutathione S-transferase fusion and purified by affinity chromatography. Biological activity of the recombinant protein was demonstrated using the murine myeloblastic cell line GNFS-60, which showed an ED50 for fG-CSF of approximately 2 ng/ml. Copyright 2001 Academic Press.

  18. cDNA cloning and sequence determination of the pheromone biosynthesis activating neuropeptide from the seabuckthorn carpenterworm, Holcocerus hippophaecolus (Lepidoptera: Cossidae).

    PubMed

    Li, Juan; Zhou, Jiao; Sun, Rongbo; Zhang, Haolin; Zong, Shixiang; Luo, Youqing; Sheng, Xia; Weng, Qiang

    2013-04-01

    The PBAN (pheromone biosynthesis activating neuropeptide)/pyrokinin peptides comprise a major neuropeptide family characterized by a common FXPRL amide at the C-terminus. These peptides are actively involved in many essential endocrine functions. For the first time, we reported the cDNA cloning and sequence determination of the PBAN from the seabuckthorn carpenterworm, Holcocerus hippophaecolus, by using rapid amplification of cDNA ends. The full-length cDNA of Hh-DH-PBAN contained five peptides: diapause hormone (DH) homolog, α-neuropeptide (NP), β-NP, PBAN, and γ-NP. All of the peptides were amidated at their C-terminus and shared a conserved motif, FXPR (or K) L. Moreover, Hh-DH-PBAN had high homology to the other members of the PBAN peptide family: 56% with Manduca sexta, 66% with Bombyx mori, 77% with Helicoverpa zea, and 47% with Plutella xylostella. Phylogenetic analysis revealed that Hh-DH-PBAN was closely related to PBANs from Noctuidae, demonstrated by the relatively higher similarity compared with H. zea. In addition, real-time quantitative PCR (qRT-PCR) analysis showed that Hh-DH-PBAN mRNA expression peaked in the brain-subesophageal ganglion (Br-SOG) complex, and was also detected at high levels during larval and adult stages. The expression decreased significantly after pupation. These results provided information concerning molecular structure characteristics of Hh-DH-PBAN, whose expression profile suggested that the Hh-DH-PBAN gene might be correlated with larval development and sex pheromone biosynthesis in females of the H. hippophaecolus. 2013 Wiley Periodicals, Inc

  19. Isolated spinach ribulose-1,5-bisphosphate carboxylase/oxgenase large subunit .epsilon. n-methyltransferase and method of inactivating ribulose-1,5-bishosphatase .epsilon. n-methyltransferase activity

    DOEpatents

    Houtz, Robert L.

    2001-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltansferase (protein methylase III or Rubisco LSMT) from a plant which has a des(methyl) lysyl residue in the LS is disclosed. In addition, the full-length cDNA clones for Rubisco LSMT are disclosed. Transgenic plants and methods of producing same which have the Rubisco LSMT gene inserted into the DNA are also provided. Further, methods of inactivating the enzymatic activity of Rubisco LSMT are also disclosed.

  20. Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof.

    PubMed

    Nolden, T; Pfaff, F; Nemitz, S; Freuling, C M; Höper, D; Müller, T; Finke, Stefan

    2016-04-05

    Reverse genetics approaches are indispensable tools for proof of concepts in virus replication and pathogenesis. For negative strand RNA viruses (NSVs) the limited number of infectious cDNA clones represents a bottleneck as clones are often generated from cell culture adapted or attenuated viruses, with limited potential for pathogenesis research. We developed a system in which cDNA copies of complete NSV genomes were directly cloned into reverse genetics vectors by linear-to-linear RedE/T recombination. Rapid cloning of multiple rabies virus (RABV) full length genomes and identification of clones identical to field virus consensus sequence confirmed the approache's reliability. Recombinant viruses were recovered from field virus cDNA clones. Similar growth kinetics of parental and recombinant viruses, preservation of field virus characters in cell type specific replication and virulence in the mouse model were confirmed. Reduced titers after reporter gene insertion indicated that the low level of field virus replication is affected by gene insertions. The flexibility of the strategy was demonstrated by cloning multiple copies of an orthobunyavirus L genome segment. This important step in reverse genetics technology development opens novel avenues for the analysis of virus variability combined with phenotypical characterization of recombinant viruses at a clonal level.

  1. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  2. Cloning, expression and activation of a truncated 92-kDa gelatinase minienzyme.

    PubMed

    Kröger, M; Tschesche, H

    1997-09-01

    The matrix metalloproteinases (MMPs) are a family of highly homologous zinc-endopeptidases that degrade extracellular matrix components. Human 92-kDa gelatinase (MMP-9) represents one of the MMPs that cleaves native collagen type IV. As a basis for structural investigations, the short form (catalytic domain, amino acid residues 113-450) of the 92-kDa gelatinase cDNA was cloned and expressed in E. coli as a minienzyme. By combination of reverse transcription (RT) and polymerase chain reaction (PCR), the truncated 92-kDa gelatinase-cDNA was amplified from the corresponding mRNA derived from ovarian carcinoma cells. The cDNA fragment obtained was cloned in E. coli and sequenced. With the exception of one nucleotide inversion at position 745 (gt-->tg) the cDNA sequence was identical to the nucleotide sequence of the 92-kDa gelatinase as has been previously reported. The protein was expressed in E. coli using the vector pET-12b. The recombinant protein was stored in inclusion bodies and extracted as a 38 kDa species from the inclusion bodies by solubilization in 8 M urea. The product was purified by affinity chromatography and gel filtration. Amino-terminal sequence analysis confirmed the identity with the catalytic domain of 92-kDa gelatinase. The recombinant protein was refolded in the presence of Ca2+ and Zn2+ and yielded an active minienzyme with gelatinolytic activity. It degrades the native substrate collagen type IV and the synthetic substrate Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 x AcOH like the full-length 92-kDa gelatinase. The catalytic activity could be inhibited by the specific MMP inhibitors TIMP-1 and TIMP-2.

  3. Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L

    PubMed Central

    Comino, Cinzia; Lanteri, Sergio; Portis, Ezio; Acquadro, Alberto; Romani, Annalisa; Hehn, Alain; Larbat, Romain; Bourgaud, Frédéric

    2007-01-01

    Background Cynara cardunculus L. is an edible plant of pharmaceutical interest, in particular with respect to the polyphenolic content of its leaves. It includes three taxa: globe artichoke, cultivated cardoon, and wild cardoon. The dominating phenolics are the di-caffeoylquinic acids (such as cynarin), which are largely restricted to Cynara species, along with their precursor, chlorogenic acid (CGA). The scope of this study is to better understand CGA synthesis in this plant. Results A gene sequence encoding a hydroxycinnamoyltransferase (HCT) involved in the synthesis of CGA, was identified. Isolation of the gene sequence was achieved by using a PCR strategy with degenerated primers targeted to conserved regions of orthologous HCT sequences available. We have isolated a 717 bp cDNA which shares 84% aminoacid identity and 92% similarity with a tobacco gene responsible for the biosynthesis of CGA from p-coumaroyl-CoA and quinic acid. In silico studies revealed the globe artichoke HCT sequence clustering with one of the main acyltransferase groups (i.e. anthranilate N-hydroxycinnamoyl/benzoyltransferase). Heterologous expression of the full length HCT (GenBank accession DQ104740) cDNA in E. coli demonstrated that the recombinant enzyme efficiently synthesizes both chlorogenic acid and p-coumaroyl quinate from quinic acid and caffeoyl-CoA or p-coumaroyl-CoA, respectively, confirming its identity as a hydroxycinnamoyl-CoA: quinate HCT. Variable levels of HCT expression were shown among wild and cultivated forms of C. cardunculus subspecies. The level of expression was correlated with CGA content. Conclusion The data support the predicted involvement of the Cynara cardunculus HCT in the biosynthesis of CGA before and/or after the hydroxylation step of hydroxycinnamoyl esters. PMID:17374149

  4. Characterization of a gene family abundantly expressed in Oenothera organensis pollen that shows sequence similarity to polygalacturonase.

    PubMed Central

    Brown, S M; Crouch, M L

    1990-01-01

    We have isolated and characterized cDNA clones of a gene family (P2) expressed in Oenothera organensis pollen. This family contains approximately six to eight family members and is expressed at high levels only in pollen. The predicted protein sequence from a near full-length cDNA clone shows that the protein products of these genes are at least 38,000 daltons. We identified the protein encoded by one of the cDNAs in this family by using antibodies to beta-galactosidase/pollen cDNA fusion proteins. Immunoblot analysis using these antibodies identifies a family of proteins of approximately 40 kilodaltons that is present in mature pollen, indicating that these mRNAs are not stored solely for translation after pollen germination. These proteins accumulate late in pollen development and are not detectable in other parts of the plant. Although not present in unpollinated or self-pollinated styles, the 40-kilodalton to 45-kilodalton antigens are detectable in extracts from cross-pollinated styles, suggesting that the proteins are present in pollen tubes growing through the style during pollination. The proteins are also present in pollen tubes growing in vitro. Both nucleotide and amino acid sequences are similar to the published sequences for cDNAs encoding the enzyme polygalacturonase, which suggests that the P2 gene family may function in depolymerizing pectin during pollen development, germination, and tube growth. Cross-hybridizing RNAs and immunoreactive proteins were detected in pollen from a wide variety of plant species, which indicates that the P2 family of polygalacturonase-like genes are conserved and may be expressed in the pollen from many angiosperms. PMID:2152116

  5. [Cloning and expressing of cyclophilin B gene from Schistosoma japonnicum and the analysis of immunoprotective effect].

    PubMed

    Peng, Jinbiao; Han, Hongxiao; Hong, Yang; Wang, Yan; Guo, Fanji; Shi, Yaojun; Fu, Zhiqiang; Liu, Jinming; Cheng, Guofeng; Lin, Jiaojiao

    2010-03-01

    The present study was intend to clone and express the cDNA encoding Cyclophilin B (CyPB) of Schistosoma japonicum, its preliminary biological function and further immunoprotective effect against schistosome infection in mice. RT-PCR technique was applied to amplify a full-length cDNA encoding protein Cyclophilin B (Sj CyPB) from schistosomula cDNA. The expression profiles of Sj CyPB were determined by Real-time PCR using the template cDNAs isolated from 7, 13, 18, 23, 32 and 42 days parasites. The cDNA containing the Open Reading Frame of CyPB was then subcloned into a pGEX-6P-1 vector and transformed into competent Escherichia coli BL21 for expressing. The recombinant protein was renaturated, purified and its antigenicity were detected by Western blotting, and the immunoprotective effect induced by recombinant Sj CyPB was evaluated in Balb/C mice. The cDNA containing the ORF of Sj CyPB was cloned with the length of 672 base pairs, encoding 223 amino acids. Real-time PCR analysis revealed that the gene had the highest expression in 18-day schistosomula, suggesting that Sj CyPB was schistosomula differentially expressed gene. The recombinant protein showed a good antigenicity detected by Western blotting. Animal experiment indicated that the vaccination of recombinant CyPB protein in mice led to 31.5% worm and 41.01% liver egg burden reduction, respectively, compared with those of the control. A full-length cDNA differentially expressed in schistosomula was obtained. The recombinant Sj CyPB protein could induce partial protection against schistosome infection.

  6. Comparative analysis of the full genome sequence of European bat lyssavirus type 1 and type 2 with other lyssaviruses and evidence for a conserved transcription termination and polyadenylation motif in the G-L 3' non-translated region.

    PubMed

    Marston, D A; McElhinney, L M; Johnson, N; Müller, T; Conzelmann, K K; Tordo, N; Fooks, A R

    2007-04-01

    We report the first full-length genomic sequences for European bat lyssavirus type-1 (EBLV-1) and type-2 (EBLV-2). The EBLV-1 genomic sequence was derived from a virus isolated from a serotine bat in Hamburg, Germany, in 1968 and the EBLV-2 sequence was derived from a virus isolate from a human case of rabies that occurred in Scotland in 2002. A long-distance PCR strategy was used to amplify the open reading frames (ORFs), followed by standard and modified RACE (rapid amplification of cDNA ends) techniques to amplify the 3' and 5' ends. The lengths of each complete viral genome for EBLV-1 and EBLV-2 were 11 966 and 11 930 base pairs, respectively, and follow the standard rhabdovirus genome organization of five viral proteins. Comparison with other lyssavirus sequences demonstrates variation in degrees of homology, with the genomic termini showing a high degree of complementarity. The nucleoprotein was the most conserved, both intra- and intergenotypically, followed by the polymerase (L), matrix and glyco- proteins, with the phosphoprotein being the most variable. In addition, we have shown that the two EBLVs utilize a conserved transcription termination and polyadenylation (TTP) motif, approximately 50 nt upstream of the L gene start codon. All available lyssavirus sequences to date, with the exception of Pasteur virus (PV) and PV-derived isolates, use the second TTP site. This observation may explain differences in pathogenicity between lyssavirus strains, dependent on the length of the untranslated region, which might affect transcriptional activity and RNA stability.

  7. Electrotransfer of the full-length dog dystrophin into mouse and dystrophic dog muscles.

    PubMed

    Pichavant, Christophe; Chapdelaine, Pierre; Cerri, Daniel G; Bizario, Joao C S; Tremblay, Jacques P

    2010-11-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by the absence of dystrophin (427 kDa). An approach to eventually restore this protein in patients with DMD is to introduce into their muscles a plasmid encoding dystrophin cDNA. Because the phenotype of the dystrophic dog is closer to the human phenotype than is the mdx mouse phenotype, we have studied the electrotransfer of a plasmid carrying the full-length dog dystrophin (FLDYS(dog)) in dystrophic dog muscle. To achieve this nonviral delivery, the FLDYS(dog) cDNA was cloned in two plasmids containing either a cytomegalovirus or a muscle creatine kinase promoter. In both cases, our results showed that the electrotransfer of these large plasmids (∼17 kb) into mouse muscle allowed FLDYS(dog) expression in the treated muscle. The electrotransfer of pCMV.FLDYS(dog) in a dystrophic dog muscle also led to the expression of dystrophin. In conclusion, introduction of the full-length dog dystrophin cDNA by electrotransfer into dystrophic dog muscle is a potential approach to restore dystrophin in patients with DMD. However, the electrotransfer procedure should be improved before applying it to humans.

  8. Mechanistic insights into induction of vitellogenin gene expression by estrogens in Sydney rock oysters, Saccostrea glomerata.

    PubMed

    Tran, Thi Kim Anh; MacFarlane, Geoff R; Kong, Richard Yuen Chong; O'Connor, Wayne A; Yu, Richard Man Kit

    2016-05-01

    Marine molluscs, such as oysters, respond to estrogenic compounds with the induction of the egg yolk protein precursor, vitellogenin (Vtg), availing a biomarker for estrogenic pollution. Despite this application, the precise molecular mechanism through which estrogens exert their action to induce molluscan vitellogenesis is unknown. As a first step to address this question, we cloned a gene encoding Vtg from the Sydney rock oyster Saccostrea glomerata (sgVtg). Using primers designed from a partial sgVtg cDNA sequence available in Genbank, a full-length sgVtg cDNA of 8498bp was obtained by 5'- and 3'-RACE. The open reading frame (ORF) of sgVtg was determined to be 7980bp, which is substantially longer than the orthologs of other oyster species. Its deduced protein sequence shares the highest homology at the N- and C-terminal regions with other molluscan Vtgs. The full-length genomic DNA sequence of sgVtg was obtained by genomic PCR and genome walking targeting the gene body and flanking regions, respectively. The genomic sequence spans 20kb and consists of 30 exons and 29 introns. Computer analysis identified three closely spaced half-estrogen responsive elements (EREs) in the promoter region and a 210-bp CpG island 62bp downstream of the transcription start site. Upregulation of sgVtg mRNA expression was observed in the ovaries following in vitro (explants) and in vivo (tank) exposure to 17β-estradiol (E2). Notably, treatment with an estrogen receptor (ER) antagonist in vitro abolished the upregulation, suggesting a requirement for an estrogen-dependent receptor for transcriptional activation. DNA methylation of the 5' CpG island was analysed using bisulfite genomic sequencing of the in vivo exposed ovaries. The CpG island was found to be hypomethylated (with 0-3% methylcytosines) in both control and E2-exposed oysters. However, no significant differential methylation or any correlation between methylation and sgVtg expression levels was observed. Overall, the results support the possible involvement of an ERE-containing promoter and an estrogen-activated receptor in estrogen signalling in marine molluscs. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Molecular cloning and responsive expression to injury stimulus of a defender against cell death 1 (DAD1) gene from bay scallops Argopecten irradians.

    PubMed

    Zhu, Ling; Song, Linsheng; Zhang, Huan; Zhao, Jianmin; Li, Chenghua; Xu, Wei

    2008-06-01

    Apoptosis is an active process of cell death, which is an integral part of growth and development in multicellular organisms. The defender against cell death 1 (DAD1), the regulatory protein to inhibit the apoptosis process, was first cloned from the bay scallop Argopecten irradians by randomly sequencing a whole tissue cDNA library and rapid amplification of cDNA end (RACE). The full-length cDNA of the A. irradians DAD1 was 607 bp, consist of a 5'-terminal untranslated region (UTR) of 63 bp, a 3'-terminal UTR of 205 bp with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame of 339 bp. The deduced amino acid sequence of the A. irradians DAD1 showed 75.5% identity to Araneus ventricosus, 74.5% to Drosophila melanogaster, and 73.6% to Homo sapiens, Sus scrofa, Mesocricetus auratus, Rattus norvegicus and Mus musculus. Excluding the Saccharomyces cerevisiae DAD1 homologue, all animal DAD1 including A. irradians DAD1 homologue formed a subgroup and all plant DAD1 proteins formed another subgroup in the phylogenetic analysis. The A. irradians DAD1 was expressed in all examined tissues including adductor muscle, mantle, gills, digestive gland, gonad and hemolymph, suggesting that A. irradians DAD1 is expressed in most body tissues. Furthermore, the mRNA expression levels of A. irradians DAD1 gene of hemolymph were particularly high after injury, suggesting that the gene is responsive to injury stimuli.

  10. Temporal and Spatial Expression of a Polygalacturonase during Leaf and Flower Abscission in Oilseed Rape and Arabidopsis1

    PubMed Central

    González-Carranza, Zinnia Haydé; Whitelaw, Catherine Ann; Swarup, Ranjan; Roberts, Jeremy Alan

    2002-01-01

    During leaf abscission in oilseed rape (Brassica napus), cell wall degradation is brought about by the action of several hydrolytic enzymes. One of these is thought to be polygalacturonase (PG). Degenerate primers were used to isolate a PG cDNA fragment by reverse transcriptase-polymerase chain reaction from RNA extracted from ethylene-promoted leaf abscission zones (AZs), and in turn a full-length clone (CAW471) from an oilseed rape AZ cDNA library. The highest homology of this cDNA (82%) was to an Arabidopsis sequence that was predicted to encode a PG protein. Analysis of expression revealed that CAW471 mRNA accumulated in the AZ of leaves and reached a peak 24 h after ethylene treatment. Ethylene-promoted leaf abscission in oilseed rape was not apparent until 42 h after exposure to the gas, reaching 50% at 48 h and 100% by 56 h. In floral organ abscission, expression of CAW471 correlated with cell separation. Genomic libraries from oilseed rape and Arabidopsis were screened with CAW471 and the respective genomic clones PGAZBRAN and PGAZAT isolated. Characterization of these PG genes revealed that they had substantial homology within both the coding regions and in the 5′-upstream sequences. Fusion of a 1,476-bp 5′-upstream sequence of PGAZAT to β-glucuronidase or green fluorescent protein and transformation of Arabidopsis revealed that this fragment was sufficient to drive expression of these reporter genes in the AZs at the base of the anther filaments, petals, and sepals. PMID:11842157

  11. Molecular cloning and 3D model of first cytochrome P450 from CYP3A subfamily in saltwater crocodile (Crocodylus porosus).

    PubMed

    Tabassum, Rabia

    2017-10-18

    Cytochrome P450s (CYPs) play critical role in oxidative metabolism of numerous xenobiotics and endogenous compounds. The first CYP3A subfamily member in saltwater crocodile has been cloned and modelled for three-dimensional (3D) structure. The full-length cDNA was obtained employing reverse transcription polymerase chain reaction (RT-PCR) strategy and rapid amplification of cDNA ends (RACE). The cDNA sequence of 1659 nucleotides includes 132 nucleotides from 5' untranslated region (UTR), an open reading frame of 1527 nucleotides encoding 509 amino acids designated as CYP3A163. The alignment of CYP3A163 sequence with CYP3A subfamily across the lineages exhibit the loss of 1 residue in birds and 7 residues in mammals in comparison to reptiles suggesting the adaptation processes during evolution. The amino acid identity of CYP3A163 with Alligator mississippiensis CYP3A77 and Homo sapiens CYP3A4 is 91% and 62% respectively. The 3D structure of CYP3A163 modelled using human CYP3A4 structure as a template with Phyre 2 software, represents high similarity with its functionally important motifs and catalytic domain. Both sequence and structure of CYP3A163 display the common and conserved features of CYP3A subfamily. Overall, this study provides primary molecular and structural data of CYP3A163 required to investigate the xenobiotic metabolism in saltwater crocodiles. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Isolation and Characterization of the PKAr Gene From a Plant Pathogen, Curvularia lunata.

    PubMed

    Liu, T; Ma, B C; Hou, J M; Zuo, Y H

    2014-09-01

    By using EST database from a full-length cDNA library of Curvularia lunata, we have isolated a 2.9 kb cDNA, termed PKAr. An ORF of 1,383 bp encoding a polypeptide of 460 amino acids with molecular weight 50.1 kDa, (GeneBank Acc. No. KF675744) was cloned. The deduced amino acid sequence of the PKAr shows 90 and 88 % identity with cAMP-dependent protein kinase A regulatory subunit from Alternaria alternate and Pyrenophora tritici-repentis Pt-1C-BFP, respectively. Database analysis revealed that the deduced amino acid sequence of PKAr shares considerable similarity with that of PKA regulatory subunits in other organisms, particularly in the conserved regions. No introns were identified within the 1,383 bp of ORF compared with PKAr genomic DNA sequence. Southern blot indicated that PKAr existed as a single copy per genome. The mRNA expression level of PKAr in different development stages were demonstrated using real-time quantitative PCR. The results showed that the level of PKAr expression was highest in vegetative growth mycelium, which indicated it might play an important role in the vegetative growth of C. lunata. These results provided a fundamental supporting research on the function of PKAr in plant pathogen, C. lunata.

  13. Isolation of a polyphenol oxidase (PPO) cDNA from artichoke and expression analysis in wounded artichoke heads.

    PubMed

    Quarta, Angela; Mita, Giovanni; Durante, Miriana; Arlorio, Marco; De Paolis, Angelo

    2013-07-01

    The polyphenol oxidase (PPO) enzyme, which can catalyze the oxidation of phenolics to quinones, has been reported to be involved in undesirable browning in many plant foods. This phenomenon is particularly severe in artichoke heads wounded during the manufacturing process. A full-length cDNA encoding for a putative polyphenol oxidase (designated as CsPPO) along with a 1432 bp sequence upstream of the starting ATG codon was characterized for the first time from [Cynara cardunculus var. scolymus (L.) Fiori]. The 1764 bp CsPPO sequence encodes a putative protein of 587 amino acids with a calculated molecular mass of 65,327 Da and an isoelectric point of 5.50. Analysis of the promoter region revealed the presence of cis-acting elements, some of which are putatively involved in the response to light and wounds. Expression analysis of the gene in wounded capitula indicated that CsPPO was significantly induced after 48 h, even though the browning process had started earlier. This suggests that the early browning event observed in artichoke heads was not directly related to de novo mRNA synthesis. Finally, we provide the complete gene sequence encoding for polyphenol oxidase and the upstream regulative region in artichoke. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Genomic organization of the neurofibromatosis 1 gene (NF1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; O`Connell, P.; Huntsman Breidenbach, H.

    Neurofibromatosis 1 maps to chromosome band 17q11.2, and the NF1 locus has been partially characterized. Even though the full-length NF1 cDNA has been sequenced, the complete genomic structure of the NF1 gene has not been elucidated. The 5{prime} end of NF1 is embedded in a CpG island containing a NotI restriction site, and the remainder of the gene lies in the adjacent 350-kb NotI fragment. In our efforts to develop a comprehensive screen for NF1 mutations, we have isolated genomic DNA clones that together harbor the entire NF1 cDNA sequence. We have identified all intron-exon boundaries of the coding regionmore » and established that it is composed of 59 exons. Furthermore, we have defined the 3{prime}-untranslated region (3{prime}-UTR) of the NF1 gene; it spans approximately 3.5 kb of genomic DNA sequence and is continuous with the stop codon. Oligonucleotide primer pairs synthesized from exon-flanking DNA sequences were used in the polymerase chain reaction with cloned, chromosome 17-specific genomic DNA as template to amplify NF1 exons 1 through 27b and the exon containing the 3{prime}-UTR separately. This information should be useful for implementing a comprehensive NF1 mutation screen using genomic DNA as template. 41 refs., 3 figs., 2 tabs.« less

  15. Cingulin Contains Globular and Coiled-Coil Domains and Interacts with Zo-1, Zo-2, Zo-3, and Myosin

    PubMed Central

    Cordenonsi, Michelangelo; D'Atri, Fabio; Hammar, Eva; Parry, David A.D.; Kendrick-Jones, John; Shore, David; Citi, Sandra

    1999-01-01

    We characterized the sequence and protein interactions of cingulin, an M r 140–160-kD phosphoprotein localized on the cytoplasmic surface of epithelial tight junctions (TJ). The derived amino acid sequence of a full-length Xenopus laevis cingulin cDNA shows globular head (residues 1–439) and tail (1,326–1,368) domains and a central α-helical rod domain (440–1,325). Sequence analysis, electron microscopy, and pull-down assays indicate that the cingulin rod is responsible for the formation of coiled-coil parallel dimers, which can further aggregate through intermolecular interactions. Pull-down assays from epithelial, insect cell, and reticulocyte lysates show that an NH2-terminal fragment of cingulin (1–378) interacts in vitro with ZO-1 (K d ∼5 nM), ZO-2, ZO-3, myosin, and AF-6, but not with symplekin, and a COOH-terminal fragment (377–1,368) interacts with myosin and ZO-3. ZO-1 and ZO-2 immunoprecipitates contain cingulin, suggesting in vivo interactions. Full-length cingulin, but not NH2-terminal and COOH-terminal fragments, colocalizes with endogenous cingulin in transfected MDCK cells, indicating that sequences within both head and rod domains are required for TJ localization. We propose that cingulin is a functionally important component of TJ, linking the submembrane plaque domain of TJ to the actomyosin cytoskeleton. PMID:10613913

  16. [Analysis of the molecular characteristics and cloning of full-length coding sequence of interleukin-2 in tree shrews].

    PubMed

    Huang, Xiao-Yan; Li, Ming-Li; Xu, Juan; Gao, Yue-Dong; Wang, Wen-Guang; Yin, An-Guo; Li, Xiao-Fei; Sun, Xiao-Mei; Xia, Xue-Shan; Dai, Jie-Jie

    2013-04-01

    While the tree shrew (Tupaia belangeri chinensis) is an excellent animal model for studying the mechanisms of human diseases, but few studies examine interleukin-2 (IL-2), an important immune factor in disease model evaluation. In this study, a 465 bp of the full-length IL-2 cDNA encoding sequence was cloned from the RNA of tree shrew spleen lymphocytes, which were then cultivated and stimulated with ConA (concanavalin). Clustal W 2.0 was used to compare and analyze the sequence and molecular characteristics, and establish the similarity of the overall structure of IL-2 between tree shrews and other mammals. The homology of the IL-2 nucleotide sequence between tree shrews and humans was 93%, and the amino acid homology was 80%. The phylogenetic tree results, derived through the Neighbour-Joining method using MEGA5.0, indicated a close genetic relationship between tree shrews, Homo sapiens, and Macaca mulatta. The three-dimensional structure analysis showed that the surface charges in most regions of tree shrew IL-2 were similar to between tree shrews and humans; however, the N-glycosylation sites and local structures were different, which may affect antibody binding. These results provide a fundamental basis for the future study of IL-2 monoclonal antibody in tree shrews, thereby improving their utility as a model.

  17. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus.

    PubMed

    Scobey, Trevor; Yount, Boyd L; Sims, Amy C; Donaldson, Eric F; Agnihothram, Sudhakar S; Menachery, Vineet D; Graham, Rachel L; Swanstrom, Jesica; Bove, Peter F; Kim, Jeeho D; Grego, Sonia; Randell, Scott H; Baric, Ralph S

    2013-10-01

    Severe acute respiratory syndrome with high mortality rates (~50%) is associated with a novel group 2c betacoronavirus designated Middle East respiratory syndrome coronavirus (MERS-CoV). We synthesized a panel of contiguous cDNAs that spanned the entire genome. Following contig assembly into genome-length cDNA, transfected full-length transcripts recovered several recombinant viruses (rMERS-CoV) that contained the expected marker mutations inserted into the component clones. Because the wild-type MERS-CoV contains a tissue culture-adapted T1015N mutation in the S glycoprotein, rMERS-CoV replicated ~0.5 log less efficiently than wild-type virus. In addition, we ablated expression of the accessory protein ORF5 (rMERS•ORF5) and replaced it with tomato red fluorescent protein (rMERS-RFP) or deleted the entire ORF3, 4, and 5 accessory cluster (rMERS-ΔORF3-5). Recombinant rMERS-CoV, rMERS-CoV•ORF5, and MERS-CoV-RFP replicated to high titers, whereas MERS-ΔORF3-5 showed 1-1.5 logs reduced titer compared with rMERS-CoV. Northern blot analyses confirmed the associated molecular changes in the recombinant viruses, and sequence analysis demonstrated that RFP was expressed from the appropriate consensus sequence AACGAA. We further show dipeptidyl peptidase 4 expression, MERS-CoV replication, and RNA and protein synthesis in human airway epithelial cell cultures, primary lung fibroblasts, primary lung microvascular endothelial cells, and primary alveolar type II pneumocytes, demonstrating a much broader tissue tropism than severe acute respiratory syndrome coronavirus. The availability of a MERS-CoV molecular clone, as well as recombinant viruses expressing indicator proteins, will allow for high-throughput testing of therapeutic compounds and provide a genetic platform for studying gene function and the rational design of live virus vaccines.

  18. Escaping introns in COI through cDNA barcoding of mushrooms: Pleurotus as a test case.

    PubMed

    Avin, Farhat A; Subha, Bhassu; Tan, Yee-Shin; Braukmann, Thomas W A; Vikineswary, Sabaratnam; Hebert, Paul D N

    2017-09-01

    DNA barcoding involves the use of one or more short, standardized DNA fragments for the rapid identification of species. A 648-bp segment near the 5' terminus of the mitochondrial cytochrome c oxidase subunit I (COI) gene has been adopted as the universal DNA barcode for members of the animal kingdom, but its utility in mushrooms is complicated by the frequent occurrence of large introns. As a consequence, ITS has been adopted as the standard DNA barcode marker for mushrooms despite several shortcomings. This study employed newly designed primers coupled with cDNA analysis to examine COI sequence diversity in six species of Pleurotus and compared these results with those for ITS. The ability of the COI gene to discriminate six species of Pleurotus , the commonly cultivated oyster mushroom, was examined by analysis of cDNA. The amplification success, sequence variation within and among species, and the ability to design effective primers was tested. We compared ITS sequences to their COI cDNA counterparts for all isolates. ITS discriminated between all six species, but some sequence results were uninterpretable, because of length variation among ITS copies. By comparison, a complete COI sequences were recovered from all but three individuals of Pleurotus giganteus where only the 5' region was obtained. The COI sequences permitted the resolution of all species when partial data was excluded for P. giganteus . Our results suggest that COI can be a useful barcode marker for mushrooms when cDNA analysis is adopted, permitting identifications in cases where ITS cannot be recovered or where it offers higher resolution when fresh tissue is. The suitability of this approach remains to be confirmed for other mushrooms.

  19. [Complete nucleotide sequences and genome structure of two Chinese tobacco mosaic virus isolates deduced from full-length infectious cDNA clones].

    PubMed

    Yang, G; Liu, X G; Qiu, B S

    2000-07-01

    The complete nucleotides of two Chinese tobacco mosaic virus (TMV) isolates, TMV-Cv (vulgare strain) and TMV-N14 (an attenuated virus originated from a tomato strain), were determined from their respective full-length infectious cDNA clones and compared with published TMV sequences. The genome structure of TMV-Cv contained 6395 nucleotides, in which four functional open reading frames (ORF), coding for replicase (126 kD/183 kD), movement protein (MP, 30 kD) and coat protein (CP, 17.6 kD) respectively, could be recognized. TMV-N14 contained 6384 nucleotides in its genome. In contrast to TMV-Cv, five functional ORFs encoding the replicase 98.5 kD/126 kD/183 kD, MP(27 kD) and CP(17.6 kD), respectively, were detected in the TMV-N14 genome. TMV-Cv is 99% homologous to a Korean TMV isolate belonging to the vulgare strain at the nucleotide level. TMV-N14 is 99% homologous to a highly virulent Japanese isolate TMV-L (tomato strain) at the nucleotide level. In TMV-N14, one opal nulation (UGA) occurred in the replicase gene and one ochre nutation (UAA) in the MP gene. The former mutation created a potential, additional ORF within the replicase gene, the latter reduced the size of the MP to 27 kD. In addition, there were also 13 amino acid substitutions in the replicase gene of TMV-N14 when compared to that of TMV-L. Collectively, these changes may have significant implications in the attenuation of the virulence of TMV-N14.

  20. Extracellular matrix remodeling and matrix metalloproteinases (ajMMP-2 like and ajMMP-16 like) characterization during intestine regeneration of sea cucumber Apostichopus japonicus.

    PubMed

    Miao, Ting; Wan, Zixuan; Sun, Lina; Li, Xiaoni; Xing, Lili; Bai, Yucen; Wang, Fang; Yang, Hongsheng

    2017-10-01

    Remodeling of extracellular matrix (ECM) regulated by matrix metalloproteinases (MMPs) is essential for tissue regeneration. In the present study, we used immunohistochemistry (IHC) techniques against ECM components to reveal changes of ECM during intestine regeneration of Apostichopus japonicus. The expression of collagen I and laminin reduced apparently from the eviscerated intestine, while fibronectin exhibited continuous expression in all regeneration stages observed. Meanwhile, we cloned two MMP genes from A. japonicus by RACE PCR. The full-length cDNA of ajMMP-2 like is 2733bp and contains a predicted open reading frame (ORF) of 1716bp encoding 572 amino acids. The full-length cDNA of ajMMP-16 like is 2705bp and contains an ORF of 1452bp encoding 484 amino acids. The predicted protein sequences of each MMP contain two conserved domains, ZnMc_MMP and HX. Homology and phylogenetic analysis revealed that ajMMP-2 like and ajMMP-16 like share high sequence similarity with MMP-2 and MMP-16 from Strongylocentrotus purpuratus, respectively. Then we investigated spatio-temporal expression of ajMMP-2 like and ajMMP-16 like during different regeneration stages by qRT-PCR and IHC. The expression pattern of them showed a roughly opposite trend from that of ECM components. According to our results, a fibronectin-dominate temporary matrix is created in intestine regeneration, and it might provide structural integrity for matrix and promote cell movement. We also hypothesize that ajMMP-2 like and ajMMP-16 like could accelerate cell migration and regulate interaction between ECM components and growth factors. This work provides new evidence of ECM and MMPs involvement in sea cucumber regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Assessing the utility of the Oxford Nanopore MinION for snake venom gland cDNA sequencing.

    PubMed

    Hargreaves, Adam D; Mulley, John F

    2015-01-01

    Portable DNA sequencers such as the Oxford Nanopore MinION device have the potential to be truly disruptive technologies, facilitating new approaches and analyses and, in some cases, taking sequencing out of the lab and into the field. However, the capabilities of these technologies are still being revealed. Here we show that single-molecule cDNA sequencing using the MinION accurately characterises venom toxin-encoding genes in the painted saw-scaled viper, Echis coloratus. We find the raw sequencing error rate to be around 12%, improved to 0-2% with hybrid error correction and 3% with de novo error correction. Our corrected data provides full coding sequences and 5' and 3' UTRs for 29 of 33 candidate venom toxins detected, far superior to Illumina data (13/40 complete) and Sanger-based ESTs (15/29). We suggest that, should the current pace of improvement continue, the MinION will become the default approach for cDNA sequencing in a variety of species.

  2. Assessing the utility of the Oxford Nanopore MinION for snake venom gland cDNA sequencing

    PubMed Central

    Hargreaves, Adam D.

    2015-01-01

    Portable DNA sequencers such as the Oxford Nanopore MinION device have the potential to be truly disruptive technologies, facilitating new approaches and analyses and, in some cases, taking sequencing out of the lab and into the field. However, the capabilities of these technologies are still being revealed. Here we show that single-molecule cDNA sequencing using the MinION accurately characterises venom toxin-encoding genes in the painted saw-scaled viper, Echis coloratus. We find the raw sequencing error rate to be around 12%, improved to 0–2% with hybrid error correction and 3% with de novo error correction. Our corrected data provides full coding sequences and 5′ and 3′ UTRs for 29 of 33 candidate venom toxins detected, far superior to Illumina data (13/40 complete) and Sanger-based ESTs (15/29). We suggest that, should the current pace of improvement continue, the MinION will become the default approach for cDNA sequencing in a variety of species. PMID:26623194

  3. Kinetic Induction of Oat Shoot Pulvinus Invertase mRNA by Gravistimulation and Partial cDNA Cloning by the Polymerase Chain Reaction

    NASA Technical Reports Server (NTRS)

    Wu, Liu-Lai; Song, Il; Karuppiah, Nadarajah; Kaufman, Peter B.

    1993-01-01

    An asymmetric (top vs. bottom halves of pulvini) induction of invertase mRNA by gravistimulation was analyzed in oat shoot pulvini. Total RNA and poly(A)(+) RNA, isolated from oat pulvini, and two oli-gonucleotide primers, corresponding to two conserved amino acid sequences (NDPNG and WECPD) found in invertase from other species, were used for the polymerase chain reaction (PCR). A partial length cDNA (550 bp) was obtained and characterized. A 62% nucleotide sequence homology and 58% deduced amino acid sequence homology, as compared to beta-fructosidase of carrot cell wall, was found. Northern blot analysis showed that there was an obviously transient induction of invertase mRNA by gravistimulation in the oat pulvinus system. The mRNA was rapidly induced to a maximum level at 1 hour after gravistimulation treatment and gradually decreased afterwards. The mRNA level in the bottom half of the oat pulvinus was significantly higher than that in the top half of the pulvinus tissue. The kinetic induction of invertase mRNA was consistent with the transient accumulation of invertase activity during the graviresponse of the pulvinus. This indicates that the expression of the invertase gene(s) could be regulated by gravistimulation at the transcriptional level. Southern blot analysis showed that there were two to three genomic DNA fragments which hybridized with the partial-length invertase cDNA.

  4. [Cloning and functional characterization of phytoene desaturase in Andrographis paniculata].

    PubMed

    Shen, Qin-qin; Li, Li-xia; Zhan, Peng-lin; Wang, Qiang

    2015-10-01

    A full-length cDNA of phytoene desaturase (PDS) gene from Andrographis paniculata was obtained through RACE-PCR. The cDNA sequence consists of 2 224 bp with an intact ORF of 1 752 bp (GeneBank: KP982892), encoding a ploypeptide of 584 amino acids. Homology analysis showed that the deduced protein has extensive sequence similarities to PDS from other plants, and contains a conserved NAD ( H) -binding domain of plant dehydrase cofactor binding-domain in N-terminal. Phylogenetic analysis demonstrated that ApPDS was more related to PDS of Sesamum indicum and Pogostemon cablin. The semi-quantitative RT-PCR analysis revealed that ApPDS expressed in whole aboveground tissues with the highest expression in leaves. Virus induced gene silencing (VIGS) was performed to characterize the functional of ApPDS in planta. Significant photobleaching was not observed in infiltrated leaves, while the PDS gene has been down-regulated significantly at the yellowish area. To the best of our knowledge, this represents the first report of PDS gene cloning and functional characterization from A. paniculata, which lays the foundation for further investigation of new genes, especially that correlative to andrographolide biosynthetic pathway.

  5. Molecular characterization and functional analysis of serine/threonine protein phosphatase of Toxocara canis.

    PubMed

    Ma, Guang Xu; Zhou, Rong Qiong; Hu, Shi Jun; Huang, Han Cheng; Zhu, Tao; Xia, Qing You

    2014-06-01

    Toxocara canis (T. canis) is a widely prevalent zoonotic parasite that infects a wide range of mammalian hosts, including humans. We generated the full-length complementary DNA (cDNA) of the serine/threonine phosphatase gene of T. canis (Tc stp) using 5' rapid amplification of the cDNA ends. The 1192-bp sequence contained a continuous 942-nucleotide open reading frame, encoding a 313-amino-acid polypeptide. The Tc STP polypeptide shares a high level of amino-acid sequence identity with the predicted STPs of Loa loa (89%), Brugia malayi (86%), Oesophagostomum columbianum (76%), and Oesophagostomumdentatum (76%). The Tc STP contains GDXHG, GDXVDRG, GNHE motifs, which are characteristic of members of the phosphoprotein phosphatase family. Our quantitative real-time polymerase chain reaction analysis showed that the Tc STP was expressed in six different tissues in the adult male, with high-level expression in the spermary, vas deferens, and musculature, but was not expressed in the adult female, suggesting that Tc STP might be involved in spermatogenesis and mating behavior. Thus, STP might represent a potential molecular target for controlling T. canis reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Canine Lat1: molecular structure, distribution and its expression in cancer samples.

    PubMed

    Ochiai, Hideharu; Morishita, Taiki; Onda, Ken; Sugiyama, Hiroki; Maruo, Takuya

    2012-07-01

    A full-length cDNA sequence of canine L-type amino acid transporter 1 (Lat1) was determined from a canine brain. The sequence was 1828 bp long and was predicted to encode 485 amino acid polypeptides. The deduced amino acid sequence of canine Lat1 showed 93.2% and 91.1% similarities to those of humans and rats, respectively. Northern blot analysis detected Lat1 expression in the cerebellum at 4 kb, and Western blot analysis showed a single band at 40 kDa. RT-PCR analysis revealed a distinct expression of Lat1 in the pancreas and testis in addition to the cerebrum and cerebellum. Notably, Lat1 expression was observed in the tissues of thyroid cancer, melanoma and hemangiopericytoma. Although the cancer samples examined were not enough, Lat1 may serve as a useful biomarker of cancer cells in veterinary clinic.

  7. Skipping of Exons by Premature Termination of Transcription and Alternative Splicing within Intron-5 of the Sheep SCF Gene: A Novel Splice Variant

    PubMed Central

    Saravanaperumal, Siva Arumugam; Pediconi, Dario; Renieri, Carlo; La Terza, Antonietta

    2012-01-01

    Stem cell factor (SCF) is a growth factor, essential for haemopoiesis, mast cell development and melanogenesis. In the hematopoietic microenvironment (HM), SCF is produced either as a membrane-bound (−) or soluble (+) forms. Skin expression of SCF stimulates melanocyte migration, proliferation, differentiation, and survival. We report for the first time, a novel mRNA splice variant of SCF from the skin of white merino sheep via cloning and sequencing. Reverse transcriptase (RT)-PCR and molecular prediction revealed two different cDNA products of SCF. Full-length cDNA libraries were enriched by the method of rapid amplification of cDNA ends (RACE-PCR). Nucleotide sequencing and molecular prediction revealed that the primary 1519 base pair (bp) cDNA encodes a precursor protein of 274 amino acids (aa), commonly known as ‘soluble’ isoform. In contrast, the shorter (835 and/or 725 bp) cDNA was found to be a ‘novel’ mRNA splice variant. It contains an open reading frame (ORF) corresponding to a truncated protein of 181 aa (vs 245 aa) with an unique C-terminus lacking the primary proteolytic segment (28 aa) right after the D175G site which is necessary to produce ‘soluble’ form of SCF. This alternative splice (AS) variant was explained by the complete nucleotide sequencing of splice junction covering exon 5-intron (5)-exon 6 (948 bp) with a premature termination codon (PTC) whereby exons 6 to 9/10 are skipped (Cassette Exon, CE 6–9/10). We also demonstrated that the Northern blot analysis at transcript level is mediated via an intron-5 splicing event. Our data refine the structure of SCF gene; clarify the presence (+) and/or absence (−) of primary proteolytic-cleavage site specific SCF splice variants. This work provides a basis for understanding the functional role and regulation of SCF in hair follicle melanogenesis in sheep beyond what was known in mice, humans and other mammals. PMID:22719917

  8. Cloning, in Vitro expression, and novel phylogenetic classification of a channel catfish estrogen receptor

    USGS Publications Warehouse

    Xia, Z.; Patino, R.; Gale, W.L.; Maule, A.G.; Densmore, L.D.

    1999-01-01

    We obtained two channel catfish estrogen receptor (ccER) cDNA from liver of female fish using RT–PCR. The two fragments were identical in sequence except that the smaller one had an out-of-frame deletion in the E domain, suggesting the existence of ccER splice variants. The larger fragment was used to screen a cDNA library from liver of a prepubescent female. A cDNA was obtained that encoded a 581-amino-acid ER with a deduced molecular weight of 63.8 kDa. Extracts of COS-7 cells transfected with ccER cDNA bound estrogen with high affinity (Kd = 4.7 nM) and specificity. Maximum parsimony and Neighbor Joining analyses were used to generate a phylogenetic classification of ccER on the basis of 18 full-length ER sequences. The tree suggested the existence of two major ER branches. One branch contained two clearly divergent clades which included all piscine ER (except Japanese eel ER) and all tetrapod ERα, respectively. The second major branch contained the eel ER and the mammalian ERβ. The high degree of divergence between the eel ER and mammalian ERβ suggested that they also represent distinct piscine and tetrapod ER. These data suggest that ERα and ERβ are present throughout vertebrates and that these two major ER types evolved by duplication of an ancestral ER gene. Sequence alignments with other members of the nuclear hormone receptor superfamily indicated the presence of 8 amino acids in the E domain that align exclusively among ER. Four of these amino acids have not received prior research attention and their function is unknown. The novel finding of putative ER splice variants in a nonmammalian vertebrate and the novel phylogenetic classification of ER offer new perspectives in understanding the diversification and function of ER.

  9. Regulation of pathogenicity in hop stunt viroid-related group II citrus viroids.

    PubMed

    Reanwarakorn, K; Semancik, J S

    1998-12-01

    Nucleotide sequences were determined for two hop stunt viroid-related Group II citrus viroids characterized as either a cachexia disease non-pathogenic variant (CVd-IIa) or a pathogenic variant (CVd-IIb). Sequence identity between the two variants of 95.6% indicated a conserved genome with the principal region of nucleotide difference clustered in the variable (V) domain. Full-length viroid RT-PCR cDNA products were cloned into plasmid SP72. Viroid cDNA clones as well as derived RNA transcripts were transmissible to citron (Citrus medica L.) and Luffa aegyptiaca Mill. To determine the locus of cachexia pathogenicity as well as symptom expression in Luffa, chimeric viroid cDNA clones were constructed from segments of either the left terminal, pathogenic and conserved (T1-P-C) domains or the conserved, variable and right terminal (C-V-T2) domains of CVd-IIa or CVd-IIb in reciprocal exchanges. Symptoms induced by the various chimeric constructs on the two bioassay hosts reflected the differential response observed with CVd-IIa and -IIb. Constructs with the C-V-T2 domains region from clone-IIa induced severe symptoms on Luffa typical of CVd-IIa, but were non-symptomatic on mandarin as a bioassay host for the cachexia disease. Constructs with the same region (C-V-T2) from the clone-IIb genome induced only mild symptoms on Luffa, but produced a severe reaction on mandarin, as observed for CVd-IIb. Specific site-directed mutations were introduced into the V domain of the CVd-IIa clone to construct viroid cDNA clones with either partial or complete conversions to the CVd-IIb sequence. With the introduction of six site-specific changes into the V domain of the clone-IIa genome, cachexia pathogenicity was acquired as well as a moderation of severe symptoms on Luffa.

  10. A beta-galactosidase gene is expressed during mature fruit abscission of 'Valencia' orange (Citrus sinensis).

    PubMed

    Wu, Zhencai; Burns, Jacqueline K

    2004-07-01

    beta-galactosidases have been detected in a wide range of plants and are characterized by their ability to hydrolyse terminal non-reducing beta-D-galactosyl residues from beta-D-galactosides. These enzymes have been detected in a wide range of plant organs and tissues. In a search for differentially expressed genes during the abscission process in citrus, sequences encoding beta-galactosidase were identified. Three cDNA fragments of a beta-galactosidase gene were isolated from a cDNA subtraction library constructed from mature fruit abscission zones 48 h after the application of a mature fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMN-pyrazole). Based on sequence information derived from these fragments, a full-length cDNA of 2847 nucleotides (GenBank accession number AY029198) encoding beta-galactosidase was isolated from mature fruit abscission zones by 5'- and 3'-RACE approaches. The beta-galactosidase cDNA encoded a protein of 737 amino acid residues with a calculated molecular weight of 82 kDa. The deduced protein was highly homologous to plant beta-galactosidases expressed in fruit ripening. Southern blot analysis demonstrated that at least two closely related beta-galactosidase genes were present in 'Valencia' orange. Temporal expression patterns in mature fruit abscission zones indicated beta-galactosidase mRNA was detected 48 h after treatment of CMN-pyrazole and ethephon in mature fruit abscission zones. beta-galactosidase transcripts were detected in leaf abscission zones only after ethephon application. The citrus beta-galactosidase was expressed in stamens and petals of fully opened flowers and young fruitlets. The results suggest that this beta-galactosidase may play a role during abscission as well as early growth and development processes in flowers and fruitlets.

  11. Characterization of a marsupial sperm protamine gene and its transcripts from the North American opossum (Didelphis marsupialis).

    PubMed

    Winkfein, R J; Nishikawa, S; Connor, W; Dixon, G H

    1993-07-01

    A synthetic oligonucleotide primer, designed from marsupial protamine protein-sequence data [Balhorn, R., Corzett, M., Matrimas, J. A., Cummins, J. & Faden, B. (1989) Analysis of protamines isolated from two marsupials, the ring-tailed wallaby and gray short-tailed opossum, J. Cell. Biol. 107] was used to amplify, via the polymerase chain reaction, protamine sequences from a North American opossum (Didelphis marsupialis) cDNA. Using the amplified sequences as probes, several protamine cDNA clones were isolated. The protein sequence, predicted from the cDNA sequences, consisted of 57 amino acids, contained a large number of arginine residues and exhibited the sequence ARYR at its amino terminus, which is conserved in avian and most eutherian mammal protamines. Like the true protamines of trout and chicken, the opossum protamine lacked cysteine residues, distinguishing it from placental mammalian protamine 1 (P1 or stable) protamines. Examination of the protamine gene, isolated by polymerase-chain-reaction amplification of genomic DNA, revealed the presence of an intron dividing the protamine-coding region, a common characteristic of all mammalian P1 genes. In addition, extensive sequence identity in the 5' and 3' flanking regions between mouse and opossum sequences classify the marsupial protamine as being closely related to placental mammal P1. Protamine transcripts, in both birds and mammals, are present in two size classes, differing by the length of their poly(A) tails (either short or long). Examination of opossum protamine transcripts by Northern hybridization revealed four distinct mRNA species in the total RNA fraction, two of which were enriched in the poly(A)-rich fraction. Northern-blot analysis, using an intron-specific probe, revealed the presence of intron sequences in two of the four protamine transcripts. If expressed, the corresponding protein from intron-containing transcripts would differ from spliced transcripts by length (49 versus 57 amino acids) and would contain a cysteine residue.

  12. Isolated spinach ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit .sup..epsilon. N-methyltransferase and method of inactivating ribulose-1,5-bisphosphatase carboxylase/oxygenase large subunit .sup..epsilon. N-methyltransferase activity

    DOEpatents

    Houtz, Robert L.

    1999-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltransferase (protein methylase III or Rubisco LSMT) from a plant which has a des(methyl) lysyl residue in the LS is disclosed. In addition, the full-length cDNA clones for Rubisco LSMT are disclosed. Transgenic plants and methods of producing same which have the Rubisco LSMT gene inserted into the DNA are also provided. Further, methods of inactivating the enzymatic activity of Rubisco LSMT are also disclosed.

  13. A Calcium-Dependent Protein Kinase Is Systemically Induced upon Wounding in Tomato Plants1

    PubMed Central

    Chico, José Manuel; Raíces, Marcela; Téllez-Iñón, María Teresa; Ulloa, Rita María

    2002-01-01

    A full-length cDNA clone (LeCDPK1) from tomato (Lycopersicon esculentum) encoding a calcium-dependent protein kinase (CDPK) was isolated by screening a cDNA library from tomato cell cultures exposed to Cladosporium fulvum elicitor preparations. The predicted amino acid sequence of the cDNA reveals a high degree of similarity with other members of the CDPK family. LeCDPK1 has a putative N-terminal myristoylation sequence and presents a possible palmitoylation site. The in vitro translated protein conserves the biochemical properties of a member of the CDPK family. In addition, CDPK activity was detected in soluble and particulate extracts of tomato leaves. Basal levels of LeCDPK1 mRNA were detected by northern-blot analysis in roots, stems, leaves, and flowers of tomato plants. The expression of LeCDPK1 was rapidly and transiently enhanced in detached tomato leaves treated with pathogen elicitors and H2O2. Moreover, when tomato greenhouse plants were subjected to mechanical wounding, a transient increase of LeCDPK1 steady-state mRNA levels was detected locally at the site of the injury and systemically in distant non-wounded leaves. The increase observed in LeCDPK1 mRNA upon wounding correlates with an increase in the amount and in the activity of a soluble CDPK detected in extracts of tomato leaves, suggesting that this kinase is part of physiological plant defense mechanisms against biotic or abiotic attacks. PMID:11788771

  14. Cloning, characterization and functional analysis of a 1-FEH cDNA from Vernonia herbacea (Vell.) Rusby.

    PubMed

    Asega, Amanda Francine; do Nascimento, João Roberto O; Schroeven, Lindsey; Van den Ende, Wim; Carvalho, Maria Angela M

    2008-08-01

    Variations in the inulin contents have been detected in rhizophores of Vernonia herbacea during the phenological cycle. These variations indicate the occurrence of active inulin synthesis and depolymerization throughout the cycle and a role for this carbohydrate as a reserve compound. 1-Fructan exohydrolase (1-FEH) is the enzyme responsible for inulin depolymerization, and its activity has been detected in rhizophores of sprouting plants. Defoliation and low temperature are enhancer conditions of this 1-FEH activity. The aim of the present work was the cloning of this enzyme. Rhizophores were collected from plants induced to sprout, followed by storage at 5 degrees C. A full length 1-FEH cDNA sequence was obtained by PCR and inverse PCR techniques, and expressed in Pichia pastoris. Cold storage enhances FEH gene expression. Vh1-FEH was shown to be a functional 1-FEH, hydrolyzing predominantly beta-2,1 linkages, sharing high identity with chicory FEH sequences, and its activity was inhibited by 81% in the presence of 10 mM sucrose. In V. herbacea, low temperature and sucrose play a role in the control of fructan degradation. This is the first study concerning the cloning and functional analysis of a 1-FEH cDNA of a native species from the Brazilian Cerrado. Results will contribute to understanding the role of fructans in the establishment of a very successful fructan flora of the Brazilian Cerrado, subjected to water limitation and low temperature during winter.

  15. Single-molecule, full-length transcript sequencing provides insight into the extreme metabolism of the ruby-throated hummingbird Archilochus colubris.

    PubMed

    Workman, Rachael E; Myrka, Alexander M; Wong, G William; Tseng, Elizabeth; Welch, Kenneth C; Timp, Winston

    2018-03-01

    Hummingbirds oxidize ingested nectar sugars directly to fuel foraging but cannot sustain this fuel use during fasting periods, such as during the night or during long-distance migratory flights. Instead, fasting hummingbirds switch to oxidizing stored lipids that are derived from ingested sugars. The hummingbird liver plays a key role in moderating energy homeostasis and this remarkable capacity for fuel switching. Additionally, liver is the principle location of de novo lipogenesis, which can occur at exceptionally high rates, such as during premigratory fattening. Yet understanding how this tissue and whole organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. We generated a de novo transcriptome of the hummingbird liver using PacBio full-length cDNA sequencing (Iso-Seq), yielding 8.6Gb of sequencing data, or 2.6M reads from 4 different size fractions. We analyzed data using the SMRTAnalysis v3.1 Iso-Seq pipeline, then clustered isoforms into gene families to generate de novo gene contigs using Cogent. We performed orthology analysis to identify closely related sequences between our transcriptome and other avian and human gene sets. Finally, we closely examined homology of critical lipid metabolism genes between our transcriptome data and avian and human genomes. We confirmed high levels of sequence divergence within hummingbird lipogenic enzymes, suggesting a high probability of adaptive divergent function in the hepatic lipogenic pathways. Our results leverage cutting-edge technology and a novel bioinformatics pipeline to provide a first direct look at the transcriptome of this incredible organism.

  16. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woon, J. S. K., E-mail: jameswoon@siswa.ukm.edu.my; Murad, A. M. A., E-mail: munir@ukm.edu.my; Abu Bakar, F. D., E-mail: fabyff@ukm.edu.my

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-Tmore » Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.« less

  17. Paramyosin from the parasitic mite Sarcoptes scabiei: cDNA cloning and heterologous expression.

    PubMed

    Mattsson, J G; Ljunggren, E L; Bergström, K

    2001-05-01

    The burrowing mite Sarcoptes scabiei is the causative agent of the highly contagious disease sarcoptic mange or scabies. So far, there is no in vitro propagation system for S. scabiei available, and mites used for various purposes must be isolated from infected hosts. Lack of parasite-derived material has limited the possibilities to study several aspects of scabies, including pathogenesis and immunity. It has also hampered the development of high performance serological assays. We have now constructed an S. scabiei cDNA expression library with mRNA purified from mites isolated from red foxes. Immunoscreening of the library enabled us to clone a full-length cDNA coding for a 102.5 kDa protein. Sequence similarity searches identified the protein as a paramyosin. Recombinant S. scabiei paramyosin expressed in Escherichia coli was recognized by sera from dogs and swine infected with S. scabiei. We also designed a small paramyosin construct of about 17 kDa that included the N-terminal part, an evolutionary variable part of the helical core, and the C-terminal part of the molecule. The miniaturized protein was efficiently expressed in E. coli and was recognized by sera from immunized rabbits. These data demonstrate that the cDNA library can assist in the isolation of important S. scabiei antigens and that recombinant proteins can be useful for the study of scabies.

  18. A novel biomarker for marine environmental pollution of pi-class glutathione S-transferase from Mytilus coruscus.

    PubMed

    Liu, Huihui; He, Jianyu; Zhao, Rongtao; Chi, Changfeng; Bao, Yongbo

    2015-08-01

    Glutathione S-transferases (GSTs) are the superfamily of phase II detoxification enzymes that play crucial roles in innate immunity. In this study, a pi-class GST homolog was identified from Mytilus coruscus (named as McGST1, KC525103). The full-length cDNA sequence of McGST1 was 621bp with a 5' untranslated region (UTR) of 70bp and a 3'-UTR of 201bp. The deduced amino acid sequence was 206 residues in length with theoretical pI/MW of 5.60/23.72kDa, containing the conserved G-site and diversiform H-site. BLASTn analysis and phylogenetic relationship strongly suggested that this cDNA sequence was a member of pi class GST family. The prediction of secondary structure displayed a preserved N-terminal and a C-terminal comprised with α-helixes. Quantitative real time RT-PCR showed that constitutive expression of McGST1 was occurred, with increasing order in mantle, muscle, gill, hemocyte, gonad and hepatopancreas. The stimulation of bacterial infection, heavy metals and 180CST could up-regulate McGST1 mRNA expression in hepatopancreas with time-dependent manners. The maximum expression appeared at 6h after pathogenic bacteria injected, with 10-fold in Vibrio alginolyticus and 16-fold in Vibrio harveyi higher than that of the control. The highest point of McGST1 mRNA appeared at different time for exposure to copper (10-fold at day 15), cadmium (9-fold at day10) and 180 CST (10-fold at day 15). These results suggested that McGST1 played a significant role in antioxidation and might potentially be used as indicators and biomarkers for detection of marine environmental pollution. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Molecular cloning and characterization of the full-length cDNA encoding the tree shrew (tupaia belangeri) CD28

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoyan; Yan, Yan; Wang, Sha; Wang, Qinying; Shi, Jian; Shao, Zhanshe; Dai, Jiejie

    2017-11-01

    CD28 is one of the most important co-stimulatory molecules expressed by naive and primed T cells. The tree shrews (Tupaia belangeri), as an ideal animal model for analyzing mechanism of human diseases receiving extensive attentions, demands essential research tools, in particular in the study of cellular markers and monoclonal antibodies for immunological studies. However, little is known about tree shrew CD28 (tsCD28) until now. In this study, a 663 bp of the full-length CD28 cDNA, encoding a polypeptide of 220 amino acids was cloned from tree shrew spleen lymphocytes. The nucleotide sequence of the tsCD28 showed 85%, 76%, and 75% similarities with human, rat, and mouse, respectively, which showed the affinity relationship between tree shrew and human is much closer than between human and rodents. The open reading frame (ORF) sequence of tsCD28 gene was predicted to be in correspondence with the signal sequence, immunoglobulin variable-like (IgV) domain, transmembrane domain and cytoplasmic tail, respectively.We also analyzed its molecular characteristics with other mammals by using biology software such as Clustal W 2.0 and so forth. Our results showed that tsCD28 contained many features conserved in CD28 genes from other mammals, including conserved signal peptide and glycosylation sites, and several residues responsible for binding to the CD28R, and the tsCD28 amino acid sequence were found a close genetic relationship with human and monkey. The crystal structure and surface charge revealed most regions of tree shrew CD28 molecule surface charges are similar as human. However, compared with human CD28 (hCD28) regions, in some areas, the surface positive charge of tsCD28 was less than hCD28, which may affect antibody binding. The present study is the first report of cloning and characterization of CD28 in tree shrew. This study provides a theoretical basis for the further study the structure and function of tree shrew CD28 and utilize tree shrew as an effective animal model of human disease.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, O.P.

    Potato leafroll virus (PLRV) was aphid-transmitted from potato (Solanum tuberosum cultivar Russett Burbank) to ground cherry (Physalis floridana), where it was maintained by serial aphid transmission. Serological and plant differential tests indicated that the isolate was not contaminated with beet western yellows virus. Purified PLRV RNA was poly(A)-tailed in vitro and used as a template for reverse transcriptase, primed with oligo(dT). Alkaline gel electrophoresis of /sup 32/P-labeled first-strand complementary DNA (cDNA) indicated a major size range of 0.1 to 3.5 kilobases (kb). A small percentage of transcripts corresponded to full length PLRV RNA. Following RNase H and DNA polymerase I-mediatedmore » second strand synthesis, double-stranded cDNA was cloned into the Pst I site of the plasmid pUC9 using oligo (dC)-oligo(dG) tailing methodology. Escherichia coli JM109 transformants were screened with first-strand /sup 32/P-cDNA in colony hybridization experiments to confirm that recombinants contained PLRV-specific sequences.« less

  1. Is plant mitochondrial RNA editing a source of phylogenetic incongruence? An answer from in silico and in vivo data sets.

    PubMed

    Picardi, Ernesto; Quagliariello, Carla

    2008-03-26

    In plant mitochondria, the post-transcriptional RNA editing process converts C to U at a number of specific sites of the mRNA sequence and usually restores phylogenetically conserved codons and the encoded amino acid residues. Sites undergoing RNA editing evolve at a higher rate than sites not modified by the process. As a result, editing sites strongly affect the evolution of plant mitochondrial genomes, representing an important source of sequence variability and potentially informative characters. To date no clear and convincing evidence has established whether or not editing sites really affect the topology of reconstructed phylogenetic trees. For this reason, we investigated here the effect of RNA editing on the tree building process of twenty different plant mitochondrial gene sequences and by means of computer simulations. Based on our simulation study we suggest that the editing 'noise' in tree topology inference is mainly manifested at the cDNA level. In particular, editing sites tend to confuse tree topologies when artificial genomic and cDNA sequences are generated shorter than 500 bp and with an editing percentage higher than 5.0%. Similar results have been also obtained with genuine plant mitochondrial genes. In this latter instance, indeed, the topology incongruence increases when the editing percentage goes up from about 3.0 to 14.0%. However, when the average gene length is higher than 1,000 bp (rps3, matR and atp1) no differences in the comparison between inferred genomic and cDNA topologies could be detected. Our findings by the here reported in silico and in vivo computer simulation system seem to strongly suggest that editing sites contribute in the generation of misleading phylogenetic trees if the analyzed mitochondrial gene sequence is highly edited (higher than 3.0%) and reduced in length (shorter than 500 bp). In the current lack of direct experimental evidence the results presented here encourage, thus, the use of genomic mitochondrial rather than cDNA sequences for reconstructing phylogenetic events in land plants.

  2. Molecular cloning and expression of a heat-shock cognate 70 (hsc70) gene from swordtail fish ( Xiphophorus helleri)

    NASA Astrophysics Data System (ADS)

    Li, Ningqiu; Fu, Xiaozhe; Han, Jingang; Shi, Cunbin; Huang, Zhibin; Wu, Shuqin

    2013-07-01

    Heat shock proteins are a family of molecular chaperones that are involved in many aspects of protein homeostasis. In the present study, a full-length cDNA, encoding the constitutively expressed 70-kDa heat shock cognate protein (Hsc70), was isolated from swordtail fish ( Xiphophorus helleri) and designated as XheHsc70. The Xhehsc70 cDNA was 2 104 bp long with an open reading frame of 1 941 bp, and it encoded a protein of 646 amino acids with a theoretical molecular weight of 70.77 kDa and an isoelectric point of 5.04. The deduced amino acid sequence shared 94.1%-98.6% identities with the Hsc70s from a number of other fish species. Tissue distribution results show that the Xhehsc70 mRNA was expressed in brain, heart, head kidney, kidney, spleen, liver, muscle, gill, and peripheral blood. After immunization with formalin-killed Vibrio alginolyticus cells there was a significant increase in the Xhehsc70 mRNA transcriptional level in the head kidney of the vaccinated fish compared with in the control at 6, 12, 24, and 48 h as shown by quantitative real time RT-PCR. Based on an analysis of the amino acid sequence of XheHsc70, its phylogeny, and Xhehsc70 mRNA expression, XheHsc70 was identified as a member of the cytoplasmic Hsc70 (constitutive) subfamily of the Hsp70 family of heat shock proteins, suggesting that it may play a role in the immune response. The Xhehsc70 cDNA sequence reported in this study was submitted to GenBank under the accession number JF739182.

  3. Molecular cloning and immunochemical characterization of a novel major Japanese cedar pollen allergen belonging to the aspartic protease family.

    PubMed

    Ibrahim, Ahmed Ragaa Nour; Kawamoto, Seiji; Aki, Tsunehiro; Shimada, Yayoi; Rikimaru, Satoshi; Onishi, Nobukazu; Babiker, Elfadil Elfadl; Oiso, Isao; Hashimoto, Kunihiko; Hayashi, Takaharu; Ono, Kazuhisa

    2010-01-01

    Japanese cedar (Cryptomeria japonica) pollen is a major cause of seasonal pollinosis in Japan. Protease activity in the pollen grains may trigger pro-allergic responses but no such proteases have yet been identified as pollen allergens. We report the molecular cloning and immunochemical characterization of a novel C. japonica pollen allergen belonging to the aspartic protease family. We focused on the C. japonica pollen allergen spot No. 63 (CPA63, 47.5% IgE binding frequency) on our 2-dimensional IgE immunoblot map. The internal amino acid sequences were determined using time-of-flight mass spectrometry. Full-length cpa63 cDNA was cloned by rapid amplification of cDNA ends (RACE)-PCR. Recombinant CPA63 (r-CPA63) was expressed using the baculovirus-insect cell culture system and its IgE binding capacity was analyzed by enzyme-linked immunosorbent assay (ELISA). The proteolytic activity of r-CPA63 was also assessed using a putative mature enzyme produced upon autolysis. cpa63 cDNA encoded a 472 amino acid polypeptide showing about 40% sequence identity to members of the plant atypical aspartic protease family. ELISA showed that r-CPA63 was recognized by IgE antibodies in the serum of 58% (18/31) of Japanese cedar pollinosis patients. We also demonstrated an aspartic protease-like enzyme activity of the putative mature r-CPA63. We have identified the first plant aspartic protease allergen from Japanese cedar pollen. The availability of the CPA63 sequence and its recombinant allergen production system are useful not only for pharmaceutical applications but also for further examination of the role of protease activity in the pathogenesis of cedar pollinosis. 2010 S. Karger AG, Basel.

  4. Cloning, characterization and expression of a novel laccase gene Pclac2 from Phytophthora capsici

    PubMed Central

    Feng, Bao Zhen; Li, Peiqian

    2014-01-01

    Laccases are blue copper oxidases (E.C. 1.10.3.2) that catalyze the one-electron oxidation of phenolics, aromatic amines, and other electron-rich substrates with the concomitant reduction of O2 to H2O. A novel laccase gene pclac2 and its corresponding full-length cDNA were cloned and characterized from Phytophthora capsici for the first time. The 1683 bp full-length cDNA of pclac2 encoded a mature laccase protein containing 560 amino acids preceded by a signal peptide of 23 amino acids. The deduced protein sequence of PCLAC2 showed high similarity with other known fungal laccases and contained four copper-binding conserved domains of typical laccase protein. In order to achieve a high level secretion and full activity expression of PCLAC2, expression vector pPIC9K with the Pichia pastoris expression system was used. The recombinant PCLAC2 protein was purified and showed on SDS-PAGE as a single band with an apparent molecular weight ca. 68 kDa. The high activity of purified PCLAC2, 84 U/mL, at the seventh day induced with methanol, was observed with 2,2′-azino-di-(3-ethylbenzothialozin-6-sulfonic acid) (ABTS) as substrate. The optimum pH and temperature for ABTS were 4.0 and 30 °C, respectively. The reported data add a new piece to the knowledge about P. Capsici laccase multigene family and shed light on potential function about biotechnological and industrial applications of the individual laccase isoforms in oomycetes. PMID:24948955

  5. Expression analysis of kenaf cinnamate 4-hydroxylase (C4H) ortholog during developmental and stress responses

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to clone and analyze the expression pattern of a C4H gene encoding cinnamate 4-hydroxylase from kenaf (Hibiscus cannabinus L.). A full-length C4H ortholog was cloned using degenerate primers and the RACE (rapid amplification of cDNA ends) method. The full-length C4H ortholog...

  6. Construction and characterization of a normalized cDNA library of Nannochloropsis oculata (Eustigmatophyceae)

    NASA Astrophysics Data System (ADS)

    Yu, Jianzhong; Ma, Xiaolei; Pan, Kehou; Yang, Guanpin; Yu, Wengong

    2010-07-01

    We constructed and characterized a normalized cDNA library of Nannochloropsis oculata CS-179, and obtained 905 nonredundant sequences (NRSs) ranging from 431-1 756 bp in length. Among them, 496 were very similar to nonredundant ones in the GenBank ( E ≤1.0e-05), and 349 ESTs had significant hits with the clusters of eukaryotic orthologous groups (KOG). Bases G and/or C at the third position of codons of 14 amino acid residues suggested a strong bias in the conserved domain of 362 NRSs (>60%). We also identified the unigenes encoding phosphorus and nitrogen transporters, suggesting that N. oculata could efficiently transport and metabolize phosphorus and nitrogen, and recognized the unigenes that involved in biosynthesis and storage of both fatty acids and polyunsaturated fatty acids (PUFAs), which will facilitate the demonstration of eicosapentaenoic acid (EPA) biosynthesis pathway of N. oculata. In comparison with the original cDNA library, the normalized library significantly increased the efficiencies of random sequencing and rarely expressed genes discovering, and decreased the frequency of abundant gene sequences.

  7. Characterization and expression of the calpastatin gene in Cyprinus carpio.

    PubMed

    Chen, W X; Ma, Y

    2015-07-03

    Calpastatin, an important protein used to regulate meat quality traits in animals, is encoded by the CAST gene. The aim of the present study was to clone the cDNA sequence of the CAST gene and detect the expression of CAST in the tissues of Cyprinus carpio. The cDNA of the C. carpio CAST gene, amplified using rapid amplification of cDNA ends PCR, is 2834 bp in length (accession No. JX275386), contains a 2634-bp open reading frame, and encodes a protein with 877 amino acid residues. The amino acid sequence of the C. carpio CAST gene was 88, 80, and 59% identical to the sequences observed in grass carp, zebrafish, and other fish, respectively. The C. carpio CAST was observed to contain four conserved domains with 54 serine phosphorylation loci, 28 threonine phosphorylation loci, 1 tyrosine phosphorylation loci, and 6 specific protein kinase C phosphorylation loci. The CAST gene showed widespread expression in different tissues of C. carpio. Surprisingly, the relative expression of the CAST transcript in the muscle and heart tissues of C. carpio was significantly higher than in other tissues (P < 0.01).

  8. Expression, Identification and Purification of Dictyostelium Acetoacetyl-CoA Thiolase Expressed in Escherichia coli

    PubMed Central

    Tanaka, Takeshi; Shima, Yasuyuki; Ogawa, Naoki; Nagayama, Koki; Yoshida, Takashi; Ohmachi, Tetsuo

    2011-01-01

    Acetoacetyl-CoA thiolase (AT) is an enzyme that catalyses the CoA-dependent thiolytic cleavage of acetoacetyl-CoA to yield 2 molecules of acetyl-CoA, or the reverse condensation reaction. A full-length cDNA clone pBSGT-3, which has homology to known thiolases, was isolated from Dictyostelium cDNA library. Expression of the protein encoded in pBSGT-3 in Escherichia coli, its thiolase enzyme activity, and the amino acid sequence homology search revealed that pBSGT-3 encodes an AT. The recombinant AT (r-thiolase) was expressed in an active form in an E. coli expression system, and purified to homogeneity by selective ammonium sulfate fractionation and two steps of column chromatography. The purified enzyme exhibited a specific activity of 4.70 mU/mg protein. Its N-terminal sequence was (NH2)-Arg-Met-Tyr-Thr-Thr-Ala-Lys-Asn-Leu-Glu-, which corresponds to the sequence from positions 15 to 24 of the amino acid sequence deduced from pBSGT-3 clone. The r-thiolase in the inclusion body expressed highly in E. coli was the precursor form, which is slightly larger than the purified r-thiolase. When incubated with the cell-free extract of Dictyostelium cells, the precursor was converted to the same size to the purified r-thiolase, suggesting that the presequence at the N-terminus is removed by a Dictyostelium processing peptidase. PMID:21209787

  9. Molecular cloning and characterization of a novel RING zinc-finger protein gene up-regulated under in vitro salt stress in cassava.

    PubMed

    dos Reis, Sávio Pinho; Tavares, Liliane de Souza Conceição; Costa, Carinne de Nazaré Monteiro; Brígida, Aílton Borges Santa; de Souza, Cláudia Regina Batista

    2012-06-01

    Cassava (Manihot esculenta Crantz) is one of the world's most important food crops. It is cultivated mainly in developing countries of tropics, since its root is a major source of calories for low-income people due to its high productivity and resistance to many abiotic and biotic factors. A previous study has identified a partial cDNA sequence coding for a putative RING zinc finger in cassava storage root. The RING zinc finger protein is a specialized type of zinc finger protein found in many organisms. Here, we isolated the full-length cDNA sequence coding for M. esculenta RZF (MeRZF) protein by a combination of 5' and 3' RACE assays. BLAST analysis showed that its deduced amino acid sequence has a high level of similarity to plant proteins of RZF family. MeRZF protein contains a signature sequence motif for a RING zinc finger at its C-terminal region. In addition, this protein showed a histidine residue at the fifth coordination site, likely belonging to the RING-H2 subgroup, as confirmed by our phylogenetic analysis. There is also a transmembrane domain in its N-terminal region. Finally, semi-quantitative RT-PCR assays showed that MeRZF expression is increased in detached leaves treated with sodium chloride. Here, we report the first evidence of a RING zinc finger gene of cassava showing potential role in response to salt stress.

  10. Characterization of a Novel Polerovirus Infecting Maize in China

    PubMed Central

    Chen, Sha; Jiang, Guangzhuang; Wu, Jianxiang; Liu, Yong; Qian, Yajuan; Zhou, Xueping

    2016-01-01

    A novel virus, tentatively named Maize Yellow Mosaic Virus (MaYMV), was identified from the field-grown maize plants showing yellow mosaic symptoms on the leaves collected from the Yunnan Province of China by the deep sequencing of small RNAs. The complete 5642 nucleotide (nt)-long genome of the MaYMV shared the highest nucleotide sequence identity (73%) to Maize Yellow Dwarf Virus-RMV. Sequence comparisons and phylogenetic analyses suggested that MaYMV represents a new member of the genus Polerovirus in the family Luteoviridae. Furthermore, the P0 protein encoded by MaYMV was demonstrated to inhibit both local and systemic RNA silencing by co-infiltration assays using transgenic Nicotiana benthamiana line 16c carrying the GFP reporter gene, which further supported the identification of a new polerovirus. The biologically-active cDNA clone of MaYMV was generated by inserting the full-length cDNA of MaYMV into the binary vector pCB301. RT-PCR and Northern blot analyses showed that this clone was systemically infectious upon agro-inoculation into N. benthamiana. Subsequently, 13 different isolates of MaYMV from field-grown maize plants in different geographical locations of Yunnan and Guizhou provinces of China were sequenced. Analyses of their molecular variation indicate that the 3′ half of P3–P5 read-through protein coding region was the most variable, whereas the coat protein- (CP-) and movement protein- (MP-)coding regions were the most conserved. PMID:27136578

  11. Characterization of a Novel Polerovirus Infecting Maize in China.

    PubMed

    Chen, Sha; Jiang, Guangzhuang; Wu, Jianxiang; Liu, Yong; Qian, Yajuan; Zhou, Xueping

    2016-04-28

    A novel virus, tentatively named Maize Yellow Mosaic Virus (MaYMV), was identified from the field-grown maize plants showing yellow mosaic symptoms on the leaves collected from the Yunnan Province of China by the deep sequencing of small RNAs. The complete 5642 nucleotide (nt)-long genome of the MaYMV shared the highest nucleotide sequence identity (73%) to Maize Yellow Dwarf Virus-RMV. Sequence comparisons and phylogenetic analyses suggested that MaYMV represents a new member of the genus Polerovirus in the family Luteoviridae. Furthermore, the P0 protein encoded by MaYMV was demonstrated to inhibit both local and systemic RNA silencing by co-infiltration assays using transgenic Nicotiana benthamiana line 16c carrying the GFP reporter gene, which further supported the identification of a new polerovirus. The biologically-active cDNA clone of MaYMV was generated by inserting the full-length cDNA of MaYMV into the binary vector pCB301. RT-PCR and Northern blot analyses showed that this clone was systemically infectious upon agro-inoculation into N. benthamiana. Subsequently, 13 different isolates of MaYMV from field-grown maize plants in different geographical locations of Yunnan and Guizhou provinces of China were sequenced. Analyses of their molecular variation indicate that the 3' half of P3-P5 read-through protein coding region was the most variable, whereas the coat protein- (CP-) and movement protein- (MP-)coding regions were the most conserved.

  12. Transcriptional dynamics of the developing sweet cherry (Prunus avium L.) fruit: sequencing, annotation and expression profiling of exocarp-associated genes

    PubMed Central

    Alkio, Merianne; Jonas, Uwe; Declercq, Myriam; Van Nocker, Steven; Knoche, Moritz

    2014-01-01

    The exocarp, or skin, of fleshy fruit is a specialized tissue that protects the fruit, attracts seed dispersing fruit eaters, and has large economical relevance for fruit quality. Development of the exocarp involves regulated activities of many genes. This research analyzed global gene expression in the exocarp of developing sweet cherry (Prunus avium L., ‘Regina’), a fruit crop species with little public genomic resources. A catalog of transcript models (contigs) representing expressed genes was constructed from de novo assembled short complementary DNA (cDNA) sequences generated from developing fruit between flowering and maturity at 14 time points. Expression levels in each sample were estimated for 34 695 contigs from numbers of reads mapping to each contig. Contigs were annotated functionally based on BLAST, gene ontology and InterProScan analyses. Coregulated genes were detected using partitional clustering of expression patterns. The results are discussed with emphasis on genes putatively involved in cuticle deposition, cell wall metabolism and sugar transport. The high temporal resolution of the expression patterns presented here reveals finely tuned developmental specialization of individual members of gene families. Moreover, the de novo assembled sweet cherry fruit transcriptome with 7760 full-length protein coding sequences and over 20 000 other, annotated cDNA sequences together with their developmental expression patterns is expected to accelerate molecular research on this important tree fruit crop. PMID:26504533

  13. cDNA cloning and characterization of Type I procollagen alpha1 chain in the skate Raja kenojei.

    PubMed

    Hwang, Jae-Ho; Yokoyama, Yoshihiro; Mizuta, Shoshi; Yoshinaka, Reiji

    2006-05-01

    A full-length cDNA of the Type I procollagen alpha1 [pro-alpha1(I)] chain (4388 bp), coding for 1463 amino acid residues in the total length, was determined by RACE PCR using a cDNA library constructed from 4-week embryo of the skate Raja kenojei. The helical region of the skate pro-alpha1(I) chain consisted of 1014 amino acid residues - the same as other fibrillar collagen alpha chains from higher vertebrates. Comparison on denaturation temperatures of Type I collagens from the skate, rainbow trout (Oncorhynchus mykiss) and rat (Rattus norvegicus) revealed that the number of Gly-Pro-Pro and Gly-Gly in the alpha1(I) chains could be directly related to the thermal stability of the helix. The expression property of the skate pro-alpha1(I) chain mRNA and phylogenetic analysis with other vertebrate pro-alpha1(I) chains suggested that skate pro-alpha1(I) chain could be a precursor form of the skate Type I collagen alpha1 chain. The present study is the first evidence for the primary structure of full-length pro-alpha1(I) chain in an elasmobranch.

  14. Population structure of pigs determined by single nucleotide polymorphisms observed in assembled expressed sequence tags.

    PubMed

    Matsumoto, Toshimi; Okumura, Naohiko; Uenishi, Hirohide; Hayashi, Takeshi; Hamasima, Noriyuki; Awata, Takashi

    2012-01-01

    We have collected more than 190000 porcine expressed sequence tags (ESTs) from full-length complementary DNA (cDNA) libraries and identified more than 2800 single nucleotide polymorphisms (SNPs). In this study, we tentatively chose 222 SNPs observed in assembled ESTs to study pigs of different breeds; 104 were selected by comparing the cDNA sequences of a Meishan pig and samples of three-way cross pigs (Landrace, Large White, and Duroc: LWD), and 118 were selected from LWD samples. To evaluate the genetic variation between the chosen SNPs from pig breeds, we determined the genotypes for 192 pig samples (11 pig groups) from our DNA reference panel with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Of the 222 reference SNPs, 186 were successfully genotyped. A neighbor-joining tree showed that the pig groups were classified into two large clusters, namely, Euro-American and East Asian pig populations. F-statistics and the analysis of molecular variance of Euro-American pig groups revealed that approximately 25% of the genetic variations occurred because of intergroup differences. As the F(IS) values were less than the F(ST) values(,) the clustering, based on the Bayesian inference, implied that there was strong genetic differentiation among pig groups and less divergence within the groups in our samples. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  15. Molecular cloning and characterization of the light-harvesting chlorophyll a/b gene from the pigeon pea (Cajanus cajan).

    PubMed

    Qiao, Guang; Wen, Xiao-Peng; Zhang, Ting

    2015-12-01

    Light-harvesting chlorophyll a/b-binding proteins (LHCB) have been implicated in the stress response. In this study, a gene encoding LHCB in the pigeon pea was cloned and characterized. Based on the sequence of a previously obtained 327 bp Est, a full-length 793 bp cDNA was cloned using the rapid amplification of cDNA ends (RACE) method. It was designated CcLHCB1 and encoded a 262 amino acid protein. The calculated molecular weight of the CcLHCB1 protein was 27.89 kDa, and the theoretical isoelectric point was 5.29. Homology search and sequence multi-alignment demonstrated that the CcLHCB1 protein sequence shared a high identity with LHCB from other plants. Bioinformatics analysis revealed that CcLHCB1 was a hydrophobic protein with three transmembrane domains. By fluorescent quantitative real-time polymerase chain reaction (PCR), CcLHCB1 mRNA transcripts were detectable in different tissues (leaf, stem, and root), with the highest level found in the leaf. The expression of CcLHCB1 mRNA in the leaves was up-regulated by drought stimulation and AM inoculation. Our results provide the basis for a better understanding of the molecular organization of LCHB and might be useful for understanding the interaction between plants and microbes in the future.

  16. Cloning and expression of two 9-cis-epoxycarotenoid dioxygenase genes during fruit development and under stress conditions from Malus.

    PubMed

    Xia, Hui; Wu, Shan; Ma, Fengwang

    2014-10-01

    There is now biochemical and genetic evidence that oxidative cleavage of cis-epoxycarotenoids by 9-cis-epoxycarotenoid dioxygenase (NCED) is the critical step in the regulation of abscisic acid (ABA) synthesis in higher plants. To understand the expression characteristics of NCED during ABA biosynthesis in apple (Malus), two NCED genes cDNA sequence were cloned from Malus prunifolia using RT-PCR techniques, named MpNCED1 and MpNCED2. The two cDNA sequences have full-length open reading frame, encoding a polypeptide of 607 and 614 amino acids, respectively. Sequences analysis showed that the deduced two apple NCED proteins were highly homologous to other NCED proteins from different plant species. Real-time PCR analysis revealed MpNCED2 were expressed continuously during the whole period of apple fruit development with the pattern of "higher-low-highest", while the expression of MpNCED1 clearly declined to a steady low level in the mid-later period of fruit development. Expression of the MpNCED2 increased under the drought stress, high temperature and low temperature strongly and rapidly, whereas expression of the MpNCED1 was detected in response to temperature stress, but did not detected under drought stress. These results revealed that MpNCED1 and MpNCED2 may play different roles in regulation of the ABA biosynthesis in fruit development and various stresses response.

  17. Chalcone synthase genes from milk thistle (Silybum marianum): isolation and expression analysis.

    PubMed

    Sanjari, Sepideh; Shobbar, Zahra Sadat; Ebrahimi, Mohsen; Hasanloo, Tahereh; Sadat-Noori, Seyed-Ahmad; Tirnaz, Soodeh

    2015-12-01

    Silymarin is a flavonoid compound derived from milk thistle (Silybum marianum) seeds which has several pharmacological applications. Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoids; thereby, the identification of CHS encoding genes in milk thistle plant can be of great importance. In the current research, fragments of CHS genes were amplified using degenerate primers based on the conserved parts of Asteraceae CHS genes, and then cloned and sequenced. Analysis of the resultant nucleotide and deduced amino acid sequences led to the identification of two different members of CHS gene family,SmCHS1 and SmCHS2. Third member, full-length cDNA (SmCHS3) was isolated by rapid amplification of cDNA ends (RACE), whose open reading frame contained 1239 bp including exon 1 (190 bp) and exon 2 (1049 bp), encoding 63 and 349 amino acids, respectively. In silico analysis of SmCHS3 sequence contains all the conserved CHS sites and shares high homology with CHS proteins from other plants.Real-time PCR analysis indicated that SmCHS1 and SmCHS3 had the highest transcript level in petals in the early flowering stage and in the stem of five upper leaves, followed by five upper leaves in the mid-flowering stage which are most probably involved in anthocyanin and silymarin biosynthesis.

  18. Towards a transcription map spanning a 250 kb area within the DiGeorge syndrome chromosome region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, W.; Emanuel, B.S.; Siegert, J.

    1994-09-01

    DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS) are congenital anomalies affecting predominantly the thymus, parathyroid glands, heart and craniofacial development. Detection of 22q11.2 deletions in the majority of DGS and VCFS patients implicate 22q11 haploinsufficiency in the etiology of these disorders. The VCFS/DGS critical region lies within the proximal portion of a commonly deleted 1.2 Mb region in 22q11. A 250 kb cosmid contig covering this critical region and containing D22S74 (N25) has been established. From this contig, eleven cosmids with minimal overlap were biotinylated by nick translation, and hybridized to PCR-amplified cDNAs prepared from different tissues. The use ofmore » cDNAs from a variety of tissues increases the likelihood of identifying low abundance transcripts and tissue-specific expressed sequences. A DGCR-specific cDNA sublibrary consisting of 670 cDNA clones has been constructed. To date, 49 cDNA clones from this sub-library have been identified with single copy probes and cosmids containing putative CpG islands. Based on sequence analysis, 25 of the clones contain regions of homology to several cDNAs which map within the proximal contig. LAN is a novel partial cDNA isolated from a fetal brain library probed with one of the cosmids in the proximal contig. Using LAN as a probe, we have found 19 positive clones in the DGCR-specific cDNA sub-library (4 clones from fetal brain, 14 from adult skeletal muscle and one from fetal liver). Some of the LAN-positive clones extend the partial cDNA in the 5{prime} direction and will be useful in assembling a full length transcript. This resource will be used to develop a complete transcriptional map of the critical region in order to identify candidate gene(s) involved in the etiology of DGS/VCFS and to determine the relationship between the transcriptional and physical maps of 22q11.« less

  19. DNA analysis of an uncommon missense mutation in a Gaucher disease patient of Jewish-Polish-Russian descent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choy, F.Y.M.; Wei, C.; Applegarth, D.A.

    1994-06-01

    Gaucher disease is the most frequent lysosomal lipid storage disease. It results from deficient glucocerebrosidase activity and is transmitted as an autosomal recessive trait. Three clinical forms of Gaucher disease have been described: type 1, non-neuronopathic; type 2, acute neuronopathic; and type 3, subacute neuronopathic. We have sequenced the full length cDNA of the glucocerebrosidase gene and identified an uncommon mutation in nucleotide position 1604 (genoma DNA nucleotide position 6683) from a Gaucher disease patient of Jewish-Polish-Russian descent with type 1 Gaucher disease. It is a G{yields}A transition in exon 11 that results in {sup 496}Arg{yields}{sup 496}His of glucocerebrosidase. Thismore » missense mutation is present in the heterozygous form and creates a new cleavage site for the endonuclease HphI. We have developed a simple method to detect the presence of this mutation by using HphI restriction fragment length polymorphism analysis of glucocerebrosidase genomic DNA or cDNA. The mutation in the other Gaucher allele of this patient is an A{yields}G transition at cDNA nucleotide position 1226 which creates an XhoI cleavage site after PCR mismatch amplification. The presence of this mutation was also confirmed by sequence analysis. Based on previous reports that mutation 1226 is present only in type 1 Gaucher disease and the observation that there is no neurological involvement in this patient, we conclude that our patient with the 1226/1604 genotype is diagnosed as having type 1 Gaucher disease. Since it was also postulated that mutation 1226 in the homozygous form will usually result in a good prognosis, we speculate that the orthopedic complications and the unusual presence of glomerulosclerosis in this patient may be attributable to the mutation at nucleotide 1604. This speculation will require a description of more patients with this mutation for confirmation. 32 refs., 5 figs.« less

  20. [Cloning and sequencing of KIR2DL1 framework gene cDNA and identification of a novel allele].

    PubMed

    Sun, Ge; Wang, Chang; Zhen, Jianxin; Zhang, Guobin; Xu, Yunping; Deng, Zhihui

    2016-10-01

    To develop an assay for cDNA cloning and haplotype sequencing of KIR2DL1 framework gene and determine the genotype of an ethnic Han from southern China. Total RNA was isolated from peripheral blood sample, and complementary DNA (cDNA) transcript was synthesized by RT-PCR. The entire coding sequence of the KIR2DL1 framework gene was amplified with a pair of KIR2DL1-specific PCR primers. The PCR products with a length of approximately 1.2 kb were then subjected to cloning and haplotype sequencing. A specific target fragment of the KIR2DL1 framework gene was obtained. Following allele separation, a wild-type KIR2DL1*00302 allele and a novel variant allele, KIR2DL1*031, were identified. Sequence alignment with KIR2DL1 alleles from the IPD-KIR Database showed that the novel allele KIR2DL1*031 has differed from the closest allele KIR2DL1*00302 by a non-synonymous mutation at CDS nt 188A>G (codon 42 GAG>GGG) in exon 4, which has caused an amino acid change Glu42Gly. The sequence of the novel allele KIR2DL1*031 was submitted to GenBank under the accession number KP025960 and to the IPD-KIR Database under the submission number IWS40001982. A name KIR2DL1*031 has been officially assigned by the World Health Organization (WHO) Nomenclature Committee. An assay for cDNA cloning and haplotype sequencing of KIR2DL1 has been established, which has a broad applications in KIR studies at allelic level.

  1. Description and physical localization of the bovine survival of motor neuron gene (SMN).

    PubMed

    Pietrowski, D; Goldammer, T; Meinert, S; Schwerin, M; Förster, M

    1998-01-01

    Proximal spinal muscular atrophy (SMA) is an autosomal recessive disease in humans and other mammals, characterized by degeneration of anterior horn cells of the spinal cord. In humans, the survival of motor neuron gene (SMN) has been recognized as the SMA-determining gene and has been mapped to 5q13. In cattle, SMA is a recurrent, inherited disease that plays an important economic role in breeding programs of Brown Swiss stock. Now we have identified the full- length cDNA sequence of the bovine SMN gene. Molecular analysis and characterization of the sequence documents 85% identity to its human counterpart and three evolutionarily conserved domains in different species. Physical mapping data reveals that bovine SMN is localized to chromosome region 20q12-->q13, supporting the conserved synteny of this chromosomal region between humans and cattle.

  2. Cloning and tissue distribution of rat hear fatty acid binding protein mRNA: identical forms in heart and skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claffey, K.P.; Herrera, V.L.; Brecher, P.

    1987-12-01

    A fatty acid binding protein (FABP) as been identified and characterized in rat heart, but the function and regulation of this protein are unclear. In this study the cDNA for rat heart FABP was cloned from a lambda gt11 library. Sequencing of the cDNA showed an open reading frame coding for a protein with 133 amino acids and a calculated size of 14,776 daltons. Several differences were found between the sequence determined from the cDNA and that reported previously by protein sequencing techniques. Northern blot analysis using rat heart FABP cDNA as a probe established the presence of an abundantmore » mRNA in rat heart about 0.85 kilobases in length. This mRNA was detected, but was not abundant, in fetal heart tissue. Tissue distribution studies showed a similar mRNA species in red, but not white, skeletal muscle. In general, the mRNA tissue distribution was similar to that of the protein detected by Western immunoblot analysis, suggesting that heart FABP expression may be regulated at the transcriptional level. S1 nuclease mapping studies confirmed that the mRNA hybridized to rat heart FABP cDNA was identical in heart and red skeletal muscle throughout the entire open reading frame. The structural differences between heart FABP and other members of this multigene family may be related to the functional requirements of oxidative muscle for fatty acids as a fuel source.« less

  3. Identification and characterization of NADPH-dependent cytochrome P450 reductase gene and cytochrome b₅ gene from Plutella xylostella: possible involvement in resistance to beta-cypermethrin.

    PubMed

    Chen, Xi'en; Zhang, Yalin

    2015-03-10

    NADPH-cytochrome P450 reductase (CPR) and cytochrome b5 (b5) are essential for cytochrome P450 mediated biological reactions. CPR and b5 in several insects have been found to be associated with insecticide resistance. However, CPR and b5 in the diamondback moth (DBM), Plutella xylostella, are not characterized and their roles remain undefined. A full-length cDNA of CPR encoding 678 amino acids and a full-length cDNA of b5 encoding 127 amino acids were cloned from DBM. Their deduced amino acid sequences shared high identities with those of other insects and showed characteristics of classical CPRs and b5s, respectively. The mRNAs of both genes were detectable in all developmental stages with the highest expression levels occurring in the 4th instar larvae. Tissue-specific expression analysis showed that their transcripts were most abundant in gut. Transcripts of CPR and b5 in the beta-cypermethrin resistant DBM strain were 13.2- and 2.84-fold higher than those in the beta-cypermethrin susceptible strain, respectively. The expression levels of CPR and b5 were enhanced by beta-cypermethrin at the concentration of 12 mg L(-1) (~LC10). The results indicate that CPR and b5 may play essential roles in the P450 mediated resistance of DBM to beta-cypermethrin or even other insecticides. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A new 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene encoding the committed-step enzyme in the MEP pathway from Rauvolfia verticillata.

    PubMed

    Liao, Zhihua; Chen, Rong; Chen, Min; Yang, Chunxian; Wang, Qiang; Gong, Yifu

    2007-01-01

    1-Deoxy-D-xylulose 5-phosphate (DXP) reductoisomerase (DXR; EC 1.1.1.267) catalyzes a committed step of the methylerythritol phosphate (MEP) pathway for the biosynthesis of pharmaceutical terpenoid indole alkaloid (TIA) precursors. The full-length cDNA sequence was cloned and characterized from a TIA-producing species, Rauvolfia verticillata, using rapid amplification of cDNA ends (RACE) technique. The new cDNA was named as RvDXR and submitted to GenBank to be assigned with an accession number (DQ779286). The full-length cDNA of RvDXR was 1804 bp containing a 1425 bp open reading frame (ORF) encoding a polypeptide of 474 amino acids with a calculated molecular mass of 51.3 kDa and an isoelectric point of 5.88. Comparative and bioinformatic analyses revealed that RvDXR showed extensive homology with DXRs from other plant species and contained a conserved transit peptide for plastids, an extended Pro-rich region and a highly conserved NADPH-binding motif in its N-terminal region owned by all plant DXRs. The phylogenetic analysis revealed that DXRs had two groups including a plant and bacterial group; RvDXR belonged to angiosperm DXRs that were obtained from Synechocystis through gene transfer according to the phylogenetic analysis. The structural modeling of RvDXR showed that RvDXR had the typical V-shaped structure of DXR proteins. The tissue expression pattern analysis indicated that RvDXR expressed in all tissues including roots, stems, leaves, fruits and followers but at different levels. The lowest transcription level was observed in followers and the highest transcription was found in fruits of R. verticillata; the transcription level of RvDXR was a little higher in roots and stems than in leaves. The cloning and characterization of RvDXR will be helpful to understand more about the role of DXR involved in R. verticillata TIA biosynthesis at the molecular level and provides a candidate gene for metabolic engineering of the TIAs pathway in R. verticillata.

  5. Identification, Characterization and Full-Length Sequence Analysis of a Novel Polerovirus Associated with Wheat Leaf Yellowing Disease

    PubMed Central

    Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng

    2017-01-01

    To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae. Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae. Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat. PMID:28932215

  6. Identification, Characterization and Full-Length Sequence Analysis of a Novel Polerovirus Associated with Wheat Leaf Yellowing Disease.

    PubMed

    Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng

    2017-01-01

    To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae . Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae . Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat.

  7. Transcript profiles of mitochondrial and cytoplasmic manganese superoxide dismutases in Exopalaemon carinicauda under ammonia stress

    NASA Astrophysics Data System (ADS)

    Ren, Hai; Li, Jian; Li, Jitao; Liu, Ping; Liang, Zhongxiu; Wu, Jianhua

    2015-05-01

    Superoxide dismutase (SOD) is one of the most important antioxidant defense enzymes, and is considered as the first line against oxidative stress. In this study, we cloned a mitochondrial manganese (Mn) SOD ( mMnSOD) cDNA from the ridgetail white prawn Exopalaemon carinicauda by using rapid amplification of cDNA ends (RACE) methods. The full-length cDNA for mMnSOD was 1 014-bp long, containing a 5'-untranslated region (UTR) of 37-bp, a 3'-UTR of 321-bp with a poly (A) tail, and included a 657-bp open reading frame encoding a protein of 218 amino acids with a 16-amino-acid signal peptide. The protein had a calculated molecular weight of 23.87 kDa and a theoretical isoelectric point of 6.75. The mMnSOD sequence included two putative N-glycosylation sites (NHT and NLS), the MnSOD signature sequence 180DVWEHAYY187, and four putative Mn binding sites (H48, H96, D180, and H184). Sequence comparison showed that the mMnSOD deduced amino acid sequence of E. carinicauda shared 97%, 95%, 89%, 84%, 82%, 72%, and 69% identity with that of Macrobrachium rosenbergii, Macrobrachium nipponense, Fenneropeneaus chinensis, Callinectes sapidus, Perisesarma bidens, Danio rerio, and Homo sapiens, resectively. Quantitative real-time RT-PCR analysis showed that mMnSOD transcripts were present in all E. carinicauda tissues examined, with the highest levels in the hepatopancreas. During an ammonia stress treatment, the transcript levels of mMnSOD and cMnSOD were up-regulated at 12 h in hemocytes and at 24 h in the hepatopancreas. As the duration of the ammonia stress treatment extended to 72 h, the transcript levels of mMnSOD and cMnSOD significantly decreased both in hemocytes and hepatopancreas. These findings indicate that the SOD system is induced to respond to acute ammonia stress, and may be involved in environmental stress responses in E. carinicauda.

  8. Purification, cDNA cloning, and regulation of lysophospholipase from rat liver.

    PubMed

    Sugimoto, H; Hayashi, H; Yamashita, S

    1996-03-29

    A lysophospholipase was purified 506-fold from rat liver supernatant. The preparation gave a single 24-kDa protein band on SDS-polyacrylamide gel electrophoresis. The enzyme hydrolyzed lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylinositol, lysophosphatidylserine, and 1-oleoyl-2-acetyl-sn-glycero-3-phosphocholine at pH 6-8. The purified enzyme was used for the preparation of antibody and peptide sequencing. A cDNA clone was isolated by screening a rat liver lambda gt11 cDNA library with the antibody, followed by the selection of further extended clones from a lambda gt10 library. The isolated cDNA was 2,362 base pairs in length and contained an open reading frame encoding 230 amino acids with a Mr of 24,708. The peptide sequences determined were found in the reading frame. When the cDNA was expressed in Escherichia coli cells as the beta-galactosidase fusion, lysophosphatidylcholine-hydrolyzing activity was markedly increased. The deduced amino acid sequence showed significant similarity to Pseudomonas fluorescence esterase A and Spirulina platensis esterase. The three sequences contained the GXSXG consensus at similar positions. The transcript was found in various tissues with the following order of abundance: spleen, heart, kidney, brain, lung, stomach, and testis = liver. In contrast, the enzyme protein was abundant in the following order: testis, liver, kidney, heart, stomach, lung, brain, and spleen. Thus the mRNA abundance disagreed with the level of the enzyme protein in liver, testis, and spleen. When HL-60 cells were induced to differentiate into granulocytes with dimethyl sulfoxide, the 24-kDa lysophospholipase protein increased significantly, but the mRNA abundance remained essentially unchanged. Thus a posttranscriptional control mechanism is present for the regulation of 24-kDa lysophospholipase.

  9. Characterisation of single domain ATP-binding cassette protien homologues of Theileria parva.

    PubMed

    Kibe, M K; Macklin, M; Gobright, E; Bishop, R; Urakawa, T; ole-MoiYoi, O K

    2001-09-01

    Two distinct genes encoding single domain, ATP-binding cassette transport protein homologues of Theileria parva were cloned and sequenced. Neither of the genes is tandemly duplicated. One gene, TpABC1, encodes a predicted protein of 593 amino acids with an N-terminal hydrophobic domain containing six potential membrane-spanning segments. A single discontinuous ATP-binding element was located in the C-terminal region of TpABC1. The second gene, TpABC2, also contains a single C-terminal ATP-binding motif. Copies of TpABC2 were present at four loci in the T. parva genome on three different chromosomes. TpABC1 exhibited allelic polymorphism between stocks of the parasite. Comparison of cDNA and genomic sequences revealed that TpABC1 contained seven short introns, between 29 and 84 bp in length. The full-length TpABC1 protein was expressed in insect cells using the baculovirus system. Application of antibodies raised against the recombinant antigen to western blots of T. parva piroplasm lysates detected an 85 kDa protein in this life-cycle stage.

  10. Localization of the human tripeptidyl peptidase II gene (TPP2) to 13q32-q33 by nonradioactive in situ hybridization and somatic cell hybrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinsson, T.; Vujic, M.; Tomkinson, B.

    1993-08-01

    The authors have assigned the human tripeptidyl peptidase II (TPP2) gene to chromosome region 13q32-q33 using two different methods. First, a full-length TPP2 cDNA was used as a probe on Southern blots of DNA from a panel of human/rodent somatic cell hybrids. The TPP2 sequences were found to segregate with the human chromosome 13. Second, fluorescence in situ hybridization analysis was performed with the same probe. This analysis supported the chromosome 13 localization and further refined it to region 13q32-q33. 20 refs., 2 figs.

  11. Cloning of three heat shock protein genes (HSP70, HSP90α and HSP90β) and their expressions in response to thermal stress in loach (Misgurnus anguillicaudatus) fed with different levels of vitamin C.

    PubMed

    Yan, Jie; Liang, Xiao; Zhang, Yin; Li, Yang; Cao, Xiaojuan; Gao, Jian

    2017-07-01

    Heat shock protein 70 (HSP70) and 90 (HSP90) are the most broadly studied proteins in HSP families. They play key roles in cells as molecular chaperones, in response to stress conditions such as thermal stress. In this study, full-length cDNA sequences of HSP70, HSP90α and HSP90β from loach Misgurnus anguillicaudatus were cloned. The full-length cDNA of HSP70 in loach was 2332bp encoding 644 amino acids, while HSP90α and HSP90β were 2586bp and 2678bp in length, encoding 729 and 727 amino acids, respectively. The deduced amino acid sequences of HSP70 in loach shared the highest identity with those of Megalobrama amblycephala and Cyprinus carpio. The deduced amino acid sequences of HSP90α and HSP90β in loach both shared the highest identity with those of M. amblycephala. Their mRNA tissue expression results showed that the maximum expressions of HSP70, HSP90α and HSP90β were respectively present in the intestine, brain and kidney of loach. Quantitative real-time PCR was employed to analyze the temporal expressions of HSP70, HSP90α and HSP90β in livers of loaches fed with different levels of vitamin C under thermal stress. Expression levels of the three HSP genes in loach fed the diet without vitamin C supplemented at 0 h of thermal stress were significantly lower than those at 2 h, 6 h, 12 h and 24 h of thermal stress. It indicated that expressions of the three HSP genes were sensitive to thermal stress in loach. The three HSP genes in loaches fed with 1000 mg/kg vitamin C expressed significantly lower than other vitamin C groups at many time points of thermal stress, suggesting 1000 mg/kg dietary vitamin C might decrease the body damages caused by the thermal stress. This study will be of value for further studies into thermal stress tolerance in loach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. [Cloning and bioinformatic analysis and expression analysis of beta-glucuronidase in Scutellaria baicalensis].

    PubMed

    Guo, Shuang-shuang; Cheng, Lin; Yang, Li-min; Han, Mei

    2015-11-01

    The β-Glucuronidase gene (sbGUS) cDNA firstly from Scutellari abaicalensis leaf was cloned by RT-PCR, with GenBank accession number KR364726. The full length cDNA of sbGUS was 1 584 bp with an open reading frame (ORF), encoding an unstable protein with 527 amino acids. The bioinformatic analysis showed that the sbGUS encoding protein had isoelectric point (pI) of 5.55 and a calculated molecular weight about 58.724 8 kDa, with a transmembrane regions and signal peptide, had conserved domains of glycoside hydrolase super family and unintegrated trans-glycosidase catalytic structure. In the secondary structure, the percentage of alpha helix, extended strand, β-extended and random coil were 25.62%, 28.84%, 13.28% and 32.26%, respectively. The homologous analysis indicated the nucleotide sequence 98.93% similarity and the amino acid sequence 98.29% similarity with S. baicalensis (BAA97804.1), in the nine positions were different. The expression level of sGUS was the highest in root based on a real-time PCR analysis, followed by flower and stem, and the lowest was in stem. The results provide a foundation for exploring the molecular function of sbGUS involved in baicalcin biosynthesis based on synthetic biology approach in S. baicalensis plants.

  13. TsAg5, a Taenia solium cysticercus protein with a marginal trypsin-like activity in the diagnosis of human neurocysticercosis.

    PubMed

    Rueda, Analiz; Sifuentes, Cecilia; Gilman, Robert H; Gutiérrez, Andrés H; Piña, Ruby; Chile, Nancy; Carrasco, Sebastián; Larson, Sandra; Mayta, Holger; Verástegui, Manuela; Rodriguez, Silvia; Gutiérrez-Correa, Marcel; García, Héctor H; Sheen, Patricia; Zimic, Mirko

    2011-12-01

    Neurocysticercosis is an endemic parasitic disease caused by Taenia solium larva. Although the mechanism of infection is not completely understood, it is likely driven by proteolytic activity that degrades the intestinal wall to facilitate oncosphere penetration and further infection. We analyzed the publicly available T. solium EST/DNA library and identified two contigs comprising a full-length cDNA fragment very similar to Echinococcus granulosus Ag5 protein. The T. solium cDNA sequence included a proteolytic trypsin-like-domain in the C-terminal region, and a thrombospondin type-1 adherence-domain in the N-terminal region. Both the trypsin-like and adherence domains were expressed independently as recombinant proteins in bacterial systems. TsAg5 showed marginal trypsin-like activity and high sequence similarity to Ag5. The purified antigens were tested in a Western immunoblot assay to diagnose human neurocysticercosis. The sensitivity of the trypsin-like-domain was 96.36% in patients infected with extraparenchymal cysts, 75.44% in patients infected with multiple cysts, and 39.62% in patients with a single cyst. Specificity was 76.70%. The thrombospondin type-1 adherence-domain was not specific for neurocysticercosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Molecular Cloning and Optimization for High Level Expression of Cold-Adapted Serine Protease from Antarctic Yeast Glaciozyma antarctica PI12

    PubMed Central

    Ahmad Mazian, Mu'adz; Salleh, Abu Bakar; Basri, Mahiran; Rahman, Raja Noor Zaliha Raja Abd.

    2014-01-01

    Psychrophilic basidiomycete yeast, Glaciozyma antarctica strain PI12, was shown to be a protease-producer. Isolation of the PI12 protease gene from genomic and mRNA sequences allowed determination of 19 exons and 18 introns. Full-length cDNA of PI12 protease gene was amplified by rapid amplification of cDNA ends (RACE) strategy with an open reading frame (ORF) of 2892 bp, coded for 963 amino acids. PI12 protease showed low homology with the subtilisin-like protease from fungus Rhodosporidium toruloides (42% identity) and no homology to other psychrophilic proteases. The gene encoding mature PI12 protease was cloned into Pichia pastoris expression vector, pPIC9, and positioned under the induction of methanol-alcohol oxidase (AOX) promoter. The recombinant PI12 protease was efficiently secreted into the culture medium driven by the Saccharomyces cerevisiae α-factor signal sequence. The highest protease production (28.3 U/ml) was obtained from P. pastoris GS115 host (GpPro2) at 20°C after 72 hours of postinduction time with 0.5% (v/v) of methanol inducer. The expressed protein was detected by SDS-PAGE and activity staining with a molecular weight of 99 kDa. PMID:25093119

  15. Cloning and characterization of murine fanconi anemia group A gene: Fanca protein is expressed in lymphoid tissues, testis, and ovary.

    PubMed

    van de Vrugt, H J; Cheng, N C; de Vries, Y; Rooimans, M A; de Groot, J; Scheper, R J; Zhi, Y; Hoatlin, M E; Joenje, H; Arwert, F

    2000-04-01

    Fanconi anemia (FA) is an autosomal recessive disorder in humans characterized by bone marrow failure, cancer predisposition, and cellular hypersensitivity to cross-linking agents such as mitomycin C and diepoxybutane. FA genes display a caretaker function essential for maintenance of genomic integrity. We have cloned the murine homolog of FANCA, the gene mutated in the major FA complementation group (FA-A). The full-length mouse Fanca cDNA consists of 4503 bp and encodes a protein with a predicted molecular weight of 161 kDa. The deduced Fanca mouse protein shares 81% amino acid sequence similarity and 66% identity with the human protein. The nuclear localization signal and partial leucine zipper consensus motifs found in the human FANCA protein were also present in the murine homolog. In spite of the species difference, the murine Fanca cDNA was capable of correcting the cross-linker sensitive phenotype of human FA-A cells, suggesting functional conservation. Based on Northern as well as Western blots, Fanca was mainly expressed in lymphoid tissues, testis, and ovary. This expression pattern correlates with some of the clinical symptoms observed in FA patients. The availability of the murine Fanca cDNA now allows the gene to be studied in experimental mouse models.

  16. Stress and transcriptional regulation of tick ferritin HC.

    PubMed

    Mulenga, A; Simser, J A; Macaluso, K R; Azad, A F

    2004-08-01

    We previously identified a partial Dermacentor variabilis cDNA encoding ferritin HC (HC) subunit homolog (DVFER) that was differentially upregulated in Rickettsia montanensis infected ticks (Mulenga et al., 2003a). We have used rapid amplification of cDNA ends to clone full-length DVFER cDNA and its apparent ortholog from the wood tick, D. andersoni (DAFER), both of which show high sequence similarity to vertebrate than insect ferritin. Both DVFER and DAFER contain the stem-loop structure of a putative iron responsive element in the 5' untranslated region (nucleotide positions, 16-42) and the feroxidase centre loop typical for vertebrate ferritin HC subunits. Quantitative Western and Northern blotting analyses of protein and RNA from unfed and partially fed whole tick as well as dissected tick tissues demonstrated that DVFER is constitutively and ubiquitously expressed. Based on densitometric analysis of detected protein and mRNA bands, DVFER is predominantly expressed in the midgut, and to a lesser extent in the salivary glands, ovary and fatbody. Sham treatment (mechanical injury) and Escherichia coli challenge of D. variabilis ticks stimulated statistically significant (approximately 1.5- and approximately 3.0-fold, respectively) increases in DVFER mRNA abundance over time point matched naive control ticks. These data suggest that DVFER mRNA is nonspecifically up regulated in response to mechanical injury or bacterial infection induced stress.

  17. Purification and characterization of an antifungal protein, C-FKBP, from Chinese cabbage.

    PubMed

    Park, Seong-Cheol; Lee, Jung Ro; Shin, Sun-Oh; Jung, Ji Hyun; Lee, Young Mee; Son, Hyosuk; Park, Yoonkyung; Lee, Sang Yeol; Hahm, Kyung-Soo

    2007-06-27

    An antifungal protein was isolated from Chinese cabbage (Brassica campestris L. ssp. pekinensis) by buffer-soluble extraction and two chromatographic procedures. The results of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry revealed that the isolated Chinese cabbage protein was identical to human FK506-binding protein (FKBP). A cDNA encoding FKBP was isolated from a Chinese cabbage leaf cDNA library and named C-FKBP. The open reading frame of the gene encoded a 154-amino acid polypeptide. The amino acid sequence of C-FKBP exhibits striking degrees of identity with the corresponding mouse (61%), human (60%), and yeast (56%) proteins. Genomic Southern blot analyses using the full-length C-FKBP cDNA probe revealed a multigene family in the Chinese cabbage genome. The C-FKBP mRNA was highly expressed in vegetative tissues. We also analyzed the antifungal and peptidyl-prolyl cis-trans isomerase activity of recombinant C-FKBP protein expressed in Escherichia coli. This protein inhibited pathogenic fungal strains, including Candida albicans, Botrytis cinerea, Rhizoctonia solani, and Trichoderma viride, whereas it exhibited no activity against E. coli and Staphylococcus aureus. These results suggest that recombinant C-FKBP is an excellent candidate as a lead compound for the development of antifungal agents.

  18. [Construction and expression of recombinant lentiviral vectors of AKT2,PDK1 and BAD].

    PubMed

    Zhu, Jing; Chen, Bo-Jiang; Huang, Na; Li, Wei-Min

    2014-03-01

    To construct human protein kinase B (ATK2), phosphoinositide-dependent kinase 1 (PDK1) and bcl-2-associated death protein (BAD) lentiviral expression vector, and to determine their expressions in 293T cells. Total RNA was extracted from lung cancer tissues. The full-length coding regions of human ATK2, BAD and PDK1 cDNA were amplified via RT-PCR using specific primers, subcloned into PGEM-Teasy and then sequenced for confirmation. The full-length coding sequence was cut out with a specific restriction enzyme digest and subclone into pCDF1-MCS2-EF1-copGFP. The plasmids were transfected into 293T cells using the calcium phosphate method. The over expression of AKT2, BAD and PDK1 were detected by Western blot. AKT2, PDK1 and BAD were subcloned into pCDF1-MCS2-EF1-copGFP, with an efficiency of transfection of 100%, 95%, and 90% respectively. The virus titers were 6.7 x 10(6) PFU/mL in the supernatant. After infection, the proteins of AKT2, PDK1 and BAD were detected by Western blot. The lentivial vector pCDF1-MCS2-EF1-copGFP containing AKT2, BAD and PDK1 were successfully constructed and expressed in 293T cells.

  19. Single-molecule, full-length transcript sequencing provides insight into the extreme metabolism of the ruby-throated hummingbird Archilochus colubris

    PubMed Central

    Workman, Rachael E; Myrka, Alexander M; Wong, G William; Tseng, Elizabeth

    2018-01-01

    Abstract Background Hummingbirds oxidize ingested nectar sugars directly to fuel foraging but cannot sustain this fuel use during fasting periods, such as during the night or during long-distance migratory flights. Instead, fasting hummingbirds switch to oxidizing stored lipids that are derived from ingested sugars. The hummingbird liver plays a key role in moderating energy homeostasis and this remarkable capacity for fuel switching. Additionally, liver is the principle location of de novo lipogenesis, which can occur at exceptionally high rates, such as during premigratory fattening. Yet understanding how this tissue and whole organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. Findings We generated a de novo transcriptome of the hummingbird liver using PacBio full-length cDNA sequencing (Iso-Seq), yielding 8.6Gb of sequencing data, or 2.6M reads from 4 different size fractions. We analyzed data using the SMRTAnalysis v3.1 Iso-Seq pipeline, then clustered isoforms into gene families to generate de novo gene contigs using Cogent. We performed orthology analysis to identify closely related sequences between our transcriptome and other avian and human gene sets. Finally, we closely examined homology of critical lipid metabolism genes between our transcriptome data and avian and human genomes. Conclusions We confirmed high levels of sequence divergence within hummingbird lipogenic enzymes, suggesting a high probability of adaptive divergent function in the hepatic lipogenic pathways. Our results leverage cutting-edge technology and a novel bioinformatics pipeline to provide a first direct look at the transcriptome of this incredible organism. PMID:29618047

  20. [Characterization and transcriptional analysis of a new CC chemokine associated with innate imimune response in cobia (Rachycentron canadum)].

    PubMed

    Su, Y; Feng, J; Sun, X; Guo, Z; Xu, L; Jiang, J

    2013-01-01

    Chemokines are small, secreted cytokine peptides, known principally for their ability to induce migration and activation of leukocyte populations under both pathological and physiological conditions. On the basis of previously constructed express sequence tags (ESTs) of the head kidney and spleen cDNA library of the perciform marine fish Rachycentron canadum (common name cobia). We used bi-directional rapid amplification of cDNA ends (RACE) and obtained a full-length cDNA of a new CC chemokine gene (designated RcCC3). The RcCC3 putative peptide exhibits sequence similarity to the group of CCL19/21/25 CC chemokines. The reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used in transcript expression studies of RcCC3. We examined the constitutive expression of the transcripts in 12 tissues of non-stressed cobia; RcCC3 transcripts were detected in all tissues examined, with the highest expression in gill and liver, following by head kidney, kidney, spleen, skin, intestine, muscle, stomach, heart, blood and brain. Transcript expression of RcCC3 was examined in immune-related organs, including head kidney, spleen and liver, following intraperitoneal injection of phosphate-buffered saline control, polyriboinosinic polyribocytidylic acid (poly(I:C)) and formalin-killed Vibrio carchariae (bacterial vaccine). The transcripts in these tissues were quickly up-regulated by the injection of poly(I:C) and bacterial vaccine at early time points, although with different expression profiles. These results indicate RcCC3 represents an important component of innate immunity in cobia.

  1. Characterization and phylogenetic analysis of lectin gene cDNA isolated from sea cucumber ( Apostichopus japonicus) body wall

    NASA Astrophysics Data System (ADS)

    Xue, Zhuang; Li, Hui; Liu, Yang; Zhou, Wei; Sun, Jing; Wang, Xiuli

    2017-12-01

    As a `living fossil' of species origin and `rich treasure' of food and nutrition development, sea cucumber has received a lot of attentions from researchers. The cDNA library construction and EST sequencing of blood had been conducted previously in our lab. The bioinformatic analysis provided a gene fragment which is highly homologous with the genes of lectin family, named AjL ( Apostichopus japonicus lectin). To characterize and determine the phylogeny of AjL genes in early evolution, we isolated a full-length cDNA of lectin gene from the body wall of A. japonicus. The open reading frame of this gene contained 489 bp and encoded a 163 amino acids secretory protein being homologous to lectins of mammals and aquatic organisms. The deduced protein included a lectin-like domain. SDS-PAGE analysis showed that AjL migrated as a specific band (about 36.09 kDa under reducing), and agglutinated against rabbit red blood cells. AjL was similar to chain A of CEL-IV in space structure. We predicted that AjL may play the same role of CEL-IV. Our results suggested that more than one lectin gene functioned in sea cucumber and most of other species, which was fused by uncertain sequences during the evolution and encoded different proteins with diverse functions. Our findings provided the insights into the function and characteristics of lectin genes invertebrates. The results will also be helpful for the identification and structural, functional, and evolutionary analyses of lectin genes.

  2. Sequence characterization and spatiotemporal expression patterns of PbS26-RNase gene in Chinese White Pear (Pyrus bretschneideri).

    PubMed

    Zhang, Lin; Jia, Baoguang; Zou, Feng; Tan, Xiaofeng; Liu, Min; Song, Zhibo; Zeng, Yanling; Jiang, Nan; Yuan, Deyi

    2014-01-01

    Many flowering plants exhibit an important intraspecific reproductive barrier phenomenon, that is, self-incompatibility (SI), in which S-RNase genes play a significant role. To clarify the specific function of S-RNase genes in Chinese pears, the full length cDNA of PbS 26 -RNase was isolated by rapid amplification of cDNA ends (RACE) technology from Chinese white pear (Pyrus bretschneideri) cultivar "Hongpisu." The cDNA sequence for PbS 26 -RNase was deposited in GenBank under accession number EU081888. At the amino acid level, the PbS 26 -RNase displayed the highest similarity (96.9%) with PcSa-RNase of P. communis, and only seven amino acid differences were present in the two S-RNases. Phylogenetic analysis of rosaceous S-RNases indicated that the PbS 26 -RNase clustered with maloideous S-RNases, forming a subfamily-specific not a species-specific group. The PbS 26 -RNase gene was specifically expressed in the style but not other tissues/organs. The expression level of the PbS 26 -RNase gene rapidly increased at bell balloon stage (BBS), and then it dropped after pollination. However, the abundance of the PbS 26 -RNase gene transcript in the style was greater after cross-pollination than after self-pollination. In addition, a method for rapidly detecting the PbS 26 -RNase gene was developed via allele-specific primers design. The present study could provide a scientific basis for fully clarifying the mechanism of pear SI at the molecular level.

  3. Sequence Characterization and Spatiotemporal Expression Patterns of PbS 26 -RNase Gene in Chinese White Pear (Pyrus bretschneideri)

    PubMed Central

    Jia, Baoguang; Liu, Min; Song, Zhibo; Zeng, Yanling; Jiang, Nan; Yuan, Deyi

    2014-01-01

    Many flowering plants exhibit an important intraspecific reproductive barrier phenomenon, that is, self-incompatibility (SI), in which S-RNase genes play a significant role. To clarify the specific function of S-RNase genes in Chinese pears, the full length cDNA of PbS 26 -RNase was isolated by rapid amplification of cDNA ends (RACE) technology from Chinese white pear (Pyrus bretschneideri) cultivar “Hongpisu.” The cDNA sequence for PbS 26 -RNase was deposited in GenBank under accession number EU081888. At the amino acid level, the PbS 26 -RNase displayed the highest similarity (96.9%) with PcSa-RNase of P. communis, and only seven amino acid differences were present in the two S-RNases. Phylogenetic analysis of rosaceous S-RNases indicated that the PbS 26 -RNase clustered with maloideous S-RNases, forming a subfamily-specific not a species-specific group. The PbS 26 -RNase gene was specifically expressed in the style but not other tissues/organs. The expression level of the PbS 26 -RNase gene rapidly increased at bell balloon stage (BBS), and then it dropped after pollination. However, the abundance of the PbS 26 -RNase gene transcript in the style was greater after cross-pollination than after self-pollination. In addition, a method for rapidly detecting the PbS 26 -RNase gene was developed via allele-specific primers design. The present study could provide a scientific basis for fully clarifying the mechanism of pear SI at the molecular level. PMID:24737959

  4. In-vitro and in-vivo phenotype of type Asia 1 foot-and-mouth disease viruses utilizing two non-RGD receptor recognition sites

    PubMed Central

    2011-01-01

    Background Foot-and-mouth disease virus (FMDV) uses a highly conserved Arg-Gly-Asp (RGD) triplet for attachment to host cells and this motif is believed to be essential for virus viability. Previous sequence analyses of the 1D-encoding region of an FMDV field isolate (Asia1/JS/CHA/05) and its two derivatives indicated that two viruses, which contained an Arg-Asp-Asp (RDD) or an Arg-Ser-Asp (RSD) triplet instead of the RGD integrin recognition motif, were generated serendipitously upon short-term evolution of field isolate in different biological environments. To examine the influence of single amino acid substitutions in the receptor binding site of the RDD-containing FMD viral genome on virus viability and the ability of non-RGD FMDVs to cause disease in susceptible animals, we constructed an RDD-containing FMDV full-length cDNA clone and derived mutant molecules with RGD or RSD receptor recognition motifs. Following transfection of BSR cells with the full-length genome plasmids, the genetically engineered viruses were examined for their infectious potential in cell culture and susceptible animals. Results Amino acid sequence analysis of the 1D-coding region of different derivatives derived from the Asia1/JS/CHA/05 field isolate revealed that the RDD mutants became dominant or achieved population equilibrium with coexistence of the RGD and RSD subpopulations at an early phase of type Asia1 FMDV quasispecies evolution. Furthermore, the RDD and RSD sequences remained genetically stable for at least 20 passages. Using reverse genetics, the RDD-, RSD-, and RGD-containing FMD viruses were rescued from full-length cDNA clones, and single amino acid substitution in RDD-containing FMD viral genome did not affect virus viability. The genetically engineered viruses replicated stably in BHK-21 cells and had similar growth properties to the parental virus. The RDD parental virus and two non-RGD recombinant viruses were virulent to pigs and bovines that developed typical clinical disease and viremia. Conclusions FMDV quasispecies evolving in a different biological environment gained the capability of selecting different receptor recognition site. The RDD-containing FMD viral genome can accommodate substitutions in the receptor binding site without additional changes in the capsid. The viruses expressing non-RGD receptor binding sites can replicate stably in vitro and produce typical FMD clinical disease in susceptible animals. PMID:21711567

  5. The primary structure of L37--a rat ribosomal protein with a zinc finger-like motif.

    PubMed

    Chan, Y L; Paz, V; Olvera, J; Wool, I G

    1993-04-30

    The amino acid sequence of the rat 60S ribosomal subunit protein L37 was deduced from the sequence of nucleotides in a recombinant cDNA. Ribosomal protein L37 has 96 amino acids, the NH2-terminal methionine is removed after translation of the mRNA, and has a molecular weight of 10,939. Ribosomal protein L37 has a single zinc finger-like motif of the C2-C2 type. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 13 or 14 copies of the L37 gene. The mRNA for the protein is about 500 nucleotides in length. Rat L37 is related to Saccharomyces cerevisiae ribosomal protein YL35 and to Caenorhabditis elegans L37. We have identified in the data base a DNA sequence that encodes the chicken homolog of rat L37.

  6. Role of crustacean hyperglycemic hormone (CHH) in the environmental stressor-exposed intertidal copepod Tigriopus japonicus.

    PubMed

    Kim, Bo-Mi; Jeong, Chang-Bum; Han, Jeonghoon; Kim, Il-Chan; Rhee, Jae-Sung; Lee, Jae-Seong

    2013-09-01

    To identify and characterize CHH (TJ-CHH) gene in the copepod Tigriopus japonicus, we analyzed the full-length cDNA sequence, genomic structure, and promoter region. The full-length TJ-CHH cDNA was 716 bp in length, encoding 136 amino acid residues. The deduced amino acid sequences of TJ-CHH showed a high similarity of the CHH mature domain to other crustaceans. Six conserved cysteine residues and five conserved structural motifs in the CHH mature peptide domain were also observed. The genomic structure of the TJ-CHH gene contained three exons and two introns in its open reading frame (ORF), and several transcriptional elements were detected in the promoter region of the TJ-CHH gene. To investigate transcriptional change of TJ-CHH under environmental stress, T. japonicus were exposed to heat treatment, UV-B radiation, heavy metals, and water-accommodated fractions (WAFs) of Iranian crude oil. Upon heat stress, TJ-CHH transcripts were elevated at 30 °C and 35 °C for 96 h in a time-course experiment. UV-B radiation led to a decreased pattern of the TJ-CHH transcript 48 h and more after radiation (12 kJ/m(2)). After exposure of a fixed dose (12 kJ/m(2)) in a time-course experiment, TJ-CHH transcript was down-regulated in time-dependent manner with a lowest value at 12h. However, the TJ-CHH transcript level was increased in response to five heavy metal exposures for 96 h. Also, the level of the TJ-CHH transcript was significantly up-regulated at 20% of WAFs after exposure to WAFs for 48 h and then remarkably reduced in a dose-dependent manner. These findings suggest that the enhanced TJ-CHH transcript level is associated with a cellular stress response of the TJ-CHH gene as shown in decapod crustaceans. This study is also helpful for a better understanding of the detrimental effects of environmental changes on the CHH-triggered copepod metabolism. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt- and dehydration-tolerance in tobacco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xian-Wen, E-mail: xianwenli01@sina.com; College of Life Science, Xinyang Normal University, Xinyang 464000; Key Laboratory of Horticultural Plant Biology of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070

    In present research, the full-length cDNA and the genomic sequence of a novel cold-regulated gene, CsCOR1, were isolated from Camellia sinensis L. The deduced protein CsCOR1 contains a hydrophobic N-terminus as a signal peptide and a hydrophilic C-terminal domain that is rich in glycine, arginine and proline. Two internal repetitive tridecapeptide fragments (HSVTAGRGGYNRG) exist in the middle of the C-terminal domain and the two nucleotide sequences encoding them are identical. CsCOR1 was localized in the cell walls of transgenic-tobaccos via CsCOR1::GFP fusion approach. The expression of CsCOR1 in tea leaves was enhanced dramatically by both cold- and dehydration-stress. And overexpressionmore » of CsCOR1 in transgenic-tobaccos improved obviously the tolerance to salinity and dehydration.« less

  8. Identification of an NADH-Cytochrome b5 Reductase Gene from an Arachidonic Acid-Producing Fungus, Mortierella alpina 1S-4, by Sequencing of the Encoding cDNA and Heterologous Expression in a Fungus, Aspergillus oryzae

    PubMed Central

    Sakuradani, Eiji; Kobayashi, Michihiko; Shimizu, Sakayu

    1999-01-01

    Based on the sequence information for bovine and yeast NADH-cytochrome b5 reductases (CbRs), a DNA fragment was cloned from Mortierella alpina 1S-4 after PCR amplification. This fragment was used as a probe to isolate a cDNA clone with an open reading frame encoding 298 amino acid residues which show marked sequence similarity to CbRs from other sources, such as yeast (Saccharomyces cerevisiae), bovine, human, and rat CbRs. These results suggested that this cDNA is a CbR gene. The results of a structural comparison of the flavin-binding β-barrel domains of CbRs from various species and that of the M. alpina enzyme suggested that the overall barrel-folding patterns are similar to each other and that a specific arrangement of three highly conserved amino acid residues (i.e., arginine, tyrosine, and serine) plays a role in binding with the flavin (another prosthetic group) through hydrogen bonds. The corresponding genomic gene, which was also cloned from M. alpina 1S-4 by means of a hybridization method with the above probe, had four introns of different sizes. These introns had GT at the 5′ end and AG at the 3′ end, according to a general GT-AG rule. The expression of the full-length cDNA in a filamentous fungus, Aspergillus oryzae, resulted in an increase (4.7 times) in ferricyanide reduction activity involving the use of NADH as an electron donor in the microsomes. The M. alpina CbR was purified by solubilization of microsomes with cholic acid sodium salt, followed by DEAE-Sephacel, Mono-Q HR 5/5, and AMP-Sepharose 4B affinity column chromatographies; there was a 645-fold increase in the NADH-ferricyanide reductase specific activity. The purified CbR preferred NADH over NADPH as an electron donor. This is the first report of an analysis of this enzyme in filamentous fungi. PMID:10473389

  9. Identification of an anti-lipopolysacchride factor possessing both antiviral and antibacterial activity from the red claw crayfish Cherax quadricarinatus.

    PubMed

    Lin, Feng-Yu; Gao, Yan; Wang, Hao; Zhang, Qiu-Xia; Zeng, Chang-Lin; Liu, Hai-Peng

    2016-10-01

    It is well-known that anti-lipopolysacchride factors (ALFs) are involved in the recognition and elimination of invading pathogens. In this study, the full-length ALF cDNA sequence of the red claw crayfish Cherax quadricarinatus (termed CqALF) was cloned from a suppression subtractive hybridization library constructed using red claw crayfish hematopoietic tissue cell (Hpt cell) cultures following challenge with white spot syndrome virus (WSSV). The full-length cDNA sequence of CqALF was 863 bp, and the open reading frame encoded 123 amino acids with a signal peptide in the N-terminus and a conserved LPS-binding domain. Unlike most ALFs, which are highly expressed in haemocytes, high expression levels of CqALF were detected in epithelium, the stomach and eyestalks, while lower expression was detected in Hpt, nerves, the heart, muscle tissue, gonads, haemocytes, intestines, gills and the hepatopancreas. To further explore the biological activities of CqALF, mature recombinant CqALF protein (rCqALF) was expressed and purified using a eukaryotic expression system, and an antimicrobial activity test was carried out. rCqALF clearly exerted antiviral activity, as evidenced by the severe disruption of the envelope of intact WSSV virions following co-incubation of virions with rCqALF. Additionally, pre-incubation of WSSV with rCqALF resulted in both a significant reduction in WSSV replication in red claw crayfish Hpt cell cultures and an increased survival rate among animals. Furthermore, rCqALF was effective against both Gram-negative bacteria and Gram-positive bacteria, particularly Shigella flexneri and Staphylococcus aureus. A membrane integrity assay suggested that rCqALF was unlikely to disrupt bacterial membrane integrity compared to cecropin P1. Taken together, these data suggest that CqALF may play an important role in immune defence in the crustacean C. quadricarinatus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A Novel Pathogenesis-Related Class 10 Protein Gly m 4l, Increases Resistance upon Phytophthora sojae Infection in Soybean (Glycine max [L.] Merr.)

    PubMed Central

    Fan, Sujie; Jiang, Liangyu; Wu, Junjiang; Dong, Lidong; Cheng, Qun; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Phytophthora root and stem rot of soybean, caused by Phytophthora sojae (P. sojae), is a destructive disease in many soybean planting regions worldwide. In a previous study, an expressed sequence tag (EST) homolog of the major allergen Pru ar 1 in apricot (Prunus armeniaca) was identified up-regulated in the highly resistant soybean ‘Suinong 10’ infected with P. sojae. Here, the full length of the EST was isolated using rapid amplification of cDNA ends (RACE). It showed the highest homolgy of 53.46% with Gly m 4 after comparison with the eight soybean allergen families reported and was named Gly m 4-like (Gly m 4l, GenBank accession no. HQ913577.1). The cDNA full length of Gly m 4l was 707 bp containing a 474 bp open reading frame encoding a polypeptide of 157 amino acids. Sequence analysis suggests that Gly m 4l contains a conserved ‘P-loop’ (phosphate-binding loop) motif at residues 47–55 aa and a Bet v 1 domain at residues 87–120 aa. The transcript abundance of Gly m 4l was significantly induced by P. sojae, salicylic acid (SA), NaCl, and also responded to methyl jasmonic acid (MeJA) and ethylene (ET). The recombinant Gly m 4l protein showed RNase activity and displayed directly antimicrobial activity that inhibited hyphal growth and reduced zoospore release in P. sojae. Further analyses showed that the RNase activity of the recombinant protein to degrading tRNA was significantly affected in the presence of zeatin. Over-expression of Gly m 4l in susceptible ‘Dongnong 50’ soybean showed enhanced resistance to P. sojae. These results indicated that Gly m 4l protein played an important role in the defense of soybean against P. sojae infection. PMID:26474489

  11. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection.

    PubMed

    Sturm, A; Chrispeels, M J

    1990-11-01

    We isolated a full-length cDNA for apoplastic (extracellular or cell wall-bound) beta-fructosidase (invertase), determined its nucleotide sequence, and used it as a probe to measure changes in mRNA as a result of wounding of carrot storage roots and infection of carrot plants with the bacterial pathogen Erwinia carotovora. The derived amino acid sequence of extracellular beta-fructosidase shows that it is a basic protein (pl 9.9) with a signal sequence for entry into the endoplasmic reticulum and a propeptide at the N terminus that is not present in the mature protein. Amino acid sequence comparison with yeast and bacterial invertases shows that the overall homology is only about 28%, but that there are short conserved motifs, one of which is at the active site. Maturing carrot storage roots contain barely detectable levels of mRNA for extracellular beta-fructosidase and these levels rise slowly but dramatically after wounding with maximal expression after 12 hours. Infection of roots and leaves of carrot plants with E. carotovora results in a very fast increase in the mRNA levels with maximal expression after 1 hour. These results indicate that apoplastic beta-fructosidase is probably a new and hitherto unrecognized pathogenesis-related protein [Van Loon, L.C. (1985). Plant Mol. Biol. 4, 111-116]. Suspension-cultured carrot cells contain high levels of mRNA for extracellular beta-fructosidase and these levels remain the same whether the cells are grown on sucrose, glucose, or fructose.

  12. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection.

    PubMed Central

    Sturm, A; Chrispeels, M J

    1990-01-01

    We isolated a full-length cDNA for apoplastic (extracellular or cell wall-bound) beta-fructosidase (invertase), determined its nucleotide sequence, and used it as a probe to measure changes in mRNA as a result of wounding of carrot storage roots and infection of carrot plants with the bacterial pathogen Erwinia carotovora. The derived amino acid sequence of extracellular beta-fructosidase shows that it is a basic protein (pl 9.9) with a signal sequence for entry into the endoplasmic reticulum and a propeptide at the N terminus that is not present in the mature protein. Amino acid sequence comparison with yeast and bacterial invertases shows that the overall homology is only about 28%, but that there are short conserved motifs, one of which is at the active site. Maturing carrot storage roots contain barely detectable levels of mRNA for extracellular beta-fructosidase and these levels rise slowly but dramatically after wounding with maximal expression after 12 hours. Infection of roots and leaves of carrot plants with E. carotovora results in a very fast increase in the mRNA levels with maximal expression after 1 hour. These results indicate that apoplastic beta-fructosidase is probably a new and hitherto unrecognized pathogenesis-related protein [Van Loon, L.C. (1985). Plant Mol. Biol. 4, 111-116]. Suspension-cultured carrot cells contain high levels of mRNA for extracellular beta-fructosidase and these levels remain the same whether the cells are grown on sucrose, glucose, or fructose. PMID:2152110

  13. Molecular characterization, mRNA expression of prolactin receptor (PRLR) gene during pregnancy, nonpregnancy in the yak (Bos grunniens).

    PubMed

    Zi, Xiang-Dong; Chen, Da-Wen; Wang, Hong-Mei

    2012-02-01

    Prolactin (PRL) plays central roles in a wide range of body functions in mammals, and the actions are mediated by the specific cell surface receptor, the prolactin receptor (PRLR). To better understand the role of PRL in the yak (Bos grunniens), in the present study, we first cloned yak PRLR cDNA, and compared its mRNA expression in several tissues with cattle (Bos taurus). By reverse transcriptase-polymerase chain reaction (RT-PCR) strategy, we obtained full-length of yak PRLR cDNA sequence comprised of an open reading frame of 1746bp encoding a 581 amino acid protein, and contained a signal sequence and a transmembrane region. The intracellular domain had two pairs of cysteine residues and a WSXWS motif. The cytoplasmic domain comprised 323 residues and contained box 1 sequence. The yak PRLR shared 66.0-98.5% protein sequence identity with mammalian homologs. Real-time PCR analysis revealed that PRLR mRNA was higher in mammary tissue than in ovary and endometrium (P<0.01). During pregnancy, the ovary and mammary PRLR mRNA expression increased by 33- and 2.9-fold in yak, respectively, and increased by 46- and 3.8-fold in cattle, respectively. PRLR mRNA expression was higher (P<0.05) in mammary tissue and ovary of pregnant cow than that of pregnant yak. It is proposed that the increased ovarian and mammary PRLR mRNA expression during pregnancy may be associated with corpus luteum function for maintenance of pregnancy and mammary development for subsequent lactation. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. A NOVEL CADHERIN-LIKE GENE FROM WESTERN CORN ROOTWORM, DIABROTICA VIRGIFERA VIRGIFERA (COLEOPTERA: CHRYSOMELIDAE), LARVAL MIDGUT TISSUE

    EPA Science Inventory

    A cadherin-like gene and its mRNA were cloned from western corn rootworm (Diabrotica virgifera virgifera: Coleoptera), an economically important agricultural pest in North America and Europe. The full length cDNA (5371 bp in length) encodes an open reading frame for a 1688 amino ...

  15. Znrg, a novel gene expressed mainly in the developing notochord of zebrafish.

    PubMed

    Zhou, Yaping; Xu, Yan; Li, Jianzhen; Liu, Yao; Zhang, Zhe; Deng, Fengjiao

    2010-06-01

    The notochord, a defining characteristic of the chordate embryo is a critical midline structure required for axial skeletal formation in vertebrates, and acts as a signaling center throughout embryonic development. We utilized the digital differential display program of the National Center for Biotechnology Information, and identified a contig of expressed sequence tags (no. Dr. 83747) from the zebrafish ovary library in Genbank. Full-length cDNA of the identified gene was cloned by 5'- and 3'- RACE, and the resulting sequence was confirmed by polymerase chain reaction and sequencing. The cDNA clone contains 2,505 base pairs and encodes a novel protein of 707 amino acids that shares no significant homology with any known proteins. This gene was expressed in mature oocytes and at the one-cell stage, and persisted until the 5th day of development, as determined by RT-PCR. Transcripts were detected by whole-mount RNA in situ hybridization from the two-cell stage to 72 h of embryonic development. This gene was uniformly distributed from the cleavage stage up to the blastula stage. During early gastrulation, it was present in the dorsal region, and became restricted to the notochord and pectoral fin at 48 and 72 h of embryonic development. Based on its abundance in the notochord, we hypothesized that the novel gene may play an important role in notochord development in zebrafish; we named this gene, zebrafish notochord-related gene, or znrg.

  16. Molecular characterization and functional analysis of a glutathione peroxidase gene from Aphelenchoides besseyi (Nematoda: Aphelenchoididae).

    PubMed

    Wang, Bu-Yong; Wen, Rong-Rong; Ma, Ling

    2017-09-26

    Aphelenchoides besseyi, the nematode agent of rice tip white disease, causes huge economic losses in almost all the rice-growing regions of the world. Glutathione peroxidase (GPx), an esophageal glands secretion protein, plays important roles in the parasitism, immune evasion, reproduction and pathogenesis of many plant-parasitic nematodes (PPNs). Therefore, GPx is a promising target for control A. besseyi. Here, the full-length sequence of the GPx gene from A. besseyi (AbGPx1) was cloned using the rapid amplification of cDNA ends method. The full-length 944 bp AbGPx1 sequence, which contains a 678 bp open reading frame, encodes a 225 amino acid protein. The deduced amino acid sequence of the AbGPxl shares highly homologous with other nematode GPxs, and showed the closest evolutionary relationship with DrGPx. In situ hybridization showed that AbGPx1 was constitutively expressed in the esophageal glands of A. besseyi, suggesting its potential roles in parasitism and reproduction. RNA interference (RNAi) was used to assess the functions of the AbGPx1 gene, and quantitative real-time PCR was used to monitor the RNAi effects. After treatment with dsRNA for 12 h, AbGPx1 expression levels and reproduction in the nematodes decreased compared with the same parameters in the control group; thus, the AbGPx1 gene is likely to be associated with the development, reproduction, and infection ability of A. besseyi. These findings may open new avenues towards nematode control.

  17. Construction of a cDNA library from female adult of Toxocara canis, and analysis of EST and immune-related genes expressions.

    PubMed

    Zhou, Rongqiong; Xia, Qingyou; Huang, Hancheng; Lai, Min; Wang, Zhenxin

    2011-10-01

    Toxocara canis is a widespread intestinal nematode parasite of dogs, which can also cause disease in humans. We employed an expressed sequence tag (EST) strategy in order to study gene-expression including development, digestion and reproduction of T. canis. ESTs provided a rapid way to identify genes, particularly in organisms for which we have very little molecular information. In this study, a cDNA library was constructed from a female adult of T. canis and 215 high-quality ESTs from 5'-ends of the cDNA clones representing 79 unigenes were obtained. The titer of the primary cDNA library was 1.83×10(6)pfu/mL with a recombination rate of 99.33%. Most of the sequences ranged from 300 to 900bp with an average length of 656bp. Cluster analysis of these ESTs allowed identification of 79 unique sequences containing 28 contigs and 51 singletons. BLASTX searches revealed that 18 unigenes (22.78% of the total) or 70 ESTs (32.56% of the total) were novel genes that had no significant matches to any protein sequences in the public databases. The rest of the 61 unigenes (77.22% of the total) or 145 ESTs (67.44% of the total) were closely matched to the known genes or sequences deposited in the public databases. These genes were classified into seven groups based on their known or putative biological functions. We also confirmed the gene expression patterns of several immune-related genes using RT-PCR examination. This work will provide a valuable resource for the further investigations in the stage-, sex- and tissue-specific gene transcription or expression. Copyright © 2011. Published by Elsevier Inc.

  18. Isolation and cDNA cloning of a novel red colour-related pigment-binding protein derived from the shell of the shrimp, Litopenaeus vannamei.

    PubMed

    Pan, Chuang; Ishizaki, Shoichiro; Nagashima, Yuji; Gao, Jialong; Watabe, Shugo

    2018-02-15

    Pigment-binding proteins play important roles in crustacean shell colour change. In this study, a red colour-related pigment-binding protein, designated LvPBP75, was purified from the shell of Litopenaeus vannamei. HPLC and PAGE analysis showed that LvPBP75 was a homogeneous monomer with molecular mass of 75kDa. Peptide mass fingerprint analysis revealed that LvPBP75 belonged to hemocyanin, and the released pigment from heated LvPBP75 showed a λ max at 481nm in acetone. The significant red-colour change temperatures were detected at 30 and 80°C, respectively. Based on the determined amino acid fragments, a full-length cDNA of LvPBP75 was cloned and sequenced. The ORF encodes a protein of 662 amino acids having 80% identity with penaeidae hemocyanin. These results strongly suggest a novel function of hemocyanin, namely binding with pigment, and its involvement in L. vannamei shell colour change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Isolation and characterization of farnesyl diphosphate synthase from the cotton boll weevil, Anthonomus grandis.

    PubMed

    Taban, A Huma; Tittiger, Claus; Blomquist, Gary J; Welch, William H

    2009-06-01

    Farnesyl diphosphate synthase (FPPS) catalyzes the consecutive condensation of two molecules of isopentenyl diphosphate with dimethylallyl diphosphate to form farnesyl diphosphate (FPP). In insects, FPP is used for the synthesis of ubiquinones, dolicols, protein prenyl groups, and juvenile hormone. A full-length cDNA of FPPS was cloned from the cotton boll weevil, Anthonomus grandis (AgFPPS). AgFPPS cDNA consists of 1,835 nucleotides and encodes a protein of 438 amino acids. The deduced amino acid sequence has high similarity to previously isolated insect FPPSs and other known FPPSs. Recombinant AgFPPS expressed in E. coli converted labeled isopentenyl diphosphate in the presence of dimethylallyl diphosphate to FPP. Southern blot analysis indicated the presence of a single copy gene. Using molecular modeling, the three-dimensional structure of coleopteran FPPS was determined and compared to the X-ray crystal structure of avian FPPS. The alpha-helical fold is conserved in AgFPPS and the size of the active site cavity is consistent with the enzyme being a FPPS. (c) 2009 Wiley Periodicals, Inc.

  20. Cell and molecular biology of the spiny dogfish Squalus acanthias and little skate Leucoraja erinacea: insights from in vitro cultured cells.

    PubMed

    Barnes, D W

    2012-04-01

    Two of the most commonly used elasmobranch experimental model species are the spiny dogfish Squalus acanthias and the little skate Leucoraja erinacea. Comparative biology and genomics with these species have provided useful information in physiology, pharmacology, toxicology, immunology, evolutionary developmental biology and genetics. A wealth of information has been obtained using in vitro approaches to study isolated cells and tissues from these organisms under circumstances in which the extracellular environment can be controlled. In addition to classical work with primary cell cultures, continuously proliferating cell lines have been derived recently, representing the first cell lines from cartilaginous fishes. These lines have proved to be valuable tools with which to explore functional genomic and biological questions and to test hypotheses at the molecular level. In genomic experiments, complementary (c)DNA libraries have been constructed, and c. 8000 unique transcripts identified, with over 3000 representing previously unknown gene sequences. A sub-set of messenger (m)RNAs has been detected for which the 3' untranslated regions show elements that are remarkably well conserved evolutionarily, representing novel, potentially regulatory gene sequences. The cell culture systems provide physiologically valid tools to study functional roles of these sequences and other aspects of elasmobranch molecular cell biology and physiology. Information derived from the use of in vitro cell cultures is valuable in revealing gene diversity and information for genomic sequence assembly, as well as for identification of new genes and molecular markers, construction of gene-array probes and acquisition of full-length cDNA sequences. © 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  1. Computational Identification and Functional Predictions of Long Noncoding RNA in Zea mays

    PubMed Central

    Boerner, Susan; McGinnis, Karen M.

    2012-01-01

    Background Computational analysis of cDNA sequences from multiple organisms suggests that a large portion of transcribed DNA does not code for a functional protein. In mammals, noncoding transcription is abundant, and often results in functional RNA molecules that do not appear to encode proteins. Many long noncoding RNAs (lncRNAs) appear to have epigenetic regulatory function in humans, including HOTAIR and XIST. While epigenetic gene regulation is clearly an essential mechanism in plants, relatively little is known about the presence or function of lncRNAs in plants. Methodology/Principal Findings To explore the connection between lncRNA and epigenetic regulation of gene expression in plants, a computational pipeline using the programming language Python has been developed and applied to maize full length cDNA sequences to identify, classify, and localize potential lncRNAs. The pipeline was used in parallel with an SVM tool for identifying ncRNAs to identify the maximal number of ncRNAs in the dataset. Although the available library of sequences was small and potentially biased toward protein coding transcripts, 15% of the sequences were predicted to be noncoding. Approximately 60% of these sequences appear to act as precursors for small RNA molecules and may function to regulate gene expression via a small RNA dependent mechanism. ncRNAs were predicted to originate from both genic and intergenic loci. Of the lncRNAs that originated from genic loci, ∼20% were antisense to the host gene loci. Conclusions/Significance Consistent with similar studies in other organisms, noncoding transcription appears to be widespread in the maize genome. Computational predictions indicate that maize lncRNAs may function to regulate expression of other genes through multiple RNA mediated mechanisms. PMID:22916204

  2. Feeding-Related Traits Are Affected by Dosage of the foraging Gene in Drosophila melanogaster

    PubMed Central

    Allen, Aaron M.; Anreiter, Ina; Neville, Megan C.; Sokolowski, Marla B.

    2017-01-01

    Nutrient acquisition and energy storage are critical parts of achieving metabolic homeostasis. The foraging gene in Drosophila melanogaster has previously been implicated in multiple feeding-related and metabolic traits. Before foraging’s functions can be further dissected, we need a precise genetic null mutant to definitively map its amorphic phenotypes. We used homologous recombination to precisely delete foraging, generating the for0 null allele, and used recombineering to reintegrate a full copy of the gene, generating the {forBAC} rescue allele. We show that a total loss of foraging expression in larvae results in reduced larval path length and food intake behavior, while conversely showing an increase in triglyceride levels. Furthermore, varying foraging gene dosage demonstrates a linear dose-response on these phenotypes in relation to foraging gene expression levels. These experiments have unequivocally proven a causal, dose-dependent relationship between the foraging gene and its pleiotropic influence on these feeding-related traits. Our analysis of foraging’s transcription start sites, termination sites, and splicing patterns using rapid amplification of cDNA ends (RACE) and full-length cDNA sequencing, revealed four independent promoters, pr1–4, that produce 21 transcripts with nine distinct open reading frames (ORFs). The use of alternative promoters and alternative splicing at the foraging locus creates diversity and flexibility in the regulation of gene expression, and ultimately function. Future studies will exploit these genetic tools to precisely dissect the isoform- and tissue-specific requirements of foraging’s functions and shed light on the genetic control of feeding-related traits involved in energy homeostasis. PMID:28007892

  3. Atomic force microscope observation of branching in single transcript molecules derived from human cardiac muscle

    NASA Astrophysics Data System (ADS)

    Reed, Jason; Hsueh, Carlin; Mishra, Bud; Gimzewski, James K.

    2008-09-01

    We have used an atomic force microscope to examine a clinically derived sample of single-molecule gene transcripts, in the form of double-stranded cDNA, (c: complementary) obtained from human cardiac muscle without the use of polymerase chain reaction (PCR) amplification. We observed a log-normal distribution of transcript sizes, with most molecules being in the range of 0.4-7.0 kilobase pairs (kb) or 130-2300 nm in contour length, in accordance with the expected distribution of mRNA (m: messenger) sizes in mammalian cells. We observed novel branching structures not previously known to exist in cDNA, and which could have profound negative effects on traditional analysis of cDNA samples through cloning, PCR and DNA sequencing.

  4. Beta-ketoacyl-acyl carrier protein synthase III from pea (Pisum sativum L.): properties, inhibition by a novel thiolactomycin analogue and isolation of a cDNA clone encoding the enzyme.

    PubMed

    Jones, A Lesley; Gane, Andy M; Herbert, Derek; Willey, David L; Rutter, Andrew J; Kille, Peter; Dancer, Jane E; Harwood, John L

    2003-03-01

    A beta-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III; short-chain condensing enzyme) has been partly purified from pea leaves. The enzyme, which had acetyl-CoA:ACP acyltransferase (ACAT) activity, was resolved from a second, specific, ACAT protein. The KAS III enzyme had a derived molecular mass of 42 kDa (from its cDNA sequence) and operated as a dimer. Its enzymological characteristics were similar to those of two other plant KAS III enzymes except for its inhibition by thiolactomycin. A derivative of thiolactomycin containing a longer (C8 saturated) hydrophobic side-chain (compound 332) was a more effective inhibitor of pea KAS III and showed competitive inhibition towards malonyl-ACP whereas thiolactomycin showed uncompetitive characteristics at high concentrations. This difference may be due to the better fit of compound 332 into a hydrophobic pocket at the active site. A full-length cDNA for the pea KAS III was isolated. This was expressed in Escherichia coli as a fusion protein with glutathione S-transferase in order to facilitate subsequent purification. Demonstrated activity in preparations from E. coli confirmed that the cDNA encoded a KAS III enzyme. Furthermore, the expressed KAS III had ACAT activity, showing that the latter was inherent. The derived amino acid sequence of the pea cDNA showed 81-87% similarity to that for other plant dicotyledon KAS IIIs, somewhat less for Allium porrum (leek, 71%) and for Porphyra spp. (62%), Synechocystis spp. (65%) and various bacteria (42-65%). The pea KAS III exhibited four areas of homology, three of which were around the active-site Cys(123), His(323) and Asn(353). In addition, a stretch of 23 amino acids (residues 207-229 in the pea KAS III) was almost completely conserved in the plant KAS IIIs. Modelling this stretch showed they belonged to a peptide fragment that fitted over the active site and contained segments suggested to be involved in substrate binding and in conformational changes during catalysis, as well as an arginine suggested to participate in the acid-base catalytic mechanism.

  5. Molecular Cloning and Sequence Analysis of a Phenylalanine Ammonia-Lyase Gene from Dendrobium

    PubMed Central

    Cai, Yongping; Lin, Yi

    2013-01-01

    In this study, a phenylalanine ammonia-lyase (PAL) gene was cloned from Dendrobium candidum using homology cloning and RACE. The full-length sequence and catalytic active sites that appear in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum are also found: PAL cDNA of D. candidum (designated Dc-PAL1, GenBank No. JQ765748) has 2,458 bps and contains a complete open reading frame (ORF) of 2,142 bps, which encodes 713 amino acid residues. The amino acid sequence of DcPAL1 has more than 80% sequence identity with the PAL genes of other plants, as indicated by multiple alignments. The dominant sites and catalytic active sites, which are similar to that showing in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum, are also found in DcPAL1. Phylogenetic tree analysis revealed that DcPAL is more closely related to PALs from orchidaceae plants than to those of other plants. The differential expression patterns of PAL in protocorm-like body, leaf, stem, and root, suggest that the PAL gene performs multiple physiological functions in Dendrobium candidum. PMID:23638048

  6. Salt Sensitive Tet-Off-Like Systems to Knockdown Primordial Germ Cell Genes for Repressible Transgenic Sterilization in Channel Catfish, Ictalurus punctatus.

    PubMed

    Li, Hanbo; Su, Baofeng; Qin, Guyu; Ye, Zhi; Alsaqufi, Ahmed; Perera, Dayan A; Shang, Mei; Odin, Ramjie; Vo, Khoi; Drescher, David; Robinson, Dalton; Zhang, Dan; Abass, Nermeen; Dunham, Rex A

    2017-05-31

    Repressible knockdown approaches were investigated for transgenic sterilization in channel catfish, Ictalurus punctatus . Two primordial germ cell (PGC) marker genes, nanos and dead end , were targeted for knockdown, and an off-target gene, vasa , was monitored. Two potentially salt sensitive repressible promoters, zebrafish adenylosuccinate synthase 2 (ADSS) and zebrafish racemase (Rm), were each coupled with four knockdown strategies: ds-sh RNA targeting the 5' end (N1) or 3' end (N2) of channel catfish nanos , full-length cDNA sequence of channel catfish nanos for overexpression (cDNA) and ds-sh RNA targeting channel catfish dead end (DND). Each construct had an untreated group and treated group with sodium chloride as the repressor compound. Spawning rates of full-sibling P₁ fish exposed or not exposed to the constructs as treated and untreated embryos were 93% and 59%, respectively, indicating potential sterilization of fish and repression of the constructs. Although the mRNA expression data of PGC marker genes were inconsistent in P₁ fish, most F₁ individuals were able to downregulate the target genes in untreated groups and repress the knockdown process in treated groups. The results indicate that repressible transgenic sterilization is feasible for reproductive control of fish, but more data from F₂ or F₃ are needed for evaluation.

  7. An annotated cDNA library of juvenile Euprymna scolopes with and without colonization by the symbiont Vibrio fischeri

    PubMed Central

    Chun, Carlene K; Scheetz, Todd E; Bonaldo, Maria de Fatima; Brown, Bartley; Clemens, Anik; Crookes-Goodson, Wendy J; Crouch, Keith; DeMartini, Tad; Eyestone, Mari; Goodson, Michael S; Janssens, Bernadette; Kimbell, Jennifer L; Koropatnick, Tanya A; Kucaba, Tamara; Smith, Christina; Stewart, Jennifer J; Tong, Deyan; Troll, Joshua V; Webster, Sarahrose; Winhall-Rice, Jane; Yap, Cory; Casavant, Thomas L; McFall-Ngai, Margaret J; Soares, M Bento

    2006-01-01

    Background Biologists are becoming increasingly aware that the interaction of animals, including humans, with their coevolved bacterial partners is essential for health. This growing awareness has been a driving force for the development of models for the study of beneficial animal-bacterial interactions. In the squid-vibrio model, symbiotic Vibrio fischeri induce dramatic developmental changes in the light organ of host Euprymna scolopes over the first hours to days of their partnership. We report here the creation of a juvenile light-organ specific EST database. Results We generated eleven cDNA libraries from the light organ of E. scolopes at developmentally significant time points with and without colonization by V. fischeri. Single pass 3' sequencing efforts generated 42,564 expressed sequence tags (ESTs) of which 35,421 passed our quality criteria and were then clustered via the UIcluster program into 13,962 nonredundant sequences. The cDNA clones representing these nonredundant sequences were sequenced from the 5' end of the vector and 58% of these resulting sequences overlapped significantly with the associated 3' sequence to generate 8,067 contigs with an average sequence length of 1,065 bp. All sequences were annotated with BLASTX (E-value < -03) and Gene Ontology (GO). Conclusion Both the number of ESTs generated from each library and GO categorizations are reflective of the activity state of the light organ during these early stages of symbiosis. Future analyses of the sequences identified in these libraries promise to provide valuable information not only about pathways involved in colonization and early development of the squid light organ, but also about pathways conserved in response to bacterial colonization across the animal kingdom. PMID:16780587

  8. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit N-methyltransferase

    DOEpatents

    Houtz, Robert L.

    1998-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .epsilon.N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the .epsilon.-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed.

  9. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit epsilon N-methyltransferase

    DOEpatents

    Houtz, Robert L.

    1999-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the .epsilon.-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed.

  10. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit N-methyltransferase

    DOEpatents

    Houtz, R.L.

    1998-03-03

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) {epsilon}N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the {epsilon}-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed. 5 figs.

  11. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit epsilon N-methyltransferase

    DOEpatents

    Houtz, R.L.

    1999-02-02

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS){sup {epsilon}}N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the {epsilon}-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed. 8 figs.

  12. Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape (Vitis vinifera L.) based on curation and mining of large-scale EST data sets

    PubMed Central

    2011-01-01

    Background Abiotic stresses, such as water deficit and soil salinity, result in changes in physiology, nutrient use, and vegetative growth in vines, and ultimately, yield and flavor in berries of wine grape, Vitis vinifera L. Large-scale expressed sequence tags (ESTs) were generated, curated, and analyzed to identify major genetic determinants responsible for stress-adaptive responses. Although roots serve as the first site of perception and/or injury for many types of abiotic stress, EST sequencing in root tissues of wine grape exposed to abiotic stresses has been extremely limited to date. To overcome this limitation, large-scale EST sequencing was conducted from root tissues exposed to multiple abiotic stresses. Results A total of 62,236 expressed sequence tags (ESTs) were generated from leaf, berry, and root tissues from vines subjected to abiotic stresses and compared with 32,286 ESTs sequenced from 20 public cDNA libraries. Curation to correct annotation errors, clustering and assembly of the berry and leaf ESTs with currently available V. vinifera full-length transcripts and ESTs yielded a total of 13,278 unique sequences, with 2302 singletons and 10,976 mapped to V. vinifera gene models. Of these, 739 transcripts were found to have significant differential expression in stressed leaves and berries including 250 genes not described previously as being abiotic stress responsive. In a second analysis of 16,452 ESTs from a normalized root cDNA library derived from roots exposed to multiple, short-term, abiotic stresses, 135 genes with root-enriched expression patterns were identified on the basis of their relative EST abundance in roots relative to other tissues. Conclusions The large-scale analysis of relative EST frequency counts among a diverse collection of 23 different cDNA libraries from leaf, berry, and root tissues of wine grape exposed to a variety of abiotic stress conditions revealed distinct, tissue-specific expression patterns, previously unrecognized stress-induced genes, and many novel genes with root-enriched mRNA expression for improving our understanding of root biology and manipulation of rootstock traits in wine grape. mRNA abundance estimates based on EST library-enriched expression patterns showed only modest correlations between microarray and quantitative, real-time reverse transcription-polymerase chain reaction (qRT-PCR) methods highlighting the need for deep-sequencing expression profiling methods. PMID:21592389

  13. Adaptive molecular evolution of the two-pore channel 1 gene TPC1 in the karst-adapted genus Primulina (Gesneriaceae)

    PubMed Central

    Tao, Junjie; Feng, Chao; Ai, Bin; Kang, Ming

    2016-01-01

    Background and Aims Limestone karst areas possess high floral diversity and endemism. The genus Primulina, which contributes to the unique calcicole flora, has high species richness and exhibit specific soil-based habitat associations that are mainly distributed on calcareous karst soils. The adaptive molecular evolutionary mechanism of the genus to karst calcium-rich environments is still not well understood. The Ca2+-permeable channel TPC1 was used in this study to test whether its gene is involved in the local adaptation of Primulina to karst high-calcium soil environments. Methods Specific amplification and sequencing primers were designed and used to amplify the full-length coding sequences of TPC1 from cDNA of 76 Primulina species. The sequence alignment without recombination and the corresponding reconstructed phylogeny tree were used in molecular evolutionary analyses at the nucleic acid level and amino acid level, respectively. Finally, the identified sites under positive selection were labelled on the predicted secondary structure of TPC1. Key Results Seventy-six full-length coding sequences of Primulina TPC1 were obtained. The length of the sequences varied between 2220 and 2286 bp and the insertion/deletion was located at the 5′ end of the sequences. No signal of substitution saturation was detected in the sequences, while significant recombination breakpoints were detected. The molecular evolutionary analyses showed that TPC1 was dominated by purifying selection and the selective pressures were not significantly different among species lineages. However, significant signals of positive selection were detected at both TPC1 codon level and amino acid level, and five sites under positive selective pressure were identified by at least three different methods. Conclusions The Ca2+-permeable channel TPC1 may be involved in the local adaptation of Primulina to karst Ca2+-rich environments. Different species lineages suffered similar selective pressure associated with calcium in karst environments, and episodic diversifying selection at a few sites may play a major role in the molecular evolution of Primulina TPC1. PMID:27582362

  14. Molecular characterization of HOXC8 gene and methylation status analysis of its exon 1 associated with the length of cashmere fiber in Liaoning cashmere goat.

    PubMed

    Bai, Wen L; Wang, Jiao J; Yin, Rong H; Dang, Yun L; Wang, Ze Y; Zhu, Yu B; Cong, Yu Y; Deng, Liang; Guo, Dan; Wang, Shi Q; Yang, Shu H; Xue, Hui L

    2017-02-01

    Homeobox protein Hox-C8 (HOXC8) is a member of Hox family. It is expressed in the dermal papilla of the skin and is thought to be associated with the hair inductive capacity of dermal papilla cells. In the present study, we isolated and characterized a full-length open reading frame of HOXC8 cDNA from the skin tissue of Liaoning cashmere goat, as well as, established a phylogenetic relationship of goat HOXC8 with that of other species. Also, we investigated the effect of methylation status of HOXC8 exon 1 at anagen secondary hair follicle on the cashmere fiber traits in Liaoning cashmere goat. The sequence analysis indicated that the obtained cDNA was 1134-bp in length containing a complete ORF of 729-bp. It encoded a peptide of 242 amino acid residues in length. The structural analysis indicated that goat HOXC8 contained a typical homeobox domain. The phylogenetic analysis revealed that Capra hircus HOXC8 had a closer genetic relationship with that of Ovis aries, followed by Bos Taurus and Bubalus bubalis. The methylation analysis suggested that the methylation degree of HOXC8 exon 1 in anagen secondary hair follicle might be involved in regulating the growth of cashmere fiber in Liaoning cashmere goat. Our results provide new evidence for understanding the molecular structural and evolutionary characteristics of HOXC8 in Liaoning cashmere goat, as well as, for further insight into the role of methylation degree of HOXC8 exon 1 regulates the growth of cashmere fiber in goat.

  15. Molecular characterization of carotenoid biosynthetic genes and carotenoid accumulation in Scutellaria baicalensis Georgi

    PubMed Central

    Tuan, Pham Anh; Kim, Yeon Bok; Kim, Jae Kwang; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2014-01-01

    Scutellaria baicalensis has a wide range of biological activities and has been considered as an important traditional drug in Asia and North America for centuries. A partial-length cDNA clone encoding phytoene synthase (SbPSY) and full-length cDNA clonesencoding phytoene desaturase (SbPDS), ξ-carotene desaturase (SbZDS), β-ring carotene hydroxylase (SbCHXB), and zeaxanthin epoxidase (SbZEP)were identifiedin S. baicalensis. Sequence analyses revealed that these proteins share high identity and conserved domains with their orthologous genes. SbPSY, SbPDS, SbZDS, SbCHXB, and SbZEP were constitutively expressed in the roots, stems, leaves, and flowers of S.baicalensis. SbPSY, SbPDS, and SbZDS were highly expressed in the stems, leaves, and flowers and showed low expression in the roots, where only trace amounts of carotenoids were detected. SbCHXB and SbZEP transcripts were expressed at relatively high levels in the roots, stems, and flowers and were expressed at low levels in the leaves, where carotenoids were mostly distributed. The predominant carotenoids in S.baicalensiswere lutein and β-carotene, with abundant amounts found in the leaves (517.19 and 228.37 μg g-1 dry weight, respectively). Our study on the biosynthesis of carotenoids in S. baicalensis will provide basic data for elucidating the contribution of carotenoids to the considerable medicinal properties of S. baicalensis. PMID:26417348

  16. Molecular cloning, characterization, and expression profiles of androgen receptors in spotted scat (Scatophagus argus).

    PubMed

    Chen, H P; Deng, S P; Dai, M L; Zhu, C H; Li, G L

    2016-04-07

    Androgen plays critical roles in vertebrate reproductive systems via androgen receptors (ARs). In the present study, the full-length spotted scat (Scatophagus argus) androgen receptor (sAR) cDNA sequence was cloned from testis. The sAR cDNA measured 2448 bp in length with an open-reading frame of 2289 bp, encoding 763 amino acids. Amino acid alignment analyses showed that the sARs exhibited highly evolutionary conserved functional domains. Phylogenetically, the sARs clustered within the ARβ common vertebrate group. Real-time polymerase chain reaction (RT-PCR) revealed that sAR expression varied in level and distribution throughout the tissues of both females and males. sAR expression was detected during testicular development by quantitative RT-PCR. The results showed that the highest transcription of sARs was observed in the mid-testicular stage, and remained at a high expression level until the late-testicular stage. In addition, the effects of 17α-methyltestosterone (MT) and estrogen (E2) on the expression of sARs in ovaries were determined using quantitative RT-PCR. sAR expression increased at 12 and 24 h post-MT treatment and decreased with E2 treatment. The present study provides preliminary evidence indicating gonadal plasticity of spotted scat under exogenous steroidal hormone treatments. It also provides a theoretical basis for sex reversal and production of artificial pseudo-males for female monosex breeding.

  17. Cloning and expression of SgCYP450-4 from Siraitia grosvenorii.

    PubMed

    Tu, Dongping; Ma, Xiaojun; Zhao, Huan; Mo, Changming; Tang, Qi; Wang, Liuping; Huang, Jie; Pan, Limei

    2016-11-01

    CYP450 plays an essential role in the development and growth of the fruits of Siraitia grosvenorii . However, little is known about the SgCYP450-4 gene in S. grosvenorii . Here, based on transcriptome data, a full-length cDNA sequence of SgCYP450-4 was cloned by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid-amplification of cDNA ends (RACE) strategies. SgCYP450-4 is 1677 bp in length (GenBank accession No. AEM42985.1) and contains a complete open reading frame (ORF) of 1422 bp. The deduced protein was composed of 473 amino acids, the molecular weight is 54.01 kDa, the theoretical isoelectric point (PI) is 8.8, and the protein was predicted to possess cytochrome P450 domains. SgCYP450-4 gene was highly expressed in root, diploid fruit and fruit treated with hormone and pollination. At 10 days after treatment with pollination and hormones, the expression of Sg CYP450-4 had the highest level and then decreased over time, which was consistent with the development of fruits of S. Grosvenorii . Hormonal treatment could significantly induce the expression of SgCYP450-4 . These results provide a reference for regulation of fruit development and the use of parthenocarpy to generate seedless fruit, and provide a scientific basis for the production of growth regulator application agents.

  18. Molecular Cloning, Bioinformatic Analysis, and Expression of Bombyx mori Lebocin 5 Gene Related to Beauveria bassiana Infection.

    PubMed

    Lü, Dingding; Hou, Chengxiang; Qin, Guangxing; Gao, Kun; Chen, Tian; Guo, Xijie

    2017-01-01

    A full-length cDNA of lebocin 5 (BmLeb5) was first cloned from silkworm, Bombyx mori , by rapid amplification of cDNA ends. The BmLeb5 gene is 808 bp in length and the open reading frame encodes a 179-amino acid hydroxyproline-rich peptide. Bioinformatic analysis results showed that BmLeb5 owns an O-glycosylation site and four RXXR motifs as other lebocins. Sequence similarity and phylogenic analysis results indicated that lebocins form a multiple gene family in silkworm as cecropins. Quantitative real-time PCR analysis revealed that BmLeb5 was highest expressed in the fat body. In the silkworm larvae infected by Beauveria bassiana , the expression level of BmLeb5 was upregulated in the fat body and hemolymph which are the most important immune tissues in silkworm. The recombinant protein of BmLeb5 was for the first time successfully expressed with prokaryotic expression system and purified. There are no reports so far that the expression of lebocins could be induced by entomopathogenic fungus. Our study suggested that BmLeb5 might play an important role in the immune response of silkworm to defend B. bassiana infection. The results also provided helpful information for further studying the lebocin family functioned in antifungal immune response in the silkworm.

  19. Cell Wall and Membrane-Associated Exo-β-d-Glucanases from Developing Maize Seedlings1

    PubMed Central

    Kim, Jong-Bum; Olek, Anna T.; Carpita, Nicholas C.

    2000-01-01

    A β-d-glucan exohydrolase was purified from the cell walls of developing maize (Zea mays L.) shoots. The cell wall enzyme preferentially hydrolyzes the non-reducing terminal glucosyl residue from (1→3)-β-d-glucans, but also hydrolyzes (1→2)-, (1→6)-, and (1→4)-β-d-glucosyl units in decreasing order of activity. Polyclonal antisera raised against the purified exo-β-d-glucanase (ExGase) were used to select partial-length cDNA clones, and the complete sequence of 622 amino acid residues was deduced from the nucleotide sequences of the cDNA and a full-length genomic clone. Northern gel-blot analysis revealed what appeared to be a single transcript, but three distinct polypeptides were detected in immunogel-blot analyses of the ExGases extracted from growing coleoptiles. Two polypeptides appear in the cell wall, where one polypeptide is constitutive, and the second appears at the time of the maximum rate of elongation and reaches peak activity after elongation has ceased. The appearance of the second polypeptide coincides with the disappearance of the mixed-linkage (1→3),(1→4)-β-d-glucan, whose accumulation is associated with cell elongation in grasses. The third polypeptide of the ExGase is an extrinsic protein associated with the exterior surface of the plasma membrane. Although the activity of the membrane-associated ExGase is highest against (1→3)-β-d-glucans, the activity against (1→4)-β-d-glucan linkages is severely attenuated and, therefore, the enzyme is unlikely to be involved with turnover of the (1→3),(1→4)-β-d-glucan. We propose three potential functions for this novel ExGase at the membrane-wall interface. PMID:10859178

  20. Structural and functional characterisation of a class I endochitinase of the carnivorous sundew (Drosera rotundifolia L.).

    PubMed

    Jopcik, Martin; Moravcikova, Jana; Matusikova, Ildiko; Bauer, Miroslav; Rajninec, Miroslav; Libantova, Jana

    2017-02-01

    Chitinase gene from the carnivorous plant, Drosera rotundifolia , was cloned and functionally characterised. Plant chitinases are believed to play an important role in the developmental and physiological processes and in responses to biotic and abiotic stress. In addition, there is growing evidence that carnivorous plants can use them to digest insect prey. In this study, a full-length genomic clone consisting of the 1665-bp chitinase gene (gDrChit) and adjacent promoter region of the 698 bp in length were isolated from Drosera rotundifolia L. using degenerate PCR and a genome-walking approach. The corresponding coding sequence of chitinase gene (DrChit) was obtained following RNA isolation from the leaves of aseptically grown in vitro plants, cDNA synthesis with a gene-specific primer and PCR amplification. The open reading frame of cDNA clone consisted of 978 nucleotides and encoded 325 amino acid residues. Sequence analysis indicated that DrChit belongs to the class I group of plant chitinases. Phylogenetic analysis within the Caryophyllales class I chitinases demonstrated a significant evolutionary relatedness of DrChit with clade Ib, which contains the extracellular orthologues that play a role in carnivory. Comparative expression analysis revealed that the DrChit is expressed predominantly in tentacles and is up-regulated by treatment with inducers that mimick insect prey. Enzymatic activity of rDrChit protein expressed in Escherichia coli was confirmed and purified protein exhibited a long oligomer-specific endochitinase activity on glycol-chitin and FITC-chitin. The isolation and expression profile of a chitinase gene from D. rotundifolia has not been reported so far. The obtained results support the role of specific chitinases in digestive processes in carnivorous plant species.

  1. A novel RET rearrangement (ACBD5/RET) by pericentric inversion, inv(10)(p12.1;q11.2), in papillary thyroid cancer from an atomic bomb survivor exposed to high-dose radiation.

    PubMed

    Hamatani, Kiyohiro; Eguchi, Hidetaka; Koyama, Kazuaki; Mukai, Mayumi; Nakachi, Kei; Kusunoki, Yoichiro

    2014-11-01

    During analysis of RET/PTC rearrangements in papillary thyroid cancer (PTC) among atomic bomb survivors, a cDNA fragment of a novel type of RET rearrangement was identified in a PTC patient exposed to a high radiation dose using the improved 5' RACE method. This gene resulted from the fusion of the 3' portion of RET containing tyrosine kinase domain to the 5' portion of the acyl-coenzyme A binding domain containing 5 (ACBD5) gene, by pericentric inversion inv(10)(p12.1;q11.2); expression of the fusion gene was confirmed by RT-PCR. ACBD5 gene is ubiquitously expressed in various human normal tissues including thyroid. Full-length cDNA of the ACBD5-RET gene was constructed and then examined for tumorigenicity. Enhanced phosphorylation of ERK proteins in the MAPK pathway was observed in NIH3T3 cells transfected with expression vector encoding the full-length ACBD5/RET cDNA, while this was not observed in the cells transfected with empty expression vector. Stable NIH3T3 transfectants with ACBD5-RET cDNA induced tumor formation after their injection into nude mice. These findings suggest that the ACBD5-RET rearrangement is causatively involved in the development of PTC.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlagnhaufer, C.D.; Arteca, R.N.; Pell, E.J.

    When potato plants (Solanum tuberosum L. cv Norland) are subjected to oxone stress ethylene is emitted. Increases in ethylene production are often the result of increased expression of the enzyme ACC synthase. We used the polymerase chain reaction (PCR) to clone a cDNA encoding an ozone-induced ACC synthase. After treating potato plants with 300 ppb ozone for 4 h, RNA was extracted using a guanidinium isothiocyanate method. Using degenerate oligonucleotides corresponding to several conserved regions of ACC synthase sequences reported from different plant tissues as primers, we were able to reverse transcribe the RNA and amplify a cDNA for ACCmore » synthase. The clone is 1098 bp in length encoding for 386 amino acids comprising [approximately]80% of the protein. Computer analysis of the deduced amino acid sequence showed that our clone is 50-70% homologous with ACC synthase genes cloned from other plant tissues. Using the cDNA as a probe in northern analysis we found that there is little or no expression in control tissue: however there is a large increase in the expression of the ACC synthase message in response to ozone treatment.« less

  3. Cloning and identification of a cDNA that encodes a novel human protein with thrombospondin type I repeat domain, hPWTSR.

    PubMed

    Chen, Jin-Zhong; Wang, Shu; Tang, Rong; Yang, Quan-Sheng; Zhao, Enpeng; Chao, Yaoqiong; Ying, Kang; Xie, Yi; Mao, Yu-Min

    2002-09-01

    A cDNA was isolated from the fetal brain cDNA library by high throughput cDNA sequencing. The 2390 bp cDNA with an open reading fragment (ORF) of 816 bp encodes a 272 amino acids putative protein with a thrombospondin type I repeat (TSR) domain and a cysteine-rich region at the N-terminus, so it is named hPWTSR. We used Northern blot detected two bands with length of about 3 kb and 4 kb respectively, which expressed in human adult tissues with different intensities. The expression pattern was verified by RT-PCR, revealing that the transcripts were expressed ubiquitously in fetal tissues and human tumor tissues too. However, the transcript was detected neither in ovarian carcinoma GI-102 nor in lung carcinoma LX-1. Blast analysis against NCBI database revealed that the new gene contained at least 5 exons and located in human chromosome 6q22.33. Our results demonstrate that the gene is a novel member of TSR supergene family.

  4. A galectin from Eriocheir sinensis functions as pattern recognition receptor enhancing microbe agglutination and haemocytes encapsulation.

    PubMed

    Wang, Mengqiang; Wang, Lingling; Huang, Mengmeng; Yi, Qilin; Guo, Ying; Gai, Yunchao; Wang, Hao; Zhang, Huan; Song, Linsheng

    2016-08-01

    Galectins are a family of β-galactoside binding lectins that function as pattern recognition receptors (PRRs) in innate immune system of both vertebrates and invertebrates. The cDNA of Chinese mitten crab Eriocheir sinensis galectin (designated as EsGal) was cloned via rapid amplification of cDNA ends (RACE) technique based on expressed sequence tags (ESTs) analysis. The full-length cDNA of EsGal was 999 bp. Its open reading frame encoded a polypeptide of 218 amino acids containing a GLECT/Gal-bind_lectin domain and a proline/glycine rich low complexity region. The deduced amino acid sequence and domain organization of EsGal were highly similar to those of crustacean galectins. The mRNA transcripts of EsGal were found to be constitutively expressed in a wide range of tissues and mainly in hepatopancreas, gill and haemocytes. The mRNA expression level of EsGal increased rapidly and significantly after crabs were stimulated by different microbes. The recombinant EsGal (rEsGal) could bind various pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), peptidoglycan (PGN) and glucan (GLU), and exhibited strong activity to agglutinate Escherichia coli, Vibrio anguillarum, Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and Pichia pastoris, and such agglutinating activity could be inhibited by both d-galactose and α-lactose. The in vitro encapsulation assay revealed that rEsGal could enhance the encapsulation of haemocytes towards agarose beads. These results collectively suggested that EsGal played crucial roles in the immune recognition and elimination of pathogens and contributed to the innate immune response against various microbes in crabs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Expression analysis of HSP70 in the testis of Octopus tankahkeei under thermal stress.

    PubMed

    Long, Ling-Li; Han, Ying-Li; Sheng, Zhang; Du, Chen; Wang, You-Fa; Zhu, Jun-Quan

    2015-09-01

    The gene encoding heat shock protein 70 (HSP70) was identified in Octopus tankahkeei by homologous cloning and rapid amplification of cDNA ends (RACE). The full-length cDNA (2471 bp) consists of a 5'-untranslated region (UTR) (89 bp), a 3'-UTR (426 bp), and an open reading frame (1956 bp) that encodes 651 amino acid residues with a predicted molecular mass of 71.8 kDa and an isoelectric point of 5.34. Based on the amino acid sequence analysis and multiple sequence alignment, this cDNA is a member of cytoplasmic hsp70 subfamily of the hsp70 family and was designated as ot-hsp70. Tissue expression analysis showed that HSP70 expression is highest in the testes when all examined organs were compared. Immunohistochemistry analysis, together with hematoxylin-eosin staining, revealed that the HSP70 protein was expressed in all spermatogenic cells, but not in fibroblasts. In addition, O. tankahkeei were heat challenged by exposure to 32 °C seawater for 2 h, then returned to 13 °C for various recovery time (0-24 h). Relative expression of ot-hsp70 mRNA in the testes was measured at different time points post-challenge by quantitative real-time PCR. A clear time-dependent mRNA expression of ot-hsp70 after thermal stress indicates that the HSP70 gene is inducible. Ultrastructural changes of the heat-stressed testis were observed by transmission electron microscopy. We suggest that HSP70 plays an important role in spermatogenesis and testis protection against thermal stress in O. tankahkeei. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Heterologous expression of an aspartic protease gene from biocontrol fungus Trichoderma asperellum in Pichia pastoris.

    PubMed

    Yang, Xiaoxue; Cong, Hua; Song, Jinzhu; Zhang, Junzheng

    2013-11-01

    Trichoderma asperellum parasitizes a large variety of phytopathogenic fungi. The mycoparasitic activity of T. asperellum depends on the secretion of complex mixtures of hydrolytic enzymes able to degrade the host cell wall and proteases which are a group of enzymes capable of degrading proteins from host. In this study, a full-length cDNA clone of aspartic protease gene, TaAsp, from T. asperellum was obtained and sequenced. The 1,185 bp long cDNA sequence was predicted to encode a 395 amino acid polypeptide with molecular mass of 42.3 kDa. The cDNA of TaAsp was inserted into the pPIC9K vector and transformed into yeast Pichia pastoris GS115 for heterologous expression. A clearly visible band with molecular mass about 42 kDa in the SDS-PAGE gel indicated that the transformant harboring the gene TaAsp had been successfully translated in P. pastoris and produced a recombinant protein. Enzyme characterization test showed that the optimum fermentation time for P. pastoris GS115 transformant was 72 h. Enzyme activity of the recombinant aspartic proteinase remained relatively stable at 25-60 °C and pH 3.0-9.0, which indicated its good prospect of application in biocontrol. The optimal pH value and temperature of the enzyme activity were pH 4.0 and 40 °C, and under this condition, with casein as the substrate, the recombinant protease activity was 18.5 U mL(-1). In order to evaluate antagonistic activity of the recombinant protease against pathogenic fungi, five pathogenic fungi, Fusarium oxysporum, Alternaria alternata, Cytospora chrysosperma, Sclerotinia sclerotiorum and Rhizoctonia solani, were applied to the test of in vitro inhibition of their mycelial growth by culture supernatant of P. pastoris GS115 transformant.

  7. Na+/K+-ATPase α-subunit in swimming crab Portunus trituberculatus: molecular cloning, characterization, and expression under low salinity stress

    NASA Astrophysics Data System (ADS)

    Han, Xiaolin; Liu, Ping; Gao, Baoquan; Wang, Haofeng; Duan, Yafei; Xu, Wenfei; Chen, Ping

    2015-07-01

    Na+/K+-ATPases are membrane-associated enzymes responsible for the active transport of Na+ and K+ ions across cell membranes, generating chemical and electrical gradients. These enzymes' α-subunit provides catalytic function, binding and hydrolyzing ATP, and itself becoming phosphorylated during the transport cycle. In this study, Na+/K+-ATPase α-subunit cDNA was cloned from gill tissue of the swimming crab Portunus trituberculatus by reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end methods. Analysis of the nucleotide sequence revealed that the cDNA had a full-length of 3 833 base pairs (bp), with an open reading frame of 3 120 bp, 5' untranslated region (UTR) of 317 bp, and 3' UTR of 396 bp. The sequence encoded a 1 039 amino acid protein with a predicted molecular weight of 115.57 kDa and with estimated pI of 5.21. It was predicted here to possess all expected features of Na+/K+-ATPase members, including eight transmembrane domains, putative ATP-binding site, and phosphorylation site. Comparison of amino acid sequences showed that the P. trituberculatus α-subunit possessed an overall identity of 75%-99% to that of other organisms. Phylogenetic analysis revealed that this α-subunit was in the same category as those of crustaceans. Quantitative real-time RT-PCR analysis indicated that this α-subunit's transcript were most highly expressed in gill and lowest in muscle. RT-PCR analysis also revealed that α-subunit expression in crab gill decreased after 2 and 6 h, but increased after 12, 24, 48, and 72 h. In addition, α-subunit expression in hepatopancreas of crab decreased after 2-72 h. These facts indicated that the crab's Na+/K+-ATPase α-subunit was potentially involved in the observed acute response to low salinity stress.

  8. A candidate gene for X-linked Ocular Albinism (OA1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassi, M.T.; Schiaffino, V.; Rugarli, E.

    1994-09-01

    Ocular Albinism of the Nettleship-Fall type 1 (OA1) is the most common form of ocular albinism. It is transmitted as an X-linked recessive trait with affected males showing severe reduction of visual acuity, nystagmus, strabismus, photophobia. Ophthalmologic examination reveals foveal hypoplasia, hypopigmentation of the retina and iris translucency. Microscopic examination of melanocytes suggests that the underlying defect in OA1 is an abnormality in melanosome formation. Recently we assembled a 350 kb cosmid contig spanning the entire critical region on Xp22.3, which measures approximately 110 kb. A minimum set of cosmids was used to identify transcribed sequences using both cDNA selectionmore » and exon amplification. Two putative exons recovered by exon amplification strategy were found to be highly conserved throughout evolution and, therefore, they were used as probes for the screening of fetal and adult retina cDNA libraries. This led to the isolation of clones spanning a full-length cDNA which measures 7.6 kb. Sequence analysis revealed that the predicted protein product shows homology with syntrophines and a Xenopus laevis apical protein. The gene covers approximately 170 kb of DNA and spans the entire critical region for OA1, being deleted in two patients with contiguous gene deletion including OA1 and in one patient with isolated OA1. Therefore, this new gene represents a very strong candidate for involvement in OA1 (an alternative, but unlikely possibility to be considered is that the true OA1 gene lies within an intron of the former). Northern analysis revealed very high level of expression in retina and melanoma. Unlike most Xp22.3 genes, this gene is conserved in the mouse. We are currently performing SSCP analysis and direct sequencing of exons on DNAs from approximately 60 unrelated patients with OA1 for mutation detection.« less

  9. Molecular Cloning, Bioinformatics Analysis and Expression of Insulin-Like Growth Factor 2 from Tianzhu White Yak, Bos grunniens

    PubMed Central

    Zhang, Quanwei; Gong, Jishang; Wang, Xueying; Wu, Xiaohu; Li, Yalan; Ma, Youji; Zhang, Yong; Zhao, Xingxu

    2014-01-01

    The IGF family is essential for normal embryonic and postnatal development and plays important roles in the immune system, myogenesis, bone metabolism and other physiological functions, which makes the study of its structure and biological characteristics important. Tianzhu white yak (Bos grunniens) domesticated under alpine hypoxia environments, is well adapted to survive and grow against severe hypoxia and cold temperatures for extended periods. In this study, a full coding sequence of the IGF2 gene of Tianzhu white yak was amplified by reverse transcription PCR and rapid-amplification of cDNA ends (RACE) for the first time. The cDNA sequence revealed an open reading frame of 450 nucleotides, encoding a protein with 179 amino acids. Its expression in different tissues was also studied by Real time PCR. Phylogenetic tree analysis indicated that yak IGF2 was similar to Bos taurus, and 3D structure showed high similarity with the human IGF2. The putative full CDS of yak IGF2 was amplified by PCR in five tissues, and cDNA sequence analysis showed high homology to bovine IGF2. Moreover the super secondary structure prediction showed a similar 3D structure with human IGF2. Its conservation in sequence and structure has facilitated research on IGF2 and its physiological function in yak. PMID:24394317

  10. VpWRKY3, a biotic and abiotic stress-related transcription factor from the Chinese wild Vitis pseudoreticulata.

    PubMed

    Zhu, Ziguo; Shi, Jiangli; Cao, Jiangling; He, Mingyang; Wang, Yuejin

    2012-11-01

    Chinese wild grapevine Vitis pseudoreticulata accession 'Baihe-35-1' is identified as the precious resource with multiple resistances to pathogens. A directional cDNA library was constructed from the young leaves inoculated with Erysiphe necator. A total of 3,500 clones were sequenced, yielding 1,727 unigenes. Among them, 762 unigenes were annotated and classified into three classes, respectively, using Gene Ontology, including 22 ESTs related to transcription regulator activity. A novel WRKY transcription factor was isolated from the library, and designated as VpWRKY3 (GenBank Accession No. JF500755). The full-length cDNA is 1,280 bp, encoding a WRKY protein of 320 amino acids. VpWRKY3 is localized to nucleus and functions as a transcriptional activator. QRT-PCR analysis showed that the VpWRKY3 specifically accumulated in response to pathogen, salicylic acid, ethylene and drought stress. Overexpression of VpWRKY3 in tobacco increased the resistance to Ralstonia solanacearum, indicating that VpWRKY3 participates in defense response. Furthermore, VpWRKY3 is also involved in abscisic acid signal pathway and salt stress. This experiment provided an important basis for understanding the defense mechanisms mediated by WRKY genes in China wild grapevine. Generation of the EST collection from the cDNA library provided valuable information for the grapevine breeding. Key message We constructed a cDNA library from Chinese wild grapevine leaves inoculated with powdery mildew. VpWRKY3 was isolated and demonstrated that it was involved in biotic and abiotic stress responses.

  11. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots

    NASA Technical Reports Server (NTRS)

    Wu, L. L.; Mitchell, J. P.; Cohn, N. S.; Kaufman, P. B.

    1993-01-01

    The invertase (EC 3.2.1.26) purified from cell walls of dwarf pea stems to homogeneity has a molecular mass of 64 kilodaltons (kD). Poly(A)+RNA was isolated from shoots of dwarf pea plants, and a cDNA library was constructed using lambda gt11 as an expression vector. The expression cDNA library was screened with polyclonal antibodies against pea cell wall invertase. One invertase cDNA clone was characterized as a full-length cDNA with 1,863 base pairs. Compared with other known invertases, one homologous region in the amino acid sequence was found. The conserved motif, Asn-Asp-Pro-Asn-Gly, is located near the N-terminal end of invertase. Northern blot analysis showed that the amount of invertase mRNA (1.86 kb) was rapidly induced to a maximal level 4 h after GA3 treatment, then gradually decreased to the control level. The mRNA level at 4 h in GA3-treated peas was fivefold higher than that of the control group. The maximal increase in activity of pea cell wall invertase elicited by GA3 occcured at 8 h after GA3 treatment. This invertase isoform was shown immunocytochemically to be localized in the cell walls, where a 10-fold higher accumulation occurred in GA3-treated tissue compared with control tissue. This study indicates that the expression of the pea shoot cell-wall invertase gene could be regulated by GA3 at transcriptional and/or translational levels.

  12. First evidence of molecular characterization of rohu carp Sox2 gene being expressed in proliferating spermatogonial cells.

    PubMed

    Patra, Swagat Kumar; Chakrapani, Vemulawada; Panda, Rudra Prasanna; Mohapatra, Chinmayee; Jayasankar, Pallipuram; Barman, Hirak Kumar

    2015-07-15

    Because little is known about the function of Sox2 (Sry-related box-2) in teleosts, the objective of this study was to clone and characterize Sox2 complementary DNA (cDNA) from the testis of Indian major carp, Labeo rohita (rohu). The full-length cDNA contained an open reading frame of 936 nucleotides bearing the typical structural features. Phylogenetically, Sox2 of L rohita was most closely related to freshwater counterparts than marine water. The sequence information of cDNA and genomic DNA together revealed that the Sox2 gene is encoded by an uninterrupted exon. Furthermore, comparative mRNA expression profile in various organs including proliferating spermatogonial stem cells (SSCs) suggested about the participatory role of Sox2 during fish male germ cell development and maintenance of stem cells. In support, we have also provided evidence that Sox2 protein is indeed present in rohu SSCs by Western blot analysis. The evolutionarily conserved high-mobility group box domain indicated its possible involvement in common networking pathways for stem cell maintenance and pluripotency between mammals and nonmammals. Our findings could be the first step toward the use of Sox2 as a potential biomarker for proliferating SSCs and understanding the transcriptional regulatory network involved during male germ cell development and maintenance in fish species. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high-affinity nitrate transporters of the crnA family.

    PubMed

    Quesada, A; Krapp, A; Trueman, L J; Daniel-Vedele, F; Fernández, E; Forde, B G; Caboche, M

    1997-05-01

    A family of high-affinity nitrate transporters has been identified in Aspergillus nidulans and Chlamydomonas reinhardtii, and recently homologues of this family have been cloned from a higher plant (barley). Based on six of the peptide sequences most strongly conserved between the barley and C. reinhardtii polypeptides, a set of degenerate primers was designed to permit amplification of the corresponding genes from other plant species. The utility of these primers was demonstrated by RT-PCR with cDNA made from poly(A)+ RNA from barley, C. reinhardtii and Nicotiana plumbaginifolia. A PCR fragment amplified from N. plumbaginifolia was used as probe to isolate a full-length cDNA clone which encodes a protein, NRT2;1Np, that is closely related to the previously isolated crnA homologue from barley. Genomic Southern blots indicated that there are only 1 or 2 members of the Nrt2 gene family in N. plumbaginifolia. Northern blotting showed that the Nrt2 transcripts are most strongly expressed in roots. The effects of external treatments with different N sources showed that the regulation of the Nrt2 gene(s) is very similar to that reported for nitrate reductase and nitrite reductase genes: their expression was strongly induced by nitrate but was repressed when reduced forms of N were supplied to the roots.

  14. Identification and Cloning of Centaurin-α

    PubMed Central

    Hammonds-Odie, Latanya P.; Jackson, Trevor R.; Profit, Adam A.; Blader, Ira J.; Turck, Christoph W.; Prestwich, Glenn D.; Theibert, Anne B.

    2015-01-01

    Using an affinity resin and photoaffinity label based on phospholipid analogs of inositol 1,3,4,5-tetrakisphosphate (InsP4), we have isolated, characterized, and cloned a 46-kDa protein from rat brain, which we have named centaurin-α. Binding specificity was determined using displacement of 1-O-[3H](3-[4-benzoyldihydrocinnamidyl]propyl)-InsP4 photoaffinity labeling. Centaurin-α displayed highest affinity for phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) (IC50 = 120 nm), whereas InsP4, PtdInsP2, and InsP3 bound with 5-, 12-, and >50-fold lower affinity, respectively. Screening a rat brain cDNA library with a polymerase chain reaction product, generated using partial amino acid sequence from tryptic peptides, yielded a full-length clone. The 2,450-base pair cDNA contained an open reading frame (ORF) encoding a novel protein of 419 amino acids. Northern analysis revealed a 2.5-kilobase transcript that is highly expressed in brain. The deduced sequence contains a novel putative zinc finger motif, 10 ankyrin-like repeats, and shows homology to recently identified yeast and mammalian Arf GTPase-activating proteins. Given the specificity of binding and enrichment in brain, centaurin-α is a candidate PtdInsP3 receptor that may link the activation of phosphoinositide 3-kinase to downstream responses in the brain. PMID:8702546

  15. A retinoic acid-inducible mRNA from F9 teratocarcinoma cells encodes a novel protease inhibitor homologue.

    PubMed

    Wang, S Y; Gudas, L J

    1990-09-15

    We have previously isolated several cDNA clones specific for mRNA species that increase in abundance during the retinoic acid-associated differentiation of F9 teratocarcinoma stem cells. One of these mRNAs, J6, encodes a approximately 40 kDa protein as assayed by hybrid selection and in vitro translation (Wang, S.-Y., LaRosa, G., and Gudas, L. J. (1985) Dev. Biol. 107, 75-86). The time course of J6 mRNA expression is similar to those of both laminin B1 and collagen IV (alpha 1) messages following retinoic acid addition. To address the functional role of this protein, we have isolated a full-length cDNA clone complementary to this approximately 40-kDa protein mRNA. Sequence analysis reveals an open reading frame of 406 amino acids (Mr 45,652). The carboxyl-terminal portion of this predicted protein contains a region that is homologous to the reactive sites found among members of the serpin (serine protease inhibitor) family. The predicted reactive site (P1-P1') of this J6 protein is Arg-Ser, which is the same as that of antithrombin III. Like ovalbumin and human monocyte-derived plasminogen activator inhibitor (mPAI-2), which are members of the serpin gene family, the J6 protein appears to have no typical amino-terminal signal sequence.

  16. [Construction and functional identification of eukaryotic expression vector carrying Sprague-Dawley rat MSX-2 gene].

    PubMed

    Yang, Xian-Xian; Zhang, Mei; Yan, Zhao-Wen; Zhang, Ru-Hong; Mu, Xiong-Zheng

    2008-01-01

    To construct a high effective eukaryotic expressing plasmid PcDNA 3.1-MSX-2 encoding Sprague-Dawley rat MSX-2 gene for the further study of MSX-2 gene function. The full length SD rat MSX-2 gene was amplified by PCR, and the full length DNA was inserted in the PMD1 8-T vector. It was isolated by restriction enzyme digest with BamHI and Xhol, then ligated into the cloning site of the PcDNA3.1 expression plasmid. The positive recombinant was identified by PCR analysis, restriction endonudease analysis and sequence analysis. Expression of RNA and protein was detected by RT-PCR and Western blot analysis in PcDNA3.1-MSX-2 transfected HEK293 cells. Sequence analysis and restriction endonudease analysis of PcDNA3.1-MSX-2 demonstrated that the position and size of MSX-2 cDNA insertion were consistent with the design. RT-PCR and Western blot analysis showed specific expression of mRNA and protein of MSX-2 in the transfected HEK293 cells. The high effective eukaryotic expression plasmid PcDNA3.1-MSX-2 encoding Sprague-Dawley Rat MSX-2 gene which is related to craniofacial development can be successfully reconstructed. It may serve as the basis for the further study of MSX-2 gene function.

  17. Cloning of TPS gene from eelgrass species Zostera marina and its functional identification by genetic transformation in rice.

    PubMed

    Zhao, Feng; Li, Qiuying; Weng, Manli; Wang, Xiuliang; Guo, Baotai; Wang, Li; Wang, Wei; Duan, Delin; Wang, Bin

    2013-12-01

    The full-length cDNA sequence (2613 bp) of the trehalose-6-phosphate synthase (TPS) gene of eelgrass Zostera marina (ZmTPS) was identified and cloned. Z. marina is a kind of seed-plant growing in sea water during its whole life history. The open reading frame (ORF) region of ZmTPS gene encodes a protein of 870 amino acid residues and a stop codon. The corresponding genomic DNA sequence is 3770 bp in length, which contains 3 exons and 2 introns. The ZmTPS gene was transformed into rice variety ZH11 via Agrobacterium-mediated transformation method. After antibiotic screening, molecular characterization, salt-tolerance and trehalose content determinations, two transgenic lines resistant to 150 mM NaCL solutions were screened. Our study results indicated that the ZmTPS gene was integrated into the genomic DNA of the two transgenic rice lines and could be expressed well. Moreover, the detection of the transformed ZmTPS gene in the progenies of the two transgenic lines was performed from T1 to T4 generations; and results suggested that the transformed ZmTPS gene can be transmitted from parent to the progeny in transgenic rice. © 2013.

  18. Construction and characterization of a full-length infectious cDNA clone of foot-and-mouth disease virus strain O/JPN/2010 isolated in Japan in 2010.

    PubMed

    Nishi, Tatsuya; Onozato, Hiroyuki; Ohashi, Seiichi; Fukai, Katsuhiko; Yamada, Manabu; Morioka, Kazuki; Kanno, Toru

    2016-06-01

    A full-length infectious cDNA clone of the genome of a foot-and-mouth disease virus isolated from the 2010 epidemic in Japan was constructed and designated pSVL-f02. Transfection of Cos-7 or IBRS-2 cells with this clone allowed the recovery of infectious virus. The recovered virus had the same in vitro characterization as the parental virus with regard to antigenicity in neutralization and indirect immunofluorescence tests, plaque size and one-step growth. Pigs were experimentally infected with the parental virus or the recombinant virus recovered from pSVL-f02 transfected cells. There were no significant differences in clinical signs or antibody responses between the two groups, and virus isolation and viral RNA detection from clinical samples were similar. Virus recovered from transfected cells therefore retained the in vitro characteristics and the in vivo pathogenicity of their parental strain. This cDNA clone should be a valuable tool to analyze determinants of pathogenicity and mechanisms of virus replication, and to develop genetically engineered vaccines against foot-and-mouth disease virus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Molecular characterization of melanin-concentrating hormone (MCH) in Schizothorax prenanti: cloning, tissue distribution and role in food intake regulation.

    PubMed

    Wang, Tao; Yuan, Dengyue; Zhou, Chaowei; Lin, Fangjun; Wei, Rongbin; Chen, Hu; Wu, Hongwei; Xin, Zhiming; Liu, Ju; Gao, Yundi; Chen, Defang; Yang, Shiyong; Wang, Yan; Pu, Yundan; Li, Zhiqiong

    2016-06-01

    Melanin-concentrating hormone (MCH) is a crucial neuropeptide involved in various biological functions in both mammals and fish. In this study, the full-length MCH cDNA was obtained from Schizothorax prenanti by rapid amplification of cDNA ends polymerase chain reaction. The full-length MCH cDNA contained 589 nucleotides including an open reading frame of 375 nucleotides encoding 256 amino acids. MCH mRNA was highly expressed in the brain by real-time quantitative PCR analysis. Within the brain, expression of MCH mRNA was preponderantly detected in the hypothalamus. In addition, the MCH mRNA expression in the S. prenanti hypothalamus of fed group was significantly decreased compared with the fasted group at 1 and 3 h post-feeding, respectively. Furthermore, the MCH gene expression presented significant increase in the hypothalamus of fasted group compared with the fed group during long-term fasting. After re-feeding, there was a dramatic decrease in MCH mRNA expression in the hypothalamus of S. prenanti. The results indicate that the expression of MCH is affected by feeding status. Taken together, our results suggest that MCH may be involved in food intake regulation in S. prenanti.

  20. A gene variation of 14-3-3 zeta isoform in rat hippocampus.

    PubMed

    Murakami, K; Situ, S Y; Eshete, F

    1996-11-14

    A variant form of 14-3-3 zeta was isolated from the rat hippocampal cDNA library. The cloned cDNA is 1687 bp in length and it contains an entire ORF (nt = 63-797) with 245 amino acids that is characteristic to 14-3-3 zeta subtype. By comparing with reported sequences of 14-3-3 zeta, we found three nucleotide substitutions within the coding sequence in our clone; C<-->T transition at nt = 325 and G<-->C transversions at nt = 387 and 388. Both are missense mutations, leading ACG (Thr) to ATG (Met) and CGT (Arg) to GCT (Ala) conversions at residue 88 and 109, respectively. Our results show that at least three different genetic variants of 14-3-3 zeta are present in rat species which results in protein variations. Such mutation in the amino acid sequence is an important indication of the diverse functions of this protein and may also contribute to the recent contradictory observations regarding the role of the 14-3-3 zeta subtype.

  1. Partial nucleotide sequences, and routine typing by polymerase chain reaction-restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydrogenase, LDH-C1*90 and *100 alleles.

    PubMed

    McMeel, O M; Hoey, E M; Ferguson, A

    2001-01-01

    The cDNA nucleotide sequences of the lactate dehydrogenase alleles LDH-C1*90 and *100 of brown trout (Salmo trutta) were found to differ at position 308 where an A is present in the *100 allele but a G is present in the *90 allele. This base substitution results in an amino acid change from aspartic acid at position 82 in the LDH-C1 100 allozyme to a glycine in the 90 allozyme. Since aspartic acid has a net negative charge whilst glycine is uncharged, this is consistent with the electrophoretic observation that the LDH-C1 100 allozyme has a more anodal mobility relative to the LDH-C1 90 allozyme. Based on alignment of the cDNA sequence with the mouse genomic sequence, a local primer set was designed, incorporating the variable position, and was found to give very good amplification with brown trout genomic DNA. Sequencing of this fragment confirmed the difference in both homozygous and heterozygous individuals. Digestion of the polymerase chain reaction products with BslI, a restriction enzyme specific for the site difference, gave one, two and three fragments for the two homozygotes and the heterozygote, respectively, following electrophoretic separation. This provides a DNA-based means of routine screening of the highly informative LDH-C1* polymorphism in brown trout population genetic studies. Primer sets presented could be used to sequence cDNA of other LDH* genes of brown trout and other species.

  2. A catalog for the transcripts from the venomous structures of the caterpillar Lonomia obliqua: identification of the proteins potentially involved in the coagulation disorder and hemorrhagic syndrome

    PubMed Central

    Veiga, Ana B. G.; Ribeiro, José M. C.; Guimarães, Jorge A.; Francischetti, Ivo M.B.

    2010-01-01

    Accidents with the caterpillar Lonomia obliqua are often associated with a coagulation disorder and hemorrhagic syndrome in humans. In the present study, we have constructed cDNA libraries from two venomous structures of the caterpillar, namely the tegument and the bristle. High-throughput sequencing and bioinformatics analyses were performed in parallel. Over one thousand cDNAs were obtained and clustered to produce a database of 538 contigs and singletons (clusters) for the tegument library and 368 for the bristle library. We have thus identified dozens of full-length cDNAs coding for proteins with sequence homology to snake venom prothrombin activator, trypsin-like enzymes, blood coagulation factors and prophenoloxidase cascade activators. We also report cDNA coding for cysteine proteases, Group III phospholipase A2, C-type lectins, lipocalins, in addition to protease inhibitors including serpins, Kazal-type inhibitors, cystatins and trypsin inhibitor-like molecules. Antibacterial proteins and housekeeping genes are also described. A significant number of sequences were devoid of database matches, suggesting that their biologic function remains to be defined. We also report the N-terminus of the most abundant proteins present in the bristle, tegument, hemolymph, and "cryosecretion". Thus, we have created a catalog that contains the predicted molecular weight, isoelectric point, accession number, and putative function for each selected molecule from the venomous structures of L. obliqua. The role of these molecules in the coagulation disorder and hemorrhagic syndrome caused by envenomation with this caterpillar is discussed. All sequence information and the Supplemental Data, including Figures and Tables with hyperlinks to FASTA-formatted files for each contig and the best match to the Databases, are available at http://www.ncbi.nih.gov/projects/omes. PMID:16023793

  3. Cloning, sequencing, purification, and crystal structure of Grenache (Vitis vinifera) polyphenol oxidase.

    PubMed

    Virador, Victoria M; Reyes Grajeda, Juan P; Blanco-Labra, Alejandro; Mendiola-Olaya, Elizabeth; Smith, Gary M; Moreno, Abel; Whitaker, John R

    2010-01-27

    The full-length cDNA sequence (P93622_VITVI) of polyphenol oxidase (PPO) cDNA from grape Vitis vinifera L., cv Grenache, was found to encode a translated protein of 607 amino acids with an expected molecular weight of ca. 67 kDa and a predicted pI of 6.83. The translated amino acid sequence was 99%, identical to that of a white grape berry PPO (1) (5 out of 607 amino acid potential sequence differences). The protein was purified from Grenache grape berries by using traditional methods, and it was crystallized with ammonium acetate by the hanging-drop vapor diffusion method. The crystals were orthorhombic, space group C222(1). The structure was obtained at 2.2 A resolution using synchrotron radiation using the 39 kDa isozyme of sweet potato PPO (PDB code: 1BT1 ) as a phase donor. The basic symmetry of the cell parameters (a, b, and c and alpha, beta, and gamma) as well as in the number of asymmetric units in the unit cell of the crystals of PPO, differed between the two proteins. The structures of the two enzymes are quite similar in overall fold, the location of the helix bundles at the core, and the active site in which three histidines bind each of the two catalytic copper ions, and one of the histidines is engaged in a thioether linkage with a cysteine residue. The possibility that the formation of the Cys-His thioether linkage constitutes the activation step is proposed. No evidence of phosphorylation or glycoslyation was found in the electron density map. The mass of the crystallized protein appears to be only 38.4 kDa, and the processing that occurs in the grape berry that leads to this smaller size is discussed.

  4. Centrocins: isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis.

    PubMed

    Li, Chun; Haug, Tor; Moe, Morten K; Styrvold, Olaf B; Stensvåg, Klara

    2010-09-01

    As immune effector molecules, antimicrobial peptides (AMPs) play an important role in the invertebrate immune system. Here, we present two novel AMPs, named centrocins 1 (4.5kDa) and 2 (4.4kDa), purified from coelomocyte extracts of the green sea urchin, Strongylocentrotus droebachiensis. The native peptides are cationic and show potent activities against Gram-positive and Gram-negative bacteria. The centrocins have an intramolecular heterodimeric structure, containing a heavy chain (30 amino acids) and a light chain (12 amino acids). The cDNA encoding the peptides and genomic sequences were cloned and sequenced. One putative isoform (centrocin 1b) was identified and one intron was found in the genes coding for the centrocins. The full length protein sequence of centrocin 1 consists of 119 amino acids, whereas centrocin 2 consists of 118 amino acids which both include a preprosequence of 51 or 50 amino acids for centrocins 1 and 2, respectively, and an interchain of 24 amino acids between the heavy and light chain. The difference of molecular mass between the native centrocins and the deduced sequences from cDNA indicates that the native centrocins contain a post-translational brominated tryptophan. In addition, two amino acids at the C-terminal, Gly-Arg, were removed from the light chains during the post-translational processing. The separate peptide chains of centrocin 1 were synthesized and the heavy chain alone was shown to be sufficient for antimicrobial activity. The genome of the closely related species, the purple sea urchin (S. purpuratus), was shown to contain two putative proteins with high similarity to the centrocins. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Genomic structure and promoter functional analysis of GnRH3 gene in large yellow croaker (Larimichthys crocea).

    PubMed

    Huang, Wei; Zhang, Jianshe; Liao, Zhi; Lv, Zhenming; Wu, Huifei; Zhu, Aiyi; Wu, Changwen

    2016-01-15

    Gonadotropin-releasing hormone III (GnRH3) is considered to be a key neurohormone in fish reproduction control. In the present study, the cDNA and genomic sequences of GnRH3 were cloned and characterized from large yellow croaker Larimichthys crocea. The cDNA encoded a protein of 99 amino acids with four functional motifs. The full-length genome sequence was composed of 3797 nucleotides, including four exons and three introns. Higher identities of amino acid sequences and conserved exon-intron organizations were found between LcGnRH3 and other GnRH3 genes. In addition, some special features of the sequences were detected in partial species. For example, two specific residues (V and A) were found in the family Sciaenidae, and the unique 75-72 bp type of the open reading frame 2 and 3 existed in the family Cyprinidae. Analysis of the 2576 bp promoter fragment of LcGnRH3 showed a number of transcription factor binding sites, such as AP1, CREB, GATA-1, HSF, FOXA2, and FOXL1. Promoter functional analysis using an EGFP reporter fusion in zebrafish larvae presented positive signals in the brain, including the olfactory region, the terminal nerve ganglion, the telencephalon, and the hypothalamus. The expression pattern was generally consistent with the endogenous GnRH3 GFP-expressing transgenic zebrafish lines, but the details were different. These results indicate that the structure and function of LcGnRH3 are generally similar to the other teleost GnRH3 genes, but there exist some distinctions among them. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Analysis of the leaf transcriptome of Musa acuminata during interaction with Mycosphaerella musicola: gene assembly, annotation and marker development

    PubMed Central

    2013-01-01

    Background Although banana (Musa sp.) is an important edible crop, contributing towards poverty alleviation and food security, limited transcriptome datasets are available for use in accelerated molecular-based breeding in this genus. 454 GS-FLX Titanium technology was employed to determine the sequence of gene transcripts in genotypes of Musa acuminata ssp. burmannicoides Calcutta 4 and M. acuminata subgroup Cavendish cv. Grande Naine, contrasting in resistance to the fungal pathogen Mycosphaerella musicola, causal organism of Sigatoka leaf spot disease. To enrich for transcripts under biotic stress responses, full length-enriched cDNA libraries were prepared from whole plant leaf materials, both uninfected and artificially challenged with pathogen conidiospores. Results The study generated 846,762 high quality sequence reads, with an average length of 334 bp and totalling 283 Mbp. De novo assembly generated 36,384 and 35,269 unigene sequences for M. acuminata Calcutta 4 and Cavendish Grande Naine, respectively. A total of 64.4% of the unigenes were annotated through Basic Local Alignment Search Tool (BLAST) similarity analyses against public databases. Assembled sequences were functionally mapped to Gene Ontology (GO) terms, with unigene functions covering a diverse range of molecular functions, biological processes and cellular components. Genes from a number of defense-related pathways were observed in transcripts from each cDNA library. Over 99% of contig unigenes mapped to exon regions in the reference M. acuminata DH Pahang whole genome sequence. A total of 4068 genic-SSR loci were identified in Calcutta 4 and 4095 in Cavendish Grande Naine. A subset of 95 potential defense-related gene-derived simple sequence repeat (SSR) loci were validated for specific amplification and polymorphism across M. acuminata accessions. Fourteen loci were polymorphic, with alleles per polymorphic locus ranging from 3 to 8 and polymorphism information content ranging from 0.34 to 0.82. Conclusions A large set of unigenes were characterized in this study for both M. acuminata Calcutta 4 and Cavendish Grande Naine, increasing the number of public domain Musa ESTs. This transcriptome is an invaluable resource for furthering our understanding of biological processes elicited during biotic stresses in Musa. Gene-based markers will facilitate molecular breeding strategies, forming the basis of genetic linkage mapping and analysis of quantitative trait loci. PMID:23379821

  7. Efficient and simpler method to construct normalized cDNA libraries with improved representations of full-length cDNAs

    DOEpatents

    Soares, Marcelo Bento; Bonaldo, Maria de Fatima

    1998-01-01

    This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods.

  8. Efficient and simpler method to construct normalized cDNA libraries with improved representations of full-length cDNAs

    DOEpatents

    Soares, M.B.; Fatima Bonaldo, M. de

    1998-12-08

    This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods. 25 figs.

  9. Porcine MAP3K5 analysis: molecular cloning, characterization, tissue expression pattern, and copy number variations associated with residual feed intake.

    PubMed

    Pu, L; Zhang, L C; Zhang, J S; Song, X; Wang, L G; Liang, J; Zhang, Y B; Liu, X; Yan, H; Zhang, T; Yue, J W; Li, N; Wu, Q Q; Wang, L X

    2016-08-12

    Mitogen-activated protein kinase kinase kinase 5 (MAP3K5) is essential for apoptosis, proliferation, differentiation, and immune responses, and is a candidate marker for residual feed intake (RFI) in pig. We cloned the full-length cDNA sequence of porcine MAP3K5 by rapid-amplification of cDNA ends. The 5451-bp gene contains a 5'-untranslated region (UTR) (718 bp), a coding region (3738 bp), and a 3'-UTR (995 bp), and encodes a peptide of 1245 amino acids, which shares 97, 99, 97, 93, 91, and 84% sequence identity with cattle, sheep, human, mouse, chicken, and zebrafish MAP3K5, respectively. The deduced MAP3K5 protein sequence contains two conserved domains: a DUF4071 domain and a protein kinase domain. Phylogenetic analysis showed that porcine MAP3K5 forms a separate branch to vicugna and camel MAP3K5. Tissue expression analysis using real-time quantitative polymerase chain reaction (qRT-PCR) revealed that MAP3K5 was expressed in the heart, liver, spleen, lung, kidney, muscle, fat, pancrea, ileum, and stomach tissues. Copy number variation was detected for porcine MAP3K5 and validated by qRT-PCR. Furthermore, a significant increase in average copy number was detected in the low RFI group when compared to the high RFI group in a Duroc pig population. These results provide useful information regarding the influence of MAP3K5 on RFI in pigs.

  10. Automated multiplex genome-scale engineering in yeast

    PubMed Central

    Si, Tong; Chao, Ran; Min, Yuhao; Wu, Yuying; Ren, Wen; Zhao, Huimin

    2017-01-01

    Genome-scale engineering is indispensable in understanding and engineering microorganisms, but the current tools are mainly limited to bacterial systems. Here we report an automated platform for multiplex genome-scale engineering in Saccharomyces cerevisiae, an important eukaryotic model and widely used microbial cell factory. Standardized genetic parts encoding overexpression and knockdown mutations of >90% yeast genes are created in a single step from a full-length cDNA library. With the aid of CRISPR-Cas, these genetic parts are iteratively integrated into the repetitive genomic sequences in a modular manner using robotic automation. This system allows functional mapping and multiplex optimization on a genome scale for diverse phenotypes including cellulase expression, isobutanol production, glycerol utilization and acetic acid tolerance, and may greatly accelerate future genome-scale engineering endeavours in yeast. PMID:28469255

  11. TCOF1 gene encodes a putative nucleolar phosphoprotein that exhibits mutations in Treacher Collins Syndrome throughout its coding region.

    PubMed

    Wise, C A; Chiang, L C; Paznekas, W A; Sharma, M; Musy, M M; Ashley, J A; Lovett, M; Jabs, E W

    1997-04-01

    Treacher Collins Syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. Recently, a partial TCOF1 cDNA was identified and shown to contain mutations in TCS families. Here we present the entire exon/intron genomic structure and the complete coding sequence of TCOF1. TCOF1 encodes a low complexity protein of 1,411 amino acids, whose predicted protein structure reveals repeated motifs that mirror the organization of its exons. These motifs are shared with nucleolar trafficking proteins in other species and are predicted to be highly phosphorylated by casein kinase. Consistent with this, the full-length TCOF1 protein sequence also contains putative nuclear and nucleolar localization signals. Throughout the open reading frame, we detected an additional eight mutations in TCS families and several polymorphisms. We postulate that TCS results from defects in a nucleolar trafficking protein that is critically required during human craniofacial development.

  12. TCOF1 gene encodes a putative nucleolar phosphoprotein that exhibits mutations in Treacher Collins Syndrome throughout its coding region

    PubMed Central

    Wise, Carol A.; Chiang, Lydia C.; Paznekas, William A.; Sharma, Mridula; Musy, Maurice M.; Ashley, Jennifer A.; Lovett, Michael; Jabs, Ethylin W.

    1997-01-01

    Treacher Collins Syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. Recently, a partial TCOF1 cDNA was identified and shown to contain mutations in TCS families. Here we present the entire exon/intron genomic structure and the complete coding sequence of TCOF1. TCOF1 encodes a low complexity protein of 1,411 amino acids, whose predicted protein structure reveals repeated motifs that mirror the organization of its exons. These motifs are shared with nucleolar trafficking proteins in other species and are predicted to be highly phosphorylated by casein kinase. Consistent with this, the full-length TCOF1 protein sequence also contains putative nuclear and nucleolar localization signals. Throughout the open reading frame, we detected an additional eight mutations in TCS families and several polymorphisms. We postulate that TCS results from defects in a nucleolar trafficking protein that is critically required during human craniofacial development. PMID:9096354

  13. Characterization of the molecular chaperone calnexin in the channel catfish, Ictalurus punctatus, and its association with MHC class II molecules.

    PubMed

    Fuller, James R; Pitzer, Joshua E; Godwin, Ulla; Albertino, Mark; Machon, Benjamin D; Kearse, Kelly P; McConnell, Thomas J

    2004-05-17

    Folding and assembly of MHC molecules in mammals occurs in the endoplasmic reticulum (ER), but has not been studied in teleosts. Calnexin (CNX) is an ER chaperone that associates with glycoproteins bearing a monoglucosylated N-linked oligosaccharide side chain. Here we report the first identification and characterization of a full-length CNX cDNA clone in a teleost, and the association of the CNX chaperone with MHC class II in a channel catfish T cell line. The 1.8 kb CNX clone encodes a protein of 607 amino acids that is 72% identical to the consensus sequence of mammalian CNXs. The association of CNX with class II is of particular interest because the native MHC class II alpha chain of Ictalurus punctatus does not bear any N-linked oligosaccharide consensus glycosylation sequences. Thus the assembly of class II molecules in the catfish probably proceeds via different steps than occurs in mammals. Copyright 2003 Elsevier Ltd.

  14. Cloning and Expression Analysis of the Bombyx mori α-amylase Gene (Amy) from the Indigenous Thai Silkworm Strain, Nanglai

    PubMed Central

    Ngernyuang, Nipaporn; Kobayashi, Isao; Promboon, Amornrat; Ratanapo, Sunanta; Tamura, Toshiki; Ngernsiri, Lertluk

    2011-01-01

    α-Amylase is a common enzyme for hydrolyzing starch. In the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), α-amylase is found in both digestive fluid and hemolymph. Here, the complete genomic sequence of the Amy gene encoding α-amylase from a local Thai silkworm, the Nanglai strain, was obtained. This gene was 7981 bp long with 9 exons. The full length Amy cDNA sequence was 1749 bp containing a 1503 bp open reading frame. The ORF encoded 500 amino acid residues. The deduced protein showed 81–54% identity to other insect α-amylases and more than 50% identity to mammalian enzymes. Southern blot analysis revealed that in the Nanglai strain Amy is a single-copy gene. RT- PCR showed that Amy was transcribed only in the foregut. Transgenic B. mori also showed that the Amy promoter activates expression of the transgene only in the foregut. PMID:21529256

  15. Salt Sensitive Tet-Off-Like Systems to Knockdown Primordial Germ Cell Genes for Repressible Transgenic Sterilization in Channel Catfish, Ictalurus punctatus

    PubMed Central

    Li, Hanbo; Su, Baofeng; Qin, Guyu; Ye, Zhi; Alsaqufi, Ahmed; Perera, Dayan A.; Shang, Mei; Odin, Ramjie; Vo, Khoi; Drescher, David; Robinson, Dalton; Zhang, Dan; Abass, Nermeen; Dunham, Rex A.

    2017-01-01

    Repressible knockdown approaches were investigated for transgenic sterilization in channel catfish, Ictalurus punctatus. Two primordial germ cell (PGC) marker genes, nanos and dead end, were targeted for knockdown, and an off-target gene, vasa, was monitored. Two potentially salt sensitive repressible promoters, zebrafish adenylosuccinate synthase 2 (ADSS) and zebrafish racemase (Rm), were each coupled with four knockdown strategies: ds-sh RNA targeting the 5′ end (N1) or 3′ end (N2) of channel catfish nanos, full-length cDNA sequence of channel catfish nanos for overexpression (cDNA) and ds-sh RNA targeting channel catfish dead end (DND). Each construct had an untreated group and treated group with sodium chloride as the repressor compound. Spawning rates of full-sibling P1 fish exposed or not exposed to the constructs as treated and untreated embryos were 93% and 59%, respectively, indicating potential sterilization of fish and repression of the constructs. Although the mRNA expression data of PGC marker genes were inconsistent in P1 fish, most F1 individuals were able to downregulate the target genes in untreated groups and repress the knockdown process in treated groups. The results indicate that repressible transgenic sterilization is feasible for reproductive control of fish, but more data from F2 or F3 are needed for evaluation. PMID:28561774

  16. Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags

    PubMed Central

    de Souza, Sandro J.; Camargo, Anamaria A.; Briones, Marcelo R. S.; Costa, Fernando F.; Nagai, Maria Aparecida; Verjovski-Almeida, Sergio; Zago, Marco A.; Andrade, Luis Eduardo C.; Carrer, Helaine; El-Dorry, Hamza F. A.; Espreafico, Enilza M.; Habr-Gama, Angelita; Giannella-Neto, Daniel; Goldman, Gustavo H.; Gruber, Arthur; Hackel, Christine; Kimura, Edna T.; Maciel, Rui M. B.; Marie, Suely K. N.; Martins, Elizabeth A. L.; Nóbrega, Marina P.; Paçó-Larson, Maria Luisa; Pardini, Maria Inês M. C.; Pereira, Gonçalo G.; Pesquero, João Bosco; Rodrigues, Vanderlei; Rogatto, Silvia R.; da Silva, Ismael D. C. G.; Sogayar, Mari C.; de Fátima Sonati, Maria; Tajara, Eloiza H.; Valentini, Sandro R.; Acencio, Marcio; Alberto, Fernando L.; Amaral, Maria Elisabete J.; Aneas, Ivy; Bengtson, Mário Henrique; Carraro, Dirce M.; Carvalho, Alex F.; Carvalho, Lúcia Helena; Cerutti, Janete M.; Corrêa, Maria Lucia C.; Costa, Maria Cristina R.; Curcio, Cyntia; Gushiken, Tsieko; Ho, Paulo L.; Kimura, Elza; Leite, Luciana C. C.; Maia, Gustavo; Majumder, Paromita; Marins, Mozart; Matsukuma, Adriana; Melo, Analy S. A.; Mestriner, Carlos Alberto; Miracca, Elisabete C.; Miranda, Daniela C.; Nascimento, Ana Lucia T. O.; Nóbrega, Francisco G.; Ojopi, Élida P. B.; Pandolfi, José Rodrigo C.; Pessoa, Luciana Gilbert; Rahal, Paula; Rainho, Claudia A.; da Ro's, Nancy; de Sá, Renata G.; Sales, Magaly M.; da Silva, Neusa P.; Silva, Tereza C.; da Silva, Wilson; Simão, Daniel F.; Sousa, Josane F.; Stecconi, Daniella; Tsukumo, Fernando; Valente, Valéria; Zalcberg, Heloisa; Brentani, Ricardo R.; Reis, Luis F. L.; Dias-Neto, Emmanuel; Simpson, Andrew J. G.

    2000-01-01

    Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central coding regions of the resulting transcripts. They are termed ORF expressed sequence tags (ORESTES). The 250,000 ORESTES were assembled into 81,429 contigs. Of these, 1,181 (1.45%) were found to match sequences in chromosome 22 with at least one ORESTES contig for 162 (65.6%) of the 247 known genes, for 67 (44.6%) of the 150 related genes, and for 45 of the 148 (30.4%) EST-predicted genes on this chromosome. Using a set of stringent criteria to validate our sequences, we identified a further 219 previously unannotated transcribed sequences on chromosome 22. Of these, 171 were in fact also defined by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTES sequences defined 48 transcribed sequences on chromosome 22 not defined by other sequences. All of the transcribed sequences defined by ORESTES coincided with DNA regions predicted as encoding exons by genscan. (http://genes.mit.edu/GENSCAN.html). PMID:11070084

  17. Purification and molecular cloning of SH2- and SH3-containing inositol polyphosphate-5-phosphatase, which is involved in the signaling pathway of granulocyte-macrophage colony-stimulating factor, erythropoietin, and Bcr-Abl.

    PubMed

    Odai, H; Sasaki, K; Iwamatsu, A; Nakamoto, T; Ueno, H; Yamagata, T; Mitani, K; Yazaki, Y; Hirai, H

    1997-04-15

    Grb2/Ash and Shc are the adapter proteins that link tyrosine-kinase receptors to Ras and make tyrosine-kinase functionally associated with receptors and Ras in fibroblasts and hematopoietic cells. Grb2/Ash and Shc have the SH3, SH2, or phosphotyrosine binding domains. These domains bind to proteins containing proline-rich regions or tyrosine-phosphorylated proteins and contribute to the association of Grb2/Ash and Shc with other signaling molecules. However, there could remain unidentified signaling molecules that physically and functionally interact with these adapter proteins and have biologically important roles in the signaling pathways. By using the GST fusion protein including the full length of Grb2/Ash, we have found that c-Cbl and an unidentified 135-kD protein (pp135) are associated with Grb2/Ash. We have also found that they become tyrosine-phosphorylated by treatment of a human leukemia cell line, UT-7, with granulocyte-macrophage colony-stimulating factor (GM-CSF). We have purified the pp135 by using GST-Grb2/Ash affinity column and have isolated the full-length complementary DNA (cDNA) encoding the pp135 using a cDNA probe, which was obtained by the degenerate polymerase chain reaction based on a peptide sequence of the purified pp135. The cloned cDNA has 3,958 nucleotides that contain a single long open reading frame of 3,567 nucleotides, encoding a 1,189 amino acid protein with a predicted molecular weight of approximately 133 kD. The deduced amino acid sequence reveals that pp135 is a protein that has one SH2, one SH3, and one proline-rich domain. The pp135, which contains two motifs conserved among the inositol polyphosphate-5-phosphatase proteins, was shown to have the inositol polyphosphate-5-phosphatase activity. The pp135 was revealed to associate constitutively with Grb2/Ash and inducibly with Shc using UT-7 cells stimulated with GM-CSF. In the cell lines derived from human chronic myelogenous leukemia, pp135 was constitutively tyrosine-phosphorylated and associated with Shc and Bcr-Abl. These facts suggest that pp135 is a signaling molecule that has a unique enzymatic activity and should play an important role in the signaling pathway triggered by GM-CSF and in the transformation of hematopoietic cells caused by Bcr-Abl.

  18. Identification and activity of a lower eukaryotic serine proteinase inhibitor (serpin) from Cyanea capillata: analysis of a jellyfish serpin, jellypin.

    PubMed

    Cole, Elisabeth B; Miller, David; Rometo, David; Greenberg, Robert M; Brömme, Dieter; Cataltepe, Sule; Pak, Stephen C; Mills, David R; Silverman, Gary A; Luke, Cliff J

    2004-09-21

    Delineating the phylogenetic relationships among members of a protein family can provide a high degree of insight into the evolution of domain structure and function relationships. To identify an early metazoan member of the high molecular weight serine proteinase inhibitor (serpin) superfamily, we initiated a cDNA library screen of the cnidarian, Cyanea capillata. We identified one serpin cDNA encoding for a full-length serpin, jellypin. Phylogenetic analysis using the deduced amino acid sequence showed that jellypin was most similar to the platyhelminthe Echinococcus multiocularis serpin and the clade P serpins, suggesting that this serpin evolved approximately 1000 million years ago (MYA). Modeling of jellypin showed that it contained all the functional elements of an inhibitory serpin. In vitro biochemical analysis confirmed that jellypin was an inhibitor of the S1 clan SA family of serine proteinases. Analysis of the interactions between the human serine proteinases, chymotrypsin, cathepsin G, and elastase, showed that jellypin inhibited these enzymes in the classical serpin manner, forming a SDS stable enzyme/inhibitor complex. These data suggest that the coevolution of serpin structure and inhibitory function date back to at least early metazoan evolution, approximately 1000 MYA.

  19. Molecular identification and expression analysis of a natural killer cell enhancing factor (NKEF) from rock bream Oplegnathus fasciatus and the biological activity of its recombinant protein

    PubMed Central

    Kim, Ju-Won; Choi, Hye-Sung; Kwon, Mun-Gyeong; Park, Myoung-Ae; Hwang, Jee-Youn; Kim, Do-Hyung; Park, Chan-Il

    2011-01-01

    Natural killer cell enhancing factor (NKEF) belongs to the defined peroxiredoxin (Prx) family. Rock bream NKEF cDNA was identified by expressed sequence tag (EST) analysis of rock bream liver that was stimulated with the LPS. The full-length RbNKEF cDNA (1062 bp) contained an open reading frame (ORF) of 594 bp encoding 198 amino acids. RbNKEF was significantly expressed in the gill, liver, and intestine. mRNA expression of NKEF in the head kidney was examined under viral and bacterial challenge via real-time RT-PCR. Experimental challenge of rock bream with Edwardsiella tarda, Streptococcus iniae, and RSIV resulted in significant increases in RbNKEF mRNA in the head kidney. To obtain a recombinant NKEF, the RbNKEF ORF was expressed in Escherichia coli BL21 (DE3), and the purified soluble protein exhibited a single band corresponding to the predicted molecular mass. When kidney leucocytes were treated with a high concentration of rRbNKEF (10 μg/mL), they exhibited significantly enhanced cell proliferation and viability under oxidative stress. PMID:24371552

  20. Structure of the coding region and mRNA variants of the apyrase gene from pea (Pisum sativum)

    NASA Technical Reports Server (NTRS)

    Shibata, K.; Abe, S.; Davies, E.

    2001-01-01

    Partial amino acid sequences of a 49 kDa apyrase (ATP diphosphohydrolase, EC 3.6.1.5) from the cytoskeletal fraction of etiolated pea stems were used to derive oligonucleotide DNA primers to generate a cDNA fragment of pea apyrase mRNA by RT-PCR and these primers were used to screen a pea stem cDNA library. Two almost identical cDNAs differing in just 6 nucleotides within the coding regions were found, and these cDNA sequences were used to clone genomic fragments by PCR. Two nearly identical gene fragments containing 8 exons and 7 introns were obtained. One of them (H-type) encoded the mRNA sequence described by Hsieh et al. (1996) (DDBJ/EMBL/GenBank Z32743), while the other (S-type) differed by the same 6 nucleotides as the mRNAs, suggesting that these genes may be alleles. The six nucleotide differences between these two alleles were found solely in the first exon, and these mutation sites had two types of consensus sequences. These mRNAs were found with varying lengths of 3' untranslated regions (3'-UTR). There are some similarities between the 3'-UTR of these mRNAs and those of actin and actin binding proteins in plants. The putative roles of the 3'-UTR and alternative polyadenylation sites are discussed in relation to their possible role in targeting the mRNAs to different subcellular compartments.

  1. A Universal Next-Generation Sequencing Protocol To Generate Noninfectious Barcoded cDNA Libraries from High-Containment RNA Viruses

    PubMed Central

    Moser, Lindsey A.; Ramirez-Carvajal, Lisbeth; Puri, Vinita; Pauszek, Steven J.; Matthews, Krystal; Dilley, Kari A.; Mullan, Clancy; McGraw, Jennifer; Khayat, Michael; Beeri, Karen; Yee, Anthony; Dugan, Vivien; Heise, Mark T.; Frieman, Matthew B.; Rodriguez, Luis L.; Bernard, Kristen A.; Wentworth, David E.

    2016-01-01

    ABSTRACT Several biosafety level 3 and/or 4 (BSL-3/4) pathogens are high-consequence, single-stranded RNA viruses, and their genomes, when introduced into permissive cells, are infectious. Moreover, many of these viruses are select agents (SAs), and their genomes are also considered SAs. For this reason, cDNAs and/or their derivatives must be tested to ensure the absence of infectious virus and/or viral RNA before transfer out of the BSL-3/4 and/or SA laboratory. This tremendously limits the capacity to conduct viral genomic research, particularly the application of next-generation sequencing (NGS). Here, we present a sequence-independent method to rapidly amplify viral genomic RNA while simultaneously abolishing both viral and genomic RNA infectivity across multiple single-stranded positive-sense RNA (ssRNA+) virus families. The process generates barcoded DNA amplicons that range in length from 300 to 1,000 bp, which cannot be used to rescue a virus and are stable to transport at room temperature. Our barcoding approach allows for up to 288 barcoded samples to be pooled into a single library and run across various NGS platforms without potential reconstitution of the viral genome. Our data demonstrate that this approach provides full-length genomic sequence information not only from high-titer virion preparations but it can also recover specific viral sequence from samples with limited starting material in the background of cellular RNA, and it can be used to identify pathogens from unknown samples. In summary, we describe a rapid, universal standard operating procedure that generates high-quality NGS libraries free of infectious virus and infectious viral RNA. IMPORTANCE This report establishes and validates a standard operating procedure (SOP) for select agents (SAs) and other biosafety level 3 and/or 4 (BSL-3/4) RNA viruses to rapidly generate noninfectious, barcoded cDNA amenable for next-generation sequencing (NGS). This eliminates the burden of testing all processed samples derived from high-consequence pathogens prior to transfer from high-containment laboratories to lower-containment facilities for sequencing. Our established protocol can be scaled up for high-throughput sequencing of hundreds of samples simultaneously, which can dramatically reduce the cost and effort required for NGS library construction. NGS data from this SOP can provide complete genome coverage from viral stocks and can also detect virus-specific reads from limited starting material. Our data suggest that the procedure can be implemented and easily validated by institutional biosafety committees across research laboratories. PMID:27822536

  2. VpRFP1, a novel C4C4-type RING finger protein gene from Chinese wild Vitis pseudoreticulata, functions as a transcriptional activator in defence response of grapevine

    PubMed Central

    Yu, Yihe; Xu, Weirong; Wang, Shengyi; Xu, Yan; Li, Hui'e; Wang, Yuejin; Li, Shuxiu

    2011-01-01

    RING finger proteins comprise a large family and play important roles in regulation of growth and development, hormone signalling, and responses to biotic and abiotic stresses in plants. In this study, the identification and functional characterization of a C4C4-type RING finger protein gene from the Chinese wild grapevine Vitis pseudoreticulata (designated VpRFP1) are reported. VpRFP1 was initially identified as an expressed sequence tag (EST) from a cDNA library constructed from leaves of V. pseudoreticulata inoculated with the grapevine powdery mildew Uncinula necator. Sequence analysis of the deduced VpRFP1 protein based on the full-length cDNA revealed an N-terminal nuclear localization signal (NLS) and a C-terminal C4C4-type RING finger motif with the consensus sequence Cys-X2-Cys-X13-Cys-X1-Cys-X4-Cys-X2-Cys-X10-Cys-X2-Cys. Upon inoculation with U. necator, expression of VpRFP1 was rapidly induced to higher levels in mildew-resistant V. pseudoreticulata plants. In contrast, expression of VpRFP1 was down-regulated in mildew-susceptible V. vinifera plants. Western blotting using an antibody raised against VpRFP1 showed that VpRFP1 was also induced to higher levels in V. pseudoreticulata plants at 12–48 hours post-inoculation (hpi). However, there was only slight increase in VpRFP in V. vinifera plants in the same time frame, even though a more significant increase was observed at 96–144 hpi in these plants. Results from transactivation assays in yeast showed that the RING finger motif of VpRFP1 exhibited some activity of transcriptional activation; however, no activity was seen with the full-length VpRFP1. Overexpression of VpRFP1 in Arabidopsis plants was found to enhance resistance to Arabidopsis powdery mildew Golovinomyces cichoracearum, which seemed to be correlated with increased transcript levels of AtPR1 and AtPR2 in the pathogen-infected tissues. In addition, the Arabidopsis transgenic lines showed enhanced resistance to a virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Taken together, the results suggested that VpRFP1 may be a transcriptional activator of defence-related genes in grapevines. PMID:21862480

  3. Zygote arrest 1 gene in pig, cattle and human: evidence of different transcript variants in male and female germ cells

    PubMed Central

    Uzbekova, Svetlana; Roy-Sabau, Monica; Dalbiès-Tran, Rozenn; Perreau, Christine; Papillier, Pascal; Mompart, Florence; Thelie, Aurore; Pennetier, Sophie; Cognie, Juliette; Cadoret, Veronique; Royere, Dominique; Monget, Philippe; Mermillod, Pascal

    2006-01-01

    Background Zygote arrest 1 (ZAR1) is one of the few known oocyte-specific maternal-effect genes essential for the beginning of embryo development discovered in mice. This gene is evolutionary conserved in vertebrates and ZAR1 protein is characterized by the presence of atypical plant homeobox zing finger domain, suggesting its role in transcription regulation. This work was aimed at the study of this gene, which could be one of the key regulators of successful preimplantation development of domestic animals, in pig and cattle, as compared with human. Methods Screenings of somatic cell hybrid panels and in silico research were performed to characterize ZAR1 chromosome localization and sequences. Rapid amplification of cDNA ends was used to obtain full-length cDNAs. Spatio-temporal mRNA expression patterns were studied using Northern blot, reverse transcription coupled to polymerase chain reaction and in situ hybridization. Results We demonstrated that ZAR1 is a single copy gene, positioned on chromosome 8 in pig and 6 in cattle, and several variants of correspondent cDNA were cloned from oocytes. Sequence analysis of ZAR1 cDNAs evidenced numerous short inverted repeats within the coding sequences and putative Pumilio-binding and embryo-deadenylation elements within the 3'-untranslated regions, indicating the potential regulation ways. We showed that ZAR1 expressed exclusively in oocytes in pig ovary, persisted during first cleavages in embryos developed in vivo and declined sharply in morulae and blastocysts. ZAR1 mRNA was also detected in testis, and, at lower level, in hypothalamus and pituitary in both species. For the first time, ZAR1 was localized in testicular germ cells, notably in round spermatids. In addition, in pig, cattle and human only shorter ZAR1 transcript variants resulting from alternative splicing were found in testis as compared to oocyte. Conclusion Our data suggest that in addition to its role in early embryo development highlighted by expression pattern of full-length transcript in oocytes and early embryos, ZAR1 could also be implicated in the regulation of meiosis and post meiotic differentiation of male and female germ cells through expression of shorter splicing variants. Species conservation of ZAR1 expression and regulation underlines the central role of this gene in early reproductive processes. PMID:16551357

  4. Norrie disease: linkage analysis using a 4.2-kb RFLP detected by a human ornithine aminotransferase cDNA probe.

    PubMed

    Ngo, J T; Bateman, J B; Cortessis, V; Sparkes, R S; Mohandas, T; Inana, G; Spence, M A

    1989-05-01

    Previous study has shown that the usual DNA marker for Norrie disease, the L1.28 probe which identifies the DXS7 locus, can recombine with the disease locus. In this study, we used a human ornithine aminotransferase (OAT) cDNA which detects OAT-related DNA sequences mapped to the same region on the X chromosome as that of the L1.28 probe to investigate the family with Norrie disease who exhibited the recombinational event. When genomic DNA from this family was digested with the PvuII restriction endonuclease, we found a restriction fragment length polymorphism (RFLP) of 4.2 kb in size. This fragment was absent in the affected males and cosegregated with the disease locus; we calculated a lod score of 0.602, at theta = 0.00. No deletion could be detected by chromosomal analysis or on Southern blots with other enzymes. These results suggest that one of the OAT-related sequences on the X chromosome may be in close proximity to the Norrie disease locus and represent the first report which indicates that the OAT cDNA may be useful for the identification of carrier status and/or prenatal diagnosis.

  5. Cloning and expression analysis of a HSP70 gene from Pacific abalone (Haliotis discus hannai).

    PubMed

    Cheng, Peizhou; Liu, Xiao; Zhang, Guofan; He, Jianguo

    2007-01-01

    Heat shock protein 70 (HSP70), the primary member of HSPs that are responsive of thermal stress, is found in all multicellular organisms and functions mostly as molecular chaperon. The inducible HSP70 cDNA cloned from Pacific abalone (Haliotis discus hannai) using rapid amplification of cDNA ends (RACE), was highly homologous to other HSP70 genes. The full-length cDNA of the Pacific abalone HSP70 was 2631bp, consisting of a 5'-terminal untranslated region (UTR) of 90bp, a 3'-terminal UTR of 573bp with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame of 1968bp. The HSP70 cDNA encoded a polypeptide of 655 amino acids with an ATPase domain of 382 amino acids, the substrate peptide binding domain of 161 amino acids and a C-terminus domain of 112 amino acids. The temporal expression of HSP70 was measured by semi-quantitative RT-PCR after heat shock and bacterial challenge. Challenge of Pacific abalone with heat shock or the pathogenic bacteria Vibrio anguillarum resulted in a dramatic increase in the expression of HSP70 mRNA level in muscle, followed by a recovery to normal level after 96h. Unlike the muscle, the levels of HSP70 expression in gills reached the top at 12h and maintained a relatively high level compared with the control after thermal and bacterial challenge. The upregulated mRNA expression of HSP70 in the abalone following heat shock and infection response indicates that the HSP70 gene is inducible and involved in immune response.

  6. Cloning and functional expression of a cDNA encoding stearoyl-ACP Δ9-desaturase from the endosperm of coconut (Cocos nucifera L.).

    PubMed

    Gao, Lingchao; Sun, Ruhao; Liang, Yuanxue; Zhang, Mengdan; Zheng, Yusheng; Li, Dongdong

    2014-10-01

    Coconut (Cocos nucifera L.) is an economically tropical fruit tree with special fatty acid compositions. The stearoyl-acyl carrier protein (ACP) desaturase (SAD) plays a key role in the properties of the majority of cellular glycerolipids. In this paper, a full-length cDNA of a stearoyl-acyl carrier protein desaturase, designated CocoFAD, was isolated from cDNA library prepared from the endosperm of coconut (C. nucifera L.). An 1176 bp cDNA from overlapped PCR products containing ORF encoding a 391-amino acid (aa) protein was obtained. The coded protein was virtually identical and shared the homology to other Δ9-desaturase plant sequences (greater than 80% as similarity to that of Elaeis guineensis Jacq). The real-time fluorescent quantitative PCR result indicated that the yield of CocoFAD was the highest in the endosperm of 8-month-old coconut and leaf, and the yield was reduced to 50% of the highest level in the endosperm of 15-month-old coconut. The coding region showed heterologous expression in strain INVSc1 of yeast (Saccharomyces cerevisiae). GC-MS analysis showed that the levels of palmitoleic acid (16:1) and oleic acid (18:1) were improved significantly; meanwhile stearic acid (18:0) was reduced. These results indicated that the plastidial Δ9 desaturase from the endosperm of coconut was involved in the biosynthesis of hexadecenoic acid and octadecenoic acid, which was similar with other plants. These results may be valuable for understanding the mechanism of fatty acid metabolism and the genetic improvement of CocoFAD gene in palm plants in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Cloning, sequence, and expression of a blood group B active recombinant alpha-D-galactosidase from pinto bean (Phaseolus vulgaris).

    PubMed

    Davis, M O; Hata, D J; Johnson, S A; Jones, D E; Harmata, M A; Evans, M L; Walker, J C; Smith, D S

    1997-07-01

    A cDNA encoding pinto bean alpha-D-galactosidase [E.C. 3.2.1.22] was obtained by amplification of cDNA using highly conserved sequences found in eucaryotic alpha-D-galactosidases. Subsequently a full length Phaseolus cDNA clone was obtained that is 1537 nt long and contains untranslated 5' and 3' sequences. The nucleotide sequence of the cDNA has a high degree of homology with other eucaryotic alpha-D-galactosidase genes. The recombinant alpha-D-galactosidase (rGal) was expressed in Escherichia coli and purified by ion exchange and affinity chromatography. Purified rGal was homogeneous by SDS-PAGE and had relative masses of 40.1 and 45.4 kDa under nonreducing and reducing conditions, respectively. The N-terminal sequence of the expressed protein contained the sequence GNGLGQTPPMG corresponding to that deduced from the cDNA sequence. The native molecular weight for rGal was determined to be 32.18 kDa by Sephacryl S-200 chromatography. The specific activity of the rGal was 349 mu moles of PNP-alpha-D-galactopyranoside hydrolyzed per mg of pure rGal per min. rGal was highly specific for alpha-D-galactosyl residues and degraded B oligosaccharide. No detectable hemagglutinin or protease activity was present in the preparations. Furthermore, rGal was active against the blood group B antigen on native human erythrocytes in cell suspension assays. The only detectable RBC phenotypic change was loss of the B and P1 epitopes. Recombinant Phaseolus vulgaris alpha-D-galactosidase may have useful biotechnical applications in the potential mass production of enzymatically converted, universally transfusable type O RBCs. alpha-D-galactosidase [E.C. 3.2.1.22] has been purified from a variety of procaryotic and eucaryotic species. Most alpha-D-galactosidases have similar low molecular weight substrate specificities, but activity against high molecular weight substrates is variable. Terminal alpha-D-galactoside residues are present in glycoproteins and glycolipids. Some alpha-D-galactosidases have activity against alpha-D-galactosyl residues on cell membrane glycoconjugates. Glycosidases with this property are useful for carbohydrate structural studies and biotechnical applications. Enzymes free of other glycosidase activities with activity near neutral pH are particularly useful for membrane modification studies on native cells. Complex sugar chains in glycolipids and glycoproteins have often been implicated in the growth and development of eucaryotes. In particular, complex sugar chains play an important role in the recognition of self in the immune system. Some alpha-D-galactosidases can modify certain carbohydrate membrane epitopes, thereby modulating the immune response. For example, the blood group B epitope expressed on erythrocytes contains a terminal alpha-D-galactosyl residue. Individuals lacking this antigen produce naturally occurring complement fixing antibodies to the B epitope. Hydrolysis of this terminal saccharide destroys the antigenic activity of the B determinant producing H antigen (blood type O) on erythrocytes. Only rare individuals produce clinically significant antibodies to the H antigen, and therefore, type O red blood cells are "universally" compatible and in great demand. Dhar purified alpha-D-galactosidase isozymes from Phaseolus vulgaris and characterized their activity. To our knowledge, our laboratory, in a brief report, is the first to describe the cloning of the gene and the use of recombinant enzyme for seroconverting blood type B to O cells. This paper describes the cloning, sequence, expression, purification, and characterization of recombinant alpha-D-galactosidase. Activity of the recombinant enzyme on the native human erythrocyte blood group B epitope is shown.

  8. Nucleotide sequence of Hungarian grapevine chrome mosaic nepovirus RNA1.

    PubMed Central

    Le Gall, O; Candresse, T; Brault, V; Dunez, J

    1989-01-01

    The nucleotide sequence of the RNA1 of hungarian grapevine chrome mosaic virus, a nepovirus very closely related to tomato black ring virus, has been determined from cDNA clones. It is 7212 nucleotides in length excluding the 3' terminal poly(A) tail and contains a large open reading frame extending from nucleotides 216 to 6971. The presumably encoded polyprotein is 2252 amino acids in length with a molecular weight of 250 kDa. The primary structure of the polyprotein was compared with that of other viral polyproteins, revealing the same general genetic organization as that of other picorna-like viruses (comoviruses, potyviruses and picornaviruses), except that an additional protein is suspected to occupy the N-terminus of the polyprotein. PMID:2798128

  9. cDNA cloning of Brassica napus malonyl-CoA:ACP transacylase (MCAT) (fab D) and complementation of an E. coli MCAT mutant.

    PubMed

    Simon, J W; Slabas, A R

    1998-09-18

    The GenBank database was searched using the E. coli malonyl CoA:ACP transacylase (MCAT) sequence, for plant protein/cDNA sequences corresponding to MCAT, a component of plant fatty acid synthetase (FAS), for which the plant cDNA has not been isolated. A 272-bp Zea mays EST sequence (GenBank accession number: AA030706) was identified which has strong homology to the E. coli MCAT. A PCR derived cDNA probe from Zea mays was used to screen a Brassica napus (rape) cDNA library. This resulted in the isolation of a 1200-bp cDNA clone which encodes an open reading frame corresponding to a protein of 351 amino acids. The protein shows 47% homology to the E. coli MCAT amino acid sequence in the coding region for the mature protein. Expression of a plasmid (pMCATrap2) containing the plant cDNA sequence in Fab D89, an E. coli mutant, in MCAT activity restores growth demonstrating functional complementation and direct function of the cloned cDNA. This is the first functional evidence supporting the identification of a plant cDNA for MCAT.

  10. Characterization and mapping of the human rhodopsin kinase gene and screening of the gene for mutations in patients with retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khani, S.C.; Lin, D.; Magovcevic, I.

    1994-09-01

    Rhodopsin kinase (RK) is a cytosolic enzyme in rod photoreceptors that initiates the deactivation of the phototransductions cascade by phosphorylating photoactivated rhodopsin. Although the cDNA sequence of bovine RK has been determined previously, no human cDNA or genomic sequence has thus far been available for genetic studies. In order to investigate the possible role of this candidate gene in retinitis pigmentosa (RP) and allied diseases, we have isolated and characterized human cDNA and genomic clones derived from the RK locus. The coding sequence of the human gene is 1692 nucleotides in length and is split into seven exons. The humanmore » and the bovine sequence show 84% identity at the nucleotide level and 92% identity at the amino acid level. Thus far, the intronic sequences flanking each exon except for one have been determined. We have also mapped the human RK gene to chromosome 13q34 using fluorescence in situ hybridization. To our knowledge, no RP gene has as yet been linked to this region. However, since the substrate for RK (rhodopsin) and other members of the phototransduction cascade have been implicated in the pathogenesis of RP, it is conceivable that defects in RK can also cause some forms of this disease. We are evaluating this possibility by screening DNA from 173 patients with autosomal recessive RP and 190 patients with autosomal dominant RP. So far, we have found 11 patients with variant bands. In one patient with autosomal dominant RP we discovered the missense change Ser536Leu. Cosegregation studies and further sequencing of the variant bands are currently underway.« less

  11. NHE10, a novel osteoclast-specific member of the Na{sup +}/H{sup +} exchanger family, regulates osteoclast differentiation and survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seoung Hoon; Kim, Taesoo; Park, Eui-Soon

    2008-05-02

    Bone homeostasis is tightly regulated by the balanced actions of osteoblasts (OBs) and osteoclasts (OCs). We previously analyzed the gene expression profile of OC differentiation using a cDNA microarray, and identified a novel osteoclastogenic gene candidate, clone OCL-1-E7 [J. Rho, C.R. Altmann, N.D. Socci, L. Merkov, N. Kim, H. So, O. Lee, M. Takami, A.H. Brivanlou, Y. Choi, Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis, DNA Cell Biol. 21 (2002) 541-549]. In this study, we have isolated full-length cDNAs corresponding to this clone from mice and humans to determine the functionalmore » roles of this gene in osteoclastogenesis. The full-length cDNA of OCL-1-E7 encodes 12 membrane-spanning domains that are typical of isoforms of the Na{sup +}/H{sup +} exchangers (NHEs), indicating that this clone is a novel member of the NHE family (hereafter referred to as NHE10). Here, we show that NHE10 is highly expressed in OCs in response to receptor activator of nuclear factor-{kappa}B ligand signaling and is required for OC differentiation and survival.« less

  12. Molecular cloning of Japanese eel Anguilla japonica TNF-α and characterization of its expression in response to LPS, poly I:C and Aeromonas hydrophila infection

    NASA Astrophysics Data System (ADS)

    Feng, Jianjun; Guan, Ruizhang; Guo, Songlin; Lin, Peng; Zadlock, Frank

    2014-09-01

    As a potent pleiotropic cytokine, tumor necrosis factor-alpha (TNF-α) plays an important role in innate immune responses. The cDNA sequence and genomic structure of the TNF-α gene ( Aj TNF-α) in the Japanese eel ( Anguilla japonica) were identified and characterized. The full-length AjTNF-α cDNA was 1 546 bp, including a 5'-untranslated region (UTR) of 13 bp, a 3'-UTR of 879 bp and an open reading frame of 654 bp encoding a protein of 218 amino acids. The full-length genomic sequence of AjTNF-α was 2 392 bp and included four exons and three introns. The putative AjTNF-α protein contained TNF family signature motifs, including a protease cleavage site, a transmembrane domain and two conserved cysteine residues. Quantitative real-time reverse transcription PCR analysis revealed AjTNF-α expression in a wide range of tissues, with predominant expression in blood and liver. Lower levels of expression were seen in spleen, gills, kidney, intestine, heart, and skin, with very low levels in muscle. The modulation of AjTNF-α expression after injection of eels with lipopolysaccharide (LPS), the viral mimic, poly I:C, or Aeromonas hydrophila was assessed in blood, liver, and kidney. In blood, TNF-α mRNA levels increased rapidly and then rapidly decreased after stimulation with LPS, poly I:C or A. hydrophila. However, the response to LPS and A. hydrophila peaked at 6 h while for poly I:C the peak was at 12 h. In liver, after injection with A. hydrophila, an up- and down-regulation of AjTNF-α expression occurred twice, peaking at 6 h and 24 h, respectively. No remarkable increase of AjTNF-α expression appeared in liver until 72 h after LPS or poly I:C treatment. In kidney, AjTNF-α expression increased significantly only at 72 h post-stimulation with LPS or A. hydrophila. Our results suggest that AjTNF-α plays an important role in fish in the defense against viral and bacterial infection.

  13. Identification, characterization, and functional analysis of Tube and Pelle homologs in the mud crab Scylla paramamosain.

    PubMed

    Li, Xin-Cang; Zhang, Xiao-Wen; Zhou, Jun-Fang; Ma, Hong-Yu; Liu, Zhi-Dong; Zhu, Lei; Yao, Xiao-Juan; Li, Lin-Gui; Fang, Wen-Hong

    2013-01-01

    Tube and Pelle are essential components in Drosophila Toll signaling pathway. In this study, we characterized a pair of crustacean homologs of Tube and Pelle in Scylla paramamosain, namely, SpTube and SpPelle, and analyzed their immune functions. The full-length cDNA of SpTube had 2052 bp with a 1578 bp open reading frame (ORF) encoding a protein with 525 aa. A death domain (DD) and a kinase domain were predicted in the deduced protein. The full-length cDNA of SpPelle had 3825 bp with a 3420 bp ORF encoding a protein with 1140 aa. The protein contained a DD and a kinase domain. Two conserved repeat motifs previously called Tube repeat motifs present only in insect Tube or Tube-like sequences were found between these two domains. Alignments and structure predictions demonstrated that SpTubeDD and SpPelleDD significantly differed in sequence and 3D structure. Similar to TubeDD, SpTubeDD contained three common conserved residues (R, K, and R) on one surface that may mediate SpMyD88 binding and two common residues (A and A) on the other surface that may contribute to Pelle binding. By contrast, SpPelleDD lacked similar conservative residues. SpTube, insect Tube-like kinases, and human IRAK4 were found to be RD kinases with an RD dipeptide in the kinase domain. SpPelle, Pelle, insect Pelle-like kinases, and human IRAK1 were found to be non-RD kinases lacking an RD dipeptide. Both SpTube and SpPelle were highly expressed in hemocytes, gills, and hepatopancreas. Upon challenge, SpTube and SpPele were significantly increased in hemocytes by Gram-negative or Gram-positive bacteria, whereas only SpPelle was elevated by White Spot Syndrome Virus. The pull-down assay showed that SpTube can bind to both SpMyD88 and SpPelle. These results suggest that SpTube, SpPelle, and SpMyD88 may form a trimeric complex involved in the immunity of mud crabs against both Gram-negative and Gram-positive bacteria.

  14. Identification, Characterization, and Functional Analysis of Tube and Pelle Homologs in the Mud Crab Scylla paramamosain

    PubMed Central

    Zhou, Jun-Fang; Ma, Hong-Yu; Liu, Zhi-Dong; Zhu, Lei; Yao, Xiao-Juan; Li, Lin-Gui; Fang, Wen-Hong

    2013-01-01

    Tube and Pelle are essential components in Drosophila Toll signaling pathway. In this study, we characterized a pair of crustacean homologs of Tube and Pelle in Scylla paramamosain, namely, SpTube and SpPelle, and analyzed their immune functions. The full-length cDNA of SpTube had 2052 bp with a 1578 bp open reading frame (ORF) encoding a protein with 525 aa. A death domain (DD) and a kinase domain were predicted in the deduced protein. The full-length cDNA of SpPelle had 3825 bp with a 3420 bp ORF encoding a protein with 1140 aa. The protein contained a DD and a kinase domain. Two conserved repeat motifs previously called Tube repeat motifs present only in insect Tube or Tube-like sequences were found between these two domains. Alignments and structure predictions demonstrated that SpTubeDD and SpPelleDD significantly differed in sequence and 3D structure. Similar to TubeDD, SpTubeDD contained three common conserved residues (R, K, and R) on one surface that may mediate SpMyD88 binding and two common residues (A and A) on the other surface that may contribute to Pelle binding. By contrast, SpPelleDD lacked similar conservative residues. SpTube, insect Tube-like kinases, and human IRAK4 were found to be RD kinases with an RD dipeptide in the kinase domain. SpPelle, Pelle, insect Pelle-like kinases, and human IRAK1 were found to be non-RD kinases lacking an RD dipeptide. Both SpTube and SpPelle were highly expressed in hemocytes, gills, and hepatopancreas. Upon challenge, SpTube and SpPele were significantly increased in hemocytes by Gram-negative or Gram-positive bacteria, whereas only SpPelle was elevated by White Spot Syndrome Virus. The pull-down assay showed that SpTube can bind to both SpMyD88 and SpPelle. These results suggest that SpTube, SpPelle, and SpMyD88 may form a trimeric complex involved in the immunity of mud crabs against both Gram-negative and Gram-positive bacteria. PMID:24116143

  15. Cloning of the cDNA encoding adenosine 5'-monophosphate deaminase 1 and its mRNA expression in Japanese flounder Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Jiang, Keyong; Sun, Shujuan; Liu, Mei; Wang, Baojie; Meng, Xiaolin; Wang, Lei

    2013-01-01

    AMP deaminase catalyzes the conversion of AMP into IMP and ammonia. In the present study, a full-length cDNA of AMPD1 from skeletal muscle of Japanese flounder Paralichthys olivaceus was cloned and characterized. The 2 526 bp cDNA contains a 5'-UTR of 78 bp, a 3'-UTR of 237 bp and an open reading frame (ORF) of 2 211 bp, which encodes a protein of 736 amino acids. The predicted protein contains a highly conserved AMP deaminase motif (SLSTDDP) and an ATP-binding site sequence (EPLMEEYAIAAQVFK). Phylogenetic analysis showed that the AMPD1 and AMPD3 genes originate from the same branch, but are evolutionarily distant from the AMPD2 gene. RT-PCR showed that the flounder AMPD1 gene was expressed only in skeletal muscle. QRT-PCR analysis revealed a statistically significant 2.54 fold higher level of AMPD1 mRNA in adult muscle (750±40 g) compared with juvenile muscle (7.5±2 g) ( P<0.05). HPLC analysis showed that the IMP content in adult muscle (3.35±0.21 mg/g) was also statistically significantly higher than in juvenile muscle (1.08±0.04 mg/g) ( P<0.05). There is a direct relationship between the AMPD1 gene expression level and IMP content in the skeletal muscle of juvenile and adult flounders. These results may provide useful information for quality improvement and molecular breeding of aquatic animals.

  16. Molecular cloning and mRNA expression analysis of interleukin-8 gene in Japanese sea perch (Lateolabrax japonicus).

    PubMed

    Qiu, Lihua; Zhang, Hanhua; Yang, Keng; Jiang, Shigui

    2009-05-01

    Interleukin-8 (IL-8), the first known chemokine, is a CXC chemokine, which is cable of attracting neutrophils and inducing them to release lysozomal enzymes, triggering the respiratory burst. In the present study, the cDNA of an IL-8 was cloned from Japanese sea perch Lateolabrax japonicus (designated LjIL-8) by homology cloning and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of LjIL-8 consisted of 803 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame (ORF) of 300 bp encoding a polypeptide of 99 amino acid residues with a predicted molecular weight of 6.6 kDa. The high identity of LjIL-8 with IL-8 in other organisms indicated that LjIL-8 should be a new member of the IL-8 family. By fluorescent quantitative real-time PCR, mRNA transcript of LjIL-8 was detectable in all the examined tissues with higher level in spleen and head-kidney. The temporal expression of LjIL-8 mRNA in the spleen was up-regulated by lipopolyssacharide (LPS) stimulation and reached the maximum level at 6 h post-stimulation, and then dropped back to the original level gradually. These results indicated that LjIL-8 was a constitutive and inducible acute-phase protein that perhaps involved in the immune defense of L. japonicus.

  17. A rapid and cost-effective method for sequencing pooled cDNA clones by using a combination of transposon insertion and Gateway technology.

    PubMed

    Morozumi, Takeya; Toki, Daisuke; Eguchi-Ogawa, Tomoko; Uenishi, Hirohide

    2011-09-01

    Large-scale cDNA-sequencing projects require an efficient strategy for mass sequencing. Here we describe a method for sequencing pooled cDNA clones using a combination of transposon insertion and Gateway technology. Our method reduces the number of shotgun clones that are unsuitable for reconstruction of cDNA sequences, and has the advantage of reducing the total costs of the sequencing project.

  18. Cellulose synthesizing Complexes in Vascular Plants andProcaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard M, Jr; Saxena, Inder Mohan

    2009-07-07

    Continuing the work initiated under DE-FG03-94ER20145, the following major accomplishments were achieved under DE-FG02-03ER15396 from 2003-2007: (a) we purified the acsD gene product of the Acetobacter cellulose synthase operon as well as transferred the CesA cellulose gene from Gossypium into E. coli in an attempt to crystallize this protein for x-ray diffraction structural analysis; however, crystallization attempts proved unsuccessful; (b) the Acetobacter cellulose synthase operon was successfully incorporated into Synechococcus, a cyanobacterium2; (c) this operon in Synechococcus was functionally expressed; (d) we successfully immunolabeled Vigna cellulose and callose synthase components and mapped their distribution before and after wounding; (e) wemore » developed a novel method to produce replicas of cellulose synthases in tobacco BY-2 cells, and we demonstrated the cytoplasmic domain of the rosette TC; (f) from the moss Physcomitrella, we isolated two full-length cDNA sequences of cellulose synthase (PpCesA1 and PpCesA2) and attempted to obtain full genomic DNA sequences; (g) we examined the detailed molecular structure of a new form of non-crystalline cellulose known as nematic ordered cellulose (=NOC)3.« less

  19. Isolation of epidermal cells and cDNA cloning of TNF decoy receptor 3 of conger eel, Conger myriaster.

    PubMed

    Tsutsui, Shigeyuki; Yoshino, Yuko; Matsui, Saho; Nakamura, Osamu; Muramoto, Koji; Watanabe, Tasuku

    2008-03-01

    By using EDTA and a trypsin solution, we established a method for isolating the epidermal cells of the conger eel, Conger myriaster. We then identified TNF decoy receptor (DcR) cDNA in the species from a suppression subtractive hybridization library prepared from the epidermal cells stimulated with LPS. The full-length cDNA of conger TNF DcR (conDcR) consisted of 1479 base pairs, and the protein comprised 286 amino acid residues. Phylogenetic analysis indicated that conDcR was clustered into a DcR3 branch. ConDcR is likely to act as an important immune-regulating factor in inhibiting the apoptosis-inducing effect of TNF in the skin of conger eel.

  20. Molecular cloning and functional analysis of the fatty acid-binding protein (Sp-FABP) gene in the mud crab (Scylla paramamosain).

    PubMed

    Zeng, Xianglan; Ye, Haihui; Yang, Ya'nan; Wang, Guizhong; Huang, Huiyang

    2013-03-01

    Intracellular fatty acid-binding proteins (FABPs) are multifunctional cytosolic lipid-binding proteins found in vertebrates and invertebrates. In this work, we used RACE to obtain a full-length cDNA of Sp-FABP from the mud crab Scylla paramamosain. The open reading frame of the full length cDNA (886 bp) encoded a 136 amino acid polypeptide that showed high homology with related genes from other species. Real-time quantitative PCR identified variable levels of Sp-FABP transcripts in epidermis, eyestalk, gill, heart, hemocytes, hepatopancreas, muscle, ovary, stomach and thoracic ganglia. In ovaries, Sp-FABP expression increased gradually from stage I to stage IV of development and decreased in stage V. Sp-FABP transcripts in the hepatopancreas and hemocytes were up-regulated after a bacterial challenge with Vibrio alginnolyficus. These results suggest that Sp-FABP may be involved in the growth, reproduction and immunity of the mud crab.

  1. Molecular cloning and functional characterization of cathepsin D from sea cucumber Apostichopus japonicus.

    PubMed

    Yu, Cuiping; Cha, Yue; Wu, Fan; Xu, Xianbing; Qin, Lei; Du, Ming

    2017-11-01

    Cathepsin D (CTSD, EC 3.4.23.5) belongs to aspartic protease family, which is located in lysosomes and is distributed in diverse tissues and cells. CTSD has a wide variety of physiological functions, owing to its proteolytic activity in degradating proteins and peptides. In the current study, the full length cDNA of sea cucumber (Apostichopus japonicus) cathepsin D (AjCTSD) was firstly cloned, then the association between AjCTSD and sea cucumber autolysis was investigated. The full length cDNA of AjCTSD was 2896 bp, with an open reading frame (ORF) for 391 amino acids. AjCTSD was widely expressed in body wall, muscle and intestine; the expression level was the highest in intestine, followed by muscle and body wall. Compared to fresh tissues, AjCTSD expression levels were significantly increased in all examined autolytic tissues. The purified recombinant AjCTSD promoted the degradation of sea cucumber muscle. In conclusion, AjCTSD contributed to sea cucumber muscle autolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Synthetic transcripts of double-stranded Birnavirus genome are infectious.

    PubMed Central

    Mundt, E; Vakharia, V N

    1996-01-01

    We have developed a system for generation of infectious bursal disease virus (IBDV), a segmented double-stranded RNA virus of the Birnaviridae family, with the use of synthetic transcripts derived from cloned cDNA. Independent full-length cDNA clones were constructed that contained the entire coding and noncoding regions of RNA segments A and B of two distinguishable IBDV strains of serotype I. Segment A encodes all of the structural (VP2, VP4, and VP3) and nonstructural (VP5) proteins, whereas segment B encodes the RNA-dependent RNA polymerase (VP1). Synthetic RNAs of both segments were produced by in vitro transcription of linearized plasmids with T7 RNA polymerase. Transfection of Vero cells with combined plus-sense transcripts of both segments generated infectious virus as early as 36 hr after transfection. The infectivity and specificity of the recovered chimeric virus was ascertained by the appearance of cytopathic effect in chicken embryo cells, by immunofluorescence staining of infected Vero cells with rabbit anti-IBDV serum, and by nucleotide sequence analysis of the recovered virus, respectively. In addition, transfectant viruses containing genetically tagged sequences in either segment A or segment B of IBDV were generated to confirm the feasibility of this system. The development of a reverse genetics system for double-stranded RNA viruses will greatly facilitate studies of the regulation of viral gene expression, pathogenesis, and design of a new generation of live vaccines. Images Fig. 2 Fig. 3 Fig. 4 PMID:8855321

  3. Glycoproteins of the vitelline envelope of Amphibian oocyte: biological and molecular characterization of ZPC component (gp41) in Bufo arenarum.

    PubMed

    Barisone, Gustavo A; Krapf, Darío; Correa-Fiz, Florencia; Arranz, Silvia E; Cabada, Marcelo O

    2007-05-01

    The vitelline envelope (VE) participates in sperm-egg interactions during the first steps of fertilization. In Bufo arenarum, this envelope is composed of at least four glycoproteins, with molecular masses of 120, 75, 41, and 38 kDa and molar ratio of 1:1.3:7.4:4.8, respectively. These components were isolated and covalently coupled to silanized glass slides in order to study their sperm-binding capacity. When considering the molar ratio of the glycoproteins in the egg-envelope and assuming that each protein is monovalent for sperm, the assay showed that gp41 and gp38 possess 55 and 25% of total sperm-binding activity. We obtained a full-length cDNA of gp41 (ZPC), comprising a sequence for 486 amino acids, with 43.3% homology with Xenopus laevis ZPC. As in the case of mammalian ZP3 and Xenopus ZPC, Bufo ZPC presented a furin-like (convertase) and a C-terminal transmembrane domain (TMD) reflecting common biosynthetic and secretory pathways. As it was reported for some fishes, we obtained evidence that suggests the presence of more than one zpc gene in Bufo genome, based on different partial cDNA sequences of zpc, Southern blots and two-dimensional SDS-PAGE of deglycosylated egg-envelope components. As far as we are aware, this is the first observation of the presence of different zpc genes in an Amphibian species. Copyright (c) 2006 Wiley-Liss, Inc.

  4. Black carp vasa identifies embryonic and gonadal germ cells.

    PubMed

    Xue, Ting; Yu, Miao; Pan, Qihua; Wang, Yizhou; Fang, Jian; Li, Lingyu; Deng, Yu; Chen, Kai; Wang, Qian; Chen, Tiansheng

    2017-07-01

    Identification of molecular markers is an essential step in the study of germ cells. Vasa is an RNA helicase and a well-known germ cell marker that plays a crucial role in germ cell development. Here, we identified the Vasa homolog termed Mpvasa as the first germ cell marker in black carp (Mylopharyngodon piceus). First, a 2819-bp full-length Mpvasa complementary DNA (cDNA) was cloned by PCR using degenerated primers of conserved sequences and gene-specific primers. The Mpvasa cDNA sequence encodes a 637-amino acid protein that contains eight conserved characteristic motifs of the DEAD box protein family, and shares high identity to grass carp (81%) and zebrafish (74%) vasa homologs. Second, Mpvasa expression was restricted to the gonad in adulthood by RT-PCR and Western blot analysis. The dynamic patterns of temporal-spatial expression of Mpvasa during gametogenesis were examined by in situ hybridization, and Mpvasa transcripts were strictly detected in gonadal germ cells throughout oogenesis, predominantly in immature oocytes (stage I, II, and III oocytes). Third, Mpvasa transcripts were highly detected in unfertilized eggs and early embryos, and the signal indicated a dynamic migration of the primordial germ cells during embryogenesis, suggesting that Mpvasa transcripts were maternally inherited and specifically distributed in germ cells. Taken together, these results demonstrated that Mpvasa is an applicable molecular marker for identification of gonadal and embryonic germ cells, which facilitates the isolation and utilization of germ cells in black carp.

  5. Molecular characterisation and expression analysis of the cathepsin H gene from rock bream (Oplegnathus fasciatus).

    PubMed

    Kim, Ju-Won; Park, Chan-Il; Hwang, Seong Don; Jeong, Ji-Min; Kim, Ki-Hyuk; Kim, Do-Hyung; Shim, Sang Hee

    2013-07-01

    Cathepsins are lysosomal cysteine proteases belonging to the papain family, whose members play important roles in normal metabolism for the maintenance of cellular homeostasis. Rock bream (Oplegnathus fasciatus) cathepsin H (RbCTSH) cDNAs were identified by expressed sequence tag analysis of a lipopolysaccharide-stimulated rock bream liver cDNA library. The full-length RbCTSH cDNA (1326 bp) contained an open reading frame of 978 bp encoding 325 amino acids. The presence of an ERFNIN-like motif was predicted in the propeptide region of RbCTSH. Furthermore, multiple alignments showed that the EPQNCSAT region was well conserved among other cathepsin H sequences. Phylogenetic analysis revealed that RbCTSH is most closely related to Nile tilapia cathepsin H. RbCTSH was expressed significantly in the intestine, spleen, head kidney and stomach. RbCTSH mRNA expression was also examined in several tissues under conditions of bacterial and viral challenge. All examined tissues of fish infected with Edwardsiella tarda, Streptococcus iniae and red sea bream iridovirus (RSIV) showed significant increases in RbCTSH expression compared to the control. In the kidney and spleen, RbCTSH mRNA expression was upregulated markedly following infection with bacterial pathogens. These findings indicate that RbCTSH plays an important role in the innate immune response of rock bream. Furthermore, these results provide important information for the identification of other cathepsin H genes in various fish species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Evidence for the proteolytic processing of dentin matrix protein 1. Identification and characterization of processed fragments and cleavage sites.

    PubMed

    Qin, Chunlin; Brunn, Jan C; Cook, Richard G; Orkiszewski, Ralph S; Malone, James P; Veis, Arthur; Butler, William T

    2003-09-05

    Full-length cDNA coding for dentin matrix protein 1 (DMP1) has been cloned and sequenced, but the corresponding complete protein has not been isolated. In searching for naturally occurring DMP1, we recently discovered that the extracellular matrix of bone contains fragments originating from DMP1. Shortened forms of DMP1, termed 37K and 57K fragments, were treated with alkaline phosphatase and then digested with trypsin. The resultant peptides were purified by a two-dimensional method: size exclusion followed by reversed-phase high performance liquid chromatography. Purified peptides were sequenced by Edman degradation and mass spectrometry, and the sequences compared with the DMP1 sequence predicted from cDNA. Extensive sequencing of tryptic peptides revealed that the 37K fragments originated from the NH2-terminal region, and the 57K fragments were from the COOH-terminal part of DMP1. Phosphate analysis indicated that the 37K fragments contained 12 phosphates, and the 57K fragments had 41. From 37K fragments, two peptides lacked a COOH-terminal lysine or arginine; instead they ended at Phe173 and Ser180 and were thus COOH termini of 37K fragments. Two peptides were from the NH2 termini of 57K fragments, starting at Asp218 and Asp222. These findings indicated that DMP1 is proteolytically cleaved at four bonds, Phe173-Asp174, Ser180-Asp181, Ser217-Asp218, and Gln221-Asp222, forming eight fragments. The uniformity of cleavages at the NH2-terminal peptide bonds of aspartyl residues suggests that a single proteinase is involved. Based on its reported specificity, we hypothesize that these scissions are catalyzed by PHEX protein. We envision that the proteolytic processing of DMP1 plays a crucial role during osteogenesis and dentinogenesis.

  7. Complementary DNA cloning and constitutive expression of cytochrome P450 1C1 in the gills of carp (Cyprinus carpio).

    PubMed

    Itakura, Takao; El-Kady, Mohamed; Mitsuo, Ryoichi; Kaminishi, Yoshio

    2005-01-01

    Cytochrome P450 (CYP) enzymes constitute a multigene family of many endogenous and xenobiotic substances. The CYP1 family is of particular interest in environmental toxicology because its members are dominant in the metabolism of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and aryl amines. A new complementary DNA of the CYP1C subfamily encoding CYP1C1 was isolated from carp liver after intraperitoneal injection of beta-napthoflavone (BNF). The full-length cDNA obtained contained a 5' noncoding region of 244 bp, an open reading frame of 1572 bp coding for 524 amino acids, a stop codon, and a 3' noncoding region of 965 bp. The predicted molecular weight of the protein was approximately 59.3 kDa. The deduced amino acid sequence of this cDNA was 82.1% and 80.2% similar to Japanese eel and scup CYP1C1 sequences, respectively, while it exhibited a similarity of 74.9% with the scup CYP1C2 sequence. The deduced amino acid sequence of carp CYP1C1 showed similarities with those of the reported CYP1B1s of teleosts and mammals of 48.4, 48.8, 48.2, 48.6, 45.3, and 45.5% for carp CYP1B1, carp CYP1B2, plaice CYP1B1, and human, rat, and mouse CYP1B1, respectively. The phylogenetic tree constructed using fish and mammalian CYP1 sequences suggested a closer relationship of the CYP1C subfamily to CYP1B than to CYP1A. The tree showed the possibility of the existence of CYP1C subfamily genes in mammalian species. Northern blot analysis for the liver, intestine, gills, and kidney showed no detectable induced expression but constitutive expression in the gill organs.

  8. Characterization of papain-like isoenzymes from latex of Asclepias curassavica by molecular biology validated by proteomic approach.

    PubMed

    Obregón, Walter D; Liggieri, Constanza S; Trejo, Sebastian A; Avilés, Francesc X; Vairo-Cavalli, Sandra E; Priolo, Nora S

    2009-01-01

    Latices from Asclepias spp are used in wound healing and the treatment of some digestive disorders. These pharmacological actions have been attributed to the presence of cysteine proteases in these milky latices. Asclepias curassavica (Asclepiadaceae), "scarlet milkweed" is a perennial subshrub native to South America. In the current paper we report a new approach directed at the selective biochemical and molecular characterization of asclepain cI (acI) and asclepain cII (acII), the enzymes responsible for the proteolytic activity of the scarlet milkweed latex. SDS-PAGE spots of both purified peptidases were digested with trypsin and Peptide Mass Fingerprints (PMFs) obtained showed no equivalent peptides. No identification was possible by MASCOT search due to the paucity of information concerning Asclepiadaceae latex cysteine proteinases available in databases. From total RNA extracted from latex samples, cDNA of both peptidases was obtained by RT-PCR using degenerate primers encoding Asclepiadaceae cysteine peptidase conserved domains. Theoretical PMFs of partial polypeptide sequences obtained by cloning (186 and 185 amino acids) were compared with empirical PMFs, confirming that the sequences of 186 and 185 amino acids correspond to acI and acII, respectively. N-terminal sequences of acI and acII, characterized by Edman sequencing, were overlapped with those coming from the cDNA to obtain the full-length sequence of both mature peptidases (212 and 211 residues respectively). Alignment and phylogenetic analysis confirmed that acI and acII belong to the subfamily C1A forming a new group of papain-like cysteine peptidases together with asclepain f from Asclepias fruticosa. We conclude that PMF could be adopted as an excellent tool to differentiate, in a fast and unequivocal way, peptidases with very similar physicochemical and functional properties, with advantages over other conventional methods (for instance enzyme kinetics) that are time consuming and afford less reliable results.

  9. Generation and Analysis of Expressed Sequence Tags (ESTs) from Halophyte Atriplex canescens to Explore Salt-Responsive Related Genes

    PubMed Central

    Li, Jingtao; Sun, Xinhua; Yu, Gang; Jia, Chengguo; Liu, Jinliang; Pan, Hongyu

    2014-01-01

    Little information is available on gene expression profiling of halophyte A. canescens. To elucidate the molecular mechanism for stress tolerance in A. canescens, a full-length complementary DNA library was generated from A. canescens exposed to 400 mM NaCl, and provided 343 high-quality ESTs. In an evaluation of 343 valid EST sequences in the cDNA library, 197 unigenes were assembled, among which 190 unigenes (83.1% ESTs) were identified according to their significant similarities with proteins of known functions. All the 343 EST sequences have been deposited in the dbEST GenBank under accession numbers JZ535802 to JZ536144. According to Arabidopsis MIPS functional category and GO classifications, we identified 193 unigenes of the 311 annotations EST, representing 72 non-redundant unigenes sharing similarities with genes related to the defense response. The sets of ESTs obtained provide a rich genetic resource and 17 up-regulated genes related to salt stress resistance were identified by qRT-PCR. Six of these genes may contribute crucially to earlier and later stage salt stress resistance. Additionally, among the 343 unigenes sequences, 22 simple sequence repeats (SSRs) were also identified contributing to the study of A. canescens resources. PMID:24960361

  10. Identification of a new phospholipase D in Carica papaya latex.

    PubMed

    Abdelkafi, Slim; Abousalham, Abdelkarim; Fendri, Imen; Ogata, Hiroyuki; Barouh, Nathalie; Fouquet, Benjamin; Scheirlinckx, Frantz; Villeneuve, Pierre; Carrière, Frédéric

    2012-05-15

    Phospholipase D (PLD) is a lipolytic enzyme involved in signal transduction, vesicle trafficking and membrane metabolism. It catalyzes the hydrolysis and transphosphatidylation of glycerophospholipids at the terminal phosphodiester bond. The presence of a PLD in the latex of Carica papaya (CpPLD1) was demonstrated by transphosphatidylation of phosphatidylcholine (PtdCho) in the presence of 2% ethanol. Although the protein could not be purified to homogeneity due to its presence in high molecular mass aggregates, a protein band was separated by SDS-PAGE after SDS/chloroform-methanol/TCA-acetone extraction of the latex insoluble fraction. This material was digested with trypsin and the amino acid sequences of the tryptic peptides were determined by micro-LC/ESI/MS/MS. These sequences were used to identify a partial cDNA (723 bp) from expressed sequence tags (ESTs) of C. papaya. Based upon EST sequences, a full-length gene was identified in the genome of C. papaya, with an open reading frame of 2424 bp encoding a protein of 808 amino acid residues, with a theoretical molecular mass of 92.05 kDa. From sequence analysis, CpPLD1 was identified as a PLD belonging to the plant phosphatidylcholine phosphatidohydrolase family. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Specific DNA binding of the two chicken Deformed family homeodomain proteins, Chox-1.4 and Chox-a.

    PubMed Central

    Sasaki, H; Yokoyama, E; Kuroiwa, A

    1990-01-01

    The cDNA clones encoding two chicken Deformed (Dfd) family homeobox containing genes Chox-1.4 and Chox-a were isolated. Comparison of their amino acid sequences with another chicken Dfd family homeodomain protein and with those of mouse homologues revealed that strong homologies are located in the amino terminal regions and around the homeodomains. Although homologies in other regions were relatively low, some short conserved sequences were also identified. E. coli-made full length proteins were purified and used for the production of specific antibodies and for DNA binding studies. The binding profiles of these proteins to the 5'-leader and 5'-upstream sequences of Chox-1.4 and Chox-a coding regions were analyzed by immunoprecipitation and DNase I footprint assays. These two Chox proteins bound to the same sites in the 5'-flanking sequences of their coding regions with various affinities and their binding affinities to each site were nearly the same. The consensus sequences of the high and low affinity binding sites were TAATGA(C/G) and CTAATTTT, respectively. A clustered binding site was identified in the 5'-upstream of the Chox-a gene, suggesting that this clustered binding site works as a cis-regulatory element for auto- and/or cross-regulation of Chox-a gene expression. Images PMID:1970866

  12. Dehydration-induced tps gene transcripts from an anhydrobiotic nematode contain novel spliced leaders and encode atypical GT-20 family proteins.

    PubMed

    Goyal, K; Browne, J A; Burnell, A M; Tunnacliffe, A

    2005-06-01

    Accumulation of the non-reducing disaccharide trehalose is associated with desiccation tolerance during anhydrobiosis in a number of invertebrates, but there is little information on trehalose biosynthetic genes in these organisms. We have identified two trehalose-6-phosphate synthase (tps) genes in the anhydrobiotic nematode Aphelenchus avenae and determined full length cDNA sequences for both; for comparison, full length tps cDNAs from the model nematode, Caenorhabditis elegans, have also been obtained. The A. avenae genes encode very similar proteins containing the catalytic domain characteristic of the GT-20 family of glycosyltransferases and are most similar to tps-2 of C. elegans; no evidence was found for a gene in A. avenae corresponding to Ce-tps-1. Analysis of A. avenae tps cDNAs revealed several features of interest, including alternative trans-splicing of spliced leader sequences in Aav-tps-1, and four different, novel SL1-related trans-spliced leaders, which were different to the canonical SL1 sequence found in all other nematodes studied. The latter observation suggests that A. avenae does not comply with the strict evolutionary conservation of SL1 sequences observed in other species. Unusual features were also noted in predicted nematode TPS proteins, which distinguish them from homologues in other higher eukaryotes (plants and insects) and in micro-organisms. Phylogenetic analysis confirmed their membership of the GT-20 glycosyltransferase family, but indicated an accelerated rate of molecular evolution. Furthermore, nematode TPS proteins possess N- and C-terminal domains, which are unrelated to those of other eukaryotes: nematode C-terminal domains, for example, do not contain trehalose-6-phosphate phosphatase-like sequences, as seen in plant and insect homologues. During onset of anhydrobiosis, both tps genes in A. avenae are upregulated, but exposure to cold or increased osmolarity also results in gene induction, although to a lesser extent. Trehalose seems likely therefore to play a role in a number of stress responses in nematodes.

  13. Characterization of an AGAMOUS-like MADS Box Protein, a Probable Constituent of Flowering and Fruit Ripening Regulatory System in Banana

    PubMed Central

    Roy Choudhury, Swarup; Roy, Sujit; Nag, Anish; Singh, Sanjay Kumar; Sengupta, Dibyendu N.

    2012-01-01

    The MADS-box family of genes has been shown to play a significant role in the development of reproductive organs, including dry and fleshy fruits. In this study, the molecular properties of an AGAMOUS like MADS box transcription factor in banana cultivar Giant governor (Musa sp, AAA group, subgroup Cavendish) has been elucidated. We have detected a CArG-box sequence binding AGAMOUS MADS-box protein in banana flower and fruit nuclear extracts in DNA-protein interaction assays. The protein fraction in the DNA-protein complex was analyzed by mass spectrometry and using this information we have obtained the full length cDNA of the corresponding protein. The deduced protein sequence showed ∼95% amino acid sequence homology with MA-MADS5, a MADS-box protein described previously from banana. We have characterized the domains of the identified AGAMOUS MADS-box protein involved in DNA binding and homodimer formation in vitro using full-length and truncated versions of affinity purified recombinant proteins. Furthermore, in order to gain insight about how DNA bending is achieved by this MADS-box factor, we performed circular permutation and phasing analysis using the wild type recombinant protein. The AGAMOUS MADS-box protein identified in this study has been found to predominantly accumulate in the climacteric fruit pulp and also in female flower ovary. In vivo and in vitro assays have revealed specific binding of the identified AGAMOUS MADS-box protein to CArG-box sequence in the promoters of major ripening genes in banana fruit. Overall, the expression patterns of this MADS-box protein in banana female flower ovary and during various phases of fruit ripening along with the interaction of the protein to the CArG-box sequence in the promoters of major ripening genes lead to interesting assumption about the possible involvement of this AGAMOUS MADS-box factor in banana fruit ripening and floral reproductive organ development. PMID:22984496

  14. Characterization of an AGAMOUS-like MADS box protein, a probable constituent of flowering and fruit ripening regulatory system in banana.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Nag, Anish; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2012-01-01

    The MADS-box family of genes has been shown to play a significant role in the development of reproductive organs, including dry and fleshy fruits. In this study, the molecular properties of an AGAMOUS like MADS box transcription factor in banana cultivar Giant governor (Musa sp, AAA group, subgroup Cavendish) has been elucidated. We have detected a CArG-box sequence binding AGAMOUS MADS-box protein in banana flower and fruit nuclear extracts in DNA-protein interaction assays. The protein fraction in the DNA-protein complex was analyzed by mass spectrometry and using this information we have obtained the full length cDNA of the corresponding protein. The deduced protein sequence showed ~95% amino acid sequence homology with MA-MADS5, a MADS-box protein described previously from banana. We have characterized the domains of the identified AGAMOUS MADS-box protein involved in DNA binding and homodimer formation in vitro using full-length and truncated versions of affinity purified recombinant proteins. Furthermore, in order to gain insight about how DNA bending is achieved by this MADS-box factor, we performed circular permutation and phasing analysis using the wild type recombinant protein. The AGAMOUS MADS-box protein identified in this study has been found to predominantly accumulate in the climacteric fruit pulp and also in female flower ovary. In vivo and in vitro assays have revealed specific binding of the identified AGAMOUS MADS-box protein to CArG-box sequence in the promoters of major ripening genes in banana fruit. Overall, the expression patterns of this MADS-box protein in banana female flower ovary and during various phases of fruit ripening along with the interaction of the protein to the CArG-box sequence in the promoters of major ripening genes lead to interesting assumption about the possible involvement of this AGAMOUS MADS-box factor in banana fruit ripening and floral reproductive organ development.

  15. Isolating Viral and Host RNA Sequences from Archival Material and Production of cDNA Libraries for High-Throughput DNA Sequencing

    PubMed Central

    Xiao, Yongli; Sheng, Zong-Mei; Taubenberger, Jeffery K.

    2015-01-01

    The vast majority of surgical biopsy and post-mortem tissue samples are formalin-fixed and paraffin-embedded (FFPE), but this process leads to RNA degradation that limits gene expression analysis. As an example, the viral RNA genome of the 1918 pandemic influenza A virus was previously determined in a 9-year effort by overlapping RT-PCR from post-mortem samples. Using the protocols described here, the full genome of the 1918 virus at high coverage was determined in one high-throughput sequencing run of a cDNA library derived from total RNA of a 1918 FFPE sample after duplex-specific nuclease treatments. This basic methodological approach should assist in the analysis of FFPE tissue samples isolated over the past century from a variety of infectious diseases. PMID:26344216

  16. Analysis of Structures, Functions, and Epitopes of Cysteine Protease from Spirometra erinaceieuropaei Spargana

    PubMed Central

    Liu, Li Na; Cui, Jing; Zhang, Xi; Wei, Tong; Jiang, Peng; Wang, Zhong Quan

    2013-01-01

    Spirometra erinaceieuropaei cysteine protease (SeCP) in sparganum ES proteins recognized by early infection sera was identified by MALDI-TOF/TOF-MS. The aim of this study was to predict the structures and functions of SeCP protein by using the full length cDNA sequence of SeCP gene with online sites and software programs. The SeCP gene sequence was of 1 053 bp length with a 1011 bp biggest ORF encoding 336-amino acid protein with a complete cathepsin propeptide inhibitor domain and a peptidase C1A conserved domain. The predicted molecular weight and isoelectric point of SeCP were 37.87 kDa and 6.47, respectively. The SeCP has a signal peptide site and no transmembrane domain, located outside the membrane. The secondary structure of SeCP contained 8 α-helixes, 7 β-strands, and 20 coils. The SeCP had 15 potential antigenic epitopes and 19 HLA-I restricted epitopes. Based on the phylogenetic analysis of SeCP, S. erinaceieuropaei has the closest evolutionary status with S. mansonoides. SeCP was a kind of proteolytic enzyme with a variety of biological functions and its antigenic epitopes could provide important insights on the diagnostic antigens and target molecular of antisparganum drugs. PMID:24392448

  17. Chicken immunoglobulin gamma-heavy chains: limited VH gene repertoire, combinatorial diversification by D gene segments and evolution of the heavy chain locus.

    PubMed

    Parvari, R; Avivi, A; Lentner, F; Ziv, E; Tel-Or, S; Burstein, Y; Schechter, I

    1988-03-01

    cDNA clones encoding the variable and constant regions of chicken immunoglobulin (Ig) gamma-chains were obtained from spleen cDNA libraries. Southern blots of kidney DNA show that the variable region sequences of eight cDNA clones reveal the same set of bands corresponding to approximately 30 cross-hybridizing VH genes of one subgroup. Since the VH clones were randomly selected, it is likely that the bulk of chicken H-chains are encoded by a single VH subgroup. Nucleotide sequence determinations of two cDNA clones reveal VH, D, JH and the constant region. The VH segments are closely related to each other (83% homology) as expected for VH or the same subgroup. The JHs are 15 residues long and differ by one amino acid. The Ds differ markedly in sequence (20% homology) and size (10 and 20 residues). These findings strongly indicate multiple (at least two) D genes which by a combinatorial joining mechanism diversify the H-chains, a mechanism which is not operative in the chicken L-chain locus. The most notable among the chicken Igs is the so-called 7S IgG because its H-chain differs in many important aspects from any mammalian IgG. The sequence of the C gamma cDNA reported here resolves this issue. The chicken C gamma is 426 residues long with four CH domains (unlike mammalian C gamma which has three CH domains) and it shows 25% homology to the chicken C mu. The chicken C gamma is most related to the mammalian C epsilon in length, the presence of four CH domains and the distribution of cysteines in the CH1 and CH2 domains. We propose that the unique chicken C gamma is the ancestor of the mammalian C epsilon and C gamma subclasses, and discuss the evolution of the H-chain locus from that of chicken with presumably three genes (mu, gamma, alpha) to the mammalian loci with 8-10 H-chain genes.

  18. Cellular Transfection to Deliver Alanine-Glyoxylate Aminotransferase to Hepatocytes: A Rational Gene Therapy for Primary Hyperoxaluria-1 (PH-1)

    PubMed Central

    Koul, Sweaty; Johnson, Thomas; Pramanik, Saroj; Koul, Hari

    2005-01-01

    Background: Primary hyperoxaluria-type 1 (PH-1) is a rare autosomal recessive disorder of glyoxalate metabolism caused by deficiency in the liver-specific peroxisomal enzyme alanine-glyoxalate transaminase 1 (AGT) resulting in the increased oxidation of glyoxalate to oxalate. Accumulation of oxalate in the kidney and other soft tissues results in loss of renal function and significant morbidity. The present treatment options offer some relief in the short term, but they are not completely successful. In the present study, we tested the feasibility of corrective gene therapy for this metabolic disorder. Methods: A cDNA library was made from HepG2 cells. PCR primers were designed for the AGT sequence with modifications to preclude mistargeting during gene delivery. Amplified AGT cDNA was cloned as a fusion protein with green fluorescent protein (GFP) using the vector EGFP-C1 (Clontech) for monitoring subcellular distribution. Sequence and expression of the fusion protein was verified. Fusion protein vectors were transfected into hepatocytes by liposomal transfection. AGT expression and subcellular distribution was monitored by GFP fluorescence. Results: HepG2 cells express full-length mRNA coding for AGT as confirmed by insert size as well as sequence determination. Selective primers allowed us to generate a modified recombinant GFP-AGT fusion protein. Cellular transfections with Lipofectamine resulted in transfection efficiencies of 60–90%. The recombinant AGT did localize to peroxisomes as monitored by GFP fluorescence. Conclusions: The results demonstrate preliminary in vitro feasibility data for AGT transfection into the hepatocytes. To the best of our knowledge, this is the first study to attempt recombinant AGT gene therapy for treatment of primary hyperoxaluria-1. PMID:15849465

  19. Identification and suppression of the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase in Zea mays L.

    PubMed Central

    Marita, Jane M; Hatfield, Ronald D; Rancour, David M; Frost, Kenneth E

    2014-01-01

    Grasses, such as Zea mays L. (maize), contain relatively high levels of p-coumarates (pCA) within their cell walls. Incorporation of pCA into cell walls is believed to be due to a hydroxycinnamyl transferase that couples pCA to monolignols. To understand the role of pCA in maize development, the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase (pCAT) was isolated and purified from maize stems. Purified pCAT was subjected to partial trypsin digestion, and peptides were sequenced by tandem mass spectrometry. TBLASTN analysis of the acquired peptide sequences identified a single full-length maize cDNA clone encoding all the peptide sequences obtained from the purified enzyme. The cDNA clone was obtained and used to generate an RNAi construct for suppressing pCAT expression in maize. Here we describe the effects of suppression of pCAT in maize. Primary screening of transgenic maize seedling leaves using a new rapid analytical platform was used to identify plants with decreased amounts of pCA. Using this screening method, mature leaves from fully developed plants were analyzed, confirming reduced pCA levels throughout plant development. Complete analysis of isolated cell walls from mature transgenic stems and leaves revealed that lignin levels did not change, but pCA levels decreased and the lignin composition was altered. Transgenic plants with the lowest levels of pCA had decreased levels of syringyl units in the lignin. Thus, altering the levels of pCAT expression in maize leads to altered lignin composition, but does not appear to alter the total amount of lignin present in the cell walls. PMID:24654730

  20. Molecular and functional characterization of a Taenia adhesion gene family (TAF) encoding potential protective antigens of Taenia saginata oncospheres.

    PubMed

    Gonzalez, Luis Miguel; Bonay, Pedro; Benitez, Laura; Ferrer, Elizabeth; Harrison, Leslie J S; Parkhouse, R Michael E; Garate, Teresa

    2007-02-01

    Two clones from an activated Taenia saginata oncosphere cDNA library, Ts45W and Ts45S, were isolated and sequenced. Both of these genes belong to the Taenia ovis 45W gene family. The Ts45W and Ts45S cDNAs are 997- and 1,004-bp-long, each corresponding to 255 amino acids and with theoretical molecular masses of 27.8 and 27.7 kDa, respectively. Southern blot profiles obtained with Ts45W cDNA as a probe suggest that these two genes are members of a multigene family with tandem organization. The full genomic sequence was determined for the Ts45W gene and a new family member, the Ts45W/2 gene. The genomic sequences of the T. saginata Ts45W and Ts45W/2 genes were at least 2.2 kb in length with four exons separated by three introns. Exons 1 and 4 coded for hydrophobic domains, while, importantly, exons 2 and 3 coded for fibronectin homologous domains. These domains are presumably responsible for the demonstrated cell adhesion and, perhaps, the protective nature of this family of molecules and the acronym TAF (Taenia adhesion family) is proposed for this group of genes. We hypothesize that these TAF proteins and another T. saginata-protective antigen, HP6, have evolved the dual functions of facilitating tissue invasion and stimulating protective immunity to first ensure primary infection and subsequently to establish a concomitant protective immunity to protect the host from death or debilitation through superinfection by subsequent infections and thus help ensure parasite survival.

  1. Identification and suppression of the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase in Zea mays L.

    PubMed

    Marita, Jane M; Hatfield, Ronald D; Rancour, David M; Frost, Kenneth E

    2014-06-01

    Grasses, such as Zea mays L. (maize), contain relatively high levels of p-coumarates (pCA) within their cell walls. Incorporation of pCA into cell walls is believed to be due to a hydroxycinnamyl transferase that couples pCA to monolignols. To understand the role of pCA in maize development, the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase (pCAT) was isolated and purified from maize stems. Purified pCAT was subjected to partial trypsin digestion, and peptides were sequenced by tandem mass spectrometry. TBLASTN analysis of the acquired peptide sequences identified a single full-length maize cDNA clone encoding all the peptide sequences obtained from the purified enzyme. The cDNA clone was obtained and used to generate an RNAi construct for suppressing pCAT expression in maize. Here we describe the effects of suppression of pCAT in maize. Primary screening of transgenic maize seedling leaves using a new rapid analytical platform was used to identify plants with decreased amounts of pCA. Using this screening method, mature leaves from fully developed plants were analyzed, confirming reduced pCA levels throughout plant development. Complete analysis of isolated cell walls from mature transgenic stems and leaves revealed that lignin levels did not change, but pCA levels decreased and the lignin composition was altered. Transgenic plants with the lowest levels of pCA had decreased levels of syringyl units in the lignin. Thus, altering the levels of pCAT expression in maize leads to altered lignin composition, but does not appear to alter the total amount of lignin present in the cell walls. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virador, V.; Reyes Grajeda, J; Blanco-Labra, A

    The full-length cDNA sequence (P93622{_}VITVI) of polyphenol oxidase (PPO) cDNA from grape Vitis vinifera L., cv Grenache, was found to encode a translated protein of 607 amino acids with an expected molecular weight of ca. 67 kDa and a predicted pI of 6.83. The translated amino acid sequence was 99%, identical to that of a white grape berry PPO (1) (5 out of 607 amino acid potential sequence differences). The protein was purified from Grenache grape berries by using traditional methods, and it was crystallized with ammonium acetate by the hanging-drop vapor diffusion method. The crystals were orthorhombic, space groupmore » C2221. The structure was obtained at 2.2 {angstrom} resolution using synchrotron radiation using the 39 kDa isozyme of sweet potato PPO (PDB code: 1BT1) as a phase donor. The basic symmetry of the cell parameters (a, b, and c and {alpha}, {beta}, and {gamma}) as well as in the number of asymmetric units in the unit cell of the crystals of PPO, differed between the two proteins. The structures of the two enzymes are quite similar in overall fold, the location of the helix bundles at the core, and the active site in which three histidines bind each of the two catalytic copper ions, and one of the histidines is engaged in a thioether linkage with a cysteine residue. The possibility that the formation of the Cys-His thioether linkage constitutes the activation step is proposed. No evidence of phosphorylation or glycoslyation was found in the electron density map. The mass of the crystallized protein appears to be only 38.4 kDa, and the processing that occurs in the grape berry that leads to this smaller size is discussed.« less

  3. Characterization of the PcCdc42 small G protein from Pneumocystis carinii, which interacts with the PcSte20 life cycle regulatory kinase

    PubMed Central

    Krajicek, Bryan J.; Kottom, Theodore J.; Villegas, Leah

    2010-01-01

    Pneumocystis carinii (Pc) causes severe pneumonia in immunocompromised hosts. The binding of Pc trophic forms to alveolar epithelial cells is a central feature of infection, inducing the expression and activation of PcSte20, a gene participating in mating, proliferation, and pseudohyphal growth. In related fungi, Ste20 proteins are generally activated by immediate upstream small G proteins of the Cdc42-like family. PcCdc42 has not been previously described in Pneumocystis. To address the potential role of such a G protein in Pneumocystis, PcCdc42 was cloned from a Pc cDNA library. Using the full-length 576-bp PcCdc42 cDNA sequence, a CHEF blot of genomic DNA yielded a single band, providing evidence that this gene is present as a single copy within the genome. The total length of PcCdc42 cDNA was 576 bp with an estimated molecular mass of ∼38 kDa. BLASTP analysis demonstrated greater than 80% homology with other fungal Cdc42p proteins. Northern analysis indicated equal mRNA expression in both cystic and trophic life forms. Heterologous expression of PcCdc42 in Saccharomyces cerevisiae (Sc) demonstrated that PcCdc42p was able to restore growth in an ScCdc42Δ yeast strain. Additional assays with purified PcCdc42 protein demonstrated GTP binding and intrinsic GTPase activity, which was partially but significantly suppressed by Clostridium difficile toxin B, characteristic of Cdc42 GTPases. Furthermore, PcCdc42 protein was also shown to bind to the downstream PCSte20 kinase partner in the presence (but not the absence) of GTP. These data indicate that Pc possesses a Cdc42 gene expressing an active G protein, which binds the downstream regulatory kinase PcSte20, important in Pc life cycle regulation. PMID:19915161

  4. Insulin-like growth factors I and II in starry flounder (Platichthys stellatus): molecular cloning and differential expression during embryonic development.

    PubMed

    Xu, Yongjiang; Zang, Kun; Liu, Xuezhou; Shi, Bao; Li, Cunyu; Shi, Xueying

    2015-02-01

    In order to elucidate the possible roles of insulin-like growth factors I and II (IGF-I and IGF-II) in the embryonic development of Platichthys stellatus, their cDNAs were isolated and their spatial expression pattern in adult organs and temporal expression pattern throughout embryonic development were examined by quantitative real-time PCR assay. The IGF-I cDNA sequence was 1,268 bp in length and contained an open reading frame (ORF) of 558 bp, which encoded 185 amino acid residues. With respect to IGF-II, the full-length cDNA was 899 bp in length and contained a 648-bp ORF, which encoded 215 amino acid residues. The amino acid sequences of IGF-I and IGF-II exhibited high identities with their fish counterparts. The highest IGF-I mRNA level was found in the liver for both sexes, whereas the IGF-II gene was most abundantly expressed in female liver and male liver, gill, and brain. The sex-specific and spatial expression patterns of IGF-I and IGF-II mRNAs are thought to be related to the sexually dimorphic growth and development of starry flounder. Both IGF-I and IGF-II mRNAs were detected in unfertilized eggs, which indicated that IGF-I and IGF-II were parentally transmitted. Nineteen embryonic development stages were tested. IGF-I mRNA level remained high from unfertilized eggs to low blastula followed by a significant decrease at early gastrula and then maintained a lower level. In contrast, IGF-II mRNA level was low from unfertilized eggs to high blastula and peaked at low blastula followed by a gradual decrease. Moreover, higher levels of IGF-I mRNA than that of IGF-II were found from unfertilized eggs to high blastula, vice versa from low blastula to newly hatched larva, and the different expression pattern verified the differential roles of IGF-I and IGF-II in starry flounder embryonic development. These results could help in understanding the endocrine mechanism involved in the early development and growth of starry flounder.

  5. Tissue plasminogen activator (tPA) as a reporter gene in transient gene expression.

    PubMed

    Cheng, S M; Lee, S G; Kalyan, N K; McCloud, S; Levner, M; Hung, P P

    1987-01-01

    Using the gene coding for tissue plasminogen activator (tPA) as a reporter gene, a transient gene expression system has been established. Vectors containing the full-length cDNA of tPA with its signal sequences were introduced into mammalian recipient cells by a modified gene transfer procedure. Thirty hours after transfection, the secreted tPA was found in serum-free medium and measured by a fibrin-agarose plate assay (FAPA). In this assay, tPA converts plasminogen into plasmin which then degrades high-Mr fibrin to produce cleared zones. The sizes of these zones correspond to quantities of tPA. The combination of transient tPA expression system and the FAPA provides a quick, sensitive, quantitative and non-destructive method to examine the strength of eukaryotic regulatory elements in tissue-culture cells.

  6. cDNA, genomic sequence cloning, and overexpression of EIF1 from the giant panda (Ailuropoda Melanoleuca) and the black bear (Ursus Thibetanus Mupinensis).

    PubMed

    Hou, Wan-ru; Tang, Yun; Hou, Yi-ling; Song, Yan; Zhang, Tian; Wu, Guang-fu

    2010-07-01

    Eukaryotic initiation factor (eIF) EIF1 is a universally conserved translation factor that is involved in translation initiation site selection. The cDNA and the genomic sequences of EIF1 were cloned successfully from the giant panda (Ailuropoda melanoleuca) and the black bear (Ursus thibetanus mupinensis) using reverse transcription polymerase chain reaction (RT-PCR) technology and touchdown-polymerase chain reaction, respectively. The cDNAs of the EIF1 cloned from the giant panda and the black bear are 418 bp in size, containing an open reading frame (ORF) of 342 bp encoding 113 amino acids. The length of the genomic sequence of the giant panda is 1909 bp, which contains four exons and three introns. The length of the genomic sequence of the black bear is 1897 bp, which also contains four exons and three introns. Sequence alignment indicates a high degree of homology to those of Homo sapiens, Mus musculus, Rattus norvegicus, and Bos Taurus at both amino acid and DNA levels. Topology prediction shows there are one N-glycosylation site, two Casein kinase II phosphorylation sites, and a Amidation site in the EIF1 protein of the giant panda and black bear. In addition, there is a protein kinase C phosphorylation site in EIF1 of the giant panda. The giant panda and the black bear EIF1 genes were overexpressed in E. coli BL21. The results indicated that the both EIF1 fusion proteins with the N-terminally His-tagged form gave rise to the accumulation of two expected 19 kDa polypeptide. The expression products obtained could be used to purify the proteins and study their function further.

  7. O-acetylserine(thiol)lyase from spinach (Spinacia oleracea L.) leaf: cDNA cloning, characterization, and overexpression in Escherichia coli of the chloroplast isoform.

    PubMed

    Rolland, N; Droux, M; Lebrun, M; Douce, R

    1993-01-01

    The last enzymatic step for L-cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL, EC 4.2.99.8) which synthesizes L-cysteine from O-acetylserine and "sulfide." We have isolated and characterized a full-length cDNA (1432 bp) from a lambda gt11 library of spinach leaf encoding the complete precursor of the chloroplast isoform. The 1149-nucleotide open reading frame coding for O-acetylserine(thiol)lyase was in the direction opposite that of the lambda gt11 beta-galactosidase gene. The derived amino acid sequence indicates that the protein precursor consists of 383 amino acid residues including a N-terminal presequence peptide of 52 residues. The amino acid sequence of mature spinach chloroplast O-acetylserine(thiol)lyase shows 40 and 57% homology with its bacterial counterparts. Sequence comparison with several pyridoxal 5'-phosphate-containing proteins reveals the presence of a lysine residue assumed to be involved in cofactor binding. A synthetic cDNA was constructed, coding for the entire 331-amino-acid mature O-acetylserine(thiol)lyase and for an initiating methionine. A high level of expression of the active mature chloroplast isoform was achieved in an Escherichia coli strain carrying the T7 RNA polymerase system (F. W. Studier, A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff, 1990, in Methods in Enzymology, D. V. Goeddel, Ed., Vol. 185, pp. 60-89, Academic Press, San Diego, CA). Addition of pyridoxine to the bacterial growth medium enhanced the enzyme activity due to the recombinant protein. The extent of production is 25-fold higher than in chloroplast from spinach leaves and the recombinant protein presents the relative molecular mass and immunological properties of the natural enzyme from spinach leaf chloroplast. This work, together with our previous biochemical studies, are in accordance with a prokaryotic type enzyme for L-cysteine biosynthesis in higher plant chloroplasts. Southern blot analysis indicated that O-acetylserine(thiol)lyase is encoded by multiple genes in the spinach leaf genomic DNA.

  8. dsRNA silencing of an R2R3-MYB transcription factor affects flower cell shape in a Dendrobium hybrid.

    PubMed

    Lau, Su-Ee; Schwarzacher, Trude; Othman, Rofina Yasmin; Harikrishna, Jennifer Ann

    2015-08-11

    The R2R3-MYB genes regulate pigmentation and morphogenesis of flowers, including flower and cell shape, and therefore have importance in the development of new varieties of orchids. However, new variety development is limited by the long breeding time required in orchids. In this study, we identified a cDNA, DhMYB1, that is expressed during flower development in a hybrid orchid, Dendrobium hybrida (Dendrobium bobby messina X Dendrobium chao phraya) then used the direct application of dsRNA to observe the effect of gene silencing on flower phenotype and floral epidermal cell shape. Flower bud development in the Dendrobium hybrid was characterised into seven stages and the time of meiosis was determined as between stages 3 to 5 when the bud is approximately half of the mature size. Scanning electron microscopy characterisation of adaxial epidermal cells of the flower perianth, showed that the petals and sepals each are divided into two distinct domains based on cell shape and size, while the labellum comprises seven domains. Thirty-two partial cDNA fragments representing R2R3-MYB gene sequences were isolated from D. hybrida. Phylogenetic analysis revealed that nine of the translated sequences were clustered with MYB sequences that are known to be involved in cell shape development and from these, DhMYB1 was selected for full length cDNA cloning and functional study. Direct application of a 430 bp dsRNA from the 3' region of DhMYB1 to emerging orchid flower buds reduced expression of DhMYB1 RNA compared with untreated control. Scanning electron microscopy of adaxial epidermal cells within domain one of the labellum of flowers treated with DhMYB1 dsRNA showed flattened epidermal cells whilst those of control flowers were conical. DhMYB1 is expressed throughout flower bud development and is involved in the development of the conical cell shape of the epidermal cells of the Dendrobium hybrida flower labellum. The direct application of dsRNA changed the phenotype of floral cells, thus, this technique may have application in floriculture biotechnology.

  9. Molecular genetic analysis of the V kappa Ser group associated with two mouse light chain genetic markers. Complementary DNA cloning and southern hybridization analysis

    PubMed Central

    1985-01-01

    Previous studies (21) have shown that two mouse kappa light (L) chain variable (V) region polymorphisms, the IB-peptide and Efla markers, reflect expression of a characteristic group of V kappa regions, called V kappa Ser, by some inbred strains and not others. Expression of V kappa Ser is controlled by a locus on chromosome 6, the chromosome that contains the kappa locus. To further characterize this V kappa group and begin to analyze the basis for its strain-specific expression, full- length complementary DNA (cDNA) copies were produced of L chain mRNA from the M75 myeloma that had been induced in the C.C58 strain of mice, and which produces a V kappa Ser L chain. The C.C58 strain is congenic with BALB/cAn, differing in the region of chromosome 6 that controls expression of the V kappa polymorphisms and the Lyt-2 and Lyt-3 T cell alloantigens. The complete nucleotide sequence of this cloned cDNA was determined and compared with the nucleotide sequences the most closely related BALB/c myeloma L chains known. Results indicated significant differences throughout the variable region, but particularly toward the 5' portion of the sequence. A probe corresponding to 200 bp of the 5' end of the cloned V kappa Ser cDNA was used in Southern hybridizations of restriction digests of liver DNA from a number of inbred, recombinant, and recombinant inbred strains. Under stringent hybridization conditions, one strongly-hybridizing fragment was observed in Bam HI, Hind III, and Eco RI digests, and based on the size of the fragments, strains could be organized into two groups. The presence of strongly hybridizing Bam HI, Hind III, and Eco RI fragments of 3.2, 2.8, and 2.1 kb, respectively, was found to correlate completely with expression by the strain of the IB-peptide and Efla markers. All nonexpressor strains yielded hybridizing fragments of 7.8, 8.4, and 2.8 kb, respectively. Possible explanations for strain- specific expression of V kappa Ser-associated phenotypic markers are discussed. PMID:3926938

  10. Hybridization-based antibody cDNA recovery for the production of recombinant antibodies identified by repertoire sequencing.

    PubMed

    Valdés-Alemán, Javier; Téllez-Sosa, Juan; Ovilla-Muñoz, Marbella; Godoy-Lozano, Elizabeth; Velázquez-Ramírez, Daniel; Valdovinos-Torres, Humberto; Gómez-Barreto, Rosa E; Martinez-Barnetche, Jesús

    2014-01-01

    High-throughput sequencing of the antibody repertoire is enabling a thorough analysis of B cell diversity and clonal selection, which may improve the novel antibody discovery process. Theoretically, an adequate bioinformatic analysis could allow identification of candidate antigen-specific antibodies, requiring their recombinant production for experimental validation of their specificity. Gene synthesis is commonly used for the generation of recombinant antibodies identified in silico. Novel strategies that bypass gene synthesis could offer more accessible antibody identification and validation alternatives. We developed a hybridization-based recovery strategy that targets the complementarity-determining region 3 (CDRH3) for the enrichment of cDNA of candidate antigen-specific antibody sequences. Ten clonal groups of interest were identified through bioinformatic analysis of the heavy chain antibody repertoire of mice immunized with hen egg white lysozyme (HEL). cDNA from eight of the targeted clonal groups was recovered efficiently, leading to the generation of recombinant antibodies. One representative heavy chain sequence from each clonal group recovered was paired with previously reported anti-HEL light chains to generate full antibodies, later tested for HEL-binding capacity. The recovery process proposed represents a simple and scalable molecular strategy that could enhance antibody identification and specificity assessment, enabling a more cost-efficient generation of recombinant antibodies.

  11. Deep sampling of the Palomero maize transcriptome by a high throughput strategy of pyrosequencing.

    PubMed

    Vega-Arreguín, Julio C; Ibarra-Laclette, Enrique; Jiménez-Moraila, Beatriz; Martínez, Octavio; Vielle-Calzada, Jean Philippe; Herrera-Estrella, Luis; Herrera-Estrella, Alfredo

    2009-07-06

    In-depth sequencing analysis has not been able to determine the overall complexity of transcriptional activity of a plant organ or tissue sample. In some cases, deep parallel sequencing of Expressed Sequence Tags (ESTs), although not yet optimized for the sequencing of cDNAs, has represented an efficient procedure for validating gene prediction and estimating overall gene coverage. This approach could be very valuable for complex plant genomes. In addition, little emphasis has been given to efforts aiming at an estimation of the overall transcriptional universe found in a multicellular organism at a specific developmental stage. To explore, in depth, the transcriptional diversity in an ancient maize landrace, we developed a protocol to optimize the sequencing of cDNAs and performed 4 consecutive GS20-454 pyrosequencing runs of a cDNA library obtained from 2 week-old Palomero Toluqueño maize plants. The protocol reported here allowed obtaining over 90% of informative sequences. These GS20-454 runs generated over 1.5 Million reads, representing the largest amount of sequences reported from a single plant cDNA library. A collection of 367,391 quality-filtered reads (30.09 Mb) from a single run was sufficient to identify transcripts corresponding to 34% of public maize ESTs databases; total sequences generated after 4 filtered runs increased this coverage to 50%. Comparisons of all 1.5 Million reads to the Maize Assembled Genomic Islands (MAGIs) provided evidence for the transcriptional activity of 11% of MAGIs. We estimate that 5.67% (86,069 sequences) do not align with public ESTs or annotated genes, potentially representing new maize transcripts. Following the assembly of 74.4% of the reads in 65,493 contigs, real-time PCR of selected genes confirmed a predicted correlation between the abundance of GS20-454 sequences and corresponding levels of gene expression. A protocol was developed that significantly increases the number, length and quality of cDNA reads using massive 454 parallel sequencing. We show that recurrent 454 pyrosequencing of a single cDNA sample is necessary to attain a thorough representation of the transcriptional universe present in maize, that can also be used to estimate transcript abundance of specific genes. This data suggests that the molecular and functional diversity contained in the vast native landraces remains to be explored, and that large-scale transcriptional sequencing of a presumed ancestor of the modern maize varieties represents a valuable approach to characterize the functional diversity of maize for future agricultural and evolutionary studies.

  12. Cloning and sequence analysis of Hemonchus contortus HC58cDNA.

    PubMed

    Muleke, Charles I; Ruofeng, Yan; Lixin, Xu; Xinwen, Bo; Xiangrui, Li

    2007-06-01

    The complete coding sequence of Hemonchus contortus HC58cDNA was generated by rapid amplification of cDNA ends and polymerase chain reaction using primers based on the 5' and 3' ends of the parasite mRNA, accession no. AF305964. The HC58cDNA gene was 851 bp long, with open reading frame of 717 bp, precursors to 239 amino acids coding for approximately 27 kDa protein. Analysis of amino acid sequence revealed conserved residues of cysteine, histidine, asparagine, occluding loop pattern, hemoglobinase motif and glutamine of the oxyanion hole characteristic of cathepsin B like proteases (CBL). Comparison of the predicted amino acid sequences showed the protein shared 33.5-58.7% identity to cathepsin B homologues in the papain clan CA family (family C1). Phylogenetic analysis revealed close evolutionary proximity of the protein sequence to counterpart sequences in the CBL, suggesting that HC58cDNA was a member of the papain family.

  13. Natural diversity of potato (Solanum tuberosum) invertases

    PubMed Central

    2010-01-01

    Background Invertases are ubiquitous enzymes that irreversibly cleave sucrose into fructose and glucose. Plant invertases play important roles in carbohydrate metabolism, plant development, and biotic and abiotic stress responses. In potato (Solanum tuberosum), invertases are involved in 'cold-induced sweetening' of tubers, an adaptive response to cold stress, which negatively affects the quality of potato chips and French fries. Linkage and association studies have identified quantitative trait loci (QTL) for tuber sugar content and chip quality that colocalize with three independent potato invertase loci, which together encode five invertase genes. The role of natural allelic variation of these genes in controlling the variation of tuber sugar content in different genotypes is unknown. Results For functional studies on natural variants of five potato invertase genes we cloned and sequenced 193 full-length cDNAs from six heterozygous individuals (three tetraploid and three diploid). Eleven, thirteen, ten, twelve and nine different cDNA alleles were obtained for the genes Pain-1, InvGE, InvGF, InvCD141 and InvCD111, respectively. Allelic cDNA sequences differed from each other by 4 to 9%, and most were genotype specific. Additional variation was identified by single nucleotide polymorphism (SNP) analysis in an association-mapping population of 219 tetraploid individuals. Haplotype modeling revealed two to three major haplotypes besides a larger number of minor frequency haplotypes. cDNA alleles associated with chip quality, tuber starch content and starch yield were identified. Conclusions Very high natural allelic variation was uncovered in a set of five potato invertase genes. This variability is a consequence of the cultivated potato's reproductive biology. Some of the structural variation found might underlie functional variation that influences important agronomic traits such as tuber sugar content. The associations found between specific invertase alleles and chip quality, tuber starch content and starch yield will facilitate the selection of superior potato genotypes in breeding programs. PMID:21143910

  14. Molecular cloning and localization of a novel cotton annexin gene expressed preferentially during fiber development.

    PubMed

    Wang, Li Ke; Niu, Xiao Wei; Lv, Yan Hui; Zhang, Tian Zhen; Guo, Wang Zhen

    2010-10-01

    Annexins constitute a family of multifunction and structurally related proteins. These proteins are ubiquitous in the plant kingdom, and are important calcium-dependent membrane-binding proteins that participate in the polar development of different plant regions such as rhizoids, root caps, and pollen tube tips. In this study, a novel cotton annexin gene (designated as GhFAnnx) was isolated from a fiber cDNA library of cotton (Gossypium hirsutum). The full-length cDNA of GhFAnnx comprises an open reading frame of 945 bp that encodes a 314-amino acid protein with a calculated molecular mass of 35.7 kDa and an isoelectric point of 6.49. Genomic GhFAnnx sequences from different cotton species, TM-1, Hai7124 and two diploid progenitor cottons, G. herbaceum (A-genome) and G. raimondii (D-genome) showed that at least two copies of the GhFAnnx gene, each with six exons and five introns in the coding region, were identified in the allotetraploid cotton genome. The GhFAnnx gene cloned from the cDNA library in this study was mapped to the chromosome 10 of the A-subgenome of the tetraploid cotton. Sequence alignment revealed that GhFAnnx contained four repeats of 70 amino acids. Semi-quantitative reverse transcriptase-polymerase chain reaction revealed that GhFAnnx is preferentially expressed in different developmental fibers but its expression is low in roots, stems, and leaves. Subcellular localization of GhFAnnx in onion epidermal cells and cotton fibers suggests that this protein is ubiquitous in the epidermal cells of onion, but assembles at the edge and the inner side of the apex of the cotton fiber tips with brilliant spots. In summary, GhFAnnx influences fiber development and is associated with the polar expansion of the cotton fiber during elongation stages.

  15. Identification of a CYP3A form (CYP3A126) in fathead minnow (Pimephales promelas) and characterisation of putative CYP3A enzyme activity.

    PubMed

    Christen, Verena; Caminada, Daniel; Arand, Michael; Fent, Karl

    2010-01-01

    Cytochrome P450-dependent monooxygenases (CYPs) are involved in the metabolic defence against xenobiotics. Human CYP3A enzymes metabolise about 50% of all pharmaceuticals in use today. Induction of CYPs and associated xenobiotic metabolism occurs also in fish and may serve as a useful tool for biomonitoring of environmental contamination. In this study we report on the cloning of a CYP3A family gene from fathead minnows (Pimephales promelas), which has been designated as CYP3A126 by the P450 nomenclature committee (GenBank no. EU332792). The cDNA was isolated, identified and characterised by extended inverse polymerase chain reaction (PCR), an alternative to the commonly used method of rapid amplification of cDNA ends. In a fathead minnow cell line we identified a full-length cDNA sequence (1,863 base pairs (bp)) consisting of a 1,536 bp open reading frame encoding a 512 amino acid protein. Genomic analysis of the identified CYP3A isoenzyme revealed a DNA sequence consisting of 13 exons and 12 introns. CYP3A126 is also expressed in fathead minnow liver as demonstrated by reverse transcription PCR. Exposure of fathead minnow (FHM) cells with the CYP3A inducer rifampicin leads to dose-dependent increase in putative CYP3A enzyme activity. In contrast, inhibitory effects of diazepam treatment were observed on putative CYP3A enzyme activity and additionally on CYP3A126 mRNA expression. This indicates that CYP3A is active in FHM cells and that CYP3A126 is at least in part responsible for this CYP3A activity. Further investigations will show whether CYP3A126 is involved in the metabolism of environmental chemicals.

  16. Cloning and molecular characterization of the salt-regulated jojoba ScRab cDNA encoding a small GTP-binding protein.

    PubMed

    Mizrahi-Aviv, Ela; Mills, David; Benzioni, Aliza; Bar-Zvi, Dudy

    2002-10-01

    Salt stress results in a massive change in gene expression. An 837 bp cDNA designated ScRab was cloned from shoot cultures of the salt tolerant jojoba (Simmondsia chinesis). The cloned cDNA encodes a full length 200 amino acid long polypeptide that bears high homology to the Rab subfamily of small GTP binding proteins, particularly, the Rab5 subfamily. ScRab expression is reduced in shoots grown in the presence of salt compared to shoots from non-stressed cultures. His6-tagged ScRAB protein was expressed in E. coli, and purified to homogeneity. The purified protein bound radiolabelled GTP. The unlabelled guanine nucleotides GTP, GTP gamma S and GDP but not ATP, CTP or UTP competed with GTP binding.

  17. Phylogenetic and Structural Analysis of the Pluripotency Factor Sex-Determining Region Y box2 Gene of Camelus dromedarius (cSox2).

    PubMed

    Alawad, Abdullah; Alharbi, Sultan; Alhazzaa, Othman; Alagrafi, Faisal; Alkhrayef, Mohammed; Alhamdan, Ziyad; Alenazi, Abdullah; Al-Johi, Hasan; Alanazi, Ibrahim O; Hammad, Mohamed

    2016-01-01

    Although the sequencing information of Sox2 cDNA for many mammalian is available, the Sox2 cDNA of Camelus dromedaries has not yet been characterized. The objective of this study was to sequence and characterize Sox2 cDNA from the brain of C. dromedarius (also known as Arabian camel). A full coding sequence of the Sox2 gene from the brain of C. dromedarius was amplified by reverse transcription PCRjmc and then sequenced using the 3730XL series platform Sequencer (Applied Biosystem) for the first time. The cDNA sequence displayed an open reading frame of 822 nucleotides, encoding a protein of 273 amino acids. The molecular weight and the isoelectric point of the translated protein were calculated as 29.825 kDa and 10.11, respectively, using bioinformatics analysis. The predicted cSox2 protein sequence exhibited high identity: 99% for Homo sapiens, Mus musculus, Bos taurus, and Vicugna pacos; 98% for Sus scrofa and 93% for Camelus ferus. A 3D structure was built based on the available crystal structure of the HMG-box domain of human stem cell transcription factor Sox2 (PDB: 2 LE4) with 81 residues and predicting bioinformatics software for 273 amino acid residues. The comparison confirms the presence of the HMG-box domain in the cSox2 protein. The orthologous phylogenetic analysis showed that the Sox2 isoform from C. dromedarius was grouped with humans, alpacas, cattle, and pigs. We believe that this genetic and structural information will be a helpful source for the annotation. Furthermore, Sox2 is one of the transcription factors that contributes to the generation-induced pluripotent stem cells (iPSCs), which in turn will probably help generate camel induced pluripotent stem cells (CiPSCs).

  18. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review

    PubMed Central

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-01-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  19. [Cloning and bioinformatics analysis of abscisic acid 8'-hydroxylase from Pseudostellariae Radix].

    PubMed

    Li, Jun; Long, Deng-Kai; Zhou, Tao; Ding, Ling; Zheng, Wei; Jiang, Wei-Ke

    2016-07-01

    Abscisic acid 8'-hydroxylase was one of key enzymes genes in the metabolism of abscisic acid (ABA). Seven menbers of abscisic acid 8'-hydroxylase were identified from Pseudostellaria heterophylla transcriptome sequencing results by using sequence homology. The expression profiles of these genes were analyzed by transcriptome data. The coding sequence of ABA8ox1 was cloned and analyzed by informational technology. The full-length cDNA of ABA8ox1 was 1 401 bp,with 480 encoded amino acids. The predicated isoelectric point (pI) and relative molecular mass (MW) were 8.55 and 53 kDa,respectively. Transmembrane structure analysis showed that there were 21 amino acids in-side and 445 amino acids out-side. High level of transcripts can detect in bark of root and fibrous root. Multi-alignment and phylogenetic analysis both show that ABA8ox1 had a high similarity with the CYP707As from other plants,especially with AtCYP707A1 and AtCYP707A3 in Arabidopsis thaliana. These results lay a foundation for molecular mechanism of tuberous root expanding and response to adversity stress. Copyright© by the Chinese Pharmaceutical Association.

  20. Discovery, characterization and expression of a novel zebrafish gene, znfr, important for notochord formation.

    PubMed

    Xu, Yan; Zou, Peng; Liu, Yao; Deng, Fengjiao

    2010-06-01

    Genes specifically expressed in the notochord may be crucial for proper notochord development. Using the digital differential display program offered by the National Center for Biotechnology Information, we identified a novel EST sequence from a zebrafish ovary library (No. XM_701450). The full-length cDNA of this transcript was cloned by performing 3' and 5'-RACE and was further confirmed by PCR and sequencing. The resulting 614 bp gene was found to encode a novel 94 amino acid protein that did not share significant homology with any other known protein. Characterization of the genomic sequence revealed that the gene spanned 4.9 kb and was composed of four exons and three introns. RT-PCR gene expression analysis revealed that our gene of interest was expressed in ovary, kidney, brain, mature oocytes and during the early stages of embryogenesis. During embryonic development, znfr mRNA was found to be expressed in the embryonic shield, chordamesoderm and the vacuolated notochord cells by in situ hybridization. Based on this information, we hypothesize that this novel gene is an important maternal factor required for zebrafish notochord formation during early embryonic development. We have thus named this gene znfr (zebrafish notochord formation related).

  1. Molecular Cloning, Expression Profile and 5′ Regulatory Region Analysis of Two Chemosensory Protein Genes from the Diamondback Moth, Plutella xylostella

    PubMed Central

    Gong, Liang; Zhong, Guo-Hua; Hu, Mei-Ying; Luo, Qian; Ren, Zhen-Zhen

    2010-01-01

    Chemosensory proteins play an important role in transporting chemical compounds to their receptors on dendrite membranes. In this study, two full-length cDNA codings for chemosensory proteins of Plutella xylostella (Lepidoptera: Plutellidae) were obtained by RACE-PCR. PxylCSP3 and Pxyl-CSP4, with GenBank accession numbers ABM92663 and ABM92664, respectively, were cloned and sequenced. The gene sequences both consisted of three exons and two introns. RT-PCR analysis showed that Pxyl-CSP3 and Pxyl-CSP4 had different expression patterns in the examined developmental stages, but were expressed in all larval stages. Phylogenetic analysis indicated that lepidopteran insects consist of three branches, and Pxyl-CSP3 and Pxyl-CSP4 belong to different branches. The 5′regulatory regions of Pxyl-CSP3 and Pxyl-CSP4 were isolated and analyzed, and the results consist of not only the core promoter sequences (TATA-box), but also several transcriptional elements (BR-C Z4, Hb, Dfd, CF2-II, etc.). This study provides clues to better understanding the various physiological functions of CSPs in P. xylostella and other insects. PMID:21073345

  2. Anchoring a Defined Sequence to the 55' Ends of mRNAs : The Bolt to Clone Rare Full Length mRNAs and Generate cDNA Libraries porn a Few Cells.

    PubMed

    Baptiste, J; Milne Edwards, D; Delort, J; Mallet, J

    1993-01-01

    Among numerous applications, the polymerase chain reaction (PCR) (1,2) provides a convenient means to clone 5' ends of rare mRNAs and to generate cDNA libraries from tissue available in amounts too low to be processed by conventional methods. Basically, the amplification of cDNAs by the PCR requires the availability of the sequences of two stretches of the molecule to be amplified. A sequence can easily be imposed at the 5' end of the first-strand cDNAs (corresponding to the 3' end of the mRNAs) by priming the reverse transcription with a specific primer (for cloning the 5' end of rare messenger) or with an oligonucleotide tailored with a poly (dT) stretch (for cDNA library construction), taking advantage of the poly (A) sequence that is located at the 3' end of mRNAs. Several strategies have been devised to tag the 3' end of the ss-cDNAs (corresponding to the 55' end of the mRNAs). We (3) and others have described strategies based on the addition of a homopolymeric dG (4,5) or dA (6,7) tail using terminal deoxyribonucleotide transferase (TdT) ("anchor-PCR" [4]). However, this strategy has important limitations. The TdT reaction is difficult to control and has a low efficiency (unpublished observations). But most importantly, the return primers containing a homopolymeric (dC or dT) tail generate nonspecific amplifications, a phenomenon that prevents the isolation of low abundance mRNA species and/or interferes with the relative abundance of primary clones in the library. To circumvent these drawbacks, we have used two approaches. First, we devised a strategy based on a cRNA enrichment procedure, which has been useful to eliminate nonspecific-PCR products and to allow detection and cloning of cDNAs of low abundance (3). More recently, to avoid the nonspecific amplification resulting from the annealing of the homopolymeric tail oligonucleotide, we have developed a novel anchoring strategy that is based on the ligation of an oligonucleotide to the 35' end of ss-cDNAs. This strategy is referred to as SLIC for single-strand ligation to ss-cDNA (8).

  3. In silico cloning, expression of Rieske-like apoprotein gene and protein subcellular localization in the Pacific oyster, Crassostrea gigas.

    PubMed

    He, Xiaocui; Zhang, Yang; Yu, Ziniu

    2010-10-01

    Rieske protein gene in the Pacific oyster Crassostrea gigas was obtained by in silico cloning for the first time, and its expression profiles and subcellular localization were determined, respectively. The full-length cDNA of Cgisp is 985 bp in length and contains a 5'- and 3'-untranslated regions of 35 and 161 bp, respectively, with an open reading frame of 786 bp encoding a protein of 262 amino acids. The predicted molecular weight of 30 kDa of Cgisp protein was verified by prokaryotic expression. Conserved Rieske [2Fe-2S] cluster binding sites and highly matched-pair tertiary structure with 3CWB_E (Gallus gallus) were revealed by homologous analysis and molecular modeling. Eleven putative SNP sites and two conserved hexapeptide sequences, box I (THLGC) and II (PCHGS), were detected by multiple alignments. Real-time PCR analysis showed that Cgisp is expressed in a wide range of tissues, with adductor muscle exhibiting the top expression level, suggesting its biological function of energy transduction. The GFP tagging Cgisp indicated a mitochondrial localization, further confirming its physiological function.

  4. Cloning and expression analysis of a transformer gene in Daphnia pulex during different reproduction stages.

    PubMed

    Chen, Ping; Xu, Shan-Liang; Zhou, Wei; Guo, Xiao-Ge; Wang, Chun-Lin; Wang, Dan-Li; Zhao, Yun-Long

    2014-05-01

    The full-length cDNA of a transformer gene (Dptra) was cloned from the cladoceran Daphnia pulex using RACE. Dptra expression was assessed by qPCR and whole-mount in situ hybridization in different reproductive stages. The Dptra cDNA, 1652bp in length, has a 1158-bp open reading frame that encodes a 385 amino acid polypeptide containing one Sex determination protein N terminal (SDP_N) superfamily, eight putative phosphorylation sites, and an arginine-serine (RS)-rich domain at the N-terminus. Dptra showed 81%, 53%, 51% and 45% identity to orthologous genes in Daphnia magna, Apis mellifera, Apis cerana and Bombus terrestris, respectively. Phylogenetic analysis based on deduced amino acid sequences revealed that Dptra clustered in the hymenopteran clade and was most closely related to D. magna and A. mellifera. qPCR showed that Dptra expression increased significantly (P<0.05) in different reproductive stages in the following order: male, ephippial female, parthenogenetic female, resting egg and juvenile female. Dptra expression is significantly different between males and females and it is significantly greater in ephippial females and males than in parthenogenetic D. pulex (with summer eggs). Whole-mount in situ hybridization revealed that Dptra was expressed at different levels between males and females. In males, hybridization signals were found in the first antennae, second antennae and thoracic limb, whereas expression levels in the corresponding sites of parthenogenetic and ephippial females were relatively weak. This suggests that the Dptra gene plays significant roles in switching modes of reproduction and in sexual differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Generation of expressed sequence tags for discovery of genes responsible for floral traits of Chrysanthemum morifolium by next-generation sequencing technology.

    PubMed

    Sasaki, Katsutomo; Mitsuda, Nobutaka; Nashima, Kenji; Kishimoto, Kyutaro; Katayose, Yuichi; Kanamori, Hiroyuki; Ohmiya, Akemi

    2017-09-04

    Chrysanthemum morifolium is one of the most economically valuable ornamental plants worldwide. Chrysanthemum is an allohexaploid plant with a large genome that is commercially propagated by vegetative reproduction. New cultivars with different floral traits, such as color, morphology, and scent, have been generated mainly by classical cross-breeding and mutation breeding. However, only limited genetic resources and their genome information are available for the generation of new floral traits. To obtain useful information about molecular bases for floral traits of chrysanthemums, we read expressed sequence tags (ESTs) of chrysanthemums by high-throughput sequencing using the 454 pyrosequencing technology. We constructed normalized cDNA libraries, consisting of full-length, 3'-UTR, and 5'-UTR cDNAs derived from various tissues of chrysanthemums. These libraries produced a total number of 3,772,677 high-quality reads, which were assembled into 213,204 contigs. By comparing the data obtained with those of full genome-sequenced species, we confirmed that our chrysanthemum contig set contained the majority of all expressed genes, which was sufficient for further molecular analysis in chrysanthemums. We confirmed that our chrysanthemum EST set (contigs) contained a number of contigs that encoded transcription factors and enzymes involved in pigment and aroma compound metabolism that was comparable to that of other species. This information can serve as an informative resource for identifying genes involved in various biological processes in chrysanthemums. Moreover, the findings of our study will contribute to a better understanding of the floral characteristics of chrysanthemums including the myriad cultivars at the molecular level.

  6. Development of infectious cDNA clones of citrus yellow vein clearing virus using a novel and rapid strategy.

    PubMed

    Cui, Tian Tian; Bin, Yu; Yan, Jian Hong; Mei, Peng Ying; Li, Zhong An; Zhou, Chang Yong; Song, Zhen

    2018-05-04

    Yellow vein clearing disease (YVCD) causes significant economic losses in lemon and other species of citrus. Usually, citrus yellow vein clearing virus (CYVCV) is considered to be the causal agent of YVCD. However, mixed infection of CYVCV and Indian citrus ringspot virus (ICRSV) or other pathogens is often detected in citrus plants with YVCD. In this study, we re-examined the causal agent of YVCD to fulfill Koch's postulates. First, the full-length genome of CYVCV isolate AY (CYVCV-AY) was amplified by long-distance RT-PCR from a Eureka lemon [Citrus limon (L) Brum. f.] tree with typical YVCD symptoms. The genomic cDNAs were then cloned into a ternary Yeast-Escherichia coli-Agrobacterium tumefaciens shuttle vector, pCY, using transformation-associated recombination (TAR) strategy, and 15 full-length cDNA clones of CYVCV-AY were obtained. Subsequently, four of these clones were selected randomly and inoculated on Jincheng [C. sinensis (L) Osbeck] seedlings through Agrobacterium-mediated vacuum-infiltration, and it was found that 80 to 100% of inoculated plants were infected with CYVCV by RT-PCR at 20 to 40 days post inoculation (dpi) and by direct tissue blot immunoassay at 60 dpi. The progeny of CYVCV-AY from cDNA clones caused typical symptoms of YVCD such as yellow vein clearing, leaf distortion, and chlorosis, which were the same as that elicited by wild-type virus. Finally, the regeneration of CYVCV-AY genome was confirmed by long-distance RT-PCR in lemon trees inoculated with the infectious cDNA clone. These results proved that CYVCV was the primary causal agent of YVCD. This is the first report on the development of infectious cDNA clones of CYVCV, which lays the foundation for further studies on viral gene functions and virus-host interactions.

  7. [Cloning and expression regulation of 1-deoxy-D-xylulose-5-phosphate reductoisomerase cDNA from Alpinia officinarum].

    PubMed

    Zhang, Chun-Rong; Yang, Quan; Chen, Hu-Biao; Pang, Yu-Xin; Tang, Xiao-Min; Cheng, Xuan-Xuan; Wu, Wen-Ya; Chen, Shi-Min

    2012-11-01

    The rhizome of Alpinia officinarum is a widely used Chinese herbal medicine. The essential oil in A. officinarum rhizome is mainly composed of 1, 8-cineole and other monoterpenes, as the major bioactive ingredients. In plants, monoterpenes are synthesized through the methylerythritol phosphate (MEP) pathway in the plastids, and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) is an enzyme catalyzing a committed step of the MEP pathway. In the present study, the full-length cDNA encoding DXR was cloned from the rhizome of A. officinarum, using homology-based RT-PCR and rapid amplification of cDNA ends (RACE) techniques. The new cDNA was designated as AoDXR and submitted to GenBank to be assigned with an accession number HQ874658. The full-length cDNA of AoDXR was 1 670 bp containing a 1 419 bp open reading frame encoding a polypeptide of 472 amino acids with a calculated molecular mass of 51.48 kDa and an isoelectric point of 6.15. Bioinformatic analyses revealed that AoDXR showed extensive homology with DXRs from other plant species and contained a conserved plastids transit peptide, a Pro-rich region and two highly conserved NADPH-binding motifs in its N-terminal region characterized by all plant DXRs. The phylogenetic analysis revealed that AoDXR belonged to angiosperm DXRs. The structural modeling of AoDXR showed that AoDXR had the typical V-shaped structure of DXR proteins. The tissue expression pattern analysis indicated that AoDXR expressed strongly in leaves, weak in rhizomes of A. officinarum. Exogenous methyl jasmonate (MeJA) could enhance the expression of AoDXR and the production of 1, 8-cineole in A. officinarum rhizomes. The cloning and characterization of AoDXR will be helpful to reveal the molecular regulation mechanism of monoterpene biosynthesis in A. officinarum and provides a candidate gene for metabolic engineering in improving the medicinal quality of A. officinarum rhizome.

  8. Identification of Delta5-fatty acid desaturase from the cellular slime mold dictyostelium discoideum.

    PubMed

    Saito, T; Ochiai, H

    1999-10-01

    cDNA fragments putatively encoding amino acid sequences characteristic of the fatty acid desaturase were obtained using expressed sequence tag (EST) information of the Dictyostelium cDNA project. Using this sequence, we have determined the cDNA sequence and genomic sequence of a desaturase. The cloned cDNA is 1489 nucleotides long and the deduced amino acid sequence comprised 464 amino acid residues containing an N-terminal cytochrome b5 domain. The whole sequence was 38.6% identical to the initially identified Delta5-desaturase of Mortierella alpina. We have confirmed its function as Delta5-desaturase by over expression mutation in D. discoideum and also the gain of function mutation in the yeast Saccharomyces cerevisiae. Analysis of the lipids from transformed D. discoideum and yeast demonstrated the accumulation of Delta5-desaturated products. This is the first report concering fatty acid desaturase in cellular slime molds.

  9. Sequence of interleukin-2 isolated from human placental poly A+ RNA: possible role in maintenance of fetal allograft.

    PubMed

    Chernicky, C L; Tan, H; Burfeind, P; Ilan, J; Ilan, J

    1996-02-01

    There are several cell types within the placenta that produce cytokines which can contribute to the regulatory mechanisms that ensure normal pregnancy. The immunological milieu at the maternofetal interface is considered to be crucial for survival of the fetus. Interleukin-2 (IL-2) is expressed by the syncytiotrophoblast, the cell layer between the mother and the fetus. IL-2 appears to be a key factor in maintenance of pregnancy. Therefore, it was important to determine the sequence of human placental interleukin-2. Direct sequencing of human placental IL-2 cDNA was determined for the coding region. Subclone sequencing was carried out for the 5'- and 3'-untranslated regions (5'-UTR and 3'-UTR). The 5'-UTR for human placental IL-2 cDNA is 294 bp, which is 247 nucleotides longer than that reported for cDNA IL-2 derived from T cells. The sequence of the coding region is identical to that reported for T cell IL-2, while sequence analysis of the polymerase chain reaction (PCR) product showed that the cDNA from the 3' end was the same as that reported for cDNA from T cells. Human placental IL-2 cDNA is 1,028 base pairs (excluding the poly A tail), which is 247 bp longer at the 5' end than that reported for IL-2 T cell cDNA. Therefore, the extended 5'-UTR of the placental IL-2 cDNA may be a consequence of alternative promoter utilization in the placenta.

  10. The cDNA sequence of mouse Pgp-1 and homology to human CD44 cell surface antigen and proteoglycan core/link proteins.

    PubMed

    Wolffe, E J; Gause, W C; Pelfrey, C M; Holland, S M; Steinberg, A D; August, J T

    1990-01-05

    We describe the isolation and sequencing of a cDNA encoding mouse Pgp-1. An oligonucleotide probe corresponding to the NH2-terminal sequence of the purified protein was synthesized by the polymerase chain reaction and used to screen a mouse macrophage lambda gt11 library. A cDNA clone with an insert of 1.2 kilobases was selected and sequenced. In Northern blot analysis, only cells expressing Pgp-1 contained mRNA species that hybridized with this Pgp-1 cDNA. The nucleotide sequence of the cDNA has a single open reading frame that yields a protein-coding sequence of 1076 base pairs followed by a 132-base pair 3'-untranslated sequence that includes a putative polyadenylation signal but no poly(A) tail. The translated sequence comprises a 13-amino acid signal peptide followed by a polypeptide core of 345 residues corresponding to an Mr of 37,800. Portions of the deduced amino acid sequence were identical to those obtained by amino acid sequence analysis from the purified glycoprotein, confirming that the cDNA encodes Pgp-1. The predicted structure of Pgp-1 includes an NH2-terminal extracellular domain (residues 14-265), a transmembrane domain (residues 266-286), and a cytoplasmic tail (residues 287-358). Portions of the mouse Pgp-1 sequence are highly similar to that of the human CD44 cell surface glycoprotein implicated in cell adhesion. The protein also shows sequence similarity to the proteoglycan tandem repeat sequences found in cartilage link protein and cartilage proteoglycan core protein which are thought to be involved in binding to hyaluronic acid.

  11. Cloning, expression, and purification of a new antimicrobial peptide gene from Musca domestica larva.

    PubMed

    Pei, Zhihua; Sun, Xiaoning; Tang, Yan; Wang, Kai; Gao, Yunhang; Ma, Hongxia

    2014-10-01

    Musca domestica (Diptera: Muscidae), the housefly, exhibits unique immune defences and can produce antimicrobial peptides upon stimulation with bacteria. Based on the cDNA library constructed using the suppression subtractive hybridization (SSH) method, a 198-bp antimicrobial peptide gene, which we named MDAP-2, was amplified by rapid amplification of cDNA ends (RACE) from M. domestica larvae stimulated with Salmonella pullorum (Enterobacteriaceae: Salmonella). In the present study, the full-length MDAP-2 gene was cloned and inserted into a His-tagged Escherichia coli prokaryotic expression system to enable production of the recombinant peptide. The recombinant MDAP-2 peptide was purified using Ni-NTA HisTrap FF crude column chromatography. The bacteriostatic activity of the recombinant purified MDAP-2 protein was assessed. The results indicated that MDAP-2 had in vitro antibacterial activity against all of the tested Gram- bacteria from clinical isolates, including E. coli (Enterobacteriaceae: Escherichia), one strain of S. pullorum (Enterobacteriaceae: Salmonella), and one strain of Pasteurella multocida. DNA sequencing and BLAST analysis showed that the MDAP-2 antimicrobial peptide gene was not homologous to any other antimicrobial peptide genes in GenBank. The antibacterial mechanisms of the newly discovered MDAP-2 peptide warrant further study. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Molecular characterization of the glucose-regulated protein 78 (GRP78) gene in planarian Dugesia japonica.

    PubMed

    Ma, Ke-Xue; Chen, Guang-Wen; Shi, Chang-Ying; Cheng, Fang-Fang; Dou, He; Feng, Cheng-Cheng; Liu, De-Zeng

    2014-05-01

    GRP78 (78 kDa glucose-regulated protein) has ubiquitously existed in nearly all organisms from yeast to humans, reflecting the central roles it plays in cell survival. In this report, we isolated and sequenced the full-length cDNA of GRP78 (designated DjGRP78) from the planarian Dugesia japonica. The cDNA is 2121 bp, including an open reading frame (ORF) of 1983 bp encoding a polypeptide of 660 amino acids with three HSP70 family signatures. DjGRP78 contains signal peptides at the N-terminus and a KTEL peptide motif at the C-terminus, which suggests that it localizes in the endoplasmic reticulum (ER). Fluorescent real time RT-PCR was employed to detect the expression pattern of Djgrp78 in response to different stressors. Our results show that heat shock and heavy metals (Hg(2+) and Pb(2+)) induce Djgrp78 expression, but starvation does not. Interestingly, we found that Djgrp78 was up-regulated in planarians with septic tissues, and also verified that it was up-regulated in response to bacterial challenge. Our data indicate that Djgrp78 may be a multifunctional gene, and play important roles in physiological and pathological stress in planarians. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Rapid, transient, and highly localized induction of plastidial ω-3 fatty acid desaturase mRNA at fungal infection sites in Petroselinum crispum

    PubMed Central

    Kirsch, Christoph; Takamiya-Wik, Monica; Reinold, Susanne; Hahlbrock, Klaus; Somssich, Imre E.

    1997-01-01

    Parsley (Petroselinum crispum) plants and suspension-cultured cells have been used extensively for studies of non-host-resistance mechanisms in plant/pathogen interactions. We now show that treatment of cultured parsley cells with a defined peptide elicitor of fungal origin causes rapid and large changes in the levels of various unsaturated fatty acids. While linoleic acid decreased and linolenic acid increased steadily for several hours, comparatively sharp increases in oleic acid followed a biphasic time course. In contrast, the overall level of stearic acid remained unaffected. Using a PCR-based approach, a parsley cDNA was isolated sharing high sequence similarity with ω-3 fatty acid desaturases. Subsequent isolation and characterization of a full-length cDNA enabled its functional identification as a plastid-localized ω-3 fatty acid desaturase by complementation of the Arabidopsis thaliana fad7/8 double mutant which is low in trienoic fatty acids. ω-3 Fatty acid desaturase mRNA accumulated rapidly and transiently in elicitor-treated cultured parsley cells, protoplasts, and leaves, as well as highly localized around fungal infection sites in parsley leaf buds. These results indicate that unsaturated fatty acid metabolism is yet another component of the highly complex, transcriptionally regulated pathogen defense response in plants. PMID:9050908

  14. Genomic overview of mRNA 5′-leader trans-splicing in the ascidian Ciona intestinalis

    PubMed Central

    Satou, Yutaka; Hamaguchi, Makoto; Takeuchi, Keisuke; Hastings, Kenneth E. M.; Satoh, Nori

    2006-01-01

    Although spliced leader (SL) trans-splicing in the chordates was discovered in the tunicate Ciona intestinalis there has been no genomic overview analysis of the extent of trans-splicing or the make-up of the trans-spliced and non-trans-spliced gene populations of this model organism. Here we report such an analysis for Ciona based on the oligo-capping full-length cDNA approach. We randomly sampled 2078 5′-full-length ESTs representing 668 genes, or 4.2% of the entire genome. Our results indicate that Ciona contains a single major SL, which is efficiently trans-spliced to mRNAs transcribed from a specific set of genes representing ∼50% of the total number of expressed genes, and that individual trans-spliced mRNA species are, on average, 2–3-fold less abundant than non-trans-spliced mRNA species. Our results also identify a relationship between trans-splicing status and gene functional classification; ribosomal protein genes fall predominantly into the non-trans-spliced category. In addition, our data provide the first evidence for the occurrence of polycistronic transcription in Ciona. An interesting feature of the Ciona polycistronic transcription units is that the great majority entirely lack intercistronic sequences. PMID:16822859

  15. Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite.

    PubMed

    Boldbaatar, Damdinsuren; Battsetseg, Badgar; Matsuo, Tomohide; Hatta, Takeshi; Umemiya-Shirafuji, Rika; Xuan, Xuenan; Fujisaki, Kozo

    2008-08-01

    A cDNA encoding the vitellogenin receptor of the ixodid tick, Haemaphysalis longicornis Neumann (HlVgR) was cloned and characterized. The full-length cDNA is 5631 bp, including an intact ORF encoding an expected protein with 1782 amino acids. The deduced amino acid sequence of the HlVgR cDNA revealed two ligand-binding domains with four class A cysteine-rich repeats in the first domain and eight in the second domain similar to those of insect VgRs. The immunoblot analysis detected approximately 197 kDa protein in both tick ovary and egg. The developmental expression profile demonstrated that HlVgR mRNA exists throughout the ovarian development, and the transcriptional level is especially high in the previtellogenic period. Immuno electron microscopy analysis demonstrated that the localization of HlVgR is detected on the external surface of oocyte plasma membrane. RNAi showed that eggs of HlVgR dsRNA-injected adult ticks had not developed into fully mature oocytes and laid abnormal eggs. The Babesia parasite DNA was not detected in the eggs of HlVgR dsRNA-injected tick that fed on Babesia gibsoni infected dog, whereas it was detected in the eggs of PBS-injected ticks and noninjected ticks. Expression of HlVgR was increased by the vitellogenic hormone 20-hydroxyecdysone. These results indicate that HlVgR, which is produced by the developing oocytes, is essential for Vg uptake, egg development in the H. longicornis tick, and transovarial transmission of Babesia parasites.

  16. De Novo Generation and Characterization of New Zika Virus Isolate Using Sequence Data from a Microcephaly Case

    PubMed Central

    Setoh, Yin Xiang; Prow, Natalie A.; Peng, Nias; Hugo, Leon E.; Devine, Gregor; Hazlewood, Jessamine E.

    2017-01-01

    ABSTRACT Zika virus (ZIKV) has recently emerged and is the etiological agent of congenital Zika syndrome (CZS), a spectrum of congenital abnormalities arising from neural tissue infections in utero. Herein, we describe the de novo generation of a new ZIKV isolate, ZIKVNatal, using a modified circular polymerase extension reaction protocol and sequence data obtained from a ZIKV-infected fetus with microcephaly. ZIKVNatal thus has no laboratory passage history and is unequivocally associated with CZS. ZIKVNatal could be used to establish a fetal brain infection model in IFNAR−/− mice (including intrauterine growth restriction) without causing symptomatic infections in dams. ZIKVNatal was also able to be transmitted by Aedes aegypti mosquitoes. ZIKVNatal thus retains key aspects of circulating pathogenic ZIKVs and illustrates a novel methodology for obtaining an authentic functional viral isolate by using data from deep sequencing of infected tissues. IMPORTANCE The major complications of an ongoing Zika virus outbreak in the Americas and Asia are congenital defects caused by the virus’s ability to cross the placenta and infect the fetal brain. The ability to generate molecular tools to analyze viral isolates from the current outbreak is essential for furthering our understanding of how these viruses cause congenital defects. The majority of existing viral isolates and infectious cDNA clones generated from them have undergone various numbers of passages in cell culture and/or suckling mice, which is likely to result in the accumulation of adaptive mutations that may affect viral properties. The approach described herein allows rapid generation of new, fully functional Zika virus isolates directly from deep sequencing data from virus-infected tissues without the need for prior virus passaging and for the generation and propagation of full-length cDNA clones. The approach should be applicable to other medically important flaviviruses and perhaps other positive-strand RNA viruses. PMID:28529976

  17. Identification of metalloprotease/disintegrins in Xenopus laevis testis with a potential role in fertilization.

    PubMed

    Shilling, F M; Krätzschmar, J; Cai, H; Weskamp, G; Gayko, U; Leibow, J; Myles, D G; Nuccitelli, R; Blobel, C P

    1997-06-15

    Proteins containing a membrane-anchored metalloprotease domain, a disintegrin domain, and a cysteine-rich region (MDC proteins) are thought to play an important role in mammalian fertilization, as well as in somatic cell-cell interactions. We have identified PCR sequence tags encoding the disintegrin domain of five distinct MDC proteins from Xenopus laevis testis cDNA. Four of these sequence tags (xMDC9, xMDC11.1, xMDC11.2, and xMDC13) showed strong similarity to known mammalian MDC proteins, whereas the fifth (xMDC16) apparently represents a novel family member. Northern blot analysis revealed that the mRNA for xMDC16 was only expressed in testis, and not in heart, muscle, liver, ovaries, or eggs, whereas the mRNAs corresponding to the four other PCR products were expressed in testis and in some or all somatic tissues tested. The xMDC16 protein sequence, as predicted from the full-length cDNA, contains a metalloprotease domain with the active-site sequence HEXXH, a disintegrin domain, a cysteine-rich region, an EGF repeat, a transmembrane domain, and a short cytoplasmic tail. To study a potential role for these xMDC proteins in fertilization, peptides corresponding to the predicted integrin-binding domain of each protein were tested for their ability to inhibit X. laevis fertilization. Cyclic and linear xMDC16 peptides inhibited fertilization in a concentration-dependent manner, whereas xMDC16 peptides that were scrambled or had certain amino acid replacements in the predicted integrin-binding domain did not affect fertilization. Cyclic and linear xMDC9 peptides and linear xMDC13 peptides also inhibited fertilization similarly to xMDC16 peptides, whereas peptides corresponding to the predicted integrin-binding site of xMDC11.1 and xMDC11.2 did not. These results are discussed in the context of a model in which multiple MDC protein-receptor interactions are necessary for fertilization to occur.

  18. Expression and permeation properties of the K(+) channel Kir7.1 in the retinal pigment epithelium.

    PubMed

    Shimura, M; Yuan, Y; Chang, J T; Zhang, S; Campochiaro, P A; Zack, D J; Hughes, B A

    2001-03-01

    Bovine Kir7.1 clones were obtained from a retinal pigment epithelium (RPE)-subtracted cDNA library. Human RPE cDNA library screening resulted in clones encoding full-length human Kir7.1. Northern blot analysis indicated that bovine Kir7.1 is highly expressed in the RPE. Human Kir7.1 channels were expressed in Xenopus oocytes and studied using the two-electrode voltage-clamp technique. The macroscopic Kir7.1 conductance exhibited mild inward rectification and an inverse dependence on extracellular K+ concentration ([K+]o). The selectivity sequence based on permeability ratios was K+ (1.0) approximately Rb+ (0.89) > Cs+ (0.013) > Na+ (0.003) approximately Li+ (0.001) and the sequence based on conductance ratios was Rb+ (9.5) > K+ (1.0) > Na+ (0.458) > Cs+ (0.331) > Li+ (0.139). Non-stationary noise analysis of Rb+ currents in cell-attached patches yielded a unitary conductance for Kir7.1 of approximately 2 pS. In whole-cell recordings from freshly isolated bovine RPE cells, the predominant current was a mild inwardly rectifying K+ current that exhibited an inverse dependence of conductance on [K+]o. The selectivity sequence based on permeability ratios was K+ (1.0) approximately Rb+ (0.89) > Cs+ (0.021) > Na+ (0.003) approximately Li+ (0.002) and the sequence based on conductance ratios was Rb+ (8.9) > K+ (1.0) > Na+ (0.59) > Cs+ (0.23) > Li+ (0.08). In cell-attached recordings with Rb+ in the pipette, inwardly rectifying currents were observed in nine of 12 patches of RPE apical membrane but in only one of 13 basolateral membrane patches. Non-stationary noise analysis of Rb+ currents in cell-attached apical membrane patches yielded a unitary conductance for RPE Kir of approximately 2 pS. On the basis of this molecular and electrophysiological evidence, we conclude that Kir7.1 channel subunits comprise the K+ conductance of the RPE apical membrane.

  19. Characterization of a Nonclassical Class I MHC Gene in a Reptile, the Galápagos Marine Iguana (Amblyrhynchus cristatus)

    PubMed Central

    Glaberman, Scott; Du Pasquier, Louis; Caccone, Adalgisa

    2008-01-01

    Squamates are a diverse order of vertebrates, representing more than 7,000 species. Yet, descriptions of full-length major histocompatibility complex (MHC) genes in this group are nearly absent from the literature, while the number of MHC studies continues to rise in other vertebrate taxa. The lack of basic information about MHC organization in squamates inhibits investigation into the relationship between MHC polymorphism and disease, and leaves a large taxonomic gap in our understanding of amniote MHC evolution. Here, we use both cDNA and genomic sequence data to characterize a class I MHC gene (Amcr-UA) from the Galápagos marine iguana, a member of the squamate subfamily Iguaninae. Amcr-UA appears to be functional since it is expressed in the blood and contains many of the conserved peptide-binding residues that are found in classical class I genes of other vertebrates. In addition, comparison of Amcr-UA to homologous sequences from other iguanine species shows that the antigen-binding portion of this gene is under purifying selection, rather than balancing selection, and therefore may have a conserved function. A striking feature of Amcr-UA is that both the cDNA and genomic sequences lack the transmembrane and cytoplasmic domains that are necessary to anchor the class I receptor molecule into the cell membrane, suggesting that the product of this gene is secreted and consequently not involved in classical class I antigen-presentation. The truncated and conserved character of Amcr-UA lead us to define it as a nonclassical gene that is related to the few available squamate class I sequences. However, phylogenetic analysis placed Amcr-UA in a basal position relative to other published classical MHC genes from squamates, suggesting that this gene diverged near the beginning of squamate diversification. PMID:18682845

  20. De Novo Generation and Characterization of New Zika Virus Isolate Using Sequence Data from a Microcephaly Case.

    PubMed

    Setoh, Yin Xiang; Prow, Natalie A; Peng, Nias; Hugo, Leon E; Devine, Gregor; Hazlewood, Jessamine E; Suhrbier, Andreas; Khromykh, Alexander A

    2017-01-01

    Zika virus (ZIKV) has recently emerged and is the etiological agent of congenital Zika syndrome (CZS), a spectrum of congenital abnormalities arising from neural tissue infections in utero . Herein, we describe the de novo generation of a new ZIKV isolate, ZIKV Natal , using a modified circular polymerase extension reaction protocol and sequence data obtained from a ZIKV-infected fetus with microcephaly. ZIKV Natal thus has no laboratory passage history and is unequivocally associated with CZS. ZIKV Natal could be used to establish a fetal brain infection model in IFNAR -/- mice (including intrauterine growth restriction) without causing symptomatic infections in dams. ZIKV Natal was also able to be transmitted by Aedes aegypti mosquitoes. ZIKV Natal thus retains key aspects of circulating pathogenic ZIKVs and illustrates a novel methodology for obtaining an authentic functional viral isolate by using data from deep sequencing of infected tissues. IMPORTANCE The major complications of an ongoing Zika virus outbreak in the Americas and Asia are congenital defects caused by the virus's ability to cross the placenta and infect the fetal brain. The ability to generate molecular tools to analyze viral isolates from the current outbreak is essential for furthering our understanding of how these viruses cause congenital defects. The majority of existing viral isolates and infectious cDNA clones generated from them have undergone various numbers of passages in cell culture and/or suckling mice, which is likely to result in the accumulation of adaptive mutations that may affect viral properties. The approach described herein allows rapid generation of new, fully functional Zika virus isolates directly from deep sequencing data from virus-infected tissues without the need for prior virus passaging and for the generation and propagation of full-length cDNA clones. The approach should be applicable to other medically important flaviviruses and perhaps other positive-strand RNA viruses.

  1. A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain

    NASA Technical Reports Server (NTRS)

    Harper, J. F.; Hong, B.; Hwang, I.; Guo, H. Q.; Stoddard, R.; Huang, J. F.; Palmgren, M. G.; Sze, H.; Evans, M. L. (Principal Investigator)

    1998-01-01

    To study transporters involved in regulating intracellular Ca2+, we isolated a full-length cDNA encoding a Ca2+-ATPase from a model plant, Arabidopsis, and named it ACA2 (Arabidopsis Ca2+-ATPase, isoform 2). ACA2p is most similar to a "plasma membrane-type" Ca2+-ATPase, but is smaller (110 kDa), contains a unique N-terminal domain, and is missing a long C-terminal calmodulin-binding regulatory domain. In addition, ACA2p is localized to an endomembrane system and not the plasma membrane, as shown by aqueous-two phase fractionation of microsomal membranes. ACA2p was expressed in yeast as both a full-length protein (ACA2-1p) and an N-terminal truncation mutant (ACA2-2p; Delta residues 2-80). Only the truncation mutant restored the growth on Ca2+-depleted medium of a yeast mutant defective in both endogenous Ca2+ pumps, PMR1 and PMC1. Although basal Ca2+-ATPase activity of the full-length protein was low, it was stimulated 5-fold by calmodulin (50% activation around 30 nM). In contrast, the truncated pump was fully active and insensitive to calmodulin. A calmodulin-binding sequence was identified within the first 36 residues of the N-terminal domain, as shown by calmodulin gel overlays on fusion proteins. Thus, ACA2 encodes a novel calmodulin-regulated Ca2+-ATPase distinguished by a unique N-terminal regulatory domain and a non-plasma membrane localization.

  2. [Cloning and characterization of Caveolin-1 gene in pigeon, Columba livia domestica].

    PubMed

    Zhang, Ying; Yu, Jian-Feng; Yang, Li; Wang, Xing-Guo; Gu, Zhi-Liang

    2010-10-01

    Caveolins, a class of principal proteins forming the structure of caveolae in plasmalemma, were encoded by caveolins gene family. Caveolin-1 gene is a member of caveolins gene family. In the present study, a full-length of 2605 bp caveolin-1 cDNA sequence in Columba livia domestica, which included a 537 bp complete ORF encoding a 178 amino acids long putative peptide, were obtained by using RT-PCR and RACE technique. The Columba livia domestica caveolin-1 CDS shared 80.1% - 93.4% homology with Bos taurus, Canis lupus familiaris, Gallus gallus and Rattus norvegicus. Meanwhile, the putative amino acid sequence of Columba livia domestica caveolin-1 shared 85.4% - 97.2% homology with the above species. The semi-quantity RT-PCR revealed that Caveolin-1 expressions were detectable in all the Columba livia domestica tissues and the expressional level of caveolin-1 gene was high in adipose, medium in various muscles, low in liver. These results demonstrated that Caveolin-1 gene was potentially involved in some metabolic pathways in adipose and muscle.

  3. Characterization and in situ localization of a salt-induced tomato peroxidase mRNA.

    PubMed

    Botella, M A; Quesada, M A; Kononowicz, A K; Bressan, R A; Pliego, F; Hasegawa, P M; Valpuesta, V

    1994-04-01

    NaCl treatment of tomato plants in hydroponic culture at concentrations as low as 50 mM resulted in enhanced accumulation of transcripts of TPX1, a full-length cDNA clone that we had isolated from a library of NaCl-treated tomato plants using a peroxidase-specific oligonucleotide probe. Although the overall amino acid sequence identity of TPX1 to other peroxidase genes was less than 45%, there was a very high degree of identity in all of the conserved domains. The deduced amino acid sequence included the presence of a N-terminal signal peptide but not the C-terminal extension present in peroxidases targeted to the vacuole. The mature protein has a theoretical pI value of 7.5. Transcripts that hybridized to TPX1 were detected only in the roots with higher levels of mRNA in epidermal and subepidermal cell layers. Isoelectric focusing of root extracts showed two major bands of peroxidase activity at pI 5.9 and 6.2. Both activities increased with salt treatment. Southern analysis indicated the presence of only a single TPX1 gene in tomato.

  4. Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system.

    PubMed

    Ruppert, Martin; Woll, Jörn; Giritch, Anatoli; Genady, Ezzat; Ma, Xueyan; Stöckigt, Joachim

    2005-11-01

    Acetylajmalan esterase (AAE) plays an essential role in the late stage of ajmaline biosynthesis. Based on the partial peptide sequences of AAE isolated and purified from Rauvolfia cell suspensions, a full-length AAE cDNA clone was isolated. The amino acid sequence of AAE has the highest level of identity of 40% to putative lipases known from the Arabidopsis thaliana genome project. Based on the primary structure AAE is a new member of the GDSL lipase superfamily. The expression in Escherichia coli failed although a wide range of conditions were tested. With a novel virus-based plant expression system, it was possible to express AAE functionally in leaves of Nicotiana benthamiana Domin. An extraordinarily high enzyme activity was detected in the Nicotiana tissue, which exceeded that in Rauvolfia serpentina (L.) Benth. ex Kurz cell suspension cultures about 20-fold. This expression allowed molecular analysis of AAE for the first time and increased the number of functionally expressed alkaloid genes from Rauvolfia now to eight, and the number of ajmaline pathway-specific cDNAs to a total of six.

  5. Evidence for Phex haploinsufficiency in murine X-linked hypophosphatemia.

    PubMed

    Wang, L; Du, L; Ecarot, B

    1999-04-01

    Mutations in the PHEX gene (phosphate-regulating gene with homology to endopeptidases on the X-chromosome) are responsible for X-linked hypophosphatemia (HYP). We previously reported the full-length coding sequence of murine Phex cDNA and provided evidence of Phex expression in bone and tooth. Here, we report the cloning of the entire 3.5-kb 3'UTR of the Phex gene, yielding a total of 6248 bp for the Phex transcript. Southern blot and RT-PCR analyses revealed that the 3' end of the coding sequence and the 3'UTR of the Phex gene, spanning exons 16 to 22, are deleted in Hyp, the mouse model for HYP. Northern blot analysis of bone revealed lack of expression of stable Phex mRNA from the mutant allele and expression of Phex transcripts from the wild-type allele in Hyp heterozygous females. Expression of the Phex protein in heterozygotes was confirmed by Western analysis with antibodies raised against a COOH-terminal peptide of the mouse Phex protein. Taken together, these results indicate that the dominant pattern of Hyp inheritance in mice is due to Phex haploinsufficiency.

  6. Isolation and characterization of a novel mycovirus from Penicillium digitatum.

    PubMed

    Niu, Yuhui; Zhang, Tingfu; Zhu, Ying; Yuan, Yongze; Wang, Shengqiang; Liu, Jing; Liu, Deli

    2016-07-01

    A novel double-stranded RNA virus designated Penicillium digitatum virus 1 (PdV1) was isolated from the citrus fruit rot pathogen P. digitatum (HS-RH1). The full-length cDNA sequence of the dsRNA/PdV1 (5211bp) possesses two partially overlapping open reading frames, which encode a coat protein (CP) and a putative RNA-dependent RNA polymerase (RdRp), respectively. Phylogenetic analysis based on multiple alignments of the amino acid sequences of the RdRp and CP indicated that PdV1 tentatively belongs to the genus Victorivirus in the Totiviridae family. Electron micrographs of negatively stained viral particles purified from the peak fraction of sucrose density gradient centrifugation showed spherical particles ~35nm in diameter. Transfection experiments with purified virions indicated that PdV1 could reduce the vegetative growth and virulence of P. digitatum strain HS-F6. In summary, we report the first isolation and characterization of a mycovirus from P. digitatum that contributes to the hypovirulence phenotypes of the host strain. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Molecular cloning, characterization and expression of the caffeic acid O-methyltransferase (COMT) ortholog from kenaf (Hibiscus cannabinus)

    USDA-ARS?s Scientific Manuscript database

    We cloned the full-length of the gene putatively encoding caffeic acid O-methyltransferase (COMT) from kenaf (Hibiscus cannabinus L.) using degenerate primers and the RACE (rapid amplification of cDNA ends) method. Kenaf is an herbaceous and rapidly growing dicotyledonous plant with great potential ...

  8. Importance of Viral Sequence Length and Number of Variable and Informative Sites in Analysis of HIV Clustering.

    PubMed

    Novitsky, Vlad; Moyo, Sikhulile; Lei, Quanhong; DeGruttola, Victor; Essex, M

    2015-05-01

    To improve the methodology of HIV cluster analysis, we addressed how analysis of HIV clustering is associated with parameters that can affect the outcome of viral clustering. The extent of HIV clustering and tree certainty was compared between 401 HIV-1C near full-length genome sequences and subgenomic regions retrieved from the LANL HIV Database. Sliding window analysis was based on 99 windows of 1,000 bp and 45 windows of 2,000 bp. Potential associations between the extent of HIV clustering and sequence length and the number of variable and informative sites were evaluated. The near full-length genome HIV sequences showed the highest extent of HIV clustering and the highest tree certainty. At the bootstrap threshold of 0.80 in maximum likelihood (ML) analysis, 58.9% of near full-length HIV-1C sequences but only 15.5% of partial pol sequences (ViroSeq) were found in clusters. Among HIV-1 structural genes, pol showed the highest extent of clustering (38.9% at a bootstrap threshold of 0.80), although it was significantly lower than in the near full-length genome sequences. The extent of HIV clustering was significantly higher for sliding windows of 2,000 bp than 1,000 bp. We found a strong association between the sequence length and proportion of HIV sequences in clusters, and a moderate association between the number of variable and informative sites and the proportion of HIV sequences in clusters. In HIV cluster analysis, the extent of detectable HIV clustering is directly associated with the length of viral sequences used, as well as the number of variable and informative sites. Near full-length genome sequences could provide the most informative HIV cluster analysis. Selected subgenomic regions with a high extent of HIV clustering and high tree certainty could also be considered as a second choice.

  9. Importance of Viral Sequence Length and Number of Variable and Informative Sites in Analysis of HIV Clustering

    PubMed Central

    Novitsky, Vlad; Moyo, Sikhulile; Lei, Quanhong; DeGruttola, Victor

    2015-01-01

    Abstract To improve the methodology of HIV cluster analysis, we addressed how analysis of HIV clustering is associated with parameters that can affect the outcome of viral clustering. The extent of HIV clustering and tree certainty was compared between 401 HIV-1C near full-length genome sequences and subgenomic regions retrieved from the LANL HIV Database. Sliding window analysis was based on 99 windows of 1,000 bp and 45 windows of 2,000 bp. Potential associations between the extent of HIV clustering and sequence length and the number of variable and informative sites were evaluated. The near full-length genome HIV sequences showed the highest extent of HIV clustering and the highest tree certainty. At the bootstrap threshold of 0.80 in maximum likelihood (ML) analysis, 58.9% of near full-length HIV-1C sequences but only 15.5% of partial pol sequences (ViroSeq) were found in clusters. Among HIV-1 structural genes, pol showed the highest extent of clustering (38.9% at a bootstrap threshold of 0.80), although it was significantly lower than in the near full-length genome sequences. The extent of HIV clustering was significantly higher for sliding windows of 2,000 bp than 1,000 bp. We found a strong association between the sequence length and proportion of HIV sequences in clusters, and a moderate association between the number of variable and informative sites and the proportion of HIV sequences in clusters. In HIV cluster analysis, the extent of detectable HIV clustering is directly associated with the length of viral sequences used, as well as the number of variable and informative sites. Near full-length genome sequences could provide the most informative HIV cluster analysis. Selected subgenomic regions with a high extent of HIV clustering and high tree certainty could also be considered as a second choice. PMID:25560745

  10. Molecular and expression analysis of manganese superoxide dismutase (Mn-SOD) gene under temperature and starvation stress in rotifer Brachionus calyciflorus.

    PubMed

    Yang, Jianghua; Dong, Siming; Zhu, Huanxi; Jiang, Qichen; Yang, Jiaxin

    2013-04-01

    Superoxide dismutase (SOD) is an important antioxidant enzyme that protects organs from damage by reactive oxygen species. We cloned cDNA encoding SOD activated with manganese (Mn-SOD) from the rotifer Brachionus calyciflorus Pallas. The full-length cDNA of Mn-SOD was 1,016 bp and had a 669 bp open reading frame encoding 222 amino acids. The deduced amino acid sequence of B. calyciflorus Mn-SOD showed 89.1, 71.3, and 62.1 % similarity with the Mn-SOD of the marine rotifer Brachionus plicatilis, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, respectively. The phylogenetic tree constructed based on the amino acid sequences of Mn-SODs from B. calyciflorus and other organisms revealed that this rotifer is closely related to nematodes. Analysis of the mRNA expression of Mn-SOD under different conditions revealed that expression was enhanced 5.6-fold (p < 0.001) at 30 °C after 2 h, however, low temperature (15 °C) promoted Mn SOD temporarily (2.5-fold, p < 0.001) and then decreased to normal level (p > 0.05). Moderate starvation promoted Mn-SOD mRNA expression (p 12 < 0.01, p 36 < 0.05), which reached a maximum value (15.3 times higher than control, p 24 < 0.01) at 24 h. SOD and CAT activities also elevated at the 12 h-starved group. These results indicate that induction of Mn-SOD expression by stressors likely plays an important role in aging of B. calyciflorus.

  11. Identification of a follistatin-related protein from the tick Haemaphysalis longicornis and its effect on tick oviposition.

    PubMed

    Zhou, Jinlin; Liao, Min; Hatta, Takeshi; Tanaka, Miho; Xuan, Xuenan; Fujisaki, Kozo

    2006-05-10

    The identification of ovary-associated molecules will lead to a better understanding of the physiology of tick reproduction and vector-pathogen interactions. A gene encoding a follistatin-related protein (FRP) was obtained by random sequencing from the ovary cDNA library of the tick Haemaphysalis longicornis. The full-length cDNA is 1157 bp, including an intact ORF encoding an expected protein with 289 amino acids. Three distinct domains were present in the deduced amino acids, namely, the follistatin-like domain, KAZAL, and two calcium-binding motifs, EFh. The sequence shows homology with the follistatin-related protein (FRP), which was thought to play some roles in the negative regulation of cellular growth. RT-PCR showed that the gene was expressed throughout the developing stages and mainly in the ovary as well as in fat body, hemocytes, salivary glands, and midgut. This gene was expressed in GST-fused recombinant protein with an expected size. The mouse antiserum against the recombinant protein recognized a 56-kDa native protein in both tick ovary and hemolymph. The recombinant proteins were found to have binding activity for both activin A and bone morphogenetic protein-2 (BMP-2). Silencing of FRP by RNAi showed a decrease in tick oviposition, which is consistent with the effect of a recombinant protein vaccine on the adult tick. These results showed that the tick FRP might be involved in tick oviposition. This is the first report of a member of follistatin family proteins in Chelicerata, which include ticks, spiders, and scorpions.

  12. Molecular cloning and expression of CYP9A61: a chlorpyrifos-ethyl and lambda-cyhalothrin-inducible cytochrome P450 cDNA from Cydia pomonella.

    PubMed

    Yang, Xueqing; Li, Xianchun; Zhang, Yalin

    2013-12-13

    Cytochrome P450 monooxygenases (CYPs or P450s) play paramount roles in detoxification of insecticides in a number of insect pests. However, little is known about the roles of P450s and their responses to insecticide exposure in the codling moth Cydia pomonella (L.), an economically important fruit pest. Here we report the characterization and expression analysis of the first P450 gene, designated as CYP9A61, from this pest. The full-length cDNA sequence of CYP9A61 is 2071 bp long and its open reading frame (ORF) encodes 538 amino acids. Sequence analysis shows that CYP9A61 shares 51%-60% identity with other known CYP9s and contains the highly conserved substrate recognition site SRS1, SRS4 and SRS5. Quantitative real-time PCR showed that CYP9A61 were 67-fold higher in the fifth instar larvae than in the first instar, and more abundant in the silk gland and fat body than other tissues. Exposure of the 3rd instar larvae to 12.5 mg L(-1) of chlorpyrifos-ethyl for 60 h and 0.19 mg L(-1) of lambda-cyhalothrin for 36 h resulted in 2.20- and 3.47-fold induction of CYP9A61, respectively. Exposure of the 3rd instar larvae to these two insecticides also significantly enhanced the total P450 activity. The results suggested that CYP9A61 is an insecticide-detoxifying P450.

  13. Identification of eukaryotic open reading frames in metagenomic cDNA libraries made from environmental samples.

    PubMed

    Grant, Susan; Grant, William D; Cowan, Don A; Jones, Brian E; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2006-01-01

    Here we describe the application of metagenomic technologies to construct cDNA libraries from RNA isolated from environmental samples. RNAlater (Ambion) was shown to stabilize RNA in environmental samples for periods of at least 3 months at -20 degrees C. Protocols for library construction were established on total RNA extracted from Acanthamoeba polyphaga trophozoites. The methodology was then used on algal mats from geothermal hot springs in Tengchong county, Yunnan Province, People's Republic of China, and activated sludge from a sewage treatment plant in Leicestershire, United Kingdom. The Tenchong libraries were dominated by RNA from prokaryotes, reflecting the mainly prokaryote microbial composition. The majority of these clones resulted from rRNA; only a few appeared to be derived from mRNA. In contrast, many clones from the activated sludge library had significant similarity to eukaryote mRNA-encoded protein sequences. A library was also made using polyadenylated RNA isolated from total RNA from activated sludge; many more clones in this library were related to eukaryotic mRNA sequences and proteins. Open reading frames (ORFs) up to 378 amino acids in size could be identified. Some resembled known proteins over their full length, e.g., 36% match to cystatin, 49% match to ribosomal protein L32, 63% match to ribosomal protein S16, 70% to CPC2 protein. The methodology described here permits the polyadenylated transcriptome to be isolated from environmental samples with no knowledge of the identity of the microorganisms in the sample or the necessity to culture them. It has many uses, including the identification of novel eukaryotic ORFs encoding proteins and enzymes.

  14. Molecular identification, immunolocalization, and characterization of Clonorchis sinensis triosephosphate isomerase.

    PubMed

    Zhou, Juanjuan; Liao, Hua; Li, Shan; Zhou, Chenhui; Huang, Yan; Li, Xuerong; Liang, Chi; Yu, Xinbing

    2015-08-01

    Clonorchis sinensis triosephosphate isomerase (CsTIM) is a key regulatory enzyme of glycolysis and gluconeogenesis, which catalyzes the interconversion of glyceraldehyde 3-phosphate to dihydroxyacetone phosphate. In this study, the biochemical characterizations of CsTIM have been examined. A full-length complementary DNA (cDNA; Cs105350) sequence encoding CsTIM was obtained from our C. sinensis cDNA library. The open reading frame of CsTIM contains 759 bp which encodes 252 amino acids. The amino acid sequence of CsTIM shares 60-65% identity with other species. Western blot analysis displayed that recombinant CsTIM (rCsTIM) can be probed by anti-rCsTIM rat serum and anti-C. sinensis excretory/secretory products (anti-CsESPs) rat serum. Quantitative reverse transcription (RT)-PCR and western blotting analysis revealed that CsTIM messenger RNA (mRNA) and protein were differentially expressed in development cycle stages of the parasite, including adult worm, metacercaria, excysted metacercaria, and egg. In addition, immunolocalization assay showed that CsTIM was located in the seminal vesicle, eggs, and testicle. Moreover, rCsTIM exhibited active enzyme activity in catalytic reactions. The Michaelis constant (K m) of rCsTIM was 0.33 mM, when using glyceraldehyde 3-phosphate as the substrate. The optimal temperature and pH of CsTIM were 37 °C and 7.5-9.5, respectively. Collectively, these results suggest that CsTIM is an important protein involved in glycometabolism, and CsTIM possibly take part in many biological functions in the growth and development of C. sinensis.

  15. Molecular characterization and expression profiles of MaCOL1, a CONSTANS-like gene in banana fruit.

    PubMed

    Chen, Jiao; Chen, Jian-Ye; Wang, Jun-Ning; Kuang, Jian-Fei; Shan, Wei; Lu, Wang-Jin

    2012-04-01

    CONSTANS (CO) gene is a key transcription regulator that controls the long-day induction of flowering in Arabidopsis plant. However, CO gene involved in fruit ripening and stress responses is poorly understood. In the present study, a novel cDNA encoding CONSTANS-like gene, designated as MaCOL1 was isolated and characterized from banana fruit. The full length cDNA sequence was 1887bp with an open reading frame (ORF) of 1242bp, encoding 414 amino acids with a molecular weight of 46.20kDa and a theoretical isoelectric point of 5.40. Sequence alignment showed that MaCOL1 contained two B-box zinc finger motifs and a CCT domain. In addition, MaCOL1 showed transcriptional activity in yeast and was a nucleus-localized protein. Real-time PCR analysis showed that MaCOL1 was differentially expressed among various banana plant organs, with higher expression in flower. Expression of MaCOL1 in peel changed slightly, while accumulation of MaCOL1 transcripts in pulp obviously increased during natural or ethylene-induced fruit ripening, suggesting that MaCOL1 might be associated with the pulp ripening of banana fruit. Moreover, accumulation of MaCOL1 transcript was obviously enhanced by abiotic and biotic stresses, such as chilling and pathogen Colletotrichum musae infection. Taken together, our results suggest that MaCOL1 is a transcription activator and may be involved in fruit ripening and stress responses. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Homologous expression of a mutated beta-tubulin gene does not confer benomyl resistance on Trichoderma virens.

    PubMed

    Mukherjee, M; Hadar, R; Mukherjee, P K; Horwitz, B A

    2003-01-01

    To clone the beta-tubulins and to induce resistance to benzimidazoles in the biocontrol fungus Trichoderma virens through site-directed mutagenesis. Two beta-tubulin genes have been cloned using PCR amplification followed by the screening of a T. virens cDNA library. The full-length cDNA clones, coding for 445 and 446 amino acids, have been designated as T. virens tub1 and T. virens tub2. A sequence alignment of these two tubulins with tubulins from other filamentous fungi has shown the presence of some unique amino acid sequences not found in those positions in other beta-tubulins. Constitutive expression of the tub2 gene with a histidine to tyrosine substitution at position 6 (known to impart benomyl/methyl benzimadazol-2-yl carbamate resistance in other fungi), under the Pgpd promoter of Aspergillus nidulans, did not impart resistance to benomyl. The homologous expression of tub2 gene with a histidine to tyrosine mutation at position +6, which is known to impart benomyl tolerance in other fungi, does not impart resistance in T. virens. Unlike other Trichoderma spp., T. virens, has been difficult to mutate for benomyl tolerance. The present study, through site-directed mutagenesis, shows that a mutation known to impart benomyl tolerance in T. viride and other fungi does not impart resistance in this fungus. Understanding the mechanisms of this phenomenon will have a profound impact in plant-disease management, as many plant pathogenic fungi develop resistance to this group of fungicides forcing its withdrawal after a short period of use.

  17. Molecular Cloning, Characterization, and Expression of a Catalase Gene in the Japanese Scallop Mizuhopecten yessoensis Induced in the Presence of Cadmium

    NASA Astrophysics Data System (ADS)

    Gao, Jialong; Ishizaki, Shoichiro; Nagashima, Yuji

    2016-03-01

    Cadmium (Cd) is known to influence the oxidative status of marine organisms and can induce the formation of reactive oxygen species (ROS). Catalase (CAT) is one of the important enzymes involved in scavenging high levels of ROS. In present study, we cloned CAT cDNA and investigated the response of this enzyme at the transcriptional level in the Japanese scallop Mizuhopecten yessoensis exposed to Cd. The full-length CAT cDNA (MyCAT) of 1,870 nucleotides including a 57 bp 5'-UTR, a coding sequence of 1,500 bp and a 313 bp 3'-UTR were identified from the scallop. The deduced amino acid sequence of MyCAT corresponds to 499 amino acids with predicted molecular weight of 56.48 kDa and contains highly conserved motifs of the proximal heme-binding site RLFSYSTH, proximal active signature FNRERIPERVVHAKGGG and three catalytic amino acid residues His72, Asn145, and Tyr355. Its significant homology to CATs from multiple alignments revealed that MyCAT had a high identity with CATs from other mollusks. CAT mRNA expression analysis revealed that expression level was highest in the digestive gland ( p < 0.01) but weak in muscle. Following exposure to 200 and 400 µg/l of Cd, a high amount of Cd was found to have accumulated in the digestive gland and CAT mRNA expression had significantly increased in this organ among 7-day exposed scallops ( p < 0.001). The result demonstrated that antioxidant enzymes such as CAT play important roles in counteracting Cd stress in M. yessoensis.

  18. Molecular Cloning and Expression of CYP9A61: A Chlorpyrifos-Ethyl and Lambda-Cyhalothrin-Inducible Cytochrome P450 cDNA from Cydia pomonella

    PubMed Central

    Yang, Xueqing; Li, Xianchun; Zhang, Yalin

    2013-01-01

    Cytochrome P450 monooxygenases (CYPs or P450s) play paramount roles in detoxification of insecticides in a number of insect pests. However, little is known about the roles of P450s and their responses to insecticide exposure in the codling moth Cydia pomonella (L.), an economically important fruit pest. Here we report the characterization and expression analysis of the first P450 gene, designated as CYP9A61, from this pest. The full-length cDNA sequence of CYP9A61 is 2071 bp long and its open reading frame (ORF) encodes 538 amino acids. Sequence analysis shows that CYP9A61 shares 51%–60% identity with other known CYP9s and contains the highly conserved substrate recognition site SRS1, SRS4 and SRS5. Quantitative real-time PCR showed that CYP9A61 were 67-fold higher in the fifth instar larvae than in the first instar, and more abundant in the silk gland and fat body than other tissues. Exposure of the 3rd instar larvae to 12.5 mg L−1 of chlorpyrifos-ethyl for 60 h and 0.19 mg L−1 of lambda-cyhalothrin for 36 h resulted in 2.20-and 3.47-fold induction of CYP9A61, respectively. Exposure of the 3rd instar larvae to these two insecticides also significantly enhanced the total P450 activity. The results suggested that CYP9A61 is an insecticide-detoxifying P450. PMID:24351812

  19. [Construction and characterization of a cDNA library from human liver tissue of cirrhosis].

    PubMed

    Chen, Xiao-hong; Chen, Zhi; Chen, Feng; Zhu, Hai-hong; Zhou, Hong-juan; Yao, Hang-ping

    2005-03-01

    To construct a cDNA library from human liver tissue of cirrhosis. The total RNA from human liver tissue of cirrhosis was extracted using Trizol method, and the mRNA was purified using mRNA purification kit. SMART technique and CDSIII/3' primer were used for first-strand cDNA synthesis. Long distance PCR was then used to synthesize the double-strand cDNA that was then digested by proteinase K and Sfi I, and was fractionated by CHOMA SPIN-400 column. The cDNA fragments longer than 0.4 kb were collected and ligated to lambdaTripl Ex2 vector. Then lambda-phage packaging reaction and library amplification were performed. The qualities of both unamplified and amplified cDNA libraries was strictly checked by conventional titer determination. Eleven plaques were randomly picked and tested using PCR with universal primers derived from the sequence flanking the vector. The titers of unamplifed and amplified libraries were 1.03 x 10(6) pfu/ml and 1.36 x 10(9) pfu/ml respectively. The percentages of recombinants from both libraries were 97.24 % in unamplified library and 99.02 % in amplified library. The lengths of the inserts were 1.02 kb in average (36.36 % 1 approximately equals 2 kb and 63.64 % 0.5 approximately equals 1.0 kb). A high quality cDNA library from human liver tissue of cirrhosis was constructed successfully, which can be used for screening and cloning new special genes associated with the occurrence of cirrhosis.

  20. Isolation and characterization of a cDNA clone for the complete protein coding region of the delta subunit of the mouse acetylcholine receptor.

    PubMed Central

    LaPolla, R J; Mayne, K M; Davidson, N

    1984-01-01

    A mouse cDNA clone has been isolated that contains the complete coding region of a protein highly homologous to the delta subunit of the Torpedo acetylcholine receptor (AcChoR). The cDNA library was constructed in the vector lambda 10 from membrane-associated poly(A)+ RNA from BC3H-1 mouse cells. Surprisingly, the delta clone was selected by hybridization with cDNA encoding the gamma subunit of the Torpedo AcChoR. The nucleotide sequence of the mouse cDNA clone contains an open reading frame of 520 amino acids. This amino acid sequence exhibits 59% and 50% sequence homology to the Torpedo AcChoR delta and gamma subunits, respectively. However, the mouse nucleotide sequence has several stretches of high homology with the Torpedo gamma subunit cDNA, but not with delta. The mouse protein has the same general structural features as do the Torpedo subunits. It is encoded by a 3.3-kilobase mRNA. There is probably only one, but at most two, chromosomal genes coding for this or closely related sequences. Images PMID:6096870

Top