Science.gov

Sample records for full-length recombinant human

  1. Crystallization and X-ray structure of full-length recombinant human butyrylcholinesterase

    SciTech Connect

    Ngamelue, Michelle N.; Homma, Kohei; Lockridge, Oksana; Asojo, Oluwatoyin A.

    2007-09-01

    The first crystals and the 2.8 Å X-ray structure of full-length recombinant human butyrylcholinesterase are reported. Human butyrylcholinesterase (BChE) has been shown to function as an endogenous scavenger of diverse poisons. BChE is a 340 kDa tetrameric glycoprotein that is present in human serum at a concentration of 5 mg l{sup −1}. The well documented therapeutic effects of BChE on cocaine toxicity and organophosphorus agent poisoning has increased the need for effective methods of producing recombinant therapeutic BChE. In order to be therapeutically useful, BChE must have a long circulatory residence time or associate as tetramers. Full-length recombinant BChE produced in Chinese hamster ovary (CHO) cells or human embryonic kidney cells has been shown to associate as monomers, with a shorter circulatory residence time than the naturally occurring tetrameric serum protein. Based on the preceding observation as well as the need to develop novel methodologies to facilitate the mass production of therapeutic recombinant BChE, studies have been initiated to determine the structural basis of tetramer formation. Towards these ends, full-length monomeric recombinant BChE has been crystallized for the first time. A 2.8 Å X-ray structure was solved in space group P42{sub 1}2, with unit-cell parameters a = b = 156, c = 146 Å.

  2. Characterization of full-length recombinant human Proteoglycan 4 as an ocular surface boundary lubricant.

    PubMed

    Samsom, Michael L; Morrison, Sheila; Masala, Nemanja; Sullivan, Benjamin D; Sullivan, David A; Sheardown, Heather; Schmidt, Tannin A

    2014-10-01

    Proteoglycan 4 (PRG4, or lubricin) is a lubricating mucin-like glycoprotein recently discovered at the ocular surface, where it functions as a boundary lubricant and appears to play a protective role. Recent technological advances have enabled abundant expression of full-length recombinant human PRG4 (rhPRG4). The objectives of this study were to 1) biochemically characterize the gross structure and glycosylations of full-length rhPRG4, and 2) assess the ocular surface boundary lubricating ability of rhPRG4 at both human cornea-eyelid and human cornea-polydimethylsiloxane (PDMS) biointerfaces. rhPRG4 expressed by a Chinese hamster ovary cell line was characterized and compared to native bovine PRG4 by SDS-PAGE western blotting, and protein identity was assessed by tandem mass spectrometry (MS/MS). Human corneas were articulated against PDMS or human eyelids, at effective sliding velocities of 0.3-30 mm/s under physiological loads of ∼15 kPa, to assess and compare the ocular lubricating ability of rhPRG4 to PRG4. Samples were tested serially in PRG4, rhPRG4 (both 300 μg/ml), then saline. Western blotting indicated that rhPRG4 had immunoreactivity at the appropriate apparent molecular weight, and possessed O-linked glycosylation consistent with that of PRG4. rhPRG4 protein identity was confirmed by MS/MS. Both PRG4 and rhPRG4 significantly, and similarly, reduced friction compared to saline at both human cornea - PDMS and human cornea-eyelid biointerfaces. In conclusion, the rhPRG4 studied here demonstrated appropriate higher order structure, O-linked glycosylations, and ocular surface boundary lubricating. Purified rhPRG4 may have clinical utility as a topical treatment of dry eye disease or contact lens biomaterial coating to promote more comfortable wear. PMID:24997456

  3. High yield expression of biologically active recombinant full length human tuftelin protein in baculovirus-infected insect cells.

    PubMed

    Shay, B; Gruenbaum-Cohen, Y; Tucker, A S; Taylor, A L; Rosenfeld, E; Haze, A; Dafni, L; Leiser, Y; Fermon, E; Danieli, T; Blumenfeld, A; Deutsch, D

    2009-11-01

    Tuftelin is an acidic protein expressed at very early stages of mouse odontogenesis. It was suggested to play a role during epithelial-mesenchymal interactions, and later, when enamel formation commences, to be involved in enamel mineralization. Tuftelin was also detected in several normal soft tissues of different origins and some of their corresponding cancerous tissues. Tuftelin is expressed in low quantities, and undergoes degradation in the enamel extracellular matrix. To investigate the structure and function of tuftelin, the full length recombinant human tuftelin protein was produced. The full length human tuftelin cDNA was cloned using Gateway recombination into the Bac-to-Bac system compatible transfer vector pDest10. This vector adds a hexahistidine tag to the N-terminus of the expressed protein, enabling one-step affinity purification on nickel column. The recombinant human tuftelin protein was transposed into the bacmid and expressed in Spodoptera frugiperda (Sf9) insect cells. The yield of the purified, his-tagged recombinant full length human Tuftelin (rHTuft+) was 5-8 mg/L culture. rHTuft+ was characterized by SDS-PAGE, Western blot, ESI-TOF spectrometry, restriction mapping and MS/MS sequencing. The availability of the purified, full length recombinant human tuftelin protein opened up the possibility to investigate novel functions of tuftelin. Application of rHTuft+ agarose beads onto embryonic mouse mandibular explants caused changes in the surrounding epithelial cells, including morphology, orientation and spatial organization. Further studies using DiI labeling, revealed that rHTuft+, placed on the tooth germ region, brought about recruitment of adjacent embryonic mesenchymal cells. These findings support the hypothesis that tuftelin plays an important role during embryogenesis.

  4. Functional Recombinant Extra Membrane Loop of Human CD20, an Alternative of the Full Length CD20 Antigen

    PubMed Central

    Anbouhi, Mahdi Habibi; Baraz, Aida Feiz; Bouzari, Saeid; Abolhassani, Mohsen; Khanahmad, Hossein; Golkar, Majid; Aghasadeghi, Mohammad Reza; Behdani, Mahdi; Najafabadi, Ali Jahanian; Shokrgozar, Mohammad Ali

    2012-01-01

    Background: Targeting of CD20 antigen with monoclonal antibodies has become the mainstay in the treatment of non-Hodgkin's lymphomas and immunotherapeutic depletion of malignant B cells. Accessibility of antigen is one of the crucial factors in development of monoclonal antibodies against this antigen. One major problem in expression of full length CD20 is aggregation and misfolding. Therefore, production of an alternative polypeptide is easer and favorable comparing to that of a full length transmembrane protein CD20. Methods: In this study, we expressed the extra membrane loop of hCD20 (exCD20) consisting of a non-glycosylated 47-amino acids region. The exCD20 coding sequence was amplified by PCR and cloned in pET32a(+) expression vector. The desired protein was expressed in fusion with thioredoxin and 6× His tag in E. coli Origami strain. ELISA and Western-blotting data were performed to indicate the functionality of this protein. Results: We have obtained the exCD20 recombinant protein which can be detected in ELISA and Western-blot experiments. This recombinant fusion protein was soluble and stable without aggregation and misfolding problems. Conclusion: The recombinant extra membrane loop of human CD20 protein in fusion with thioredoxin (exCD20) can be used in function assays and some applications such as ELISA, immuneblotting, affinity purification, immunization, screening, and development of anti-CD20 antibodies. PMID:23023212

  5. Potency of Full- Length MGF to Induce Maximal Activation of the IGF-I R Is Similar to Recombinant Human IGF-I at High Equimolar Concentrations

    PubMed Central

    Janssen, Joseph A. M. J. L.; Hofland, Leo J.; Strasburger, Christian J.; van den Dungen, Elisabeth S. R.; Thevis, Mario

    2016-01-01

    Aims To compare full-length mechano growth factor (full-length MGF) with human recombinant insulin-like growth factor-I (IGF-I) and human recombinant insulin (HI) in their ability to activate the human IGF-I receptor (IGF-IR), the human insulin receptor (IR-A) and the human insulin receptor-B (IR-B), respectively. In addition, we tested the stimulatory activity of human MGF and its stabilized analog Goldspink-MGF on the IGF-IR. Methods The effects of full-length MGF, IGF-I, human mechano growth factor (MGF), Goldspink-MGF and HI were compared using kinase specific receptor activation (KIRA) bioassays specific for IGF-I, IR-A or IR-B, respectively. These assays quantify activity by measuring auto-phosphorylation of the receptor upon ligand binding. Results IGF-IR: At high equimolar concentrations maximal IGF-IR stimulating effects generated by full-length MGF were similar to that of IGF-I (89-fold vs. 77-fold, respectively). However, EC50 values of IGF-I and full-length MGF for the IGF-I receptor were 0.86 nmol/L (95% CI 0.69–1.07) and 7.83 nmol/L (95% CI: 4.87–12.58), respectively. No IGF-IR activation was observed by human MGF and Goldspink-MGF, respectively. IR-A/IR-B: At high equimolar concentrations similar maximal IR-A stimulating effects were observed for full -length MGF and HI, but maximal IR-B stimulation achieved by full -length MGF was stronger than that by HI (292-fold vs. 98-fold). EC50 values of HI and full-length MGF for the IR-A were 1.13 nmol/L (95% CI 0.69–1.84) and 73.11 nmol/L (42.87–124.69), respectively; for IR-B these values were 1.28 nmol/L (95% CI 0.64–2.57) and 35.10 nmol/L (95% 17.52–70.33), respectively. Conclusions Full-length MGF directly stimulates the IGF-IR. Despite a higher EC50 concentration, at high equimolar concentrations full-length MGF showed a similar maximal potency to activate the IGF-IR as compared to IGF-I. Further research is needed to understand the actions of full-length MGF in vivo and to define the

  6. A simple strategy for the purification of native recombinant full-length human RPL10 protein from inclusion bodies.

    PubMed

    Pereira, Larissa M; Silva, Luana R; Alves, Joseane F; Marin, Nélida; Silva, Flavio Sousa; Morganti, Ligia; Silva, Ismael D C G; Affonso, Regina

    2014-09-01

    The L10 ribosomal protein (RPL10) plays a role in the binding of the 60 S and 40 S ribosomal subunits and in mRNA translation. The evidence indicates that RPL10 also has multiple extra-ribosomal functions, including tumor suppression. Recently, the presence of RPL10 in prostate and ovarian cancers was evaluated, and it was demonstrated to be associated with autistic disorders and premature ovarian failure. In the present work, we successfully cloned and expressed full-length human RPL10 (hRPL10) protein and isolated inclusion bodies containing this protein that had formed under mild growth conditions. The culture produced 376mg of hRPL10 protein per liter of induced bacterial culture, of which 102.4mg was present in the soluble fraction, and 25.6mg was recovered at approximately 94% purity. These results were obtained using a two-step process of non-denaturing protein extraction from pelleted inclusion bodies. We studied the characteristics of this protein using circular dichroism spectroscopy and by monitoring the changes induced by the presence or absence of zinc ions using fluorescence spectrometry. The results demonstrated that the protein obtained using these non-conventional methods retained its secondary and tertiary structure. The conformational changes induced by the incorporation of zinc suggested that this protein could interact with Jun or the SH3 domain of c-yes. The results suggested that the strategy used to obtain hRPL10 is simple and could be applied to obtaining other proteins that are susceptible to degradation.

  7. BAY 81-8973, a full-length recombinant factor VIII: Human heat shock protein 70 improves the manufacturing process without affecting clinical safety.

    PubMed

    Maas Enriquez, Monika; Thrift, John; Garger, Stephen; Katterle, Yvonne

    2016-11-01

    BAY 81-8973 is a full-length, unmodified recombinant human factor VIII (FVIII) approved for the treatment of hemophilia A. BAY 81-8973 has the same amino acid sequence as the currently marketed sucrose-formulated recombinant FVIII (rFVIII-FS) product and is produced using additional advanced manufacturing technologies. One of the key manufacturing advances for BAY 81-8973 is introduction of the gene for human heat shock protein 70 (HSP70) into the rFVIII-FS cell line. HSP70 facilitates proper folding of proteins, enhances cell survival by inhibiting apoptosis, and potentially impacts rFVIII glycosylation. HSP70 expression in the BAY 81-8973 cell line along with other manufacturing advances resulted in a higher-producing cell line and improvements in the pharmacokinetics of the final product as determined in clinical studies. HSP70 protein is not detected in the harvest or in the final BAY 81-8973 product. However, because this is a new process, clinical trial safety assessments included monitoring for anti-HSP70 antibodies. Most patients, across all age groups, had low levels of anti-HSP70 antibodies before exposure to the investigational product. During BAY 81-8973 treatment, 5% of patients had sporadic increases in anti-HSP70 antibody levels above a predefined threshold (cutoff value, 239 ng/mL). No clinical symptoms related to anti-HSP70 antibody development occurred. In conclusion, addition of HSP70 to the BAY 81-8973 cell line is an innovative technology for manufacturing rFVIII aimed at improving protein folding and expression. Improved pharmacokinetics and no effect on safety of BAY 81-8973 were observed in clinical trials in patients with hemophilia A.

  8. BAY 81-8973, a full-length recombinant factor VIII: Human heat shock protein 70 improves the manufacturing process without affecting clinical safety.

    PubMed

    Maas Enriquez, Monika; Thrift, John; Garger, Stephen; Katterle, Yvonne

    2016-11-01

    BAY 81-8973 is a full-length, unmodified recombinant human factor VIII (FVIII) approved for the treatment of hemophilia A. BAY 81-8973 has the same amino acid sequence as the currently marketed sucrose-formulated recombinant FVIII (rFVIII-FS) product and is produced using additional advanced manufacturing technologies. One of the key manufacturing advances for BAY 81-8973 is introduction of the gene for human heat shock protein 70 (HSP70) into the rFVIII-FS cell line. HSP70 facilitates proper folding of proteins, enhances cell survival by inhibiting apoptosis, and potentially impacts rFVIII glycosylation. HSP70 expression in the BAY 81-8973 cell line along with other manufacturing advances resulted in a higher-producing cell line and improvements in the pharmacokinetics of the final product as determined in clinical studies. HSP70 protein is not detected in the harvest or in the final BAY 81-8973 product. However, because this is a new process, clinical trial safety assessments included monitoring for anti-HSP70 antibodies. Most patients, across all age groups, had low levels of anti-HSP70 antibodies before exposure to the investigational product. During BAY 81-8973 treatment, 5% of patients had sporadic increases in anti-HSP70 antibody levels above a predefined threshold (cutoff value, 239 ng/mL). No clinical symptoms related to anti-HSP70 antibody development occurred. In conclusion, addition of HSP70 to the BAY 81-8973 cell line is an innovative technology for manufacturing rFVIII aimed at improving protein folding and expression. Improved pharmacokinetics and no effect on safety of BAY 81-8973 were observed in clinical trials in patients with hemophilia A. PMID:27436242

  9. Therapeutic effects of recombinant forms of full-length and truncated human surfactant protein D in a murine model of invasive pulmonary aspergillosis.

    PubMed

    Singh, Mamta; Madan, Taruna; Waters, Patrick; Sonar, Sanchaita; Singh, Shiv K; Kamran, Mohammad F; Bernal, Andrés López; Sarma, P Usha; Singh, Vijay K; Crouch, Erika C; Kishore, Uday

    2009-07-01

    Aspergillus fumigatus (Afu) is an opportunistic fungal pathogen that can cause fatal invasive pulmonary aspergillosis (IPA) in immunocompromised individuals. Previously, surfactant protein D (SP-D), a surfactant-associated innate immune molecule, has been shown to enhance phagocytosis and killing of Afu conidia by phagocytic cells in vitro. An intranasal treatment of SP-D significantly increased survival in a murine model of IPA. Here we have examined mechanisms via which recombinant forms of full-length (hSP-D) or truncated human SP-D (rhSP-D) offer protection in a murine model of IPA that were immunosuppressed with hydrocortisone and challenged intranasally with Afu conidia prior to the treatment. SP-D or rhSP-D treatment increased the survival rate to 70% and 80%, respectively (100% mortality on day 7 in IPA mice), with concomitant reduction in the growth of fungal hyphae in the lungs, and increased levels of TNF-alpha and IFN-gamma in the lung suspension supernatants, as compared to untreated IPA mice. The level of macrophage inflammatory protein-1 alpha (MIP-1 alpha) in the lung cell suspension was also raised considerably following treatment with SP-D or rhSP-D. Our results appear to reaffirm the notion that under immunocompromised conditions, human SP-D or its truncated form can offer therapeutic protection against fatal challenge with Afu conidia challenge. Taken together, the SP-D-mediated protective mechanisms include enhanced phagocytosis by recruited macrophages and neutrophils and fungistatic properties, suppression of the levels of pathogenic Th2 cytokines (IL-4 and IL-5), enhanced local production of protective Th1 cytokines, TNF-alpha and IFN-gamma, and that of protective C-C chemokine, MIP-1 alpha.

  10. Effect of the electrostatic surface potential on the oligomerization of full-length human recombinant prion protein at single-molecule level.

    PubMed

    Wang, Bin; Lou, Zhichao; Zhang, Haiqian; Xu, Bingqian

    2016-03-21

    The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers. PMID:27004887

  11. Effect of the electrostatic surface potential on the oligomerization of full-length human recombinant prion protein at single-molecule level

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Lou, Zhichao; Zhang, Haiqian; Xu, Bingqian

    2016-03-01

    The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.

  12. Purification and Fibrillation of Full-Length Recombinant PrP

    PubMed Central

    Makarava, Natallia; Baskakov, Ilia V.

    2013-01-01

    Misfolding and aggregation of prion protein (PrP) is related to several neurodegenerative diseases in humans such as Creutzfeldt–Jacob disease, fatal familial insomnia, and Gerstmann–Straussler–Sheinker disease. Certain applications in prion area require recombinant PrP of high purity and quality. Here, we report an experimental procedure for expression and purification of full-length mammalian PrP. This protocol has been proved to yield PrP of extremely high purity that lacks PrP adducts, which are normally generated as a result of spontaneous oxidation or degradation. We also describe methods for the preparation of amyloid fibrils from recombinant PrP in vitro. Recombinant PrP fibrils can be used as a noninfectious synthetic surrogate of Prpsc for development of prion diagnostics including the generation of PrpSc-specific antibody. PMID:22528082

  13. Cocrystallization studies of full-length recombinant butyrylcholinesterase (BChE) with cocaine

    SciTech Connect

    Asojo, Oluwatoyin Ajibola; Asojo, Oluyomi Adebola; Ngamelue, Michelle N.; Homma, Kohei; Lockridge, Oksana

    2011-09-16

    Human butyrylcholinesterase (BChE; EC 3.1.1.8) is a 340 kDa tetrameric glycoprotein that is present in human serum at about 5 mg l{sup -1} and has well documented therapeutic effects on cocaine toxicity. BChE holds promise as a therapeutic that reduces and finally eliminates the rewarding effects of cocaine, thus weaning an addict from the drug. There have been extensive computational studies of cocaine hydrolysis by BChE. Since there are no reported structures of BChE with cocaine or any of the hydrolysis products, full-length monomeric recombinant wild-type BChE was cocrystallized with cocaine. The refined 3 {angstrom} resolution structure appears to retain the hydrolysis product benzoic acid in sufficient proximity to form a hydrogen bond to the active-site Ser198.

  14. Expression, purification and characterization of a full-length recombinant HIV-1 Vpu from inclusion bodies.

    PubMed

    Njengele, Zikhona; Kleynhans, Ronel; Sayed, Yasien; Mosebi, Salerwe

    2016-12-01

    Vpu is one of four accessory proteins encoded by human immunodeficiency virus type I (HIV-1). Vpu modulates the expression of several cellular restriction factors within the HIV-1 infected cell including CD4, CD74, the bone marrow stromal antigen 2 (BST-2) and NK-T-and-B antigen. The interaction of HIV-1 Vpu with these proteins interferes with the innate immune response directed against HIV-1; thereby promoting viral persistence. The involvement of HIV-1 Vpu in manipulating the cellular environment in ways that favor viral replication makes it an attractive target for anti-HIV drug intervention. This paper describes the over-expression and purification of a soluble HIV-1 Vpu from inclusion bodies by ion-exchange chromatography, allowing production of 6 mg of highly purified protein (>95% purity) per 10 mg of pelleted cells obtained from 1 L of bacterial culture. Far-UV circular dichroism showed that the recombinant protein is folded and retained its secondary structure. Moreover, using ELISA, known HIV-1 Vpu binding partners, BST-2 and CD74, showed that the refolded purified protein is functional or at least assumes a conformation that is capable of binding these putative binding partners. To our knowledge, this is the first report of the purification and successful solubilization of full-length, wild-type HIV-1 Vpu from inclusion bodies in Escherichia coli.

  15. Expression, purification and characterization of a full-length recombinant HIV-1 Vpu from inclusion bodies.

    PubMed

    Njengele, Zikhona; Kleynhans, Ronel; Sayed, Yasien; Mosebi, Salerwe

    2016-12-01

    Vpu is one of four accessory proteins encoded by human immunodeficiency virus type I (HIV-1). Vpu modulates the expression of several cellular restriction factors within the HIV-1 infected cell including CD4, CD74, the bone marrow stromal antigen 2 (BST-2) and NK-T-and-B antigen. The interaction of HIV-1 Vpu with these proteins interferes with the innate immune response directed against HIV-1; thereby promoting viral persistence. The involvement of HIV-1 Vpu in manipulating the cellular environment in ways that favor viral replication makes it an attractive target for anti-HIV drug intervention. This paper describes the over-expression and purification of a soluble HIV-1 Vpu from inclusion bodies by ion-exchange chromatography, allowing production of 6 mg of highly purified protein (>95% purity) per 10 mg of pelleted cells obtained from 1 L of bacterial culture. Far-UV circular dichroism showed that the recombinant protein is folded and retained its secondary structure. Moreover, using ELISA, known HIV-1 Vpu binding partners, BST-2 and CD74, showed that the refolded purified protein is functional or at least assumes a conformation that is capable of binding these putative binding partners. To our knowledge, this is the first report of the purification and successful solubilization of full-length, wild-type HIV-1 Vpu from inclusion bodies in Escherichia coli. PMID:27590917

  16. Binding affinity of full-length and extracellular domains of recombinant human (pro)renin receptor to human renin when expressed in the fat body and hemolymph of silkworm larvae.

    PubMed

    Du, Dongning; Kato, Tatsuya; Suzuki, Fumiaki; Park, Enoch Y

    2009-10-01

    Transmembrane domains of some receptors have been found to be very important in the process of constitutive oligomerization, and in the stability and functioning of the receptor. In this study, full-length of human (pro)renin receptor (hPRR) and hPRR lacking cytoplasmic domain (hPRR-DeltaCD) were expressed in fat body of silkworm larvae, and the extracellular domain of hPRR (hPRR-DeltaTMDeltaCD) in hemolymph. Three forms of hPRR were used for investigation of the interaction between receptor and ligand using surface plasmon resonance (SPR). As a result, the cytoplasmic domain was not an essential requirement for binding affinity, but the transmembrane domain of hPRR was indispensable in the formation of functional hPRR. The dissociation equilibrium constants (K(D)) of purified hPRR and hPRR-DeltaCD were estimated to be 46 nM and 330 nM, respectively. No evidence of binding by the extracellular domain of hPRR located in hemolymph was found. However, the solubilized microsomal fraction of the extracellular domain of hPRR expressed in the fat body showed specific affinity, but lost its binding affinity after purification. Its binding affinity was recovered by mixing microsomal fraction of mock-injected fat body to the purified extracellular domain. It is probable that an artificial transmembrane domain stabilizes the extracellular domain of hPRR and native conformation may be structurally recovered. To our knowledge, these are the first findings describing the interaction of transmembrane and extracellular domains of hPRR with ligand and this may help towards the understanding of binding affinity of hPRR to ligand.

  17. Calcium-dependent regulation of the motor activity of recombinant full-length Physarum myosin.

    PubMed

    Zhang, Ying; Kawamichi, Hozumi; Tanaka, Hideyuki; Yoshiyama, Shinji; Kohama, Kazuhiro; Nakamura, Akio

    2012-08-01

    We successfully synthesized full-length and the mutant Physarum myosin and heavy meromyosin (HMM) constructs associated with Physarum regulatory light chain and essential light chain (PhELC) using Physarum myosin heavy chain in Sf-9 cells, and examined their Ca(2+)-mediated regulation. Ca(2+) inhibited the motility and ATPase activities of Physarum myosin and HMM. The Ca(2+) effect is also reversible at the in vitro motility of Physarum myosin. We demonstrated that full-length myosin increases the Ca(2+) inhibition more effectively than HMM. Furthermore, Ca(2+) did not affect the motility and ATPase activities of the mutant Physarum myosin with PhELC that lost Ca(2+)-binding ability. Therefore, we conclude that PhELC plays a critical role in Ca(2+)-dependent regulation of Physarum myosin.

  18. Biomimetic Precipitation of Uniaxially Grown Calcium Phosphate Crystals from Full-Length Human Amelogenin Sols.

    PubMed

    Uskoković, Vuk; Li, Wu; Habelitz, Stefan

    2011-06-10

    Human dental enamel forms over a period of 2 - 4 years by substituting the enamel matrix, a protein gel mostly composed of a single protein, amelogenin with fibrous apatite nanocrystals. Self-assembly of a dense amelogenin matrix is presumed to direct the growth of apatite fibers and their organization into bundles that eventually comprise the mature enamel, the hardest tissue in the mammalian body. This work aims to establish the physicochemical and biochemical conditions for the synthesis of fibrous apatite crystals under the control of a recombinant full-length human amelogenin matrix in combination with a programmable titration system. The growth of apatite substrates was initiated from supersaturated calcium phosphate solutions in the presence of dispersed amelogenin assemblies. It was shown earlier and confirmed in this study that binding of amelogenin onto apatite surfaces presents the first step that leads to substrate-specific crystal growth. In this work, we report enhanced nucleation and growth under conditions at which amelogenin and apatite carry opposite charges and adsorption of the protein onto the apatite seeds is even more favored. Experiments at pH below the isoelectric point of amelogenin showed increased protein binding to apatite and at low Ca/P molar ratios resulted in a change in crystal morphology from plate-like to fibrous and rod-shaped. Concentrations of calcium and phosphate ions in the supernatant did not show drastic decreases throughout the titration period, indicating controlled precipitation from the protein suspension metastable with respect to calcium phosphate. It is argued that ameloblasts in the developing enamel may vary the density of the protein matrix at the nano scale by varying local pH, and thus control the interaction between the mineral and protein phases. The biomimetic experimental setting applied in this study has thus proven as convenient for gaining insight into the fundamental nature of the process of

  19. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts.

    PubMed

    Loperfido, Mariana; Jarmin, Susan; Dastidar, Sumitava; Di Matteo, Mario; Perini, Ilaria; Moore, Marc; Nair, Nisha; Samara-Kuko, Ermira; Athanasopoulos, Takis; Tedesco, Francesco Saverio; Dickson, George; Sampaolesi, Maurilio; VandenDriessche, Thierry; Chuah, Marinee K

    2016-01-29

    Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes.

  20. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts

    PubMed Central

    Loperfido, Mariana; Jarmin, Susan; Dastidar, Sumitava; Di Matteo, Mario; Perini, Ilaria; Moore, Marc; Nair, Nisha; Samara-Kuko, Ermira; Athanasopoulos, Takis; Tedesco, Francesco Saverio; Dickson, George; Sampaolesi, Maurilio; VandenDriessche, Thierry; Chuah, Marinee K.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes. PMID:26682797

  1. Milligram Quantities of Homogeneous Recombinant Full-Length Mouse Munc18c from Escherichia coli Cultures

    PubMed Central

    Rehman, Asma; Jarrott, Russell J.; Whitten, Andrew E.; King, Gordon J.; Hu, Shu-Hong; Christie, Michelle P.; Collins, Brett M.; Martin, Jennifer L.

    2013-01-01

    Vesicle fusion is an indispensable cellular process required for eukaryotic cargo delivery. The Sec/Munc18 protein Munc18c is essential for insulin-regulated trafficking of glucose transporter4 (GLUT4) vesicles to the cell surface in muscle and adipose tissue. Previously, our biophysical and structural studies have used Munc18c expressed in SF9 insect cells. However to maximize efficiency, minimize cost and negate any possible effects of post-translational modifications of Munc18c, we investigated the use of Escherichia coli as an expression host for Munc18c. We were encouraged by previous reports describing Munc18c production in E. coli cultures for use in in vitro fusion assay, pulldown assays and immunoprecipitations. Our approach differs from the previously reported method in that it uses a codon-optimized gene, lower temperature expression and autoinduction media. Three N-terminal His-tagged constructs were engineered, two with a tobacco etch virus (TEV) or thrombin protease cleavage site to enable removal of the fusion tag. The optimized protocol generated 1–2 mg of purified Munc18c per L of culture at much reduced cost compared to Munc18c generated using insect cell culture. The purified recombinant Munc18c protein expressed in bacteria was monodisperse, monomeric, and functional. In summary, we developed methods that decrease the cost and time required to generate functional Munc18c compared with previous insect cell protocols, and which generates sufficient purified protein for structural and biophysical studies. PMID:24391775

  2. Near full-length genomic characterization of a HIV type 1 BC recombinant strain from Manipur, India.

    PubMed

    Sarkar, Roni; Sarkar, Kamalesh; Singh, N Brajachand; Singh, Y Manihar; Chakrabarti, Sekhar

    2012-10-01

    Genetic complexity of HIV-1 is brought about by recombination between HIV-1 subtypes which leads to the development of epidemiologically significant founder strains. In the present study, the near full-length genome sequence of an HIV-1 isolate from an injecting drug user of Manipur (India) was determined, which evidenced the presence of a novel HIV-1 BC recombinant strain. Near full-length genome was amplified by polymerase chain reaction using primer walking approach. The recombination break points were detected using bootscan and simplot analyses. This isolate exhibited a mosaic structure consisting of subtype C backbone with subtype B insertions at the upstream of pol gene (3026-3259) and the downstream of env gene which spanned till the nef gene (8183-8961). Phylogenetic relationships determined with neighbor-joining trees, revealed that the subtype C sequences clustered with sequences from Indian subtype C HIV-1 strains, and the subtype B sequences clustered with HIV-1 subtype B strains from Thailand. This finding may create a complex scenario of HIV-1 epidemic among the injecting drug users of Manipur in near future.

  3. Human uroporphyrinogen III synthase: Molecular cloning, nucleotide sequence, and expression of a full-length cDNA

    SciTech Connect

    Tsai, Shihfeng; Bishop, D.F.; Desnick, R.J. )

    1988-10-01

    Uroporphyrinogen III synthase, the fourth enzyme in the heme biosynthetic pathway, is responsible for conversion of the linear tetrapyrrole, hydroxymethylbilane, to the cyclic tetrapyrrole, uroporphyrinogen III. The deficient activity of URO-synthase is the enzymatic defect in the autosomal recessive disorder congenital erythropoietic porphyria. To facilitate the isolation of a full-length cDNA for human URO-synthase, the human erythrocyte enzyme was purified to homogeneity and 81 nonoverlapping amino acids were determined by microsequencing the N terminus and four tryptic peptides. Two synthetic oligonucleotide mixtures were used to screen 1.2 {times} 10{sup 6} recombinants from a human adult liver cDNA library. Eight clones were positive with both oligonucleotide mixtures. Of these, dideoxy sequencing of the 1.3 kilobase insert from clone pUROS-2 revealed 5' and 3' untranslated sequences of 196 and 284 base pairs, respectively, and an open reading frame of 798 base pairs encoding a protein of 265 amino acids with a predicted molecular mass of 28,607 Da. The isolation and expression of this full-length cDNA for human URO-synthase should facilitate studies of the structure, organization, and chromosomal localization of this heme biosynthetic gene as well as the characterization of the molecular lesions causing congenital erythropoietic porphyria.

  4. Reconstitution of an E box-binding Myc:Max complex with recombinant full-length proteins expressed in Escherichia coli.

    PubMed

    Farina, Anthony; Faiola, Francesco; Martinez, Ernest

    2004-04-01

    The c-Myc oncoprotein (Myc) is a DNA sequence-specific transcription factor that regulates transcription of a wide variety of genes involved in the control of cell growth, proliferation, differentiation, and apoptosis and its deregulated expression is implicated in many types of human cancer. Myc has an N-terminal transcription activation domain (TAD) that interacts with various coactivators and a C-terminal basic-helix-loop-helix-leucine zipper (bHLHZip) domain required for E box-specific DNA-binding and heterodimerization with its obligatory bHLHZip protein partner Max. The analysis of the mechanisms by which the Myc:Max complex regulates transcription at the molecular level in vitro has been hampered by the difficulty in obtaining highly pure recombinant Myc:Max heterodimers that contain full-length Myc with its complete TAD domain and that have sequence-specific DNA-binding activity. Here, we describe a simple method to reconstitute recombinant Myc:Max complexes from highly purified full-length proteins expressed in Escherichia coli that are soluble and highly active in E box-specific DNA-binding in vitro. The reconstituted Myc:Max complexes are stable and lack Max:Max homodimers. This procedure should facilitate the characterization of the DNA-binding and transcription activation functions of full-length Myc:Max complexes in vitro and in particular the role of Myc TAD-interacting cofactors and Myc:Max post-translational modifications.

  5. Effect of systemically increasing human full-length Klotho on glucose metabolism in db/db mice.

    PubMed

    Forsberg, E A; Olauson, H; Larsson, T; Catrina, S B

    2016-03-01

    The metabolic effects of antiaging Klotho were previously investigated in vivo by genetic manipulation. We have here studied the metabolic effect of physiologic levels of circulating full length Klotho in db/db mice. Increasing the full-length human Klotho levels has a positive effect on blood glucose through increasing insulin secretion. PMID:26806457

  6. Global Structure Changes Associated with Ca2+ Activation of Full-length Human Plasma Gelsolin

    SciTech Connect

    Ashish,F.; Paine, M.; Perryman, P.; Yang, L.; Yin, H.; Krueger, J.

    2007-01-01

    Gelsolin regulates the dynamic assembly and disassembly of the actin-based cytoskeleton in non-muscle cells and clears the circulation of filaments released following cell death. Gelsolin is a six-domain (G1-G6) protein activated by calcium via a multi-step process that involves unfolding from a compact form to a more open form in which the three actin-binding sites (on the G1, G2, and G4 subdomains) become exposed. To follow the global structural changes that accompany calcium activation of gelsolin, small-angle x-ray scattering (SAXS) data were collected for full-length human plasma gelsolin at nanomolar to millimolar concentrations of free Ca{sup 2+}. Analysis of these data showed that, upon increasing free Ca{sup 2+} levels, the radius of gyration (R{sub g}) increased nearly 12 {angstrom}, from 31.1 {+-} 0.3 to 43 {+-} 2 {angstrom}, and the maximum linear dimension (D{sub max}) of the gelsolin molecule increased 55 {angstrom}, from 100 to 155{angstrom}. Structural reconstruction of gelsolin from these data provided a striking visual tracking of the gradual Ca{sup 2+}-induced opening of the gelsolin molecule and highlighted the critical role played by the flexible linkers between homologous domains. The tightly packed architecture of calcium-free gelsolin, seen from both SAXS and x-ray crystallographic models, is already partially opened up in as low as 0.5 nM Ca{sup 2+}. Our data confirm that, although the molecule springs open from 0 to 1 {mu} free Ca{sup 2+}, even higher calcium concentrations help to stabilize a more open structure, with increases in R{sub g} and D{sub max} of 2 and 15 {angstrom}, respectively. At these higher calcium levels, the SAXS-based models provide a molecular shape that is compatible with that of the crystal structures solved for Ca{sup 2+}/gelsolin C-terminal and N-terminal halves {+-} monomeric G-actin. Placement of these crystal structures within the boundaries of the SAXS-based model suggests a movement of the G1/G2 subunits that

  7. Matrix metalloproteinase-1 cleavage site recognition and binding in full-length human type III collagen.

    PubMed

    Williams, Kim E; Olsen, David R

    2009-07-01

    Matrix metalloproteinases (MMPs) are essential for normal collagen turnover, recovery from fibrosis, and vascular permeability. In fibrillar collagens, MMP-1, MMP-8, and MMP-13 cleave a specific glycine-isoleucine or glycine-leucine bond, despite the presence of this sequence in other parts of the protein. This cut site specificity has been hypothesized to arise from a unique, relaxed super-secondary structure in this area due to local hydroxyproline poor character. In this study we examined the mechanism of interaction and cleavage of human type III collagen by fibroblast MMP-1 by using a panel of recombinant human type III collagens (rhCIIIs) containing engineered sequences in the vicinity of the cleavage site. Native and recombinant type III collagens had similar biochemical and structural characteristics, as indicated by transmission electron microscopy, circular dichroism spectropolarimetry, melting temperature and hydroxyproline analysis. A single amino acid change at the I785 cleavage site to proline resulted in partial MMP-1 resistance, but cuts were found in novel sites in the original cleavage region. However, the replacement of five Y-position residues by proline in this region, regardless of I785 variation, conferred complete resistance to MMP-1, MMP-8, MMP-13, trypsin, and elastase. MMP-1 had a decreased specific activity towards and reduced cleavage rate of rhCIII I785P but a K(m) similar to wild-type. Despite the reductions in protease sensitivity, MMP-1 bound to all of the engineered rhCIIIs with comparable affinity, indicating that MMP-1 binding is not sufficient for cleavage. The relaxed tertiary structure in the MMP cleavage region may permit local collagen unwinding by MMP-1 that enables site-specific proteolysis.

  8. Improving the diffraction of full-length human selenomethionyl metavinculin crystals by streak-seeding

    SciTech Connect

    Rangarajan, Erumbi S.; Izard, Tina

    2012-06-28

    Metavinculin is an alternatively spliced isoform of vinculin that has a 68-residue insert in its tail domain (1134 total residues) and is exclusively expressed in cardiac and smooth muscle tissue, where it plays important roles in myocyte adhesion complexes. Mutations in the metavinculin-specific insert are associated with dilated cardiomyopathy (DCM) in man. Crystals of a DCM-associated mutant of full-length selenomethionine-labeled metavinculin grown by hanging-drop vapor diffusion diffracted poorly and were highly sensitive to radiation, preventing the collection of a complete X-ray diffraction data set at the highest possible resolution. Streak-seeding markedly improved the stability, crystal-growth rate and diffraction quality of DCM-associated mutant metavinculin crystals, allowing complete data collection to 3.9 {angstrom} resolution. These crystals belonged to space group P4{sub 3}2{sub 1}2, with two molecules in the asymmetric unit and unit-cell parameters a = b = 170, c = 211 {angstrom}, {alpha} = {beta} = {gamma} = 90{sup o}.

  9. Near Full-Length Genomic Characterization of a Novel CRF 01_AE/C Recombinant from Western India.

    PubMed

    Karade, Santosh; Pandey, Sudhanshu; Gianchandani, Sheetal; Kurle, Swarali N; Ghate, Manisha; Gaikwad, Nitin S; Rewari, Bharat B; Gangakhedkar, Raman R

    2015-12-01

    HIV is known for its genetic variability across the globe. The HIV epidemic in India is primarily driven by subtype C, although sporadic circulating and unique recombinant forms are also reported from a few metropolitan cities in which genotyping facilities are available. Here we report a novel CRF01_AE/C recombinant from a multicenter study on the effectiveness of antiretroviral therapy (ART), 12 months after its initiation. Our subject is a 32-year-old heterosexual female, a native of Pune city in western India. Identification and analyses of recombination breakpoints using jpHMM@Gobics and SimPlot bootscanning revealed six recombination breakpoints, indicating insertion of the CRF01_AE genome at three points in the backbone of subtype C. Both subtype C and CRF01_AE are commonly seen in the population at risk of heterosexual HIV transmission, thereby providing an opportunity for cocirculation and recombination. The emergence of a novel recombinant of CRF01_AE/C is indicative of the increasing genetic diversity of the HIV epidemic in India.

  10. A combined computational and structural model of the full-length human prolactin receptor

    NASA Astrophysics Data System (ADS)

    Bugge, Katrine; Papaleo, Elena; Haxholm, Gitte W.; Hopper, Jonathan T. S.; Robinson, Carol V.; Olsen, Johan G.; Lindorff-Larsen, Kresten; Kragelund, Birthe B.

    2016-05-01

    The prolactin receptor is an archetype member of the class I cytokine receptor family, comprising receptors with fundamental functions in biology as well as key drug targets. Structurally, each of these receptors represent an intriguing diversity, providing an exceptionally challenging target for structural biology. Here, we access the molecular architecture of the monomeric human prolactin receptor by combining experimental and computational efforts. We solve the NMR structure of its transmembrane domain in micelles and collect structural data on overlapping fragments of the receptor with small-angle X-ray scattering, native mass spectrometry and NMR spectroscopy. Along with previously published data, these are integrated by molecular modelling to generate a full receptor structure. The result provides the first full view of a class I cytokine receptor, exemplifying the architecture of more than 40 different receptor chains, and reveals that the extracellular domain is merely the tip of a molecular iceberg.

  11. A combined computational and structural model of the full-length human prolactin receptor

    PubMed Central

    Bugge, Katrine; Papaleo, Elena; Haxholm, Gitte W.; Hopper, Jonathan T. S.; Robinson, Carol V.; Olsen, Johan G.; Lindorff-Larsen, Kresten; Kragelund, Birthe B.

    2016-01-01

    The prolactin receptor is an archetype member of the class I cytokine receptor family, comprising receptors with fundamental functions in biology as well as key drug targets. Structurally, each of these receptors represent an intriguing diversity, providing an exceptionally challenging target for structural biology. Here, we access the molecular architecture of the monomeric human prolactin receptor by combining experimental and computational efforts. We solve the NMR structure of its transmembrane domain in micelles and collect structural data on overlapping fragments of the receptor with small-angle X-ray scattering, native mass spectrometry and NMR spectroscopy. Along with previously published data, these are integrated by molecular modelling to generate a full receptor structure. The result provides the first full view of a class I cytokine receptor, exemplifying the architecture of more than 40 different receptor chains, and reveals that the extracellular domain is merely the tip of a molecular iceberg. PMID:27174498

  12. A combined computational and structural model of the full-length human prolactin receptor.

    PubMed

    Bugge, Katrine; Papaleo, Elena; Haxholm, Gitte W; Hopper, Jonathan T S; Robinson, Carol V; Olsen, Johan G; Lindorff-Larsen, Kresten; Kragelund, Birthe B

    2016-01-01

    The prolactin receptor is an archetype member of the class I cytokine receptor family, comprising receptors with fundamental functions in biology as well as key drug targets. Structurally, each of these receptors represent an intriguing diversity, providing an exceptionally challenging target for structural biology. Here, we access the molecular architecture of the monomeric human prolactin receptor by combining experimental and computational efforts. We solve the NMR structure of its transmembrane domain in micelles and collect structural data on overlapping fragments of the receptor with small-angle X-ray scattering, native mass spectrometry and NMR spectroscopy. Along with previously published data, these are integrated by molecular modelling to generate a full receptor structure. The result provides the first full view of a class I cytokine receptor, exemplifying the architecture of more than 40 different receptor chains, and reveals that the extracellular domain is merely the tip of a molecular iceberg.

  13. Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    PubMed Central

    2004-01-01

    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In

  14. Near Full-Length Genome Identification of a Novel HIV-1 Recombinant Form (CRF01_AE/CRF07_BC) in Zhejiang, China.

    PubMed

    Peng, Xiaorong; Li-Jun, Xu; Xie, Tiansheng; Liu, Fumin; Wu, Nanping

    2016-09-01

    CRF01_AE and CRF07_BC are the two major circulating recombinant forms (CRFs) in China. Furthermore, many kinds of unique recombinant forms (URFs) between CRF01_AE and CRF07_BC were recently identified in China. Here we detected a novel recombinant of CRF07_BC/CRF01_AE, whose genome structure is distinctly different from other URFs reported before. The phylogenetic analysis of the near full-length sequence of 15zj032 reveals that three regions of CRF01_AE insert into the CRF07_BC backbone. Recently, the continued emergence of novel URFs implies that super infections of different subtypes of HIV-1 are common in China and should be given enough importance. PMID:27353182

  15. Enhanced Expression of Full-Length Human Cytomegalovirus Fusion Protein in Non-Swelling Baculovirus-Infected Cells with a Minimal Fed-Batch Strategy

    PubMed Central

    Patrone, Marco; Carinhas, Nuno; Sousa, Marcos Q.; Peixoto, Cristina; Ciferri, Claudio; Carfì, Andrea; Alves, Paula M.

    2014-01-01

    Human cytomegalovirus congenital infection represents an unmet medical issue and attempts are ongoing to develop an effective vaccine. The virion fusion players of this enveloped virus are the natural targets to achieve this goal and to develop novel anti-viral therapies. The secreted ectodomain of the viral fusion factor glycoprotein B (gB) has been exploited so far as an alternative to the cumbersome expression of the wild type trans-membrane protein. In the soluble form, gB showed encouraging but limited potential as antigen candidate calling for further efforts. Here, the exhaustive evaluation of the Baculovirus/insect cell expression system has been coupled to an orthogonal screening for expression additives to produce full-length gB. In detail, rapamycin was found to prolong gB intracellular accumulation while inhibiting the infection-induced cell swelling. Not obvious to predict, this inhibition did not affect Baculovirus growth, revealing that the virus-induced cell size increase is a dispensable side phenotype. In parallel, a feeding strategy for the limiting nutrient cysteine has been set up which improved gB stability. This multi-modal scheme allowed the production of full-length, mutation-free gB in the milligram scale. The recombinant full-length gB obtained was embedded into a stable mono-dispersed particle substantially larger than the protein trimer itself, according to the reported association of this protein with detergent-resistant lipid domains. PMID:24595278

  16. First full-length genomic sequence of a hepatitis A virus isolated in Argentina shows recombination between subgenotypes IA and IB.

    PubMed

    Aguirre, Sebastian; Malirat, Viviana; Scodeller, Eduardo; Mattion, Nora

    2011-01-01

    A hepatitis A virus (HAV) recovered in Argentina from a stool sample of a sick child in the year 2006 (HAV-Arg/06) was entirely sequenced. Phylogenetic analysis included the HAV-Arg/06 sequence in subgenotype IA, either considering the usual VP1-2A variable junction fragment or the full length nucleotide sequence. Interestingly, a recombination event with subgenotype IB, involving a portion of the 2C-3A nonstructural proteins coding region (nucleotides 4961-5140) was detected using specific software. Only subgenotype IA strains have been detected in Argentina or Uruguay, whereas subgenotype IA and IB strains have been reported to circulate in Brazil. Although recombination has been given an important role in the evolution of picornaviruses, there have been only a few reports of its involvement in the evolution of HAV, probably due to the limited number of complete HAV sequences available. This study constitutes the first report of a full-length HAV sequence in Argentina and the third in South America, after the sequence of the IA isolate HAV5 from Uruguay and the IB isolate HAF-203 from Brazil. The availability of new sequence data covering the complete HAV genome will help establish a more consistent genetic relatedness among HAV isolates and the role of recombination in its evolution. PMID:21056065

  17. First full-length genomic sequence of a hepatitis A virus isolated in Argentina shows recombination between subgenotypes IA and IB.

    PubMed

    Aguirre, Sebastian; Malirat, Viviana; Scodeller, Eduardo; Mattion, Nora

    2011-01-01

    A hepatitis A virus (HAV) recovered in Argentina from a stool sample of a sick child in the year 2006 (HAV-Arg/06) was entirely sequenced. Phylogenetic analysis included the HAV-Arg/06 sequence in subgenotype IA, either considering the usual VP1-2A variable junction fragment or the full length nucleotide sequence. Interestingly, a recombination event with subgenotype IB, involving a portion of the 2C-3A nonstructural proteins coding region (nucleotides 4961-5140) was detected using specific software. Only subgenotype IA strains have been detected in Argentina or Uruguay, whereas subgenotype IA and IB strains have been reported to circulate in Brazil. Although recombination has been given an important role in the evolution of picornaviruses, there have been only a few reports of its involvement in the evolution of HAV, probably due to the limited number of complete HAV sequences available. This study constitutes the first report of a full-length HAV sequence in Argentina and the third in South America, after the sequence of the IA isolate HAV5 from Uruguay and the IB isolate HAF-203 from Brazil. The availability of new sequence data covering the complete HAV genome will help establish a more consistent genetic relatedness among HAV isolates and the role of recombination in its evolution.

  18. Transgenic mice containing expanded CAG trinucleotides within the full length cDNA of the human Huntington disease gene

    SciTech Connect

    Zeisler, J.; Goldberg, Y.P.; Tufaro, F.

    1994-09-01

    The absence of the clinical phenotype of HD in patients with the Wolff Hirshorn Syndrome (4p{sup -}) and the equivalent clinical phenotype of homozygotes and heterozygotes for the mutation associated with HD, point to a gain of function of the HD gene underlying the pathogenesis of HD. In an effort to test the hypothesis that HD results from a gain of function of the HD gene, we have constructed a full-length HD cDNA containing 44 CAG repeats. This cDNA was constructed in 7 different stages using 12 clones spanning the HD gene. After each stage, extensive restriction mapping and sequence verification was performed. The 10.3 kb full-length cDNA was cloned into pCMV, linearized and injected into the embryos of B6CBAF{sub 1} x B6CBAF{sub 1} mice. DNA extracted from the tails of 32 founders indicated that 7 founders contained the full-length cDNA with the CAG expansion of 44. In addition, in these litters, there was no increased frequency of miscarriage or perinatal mortality. Growth and development of the mice at birth appeared to be normal. After 3 weeks, these mice did not appear to have any abnormality, suggestive of neurological dysfunction. Further assessment of these mice using Northern and Western Blot analyses will assess their patterns of expression of the HD gene. In human, CAG expansion resulting in juvenile onset of HD is usually greater than 4x than seen on normal alleles. The murine homologue of HD contains 7 CAG repeats adjacent to a polymorphic CCG repeat. The introduction of the HD gene containing 44 repeats represents a 6 times increase in CAG size compared to the wild-type mouse allele. Nevertheless, these mice do not appear at this stage to have in any neurological phenotype compatible with juvenile or early onset of HD.

  19. Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab.

    PubMed

    Scapin, Giovanna; Yang, Xiaoyu; Prosise, Winifred W; McCoy, Mark; Reichert, Paul; Johnston, Jennifer M; Kashi, Ramesh S; Strickland, Corey

    2015-12-01

    Immunoglobulin G4 antibodies exhibit unusual properties with important biological consequences. We report the structure of the human full-length IgG4 S228P anti-PD1 antibody pembrolizumab, solved to 2.3-Å resolution. Pembrolizumab is a compact molecule, consistent with the presence of a short hinge region. The Fc domain is glycosylated at the CH2 domain on both chains, but one CH2 domain is rotated 120° with respect to the conformation observed in all reported structures to date, and its glycan chain faces the solvent. We speculate that this new conformation is driven by the shorter hinge. The structure suggests a role for the S228P mutation in preventing the IgG4 arm exchange. In addition, this unusual Fc conformation suggests possible structural diversity between IgG subclasses and shows that use of isolated antibody fragments could mask potentially important interactions, owing to molecular flexibility.

  20. Drug resistance is conferred on the model yeast Saccharomyces cerevisiae by expression of full-length melanoma-associated human ATP-binding cassette transporter ABCB5.

    PubMed

    Keniya, Mikhail V; Holmes, Ann R; Niimi, Masakazu; Lamping, Erwin; Gillet, Jean-Pierre; Gottesman, Michael M; Cannon, Richard D

    2014-10-01

    ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-β mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance. PMID:25115303

  1. Drug resistance is conferred on the model yeast Saccharomyces cerevisiae by expression of full-length melanoma-associated human ATP-binding cassette transporter ABCB5.

    PubMed

    Keniya, Mikhail V; Holmes, Ann R; Niimi, Masakazu; Lamping, Erwin; Gillet, Jean-Pierre; Gottesman, Michael M; Cannon, Richard D

    2014-10-01

    ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-β mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.

  2. The complete sequence of a full length cDNA for human liver glyceraldehyde-3-phosphate dehydrogenase: evidence for multiple mRNA species.

    PubMed Central

    Arcari, P; Martinelli, R; Salvatore, F

    1984-01-01

    A recombinant M13 clone (O42) containing a 65 b.p. cDNA fragment from human fetal liver mRNA coding for glyceraldehyde-3-phosphate dehydrogenase has been identified and it has been used to isolate from a full-length human adult liver cDNA library a recombinant clone, pG1, which has been subcloned in M13 phage and completely sequenced with the chain terminator method. Besides the coding region of 1008 b.p., the cDNA sequence includes 60 nucleotides at the 5'-end and 204 nucleotides at the 3'-end up to the polyA tail. Hybridization of pG1 to human liver total RNA shows only one band about the size of pG1 cDNA. A much stronger hybridization signal was observed using RNA derived from human hepatocarcinoma and kidney carcinoma cell lines. Sequence homology between clone 042 and the homologous region of clone pG1 is 86%. On the other hand, homology among the translated sequences and the known human muscle protein sequence ranges between 77 and 90%; these data demonstrate the existence of more than one gene coding for G3PD. Southern blot of human DNA, digested with several restriction enzymes, also indicate that several homologous sequences are present in the human genome. Images PMID:6096821

  3. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    SciTech Connect

    Pierce, Anson; Wei, Rochelle; Halade, Dipti; Yoo, Si-Eun; Ran, Qitao; Richardson, Arlan

    2010-11-05

    Research highlights: {yields} Development of mouse overexpressing native human HSF1 in all tissues including CNS. {yields} HSF1 overexpression enhances heat shock response at whole-animal and cellular level. {yields} HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. {yields} HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1{sup +/0}) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1{sup +/0} mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1{sup +/0} cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1{sup +/0} cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  4. Full-length model of the human galectin-4 and insights into dynamics of inter-domain communication

    NASA Astrophysics Data System (ADS)

    Rustiguel, Joane K.; Soares, Ricardo O. S.; Meisburger, Steve P.; Davis, Katherine M.; Malzbender, Kristina L.; Ando, Nozomi; Dias-Baruffi, Marcelo; Nonato, Maria Cristina

    2016-09-01

    Galectins are proteins involved in diverse cellular contexts due to their capacity to decipher and respond to the information encoded by β-galactoside sugars. In particular, human galectin-4, normally expressed in the healthy gastrointestinal tract, displays differential expression in cancerous tissues and is considered a potential drug target for liver and lung cancer. Galectin-4 is a tandem-repeat galectin characterized by two carbohydrate recognition domains connected by a linker-peptide. Despite their relevance to cell function and pathogenesis, structural characterization of full-length tandem-repeat galectins has remained elusive. Here, we investigate galectin-4 using X-ray crystallography, small- and wide-angle X-ray scattering, molecular modelling, molecular dynamics simulations, and differential scanning fluorimetry assays and describe for the first time a structural model for human galectin-4. Our results provide insight into the structural role of the linker-peptide and shed light on the dynamic characteristics of the mechanism of carbohydrate recognition among tandem-repeat galectins.

  5. Full-length model of the human galectin-4 and insights into dynamics of inter-domain communication

    PubMed Central

    Rustiguel, Joane K.; Soares, Ricardo O. S.; Meisburger, Steve P.; Davis, Katherine M.; Malzbender, Kristina L.; Ando, Nozomi; Dias-Baruffi, Marcelo; Nonato, Maria Cristina

    2016-01-01

    Galectins are proteins involved in diverse cellular contexts due to their capacity to decipher and respond to the information encoded by β-galactoside sugars. In particular, human galectin-4, normally expressed in the healthy gastrointestinal tract, displays differential expression in cancerous tissues and is considered a potential drug target for liver and lung cancer. Galectin-4 is a tandem-repeat galectin characterized by two carbohydrate recognition domains connected by a linker-peptide. Despite their relevance to cell function and pathogenesis, structural characterization of full-length tandem-repeat galectins has remained elusive. Here, we investigate galectin-4 using X-ray crystallography, small- and wide-angle X-ray scattering, molecular modelling, molecular dynamics simulations, and differential scanning fluorimetry assays and describe for the first time a structural model for human galectin-4. Our results provide insight into the structural role of the linker-peptide and shed light on the dynamic characteristics of the mechanism of carbohydrate recognition among tandem-repeat galectins. PMID:27642006

  6. Testosterone modulates mitochondrial aconitase in the full-length human androgen receptor-transfected PC-3 prostatic carcinoma cells.

    PubMed

    Juang, H-H; Hsieh, M-L; Tsui, K-H

    2004-08-01

    In vitro studies indicated that dihydrotestosterone (DHT) stimulates the enzymatic activity of the mitochondrial aconitase (mACON) in androgen-sensitive prostatic carcinoma cells, LNCaP. Cell proliferation assay determined that DHT doubles the optimal proliferation response of LNCaP cells. The androgen-insensitive human prostatic carcinoma cells, PC-3, were overexpressed in the human androgen receptor to assess the involvement of the native androgen receptor in the regulation by DHT of mACON gene expression. A stable-transfected clone that expresses the full-length androgen receptor was selected and termed PCAR9. The results revealed that DHT-treated PCAR9 cells paradoxically not only reduced the enzymatic activity of mACON but also blocked the biosynthesis of intracellular ATP attenuating cell proliferation. Transient gene expression assay indicated that DHT divergently regulates the promoter activity of the mACON gene in LNCaP and PCAR9 cells. This study suggested that DHT regulates mACON gene expression and the proliferation of cells in a receptor-dependent model through modulation by unidentified non-receptor factors. PMID:15291747

  7. Full-length model of the human galectin-4 and insights into dynamics of inter-domain communication.

    PubMed

    Rustiguel, Joane K; Soares, Ricardo O S; Meisburger, Steve P; Davis, Katherine M; Malzbender, Kristina L; Ando, Nozomi; Dias-Baruffi, Marcelo; Nonato, Maria Cristina

    2016-01-01

    Galectins are proteins involved in diverse cellular contexts due to their capacity to decipher and respond to the information encoded by β-galactoside sugars. In particular, human galectin-4, normally expressed in the healthy gastrointestinal tract, displays differential expression in cancerous tissues and is considered a potential drug target for liver and lung cancer. Galectin-4 is a tandem-repeat galectin characterized by two carbohydrate recognition domains connected by a linker-peptide. Despite their relevance to cell function and pathogenesis, structural characterization of full-length tandem-repeat galectins has remained elusive. Here, we investigate galectin-4 using X-ray crystallography, small- and wide-angle X-ray scattering, molecular modelling, molecular dynamics simulations, and differential scanning fluorimetry assays and describe for the first time a structural model for human galectin-4. Our results provide insight into the structural role of the linker-peptide and shed light on the dynamic characteristics of the mechanism of carbohydrate recognition among tandem-repeat galectins. PMID:27642006

  8. X-Ray Crystal Structure of the Full Length Human Chitotriosidase (CHIT1) Reveals Features of Its Chitin Binding Domain

    PubMed Central

    Fadel, Firas; Zhao, Yuguang; Cousido-Siah, Alexandra; Ruiz, Francesc X.; Mitschler, André; Podjarny, Alberto

    2016-01-01

    Chitinases are enzymes that catalyze the hydrolysis of chitin. Human chitotriosidase (CHIT1) is one of the two active human chitinases, involved in the innate immune response and highly expressed in a variety of diseases. CHIT1 is composed of a catalytic domain linked by a hinge to its chitin binding domain (ChBD). This latter domain belongs to the carbohydrate-binding module family 14 (CBM14 family) and facilitates binding to chitin. So far, the available crystal structures of the human chitinase CHIT1 and the Acidic Mammalian Chitinase (AMCase) comprise only their catalytic domain. Here, we report a crystallization strategy combining cross-seeding and micro-seeding cycles which allowed us to obtain the first crystal structure of the full length CHIT1 (CHIT1-FL) at 1.95 Å resolution. The CHIT1 chitin binding domain (ChBDCHIT1) structure shows a distorted β-sandwich 3D fold, typical of CBM14 family members. Accordingly, ChBDCHIT1 presents six conserved cysteine residues forming three disulfide bridges and several exposed aromatic residues that probably are involved in chitin binding, including the highly conserved Trp465 in a surface- exposed conformation. Furthermore, ChBDCHIT1 presents a positively charged surface which may be involved in electrostatic interactions. Our data highlight the strong structural conservation of CBM14 family members and uncover the structural similarity between the human ChBDCHIT1, tachycitin and house mite dust allergens. Overall, our new CHIT1-FL structure, determined with an adapted crystallization approach, is one of the few complete bi-modular chitinase structures available and reveals the structural features of a human CBM14 domain. PMID:27111557

  9. X-Ray Crystal Structure of the Full Length Human Chitotriosidase (CHIT1) Reveals Features of Its Chitin Binding Domain.

    PubMed

    Fadel, Firas; Zhao, Yuguang; Cousido-Siah, Alexandra; Ruiz, Francesc X; Mitschler, André; Podjarny, Alberto

    2016-01-01

    Chitinases are enzymes that catalyze the hydrolysis of chitin. Human chitotriosidase (CHIT1) is one of the two active human chitinases, involved in the innate immune response and highly expressed in a variety of diseases. CHIT1 is composed of a catalytic domain linked by a hinge to its chitin binding domain (ChBD). This latter domain belongs to the carbohydrate-binding module family 14 (CBM14 family) and facilitates binding to chitin. So far, the available crystal structures of the human chitinase CHIT1 and the Acidic Mammalian Chitinase (AMCase) comprise only their catalytic domain. Here, we report a crystallization strategy combining cross-seeding and micro-seeding cycles which allowed us to obtain the first crystal structure of the full length CHIT1 (CHIT1-FL) at 1.95 Å resolution. The CHIT1 chitin binding domain (ChBDCHIT1) structure shows a distorted β-sandwich 3D fold, typical of CBM14 family members. Accordingly, ChBDCHIT1 presents six conserved cysteine residues forming three disulfide bridges and several exposed aromatic residues that probably are involved in chitin binding, including the highly conserved Trp465 in a surface- exposed conformation. Furthermore, ChBDCHIT1 presents a positively charged surface which may be involved in electrostatic interactions. Our data highlight the strong structural conservation of CBM14 family members and uncover the structural similarity between the human ChBDCHIT1, tachycitin and house mite dust allergens. Overall, our new CHIT1-FL structure, determined with an adapted crystallization approach, is one of the few complete bi-modular chitinase structures available and reveals the structural features of a human CBM14 domain. PMID:27111557

  10. Improved yields of full-length functional human FGF1 can be achieved using the methylotrophic yeast Pichia pastoris.

    PubMed

    Fantoni, Adele; Bill, Roslyn M; Gustafsson, Lena; Hedfalk, Kristina

    2007-03-01

    We have produced human fibroblast growth factor 1 (hFGF1) in the methylotrophic yeast Pichia pastoris in order to obtain the large amounts of active protein required for subsequent functional and structural characterization. Four constructs were made to examine both intracellular and secreted expression, with variations in the location of the His6 tag at either end of the peptide. hFGF1 could be produced from all four constructs in shake flasks, but production was optimized by growing only the highest-yielding of these strains, which produced hFGF1 intracellularly, under tightly controlled conditions in a 3 L fermentor. One hundred and eight milligrams of pure protein was achieved per liter culture (corresponding to 0.68 mg of protein per gram of wet cells), the function of which was verified using NIH 3T3 cell cultures. This is a 30-fold improvement over previously reported yields of full-length hFGF1. PMID:17134911

  11. Accumulation of human full-length tau induces degradation of nicotinic acetylcholine receptor α4 via activating calpain-2

    PubMed Central

    Yin, Yaling; Wang, Yali; Gao, Di; Ye, Jinwang; Wang, Xin; Fang, Lin; Wu, Dongqin; Pi, Guilin; Lu, Chengbiao; Zhou, Xin-Wen; Yang, Ying; Wang, Jian-Zhi

    2016-01-01

    Cholinergic impairments and tau accumulation are hallmark pathologies in sporadic Alzheimer’s disease (AD), however, the intrinsic link between tau accumulation and cholinergic deficits is missing. Here, we found that overexpression of human wild-type full-length tau (termed hTau) induced a significant reduction of α4 subunit of nicotinic acetylcholine receptors (nAChRs) with an increased cleavage of the receptor producing a ~55kDa fragment in primary hippocampal neurons and in the rat brains, meanwhile, the α4 nAChR currents decreased. Further studies demonstrated that calpains, including calpain-1 and calpain-2, were remarkably activated with no change of caspase-3, while simultaneous suppression of calpain-2 by selective calpain-2 inhibitor but not calpain-1 attenuated the hTau-induced degradation of α4 nAChR. Finally, we demonstrated that hTau accumulation increased the basal intracellular calcium level in primary hippocampal neurons. We conclude that the hTau accumulation inhibits nAChRs α4 by activating calpain-2. To our best knowledge, this is the first evidence showing that the intracellular accumulation of tau causes cholinergic impairments. PMID:27277673

  12. Accumulation of human full-length tau induces degradation of nicotinic acetylcholine receptor α4 via activating calpain-2.

    PubMed

    Yin, Yaling; Wang, Yali; Gao, Di; Ye, Jinwang; Wang, Xin; Fang, Lin; Wu, Dongqin; Pi, Guilin; Lu, Chengbiao; Zhou, Xin-Wen; Yang, Ying; Wang, Jian-Zhi

    2016-01-01

    Cholinergic impairments and tau accumulation are hallmark pathologies in sporadic Alzheimer's disease (AD), however, the intrinsic link between tau accumulation and cholinergic deficits is missing. Here, we found that overexpression of human wild-type full-length tau (termed hTau) induced a significant reduction of α4 subunit of nicotinic acetylcholine receptors (nAChRs) with an increased cleavage of the receptor producing a ~55kDa fragment in primary hippocampal neurons and in the rat brains, meanwhile, the α4 nAChR currents decreased. Further studies demonstrated that calpains, including calpain-1 and calpain-2, were remarkably activated with no change of caspase-3, while simultaneous suppression of calpain-2 by selective calpain-2 inhibitor but not calpain-1 attenuated the hTau-induced degradation of α4 nAChR. Finally, we demonstrated that hTau accumulation increased the basal intracellular calcium level in primary hippocampal neurons. We conclude that the hTau accumulation inhibits nAChRs α4 by activating calpain-2. To our best knowledge, this is the first evidence showing that the intracellular accumulation of tau causes cholinergic impairments. PMID:27277673

  13. Computational insights into the inhibition and destabilization of morin on the oligomer of full-length human islet amyloid polypeptide.

    PubMed

    Wang, Qianqian; Zhou, Shuangyan; Wei, Wei; Yao, Xiaojun; Liu, Huanxiang; Hu, Zhide

    2015-11-21

    The aggregation of human islet amyloid polypeptide (hIAPP) is closely related with the occurrence of type 2 diabetes (T2D). Natural flavonoid morin was confirmed to not only inhibit the amyloid formation of hIAPP, but disaggregate its preformed amyloid fibrils. In this study, with the goal of elucidating the molecular mechanism of inhibition and destabilization of morin on the full-length hIAPP(1-37) oligomer, molecular dynamics simulations were performed for hIAPP(1-37) pentamer in the presence and absence of morin. The obtained results show that during the protein-inhibitor interaction, morin can notably alter the structural properties of hIAPP(1-37) pentamer, such as morphology, solvent accessible surface area and secondary structure. Moreover, we identified three possible binding sites of morin on hIAPP, all of which located near the amyloidogenic region of this protein. From the binding free energy calculations, we found that Site II was the most possible one. Further conformational analysis together with energy decomposition showed that the residues His18, Phe23 and Ile26 play a key role in the binding with morin by hydrogen bond, π-π and hydrophobic interactions. The proposal of the theoretical mechanism of morin against hIAPP aggregation will provide valuable information for the development of new drugs to inhibit hIAPP aggregation.

  14. Molecular cloning and nucleotide sequence of a full-length cDNA for human alpha enolase.

    PubMed Central

    Giallongo, A; Feo, S; Moore, R; Croce, C M; Showe, L C

    1986-01-01

    We previously purified a 48-kDa protein (p48) that specifically reacts with an antiserum directed against the 12 carboxyl-terminal amino acids of the c-myc gene product. Using an antiserum directed against the purified p48, we have cloned a cDNA from a human expression library. This cDNA hybrid-selects an mRNA that translates to a 48-kDa protein that specifically reacts with anti-p48 serum. We have isolated a full-length cDNA that encodes p48 and spans 1755 bases. The coding region is 1299 bases long; 94 bases are 5' noncoding and 359 bases are 3' noncoding. The cDNA encodes a 433 amino acid protein that is 67% homologous to yeast enolase and 94% homologous to the rat non-neuronal enolase. The purified protein has been shown to have enolase activity and has been identified to be of the alpha type by isoenzyme analysis. The transcriptional regulation of enolase expression in response to mitogenic stimulation of peripheral blood lymphocytes and in response to heat shock is also discussed. Images PMID:3529090

  15. Sequencing and Phylogenetic Analysis of Near Full-Length HIV-1 Subtypes A, B, G and Unique Recombinant AC and AD Viral Strains Identified in South Africa

    PubMed Central

    Wilkinson, Eduan; Holzmayer, Vera; Jacobs, Graeme B.; de Oliveira, Tulio; Brennan, Catherine A.; Hackett, John; van Rensburg, Estrelita Janse

    2015-01-01

    Abstract By the end of 2012, more than 6.1 million people were infected with HIV-1 in South Africa. Subtype C was responsible for the majority of these infections and more than 300 near full-length genomes (NFLGs) have been published. Currently very few non-subtype C isolates have been identified and characterized within the country, particularly full genome non-C isolates. Seven patients from the Tygerberg Virology (TV) cohort were previously identified as possible non-C subtypes and were selected for further analyses. RNA was isolated from five individuals (TV047, TV096, TV101, TV218, and TV546) and DNA from TV016 and TV1057. The NFLGs of these samples were amplified in overlapping fragments and sequenced. Online subtyping tools REGA version 3 and jpHMM were used to screen for subtypes and recombinants. Maximum likelihood (ML) phylogenetic analysis (phyML) was used to infer subtypes and SimPlot was used to confirm possible intersubtype recombinants. We identified three subtype B (TV016, TV047, and TV1057) isolates, one subtype A1 (TV096), one subtype G (TV546), one unique AD (TV101), and one unique AC (TV218) recombinant form. This is the first NFLG of subtype G that has been described in South Africa. The subtype B sequences described also increased the NFLG subtype B sequences in Africa from three to six. There is a need for more NFLG sequences, as partial HIV-1 sequences may underrepresent viral recombinant forms. It is also necessary to continue monitoring the evolution and spread of HIV-1 in South Africa, because understanding viral diversity may play an important role in HIV-1 prevention strategies. PMID:25492033

  16. Sequencing and phylogenetic analysis of near full-length HIV-1 subtypes A, B, G and unique recombinant AC and AD viral strains identified in South Africa.

    PubMed

    Wilkinson, Eduan; Holzmayer, Vera; Jacobs, Graeme B; de Oliveira, Tulio; Brennan, Catherine A; Hackett, John; van Rensburg, Estrelita Janse; Engelbrecht, Susan

    2015-04-01

    By the end of 2012, more than 6.1 million people were infected with HIV-1 in South Africa. Subtype C was responsible for the majority of these infections and more than 300 near full-length genomes (NFLGs) have been published. Currently very few non-subtype C isolates have been identified and characterized within the country, particularly full genome non-C isolates. Seven patients from the Tygerberg Virology (TV) cohort were previously identified as possible non-C subtypes and were selected for further analyses. RNA was isolated from five individuals (TV047, TV096, TV101, TV218, and TV546) and DNA from TV016 and TV1057. The NFLGs of these samples were amplified in overlapping fragments and sequenced. Online subtyping tools REGA version 3 and jpHMM were used to screen for subtypes and recombinants. Maximum likelihood (ML) phylogenetic analysis (phyML) was used to infer subtypes and SimPlot was used to confirm possible intersubtype recombinants. We identified three subtype B (TV016, TV047, and TV1057) isolates, one subtype A1 (TV096), one subtype G (TV546), one unique AD (TV101), and one unique AC (TV218) recombinant form. This is the first NFLG of subtype G that has been described in South Africa. The subtype B sequences described also increased the NFLG subtype B sequences in Africa from three to six. There is a need for more NFLG sequences, as partial HIV-1 sequences may underrepresent viral recombinant forms. It is also necessary to continue monitoring the evolution and spread of HIV-1 in South Africa, because understanding viral diversity may play an important role in HIV-1 prevention strategies.

  17. Full-length transcriptome analysis of human retina-derived cell lines ARPE-19 and Y79 using the vector-capping method.

    PubMed

    Oshikawa, Mio; Tsutsui, Chihiro; Ikegami, Tomoko; Fuchida, Yuki; Matsubara, Maki; Toyama, Shigeru; Usami, Ron; Ohtoko, Kuniyo; Kato, Seishi

    2011-08-01

    PURPOSE. To collect an entire set of full-length cDNA clones derived from human retina-derived cell lines and to identify full-length transcripts for retinal preferentially expressed genes. METHODS. The full-length cDNA libraries were constructed from a retinoblastoma cell line, Y79, and a retinal pigment epithelium cell line, ARPE-19, using the vector-capping method, which generates a genuine full-length cDNA. By single-pass sequencing of the 5'-end of cDNA clones and subsequent mapping to the human genome, the authors determined their transcriptional start sites and annotated the cDNA clones. RESULTS. Of the 23,616 clones isolated from Y79-derived cDNA libraries, 19,229 full-length cDNA clones were identified and classified into 4808 genes, including genes of >10 kbp. Of the 7067 genes obtained from the Y79 and ARPE-19 libraries, the authors selected 72 genes that were preferentially expressed in the eye, of which 131 clones corresponding to 57 genes were fully sequenced. As a result, we discovered many variants that were produced by different transcriptional start sites, alternative splicing, and alternative polyadenylation. CONCLUSIONS. The bias-free, full-length cDNA libraries constructed using the vector-capping method were shown to be useful for collecting an entire set of full-length cDNA clones for these retinal cell lines. Full-length transcriptome analysis of these cDNA libraries revealed that there were, unexpectedly, many transcript variants for each gene, indicating that obtaining the full-length cDNA for each variant is indispensable for analyzing its function. The full-length cDNA clones (approximately 80,000 clones each for ARPE-19 and Y79) will be useful as a resource for investigating the human retina. PMID:21697133

  18. Computational Study on Full-length Human Ku70 with Double Stranded DNA: Dynamics, Interactions and Functional Implications

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2009-01-01

    The Ku70/80 heterodimer is the first repair protein in the initial binding of double-strand break (DSB) ends following DNA damage, and is a component of nonhomologous end joining repair, the primary pathway for DSB repair in mammalian cells. In this study we constructed a full-length human Ku70 structure based on its crystal structure, and performed 20 ns conventional molecular dynamic (CMD) simulations on this protein and several other complexes with short DNA duplexes of different sequences. The trajectories of these simulations indicated that, without the topological support of Ku80, the residues in the bridge and C-terminal arm of Ku70 are more flexible than other experimentally identified domains. We studied the two missing loops in the crystal structure and predicted that they are also very flexible. Simulations revealed that they make an important contribution to the Ku70 interaction with DNA. Dislocation of the previously studied SAP domain was observed in several systems, implying its role in DNA binding. Targeted molecular dynamic (TMD) simulation was also performed for one system with a far-away 14bp DNA duplex. The TMD trajectory and energetic analysis disclosed detailed interactions of the DNA-binding residues during the DNA dislocation, and revealed a possible conformational transition for a DSB end when encountering Ku70 in solution. Compared to experimentally based analysis, this study identified more detailed interactions between DNA and Ku70. Free energy analysis indicated Ku70 alone is able to bind DNA with relatively high affinity, with consistent contributions from various domains of Ku70 in different systems. The functional implications of these domains in the processes of Ku heterodimerization and DNA damage recognition and repair can be characterized in detail based upon this analysis.

  19. Amyloid Core Formed of Full-Length Recombinant Mouse Prion Protein Involves Sequence 127–143 but Not Sequence 107–126

    PubMed Central

    Chatterjee, Biswanath; Lee, Chung-Yu; Lin, Chen; Chen, Eric H.-L.; Huang, Chao-Li; Yang, Chien-Chih; Chen, Rita P.-Y.

    2013-01-01

    The principal event underlying the development of prion disease is the conversion of soluble cellular prion protein (PrPC) into its disease-causing isoform, PrPSc. This conversion is associated with a marked change in secondary structure from predominantly α-helical to a high β-sheet content, ultimately leading to the formation of aggregates consisting of ordered fibrillar assemblies referred to as amyloid. In vitro, recombinant prion proteins and short prion peptides from various species have been shown to form amyloid under various conditions and it has been proposed that, theoretically, any protein and peptide could form amyloid under appropriate conditions. To identify the peptide segment involved in the amyloid core formed from recombinant full-length mouse prion protein mPrP(23–230), we carried out seed-induced amyloid formation from recombinant prion protein in the presence of seeds generated from the short prion peptides mPrP(107–143), mPrP(107–126), and mPrP(127–143). Our results showed that the amyloid fibrils formed from mPrP(107–143) and mPrP(127–143), but not those formed from mPrP(107–126), were able to seed the amyloidogenesis of mPrP(23–230), showing that the segment residing in sequence 127–143 was used to form the amyloid core in the fibrillization of mPrP(23–230). PMID:23844138

  20. Recombinant full-length factor VIII (FVIII) and extended half-life FVIII products in prophylaxis--new insight provided by pharmacokinetic modelling.

    PubMed

    Gringeri, A; Wolfsegger, M; Steinitz, K N; Reininger, A J

    2015-05-01

    The pharmacokinetics (PK) of extended half-life factor VIII (FVIII) products might allow longer dosing intervals in prophylaxis, potentially affecting its efficacy. We used published population PK models of a recombinant full-length FVIII (rAHF-PFM) and a recombinant B-domain-deleted FVIII Fc fusion product (rFVIIIFc) to assess the time spent weekly with FVIII levels below 3 IU dL(-1) or above 10 IU dL(-1) . These FVIII levels were chosen based on the observation that trough levels of 1 IU dL(-1) may not be sufficient in all patients. This approach was applied to a simulated population of 1000 severe haemophilia A subjects with dosing regimens included in the prescribing information or evaluated in clinical trials. FVIII levels remained ≥3 IU dL(-1) in 57% of patients treated with rAHF-PFM 30 IU kg(-1) every 48 h compared with 41.1%, 18.3%, 0.9% and 0% of patients treated with rFVIIIFc 30 IU kg(-1) every 72 h, 50 IU kg(-1) every 96 h or 120 h and 65 IU kg(-1) every 168 h respectively. Patients on rAHF-PFM 30 IU kg(-1) every 48 h spent more time weekly with FVIII levels above 10 IU dL(-1) than those on rFVIIIFc 50 IU kg(-1) every 96 h or 120 h, and 65 IU kg(-1) every 168 h. In conclusion, PK modelling indicates that choice and dosing intervals of standard and extended half-life FVIII products require careful evaluation of individual PK to allow more time at protective levels, especially in patients with active lifestyles.

  1. Full-length CD4 electroinserted in the erythrocyte membrane as a long-lived inhibitor of infection by human immunodeficiency virus

    SciTech Connect

    Zeira, M.; Volsky, D.J. ); Tosi, P.F.; Mouneimne, Y.; Lazarte, J.; Sneed, L.; Nicolau, C. )

    1991-05-15

    Recombinant full-length CD4 expressed in Spodoptera frugiperda 9 cells with the baculovirus system was electroinserted in erythrocyte (RBC) membranes. Of the inserted CD4, 70% was correctly oriented as shown by fluorescence quenching experiments with fluorescein-labeled CD4. The inserted CD4 displayed the same epitopes as the naturally occurring CD4 in human T4 cells. Double-labeling experiments ({sup 125}I-CD4 and {sup 51}Cr-RBC) showed that the half-life of CD4 electroinserted in RBC membrane in rabbits was approximately 7 days. Using the fluorescence dequenching technique with octadecylrhodamine B-labeled human immunodeficiency virus (HIV)-1, the authors showed fusion of the HIV envelope with the plasma membrane of RBC-CD4, whereas no such fusion could be detected with RBC. The dequenching efficiency of RBC-CD4 is the same as that of CEM cells. Exposure to anti-CD4 monoclonal antibody OKT4A, which binds to the CD4 region that attaches to envelope glycoprotein gp120, caused a significant decrease in the dequenching of fluorescence. In vitro infectivity studies showed that preincubation of HIV-1 with RBC-CD4 reduced by 80-90% the appearance of HIV antigens in target cells, the amount of viral reverse transcriptase, and the amount of p24 core antigen produced by the target cells. RBC-CD4, but not RBCs, aggregated with chronically HIV-1-infected T cells and caused formation of giant cells. These data show that the RBC-CD4 reagent is relatively long lived in circulation and efficient in attaching to HIV-1 and HIV-infected cells, and thus it may have value as a therapeutic agent against AIDS.

  2. Studies of nontarget-mediated distribution of human full-length IgG1 antibody and its FAb fragment in cardiovascular and metabolic-related tissues.

    PubMed

    Davidsson, Pia; Söderling, Ann-Sofi; Svensson, Lena; Ahnmark, Andrea; Flodin, Christine; Wanag, Ewa; Screpanti-Sundqvist, Valentina; Gennemark, Peter

    2015-05-01

    Tissue distribution and pharmacokinetics (PK) of full-length nontargeted antibody and its antigen-binding fragment (FAb) were evaluated for a range of tissues primarily of interest for cardiovascular and metabolic diseases. Mice were intravenously injected with a dose of 10 mg/kg of either human IgG1or its FAb fragment; perfused tissues were collected at a range of time points over 3 weeks for the human IgG1 antibody and 1 week for the human FAb antibody. Tissues were homogenized and antibody concentrations were measured by specific immunoassays on the Gyros system. Exposure in terms of maximum concentration (Cmax ) and area under the curve was assessed for all nine tissues. Tissue exposure of full-length antibody relative to plasma exposure was found to be between 1% and 10%, except for brain (0.2%). Relative concentrations of FAb antibody were the same, except for kidney tissue, where the antibody concentration was found to be ten times higher than in plasma. However, the absolute tissue uptake of full-length IgG was significantly higher than the absolute tissue uptake of the FAb antibody. This study provides a reference PK state for full-length whole and FAb antibodies in tissues related to cardiovascular and metabolic diseases that do not include antigen or antibody binding.

  3. Comparative analysis of 1196 orthologous mouse and human full-length mRNA and protein sequences.

    PubMed

    Makałowski, W; Zhang, J; Boguski, M S

    1996-09-01

    A large set of mRNA and encoded protein sequences, from orthologous murine and human genes, was compiled to analyze statistical, biological, and evolutionary properties of coding and noncoding transcribed sequences. Protein sequence conservation varied between 36% and 100% identity, with an average value of 85%. The average degree of nucleotide sequence identity for the corresponding coding sequences was also approximately 85%, whereas 5' and 3' untranslated regions (UTRs) were less conserved, with aligned identities of 67% and 69%, respectively. For some mouse and human genes, nucleotide sequences are more highly conserved than the encoded protein sequences. A subset of 32 sequences, consisting of only mouse/human protein pairs for which the human sequence represents a positionally cloned disease gene, had properties very similar to the larger data set, suggesting that our data are representative of the genome as a whole. With respect to sequence conservation, two interesting outliers are the breast cancer (BRCAI) gene product and the testis-determining factor (SRY), both of which display among the lowest degrees of sequence identity. The occurrence of both introns and repetitive elements (e.g., Alu, Bl) in 5' and 3' UTRs was also studied. These results provide one benchmark for the "comparative genomics" of mice and humans, with practical implications for the cross-referencing of transcript maps. Also, they should prove useful in estimating the additional sampling diversity provided by mouse EST sequencing projects designed to complement the existing human cDNA collection.

  4. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues

    SciTech Connect

    Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.; Goldberg, O.; Soreq, H.

    1987-06-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from lambdagt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. In RNA blots of poly(A)/sup +/ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species.

  5. Large-scale identification and characterization of alternative splicing variants of human gene transcripts using 56 419 completely sequenced and manually annotated full-length cDNAs

    PubMed Central

    Takeda, Jun-ichi; Suzuki, Yutaka; Nakao, Mitsuteru; Barrero, Roberto A.; Koyanagi, Kanako O.; Jin, Lihua; Motono, Chie; Hata, Hiroko; Isogai, Takao; Nagai, Keiichi; Otsuki, Tetsuji; Kuryshev, Vladimir; Shionyu, Masafumi; Yura, Kei; Go, Mitiko; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Wiemann, Stefan; Nomura, Nobuo; Sugano, Sumio; Gojobori, Takashi; Imanishi, Tadashi

    2006-01-01

    We report the first genome-wide identification and characterization of alternative splicing in human gene transcripts based on analysis of the full-length cDNAs. Applying both manual and computational analyses for 56 419 completely sequenced and precisely annotated full-length cDNAs selected for the H-Invitational human transcriptome annotation meetings, we identified 6877 alternative splicing genes with 18 297 different alternative splicing variants. A total of 37 670 exons were involved in these alternative splicing events. The encoded protein sequences were affected in 6005 of the 6877 genes. Notably, alternative splicing affected protein motifs in 3015 genes, subcellular localizations in 2982 genes and transmembrane domains in 1348 genes. We also identified interesting patterns of alternative splicing, in which two distinct genes seemed to be bridged, nested or having overlapping protein coding sequences (CDSs) of different reading frames (multiple CDS). In these cases, completely unrelated proteins are encoded by a single locus. Genome-wide annotations of alternative splicing, relying on full-length cDNAs, should lay firm groundwork for exploring in detail the diversification of protein function, which is mediated by the fast expanding universe of alternative splicing variants. PMID:16914452

  6. Low conservation and species-specific evolution of alternative splicing in humans and mice: comparative genomics analysis using well-annotated full-length cDNAs

    PubMed Central

    Takeda, Jun-ichi; Suzuki, Yutaka; Sakate, Ryuichi; Sato, Yoshiharu; Seki, Masahide; Irie, Takuma; Takeuchi, Nono; Ueda, Takuya; Nakao, Mitsuteru; Sugano, Sumio; Gojobori, Takashi; Imanishi, Tadashi

    2008-01-01

    Using full-length cDNA sequences, we compared alternative splicing (AS) in humans and mice. The alignment of the human and mouse genomes showed that 86% of 199 426 total exons in human AS variants were conserved in the mouse genome. Of the 20 392 total human AS variants, however, 59% consisted of all conserved exons. Comparing AS patterns between human and mouse transcripts revealed that only 431 transcripts from 189 loci were perfectly conserved AS variants. To exclude the possibility that the full-length human cDNAs used in the present study, especially those with retained introns, were cloning artefacts or prematurely spliced transcripts, we experimentally validated 34 such cases. Our results indicate that even retained-intron type transcripts are typically expressed in a highly controlled manner and interact with translating ribosomes. We found non-conserved AS exons to be predominantly outside the coding sequences (CDSs). This suggests that non-conserved exons in the CDSs of transcripts cause functional constraint. These findings should enhance our understanding of the relationship between AS and species specificity of human genes. PMID:18838389

  7. The full-length E1-circumflexE4 protein of human papillomavirus type 18 modulates differentiation-dependent viral DNA amplification and late gene expression

    SciTech Connect

    Wilson, Regina; Ryan, Gordon B.; Knight, Gillian L.; Laimins, Laimonis A.; Roberts, Sally . E-mail: s.roberts@bham.ac.uk

    2007-06-05

    Activation of the productive phase of the human papillomavirus (HPV) life cycle in differentiated keratinocytes is coincident with high-level expression of E1-circumflexE4 protein. To determine the role of E1-circumflexE4 in the HPV replication cycle, we constructed HPV18 mutant genomes in which expression of the full-length E1-circumflexE4 protein was abrogated. Undifferentiated keratinocytes containing mutant genomes showed enhanced proliferation when compared to cells containing wildtype genomes, but there were no differences in maintenance of viral episomes. Following differentiation, cells with mutant genomes exhibited reduced levels of viral DNA amplification and late gene expression, compared to wildtype genome-containing cells. This indicates that HPV18 E1-circumflexE4 plays an important role in regulating HPV late functions, and it may also function in the early phase of the replication cycle. Our finding that full-length HPV18 E1-circumflexE4 protein plays a significant role in promoting viral genome amplification concurs with a similar report with HPV31, but is in contrast to an HPV11 study where viral DNA amplification was not dependent on full-length E1-circumflexE4 expression, and to HPV16 where only C-terminal truncations in E1-circumflexE4 abrogated vegetative genome replication. This suggests that type-specific differences exist between various E1-circumflexE4 proteins.

  8. Mechanisms of action of islet neogenesis-associated protein: comparison of the full-length recombinant protein and a bioactive peptide

    PubMed Central

    Daoud, Jamal; Zhu, Jonathan; Moosavi, Mandana; Ding, Jieping; Makhlin, Julia; Assouline-Thomas, Beatrice; Rosenberg, Lawrence

    2012-01-01

    Islet neogenesis-associated protein (INGAP) was discovered in the partially duct-obstructed hamster pancreas as a factor inducing formation of new duct-associated islets. A bioactive portion of INGAP, INGAP104–118 peptide (INGAP-P), has been shown to have neogenic and insulin-potentiating activity in numerous studies, including recent phase 2 clinical trials that demonstrated improved glucose homeostasis in both type 1 and type 2 diabetic patients. Aiming to improve INGAP-P efficacy and to understand its mechanism of action, we cloned the full-length protein (rINGAP) and compared the signaling events induced by the protein and the peptide in RIN-m5F cells that respond to INGAP with an increase in proliferation. Here, we show that, although both rINGAP and INGAP-P signal via the Ras/Raf/ERK pathway, rINGAP is at least 100 times more efficient on a molar basis than INGAP-P. For either ligand, ERK1/2 activation appears to be pertussis toxin sensitive, suggesting involvement of a G protein-coupled receptor(s). However, there are clear differences between the peptide and the protein in interactions with the cell surface and in the downstream signaling. We demonstrate that fluorescent-labeled rINGAP is characterized by clustering on the membrane and by slow internalization (≤5 h), whereas INGAP-P does not cluster and is internalized within minutes. Signaling by rINGAP appears to involve Src, in contrast to INGAP-P, which appears to activate Akt in addition to the Ras/Raf/ERK1/2 pathway. Thus our data suggest that interactions of INGAP with the cell surface are important to consider for further development of INGAP as a pharmacotherapy for diabetes. PMID:22850686

  9. Fine-mapping naturally occurring NY-ESO-1 antibody epitopes in melanoma patients' sera using short overlapping peptides and full-length recombinant protein.

    PubMed

    Komatsu, Nobukazu; Jackson, Heather M; Chan, Kok-fei; Oveissi, Sara; Cebon, Jonathan; Itoh, Kyogo; Chen, Weisan

    2013-07-01

    The tumor antigen NY-ESO-1 is one of the most antigenic cancer-testis antigens, first identified by serologic analysis of a recombinant cDNA expression library (SEREX). NY-ESO-1 is expressed in different types of cancers including melanoma. NY-ESO-1-specific spontaneous humoral and cellular immune responses are detected in a large proportion of patients with advanced NY-ESO-1-expressing cancers. Therefore NY-ESO-1 is a good candidate antigen for immunotherapy. Although cellular immune responses to NY-ESO-1 are well characterized, much less is known about the humoral immune responses. In this study, we finely mapped linear antibody epitopes using sera from melanoma patients and shorter overlapping peptide sets. We have shown that melanoma patients' humoral immune systems responded to NY-ESO-1 differently in each individual with widely differing antibody specificity, intensity and antibody subtypes. This knowledge will help us further understand anti-tumor immunity and may also help us to monitor cancer progress and cancer vaccine efficacy in the future.

  10. Expression of a full-length cDNA for the human MDR1 gene confers resistance to colchicine, doxorubicin, and vinblastine

    SciTech Connect

    Ueda, K.; Cardarelli, C.; Gottesman, M.M.; Pastan, I.

    1987-05-01

    Intrinsic and acquired multidrug resistance (MDR) is an important problem in cancer therapy. MDR in human KB carcinoma cells selected for resistance to colchicine, vinblastine, or doxorubicin (former generic name adriamycin) is associated with overexpression of the MDR1 gene, which encodes P-glycoprotein. The authors previously have isolated an overlapping set of cDNA clones for the human MDR1 gene from multidrug-resistant KB cells. Here they report the construction of a full-length cDNA for the human MDR1 gene and show that this reconstructed cDNA, when inserted into a retroviral expression vector containing the long terminal repeats of Moloney leukemia virus or Harvey sarcoma virus, functions in mouse NIH 3T3 and human KB cells to confer the complete multidrug-resistance phenotype. These results suggest that the human MDR1 gene may be used as a positive selectable marker to introduce genes into human cells and to transform human cells to multidrug resistance without introducing nonhuman antigens.

  11. Walleye dermal sarcoma virus: expression of a full-length clone or the rv-cyclin (orf a) gene is cytopathic to the host and human tumor cells.

    PubMed

    Xu, Kun; Zhang, Ting Ting; Wang, Ling; Zhang, Cun Fang; Zhang, Long; Ma, Li Xia; Xin, Ying; Ren, Chong Hua; Zhang, Zhi Qiang; Yan, Qiang; Martineau, Daniel; Zhang, Zhi Ying

    2013-02-01

    Walleye dermal sarcoma virus (WDSV) is etiologically associated with a skin tumor, walleye dermal sarcoma (WDS), which develops in the fall and regresses in the spring. WDSV genome contains, in addition to gag, pol and env, three open reading frames (orfs) designated orf a (rv-cyclin), orf b and orf c. Unintegrated linear WDSV provirus DNA isolated from infected tumor cells was used to construct a full-length WDSV provirus clone pWDSV, while orf a was cloned into pSVK3 to construct the expression vector porfA. Stable co-transfection of a walleye cell line (W12) with pWDSV and pcDNA3 generated fewer and smaller G418-resistant colonies compared to the control. By Northern blot analysis, several small transcripts (2.8, 1.8, 1.2, and 0.8 kb) were detected using a WDSV LTR-specific probe. By RT-PCR and Southern blot analysis, three cDNAs (2.4, 1.6 and 0.8 kb) were identified, including both orf a and orf b messenger. Furthermore stable co-transfection of both a human lung adenocarcinoma cell line (SPC-A-1) and a cervical cancer cell line (HeLa) with pcDNA3 and ether porfA or pWDSV also generated fewer and smaller G418-resistant colonies. We conclude that expression of the full-length WDSV clone or the orf a gene inhibits the host fish and human tumor cell growth, and Orf A protein maybe a potential factor which contributes to the seasonal tumor development and regression. This is the first fish provirus clone that has been expressed in cell culture system, which will provide a new in vitro model for tumor research and oncotherapy study.

  12. Increased mRNA expression of a laminin-binding protein in human colon carcinoma: Complete sequence of a full-length cDNA encoding the protein

    SciTech Connect

    Yow, Hsiukang; Wong, Jau Min; Chen, Hai Shiene; Lee, C.; Steele, G.D. Jr.; Chen, Lanbo

    1988-09-01

    Reliable markers to distinguish human colon carcinoma from normal colonic epithelium are needed particularly for poorly differentiated tumors where no useful marker is currently available. To search for markers the authors constructed cDNA libraries from human colon carcinoma cell lines and screened for clones that hybridize to a greater degree with mRNAs of colon carcinomas than with their normal counterparts. Here they report one such cDNA clone that hybridizes with a 1.2-kilobase (kb) mRNA, the level of which is /approx/9-fold greater in colon carcinoma than in adjacent normal colonic epithelium. Blot hybridization of total RNA from a variety of human colon carcinoma cell lines shows that the level of this 1.2-kb mRNA in poorly differentiated colon carcinomas is as high as or higher than that in well-differentiated carcinomas. Molecular cloning and complete sequencing of cDNA corresponding to the full-length open reading frame of this 1.2-kb mRNA unexpectedly show it to contain all the partial cDNA sequence encoding 135 amino acid residues previously reported for a human laminin receptor. The deduced amino acid sequence suggests that this putative laminin-binding protein from human colon carcinomas consists of 295 amino acid residues with interesting features. There is an unusual C-terminal 70-amino acid segment, which is trypsin-resistant and highly negatively charged.

  13. Structure of the Full-Length Human RPA14/32 Complex Gives Insights Into the Mechanism of DNA Binding And Complex Formation

    SciTech Connect

    Deng, X.; Habel, J.E.; Kabaleeswaran, V.; Snell, E.H.; Wold, M.S.; Borgstahl, G.E.O.

    2009-06-03

    Replication protein A (RPA) is the ubiquitous, eukaryotic single-stranded DNA (ssDNA) binding protein and is essential for DNA replication, recombination, and repair. Here, crystal structures of the soluble RPA heterodimer, composed of the RPA14 and RPA32 subunits, have been determined for the full-length protein in multiple crystal forms. In all crystals, the electron density for the N-terminal (residues 1--42) and C-terminal (residues 175--270) regions of RPA32 is weak and of poor quality indicating that these regions are disordered and/or assume multiple positions in the crystals. Hence, the RPA32 N terminus, that is hyperphosphorylated in a cell-cycle-dependent manner and in response to DNA damaging agents, appears to be inherently disordered in the unphosphorylated state. The C-terminal, winged helix-loop-helix, protein-protein interaction domain adopts several conformations perhaps to facilitate its interaction with various proteins. Although the ordered regions of RPA14/32 resemble the previously solved protease-resistant core crystal structure, the quaternary structures between the heterodimers are quite different. Thus, the four-helix bundle quaternary assembly noted in the original core structure is unlikely to be related to the quaternary structure of the intact heterotrimer. An organic ligand binding site between subunits RPA14 and RPA32 was identified to bind dioxane. Comparison of the ssDNA binding surfaces of RPA70 with RPA14/32 showed that the lower affinity of RPA14/32 can be attributed to a shallower binding crevice with reduced positive electrostatic charge.

  14. Quantitative measurement of full-length and C-terminal proteolyzed RBP4 in serum of normal and insulin-resistant humans using a novel mass spectrometry immunoassay.

    PubMed

    Yang, Qin; Eskurza, Iratxe; Kiernan, Urban A; Phillips, David A; Blüher, Matthias; Graham, Timothy E; Kahn, Barbara B

    2012-03-01

    Serum retinol-binding protein 4 (RBP4) levels are increased in insulin-resistant humans and correlate with severity of insulin resistance in metabolic syndrome. Quantitative Western blotting (qWestern) has been the most accurate method for serum RBP4 measurements, but qWestern is technically complex and labor intensive. The lack of a reliable, high-throughput method for RBP4 measurements has resulted in variability in findings in insulin-resistant humans. Many commonly used ELISAs have limited dynamic range. Neither the current ELISAs nor qWestern distinguish among full-length and carboxyl terminus proteolyzed forms of circulating RBP4 that are altered in different medical conditions. Here, we report the development of a novel quantitative mass spectrometry immunoaffinity assay (qMSIA) to measure full-length and proteolyzed forms of RBP4. qMSIA and qWestern of RBP4 were performed in identical serum aliquots from insulin-sensitive/normoglycemic or insulin-resistant humans with impaired glucose tolerance or type 2 diabetes. Total RBP4 qMSIA measurements were highly similar to qWestern and correlated equally well with clinical severity of insulin resistance (assessed by clamp glucose disposal rate, r = -0.74), hemoglobin A1c (r = 0.63), triglyceride/high-density lipoprotein (r = 0.55), waist/hip (r = 0.61), and systolic blood pressure (r = 0.53, all P < 0.001). Proteolyzed forms of RBP4 accounted for up to 50% of total RBP4 in insulin-resistant subjects, and des(Leu)-RBP4 (cleavage of last leucine) correlated highly with insulin resistance (assessed by glucose disposal rate, r = -0.69). In multiple regression analysis, insulin resistance but not glomerular filtration rate was the strongest, independent predictor of serum RBP4 levels. Thus, qMSIA provides a novel tool for accurately measuring serum RBP4 levels as a biomarker for severity of insulin resistance and risk for type 2 diabetes and metabolic syndrome. PMID:22253430

  15. Characterization of the cloned full-length and a truncated human target of rapamycin: Activity, specificity, and enzyme inhibition as studied by a high capacity assay

    SciTech Connect

    Toral-Barza, Lourdes; Zhang Weiguo; Lamison, Craig; LaRocque, James; Gibbons, James; Yu, Ker . E-mail: yuk@wyeth.com

    2005-06-24

    The mammalian target of rapamycin (mTOR/TOR) is implicated in cancer and other human disorders and thus an important target for therapeutic intervention. To study human TOR in vitro, we have produced in large scale both the full-length TOR (289 kDa) and a truncated TOR (132 kDa) from HEK293 cells. Both enzymes demonstrated a robust and specific catalytic activity towards the physiological substrate proteins, p70 S6 ribosomal protein kinase 1 (p70S6K1) and eIF4E binding protein 1 (4EBP1), as measured by phosphor-specific antibodies in Western blotting. We developed a high capacity dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) for analysis of kinetic parameters. The Michaelis constant (K {sub m}) values of TOR for ATP and the His6-S6K substrate were shown to be 50 and 0.8 {mu}M, respectively. Dose-response and inhibition mechanisms of several known inhibitors, the rapamycin-FKBP12 complex, wortmannin and LY294002, were also studied in DELFIA. Our data indicate that TOR exhibits kinetic features of those shared by traditional serine/threonine kinases and demonstrate the feasibility for TOR enzyme screen in searching for new inhibitors.

  16. Identification of genes expressed in human CD34+ hematopoietic stem/progenitor cells by expressed sequence tags and efficient full-length cDNA cloning

    PubMed Central

    Mao, Mao; Fu, Gang; Wu, Ji-Sheng; Zhang, Qing-Hua; Zhou, Jun; Kan, Li-Xin; Huang, Qiu-Hua; He, Kai-Li; Gu, Bai-Wei; Han, Ze-Guang; Shen, Yu; Gu, Jian; Yu, Ya-Ping; Xu, Shu-Hua; Wang, Ya-Xin; Chen, Sai-Juan; Chen, Zhu

    1998-01-01

    Hematopoietic stem/progenitor cells (HSPCs) possess the potentials of self-renewal, proliferation, and differentiation toward different lineages of blood cells. These cells not only play a primordial role in hematopoietic development but also have important clinical application. Characterization of the gene expression profile in CD34+ HSPCs may lead to a better understanding of the regulation of normal and pathological hematopoiesis. In the present work, genes expressed in human umbilical cord blood CD34+ cells were catalogued by partially sequencing a large amount of cDNA clones [or expressed sequence tags (ESTs)] and analyzing these sequences with the tools of bioinformatics. Among 9,866 ESTs thus obtained, 4,697 (47.6%) showed identity to known genes in the GenBank database, 2,603 (26.4%) matched to the ESTs previously deposited in a public domain database, 1,415 (14.3%) were previously undescribed ESTs, and the remaining 1,151 (11.7%) were mitochondrial DNA, ribosomal RNA, or repetitive (Alu or L1) sequences. Integration of ESTs of known genes generated a profile including 855 genes that could be divided into different categories according to their functions. Some (8.2%) of the genes in this profile were considered related to early hematopoiesis. The possible function of ESTs corresponding to so far unknown genes were approached by means of homology and functional motif searches. Moreover, attempts were made to generate libraries enriched for full-length cDNAs, to better explore the genes in HSPCs. Nearly 60% of the cDNA clones of mRNA under 2 kb in our libraries had 5′ ends upstream of the first ATG codon of the ORF. With this satisfactory result, we have developed an efficient working system that allowed fast sequencing of 32 full-length cDNAs, 16 of them being mapped to the chromosomes with radiation hybrid panels. This work may lay a basis for the further research on the molecular network of hematopoietic regulation. PMID:9653160

  17. The N-terminal domain plays a crucial role in the structure of a full-length human mitochondrial Lon protease.

    PubMed

    Kereïche, Sami; Kováčik, Lubomír; Bednár, Jan; Pevala, Vladimír; Kunová, Nina; Ondrovičová, Gabriela; Bauer, Jacob; Ambro, Ľuboš; Bellová, Jana; Kutejová, Eva; Raška, Ivan

    2016-01-01

    Lon is an essential, multitasking AAA(+) protease regulating many cellular processes in species across all kingdoms of life. Altered expression levels of the human mitochondrial Lon protease (hLon) are linked to serious diseases including myopathies, paraplegia, and cancer. Here, we present the first 3D structure of full-length hLon using cryo-electron microscopy. hLon has a unique three-dimensional structure, in which the proteolytic and ATP-binding domains (AP-domain) form a hexameric chamber, while the N-terminal domain is arranged as a trimer of dimers. These two domains are linked by a narrow trimeric channel composed likely of coiled-coil helices. In the presence of AMP-PNP, the AP-domain has a closed-ring conformation and its N-terminal entry gate appears closed, but in ADP binding, it switches to a lock-washer conformation and its N-terminal gate opens, which is accompanied by a rearrangement of the N-terminal domain. We have also found that both the enzymatic activities and the 3D structure of a hLon mutant lacking the first 156 amino acids are severely disturbed, showing that hLon's N-terminal domains are crucial for the overall structure of the hLon, maintaining a conformation allowing its proper functioning. PMID:27632940

  18. The N-terminal domain plays a crucial role in the structure of a full-length human mitochondrial Lon protease

    PubMed Central

    Kereïche, Sami; Kováčik, Lubomír; Bednár, Jan; Pevala, Vladimír; Kunová, Nina; Ondrovičová, Gabriela; Bauer, Jacob; Ambro, Ľuboš; Bellová, Jana; Kutejová, Eva; Raška, Ivan

    2016-01-01

    Lon is an essential, multitasking AAA+ protease regulating many cellular processes in species across all kingdoms of life. Altered expression levels of the human mitochondrial Lon protease (hLon) are linked to serious diseases including myopathies, paraplegia, and cancer. Here, we present the first 3D structure of full-length hLon using cryo-electron microscopy. hLon has a unique three-dimensional structure, in which the proteolytic and ATP-binding domains (AP-domain) form a hexameric chamber, while the N-terminal domain is arranged as a trimer of dimers. These two domains are linked by a narrow trimeric channel composed likely of coiled-coil helices. In the presence of AMP-PNP, the AP-domain has a closed-ring conformation and its N-terminal entry gate appears closed, but in ADP binding, it switches to a lock-washer conformation and its N-terminal gate opens, which is accompanied by a rearrangement of the N-terminal domain. We have also found that both the enzymatic activities and the 3D structure of a hLon mutant lacking the first 156 amino acids are severely disturbed, showing that hLon’s N-terminal domains are crucial for the overall structure of the hLon, maintaining a conformation allowing its proper functioning. PMID:27632940

  19. The N-terminal domain plays a crucial role in the structure of a full-length human mitochondrial Lon protease.

    PubMed

    Kereïche, Sami; Kováčik, Lubomír; Bednár, Jan; Pevala, Vladimír; Kunová, Nina; Ondrovičová, Gabriela; Bauer, Jacob; Ambro, Ľuboš; Bellová, Jana; Kutejová, Eva; Raška, Ivan

    2016-01-01

    Lon is an essential, multitasking AAA(+) protease regulating many cellular processes in species across all kingdoms of life. Altered expression levels of the human mitochondrial Lon protease (hLon) are linked to serious diseases including myopathies, paraplegia, and cancer. Here, we present the first 3D structure of full-length hLon using cryo-electron microscopy. hLon has a unique three-dimensional structure, in which the proteolytic and ATP-binding domains (AP-domain) form a hexameric chamber, while the N-terminal domain is arranged as a trimer of dimers. These two domains are linked by a narrow trimeric channel composed likely of coiled-coil helices. In the presence of AMP-PNP, the AP-domain has a closed-ring conformation and its N-terminal entry gate appears closed, but in ADP binding, it switches to a lock-washer conformation and its N-terminal gate opens, which is accompanied by a rearrangement of the N-terminal domain. We have also found that both the enzymatic activities and the 3D structure of a hLon mutant lacking the first 156 amino acids are severely disturbed, showing that hLon's N-terminal domains are crucial for the overall structure of the hLon, maintaining a conformation allowing its proper functioning.

  20. Near full-length genome sequence of a novel HIV-1 recombinant form (CRF01_AE/B) detected among men who have sex with men in Jilin Province, China.

    PubMed

    Li, Xingguang; Feng, Yi; Yang, Yao; Chen, Yanli; Guo, Qi; Sun, Liuyan; Zang, Xihui; Xing, Hui; Shao, Yiming

    2014-07-01

    We report here a novel HIV-1 recombinant form (CRF01_AE/B) detected from a comprehensive HIV-1 molecular epidemiologic study among men who have sex with men (MSM) in Jilin province of northeastern China. The near full-length genome (NFLG) analyses showed that the novel HIV-1 recombinant isolate (JL.RF07) was composed of CRF01_AE cluster 5 (northeastern China origin) and subtype B (U.S. and European origin), with six recombinant breakpoints observed in the pol, vif, tat, rev, and env gene regions. To the best of our knowledge, this is the first detection of a novel HIV-1 recombinant form (CRF01_AE/B) in Jilin, which may indicate an active transmission network of HIV-1 infection among MSM in the region. Further studies of the molecular epidemiology of the HIV-1 epidemic among MSM in northeastern China are necessary to gain a fuller understanding of the transmission network and potential public health impact of HIV-1 among MSM in this region.

  1. Human Full-Length Coagulation Factor X and a GLA Domain-Derived 40-mer Polypeptide Bind to Different Regions of the Adenovirus Serotype 5 Hexon Capsomer

    PubMed Central

    Sumarheni, Sudir; Hong, Saw See; Josserand, Véronique; Coll, Jean-Luc; Boulanger, Pierre; Schoehn, Guy

    2014-01-01

    Abstract The interaction of human adenovirus (HAdV)-C5 and many other adenoviruses with blood coagulation factors (e.g., human factor X, FX) involves the binding of their GLA domain to the hexon capsomers, resulting in high levels of hepatotropism and potential hepatotoxicity. In this study, we tested the possibility of preventing these undesirable effects by using a GLA-mimicking peptide as a competitor. An FX GLA domain-derived, 40-mer polypeptide carrying 12 carboxyglutamate residues was synthesized (GLAmim). Surface plasmon resistance (SPR) analysis showed that GLAmim reacted with free and capsid-embedded hexon with a nanomolar affinity. Unexpectedly, GLAmim failed to compete with FX for hexon binding, and instead significantly increased the formation of FX–hexon or FX–adenovirion complexes. This observation was confirmed by in vitro cell transduction experiments using HAdV-C5-Luciferase vector (HAdV5-Luc), as preincubation of HAdV5-Luc with GLAmim before FX addition resulted in a higher transgene expression compared with FX alone. HAdV-C5 virions complexed with GLAmim were analyzed by cryoelectron microscopy. Image reconstruction demonstrated the bona fide hexon–GLAmim interaction, as for the full-length FX, although with considerable differences in stoichiometry and relative location on the hexon capsomer. Three extra densities were found at the periphery of each hexon, whereas one single FX molecule occupied the central cavity of the hexon trimeric capsomer. A refined analysis indicated that each extra density is found at the expected location of one highly variable loop 1 of the hexon, involved in scavenger receptor recognition. HAdV5-Luc complexed with a bifunctional GLAmimRGD peptide showed a lesser hepatotropism, compared with control HAdV5-Luc alone, and efficiently targeted αβ-integrin-overexpressing tumor cells in an in vivo mouse tumor model. Collectively, our findings open new perspectives in the design of adenoviral vectors for biotherapy

  2. TALENs-directed knockout of the full-length transcription factor Nrf1α that represses malignant behaviour of human hepatocellular carcinoma (HepG2) cells

    PubMed Central

    Ren, Yonggang; Qiu, Lu; Lü, Fenglin; Ru, Xufang; Li, Shaojun; Xiang, Yuancai; Yu, Siwang; Zhang, Yiguo

    2016-01-01

    The full-length Nrf1α is processed into distinct isoforms, which together regulate genes essential for maintaining cellular homeostasis and organ integrity, and liver-specific loss of Nrf1 in mice results in spontaneous hepatoma. Herein, we report that the human constitutive Nrf1α, rather than smaller Nrf1β/γ, expression is attenuated or abolished in the case of low-differentiated high-metastatic hepatocellular carcinomas. Therefore, Nrf1α is of importance in the physio-pathological origin and development, but its specific pathobiological function(s) remains elusive. To address this, TALENs-directed knockout of Nrf1α, but not Nrf1β/γ, is created in the human hepatocellular carcinoma (HepG2) cells. The resulting Nrf1α−/− cells are elongated, with slender spindle-shapes and enlarged gaps between cells observed under scanning electron microscope. When compared with wild-type controls, the invasive and migratory abilities of Nrf1α−/− cells are increased significantly, along with the cell-cycle G2-M arrest and S-phase reduction, as accompanied by suppressed apoptosis. Despite a modest increase in the soft-agar colony formation of Nrf1α−/− cells, its loss-of-function markedly promotes malgrowth of the subcutaneous carcinoma xenograft in nude mice with hepatic metastasis. Together with molecular expression results, we thus suppose requirement of Nrf1α (and major derivates) for gene regulatory mechanisms repressing cancer cell process (e.g. EMT) and malignant behaviour (e.g. migration). PMID:27065079

  3. TALENs-directed knockout of the full-length transcription factor Nrf1α that represses malignant behaviour of human hepatocellular carcinoma (HepG2) cells.

    PubMed

    Ren, Yonggang; Qiu, Lu; Lü, Fenglin; Ru, Xufang; Li, Shaojun; Xiang, Yuancai; Yu, Siwang; Zhang, Yiguo

    2016-01-01

    The full-length Nrf1α is processed into distinct isoforms, which together regulate genes essential for maintaining cellular homeostasis and organ integrity, and liver-specific loss of Nrf1 in mice results in spontaneous hepatoma. Herein, we report that the human constitutive Nrf1α, rather than smaller Nrf1β/γ, expression is attenuated or abolished in the case of low-differentiated high-metastatic hepatocellular carcinomas. Therefore, Nrf1α is of importance in the physio-pathological origin and development, but its specific pathobiological function(s) remains elusive. To address this, TALENs-directed knockout of Nrf1α, but not Nrf1β/γ, is created in the human hepatocellular carcinoma (HepG2) cells. The resulting Nrf1α(-/-) cells are elongated, with slender spindle-shapes and enlarged gaps between cells observed under scanning electron microscope. When compared with wild-type controls, the invasive and migratory abilities of Nrf1α(-/-) cells are increased significantly, along with the cell-cycle G2-M arrest and S-phase reduction, as accompanied by suppressed apoptosis. Despite a modest increase in the soft-agar colony formation of Nrf1α(-/-) cells, its loss-of-function markedly promotes malgrowth of the subcutaneous carcinoma xenograft in nude mice with hepatic metastasis. Together with molecular expression results, we thus suppose requirement of Nrf1α (and major derivates) for gene regulatory mechanisms repressing cancer cell process (e.g. EMT) and malignant behaviour (e.g. migration).

  4. Prophylaxis vs. on-demand treatment with BAY 81-8973, a full-length plasma protein-free recombinant factor VIII product: results from a randomized trial (LEOPOLD II)

    PubMed Central

    Kavakli, K; Yang, R; Rusen, L; Beckmann, H; Tseneklidou-Stoeter, D; Maas Enriquez, M

    2015-01-01

    Background BAY 81-8973 is a new full-length human recombinant factor VIII product manufactured with technologies to improve consistency in glycosylation and expression to optimize clinical performance. Objectives To demonstrate superiority of prophylaxis vs. on-demand therapy with BAY 81-8973 in patients with severe hemophilia A. Patients/Methods In this multinational, randomized, open-label crossover study (LEOPOLD II; ClinicalTrials.gov identifier: NCT01233258), males aged 12–65 years with severe hemophilia A were randomized to twice-weekly prophylaxis (20–30 IU kg−1), 3-times-weekly prophylaxis (30–40 IU kg−1), or on-demand treatment with BAY 81-8973. Potency labeling for BAY 81-8973 was based on the chromogenic substrate assay or adjusted to the one-stage assay. Primary efficacy endpoint was annualized number of all bleeds (ABR). Adverse events (AEs) and immunogenicity were also assessed. Results Eighty patients (on demand, n = 21; twice-weekly prophylaxis, n = 28; 3-times-weekly prophylaxis, n = 31) were treated and analyzed. Mean ± SD ABR was significantly lower with prophylaxis (twice-weekly, 5.7 ± 7.2; 3-times-weekly, 4.3 ± 6.5; combined, 4.9 ± 6.8) vs. on-demand treatment (57.7 ± 24.6; P < 0.0001, anova). Median ABR was reduced by 97% with prophylaxis (twice-weekly, 4.0; 3-times-weekly, 2.0; combined, 2.0) vs. on-demand treatment (60.0). Median ABR was higher with twice-weekly vs. 3-times-weekly prophylaxis during the first 6-month treatment period (4.1 vs. 2.0) but was comparable in the second 6-month period (1.1 vs. 2.0). Few patients reported treatment-related AEs (4%); no treatment-related serious AEs or inhibitors were reported. Conclusions Twice-weekly or 3-times-weekly prophylaxis with BAY 81-8973 reduced median ABR by 97% compared with on-demand therapy, confirming the superiority of prophylaxis. Treatment with BAY 81-8973 was well tolerated. PMID:25546368

  5. Near full-length genome analysis of low prevalent human immunodeficiency virus type 1 subclade F1 in São Paulo, Brazil

    PubMed Central

    Sanabani, Sabri Saeed; Pastena, Évelyn Regina de Souza; Neto, Walter Kleine; Barreto, Claudia C; Ferrari, Kelly T; Kalmar, Erika MN; Ferreira, Suzete; Sabino, Ester Cerdeira

    2009-01-01

    Background The genetic diversity of the human immunodeficiency virus type 1 (HIV-1) is critical to lay the groundwork for the design of successful drugs or vaccine. In this study we aimed to characterize and define the molecular prevalence of HIV-1 subclade F1 currently circulating in São Paulo, Brazil. Methods A total of 36 samples were selected from 888 adult patients residing in São Paulo who had previously been diagnosed in two independent studies in our laboratory as being infected with subclade F1 based on pol subgenomic fragment sequencing. Proviral DNA was amplified from the purified genomic DNA of all 36 blood samples by 5 fragments overlapping PCR followed by direct sequencing. Sequence data were obtained from the 5 fragments of pure subclade F1 and phylogenetic trees were constructed and compared with previously published sequences. Subclades F1 that exhibited mosaic structure with other subtypes were omitted from any further analysis Results Our methods of fragment amplification and sequencing confirmed that only 5 sequences inferred from pol region as subclade F1 also holds true for the genome as a whole and, thus, estimated the true prevalence at 0.56%. The results also showed a single phylogenetic cluster of the Brazilian subclade F1 along with non-Brazilian South American isolates in both subgenomic and the full-length genomes analysis with an overall intrasubtype nucleotide divergence of 6.9%. The nucleotide differences within the South American and Central African F1 strains, in the C2-C3 env, were 8.5% and 12.3%, respectively. Conclusion All together, our findings showed a surprisingly low prevalence rate of subclade F1 in Brazil and suggest that these isolates originated in Central Africa and subsequently introduced to South America. PMID:19531216

  6. Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase A.

    PubMed

    Unzueta, Ugutz; Vázquez, Felicitas; Accardi, Giulia; Mendoza, Rosa; Toledo-Rubio, Verónica; Giuliani, Maria; Sannino, Filomena; Parrilli, Ermenegilda; Abasolo, Ibane; Schwartz, Simo; Tutino, Maria L; Villaverde, Antonio; Corchero, José L; Ferrer-Miralles, Neus

    2015-07-01

    Obtaining high levels of pure proteins remains the main bottleneck of many scientific and biotechnological studies. Among all the available recombinant expression systems, Escherichia coli facilitates gene expression by its relative simplicity, inexpensive and fast cultivation, well-known genetics and the large number of tools available for its biotechnological application. However, recombinant expression in E. coli is not always a straightforward procedure and major obstacles are encountered when producing many eukaryotic proteins and especially membrane proteins, linked to missing posttranslational modifications, proteolysis and aggregation. In this context, many conventional and unconventional eukaryotic hosts are under exploration and development, but in some cases linked to complex culture media or processes. In this context, alternative bacterial systems able to overcome some of the limitations posed by E. coli keeping the simplicity of prokaryotic manipulation are currently emerging as convenient hosts for protein production. We have comparatively produced a "difficult-to-express" human protein, the lysosomal enzyme alpha-galactosidase A (hGLA) in E. coli and in the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125 cells (P. haloplanktis TAC125). While in E. coli the production of active hGLA was unreachable due to proteolytic instability and/or protein misfolding, the expression of hGLA gene in P. haloplanktis TAC125 allows obtaining active enzyme. These results are discussed in the context of emerging bacterial systems for protein production that represent appealing alternatives to the regular use of E. coli and also of more complex eukaryotic systems. PMID:25616525

  7. Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase A.

    PubMed

    Unzueta, Ugutz; Vázquez, Felicitas; Accardi, Giulia; Mendoza, Rosa; Toledo-Rubio, Verónica; Giuliani, Maria; Sannino, Filomena; Parrilli, Ermenegilda; Abasolo, Ibane; Schwartz, Simo; Tutino, Maria L; Villaverde, Antonio; Corchero, José L; Ferrer-Miralles, Neus

    2015-07-01

    Obtaining high levels of pure proteins remains the main bottleneck of many scientific and biotechnological studies. Among all the available recombinant expression systems, Escherichia coli facilitates gene expression by its relative simplicity, inexpensive and fast cultivation, well-known genetics and the large number of tools available for its biotechnological application. However, recombinant expression in E. coli is not always a straightforward procedure and major obstacles are encountered when producing many eukaryotic proteins and especially membrane proteins, linked to missing posttranslational modifications, proteolysis and aggregation. In this context, many conventional and unconventional eukaryotic hosts are under exploration and development, but in some cases linked to complex culture media or processes. In this context, alternative bacterial systems able to overcome some of the limitations posed by E. coli keeping the simplicity of prokaryotic manipulation are currently emerging as convenient hosts for protein production. We have comparatively produced a "difficult-to-express" human protein, the lysosomal enzyme alpha-galactosidase A (hGLA) in E. coli and in the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125 cells (P. haloplanktis TAC125). While in E. coli the production of active hGLA was unreachable due to proteolytic instability and/or protein misfolding, the expression of hGLA gene in P. haloplanktis TAC125 allows obtaining active enzyme. These results are discussed in the context of emerging bacterial systems for protein production that represent appealing alternatives to the regular use of E. coli and also of more complex eukaryotic systems.

  8. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria.

    PubMed

    Antes, Anita; Tappin, Inger; Chung, Stella; Lim, Robert; Lu, Bin; Parrott, Andrew M; Hill, Helene Z; Suzuki, Carolyn K; Lee, Chee-Gun

    2010-10-01

    Mammalian mitochondria contain full-length genome and a single-stranded 7S DNA. Although the copy number of mitochondrial DNA (mtDNA) varies depending on the cell type and also in response to diverse environmental stresses, our understanding of how mtDNA and 7S DNA are maintained and regulated is limited, partly due to lack of reliable in vitro assay systems that reflect the in vivo functionality of mitochondria. Here we report an in vitro assay system to measure synthesis of both mtDNA and 7S DNA under a controllable in vitro condition. With this assay system, we demonstrate that the replication capacity of mitochondria correlates with endogenous copy numbers of mtDNA and 7S DNA. Our study also shows that higher nucleotide concentrations increasingly promote 7S DNA synthesis but not mtDNA synthesis. Consistently, the mitochondrial capacity to synthesize 7S DNA but not mtDNA noticeably varied along the cell cycle, reaching its highest level in S phase. These findings suggest that syntheses of mtDNA and 7S DNA proceed independently and that the mitochondrial capacity to synthesize 7S DNA dynamically changes not only with cell-cycle progression but also in response to varying nucleotide concentrations.

  9. Analysis of a cDNA clone expressing a human autoimmune antigen: full-length sequence of the U2 small nuclear RNA-associated B antigen

    SciTech Connect

    Habets, W.J.; Sillekens, P.T.G.; Hoet, M.H.; Schalken, J.A.; Roebroek, A.J.M.; Leunissen, J.A.M.; Van de Ven, W.J.M.; Van Venrooij, W.J.

    1987-04-01

    A U2 small nuclear RNA-associated protein, designated B'', was recently identified as the target antigen for autoimmune sera from certain patients with systemic lupus erythematosus and other rheumatic diseases. Such antibodies enabled them to isolate cDNA clone lambdaHB''-1 from a phage lambdagt11 expression library. This clone appeared to code for the B'' protein as established by in vitro translation of hybrid-selected mRNA. The identity of clone lambdaHB''-1 was further confirmed by partial peptide mapping and analysis of the reactivity of the recombinant antigen with monospecific and monoclonal antibodies. Analysis of the nucleotide sequence of the 1015-base-pair cDNA insert of clone lambdaHB''-1 revealed a large open reading frame of 800 nucleotides containing the coding sequence for a polypeptide of 25,457 daltons. In vitro transcription of the lambdaHB''-1 cDNA insert and subsequent translation resulted in a protein product with the molecular size of the B'' protein. These data demonstrate that clone lambdaHB''-1 contains the complete coding sequence of this antigen. The deduced polypeptide sequence contains three very hydrophilic regions that might constitute RNA binding sites and/or antigenic determinants. These findings might have implications both for the understanding of the pathogenesis of rheumatic diseases as well as for the elucidation of the biological function of autoimmune antigens.

  10. Structural transitions in full-length human prion protein detected by xenon as probe and spin labeling of the N-terminal domain

    PubMed Central

    Narayanan, Sunilkumar Puthenpurackal; Nair, Divya Gopalakrishnan; Schaal, Daniel; Barbosa de Aguiar, Marisa; Wenzel, Sabine; Kremer, Werner; Schwarzinger, Stephan; Kalbitzer, Hans Robert

    2016-01-01

    Fatal neurodegenerative disorders termed transmissible spongiform encephalopathies (TSEs) are associated with the accumulation of fibrils of misfolded prion protein PrP. The noble gas xenon accommodates into four transiently enlarged hydrophobic cavities located in the well-folded core of human PrP(23–230) as detected by [1H, 15N]-HSQC spectroscopy. In thermal equilibrium a fifth xenon binding site is formed transiently by amino acids A120 to L125 of the presumably disordered N-terminal domain and by amino acids K185 to T193 of the well-folded domain. Xenon bound PrP was modelled by restraint molecular dynamics. The individual microscopic and macroscopic dissociation constants could be derived by fitting the data to a model including a dynamic opening and closing of the cavities. As observed earlier by high pressure NMR spectroscopy xenon binding influences also other amino acids all over the N-terminal domain including residues of the AGAAAAGA motif indicating a structural coupling between the N-terminal domain and the core domain. This is in agreement with spin labelling experiments at positions 93 or 107 that show a transient interaction between the N-terminus and the start of helix 2 and the end of helix 3 of the core domain similar to that observed earlier by Zn2+-binding to the octarepeat motif. PMID:27341298

  11. Structural transitions in full-length human prion protein detected by xenon as probe and spin labeling of the N-terminal domain.

    PubMed

    Narayanan, Sunilkumar Puthenpurackal; Nair, Divya Gopalakrishnan; Schaal, Daniel; Barbosa de Aguiar, Marisa; Wenzel, Sabine; Kremer, Werner; Schwarzinger, Stephan; Kalbitzer, Hans Robert

    2016-01-01

    Fatal neurodegenerative disorders termed transmissible spongiform encephalopathies (TSEs) are associated with the accumulation of fibrils of misfolded prion protein PrP. The noble gas xenon accommodates into four transiently enlarged hydrophobic cavities located in the well-folded core of human PrP(23-230) as detected by [(1)H, (15)N]-HSQC spectroscopy. In thermal equilibrium a fifth xenon binding site is formed transiently by amino acids A120 to L125 of the presumably disordered N-terminal domain and by amino acids K185 to T193 of the well-folded domain. Xenon bound PrP was modelled by restraint molecular dynamics. The individual microscopic and macroscopic dissociation constants could be derived by fitting the data to a model including a dynamic opening and closing of the cavities. As observed earlier by high pressure NMR spectroscopy xenon binding influences also other amino acids all over the N-terminal domain including residues of the AGAAAAGA motif indicating a structural coupling between the N-terminal domain and the core domain. This is in agreement with spin labelling experiments at positions 93 or 107 that show a transient interaction between the N-terminus and the start of helix 2 and the end of helix 3 of the core domain similar to that observed earlier by Zn(2+)-binding to the octarepeat motif. PMID:27341298

  12. Full-Length Human Placental sFlt-1-e15a Isoform Induces Distinct Maternal Phenotypes of Preeclampsia in Mice

    PubMed Central

    Szalai, Gabor; Romero, Roberto; Chaiworapongsa, Tinnakorn; Xu, Yi; Wang, Bing; Ahn, Hyunyoung; Xu, Zhonghui; Chiang, Po Jen; Sundell, Birgitta; Wang, Rona; Jiang, Yang; Plazyo, Olesya; Olive, Mary; Tarca, Adi L.; Dong, Zhong; Qureshi, Faisal; Papp, Zoltan; Hassan, Sonia S.; Hernandez-Andrade, Edgar; Than, Nandor Gabor

    2015-01-01

    Objective Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring. Methods Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia. Results Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3±51.7μg/mg vs. 19.3±5.6μg/mg, p = 4.4x10-2; GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2x10-2). Placental and fetal weights did not differ between the

  13. EXPRESSION AND CHARACTERIZATION OF FULL-LENGTH HUMAN HEME OXYGENASE-1: PRESENCE OF INTACT MEMBRANE-BINDING REGION LEADS TO INCREASED BINDING AFFINITY FOR NADPH-CYTOCHROME P450 REDUCTASE

    PubMed Central

    Huber, Warren J.; Backes, Wayne L.

    2009-01-01

    Heme oxygenase (HO) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, this NADPH and cytochrome P450 reductase (CPR)-dependent oxidation of heme also releases free iron and carbon monoxide. Much of the recent research involving heme oxygenase is done using a 30-kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a GST-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30-kDa degradation product that could not be eliminated. Therefore, we attempted to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces lysine with arginine. This mutation allowed the expression and purification of a full length hHO-1 protein. Unlike wild-type HO-1, the K254R mutant could be purified to a single 32-kDa protein capable of degrading heme at the same rate as the wild-type enzyme. The K254R full-length form had a specific activity of ~200–225 nmol bilirubin hr−1nmol−1 HO-1 as compared to ~140–150 nmol bilirubin hr−1nmol−1 for the WT form, which contains the 30-kDa contaminant. This is a 2–3-fold increase from the previously reported soluble 30-kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other ER-resident enzymes. PMID:17915953

  14. Expression and characterization of full-length human heme oxygenase-1: the presence of intact membrane-binding region leads to increased binding affinity for NADPH cytochrome P450 reductase.

    PubMed

    Huber, Warren J; Backes, Wayne L

    2007-10-30

    Heme oxygenase-1 (HO-1) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, HO-1 receives the electrons necessary for catalysis from the flavoprotein NADPH cytochrome P450 reductase (CPR), releasing free iron and carbon monoxide. Much of the recent research involving heme oxygenase has been done using a 30 kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a glutathione-s-transferase (GST)-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30 kDa degradation product that could not be eliminated. Therefore, attempts were made to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces arginine with lysine. This mutation allowed the expression and purification of a full-length hHO-1 protein. Unlike wild type (WT) HO-1, the R254K mutant could be purified to a single 32 kDa protein capable of degrading heme at the same rate as the WT enzyme. The R254K full-length form had a specific activity of approximately 200-225 nmol of bilirubin h-1 nmol-1 HO-1 as compared to approximately 140-150 nmol of bilirubin h-1 nmol-1 for the WT form, which contains the 30 kDa contaminant. This is a 2-3-fold increase from the previously reported soluble 30 kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane-spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other endoplasmic reticulum resident enzymes.

  15. Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries.

    PubMed

    Otsuki, Tetsuji; Ota, Toshio; Nishikawa, Tetsuo; Hayashi, Koji; Suzuki, Yutaka; Yamamoto, Jun-ichi; Wakamatsu, Ai; Kimura, Kouichi; Sakamoto, Katsuhiko; Hatano, Naoto; Kawai, Yuri; Ishii, Shizuko; Saito, Kaoru; Kojima, Shin-ichi; Sugiyama, Tomoyasu; Ono, Tetsuyoshi; Okano, Kazunori; Yoshikawa, Yoko; Aotsuka, Satoshi; Sasaki, Naokazu; Hattori, Atsushi; Okumura, Koji; Nagai, Keiichi; Sugano, Sumio; Isogai, Takao

    2005-01-01

    We have developed an in silico method of selection of human full-length cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries. Fullness rates were increased to about 80% by combination of the oligo-capping method and ATGpr, software for prediction of translation start point and the coding potential. Then, using 5'-end single-pass sequences, cDNAs having the signal sequence were selected by PSORT ('signal sequence trap'). We also applied 'secretion or membrane protein-related keyword trap' based on the result of BLAST search against the SWISS-PROT database for the cDNAs which could not be selected by PSORT. Using the above procedures, 789 cDNAs were primarily selected and subjected to full-length sequencing, and 334 of these cDNAs were finally selected as novel. Most of the cDNAs (295 cDNAs: 88.3%) were predicted to encode secretion or membrane proteins. In particular, 165(80.5%) of the 205 cDNAs selected by PSORT were predicted to have signal sequences, while 70 (54.2%) of the 129 cDNAs selected by 'keyword trap' preserved the secretion or membrane protein-related keywords. Many important cDNAs were obtained, including transporters, receptors, and ligands, involved in significant cellular functions. Thus, an efficient method of selecting secretion or membrane protein-encoding cDNAs was developed by combining the above four procedures.

  16. Full length prototype SSC dipole test results

    SciTech Connect

    Strait, J.; Brown, B.C.; Carson, J.; Engler, N.; Fisk, H.E.; Hanft, R.; Koepke, K.; Kuchnir, M.; Larson, E.; Lundy, R.

    1987-04-24

    Results are presented from tests of the first full length prototype SSC dipole magnet. The cryogenic behavior of the magnet during a slow cooldown to 4.5K and a slow warmup to room temperature has been measured. Magnetic field quality was measured at currents up to 2000 A. Averaged over the body field all harmonics with the exception of b/sub 2/ and b/sub 8/ are at or within the tolerances specified by the SSC Central Design Group. (The values of b/sub 2/ and b/sub 8/ result from known design and construction defects which will be be corrected in later magnets.) Using an NMR probe the average body field strength is measured to be 10.283 G/A with point to point variations on the order of one part in 1000. Data are presented on quench behavior of the magnet up to 3500 A (approximately 55% of full field) including longitudinal and transverse velocities for the first 250 msec of the quench.

  17. Recombinant Human Erythropoietin

    PubMed Central

    Bartels, Claudia; Späte, Kira; Krampe, Henning

    2008-01-01

    Treatment of multiple sclerosis (MS) is still unsatisfactory and essentially non-existing for the progressive course of the disease. Recombinant human erythropoietin (EPO) may be a promising neuroprotective/neuroregenerative treatment of MS. In the nervous system, EPO acts anti-apoptotic, antioxidative, anti-inflammatory, neurotrophic and plasticity-modulating. Beneficial effects have been shown in animal models of various neurological and psychiatric diseases, including different models of experimental autoimmune encephalomyelitis. EPO is also effective in human brain disease, as shown in double-blind placebo-controlled clinical studies on ischemic stroke and chronic schizophrenia. An exploratory study on chronic progressive MS yielded lasting improvement in motor and cognitive performance upon high-dose long-term EPO treatment. PMID:21180577

  18. Identification of full-length proviral DNA of porcine endogenous retrovirus from Chinese Wuzhishan miniature pigs inbred.

    PubMed

    Ma, Yuyuan; Lv, Maomin; Xu, Shu; Wu, Jianmin; Tian, Kegong; Zhang, Jingang

    2010-07-01

    Existence of porcine endogenous retrovirus (PERV) hinders pigs to be used in clinical xenotransplantation to alleviate the shortage of human transplants. Chinese miniature pigs are potential organ donors for xenotransplantation in China. However, so far, an adequate level of information on the molecular characteristics of PERV from Chinese miniature pigs has not been available. We described here the cloning and characterization of full-length proviral DNA of PERV from Chinese Wuzhishan miniature pigs inbred (WZSP). Full-length nucleotide sequences of PERV-WZSP and other PERVs were aligned and phylogenetic tree was constructed from deduced amino-acid sequences of env. The results demonstrated that the full-length proviral DNA of PERV-WZSP belongs to gammaretrovirus and shares high similarity with other PERVs. Sequence analysis also suggested that different patterns of LTR existed in the same porcine germ line and partial PERV-C sequence may recombine with PERV-A sequence in LTR.

  19. Apical expression of human full-length hCEACAM1-4L protein renders the Madin Darby Canine Kidney cells responsive to lipopolysaccharide leading to TLR4-dependent Erk1/2 and p38 MAPK signalling.

    PubMed

    Liévin-Le Moal, Vanessa; Beau, Isabelle; Rougeaux, Clémence; Kansau, Imad; Fabrega, Sylvie; Brice, Cédric; Korotkova, Natalia; Moseley, Steve L; Servin, Alain L

    2011-05-01

    CEACAM1 expressed by granulocytes and epithelial cells is recognized as a membrane-associated receptor by some Gram-negative pathogens. Here we report a previously unsuspected role of human CEACAM1-4L (hCEACAM1-4L) in polarized epithelial cells. We find that in contrast with non-transfected cells, Madin Darby Canine Kidney strain II (MDCK) engineered for the apical expression of the long cytoplasmic chain protein hCEACAM1-4L showed a serum-independent increase in the phosphorylation of the extracellular signal-regulated kinase 1/2 (Erk1/2) and p38 mitogen-activated protein kinases (MAPKs) after treatment with lipopolysaccharide (LPS) of wild-type, diffusely adhering Afa/Dr Escherichia coli (Afa/Dr DAEC) strain IH11128. Aggregates of FITC-LPS bind the apical domain of MDCK-hCEACAM1-4L cells colocalizing with the apically expressed hCEACAM1-4L protein and do not bind MDCK-pCEP cells, and surface plasmon resonance analysis shows that LPS binds to the extracellular domain of the CEACAM1-4L protein. We showed that cell polarization and lipid rafts positively control the LPS-IH11128-induced phosphorylation of Erk1/2 in MDCK-hCEACAM1-4L cells. Structure-function analysis using mutated hCEACAM1-4L protein shows that the cytoplasmic domain of the protein is needed for LPS-induced MAPK signalling, and that phosphorylation of Tyr-residues is not increased in association with MAPK signalling. The hCEACAM1-4L-dependent Erk1/2 phosphorylation develops in the presence of lipid A and does not develop in the presence of penta-acylated LPS. Finally, small interfering RNA (siRNA) silencing of canine TLR4 abolishes the hCEACAM1-4L-dependent, LPS-induced phosphorylation of Erk1/2. Collectively, our results support the notion that the apically expressed, full-length hCEACAM1-4L protein functions as a novel LPS-conveying molecule at the mucosal surface of polarized epithelial cells for subsequent MD-2/TLR4 receptor-dependent MAPK Erk1/2 and p38 signalling. PMID:21352462

  20. (1)H, (13)C, and (15)N backbone and side-chain chemical shift assignments for the 36 proline-containing, full length 29 kDa human chimera-type galectin-3.

    PubMed

    Ippel, Hans; Miller, Michelle C; Berbís, Manuel Alvaro; Suylen, Dennis; André, Sabine; Hackeng, Tilman M; Cañada, F Javier; Weber, Christian; Gabius, Hans-Joachim; Jiménez-Barbero, Jesús; Mayo, Kevin H

    2015-04-01

    Galectin-3, an adhesion/growth regulatory lectin, has a unique trimodular design consisting of the canonical carbohydrate recognition domain, a collagen-like tandem-repeat section, and an N-terminal peptide with two sites for Ser phosphorylation. Structural characterization of the full length protein with its non-lectin part (115 of 250 residues total) will help understand the multi functionality of this potent cellular effector. Here, we report (1)H, (13)C, and (15)N chemical shift assignments as determined by heteronuclear NMR spectroscopy .

  1. Quantifying elongation rhythm during full-length protein synthesis.

    PubMed

    Rosenblum, Gabriel; Chen, Chunlai; Kaur, Jaskiran; Cui, Xiaonan; Zhang, Haibo; Asahara, Haruichi; Chong, Shaorong; Smilansky, Zeev; Goldman, Yale E; Cooperman, Barry S

    2013-07-31

    Pauses regulate the rhythm of ribosomal protein synthesis. Mutations disrupting even minor pauses can give rise to improperly formed proteins and human disease. Such minor pauses are difficult to characterize by ensemble methods, but can be readily examined by single-molecule (sm) approaches. Here we use smFRET to carry out real-time monitoring of the expression of a full-length protein, the green fluorescent protein variant Emerald GFP. We demonstrate significant correlations between measured elongation rates and codon and isoacceptor tRNA usage, and provide a quantitative estimate of the effect on elongation rate of replacing a codon recognizing an abundant tRNA with a synonymous codon cognate to a rarer tRNA. Our results suggest that tRNA selection plays an important general role in modulating the rates and rhythms of protein synthesis, potentially influencing simultaneous co-translational processes such as folding and chemical modification. PMID:23822614

  2. International Validation of Two Human Recombinant Estrogen Receptor (ERa) Binding Assays

    EPA Science Inventory

    An international validation study has been successfully completed for 2 competitive binding assays using human recombinant ERa. Assays evaluated included the Freyberger-Wilson (FW) assay using a full length human ER, and the Chemical Evaluation and Research Institute (CERI) assay...

  3. View east, view of full length of canal, west wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east, view of full length of canal, west wall pileheads in foreground. - Delaware, Lackawanna & Western Railroad Freight & Rail Yard, Long Slip Canal, New Jersey Transit Hoboken Rail Yard, Hoboken, Hudson County, NJ

  4. 76 FR 44013 - Draft Guidance for Industry: Implementation of Acceptable Full-Length and Abbreviated Donor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry: Implementation of Acceptable Full- Length and Abbreviated Donor History Questionnaires and Accompanying Materials for Use in Screening Donors of Source Plasma; Availability AGENCY: Food and Drug Administration, HHS. ACTION:...

  5. The first full-length endogenous hepadnaviruses: identification and analysis.

    PubMed

    Liu, Wei; Pan, Shaokun; Yang, Huijuan; Bai, Weiya; Shen, Zhongliang; Liu, Jing; Xie, Youhua

    2012-09-01

    In silico screening of metazoan genome data identified multiple endogenous hepadnaviral elements in the budgerigar (Melopsittacus undulatus) genome, most notably two elements comprising about 1.3 × and 1.0 × the full-length genome. Phylogenetic and molecular dating analyses show that endogenous budgerigar hepatitis B viruses (eBHBV) share an ancestor with extant avihepadnaviruses and infiltrated the budgerigar genome millions of years ago. Identification of full-length genomes with preserved key features like ε signals could enable resurrection of ancient BHBV. PMID:22718817

  6. Full-length fuel rod behavior under severe accident conditions

    SciTech Connect

    Lombardo, N J; Lanning, D D; Panisko, F E

    1992-12-01

    This document presents an assessment of the severe accident phenomena observed from four Full-Length High-Temperature (FLHT) tests that were performed by the Pacific Northwest Laboratory (PNL) in the National Research Universal (NRU) reactor at Chalk River, Ontario, Canada. These tests were conducted for the US Nuclear Regulatory Commission (NRC) as part of the Severe Accident Research Program. The objectives of the test were to simulate conditions and provide information on the behavior of full-length fuel rods during hypothetical, small-break, loss-of-coolant severe accidents, in commercial light water reactors.

  7. Cloning and Expression of Highly Pathogenic Avian Influenza Virus Full-Length Nonstructural Gene in Pichia pastoris

    PubMed Central

    Abubakar, M. B.; Aini, I.; Omar, A. R.; Hair-Bejo, M.

    2011-01-01

    Avian influenza (AI) is a highly contagious and rapidly evolving pathogen of major concern to the poultry industry and human health. Rapid and accurate detection of avian influenza virus is a necessary tool for control of outbreaks and surveillance. The AI virus A/Chicken/Malaysia/5858/2004 (H5N1) was used as a template to produce DNA clones of the full-length NS1 genes via reverse transcriptase synthesis of cDNA by PCR amplification of the NS1 region. Products were cloned into pCR2.0 TOPO TA plasmid and subsequently subcloned into pPICZαA vector to construct a recombinant plasmid. Recombinant plasmid designated as pPICZαA-NS1 gene was confirmed by PCR colony screening, restriction enzyme digestion, and nucleotide sequence analysis. The recombinant plasmid was transformed into Pichia pastoris GS115 strain by electroporation, and expressed protein was identified by SDS-PAGE and western blotting. A recombinant protein of approximately ~28 kDa was produced. The expressed protein was able to bind a rabbit polyclonal antibody of nonstructural protein (NS1) avian influenza virus H5N1. The result of the western blotting and solid-phase ELISA assay using H5N1 antibody indicated that the recombinant protein produced retained its antigenicity. This further indicates that Pichia pastoris could be an efficient expression system for a avian influenza virus nonstructural (NS1). PMID:21541235

  8. Recovering full-length viral genomes from metagenomes

    PubMed Central

    Smits, Saskia L.; Bodewes, Rogier; Ruiz-González, Aritz; Baumgärtner, Wolfgang; Koopmans, Marion P.; Osterhaus, Albert D. M. E.; Schürch, Anita C.

    2015-01-01

    Infectious disease metagenomics is driven by the question: “what is causing the disease?” in contrast to classical metagenome studies which are guided by “what is out there?” In case of a novel virus, a first step to eventually establishing etiology can be to recover a full-length viral genome from a metagenomic sample. However, retrieval of a full-length genome of a divergent virus is technically challenging and can be time-consuming and costly. Here we discuss different assembly and fragment linkage strategies such as iterative assembly, motif searches, k-mer frequency profiling, coverage profile binning, and other strategies used to recover genomes of potential viral pathogens in a timely and cost-effective manner. PMID:26483782

  9. Renal Agenesis with Full Length Ipsilateral Refluxing Ureter

    PubMed Central

    Chandra, Vipin; Banerjee, Manju

    2016-01-01

    Unilateral renal agenesis with vesicoureteral reflux in the ipsilateral full length ureter is a rare phenomenon. Herein we report a case of 10-year old boy who presented with recurrent urinary tract infections. No renal tissue was identified on left side in various imaging studies. Micturating cystourethrogram (MCUG) showed left sided refluxing and blind ending ureter. Left ureterectomy was done because of recurrent UTI in the refluxing system. PMID:27170916

  10. Stable preparations of tyrosine hydroxylase provide the solution structure of the full-length enzyme

    PubMed Central

    Bezem, Maria T.; Baumann, Anne; Skjærven, Lars; Meyer, Romain; Kursula, Petri; Martinez, Aurora; Flydal, Marte I.

    2016-01-01

    Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of catecholamine neurotransmitters. TH is a highly complex enzyme at mechanistic, structural, and regulatory levels, and the preparation of kinetically and conformationally stable enzyme for structural characterization has been challenging. Here, we report on improved protocols for purification of recombinant human TH isoform 1 (TH1), which provide large amounts of pure, stable, active TH1 with an intact N-terminus. TH1 purified through fusion with a His-tagged maltose-binding protein on amylose resin was representative of the iron-bound functional enzyme, showing high activity and stabilization by the natural feedback inhibitor dopamine. TH1 purified through fusion with a His-tagged ZZ domain on TALON is remarkably stable, as it was partially inhibited by resin-derived cobalt. This more stable enzyme preparation provided high-quality small-angle X-ray scattering (SAXS) data and reliable structural models of full-length tetrameric TH1. The SAXS-derived model reveals an elongated conformation (Dmax = 20 nm) for TH1, different arrangement of the catalytic domains compared with the crystal structure of truncated forms, and an N-terminal region with an unstructured tail that hosts the phosphorylation sites and a separated Ala-rich helical motif that may have a role in regulation of TH by interacting with binding partners. PMID:27462005

  11. Stable preparations of tyrosine hydroxylase provide the solution structure of the full-length enzyme.

    PubMed

    Bezem, Maria T; Baumann, Anne; Skjærven, Lars; Meyer, Romain; Kursula, Petri; Martinez, Aurora; Flydal, Marte I

    2016-01-01

    Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of catecholamine neurotransmitters. TH is a highly complex enzyme at mechanistic, structural, and regulatory levels, and the preparation of kinetically and conformationally stable enzyme for structural characterization has been challenging. Here, we report on improved protocols for purification of recombinant human TH isoform 1 (TH1), which provide large amounts of pure, stable, active TH1 with an intact N-terminus. TH1 purified through fusion with a His-tagged maltose-binding protein on amylose resin was representative of the iron-bound functional enzyme, showing high activity and stabilization by the natural feedback inhibitor dopamine. TH1 purified through fusion with a His-tagged ZZ domain on TALON is remarkably stable, as it was partially inhibited by resin-derived cobalt. This more stable enzyme preparation provided high-quality small-angle X-ray scattering (SAXS) data and reliable structural models of full-length tetrameric TH1. The SAXS-derived model reveals an elongated conformation (Dmax = 20 nm) for TH1, different arrangement of the catalytic domains compared with the crystal structure of truncated forms, and an N-terminal region with an unstructured tail that hosts the phosphorylation sites and a separated Ala-rich helical motif that may have a role in regulation of TH by interacting with binding partners. PMID:27462005

  12. Technology development for gene discovery and full-length sequencing

    SciTech Connect

    Marcelo Bento Soares

    2004-07-19

    In previous years, with support from the U.S. Department of Energy, we developed methods for construction of normalized and subtracted cDNA libraries, and constructed hundreds of high-quality libraries for production of Expressed Sequence Tags (ESTs). Our clones were made widely available to the scientific community through the IMAGE Consortium, and millions of ESTs were produced from our libraries either by collaborators or by our own sequencing laboratory at the University of Iowa. During this grant period, we focused on (1) the development of a method for preferential cloning of tissue-specific and/or rare transcripts, (2) its utilization to expedite EST-based gene discovery for the NIH Mouse Brain Molecular Anatomy Project, (3) further development and optimization of a method for construction of full-length-enriched cDNA libraries, and (4) modification of a plasmid vector to maximize efficiency of full-length cDNA sequencing by the transposon-mediated approach. It is noteworthy that the technology developed for preferential cloning of rare mRNAs enabled identification of over 2,000 mouse transcripts differentially expressed in the hippocampus. In addition, the method that we optimized for construction of full-length-enriched cDNA libraries was successfully utilized for the production of approximately fifty libraries from the developing mouse nervous system, from which over 2,500 full-ORF-containing cDNAs have been identified and accurately sequenced in their entirety either by our group or by the NIH-Mammalian Gene Collection Program Sequencing Team.

  13. Development of a full-length cDNA-derived enterovirus A71 vaccine candidate using reverse genetics technology.

    PubMed

    Yang, Ya-Ting; Chow, Yen-Hung; Hsiao, Kuang-Nan; Hu, Kai-Chieh; Chiang, Jen-Ron; Wu, Suh-Chin; Chong, Pele; Liu, Chia-Chyi

    2016-08-01

    Enterovirus A71 (EV-A71) is responsible for epidemics of hand, foot and mouth disease (HFMD) in young children. To circumvent difficulties in obtaining clinical enterovirus isolates that might be contaminated with other viruses, a platform technology was developed to quickly generate vaccine virus strains based on the published enterovirus genomic sequences. A recombinant plasmid containing the full-length infectious cDNA clone of EV-A71 vaccine strain E59 was directly generated after transfecting the recombinant plasmid into Vero, RD or HEK293A cells, and phenotypic characteristics similar to the parental strain were observed. The cDNA-derived infectious EV-A71 virus grown in Vero cells produced relatively stable virus titers in both T-flasks and microcarrier culture systems. To evaluate the genetic stability of the cDNA-derived EV-A71 viruses, the immunodominant structural proteins, VP1 and VP2, of the recombinant EV-A71 viruses were sequenced and analyzed. The cDNA-derived EV-A71 virus showed weak pathogenicity in a human SCARB2 mouse model. These results show the successful generation of a recombinant virus derived from a published viral genomic sequence that demonstrated good genetic stability and viral yields, which could represent an efficient and safe vaccine strain for cGMP-grade manufacturing. PMID:27387826

  14. A drosophila full-length cDNA resource

    SciTech Connect

    Stapleton, Mark; Carlson, Joseph; Brokstein, Peter; Yu, Charles; Champe, Mark; George, Reed; Guarin, Hannibal; Kronmiller, Brent; Pacleb, Joanne; Park, Soo; Rubin, Gerald M.; Celniker, Susan E.

    2003-05-09

    Background: A collection of sequenced full-length cDNAs is an important resource both for functional genomics studies and for the determination of the intron-exon structure of genes. Providing this resource to the Drosophila melanogaster research community has been a long-term goal of the Berkeley Drosophila Genome Project. We have previously described the Drosophila Gene Collection (DGC), a set of putative full-length cDNAs that was produced by generating and analyzing over 250,000 expressed sequence tags (ESTs) derived from a variety of tissues and developmental stages. Results: We have generated high-quality full-insert sequence for 8,921 clones in the DGC. We compared the sequence of these clones to the annotated Release 3 genomic sequence, and identified more than 5,300 cDNAs that contain a complete and accurate protein-coding sequence. This corresponds to at least one splice form for 40 percent of the predicted D. melanogaster genes. We also identified potential new cases of RNA editing. Conclusions: We show that comparison of cDNA sequences to a high-quality annotated genomic sequence is an effective approach to identifying and eliminating defective clones from a cDNA collection and ensure its utility for experimentation. Clones were eliminated either because they carry single nucleotide discrepancies, which most probably result from reverse transcriptase errors, or because they are truncated and contain only part of the protein-coding sequence.

  15. The implementation of the full length rockbolt in DDA method

    NASA Astrophysics Data System (ADS)

    Zheng, Chun-Mei; Zhu, Wei-Shen; Zhang, Lei

    2009-12-01

    The discontinuous deformation analysis (DDA), proposed by Shi, is a powerful numerical method that can be used for modeling rock-structure interaction. The method is only capable of modeling the point anchoring rockbolt. To reflect the deformation mechanism of rockbolt nearby the fracture surface and the interaction between the rockbolt and the fracture surface, the paper presents the simulation of the full length rockbolt to the DDA method. It is assumed that the rockbolt has no deformation in rock mass and its restriction effect on the fracture surface can only be considered. The full length rockbolt has been implemented by applying normal and tangential springs to the fracture surfaces. A tunnel was modeled to evaluate the influence of reinforcement on the tunnel stability by using the extended DDA method. The simulation results indicate that the modified discontinuous deformation analysis (DDA) method is effective for the reinforcement of tunnel. It is shown that the modified discontinuous deformation analysis (DDA) method is reasonable and correct.

  16. The implementation of the full length rockbolt in DDA method

    NASA Astrophysics Data System (ADS)

    Zheng, Chun-mei; Zhu, Wei-shen; Zhang, Lei

    2010-03-01

    The discontinuous deformation analysis (DDA), proposed by Shi, is a powerful numerical method that can be used for modeling rock-structure interaction. The method is only capable of modeling the point anchoring rockbolt. To reflect the deformation mechanism of rockbolt nearby the fracture surface and the interaction between the rockbolt and the fracture surface, the paper presents the simulation of the full length rockbolt to the DDA method. It is assumed that the rockbolt has no deformation in rock mass and its restriction effect on the fracture surface can only be considered. The full length rockbolt has been implemented by applying normal and tangential springs to the fracture surfaces. A tunnel was modeled to evaluate the influence of reinforcement on the tunnel stability by using the extended DDA method. The simulation results indicate that the modified discontinuous deformation analysis (DDA) method is effective for the reinforcement of tunnel. It is shown that the modified discontinuous deformation analysis (DDA) method is reasonable and correct.

  17. Conformational states of the full-length glucagon receptor

    PubMed Central

    Yang, Linlin; Yang, Dehua; de Graaf, Chris; Moeller, Arne; West, Graham M.; Dharmarajan, Venkatasubramanian; Wang, Chong; Siu, Fai Y.; Song, Gaojie; Reedtz-Runge, Steffen; Pascal, Bruce D.; Wu, Beili; Potter, Clinton S.; Zhou, Hu; Griffin, Patrick R.; Carragher, Bridget; Yang, Huaiyu; Wang, Ming-Wei; Stevens, Raymond C.; Jiang, Hualiang

    2015-01-01

    Class B G protein-coupled receptors are composed of an extracellular domain (ECD) and a seven-transmembrane (7TM) domain, and their signalling is regulated by peptide hormones. Using a hybrid structural biology approach together with the ECD and 7TM domain crystal structures of the glucagon receptor (GCGR), we examine the relationship between full-length receptor conformation and peptide ligand binding. Molecular dynamics (MD) and disulfide crosslinking studies suggest that apo-GCGR can adopt both an open and closed conformation associated with extensive contacts between the ECD and 7TM domain. The electron microscopy (EM) map of the full-length GCGR shows how a monoclonal antibody stabilizes the ECD and 7TM domain in an elongated conformation. Hydrogen/deuterium exchange (HDX) studies and MD simulations indicate that an open conformation is also stabilized by peptide ligand binding. The combined studies reveal the open/closed states of GCGR and suggest that glucagon binds to GCGR by a conformational selection mechanism. PMID:26227798

  18. Full-Length Minor Ampullate Spidroin Gene Sequence

    PubMed Central

    Chen, Gefei; Liu, Xiangqin; Zhang, Yunlong; Lin, Senzhu; Yang, Zijiang; Johansson, Jan; Rising, Anna; Meng, Qing

    2012-01-01

    Spider silk includes seven protein based fibers and glue-like substances produced by glands in the spider's abdomen. Minor ampullate silk is used to make the auxiliary spiral of the orb-web and also for wrapping prey, has a high tensile strength and does not supercontract in water. So far, only partial cDNA sequences have been obtained for minor ampullate spidroins (MiSps). Here we describe the first MiSp full-length gene sequence from the spider species Araneus ventricosus, using a multidimensional PCR approach. Comparative analysis of the sequence reveals regulatory elements, as well as unique spidroin gene and protein architecture including the presence of an unusually large intron. The spliced full-length transcript of MiSp gene is 5440 bp in size and encodes 1766 amino acid residues organized into conserved nonrepetitive N- and C-terminal domains and a central predominantly repetitive region composed of four units that are iterated in a non regular manner. The repeats are more conserved within A. ventricosus MiSp than compared to repeats from homologous proteins, and are interrupted by two nonrepetitive spacer regions, which have 100% identity even at the nucleotide level. PMID:23251707

  19. Conformational states of the full-length glucagon receptor

    NASA Astrophysics Data System (ADS)

    Yang, Linlin; Yang, Dehua; de Graaf, Chris; Moeller, Arne; West, Graham M.; Dharmarajan, Venkatasubramanian; Wang, Chong; Siu, Fai Y.; Song, Gaojie; Reedtz-Runge, Steffen; Pascal, Bruce D.; Wu, Beili; Potter, Clinton S.; Zhou, Hu; Griffin, Patrick R.; Carragher, Bridget; Yang, Huaiyu; Wang, Ming-Wei; Stevens, Raymond C.; Jiang, Hualiang

    2015-07-01

    Class B G protein-coupled receptors are composed of an extracellular domain (ECD) and a seven-transmembrane (7TM) domain, and their signalling is regulated by peptide hormones. Using a hybrid structural biology approach together with the ECD and 7TM domain crystal structures of the glucagon receptor (GCGR), we examine the relationship between full-length receptor conformation and peptide ligand binding. Molecular dynamics (MD) and disulfide crosslinking studies suggest that apo-GCGR can adopt both an open and closed conformation associated with extensive contacts between the ECD and 7TM domain. The electron microscopy (EM) map of the full-length GCGR shows how a monoclonal antibody stabilizes the ECD and 7TM domain in an elongated conformation. Hydrogen/deuterium exchange (HDX) studies and MD simulations indicate that an open conformation is also stabilized by peptide ligand binding. The combined studies reveal the open/closed states of GCGR and suggest that glucagon binds to GCGR by a conformational selection mechanism.

  20. Structural photoactivation of a full-length bacterial phytochrome.

    PubMed

    Björling, Alexander; Berntsson, Oskar; Lehtivuori, Heli; Takala, Heikki; Hughes, Ashley J; Panman, Matthijs; Hoernke, Maria; Niebling, Stephan; Henry, Léocadie; Henning, Robert; Kosheleva, Irina; Chukharev, Vladimir; Tkachenko, Nikolai V; Menzel, Andreas; Newby, Gemma; Khakhulin, Dmitry; Wulff, Michael; Ihalainen, Janne A; Westenhoff, Sebastian

    2016-08-01

    Phytochromes are light sensor proteins found in plants, bacteria, and fungi. They function by converting a photon absorption event into a conformational signal that propagates from the chromophore through the entire protein. However, the structure of the photoactivated state and the conformational changes that lead to it are not known. We report time-resolved x-ray scattering of the full-length phytochrome from Deinococcus radiodurans on micro- and millisecond time scales. We identify a twist of the histidine kinase output domains with respect to the chromophore-binding domains as the dominant change between the photoactivated and resting states. The time-resolved data further show that the structural changes up to the microsecond time scales are small and localized in the chromophore-binding domains. The global structural change occurs within a few milliseconds, coinciding with the formation of the spectroscopic meta-Rc state. Our findings establish key elements of the signaling mechanism of full-length bacterial phytochromes. PMID:27536728

  1. Structural photoactivation of a full-length bacterial phytochrome

    PubMed Central

    Björling, Alexander; Berntsson, Oskar; Lehtivuori, Heli; Takala, Heikki; Hughes, Ashley J.; Panman, Matthijs; Hoernke, Maria; Niebling, Stephan; Henry, Léocadie; Henning, Robert; Kosheleva, Irina; Chukharev, Vladimir; Tkachenko, Nikolai V.; Menzel, Andreas; Newby, Gemma; Khakhulin, Dmitry; Wulff, Michael; Ihalainen, Janne A.; Westenhoff, Sebastian

    2016-01-01

    Phytochromes are light sensor proteins found in plants, bacteria, and fungi. They function by converting a photon absorption event into a conformational signal that propagates from the chromophore through the entire protein. However, the structure of the photoactivated state and the conformational changes that lead to it are not known. We report time-resolved x-ray scattering of the full-length phytochrome from Deinococcus radiodurans on micro- and millisecond time scales. We identify a twist of the histidine kinase output domains with respect to the chromophore-binding domains as the dominant change between the photoactivated and resting states. The time-resolved data further show that the structural changes up to the microsecond time scales are small and localized in the chromophore-binding domains. The global structural change occurs within a few milliseconds, coinciding with the formation of the spectroscopic meta-Rc state. Our findings establish key elements of the signaling mechanism of full-length bacterial phytochromes. PMID:27536728

  2. Full-length minor ampullate spidroin gene sequence.

    PubMed

    Chen, Gefei; Liu, Xiangqin; Zhang, Yunlong; Lin, Senzhu; Yang, Zijiang; Johansson, Jan; Rising, Anna; Meng, Qing

    2012-01-01

    Spider silk includes seven protein based fibers and glue-like substances produced by glands in the spider's abdomen. Minor ampullate silk is used to make the auxiliary spiral of the orb-web and also for wrapping prey, has a high tensile strength and does not supercontract in water. So far, only partial cDNA sequences have been obtained for minor ampullate spidroins (MiSps). Here we describe the first MiSp full-length gene sequence from the spider species Araneus ventricosus, using a multidimensional PCR approach. Comparative analysis of the sequence reveals regulatory elements, as well as unique spidroin gene and protein architecture including the presence of an unusually large intron. The spliced full-length transcript of MiSp gene is 5440 bp in size and encodes 1766 amino acid residues organized into conserved nonrepetitive N- and C-terminal domains and a central predominantly repetitive region composed of four units that are iterated in a non regular manner. The repeats are more conserved within A. ventricosus MiSp than compared to repeats from homologous proteins, and are interrupted by two nonrepetitive spacer regions, which have 100% identity even at the nucleotide level. PMID:23251707

  3. Simulations of The Dalles Dam Proposed Full Length Spillwall

    SciTech Connect

    Rakowski, Cynthia L.; Perkins, William A.; Richmond, Marshall C.; Serkowski, John A.

    2008-02-25

    This report presents results of a computational fluid dynamics (CFD) modeling study to evaluatethe impacts of a full-length spillwall at The Dalles Dam. The full-length spillwall is being designed and evaluated as a structural means to improve tailrace egress and thus survival of juvenile fish passing through the spillway. During the course of this study, a full-length spillwall at Bays 6/7 and 8/9 were considered. The U.S. Army Corps of Engineers (USACE) has proposed extending the spillwall constructed in the stilling basin between spillway Bays 6 and 7 about 590 ft farther downstream. It is believed that the extension of the spillwall will improve egress conditions for downstream juvenile salmonids by moving them more rapidly into the thalweg of the river hence reducing their exposure to predators. A numerical model was created, validated, and applied the The Dalles Dam tailrace. The models were designed to assess impacts to flow, tailrace egress, navigation, and adult salmon passage of a proposed spill wall extension. The more extensive model validation undertaken in this study greatly improved our confidence in the numerical model to represent the flow conditions in The Dalles tailrace. This study used these validated CFD models to simulate the potential impacts of a spillwall extension for The Dalles Dam tailrace for two locations. We determined the following: (1)The construction of an extended wall (between Bays 6/7) will not adversely impact entering or exiting the navigation lock. Impact should be less if a wall were constructed between Bays 8/9. (2)The construction of a wall between Bays 6/7 will increase the water surface elevation between the wall and the Washington shore. Although the increased water surface elevation would be beneficial to adult upstream migrants in that it decreases velocities on the approach to the adult ladder, the increased flow depth would enhance dissolved gas production, impacting potential operations of the project because of

  4. Recovery of infectious virus from full-length cowpox virus (CPXV) DNA cloned as a bacterial artificial chromosome (BAC).

    PubMed

    Roth, Swaantje J; Höper, Dirk; Beer, Martin; Feineis, Silke; Tischer, B Karsten; Osterrieder, Nikolaus

    2011-01-01

    Transmission from pet rats and cats to humans as well as severe infection in felids and other animal species have recently drawn increasing attention to cowpox virus (CPXV). We report the cloning of the entire genome of cowpox virus strain Brighton Red (BR) as a bacterial artificial chromosome (BAC) in Escherichia coli and the recovery of infectious virus from cloned DNA. Generation of a full-length CPXV DNA clone was achieved by first introducing a mini-F vector, which allows maintenance of large circular DNA in E. coli, into the thymidine kinase locus of CPXV by homologous recombination. Circular replication intermediates were then electroporated into E. coli DH10B cells. Upon successful establishment of the infectious BR clone, we modified the full-length clone such that recombination-mediated excision of bacterial sequences can occur upon transfection in eukaryotic cells. This self-excision of the bacterial replicon is made possible by a sequence duplication within mini-F sequences and allows recovery of recombinant virus progeny without remaining marker or vector sequences. The in vitro growth properties of viruses derived from both BAC clones were determined and found to be virtually indistinguishable from those of parental, wild-type BR. Finally, the complete genomic sequence of the infectious clone was determined and the cloned viral genome was shown to be identical to that of the parental virus. In summary, the generated infectious clone will greatly facilitate studies on individual genes and pathogenesis of CPXV. Moreover, the vector potential of CPXV can now be more systematically explored using this newly generated tool. PMID:21314965

  5. [Analysis of full-length gene sequence of rabies vaccine virus aG strain].

    PubMed

    Li, Jia; Cao, Shou-Chun; Shi, Lei-Tai; Wu, Xiao-Hong; Liu, Jing-Hua; Wang, Yun-Peng; Tang, Jian-Rong; Yu, Yong-Xin; Dong, Guan-Mu

    2013-06-01

    To sequence and analyze the full-length gene sequence of rabies vaccine virus aG strain. The full-length gene sequence of aG strain was amplified by RT-PCR by 8 fragments,each PCR product was cloned into vector pGEM-T respectively, sequenced and assemblied; The 5' leader sequence was sequenced with method of 5' RACE. The homology between aG and other rabies vaccine virus was analyzed by using DNAstar and Mega4. 0 software. aG strain was 11 925nt(GenBank accession number: JN234411) in length and belonged to the genotype I . The Bioinformatics revealed that the homology showed disparation form different rabies vaccine virus. the full-length gene sequence of rabies vaccine virus aG strain provided a support for perfecting the standard for quality control of virus strains for production of rabies vaccine for human use in China.

  6. Identification of full-length dentin matrix protein 1 in dentin and bone.

    PubMed

    Huang, Bingzhen; Maciejewska, Izabela; Sun, Yao; Peng, Tao; Qin, Disheng; Lu, Yongbo; Bonewald, Lynda; Butler, William T; Feng, Jian; Qin, Chunlin

    2008-05-01

    Dentin matrix protein 1 (DMP1) has been identified in the extracellular matrix (ECM) of dentin and bone as the processed NH(2)-terminal and COOH-terminal fragment. However, the full-length form of DMP1 has not been identified in these tissues. The focus of this investigation was to search for the intact full-length DMP1 in dentin and bone. We used two types of anti-DMP1 antibodies to identify DMP1: one type specifically recognizes the NH(2)-terminal region and the other type is only reactive to the COOH-terminal region of the DMP1 amino acid sequence. An approximately 105-kDa protein, extracted from the ECM of rat dentin and bone, was recognized by both types of antibodies; and the migration rate of this protein was identical to the recombinant mouse full-length DMP1 made in eukaryotic cells. We concluded that this approximately 105-kDa protein is the full-length form of DMP1, which is considerably less abundant than its processed fragments in the ECM of dentin and bone. We also detected the full-length form of DMP1 and its processed fragments in the extract of dental pulp/odontoblast complex dissected from rat teeth. In addition, immunofluorescence analysis showed that in MC3T3-E1 cells the NH(2)-terminal and COOH-terminal fragments of DMP1 are distributed differently. Our findings indicate that the majority of DMP1 must be cleaved within the cells that synthesize it and that minor amounts of uncleaved DMP1 molecules are secreted into the ECM of dentin and bone.

  7. Universal full-length nucleosome mapping sequence probe.

    PubMed

    Tripathi, Vijay; Salih, Bilal; Trifonov, Edward N

    2015-01-01

    For the computational sequence-directed mapping of the nucleosomes, the knowledge of the nucleosome positioning motifs - 10-11 base long sequences - and respective matrices of bendability, is not sufficient, since there is no justified way to fuse these motifs in one continuous nucleosome DNA sequence. Discovery of the strong nucleosome (SN) DNA sequences, with visible sequence periodicity allows derivation of the full-length nucleosome DNA bendability pattern as matrix or consensus sequence. The SN sequences of three species (A. thaliana, C. elegans, and H. sapiens) are aligned (512 sequences for each species), and long (115 dinucleotides) matrices of bendability derived for the species. The matrices have strong common property - alternation of runs of purine-purine (RR) and pyrimidine-pyrimidine (YY) dinucleotides, with average period 10.4 bases. On this basis the universal [R,Y] consensus of the nucleosome DNA sequence is derived, with exactly defined positions of respective penta- and hexamers RRRRR, RRRRRR, YYYYY, and YYYYYY.

  8. Analysis and Optimization of "Full-Length" Diodes

    SciTech Connect

    Schock, Alfred

    2012-01-19

    A method of analyzing the axial variation of the heat generation rate, temperature, voltage, current density and emitter heat flux in a thermionic converter is described. The method is particularly useful for the case of "long" diodes, each extending over the full length of the reactor core. For a given diode geometry and fuel distribution, the analysis combines a nuclear solution of the axial fission density profile with the iterative solution of four differential equations representing the thermal, electrical, and thermionic interactions within the diode. The digital computer program developed to solve these equations can also perform a design optimization with respect to lead resistance, load voltage, and emitter thickness, for a specified maximum emitter temperature. Typical results are presented, and the use of this analysis for predicting the diode operating characteristics is illustrated.

  9. Full length talin stimulates integrin activation and axon regeneration

    PubMed Central

    Tan, Chin Lik; Kwok, Jessica C.F.; Heller, Janosch P.D.; Zhao, Rongrong; Eva, Richard; Fawcett, James W.

    2015-01-01

    Integrin function is regulated by activation involving conformational changes that modulate ligand-binding affinity and downstream signaling. Activation is regulated through inside-out signaling which is controlled by many signaling pathways via a final common pathway through kindlin and talin, which bind to the intracellular tail of beta integrins. Previous studies have shown that the axon growth inhibitory molecules NogoA and chondroitin sulfate proteoglycans (CSPGs) inactivate integrins. Overexpressing kindlin-1 in dorsal root ganglion (DRG) neurons activates integrins, enabling their axons to overcome inhibitory molecules in the environment, and promoting regeneration in vivo following dorsal root crush. Other studies have indicated that expression of the talin head alone or with kindlin can enhance integrin activation. Here, using adult rat DRG neurons, we investigate the effects of overexpressing various forms of talin on axon growth and integrin signaling. We found that overexpression of the talin head activated axonal integrins but inhibited downstream signaling via FAK, and did not promote axon growth. Similarly, co-expression of the talin head and kindlin-1 prevented the growth-promoting effect of kindlin-1, suggesting that the talin head acts as a form of dominant negative for integrin function. Using full-length talin constructs in PC12 cells we observed that neurite growth was enhanced by the expression of wild-type talin and more so by two ‘activated’ forms of talin produced by point mutation (on laminin and aggrecan–laminin substrates). Nevertheless, co-expression of full-length talin with kindlin did not promote neurite growth more than either molecule alone. In vivo, we find that talin is present in PNS axons (sciatic nerve), and also in CNS axons of the corticospinal tract. PMID:25771432

  10. Cloning, characterisation and bacterial expression of full length cDNA for the mouse liver microsomal glutathione S-transferase.

    PubMed

    Raza, H; Mullick, J; John, A; Bhagwat, S V; Avadhani, N G

    2000-01-01

    We have isolated a cDNA encoding full length microsomal glutathione S-transferase (MGST) from mouse liver. The cDNA was isolated by RT-PCR using primers designed from published cDNA sequence of rat MGST with the addition of 5' Nde-1 and 3' HindIII sites, and cloned into bacterial expression vector pSP19T7LT. Deduced amino acid sequence (155 amino acids, calculated mol.mass 17512 Dalton) confirmed the identity of microsomal GST from mouse liver which has sequence homology with that of rat and human liver MGST1. Recombinant GST cDNA (Genbank accession # 159050) was expressed in BL21(DE3) in the presence of 1 mM IPTG at 30 degrees C. The expressed GST protein was found to be localised in the bacterial membrane as determined by measuring catalytic activity using CDNB and cumene hydroperoxide substrates, SDS-PAGE and Western blot analysis. We have demonstrated the cloning and expression of full length cDNA for MGST from mouse liver and have characterised the functionally active product as MGST protein. These results should facilitate studies on the role of MGST in the regulation of chemical carcinogenesis and in the prevention of oxidative stress caused by endogenous and exogenous chemicals.

  11. Crystal Structure of a Full-Length Autotransporter

    SciTech Connect

    van den Berg, B.

    2010-01-01

    The autotransporter (AT) secretion mechanism is the most common mechanism for the secretion of virulence factors across the outer membrane (OM) from pathogenic Gram-negative bacteria. In addition, ATs have attracted biotechnological and biomedical interest for protein display on bacterial cell surfaces. Despite their importance, the mechanism by which passenger domains of ATs pass the OM is still unclear. The classical view is that the {beta}-barrel domain provides the conduit through which the unfolded passenger moves, with the energy provided by vectorial folding of the {beta}-strand-rich passenger on the extracellular side of the OM. We present here the first structure of a full-length AT, the esterase EstA from Pseudomonas aeruginosa, at a resolution of 2.5 {angstrom}. EstA has a relatively narrow, 12-stranded {beta}-barrel that is covalently attached to the passenger domain via a long, curved helix that occupies the lumen of the {beta}-barrel. The passenger has a structure that is dramatically different from that of other known passengers, with a globular fold that is dominated by {alpha}-helices and loops. The arrangement of secondary-structure elements suggests that the passenger can fold sequentially, providing the driving force for passenger translocation. The esterase active-site residues are located at the apical surface of the passenger, at the entrance of a large hydrophobic pocket that contains a bound detergent molecule that likely mimics substrate. The EstA structure provides insight into AT mechanism and will facilitate the design of fusion proteins for cell surface display.

  12. Synaptonemal complex extension from clustered telomeres mediates full-length chromosome pairing in Schmidtea mediterranea

    PubMed Central

    Xiang, Youbin; Miller, Danny E.; Ross, Eric J.; Sánchez Alvarado, Alejandro; Hawley, R. Scott

    2014-01-01

    In the 1920s, József Gelei proposed that chromosome pairing in flatworms resulted from the formation of a telomere bouquet followed by the extension of synapsis from telomeres at the base of the bouquet, thus facilitating homolog pairing in a processive manner. A modern interpretation of Gelei’s model postulates that the synaptonemal complex (SC) is nucleated close to the telomeres and then extends progressively along the full length of chromosome arms. We used the easily visible meiotic chromosomes, a well-characterized genome, and RNAi in the sexual biotype of the planarian Schmidtea mediterranea to test that hypothesis. By identifying and characterizing S. mediterranea homologs of genes encoding synaptonemal complex protein 1 (SYCP1), the topoisomerase-like protein SPO11, and RAD51, a key player in homologous recombination, we confirmed that SC formation begins near the telomeres and progresses along chromosome arms during zygotene. Although distal regions pair at the time of bouquet formation, pairing of a unique interstitial locus is not observed until the formation of full-length SC at pachytene. Moreover, neither full extension of the SC nor homologous pairing is dependent on the formation of double-strand breaks. These findings validate Gelei’s speculation that full-length pairing of homologous chromosomes is mediated by the extension of the SC formed near the telomeres. S. mediterranea thus becomes the first organism described (to our knowledge) that forms a canonical telomere bouquet but does not require double-strand breaks for synapsis between homologous chromosomes. However, the initiation of SC formation at the base of the telomere bouquet, which then is followed by full-length homologous pairing in planarian spermatocytes, is not observed in other species and may not be conserved. PMID:25404302

  13. Identification, Molecular Cloning, and Analysis of Full-Length Hepatitis C Virus Transmitted/Founder Genotypes 1, 3, and 4

    PubMed Central

    Stoddard, Mark B.; Li, Hui; Wang, Shuyi; Saeed, Mohsan; Andrus, Linda; Ding, Wenge; Jiang, Xinpei; Learn, Gerald H.; von Schaewen, Markus; Wen, Jessica; Goepfert, Paul A.; Hahn, Beatrice H.; Ploss, Alexander; Rice, Charles M.

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) infection is characterized by persistent replication of a complex mixture of viruses termed a “quasispecies.” Transmission is generally associated with a stringent population bottleneck characterized by infection by limited numbers of “transmitted/founder” (T/F) viruses. Characterization of T/F genomes of human immunodeficiency virus type 1 (HIV-1) has been integral to studies of transmission, immunopathogenesis, and vaccine development. Here, we describe the identification of complete T/F genomes of HCV by single-genome sequencing of plasma viral RNA from acutely infected subjects. A total of 2,739 single-genome-derived amplicons comprising 10,966,507 bp from 18 acute-phase and 11 chronically infected subjects were analyzed. Acute-phase sequences diversified essentially randomly, except for the poly(U/UC) tract, which was subject to polymerase slippage. Fourteen acute-phase subjects were productively infected by more than one genetically distinct virus, permitting assessment of recombination between replicating genomes. No evidence of recombination was found among 1,589 sequences analyzed. Envelope sequences of T/F genomes lacked transmission signatures that could distinguish them from chronic infection viruses. Among chronically infected subjects, higher nucleotide substitution rates were observed in the poly(U/UC) tract than in envelope hypervariable region 1. Fourteen full-length molecular clones with variable poly(U/UC) sequences corresponding to seven genotype 1a, 1b, 3a, and 4a T/F viruses were generated. Like most unadapted HCV clones, T/F genomes did not replicate efficiently in Huh 7.5 cells, indicating that additional cellular factors or viral adaptations are necessary for in vitro replication. Full-length T/F HCV genomes and their progeny provide unique insights into virus transmission, virus evolution, and virus-host interactions associated with immunopathogenesis. PMID:25714714

  14. Generation of a Mouse Full-length Balancer with Versatile Cassette-shuttling Selection Strategy.

    PubMed

    Ye, Zhisheng; Sun, Lei; Li, Rongbo; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2016-01-01

    Balancer chromosomes are important tools for a variety of genetic manipulations in lower model organisms, owing to their ability to suppress recombination. In mouse, however, such effort has not been accomplished, mostly due to the size of the chromosomes and the complexity of multiple step chromosomal engineering. We developed an effective and versatile cassette-shuttling selection (CASS) strategy involving only two selection markers to achieve the sequential production of multiple large inversions along the chromosome. Using this strategy, we successfully generated the first full-length balancer in mice and showed that Balancer 17M-GFP can efficiently suppress recombination. Our study has not only generated a useful genetic resource, but also provided a strategy for constructing mammalian balancer chromosomes.

  15. Recombinant Human Papillomavirus (HPV) Quadrivalent Vaccine

    Cancer.gov

    This page contains brief information about recombinant human papillomavirus (HPV) quadrivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  16. Recombinant Human Papillomavirus (HPV) Bivalent Vaccine

    Cancer.gov

    This page contains brief information about recombinant human papillomavirus (HPV) bivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  17. Recombinant Human Papillomavirus (HPV) Nonavalent Vaccine

    Cancer.gov

    This page contains brief information about recombinant human papillomavirus (HPV) nonavalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  18. Blueprint for a High-Performance Biomaterial: Full-Length Spider Dragline Silk Genes

    PubMed Central

    Ayoub, Nadia A.; Garb, Jessica E.; Tinghitella, Robin M.; Collin, Matthew A.; Hayashi, Cheryl Y.

    2007-01-01

    Spider dragline (major ampullate) silk outperforms virtually all other natural and manmade materials in terms of tensile strength and toughness. For this reason, the mass-production of artificial spider silks through transgenic technologies has been a major goal of biomimetics research. Although all known arthropod silk proteins are extremely large (>200 kiloDaltons), recombinant spider silks have been designed from short and incomplete cDNAs, the only available sequences. Here we describe the first full-length spider silk gene sequences and their flanking regions. These genes encode the MaSp1 and MaSp2 proteins that compose the black widow's high-performance dragline silk. Each gene includes a single enormous exon (>9000 base pairs) that translates into a highly repetitive polypeptide. Patterns of variation among sequence repeats at the amino acid and nucleotide levels indicate that the interaction of selection, intergenic recombination, and intragenic recombination governs the evolution of these highly unusual, modular proteins. Phylogenetic footprinting revealed putative regulatory elements in non-coding flanking sequences. Conservation of both upstream and downstream flanking sequences was especially striking between the two paralogous black widow major ampullate silk genes. Because these genes are co-expressed within the same silk gland, there may have been selection for similarity in regulatory regions. Our new data provide complete templates for synthesis of recombinant silk proteins that significantly improve the degree to which artificial silks mimic natural spider dragline fibers. PMID:17565367

  19. Molecular dynamics of the full-length p53 monomer

    PubMed Central

    Chillemi, Giovanni; Davidovich, Pavel; D’Abramo, Marco; Mametnabiev, Tazhir; Garabadzhiu, Alexander Vasilievich; Desideri, Alessandro; Melino, Gerry

    2013-01-01

    The p53 protein is frequently mutated in a very large proportion of human tumors, where it seems to acquire gain-of-function activity that facilitates tumor onset and progression. A possible mechanism is the ability of mutant p53 proteins to physically interact with other proteins, including members of the same family, namely p63 and p73, inactivating their function. Assuming that this interaction might occurs at the level of the monomer, to investigate the molecular basis for this interaction, here, we sample the structural flexibility of the wild-type p53 monomeric protein. The results show a strong stability up to 850 ns in the DNA binding domain, with major flexibility in the N-terminal transactivations domains (TAD1 and TAD2) as well as in the C-terminal region (tetramerization domain). Several stable hydrogen bonds have been detected between N-terminal or C-terminal and DNA binding domain, and also between N-terminal and C-terminal. Essential dynamics analysis highlights strongly correlated movements involving TAD1 and the proline-rich region in the N-terminal domain, the tetramerization region in the C-terminal domain; Lys120 in the DNA binding region. The herein presented model is a starting point for further investigation of the whole protein tetramer as well as of its mutants. PMID:23974096

  20. Extensive intrasubtype recombination in South African human immunodeficiency virus type 1 subtype C infections.

    PubMed

    Rousseau, Christine M; Learn, Gerald H; Bhattacharya, Tanmoy; Nickle, David C; Heckerman, David; Chetty, Senica; Brander, Christian; Goulder, Philip J R; Walker, Bruce D; Kiepiela, Photini; Korber, Bette T; Mullins, James I

    2007-05-01

    Recombinant human immunodeficiency virus type 1 (HIV-1) strains containing sequences from different viral genetic subtypes (intersubtype) and different lineages from within the same subtype (intrasubtype) have been observed. A consequence of recombination can be the distortion of the phylogenetic signal. Several intersubtype recombinants have been identified; however, less is known about the frequency of intrasubtype recombination. For this study, near-full-length HIV-1 subtype C genomes from 270 individuals were evaluated for the presence of intrasubtype recombination. A sliding window schema (window, 2 kb; step, 385 bp) was used to partition the aligned sequences. The Shimodaira-Hasegawa test detected significant topological incongruence in 99.6% of the comparisons of the maximum-likelihood trees generated from each sequence partition, a result that could be explained by recombination. Using RECOMBINE, we detected significant levels of recombination using five random subsets of the sequences. With a set of 23 topologically consistent sequences used as references, bootscanning followed by the interactive informative site test defined recombination breakpoints. Using two multiple-comparison correction methods, 47% of the sequences showed significant evidence of recombination in both analyses. Estimated evolutionary rates were revised from 0.51%/year (95% confidence interval [CI], 0.39 to 0.53%) with all sequences to 0.46%/year (95% CI, 0.38 to 0.48%) with the putative recombinants removed. The timing of the subtype C epidemic origin was revised from 1961 (95% CI, 1947 to 1962) with all sequences to 1958 (95% CI, 1949 to 1960) with the putative recombinants removed. Thus, intrasubtype recombinants are common within the subtype C epidemic and these impact analyses of HIV-1 evolution. PMID:17314156

  1. Full-length soluble urokinase plasminogen activator receptor down-modulates nephrin expression in podocytes

    PubMed Central

    Alfano, Massimo; Cinque, Paola; Giusti, Guido; Proietti, Silvia; Nebuloni, Manuela; Danese, Silvio; D’Alessio, Silvia; Genua, Marco; Portale, Federica; Lo Porto, Manuela; Singhal, Pravin C.; Rastaldi, Maria Pia; Saleem, Moin A.; Mavilio, Domenico; Mikulak, Joanna

    2015-01-01

    Increased plasma level of soluble urokinase-type plasminogen activator receptor (suPAR) was associated recently with focal segmental glomerulosclerosis (FSGS). In addition, different clinical studies observed increased concentration of suPAR in various glomerular diseases and in other human pathologies with nephrotic syndromes such as HIV and Hantavirus infection, diabetes and cardiovascular disorders. Here, we show that suPAR induces nephrin down-modulation in human podocytes. This phenomenon is mediated only by full-length suPAR, is time-and dose-dependent and is associated with the suppression of Wilms’ tumor 1 (WT-1) transcription factor expression. Moreover, an antagonist of αvβ3 integrin RGDfv blocked suPAR-induced suppression of nephrin. These in vitro data were confirmed in an in vivo uPAR knock out Plaur−/− mice model by demonstrating that the infusion of suPAR inhibits expression of nephrin and WT-1 in podocytes and induces proteinuria. This study unveiled that interaction of full-length suPAR with αvβ3 integrin expressed on podocytes results in down-modulation of nephrin that may affect kidney functionality in different human pathologies characterized by increased concentration of suPAR. PMID:26380915

  2. Full-length soluble urokinase plasminogen activator receptor down-modulates nephrin expression in podocytes.

    PubMed

    Alfano, Massimo; Cinque, Paola; Giusti, Guido; Proietti, Silvia; Nebuloni, Manuela; Danese, Silvio; D'Alessio, Silvia; Genua, Marco; Portale, Federica; Lo Porto, Manuela; Singhal, Pravin C; Rastaldi, Maria Pia; Saleem, Moin A; Mavilio, Domenico; Mikulak, Joanna

    2015-09-18

    Increased plasma level of soluble urokinase-type plasminogen activator receptor (suPAR) was associated recently with focal segmental glomerulosclerosis (FSGS). In addition, different clinical studies observed increased concentration of suPAR in various glomerular diseases and in other human pathologies with nephrotic syndromes such as HIV and Hantavirus infection, diabetes and cardiovascular disorders. Here, we show that suPAR induces nephrin down-modulation in human podocytes. This phenomenon is mediated only by full-length suPAR, is time-and dose-dependent and is associated with the suppression of Wilms' tumor 1 (WT-1) transcription factor expression. Moreover, an antagonist of αvβ3 integrin RGDfv blocked suPAR-induced suppression of nephrin. These in vitro data were confirmed in an in vivo uPAR knock out Plaur(-/-) mice model by demonstrating that the infusion of suPAR inhibits expression of nephrin and WT-1 in podocytes and induces proteinuria. This study unveiled that interaction of full-length suPAR with αvβ3 integrin expressed on podocytes results in down-modulation of nephrin that may affect kidney functionality in different human pathologies characterized by increased concentration of suPAR.

  3. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  4. Human recombinant lysosomal enzymes produced in microorganisms.

    PubMed

    Espejo-Mojica, Ángela J; Alméciga-Díaz, Carlos J; Rodríguez, Alexander; Mosquera, Ángela; Díaz, Dennis; Beltrán, Laura; Díaz, Sergio; Pimentel, Natalia; Moreno, Jefferson; Sánchez, Jhonnathan; Sánchez, Oscar F; Córdoba, Henry; Poutou-Piñales, Raúl A; Barrera, Luis A

    2015-01-01

    Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD.

  5. The Role of Recombinant Genetics in Humanism.

    ERIC Educational Resources Information Center

    Jacobs, Troy A.

    1983-01-01

    To eliminate the public's fear of recombinant genetics the important link between science and the humanities should be part of the educational system. Universal applied genetics guidelines are needed that encompass philosophical and technical issues. Biological advances can revitalize humankind in the future. (AM)

  6. Full-length Dysferlin Transfer by the Hyperactive Sleeping Beauty Transposase Restores Dysferlin-deficient Muscle

    PubMed Central

    Escobar, Helena; Schöwel, Verena; Spuler, Simone; Marg, Andreas; Izsvák, Zsuzsanna

    2016-01-01

    Dysferlin-deficient muscular dystrophy is a progressive disease characterized by muscle weakness and wasting for which there is no treatment. It is caused by mutations in DYSF, a large, multiexonic gene that forms a coding sequence of 6.2 kb. Sleeping Beauty (SB) transposon is a nonviral gene transfer vector, already used in clinical trials. The hyperactive SB system consists of a transposon DNA sequence and a transposase protein, SB100X, that can integrate DNA over 10 kb into the target genome. We constructed an SB transposon-based vector to deliver full-length human DYSF cDNA into dysferlin-deficient H2K A/J myoblasts. We demonstrate proper dysferlin expression as well as highly efficient engraftment (>1,100 donor-derived fibers) of the engineered myoblasts in the skeletal muscle of dysferlin- and immunodeficient B6.Cg-Dysfprmd Prkdcscid/J (Scid/BLA/J) mice. Nonviral gene delivery of full-length human dysferlin into muscle cells, along with a successful and efficient transplantation into skeletal muscle are important advances towards successful gene therapy of dysferlin-deficient muscular dystrophy. PMID:26784637

  7. Full-length Dysferlin Transfer by the Hyperactive Sleeping Beauty Transposase Restores Dysferlin-deficient Muscle.

    PubMed

    Escobar, Helena; Schöwel, Verena; Spuler, Simone; Marg, Andreas; Izsvák, Zsuzsanna

    2016-01-19

    Dysferlin-deficient muscular dystrophy is a progressive disease characterized by muscle weakness and wasting for which there is no treatment. It is caused by mutations in DYSF, a large, multiexonic gene that forms a coding sequence of 6.2 kb. Sleeping Beauty (SB) transposon is a nonviral gene transfer vector, already used in clinical trials. The hyperactive SB system consists of a transposon DNA sequence and a transposase protein, SB100X, that can integrate DNA over 10 kb into the target genome. We constructed an SB transposon-based vector to deliver full-length human DYSF cDNA into dysferlin-deficient H2K A/J myoblasts. We demonstrate proper dysferlin expression as well as highly efficient engraftment (>1,100 donor-derived fibers) of the engineered myoblasts in the skeletal muscle of dysferlin- and immunodeficient B6.Cg-Dysf(prmd) Prkdc(scid)/J (Scid/BLA/J) mice. Nonviral gene delivery of full-length human dysferlin into muscle cells, along with a successful and efficient transplantation into skeletal muscle are important advances towards successful gene therapy of dysferlin-deficient muscular dystrophy.

  8. Full-length Dysferlin Transfer by the Hyperactive Sleeping Beauty Transposase Restores Dysferlin-deficient Muscle.

    PubMed

    Escobar, Helena; Schöwel, Verena; Spuler, Simone; Marg, Andreas; Izsvák, Zsuzsanna

    2016-01-01

    Dysferlin-deficient muscular dystrophy is a progressive disease characterized by muscle weakness and wasting for which there is no treatment. It is caused by mutations in DYSF, a large, multiexonic gene that forms a coding sequence of 6.2 kb. Sleeping Beauty (SB) transposon is a nonviral gene transfer vector, already used in clinical trials. The hyperactive SB system consists of a transposon DNA sequence and a transposase protein, SB100X, that can integrate DNA over 10 kb into the target genome. We constructed an SB transposon-based vector to deliver full-length human DYSF cDNA into dysferlin-deficient H2K A/J myoblasts. We demonstrate proper dysferlin expression as well as highly efficient engraftment (>1,100 donor-derived fibers) of the engineered myoblasts in the skeletal muscle of dysferlin- and immunodeficient B6.Cg-Dysf(prmd) Prkdc(scid)/J (Scid/BLA/J) mice. Nonviral gene delivery of full-length human dysferlin into muscle cells, along with a successful and efficient transplantation into skeletal muscle are important advances towards successful gene therapy of dysferlin-deficient muscular dystrophy. PMID:26784637

  9. Aggregation Behavior of Chemically Synthesized, Full-Length Huntingtin Exon1

    PubMed Central

    2015-01-01

    Repeat length disease thresholds vary among the 10 expanded polyglutamine (polyQ) repeat diseases, from about 20 to about 50 glutamine residues. The unique amino acid sequences flanking the polyQ segment are thought to contribute to these repeat length thresholds. The specific portions of the flanking sequences that modulate polyQ properties are not always clear, however. This ambiguity may be important in Huntington’s disease (HD), for example, where in vitro studies of aggregation mechanisms have led to distinctly different mechanistic models. Most in vitro studies of the aggregation of the huntingtin (HTT) exon1 fragment implicated in the HD mechanism have been conducted on inexact molecules that are imprecise either on the N-terminus (recombinantly produced peptides) or on the C-terminus (chemically synthesized peptides). In this paper, we investigate the aggregation properties of chemically synthesized HTT exon1 peptides that are full-length and complete, containing both normal and expanded polyQ repeat lengths, and compare the results directly to previously investigated molecules containing truncated C-termini. The results on the full-length peptides are consistent with a two-step aggregation mechanism originally developed based on studies of the C-terminally truncated analogues. Thus, we observe relatively rapid formation of spherical oligomers containing from 100 to 600 HTT exon1 molecules and intermediate formation of short protofibril-like structures containing from 500 to 2600 molecules. In contrast to this relatively rapid assembly, mature HTT exon1 amyloid requires about one month to dissociate in vitro, which is similar to the time required for neuronal HTT exon1 aggregates to disappear in vivo after HTT production is discontinued. PMID:24921664

  10. Characterization of full-length HIV-1 CRF17_BF genomes and comparison to the prototype CRF12_BF strains.

    PubMed

    Aulicino, Paula C; Gómez-Carrillo, Manuel; Bello, Gonzalo; Rocco, Carlos; Mangano, Andrea; Carr, Jean; Sen, Luisa; Foley, Brian

    2012-03-01

    The aim of this work is to characterize the full-length intersubtype recombinant structure of the HIV-1 Circulating Recombinant Form CRF17_BF. A single genome of CRF17_BF was originally described in 2001 as being largely similar to CRF12_BF. Since then, more genomes of CRF17_BF have been sequenced but not adequately described in publications. Here we describe CRF17_BF as a genuine CRF, and analyze its recombination pattern based on bootscan analyses, subtype signature patterns, and phylogenetic reconstruction of subtype-delimited segments. We show that CRF17_BF can be distinguished from CRF12_BF in several regions of the genome, including vpu, pol, env and nef. A complete and accurate characterization and description of recombination breakpoints in CRFs is required for a proper surveillance of HIV-1 genotypes, and important for epidemiological purposes. PMID:22266022

  11. Construction, characterization and expression of full length cDNA clone of sheep YAP1 gene.

    PubMed

    Sun, Wei; Li, Da; Su, Rui; Musa, Hassan H; Chen, Ling; Zhou, Hong

    2014-02-01

    RT-PCR, 5'RACE, 3'RACE were used to clone sheep full length cDNA sequence of YAP1 (Yes-associated protein 1), eukaryotic expression plasmid and a mutant that cannot be phosphorylated at Ser42 was successfully constructed. The amino acid sequence analysis revealed that sheep YAP1 gene encoded water-soluble protein and its relative molecular weight and isoelectric point was 44,079.0 Da and 4.91, respectively. Sub-cellular localization of YAP1 was in the nucleus, it is hydrophilic non-transmembrane and non-secreted protein. YAP1 protein contained 33 phosphorylation sites, seven glycosylation sites and two WW domains. The secondary structure of YAP1 was mainly composed of random coil, while the tertiary structure of domain area showed a forniciform helix structure. YAP1 gene was expressed in different tissues, the highest expression was in kidney and the lowest was in hypothalamus. The CDS of sheep YAP1was amplified by RT-PCR from healthy sheep longissimus dorsi muscle, cloned into pMD19-T simple vector by T/A ligation. YAP1 coding region was further sub-cloned into pEGFP-C1 vector by T4 Ligase to construct a eukaryotic expression plasmid and then make the eukaryotic expression vector as the template to construct the phosphorylation site mutant. PCR, restriction enzyme and sequencing were used to confirm the recombinant plasmid. The sheep full-length YAP1 cDNA sequence is 1712 in length encoding 403 amino acids. It was confirmed that the sheep YAP1 CDS was correctly inserted into eukaryotic expression vector and serine had been mutated to alanine by PCR, restriction digestion and sequencing. The result showed that the recombinant plasmid pEGFP-C1-YAP1 and pEGFP-C1-YAP1 S42A was constructed correctly, this will help for further studies on the YAP1 protein expression and its biological activities. PMID:24381103

  12. Expression of human recombinant granzyme A zymogen and its activation by the cysteine proteinase cathepsin C.

    PubMed

    Kummer, J A; Kamp, A M; Citarella, F; Horrevoets, A J; Hack, C E

    1996-04-19

    Human granzyme A is one of the serine proteinases present in the granules of cytotoxic T lymphocytes and natural killer cells. Granzymes are synthesized as inactive proenzymes with an amino-terminal prodipeptide, which is processed during transport of granzymes to the cytotoxic granules, where they are stored as active proteinases. In this study, we explored the possibility of producing recombinant granzymes. Recombinant human granzyme A zymogen was expressed in several eukaryotic cell lines (HepG2, Jurkat, and COS-1) after infection with a recombinant vaccinia virus containing full-length granzyme A cDNA. Immunoblot analysis of cell lysates showed that all infected cells produced a disulfide-linked homodimer of identical molecular weight as natural granzyme A. Infected HepG2 cells produced the largest amount of this protease (approximately 160 times more than lymphokine activated killer (LAK) cells). The recombinant protein only had high mannose type oligosaccharides as did the natural protein. Although infected HepG2 and COS cells contained high granzyme A antigen levels, lysates from these cells did not show any granzyme A proteolytic activity. However, the inactive proenzyme could be converted into active granzyme A by incubation with the thiol proteinase cathepsin C (dipeptidyl peptidase I). This study is the first to demonstrate expression of an active recombinant human cytotoxic lymphocyte proteinase and conversion of inactive progranzyme A into an active enzyme by cathepsin C. We suggest that a similar approach can be used for the production of other granzymes and related proteinases.

  13. Misexpression of full-length HMGA2 induces benign mesenchymal tumors in mice.

    PubMed

    Zaidi, M Raza; Okada, Yasunori; Chada, Kiran K

    2006-08-01

    The high-mobility group AT-hook 2 (HMGA2) protein is a member of the high-mobility group family of the DNA-binding architectural factors and participates in the conformational regulation of active chromatin on its specific downstream target genes. HMGA2 is expressed in the undifferentiated mesenchyme and is undetectable in their differentiated counterparts, suggesting its functional importance in mesenchymal cellular proliferation and differentiation. Interestingly, it is a frequent target of chromosomal translocations in several types of human benign differentiated mesenchymal tumors, including lipomas, fibroadenomas of the breast, salivary gland adenomas, and endometrial polyps. The translocations lead to a variety of HMGA2 transcripts, which range from wild-type, truncated, and fusion mRNA species. However, it is not clear whether alteration of the HMGA2 transcript is required for its tumorigenic potential. To determine whether misexpression of HMGA2 in differentiated mesenchymal cells is sufficient to cause tumorigenesis, we produced transgenic mice that misexpressed full-length or truncated human HMGA2 transcript under the control of the differentiated mesenchymal cell (adipocyte)-specific promoter of the adipocyte P2 (Fabp4) gene. Expression of the full-length HMGA2 transgene was observed in a number of tissues, which produced neoplastic phenotype, including fibroadenomas of the breast and salivary gland adenomas. Furthermore, transgenic misexpression of the truncated version of HMGA2, containing only the three DNA-binding domains, produced similar phenotypes. These results show that misexpression of HMGA2 in a differentiated mesenchymal cell is sufficient to cause mesenchymal tumorigenesis and is independent of the nature of the HMGA2 transcript that results from chromosomal translocations observed in humans.

  14. Bayesian inference of shared recombination hotspots between humans and chimpanzees.

    PubMed

    Wang, Ying; Rannala, Bruce

    2014-12-01

    Recombination generates variation and facilitates evolution. Recombination (or lack thereof) also contributes to human genetic disease. Methods for mapping genes influencing complex genetic diseases via association rely on linkage disequilibrium (LD) in human populations, which is influenced by rates of recombination across the genome. Comparative population genomic analyses of recombination using related primate species can identify factors influencing rates of recombination in humans. Such studies can indicate how variable hotspots for recombination may be both among individuals (or populations) and over evolutionary timescales. Previous studies have suggested that locations of recombination hotspots are not conserved between humans and chimpanzees. We made use of the data sets from recent resequencing projects and applied a Bayesian method for identifying hotspots and estimating recombination rates. We also reanalyzed SNP data sets for regions with known hotspots in humans using samples from the human and chimpanzee. The Bayes factors (BF) of shared recombination hotspots between human and chimpanzee across regions were obtained. Based on the analysis of the aligned regions of human chromosome 21, locations where the two species show evidence of shared recombination hotspots (with high BFs) were identified. Interestingly, previous comparative studies of human and chimpanzee that focused on the known human recombination hotspots within the β-globin and HLA regions did not find overlapping of hotspots. Our results show high BFs of shared hotspots at locations within both regions, and the estimated locations of shared hotspots overlap with the locations of human recombination hotspots obtained from sperm-typing studies.

  15. Genomic full-length sequence of HLA-Cw*0103 and *0108, identified by cloning and sequencing.

    PubMed

    Xu, Y-P; Yang, B-C; Gao, S-Q; Deng, Z-H; Xie, Z

    2010-02-01

    Genomic full-length sequences of human leukocyte antigen (HLA)-Cw*0103 and *0108 were identified by cloning and sequencing from two Chinese donors. All introns, exons 4-8, 5'-promoter, and 3'-UTR were found to be identical between these two alleles.

  16. High-level expression of a full-length Eph receptor.

    PubMed

    Paavilainen, Sari; Grandy, David; Karelehto, Eveliina; Chang, Elizabeth; Susi, Petri; Erdjument-Bromage, Hediye; Nikolov, Dimitar; Himanen, Juha

    2013-11-01

    Eph receptors are the largest family of Receptor Tyrosine Kinases containing a single membrane-spanning segment. They are involved in a various developmental and cell-cell communication events. Although there is extensive structural information available on both the extra- and intracellular regions of Eph's in isolation, no structures are available for the entire receptor. To facilitate structural studies on functionally relevant Eph/ephrin complexes, we have developed an expression system for producing the full-length human EphA2 receptor. We successfully expressed milligram amounts of the receptor using baculovirus-based vector and insect cells. We were also able to extract the protein from the cell membranes and purify it to near homogeneity in two simple steps. The purified receptor was shown to retain its biological activity in terms of both binding to its functional ligands and being able to auto-phosphorylate the key tyrosine residues of the cytoplasmic kinase domain.

  17. Human DNA repair and recombination genes

    SciTech Connect

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs.

  18. Triple trans-splicing adeno-associated virus vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice.

    PubMed

    Koo, Taeyoung; Popplewell, Linda; Athanasopoulos, Takis; Dickson, George

    2014-02-01

    Recombinant adeno-associated virus (rAAV) vectors have been shown to permit very efficient widespread transgene expression in skeletal muscle after systemic delivery, making these increasingly attractive as vectors for Duchenne muscular dystrophy (DMD) gene therapy. DMD is a severe muscle-wasting disorder caused by DMD gene mutations leading to complete loss of dystrophin protein. One of the major issues associated with delivery of the DMD gene, as a therapeutic approach for DMD, is its large open reading frame (ORF; 11.1 kb). A series of truncated microdystrophin cDNAs (delivered via a single AAV) and minidystrophin cDNAs (delivered via dual-AAV trans-spliced/overlapping reconstitution) have thus been extensively tested in DMD animal models. However, critical rod and hinge domains of dystrophin required for interaction with components of the dystrophin-associated protein complex, such as neuronal nitric oxide synthase, syntrophin, and dystrobrevin, are missing; these dystrophin domains may still need to be incorporated to increase dystrophin functionality and stabilize membrane rigidity. Full-length DMD gene delivery using AAV vectors remains elusive because of the limited single-AAV packaging capacity (4.7 kb). Here we developed a novel method for the delivery of the full-length DMD coding sequence to skeletal muscles in dystrophic mdx mice using a triple-AAV trans-splicing vector system. We report for the first time that three independent AAV vectors carrying "in tandem" sequential exonic parts of the human DMD coding sequence enable the expression of the full-length protein as a result of trans-splicing events cojoining three vectors via their inverted terminal repeat sequences. This method of triple-AAV-mediated trans-splicing could be applicable to the delivery of any large therapeutic gene (≥11 kb ORF) into postmitotic tissues (muscles or neurons) for the treatment of various inherited metabolic and genetic diseases.

  19. Directed Evolution of a Secretory Leader for the Improved Expression of Heterologous Proteins and Full-Length Antibodies in S. cerevisiae

    PubMed Central

    Rakestraw, J. Andy; Sazinsky, Stephen L.; Piatesi, Andrea; Antipov, Eugene; Wittrup, K. Dane

    2010-01-01

    Because of its eukaryotic nature, simple fermentation requirements, and pliable genetics, there have been many attempts at improving recombinant protein production in S. cerevisiae. These strategies typically involve altering the expression of a native protein thought to be involved in heterologous protein trafficking. Usually, these approaches yield three to ten-fold improvements over wild-type strains and are almost always specific to one type of protein. In this study, a library of mutant alpha mating factor 1 leader peptides (MFα1pp) is screened for the enhanced secretion of a single-chain antibody. One of the isolated mutants is shown to enhance the secretion of the scFv up to sixteen-fold over wild-type. These leaders also confer a secretory improvement to two other scFvs as well as two additional, structurally unrelated proteins. Moreover, the improved leader sequences, combined with strain engineering, allow for a one-hundred eighty fold improvement over previous reports in the secretion of full length, functional, glycosylated human IgG1. The production of full-length IgG1 at milligram per liter titers in a simple, laboratory-scale system will significantly expedite drug discovery and reagent synthesis while reducing antibody cloning, production, and characterization costs. PMID:19459139

  20. Quasispecies Analyses of the HIV-1 Near-full-length Genome With Illumina MiSeq.

    PubMed

    Ode, Hirotaka; Matsuda, Masakazu; Matsuoka, Kazuhiro; Hachiya, Atsuko; Hattori, Junko; Kito, Yumiko; Yokomaku, Yoshiyuki; Iwatani, Yasumasa; Sugiura, Wataru

    2015-01-01

    Human immunodeficiency virus type-1 (HIV-1) exhibits high between-host genetic diversity and within-host heterogeneity, recognized as quasispecies. Because HIV-1 quasispecies fluctuate in terms of multiple factors, such as antiretroviral exposure and host immunity, analyzing the HIV-1 genome is critical for selecting effective antiretroviral therapy and understanding within-host viral coevolution mechanisms. Here, to obtain HIV-1 genome sequence information that includes minority variants, we sought to develop a method for evaluating quasispecies throughout the HIV-1 near-full-length genome using the Illumina MiSeq benchtop deep sequencer. To ensure the reliability of minority mutation detection, we applied an analysis method of sequence read mapping onto a consensus sequence derived from de novo assembly followed by iterative mapping and subsequent unique error correction. Deep sequencing analyses of aHIV-1 clone showed that the analysis method reduced erroneous base prevalence below 1% in each sequence position and discarded only < 1% of all collected nucleotides, maximizing the usage of the collected genome sequences. Further, we designed primer sets to amplify the HIV-1 near-full-length genome from clinical plasma samples. Deep sequencing of 92 samples in combination with the primer sets and our analysis method provided sufficient coverage to identify >1%-frequency sequences throughout the genome. When we evaluated sequences of pol genes from 18 treatment-naïve patients' samples, the deep sequencing results were in agreement with Sanger sequencing and identified numerous additional minority mutations. The results suggest that our deep sequencing method would be suitable for identifying within-host viral population dynamics throughout the genome. PMID:26617593

  1. Infectious full-length clones of Calibrachoa Mottle Virus (CbMV)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Full-length cDNA clones derived from genomic RNA (gRNA) and subgenomic RNAs (sgRNAs) of Calibrachoa mottle virus (CbMV) were constructed under the control of the T7 RNA promoter and ligated into plasmid pUC-18. The capped and uncapped in vitro transcripts, synthesized from full length genomic cDNA...

  2. Evaluation of liver fluke recombinant cathepsin B-1 protease as a serodiagnostic antigen for human opisthorchiasis.

    PubMed

    Sripa, Jittiyawadee; Brindley, Paul J; Sripa, Banchob; Loukas, Alex; Kaewkes, Sasithorn; Laha, Thewarach

    2012-03-01

    A cathepsin B-like cysteine protease belonging to family C1 is abundantly expressed in the transcriptome and proteome of the carcinogenic liver fluke of humans, Opisthorchis viverrini. This enzyme is present in excretory/secretory (ES) products released by parasites cultured in vitro. This study evaluated the performance of recombinant O. viverrini cathepsin B1 (rOv-CB-1) as an antigen for immunodiagnosis of opisthorchiasis. The full length Ov-CB-1 cDNA was cloned and recombinant protein was produced in catalytically active form in Pichia pastoris. The recombinant Ov-CB-1 (rOv-CB-1) was affinity purified via nickel-NTA chromatography and tested in enzyme-linked immunosorbent assays (ELISA) with human sera from an opisthorchiasis endemic area. Sera from egg-positive O. viverrini infections produced a strong IgG antibody response to rOv-CB-1 both in ELISA and immunoblot analysis. The sensitivity and specificity of the ELISA test was 67% and 81%, respectively. These findings support the feasibility of using recombinant Ov-CB-1 in ELISA for the serodiagnosis of human opisthorchiasis. PMID:21704728

  3. Isolation, characterization and functional analysis of full length p53 cDNA from Bubalus bubalis.

    PubMed

    Singh, Minu; Aggarwal, Suruchi; Mohanty, Ashok K; Mukhopadhyay, Tapas

    2015-09-01

    p53 plays a pivotal role in maintaining the genomic integrity of the cell and has an important role in cellular transformation. We isolated and cloned a full length p53 cDNA (Bp53) from water buffalo in expression vectors designed to generate tagged proteins with FLAG or GFP. Bp53 was found to be 1161 nucleotide long and codes for 386 amino acid residues with 79% homology with human p53 containing 393 amino acids. Although Bp53 has some inherent differences in amino acid composition in different functional domains as compared to human p53 but the total electrostatic charge of amino acids has been maintained. Bp53 cDNA was transiently transfected in a p53 null human NSCLC cell line and as expected, it was predominantly localized in the nucleus. Besides, Bp53 effectively transactivates a number of target genes similar to human p53 and exerts most of its anti-tumorigenic potential in culture as observed in clonogenic and cell viability assays. Like human p53 mutants, core domain mutant version of Bp53 was found to be mis-localized to cytoplasm with diminished tumor suppressor activity. However, Bp53 appeared to be more sensitive to mdm2 mediated degradation and as a result, this protein was less stable as compared to human p53. For the first time we have characterized a functionally efficient wild-type p53 from buffalo having lower stability than human p53 and thus, buffalo p53 could be used as a model system for further insight to the molecular basis of wild-type p53 instability.

  4. Retrotransposon mdg3 of Drosophila: General structure and functional domains of the full-length copy

    SciTech Connect

    Avedisov, S.N.; Ilyin, Yu.V.

    1995-09-01

    A full-length copy of the transposable element mdg3 from the plasmid clone Dm38 of Drosophila melanogaster was obtained by screening the DNA library of the cell culture 67J25D. Previous work demonstrated that only full-length copies of mdg3 (5.5 kb) are amplified in this culture, whereas the number of deleted copies probably has not changed since the cell line was established. We sequenced the full-length copy of mdg3 from cDm38 by the method described by Sanger. 10 refs., 2 figs., 2 tabs.

  5. Patterns of recombination on human chromosome 22

    SciTech Connect

    Schlumpf, K.S.; Kim, D.; Haines, J.L.

    1994-09-01

    Virtually all genetic linkage maps generated to date are gross averages across individuals, ages, and (often) sexes. In addition, although some level of positive interference has been assumed, until recently little evidence to support this in humans has been available. The major stumbling block has been the quality of the data available, since even a few genotypic errors can have drastic effects on both the map length and the number of apparent recombinants. In addition, variation in recombination by factors other than sex have pretty much been ignored. To explore recombination in more detail, we have generated a microsatellite marker map of human chromosome 22. This map includes 32 markers genotyped through 46 sibships of the Venezuelan Reference Pedigree (VRP). Extensive error checking and regenotyping was performed to remove as many genotypic errors as possible, but no genotypes were removed simply because they created unlikely events. The following 1000:1 odds map has been obtained: cen--F8VWFP1--11--S264--3-S311--4--S257--2--TOP1P2--3--S156--1--CRYB2--1--S258--2--S310--6--S193--1--S275--3--S268--1--S280--4--S304--3--S283--2--LiR1--3--IL2RB--3--S299--1--S302--1--S537--2--S270--4--PDGF--8--S274--qter. The female map (91 cM) is twice as long as the male map (46 cM) and the log-likelihood difference in the maps (22.3) is highly significant (P=0.001, df=22) and appears constant across the chromosome. Analysis of recombination with age showed no particular trends for either males or females when chromosomes were grouped into three categories (20, 20-30, 30+) by parental age at birth of child. Positive interference was found in maternally derived chromosomes ({chi}{sup 2}=30.5 (4), p<0.005), but not in paternally derived chromosomes ({chi}{sup 2}=6.24 (3), P=0.10). This contrasts to data from chromosomes 9 and 21 where positive interference was found for both sexes. More detailed analyses are in progress.

  6. Genetic manipulation of porcine epidemic diarrhoea virus recovered from a full-length infectious cDNA clone.

    PubMed

    Jengarn, Juggragarn; Wongthida, Phonphimon; Wanasen, Nanchaya; Frantz, Phanramphoei Namprachan; Wanitchang, Asawin; Jongkaewwattana, Anan

    2015-08-01

    Porcine epidemic diarrhoea virus (PEDV) causes acute diarrhoea and dehydration in swine of all ages, with significant mortality in neonatal pigs. The recent rise of PEDV outbreaks in Asia and North America warrants an urgent search for effective vaccines. However, PEDV vaccine research has been hampered by difficulties in isolating and propagating the virus in mammalian cells, thereby complicating the recovery of infectious PEDV using a full-length infectious clone. Here, we engineered VeroE6 cells to stably express porcine aminopeptidase N (pAPN) and used them as a platform to obtain a high-growth variant of PEDV, termed PEDVAVCT12. Subsequently, the full-length cDNA clone was constructed by assembling contiguous cDNA fragments encompassing the complete genome of PEDVAVCT12 in a bacterial artificial chromosome. Infectious PEDV could be recovered, and the rescued virus displayed phenotypic properties identical to the parental virus. Interestingly, we found that PEDVAVCT12 contained a C-terminal deletion of the spike gene, resulting in disruption of the ORF3 start codon. When a functional ORF3 gene was restored, the recombinant virus could not be rescued, suggesting that ORF3 could suppress PEDV replication in vitro. In addition, a high-growth and genetically stable recombinant PEDV expressing a foreign protein could be rescued by replacing the ORF3 gene with the mCherry gene. Together, the results of this study provide a means to generate genetically defined PEDV as a promising vaccine candidate. PMID:25979733

  7. Species-Specific Expression of Full-Length and Alternatively Spliced Variant Forms of CDK5RAP2

    PubMed Central

    Park, John S. Y.; Lee, Marie-Katrina; Kang, SungMyung; Jin, Yan; Fu, Songbin; Rosales, Jesusa L.; Lee, Ki-Young

    2015-01-01

    CDK5RAP2 is one of the primary microcephaly genes that are associated with reduced brain size and mental retardation. We have previously shown that human CDK5RAP2 exists as a full-length form (hCDK5RAP2) or an alternatively spliced variant form (hCDK5RAP2-V1) that is lacking exon 32. The equivalent of hCDK5RAP2-V1 has been reported in rat and mouse but the presence of full-length equivalent hCDK5RAP2 in rat and mouse has not been examined. Here, we demonstrate that rat expresses both a full length and an alternatively spliced variant form of CDK5RAP2 that are equivalent to our previously reported hCDK5RAP2 and hCDK5RAP2-V1, repectively. However, mouse expresses only one form of CDK5RAP2 that is equivalent to the human and rat alternatively spliced variant forms. Knowledge of this expression of different forms of CDK5RAP2 in human, rat and mouse is essential in selecting the appropriate model for studies of CDK5RAP2 and primary microcephaly but our findings further indicate the evolutionary divergence of mouse from the human and rat species. PMID:26550838

  8. Species-Specific Expression of Full-Length and Alternatively Spliced Variant Forms of CDK5RAP2.

    PubMed

    Park, John S Y; Lee, Marie-Katrina; Kang, SungMyung; Jin, Yan; Fu, Songbin; Rosales, Jesusa L; Lee, Ki-Young

    2015-01-01

    CDK5RAP2 is one of the primary microcephaly genes that are associated with reduced brain size and mental retardation. We have previously shown that human CDK5RAP2 exists as a full-length form (hCDK5RAP2) or an alternatively spliced variant form (hCDK5RAP2-V1) that is lacking exon 32. The equivalent of hCDK5RAP2-V1 has been reported in rat and mouse but the presence of full-length equivalent hCDK5RAP2 in rat and mouse has not been examined. Here, we demonstrate that rat expresses both a full length and an alternatively spliced variant form of CDK5RAP2 that are equivalent to our previously reported hCDK5RAP2 and hCDK5RAP2-V1, repectively. However, mouse expresses only one form of CDK5RAP2 that is equivalent to the human and rat alternatively spliced variant forms. Knowledge of this expression of different forms of CDK5RAP2 in human, rat and mouse is essential in selecting the appropriate model for studies of CDK5RAP2 and primary microcephaly but our findings further indicate the evolutionary divergence of mouse from the human and rat species. PMID:26550838

  9. Fabrication and Testing of Full-Length Single-Cell Externally Fueled Converters for Thermionic Reactors

    SciTech Connect

    Schock, Alfred

    1995-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes the fabrication and testing of full-length prototypcial converters, both unfueled and fueled, and presents parametric results of electrically heated tests.

  10. [Comparison of methods to construct a full-length cDNA library].

    PubMed

    Mao, Xin-Guo; Jing, Rui-Lian; Kong, Xiu-Ying; Zhao, Guang-Yao; Jia, Ji-Zeng

    2006-07-01

    The use of full-length cDNA libraries is an effective tool to obtain complete gene information in a high-efficiency, high-throughput manner, especially in organisms with huge genomes that are not amenable to whole genome sequencing. In this review, we outlined several methods of full-length cDNA library construction and compared their advantages and disadvantages based on their respective principles. Drawing on our own experience, we described the Cap-trapper method in detail, with an emphasis on its application in wheat full-length cDNA library construction as well as the determination of the ratio of full-length cDNA in a library. PMID:16825176

  11. High-quality full-length immunoglobulin profiling with unique molecular barcoding.

    PubMed

    Turchaninova, M A; Davydov, A; Britanova, O V; Shugay, M; Bikos, V; Egorov, E S; Kirgizova, V I; Merzlyak, E M; Staroverov, D B; Bolotin, D A; Mamedov, I Z; Izraelson, M; Logacheva, M D; Kladova, O; Plevova, K; Pospisilova, S; Chudakov, D M

    2016-09-01

    High-throughput sequencing analysis of hypermutating immunoglobulin (IG) repertoires remains a challenging task. Here we present a robust protocol for the full-length profiling of human and mouse IG repertoires. This protocol uses unique molecular identifiers (UMIs) introduced in the course of cDNA synthesis to control bottlenecks and to eliminate PCR and sequencing errors. Using asymmetric 400+100-nt paired-end Illumina sequencing and UMI-based assembly with the new version of the MIGEC software, the protocol allows up to 750-nt lengths to be sequenced in an almost error-free manner. This sequencing approach should also be applicable to various tasks beyond immune repertoire studies. In IG profiling, the achieved length of high-quality sequence covers the variable region of even the longest chains, along with the fragment of a constant region carrying information on the antibody isotype. The whole protocol, including preparation of cells and libraries, sequencing and data analysis, takes 5 to 6 d. PMID:27490633

  12. Structural and functional characterization of full-length heparin-binding growth associated molecule.

    PubMed Central

    Hampton, B S; Marshak, D R; Burgess, W H

    1992-01-01

    Heparin-binding growth-associated molecule (HB-GAM) was purified from adult bovine brain and chicken heart. The yield of HB-GAM is increased by 5- to 10-fold when 250 mM NaCl is added to the homogenization buffer, indicating that HB-GAM may exist as a complex with an insoluble component of the tissue. The complete amino acid sequence of the brain-derived HB-GAM was established by automated Edman degradation of the intact protein and chemically or enzymatically derived fragments. The mass of bovine HB-GAM as determined by plasma desorption time-of-flight mass spectrometry is 15,291 mass units, which compares favorably with the calculated mass of 15,289 based on the amino acid sequence. Therefore, HB-GAM has not undergone any major post-translational modifications other than cleavage of the signal peptide. These results indicate that previous amino acid sequence analysis of this protein was carried out using truncated HB-GAM. Full-length HB-GAM is not a mitogen for Balb/3T3 clone A31, Balb MK, NRK, or human umbilical vein endothelial cells. HB-GAM does, however, have adhesive properties and neurite extension activity for chick embryo cerebral cortical derived neurons when presented to these cells as a substrate. HB-GAM had little neurite extension activity when presented as a soluble factor. Images PMID:1550956

  13. Recombinant human pigment epithelium-derived factor (PEDF): characterization of PEDF overexpressed and secreted by eukaryotic cells.

    PubMed Central

    Stratikos, E.; Alberdi, E.; Gettins, P. G.; Becerra, S. P.

    1996-01-01

    Pigment epithelium-derived factor (PEDF) is a serpin found in the interphotoreceptor matrix of the eye, which, although not a proteinase inhibitor, possesses a number of important biological properties, including promotion of neurite outgrowth and differential expression in quiescent versus senescent states of certain cell types. The low amounts present in the eye, together with the impracticality of using the eye as a source for isolation of the human protein, make it important to establish a system for overexpression of the recombinant protein for biochemical and biological studies. We describe here the expression and secretion of full-length glycosylated human recombinant PEDF at high levels (> 20 micrograms/ mL) into the growth medium of baby hamster kidney cells and characterization of the purified rPEDF by circular dichroism and fluorescence spectroscopies and neurite outgrowth assay. By these assays, the recombinant protein behaves as expected for a correctly folded full-length human PEDF. The availability of milligram amounts of PEDF has permitted quantitation of its heparin binding properties and of the effect of reactive center cleavage on the stability of PEDF towards thermal and guanidine hydrochloride denaturation. PMID:8976566

  14. Soluble variants of human recombinant glutaminyl cyclase.

    PubMed

    Castaldo, Cristiana; Ciambellotti, Silvia; de Pablo-Latorre, Raquel; Lalli, Daniela; Porcari, Valentina; Turano, Paola

    2013-01-01

    Recombinant human Glutaminyl Cyclase expressed in E. coli is produced as inclusion bodies. Lack of glycosylation is the main origin of its accumulation in insoluble aggregates. Mutation of single isolated hydrophobic amino acids into negative amino acids was not able to circumvent inclusion bodies formation. On the contrary, substitution with carboxyl-terminal residues of two or three aromatic residues belonging to extended hydrophobic patches on the protein surface provided soluble but still active forms of the protein. These mutants could be expressed in isotopically enriched forms for NMR studies and the maximal attainable concentration was sufficient for the acquisition of (1)H-(15)N HSQC spectra that represent the starting point for future drug development projects targeting Alzheimer's disease. PMID:23977104

  15. Soluble Variants of Human Recombinant Glutaminyl Cyclase

    PubMed Central

    Castaldo, Cristiana; Ciambellotti, Silvia; de Pablo-Latorre, Raquel; Lalli, Daniela; Porcari, Valentina; Turano, Paola

    2013-01-01

    Recombinant human Glutaminyl Cyclase expressed in E. coli is produced as inclusion bodies. Lack of glycosylation is the main origin of its accumulation in insoluble aggregates. Mutation of single isolated hydrophobic amino acids into negative amino acids was not able to circumvent inclusion bodies formation. On the contrary, substitution with carboxyl-terminal residues of two or three aromatic residues belonging to extended hydrophobic patches on the protein surface provided soluble but still active forms of the protein. These mutants could be expressed in isotopically enriched forms for NMR studies and the maximal attainable concentration was sufficient for the acquisition of 1H-15N HSQC spectra that represent the starting point for future drug development projects targeting Alzheimer’s disease. PMID:23977104

  16. Identification and Nearly Full-Length Genome Characterization of Novel Porcine Bocaviruses

    PubMed Central

    Huang, Can-ping; Yao, Dong-ping; Liu, Na; Cui, Shu-xian; Jin, Yu; Duan, Zhao-jun

    2010-01-01

    The genus bocavirus includes bovine parvovirus (BPV), minute virus of canines (MVC), and a group of human bocaviruses (HBoV1-4). Using sequence-independent single primer amplification (SISPA), a novel bocavirus group was discovered with high prevalence (12.59%) in piglet stool samples. Two nearly full-length genome sequences were obtained, which were approximately 5,100 nucleotides in length. Multiple alignments revealed that they share 28.7–56.8% DNA sequence identity with other members of Parvovirinae. Phylogenetic analyses indicated their closest neighbors were members of the genus bocavirus. The new viruses had a putative non-structural NP1 protein, which was unique to bocaviruses. They were provisionally named porcine bocavirus 1 and 2 (PBoV1, PBoV2). PBoV1 and PBoV2 shared 94.2% nucleotide identity in NS1 gene sequence, suggesting that they represented two different bocavirus species. Two additional samples (6V, 7V) were amplified for 2,407 bp and 2,434 bp products, respectively, including a partial NP1 gene and the complete VP1 gene; Phylogenetic analysis indicated that 6Vand 7V grouped with PBoV1 and PBoV2 in the genus of bocavirus, but were in the separate clusters. Like other parvoviruses, PBoV1, PBoV2, 6Vand 7V also contained a putative secretory phospholipase A2 (sPLA2) motif in the VP1 unique region, with a conserved HDXXY motif in the catalytic center. The conserved motif YXGXF of the Ca2+-binding loop of sPLA2 identified in human bocavirus was also found in porcine bocavirus, which differs from the YXGXG motif carried by most other parvoviruses. The observation of PBoV and potentially other new bocavirus genus members may aid in molecular and functional characterization of the genus bocavirus. PMID:21049037

  17. In vitro translation of the full-length RNA transcript of figwort mosaic virus (Caulimovirus).

    PubMed

    Ranu, R S; Gowda, S; Scholthof, H; Wu, F C; Shepherd, R J

    1996-01-01

    The circular DNA genome of FMV consists of seven tandemly arranged genes placed successively on a full-length RNA transcript that spans the entire circular viral genome. This transcript is a tentative mRNA for at least five of the six major conserved genes of this virus (genes I-V) that are positioned on this transcript. The sixth major gene (gene VI) is expressed as a separate monocistronic transcript. A long 5'-nontranslated leader (598 nucleotides), a small nonconserved gene (VII), and a short intergenic region (57 nucleotides) precede the five major conserved genes (I through V) on the full-length transcript. A reporter gene (CAT), as a separate cistron or fused in-frame, to viral cistrons in various downstream positions in cloned versions of the viral genome was used in a transcription vector to generate artificial full-length transcripts of FMV. When these mRNAs were translated in vitro (rabbit reticulocyte lysate system), the reporter gene was translated efficiently in all positions. Translation of internal native viral gene positioned on the full-length transcript of FMV was also determined (the gene VI product). These observations suggest that the full-length FMV transcript functions as a polycistronic mRNA in plants. Results are best explained on the basis of translational coupling/relay race model.

  18. Optimized sequential purification protocol for in vivo site-specific biotinylated full-length dengue virus capsid protein.

    PubMed

    Chong, Mun Keat; Parthasarathy, Krupakar; Yeo, Hui Yu; Ng, Mah Lee

    2013-05-01

    Dengue virus (DENV) capsid (C) protein is one of the three structural proteins that form a mature virus. The main challenge impeding the study of this protein is to generate pure non-truncated, full-length C proteins for structural and functional studies. This is mainly due to its small molecular weight, highly positively charged, stability and solubility properties. Here, we report a strategy to construct, express, biotinylate and purify non-truncated, full-length DENV C protein. A 6× His tag and a biotin acceptor peptide (BAP) were cloned at the N-terminus of C protein using overlapping extension-polymerase chain reaction method for site-specific biotinylation. The final construct was inserted into pET28a plasmid and BL-21 (CodonPlus) expression competent cell strain was selected as there are 12% rare codons in the C protein sequence. Strikingly, we found that our recombinant proteins with BAP were biotinylated endogenously with high efficiency in Escherichia coli BL-21 strains. To purify this His-tagged C protein, nickel-nitriloacetic acid affinity chromatography was first carried out under denaturing condition. After stepwise dialysis and concurrent refolding, ion exchange-fast protein liquid chromatography was performed to further separate the residual contaminants. To obtain C protein with high purity, a final round of purification with size exclusion chromatography was carried out and a single peak corresponding to C protein was attained. With this optimized sequential purification protocol, we successfully generated pure biotinylated full-length DENV C protein. The functionality of this purified non-truncated DENV C protein was examined and it was suitable for structural and molecular studies.

  19. Construction and analysis of full-length and normalized cDNA libraries from citrus.

    PubMed

    Marques, M Carmen; Perez-Amador, Miguel A

    2012-01-01

    We have developed an integrated method to generate a normalized cDNA collection enriched in full-length and rare transcripts from citrus, using different species and multiple tissues and developmental stages. Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. In this regard, the availability of full-length cDNA clones facilitates functional analysis of the corresponding genes enabling manipulation of their expression and the generation of a variety of tagged versions of the native protein. The development of full-length cDNA sequences has the power to improve the quality of genome annotation, as well as provide tools for functional characterization of genes. PMID:22130983

  20. Structural characterization suggests models for monomeric and dimeric forms of full-length ezrin.

    PubMed

    Phang, Juanita M; Harrop, Stephen J; Duff, Anthony P; Sokolova, Anna V; Crossett, Ben; Walsh, James C; Beckham, Simone A; Nguyen, Cuong D; Davies, Roberta B; Glöckner, Carina; Bromley, Elizabeth H C; Wilk, Krystyna E; Curmi, Paul M G

    2016-09-15

    Ezrin is a member of the ERM (ezrin-radixin-moesin) family of proteins that have been conserved through metazoan evolution. These proteins have dormant and active forms, where the latter links the actin cytoskeleton to membranes. ERM proteins have three domains: an N-terminal FERM [band Four-point-one (4.1) ERM] domain comprising three subdomains (F1, F2, and F3); a helical domain; and a C-terminal actin-binding domain. In the dormant form, FERM and C-terminal domains form a stable complex. We have determined crystal structures of the active FERM domain and the dormant FERM:C-terminal domain complex of human ezrin. We observe a bistable array of phenylalanine residues in the core of subdomain F3 that is mobile in the active form and locked in the dormant form. As subdomain F3 is pivotal in binding membrane proteins and phospholipids, these transitions may facilitate activation and signaling. Full-length ezrin forms stable monomers and dimers. We used small-angle X-ray scattering to determine the solution structures of these species. As expected, the monomer shows a globular domain with a protruding helical coiled coil. The dimer shows an elongated dumbbell structure that is twice as long as the monomer. By aligning ERM sequences spanning metazoan evolution, we show that the central helical region is conserved, preserving the heptad repeat. Using this, we have built a dimer model where each monomer forms half of an elongated antiparallel coiled coil with domain-swapped FERM:C-terminal domain complexes at each end. The model suggests that ERM dimers may bind to actin in a parallel fashion.

  1. Structural characterization suggests models for monomeric and dimeric forms of full-length ezrin.

    PubMed

    Phang, Juanita M; Harrop, Stephen J; Duff, Anthony P; Sokolova, Anna V; Crossett, Ben; Walsh, James C; Beckham, Simone A; Nguyen, Cuong D; Davies, Roberta B; Glöckner, Carina; Bromley, Elizabeth H C; Wilk, Krystyna E; Curmi, Paul M G

    2016-09-15

    Ezrin is a member of the ERM (ezrin-radixin-moesin) family of proteins that have been conserved through metazoan evolution. These proteins have dormant and active forms, where the latter links the actin cytoskeleton to membranes. ERM proteins have three domains: an N-terminal FERM [band Four-point-one (4.1) ERM] domain comprising three subdomains (F1, F2, and F3); a helical domain; and a C-terminal actin-binding domain. In the dormant form, FERM and C-terminal domains form a stable complex. We have determined crystal structures of the active FERM domain and the dormant FERM:C-terminal domain complex of human ezrin. We observe a bistable array of phenylalanine residues in the core of subdomain F3 that is mobile in the active form and locked in the dormant form. As subdomain F3 is pivotal in binding membrane proteins and phospholipids, these transitions may facilitate activation and signaling. Full-length ezrin forms stable monomers and dimers. We used small-angle X-ray scattering to determine the solution structures of these species. As expected, the monomer shows a globular domain with a protruding helical coiled coil. The dimer shows an elongated dumbbell structure that is twice as long as the monomer. By aligning ERM sequences spanning metazoan evolution, we show that the central helical region is conserved, preserving the heptad repeat. Using this, we have built a dimer model where each monomer forms half of an elongated antiparallel coiled coil with domain-swapped FERM:C-terminal domain complexes at each end. The model suggests that ERM dimers may bind to actin in a parallel fashion. PMID:27364155

  2. Full-Length cDNA, Prokaryotic Expression, and Antimicrobial Activity of UuHb-F-I from Urechis unicinctus

    PubMed Central

    Niu, Rongli; Chen, Xiang

    2016-01-01

    Hemoglobin, which widely exists in all vertebrates and in some invertebrates, is possibly a precursor of antimicrobial peptides (AMPs). However, AMPs in the hemoglobin of invertebrates have been rarely investigated. This study is the first to report the full-length cDNA, prokaryotic expression, and antimicrobial activity of UuHb-F-I from Urechis unicinctus. The full-length cDNA sequence of UuHb-F-I was 780 bp with an open-reading frame of 429 bp encoding 142 amino acids. MALDI-TOF-MS suggested that the recombinant protein of UuHb-F-I (rUuHb-F-I) yielded a molecular weight of 15,168.01 Da, and its N-terminal amino acid sequence was MGLTGAQIDAIK. rUuHb-F-I exhibited different antimicrobial activities against microorganisms. The lowest minimum inhibitory concentration against Micrococcus luteus was 2.78–4.63 μM. Our results may help elucidate the immune defense mechanism of U. unicinctus and may provide insights into new AMPs in drug discovery. PMID:27471730

  3. Full-Length cDNA, Prokaryotic Expression, and Antimicrobial Activity of UuHb-F-I from Urechis unicinctus.

    PubMed

    Niu, Rongli; Chen, Xiang

    2016-01-01

    Hemoglobin, which widely exists in all vertebrates and in some invertebrates, is possibly a precursor of antimicrobial peptides (AMPs). However, AMPs in the hemoglobin of invertebrates have been rarely investigated. This study is the first to report the full-length cDNA, prokaryotic expression, and antimicrobial activity of UuHb-F-I from Urechis unicinctus. The full-length cDNA sequence of UuHb-F-I was 780 bp with an open-reading frame of 429 bp encoding 142 amino acids. MALDI-TOF-MS suggested that the recombinant protein of UuHb-F-I (rUuHb-F-I) yielded a molecular weight of 15,168.01 Da, and its N-terminal amino acid sequence was MGLTGAQIDAIK. rUuHb-F-I exhibited different antimicrobial activities against microorganisms. The lowest minimum inhibitory concentration against Micrococcus luteus was 2.78-4.63 μM. Our results may help elucidate the immune defense mechanism of U. unicinctus and may provide insights into new AMPs in drug discovery. PMID:27471730

  4. Characterization of a full-length infectious cDNA clone and a GFP reporter derivative of the oncolytic picornavirus SVV-001.

    PubMed

    Poirier, John T; Reddy, P Seshidhar; Idamakanti, Neeraja; Li, Shawn S; Stump, Kristine L; Burroughs, Kevin D; Hallenbeck, Paul L; Rudin, Charles M

    2012-12-01

    Seneca Valley virus (SVV-001) is an oncolytic picornavirus with selective tropism for a subset of human cancers with neuroendocrine differentiation. To characterize further the specificity of SVV-001 and its patterns and kinetics of intratumoral spread, bacterial plasmids encoding a cDNA clone of the full-length wild-type virus and a derivative virus expressing GFP were generated. The full-length cDNA of the SVV-001 RNA genome was cloned into a bacterial plasmid under the control of the T7 core promoter sequence to create an infectious cDNA clone, pNTX-09. A GFP reporter virus cDNA clone, pNTX-11, was then generated by cloning a fusion protein of GFP and the 2A protein from foot-and-mouth disease virus immediately following the native SVV-001 2A sequence. Recombinant GFP-expressing reporter virus, SVV-GFP, was rescued from cells transfected with in vitro RNA transcripts from pNTX-11 and propagated in cell culture. The proliferation kinetics of SVV-001 and SVV-GFP were indistinguishable. The SVV-GFP reporter virus was used to determine that a subpopulation of permissive cells is present in small-cell lung cancer cell lines previously thought to lack permissivity to SVV-001. Finally, it was shown that SVV-GFP administered to tumour-bearing animals homes in to and infects tumours whilst having no detectable tropism for normal mouse tissues at 1×10(11) viral particles kg(-1), a dose equivalent to that administered in ongoing clinical trials. These infectious clones will be of substantial value in further characterizing the biology of this virus and as a backbone for the generation of additional oncolytic derivatives. PMID:22971818

  5. New strategy for expression of recombinant hydroxylated human collagen α1(III) chains in Pichia pastoris GS115.

    PubMed

    He, Jing; Ma, Xiaoxuan; Zhang, Fenglong; Li, Linbo; Deng, Jianjun; Xue, Wenjiao; Zhu, Chenhui; Fan, Daidi

    2015-01-01

    Type III collagen is one of the most abundant proteins in the human body, which forms collagen fibrils and provides the stiff, resilient characteristics of many tissues. In this paper, a new method for secretory expression of recombinant hydroxylated human collagen α1(III) chain in Pichia pastoris GS115 was applied. The gene encoding for full-length human collagen α1(III) chain (COL3A1) without N-terminal propeptide and C-terminal propeptide was cloned in the pPIC9K expression vector. The prolyl 4-hydroxylase (P4H, EC 1.14.11.2) α-subunit (P4Hα) and β-subunit (P4Hβ) genes were cloned in the same expression vector, pPICZB. Fluorogenic quantitative PCR indicates that COL3A1 and P4H genes have been expressed in mRNA level. SDS-PAGE shows that secretory expression of recombinant human collagen α1(III) chain was successfully achieved in P. pastoris GS115. In addition, the result of amino acids composition analysis shows that the recombinant human collagen α1(III) chain contains hydroxyproline by coexpression with the P4H. Furthermore, liquid chromatography coupled with tandem mass spectrometry analysis demonstrates that proline residues of the recombinant human collagen α1(III) chain were hydroxylated in the X or Y positions of Gly-X-Y triplets. PMID:24953863

  6. Internalization of the Extracellular Full-Length Tau Inside Neuro2A and Cortical Cells Is Enhanced by Phosphorylation.

    PubMed

    Wauters, Mathilde; Wattiez, Ruddy; Ris, Laurence

    2016-08-19

    Tau protein is mainly intracellular. However, several studies have demonstrated that full-length Tau can be released into the interstitial fluid of the brain. The physiological or pathological function of this extracellular Tau remains unknown. Moreover, as evidence suggests, extracellular Tau aggregates can be internalized by neurons, seeding Tau aggregation. However, much less is known about small species of Tau. In this study, we hypothesized that the status of phosphorylation could alter the internalization of recombinant Tau in Neuro2A and cortical cells. Our preliminary results revealed that the highly phosphorylated form of Tau entered the cells ten times more easily than a low phosphorylated one. This suggests that hyperphosphorylated Tau protein could spread between neurons in pathological conditions such as Alzheimer's disease.

  7. Internalization of the Extracellular Full-Length Tau Inside Neuro2A and Cortical Cells Is Enhanced by Phosphorylation

    PubMed Central

    Wauters, Mathilde; Wattiez, Ruddy; Ris, Laurence

    2016-01-01

    Tau protein is mainly intracellular. However, several studies have demonstrated that full-length Tau can be released into the interstitial fluid of the brain. The physiological or pathological function of this extracellular Tau remains unknown. Moreover, as evidence suggests, extracellular Tau aggregates can be internalized by neurons, seeding Tau aggregation. However, much less is known about small species of Tau. In this study, we hypothesized that the status of phosphorylation could alter the internalization of recombinant Tau in Neuro2A and cortical cells. Our preliminary results revealed that the highly phosphorylated form of Tau entered the cells ten times more easily than a low phosphorylated one. This suggests that hyperphosphorylated Tau protein could spread between neurons in pathological conditions such as Alzheimer’s disease. PMID:27548242

  8. Internalization of the Extracellular Full-Length Tau Inside Neuro2A and Cortical Cells Is Enhanced by Phosphorylation.

    PubMed

    Wauters, Mathilde; Wattiez, Ruddy; Ris, Laurence

    2016-01-01

    Tau protein is mainly intracellular. However, several studies have demonstrated that full-length Tau can be released into the interstitial fluid of the brain. The physiological or pathological function of this extracellular Tau remains unknown. Moreover, as evidence suggests, extracellular Tau aggregates can be internalized by neurons, seeding Tau aggregation. However, much less is known about small species of Tau. In this study, we hypothesized that the status of phosphorylation could alter the internalization of recombinant Tau in Neuro2A and cortical cells. Our preliminary results revealed that the highly phosphorylated form of Tau entered the cells ten times more easily than a low phosphorylated one. This suggests that hyperphosphorylated Tau protein could spread between neurons in pathological conditions such as Alzheimer's disease. PMID:27548242

  9. Synthesis of full length and truncated microcin B17 analogues as DNA gyrase poisons.

    PubMed

    Thompson, Robert E; Collin, Frédéric; Maxwell, Anthony; Jolliffe, Katrina A; Payne, Richard J

    2014-03-14

    Microcin B17 (MccB17) is a post-translationally modified peptide containing thiazole and oxazole heterocycles that interrupt the peptide backbone. MccB17 is capable of poisoning DNA gyrase through stabilization of the gyrase-DNA cleavage complex and has therefore attracted significant attention. Using a combination of Fmoc-strategy solid-phase peptide synthesis and solution-phase fragment assembly we have prepared a library of full-length and truncated MccB17 analogues to investigate key structural requirements for gyrase-poisoning activity. Synthetic peptides lacking the glycine-rich N-terminal portion of the full-length sequence showed strong stabilization of the gyrase-DNA cleavage complex with increased potency relative to the full-length sequences. This truncation, however, led to a decrease in antibacterial activity of these analogues relative to their full-length counterparts indicating a potential role of the N-terminal region of the natural product for cellular uptake.

  10. Recombinant human erythropoietin and high flux haemodiafiltration.

    PubMed

    Lippi, A; Rindi, P; Baronti, R; Caprioli, R; Favilla, G; Palmarini, D; Cioni, L

    1995-01-01

    Since 1982, 32 uraemic patients were treated in our institution by high flux haemodiafiltration (H-HDF) in order to shorten significantly the dialytic treatment session. H-HDF used a high surface area filter (1.4-1.9 m2) with high hydraulic permeability (polyacrylonitrile and polysulfone), at high blood flow (450 ml/min) and high rates of reinfusion of substitution fluid (22 l/session). In this way the dialytic session was shortened to 140 +/- 19 min, maintaining a good cardiovascular stability and high dialytic efficiency (Kt/V > 1.1). Human recombinant erythropoietin rHuEpo introduced in the therapy of this group in 1987 has resulted in an improvement of renal anaemia, but also a prolongation of the time of dialytic treatment due to a decrease in the efficiency of filters. During the period of the study, the treatment time increased from 140 +/- 19 min to 168 +/- 25 min with a concomitant increase of haematocrit and haemoglobin (from 24% to 36% and from 7.9 to 10.5 g/dl, respectively). H-HDF maintains a noticeable increase in dialytic efficacy with good cardiovascular stability, but the goal of a significant reduction in the time of treatment can no longer be obtained. PMID:8524496

  11. Biochemical properties of full-length hepatitis C virus RNA-dependent RNA polymerase expressed in insect cells.

    PubMed

    Choi, Han-Byul; Kim, Yeon-Gu; Oh, Jong-Won

    2003-12-31

    The hepatitis C virus (HCV) RNA-dependent RNA polymerase, NS5B protein, is the key viral enzyme responsible for replication of the HCV viral RNA genome. Although several full-length and truncated forms of the HCV NS5B proteins have been expressed previously in insect cells, contamination of host terminal transferase (TNTase) has hampered analysis of the RNA synthesis initiation mechanism using natural HCV RNA templates. We have expressed the HCV NS5B protein in insect cells using a recombinant baculovirus and purified it to near homogeneity without contaminated TNTase. The highly purified recombinant HCV NS5B was capable of copying 9.6-kb full-length HCV RNA template, and mini-HCV RNA carrying both 5'- and 3'-untranslated regions (UTRs) of the HCV genome. In the absence of a primer, and other cellular and viral factors, the NS5B could elongate over HCV RNA templates, but the synthesized products were primarily in the double stranded form, indicating that no cyclic replication occurred with NS5B alone. RNA synthesis using RNA templates representing the 3'-end region of HCV minus-strand RNA and the X-RNA at the 3'-end of HCV RNA genome was also initiated de novo. No formation of dimer-size self-primed RNA products resulting from extension of the 3'-end hydroxyl group was observed. Despite the internal de novo initiation from the X-RNA, the NS5B could not initiate RNA synthesis from the internal region of oligouridylic acid (U)(20), suggesting that HCV RNA polymerase initiates RNA synthesis from the selected region in the 3'-UTR of HCV genome.

  12. Therapeutic use of recombinant methionyl human leptin.

    PubMed

    Vatier, Camille; Gautier, Jean-François; Vigouroux, Corinne

    2012-10-01

    Recombinant methionyl human leptin (r-metHuLeptin) was first used as a replacement therapy in patients bearing inactivating mutations in the leptin gene. In this indication, it was shown since 1999 to be very efficient in inducing a dramatic weight loss in rare children and adults with severe obesity due to the lack of leptin. These first clinical trials clearly showed that r-metHuLeptin acted centrally to reduce food intake, inducing loss of fat mass, and to correct metabolic alterations, immune and neuroendocrine defects. A few years later, r-metHuLeptin was also shown to reverse the metabolic complications associated with lipodystrophic syndromes, due to primary defects in fat storage, which induce leptin deficiency. The beneficial effects, which could be mediated by central and/or peripheral mechanisms, are thought to mainly involve the lowering effects of leptin on ectopic lipid storage, in particular in liver and muscles, reducing insulin resistance. Interestingly, r-metHuLeptin therapy also reversed the hypothalamic-pituitary-gonadal axis dysfunctions associated with hypothalamic amenorrhea. However, if r-metHuLeptin treatment has been shown to be dramatically efficient in leptin-deficient states, its very limited effect in inducing weight loss in common obese patients revealed that, in patients with adequate leptin secretion, mechanisms of leptin resistance and leptin tolerance prevent r-metHuLeptin from inducing any additional effects. This review will present the current data about the effects of r-metHuLeptin therapy in humans, and discuss the recent perspectives of this therapy in new indications.

  13. Near full-length HIV type 1M genomic sequences from Cameroon

    PubMed Central

    Tongo, Marcel; Dorfman, Jeffrey R.; Abrahams, Melissa-Rose; Mpoudi-Ngole, Eitel; Burgers, Wendy A.; Martin, Darren P.

    2015-01-01

    Background: Cameroon is the country in which HIV-1 group M (HIV-1M) likely originated and is today a major hotspot of HIV-1M genetic diversity. It remains unclear, however, whether the highly divergent HIV-1M lineages found in this country arose during the earliest phases of the global HIV-1M epidemic, or whether they arose more recently as a result of recombination events between globally circulating HIV-1M lineages. Methodology: To differentiate between these two possibilities, we performed phylogenetic analyses of the near full genome sequences of nine newly sequenced divergent HIV-1M isolates and 15 previously identified, apparently unique recombinant forms (URFs) from Cameroon. Results: Although two of the new genome sequences were clearly classifiable within subtype G, the remaining seven were highly divergent and phylogenetically branched either outside of, or very near the bases of clades containing the well characterised globally circulating viral lineages that they were most closely related to. Recombination analyses further revealed that these divergent viruses were likely complex URFs. We show, however that substantial portions (>1 Kb) of three of the new genome sequences and 15 of the previously characterised Cameroonian URFs have apparently been derived from divergent parental viruses that branch phylogenetically near the bases of the major HIV-1M clades. Conclusions and implications: Our analyses indicate the presence in Cameroon of contemporary descendants of numerous early-diverging HIV-1M lineages. Further efforts to sample and sequence viruses from such lineages could be crucial both for retracing the earliest evolutionary steps during the emergence of HIV-1M in humans, and accurately reconstructing the ancestral sequences of the major globally circulating HIV-1M lineages. PMID:26354000

  14. rhEPO (recombinant human eosinophil peroxidase): expression in Pichia pastoris and biochemical characterization

    PubMed Central

    Ciaccio, Chiara; Gambacurta, Alessandra; Sanctis, Giampiero DE; Spagnolo, Domenico; Sakarikou, Christina; Petrella, Giovanni; Coletta, Massimo

    2006-01-01

    A Pichia pastoris expression system has for the first time been successfully developed to produce rhEPO (recombinant human eosinophil peroxidase). The full-length rhEPO coding sequence was cloned into the pPIC9 vector in frame with the yeast α-Factor secretion signal under the transcriptional control of the AOX (acyl-CoA oxidase) promoter, and transformed into P. pastoris strain GS115. Evidence for the production of rhEPO by P. pastoris as a glycosylated dimer precursor of approx. 80 kDa was determined by SDS/PAGE and gel filtration chromatography. Recombinant hEPO undergoes proteolytic processing, similar to that in the native host, to generate two chains of approx. 50 and 20 kDa. A preliminary biochemical characterization of purified rhEPO demonstrated that the spectral and kinetic properties of the recombinant wild-type EPO are comparable with those of the native enzyme and are accompanied by oxidizing activity towards several physiological anionic substrates such as SCN−, Br− and Cl−. On the basis of the estimated Km and kcat values it is evident that the pseudohalide SCN− is the most specific substrate for rhEPO, consistent with the catalytic properties of other mammalian EPOs purified from blood. PMID:16396635

  15. Optimizing Production of Antigens and Fabs in the Context of Generating Recombinant Antibodies to Human Proteins.

    PubMed

    Zhong, Nan; Loppnau, Peter; Seitova, Alma; Ravichandran, Mani; Fenner, Maria; Jain, Harshika; Bhattacharya, Anandi; Hutchinson, Ashley; Paduch, Marcin; Lu, Vincent; Olszewski, Michal; Kossiakoff, Anthony A; Dowdell, Evan; Koide, Akiko; Koide, Shohei; Huang, Haiming; Nadeem, Vincent; Sidhu, Sachdev S; Greenblatt, Jack F; Marcon, Edyta; Arrowsmith, Cheryl H; Edwards, Aled M; Gräslund, Susanne

    2015-01-01

    We developed and optimized a high-throughput project workflow to generate renewable recombinant antibodies to human proteins involved in epigenetic signalling. Three different strategies to produce phage display compatible protein antigens in bacterial systems were compared, and we found that in vivo biotinylation through the use of an Avi tag was the most productive method. Phage display selections were performed on 265 in vivo biotinylated antigen domains. High-affinity Fabs (<20nM) were obtained for 196. We constructed and optimized a new expression vector to produce in vivo biotinylated Fabs in E. coli. This increased average yields up to 10-fold, with an average yield of 4 mg/L. For 118 antigens, we identified Fabs that could immunoprecipitate their full-length endogenous targets from mammalian cell lysates. One Fab for each antigen was converted to a recombinant IgG and produced in mammalian cells, with an average yield of 15 mg/L. In summary, we have optimized each step of the pipeline to produce recombinant antibodies, significantly increasing both efficiency and yield, and also showed that these Fabs and IgGs can be generally useful for chromatin immunoprecipitation (ChIP) protocols. PMID:26437229

  16. Optimizing Production of Antigens and Fabs in the Context of Generating Recombinant Antibodies to Human Proteins

    PubMed Central

    Zhong, Nan; Loppnau, Peter; Seitova, Alma; Ravichandran, Mani; Fenner, Maria; Jain, Harshika; Bhattacharya, Anandi; Hutchinson, Ashley; Paduch, Marcin; Lu, Vincent; Olszewski, Michal; Kossiakoff, Anthony A.; Dowdell, Evan; Koide, Akiko; Koide, Shohei; Huang, Haiming; Nadeem, Vincent; Sidhu, Sachdev S.; Greenblatt, Jack F.; Marcon, Edyta; Arrowsmith, Cheryl H.; Edwards, Aled M.; Gräslund, Susanne

    2015-01-01

    We developed and optimized a high-throughput project workflow to generate renewable recombinant antibodies to human proteins involved in epigenetic signalling. Three different strategies to produce phage display compatible protein antigens in bacterial systems were compared, and we found that in vivo biotinylation through the use of an Avi tag was the most productive method. Phage display selections were performed on 265 in vivo biotinylated antigen domains. High-affinity Fabs (<20nM) were obtained for 196. We constructed and optimized a new expression vector to produce in vivo biotinylated Fabs in E. coli. This increased average yields up to 10-fold, with an average yield of 4 mg/L. For 118 antigens, we identified Fabs that could immunoprecipitate their full-length endogenous targets from mammalian cell lysates. One Fab for each antigen was converted to a recombinant IgG and produced in mammalian cells, with an average yield of 15 mg/L. In summary, we have optimized each step of the pipeline to produce recombinant antibodies, significantly increasing both efficiency and yield, and also showed that these Fabs and IgGs can be generally useful for chromatin immunoprecipitation (ChIP) protocols. PMID:26437229

  17. Complete genome sequence analysis of novel human bocavirus reveals genetic recombination between human bocavirus 2 and human bocavirus 4.

    PubMed

    Khamrin, Pattara; Okitsu, Shoko; Ushijima, Hiroshi; Maneekarn, Niwat

    2013-07-01

    Epidemiological surveillance of human bocavirus (HBoV) was conducted on fecal specimens collected from hospitalized children with diarrhea in Chiang Mai, Thailand in 2011. By partial sequence analysis of VP1 gene, an unusual strain of HBoV (CMH-S011-11), was initially identified as HBoV4. The complete genome sequence of CMH-S011-11 was performed and analyzed further to clarify whether it was a recombinant strain or a new HBoV variant. Analysis of complete genome sequence revealed that the coding sequence starting from NS1, NP1 to VP1/VP2 was 4795 nucleotides long. Interestingly, the nucleotide sequence of NS1 gene of CMH-S011-11 was most closely related to the HBoV2 reference strains detected in Pakistan, which contradicted to the initial genotyping result of the partial VP1 region in the previous study. In addition, comparison of NP1 nucleotide sequence of CMH-S011-11 with those of other HBoV1-4 reference strains also revealed a high level of sequence identity with HBoV2. On the other hand, nucleotide sequence of VP1/VP2 gene of CMH-S011-11 was most closely related to those of HBoV4 reference strains detected in Nigeria. The overall full-length sequence analysis revealed that this CMH-S011-11 was grouped within HBoV4 species, but located in a separate branch from other HBoV4 prototype strains. Recombination analysis revealed that CMH-S011-11 was the result of recombination between HBoV2 and HBoV4 strains with the break point located near the start codon of VP2.

  18. Expression of Functional Recombinant Human Tissue Transglutaminase (TG2) Using the Bac-to-Bac Baculovirus Expression System

    PubMed Central

    Yazdani, Yaghoub; Azari, Shahram; Kalhor, Hamid Reza

    2016-01-01

    Purpose: Tissue transglutaminase (TG2) is a unique multifunctional enzyme. The enzyme possesses enzymatic activities such as transamidation/crosslinking and non-enzymatic functions such as cell migration and signal transduction. TG2 has been shown to be involved in molecular mechanisms of cancers and several neurodegenerative diseases such as Alzheimer’s disease. The present study aimed at cloning and expression of full length human TG2 in Bac-to-Bac baculovirus expression system and evaluation of its activity. Methods: pFastBac HTA donor vector containing coding sequence of human TG2 was constructed. The construct was transformed to DH10Bac for generating recombinant bacmid. The verified bacmid was transfected to insect cell line (Sf9). Expression of recombinant TG2 was examined by RT-PCR, SDS-PAGE and western blot analysis. Functional analysis was evaluated by fluorometric assay and gel electrophoresis. Results: Recombinant bacmid was verified by amplification of a band near to 4500 bp. Expression analysis showed that the enzyme was expressed as a protein with a molecular weight near 80 kDa. Western blot confirmed the presence of TG2 and the activity assays including flurometric assay indicated that the recombinant TG2 was functional. The electrophoresis assay conformed that the expressed TG2 was the indeed capable of crosslinking in the presence of physiological concentration calcium ions. Conclusion: Human TG2 was expressed efficiently in the active biological form in the Bac-to-Bac baculovirus expression system. The expressed enzyme could be used for medical diagnostic, or studies which aim at finding novel inhibitors of the enzymes . To best of our knowledge, this is probably the first report of expression of full length human tissue transglutaminase (TG2) using the Bac-to-Bac expression system. PMID:27123417

  19. Antipyretic actions of human recombinant lipocortin-1.

    PubMed

    Davidson, J; Flower, R J; Milton, A S; Peers, S H; Rotondo, D

    1991-01-01

    The effect of human recombinant lipocortin-1 (hrLC-1) on the pyrogenic actions of the synthetic polyribonucleotide polyinosinic:polycytidylic acid (poly I:C) has been studied in conscious rabbits. Poly I:C (2.5 micrograms kg-1) given i.v. produced a biphasic fever with a first peak after 90-105 min and a second peak between 225-240 min. hrLC-1 (50 micrograms kg-1) given i.v. simultaneously with the poly I:C produced a significant reduction in the febrile response but without complete suppression. The thermal response index over 5 h (TRI5) was 4.69 +/- 0.51 for poly I:C given with saline and the TRI5 for poly I:C given with hrLC-1 was 2.66 +/- 0.45 (values are for n = 5 +/- s.e. mean, P less than 0.05). hrLC-1 administered alone had no effect on body temperature and its antipyretic activity was lost on heating. In a separate series of experiments 1 h pretreatment with dexamethasone (1 mg kg-1) given i.v. reduced the pyrogenic response (TRI5) to poly I:C (2.5 micrograms kg-1) from 4.87 +/- 0.54 without dexamethasone to 2.00 +/- 0.25 (n = 5, P less than 0.05) and dexamethasone given alone had no effect on body temperature. These data demonstrate that LC-1 possesses antipyretic actions and raises the possibility that the antipyretic actions of dexamethasone are mediated through the induction of LC-1.

  20. High-Throughput Fluorescent Tagging of Full-Length Arabidopsis Gene Products in Planta1

    PubMed Central

    Tian, Guo-Wei; Mohanty, Amitabh; Chary, S. Narasimha; Li, Shijun; Paap, Brigitte; Drakakaki, Georgia; Kopec, Charles D.; Li, Jianxiong; Ehrhardt, David; Jackson, David; Rhee, Seung Y.; Raikhel, Natasha V.; Citovsky, Vitaly

    2004-01-01

    We developed a high-throughput methodology, termed fluorescent tagging of full-length proteins (FTFLP), to analyze expression patterns and subcellular localization of Arabidopsis gene products in planta. Determination of these parameters is a logical first step in functional characterization of the approximately one-third of all known Arabidopsis genes that encode novel proteins of unknown function. Our FTFLP-based approach offers two significant advantages: first, it produces internally-tagged full-length proteins that are likely to exhibit native intracellular localization, and second, it yields information about the tissue specificity of gene expression by the use of native promoters. To demonstrate how FTFLP may be used for characterization of the Arabidopsis proteome, we tagged a series of known proteins with diverse subcellular targeting patterns as well as several proteins with unknown function and unassigned subcellular localization. PMID:15141064

  1. Genetic characterization of near full length SIVdrl genomes from four captive drills (Mandrillus leucophaeus).

    PubMed

    Dietrich, Ursula; Landersz, Margot; Stahl-Hennig, Christiane; Geiger, Christina; Foley, Brian T

    2015-03-01

    We sequenced near full length SIVdrl genomes from four captive drills (Mandrillus leucophaeus). All four animals were born in captivity in German zoos. Although serologically SIV negative before acquisition in zoo A in 2008 and 2009, during a routine analysis all four animals were determined to be SIV antibody positive in 2011. Comparisons of the four new SIVdrl sequences showed high identity among each other (90.7-97.7% in env) and to the only published full length sequence SIVdrl FAO (90.5-92.8% in env), which is also derived from a captive drill. SIVdrl infections seem to be highly prevalent in captive drills, probably resulting from frequent animal transfers between the zoos in an effort to maintain this highly endangered species and its genetic diversity. This should be kept in mind as SIVdrl may be transmitted to uninfected animals in open groups and potentially also to animal keepers having contact with these nonhuman primates.

  2. The syntheiss of high yields of full-length reverse transcripts of globin mRNA.

    PubMed Central

    Friedman, E Y; Rosbash, M

    1977-01-01

    Conditions have been determined under which reverse transcriptase catalyzes the synthesis of the high yields of full length complementary deoxyribonucleic acid (cDNA). These conditions depend not only on the cencentration of deoxynucleoside triphosphates (1) but also on the concentration of reverse transcriptase. An analysis of the kinetics of cDNA synthesis and the size of cDNA synthesized as a function of time under different conditions indicates that the mechanism of action of reverse transcriptase is partially distributive. This accounts for the necessity of a high enzyme concentration to obtain high yields of full length cDNA. Additional experiments indicate that the yield of cDNA is limited by the fact that the template mRNA is rapidly inactivated. This is most likely due to the fact that the product cDNA is hydrogen bonded to the template mRNA during synthesis. Images PMID:73163

  3. Full-length high-temperature severe fuel damage test No. 1

    SciTech Connect

    Rausch, W.N.; Hesson, G.M.; Pilger, J.P.; King, L.L.; Goodman, R.L.; Panisko, F.E.

    1993-08-01

    This report describes the first full-length high-temperature test (FLHT-1) performed by Pacific Northwest Laboratory (PNL) in the National Research Universal (NRU) reactor at Chalk River, Ontario, Canada. The test is part of a series of experiments being performed for the NRC as a part of their Severe Fuel Damage Program and is one of several planned for PNL`s Coolant Boilaway and Damage Progression Program. The report summarizes the test design and test plan. it also provides a summary and discussion of the data collected during the test and of the photos taken during the post-test examination. All objectives for the test were met. The key objective was to demonstrate that severe fuel damage tests on full-length fuel bundles can be safely conducted in the NRU reactor.

  4. Pulsed-field gel electrophoresis for isolation of full-length phytoplasma chromosomes from plants.

    PubMed

    Marcone, Carmine

    2013-01-01

    Pulsed-field gel electrophoresis (PFGE) is a powerful technique for genomic studies of unculturable plant-pathogenic phytoplasmas, which enables separation of full-length phytoplasma chromosomes from contaminating host plant nucleic acids. The PFGE method described here involves isolation of phytoplasmal DNA from high-titer phytoplasma-infected herbaceous plants using a phytoplasma enrichment procedure, embedding of phytoplasma chromosomes in agarose blocks, and separation of entire phytoplasma chromosomes from contaminating host plant nucleic acids by electrophoresis. Full-length phytoplasma chromosomes are resolved as single, discrete bands in the gel. The identity of these bands can be confirmed by Southern blot hybridization using a ribosomal DNA fragment as a probe. The method does not utilize gamma-irradiation to linearize phytoplasma chromosomes prior to electrophoresis. PMID:22987433

  5. Recombinant human antithrombin III: rhATIII.

    PubMed

    2004-01-01

    GTC Biotherapeutics (formerly Genzyme Transgenics Corporation) is developing a transgenic form of antithrombin III known as recombinant human antithrombin III [rhATIII]. It is produced by inserting human DNA into the cells of goats so that the targeted protein is excreted in the milk of the female offspring. The transgenic goats have been cloned in collaboration with the Louisiana State University Agriculture Center. GTC Biotherapeutics is conducting clinical trials of rhATIII in coagulation disorders. rhATIII is believed to be both safer and more cost-effective than the currently available plasma-derived product. rhATIII is also being investigated in cancer and acute lung injury. Genzyme Transgenics Corporation, originally a subsidiary of Genzyme Corporation, changed its name to GTC Biotherapeutics in June 2002; it is no longer a subsidiary of Genzyme Corporation. GTC Biotherapeutics is seeking partners for the commercialisation of rhATIII. Restructuring of GTC Biotherapeutics to support its commercialisation programmes was announced in February 2004. Genzyme Transgenics Corporation was developing rhATIII in association with Genzyme General (Genzyme Corporation) in the ATIII LLC joint venture, but in November 2000 a letter of intent was signed for the reacquisition of the rights by Genzyme Transgenics Corporation. It was announced in February 2001 that this reacquisition was not going to be completed and that the development of rhATIII was to continue with ATIII LLC. However, in July 2001, Genzyme Transgenics Corporation reacquired all the rights in the transgenic antithrombin III programme. SMI Genzyme Ltd, a joint venture between Sumitomo Metal Industries, Japan, and Genzyme Transgenics Corporation, USA, was set up to fund development of transgenic antithrombin III in Asia. However, in October 2000, Genzyme Transgenics Corporation reacquired, from Sumitomo Metal Industries, the rights to its technology for production of medicines from milk in 18 Asian countries

  6. Detection and Full-Length Genome Characterization of Novel Canine Vesiviruses

    PubMed Central

    Pinto, Pierfrancesco; Lorusso, Eleonora; Di Martino, Barbara; Wang, Qiuhong; Larocca, Vittorio; Cavalli, Alessandra; Camero, Michele; Decaro, Nicola; Bányai, Krisztián; Saif, Linda J.; Buonavoglia, Canio

    2015-01-01

    Vesiviruses have been detected in several animal species and as accidental contaminants of cells. We detected vesiviruses in asymptomatic kennel dogs (64.8%) and symptomatic (1.1%) and asymptomatic (3.5%) household dogs in Italy. The full-length genome of 1 strain, Bari/212/07/ITA, shared 89%–90% nt identity with vesiviruses previously detected in contaminated cells. PMID:26196075

  7. Detection and Full-Length Genome Characterization of Novel Canine Vesiviruses.

    PubMed

    Martella, Vito; Pinto, Pierfrancesco; Lorusso, Eleonora; Di Martino, Barbara; Wang, Qiuhong; Larocca, Vittorio; Cavalli, Alessandra; Camero, Michele; Decaro, Nicola; Bányai, Krisztián; Saif, Linda J; Buonavoglia, Canio

    2015-08-01

    Vesiviruses have been detected in several animal species and as accidental contaminants of cells. We detected vesiviruses in asymptomatic kennel dogs (64.8%) and symptomatic (1.1%) and asymptomatic (3.5%) household dogs in Italy. The full-length genome of 1 strain, Bari/212/07/ITA, shared 89%-90% nt identity with vesiviruses previously detected in contaminated cells. PMID:26196075

  8. Full-length single-stranded PCR product mediated chromosomal integration in intact Bacillus subtilis.

    PubMed

    Wen, Sai; Yang, Jianguo; Tan, Tianwei

    2013-03-01

    The research introduced a novel method for gene replacement in intact Bacillus subtilis by employing full-length single-stranded (ss) DNA constructs and electro-transformation. 5' phosphorothioated lagging-strand targeting ssDNA construct was demonstrated to be highly recombinogenic, and the utility of the system was illustrated by introducing a heterologous lipase YlLip2 into amyE locus of B. subtilis through our method.

  9. [Isolation, identification and full-length genome sequence analysis of encephalomyocarditis virus from local aardvarks].

    PubMed

    Chang, Hong-Tao; Liu, Hui-Min; He, Xiu-Yuan; Zhao, Jun; Chen, Lu; Wang, Xin-Wei; Yang, Xia; Yao, Hui-Xia; Wang, Chuan-Qing

    2014-07-01

    Encephalomyocarditis virus (EMCV) is a natural epidemic zoonotic pathogen. However, no reports have been published regarding the isolation, identification and full-length genome of EMCV from a local aardvark population. In present study, an EMCV isolate HNXX13 was isolated from aardvarks named Huainan-pig in Henan Province. The systematic identification, full-length genome sequencing and molecular characteristic analysis of the isolate HNXX13 were conducted. The result showed that the isolate was spherical with a diameter of 24-30 nm, neither heat- nor acid-resistant, sensitive to trypsin, insensitive to chloroform, not protected by bivalent cationic, and the specific fluorescence was observed in the cytoplasm of BHK-21 cells infected with the isolate by using indirect fluorescence assay. The full-length genome of EMCV HNXX13 generated a 7 725bp sequence (GenBank: F771002), with 81.0%-99.9% nucleotide identity to reference strains from different animals, and 99.5% with a Chinese reference strain isolated earlier from a commercial pig herd. The phylogenetic tree based on the full-length genome and ORF sequences identified that all EMCV strains were divided into three groups G1, G2 and G3, and strain HNXX13 belonging to the G1 group with other Chinese reference strains. The result also identified that this EMCV infection could cause severe clinical signs in a local aardvark population, and enriches the molecular epidemiological data of EMCV in China. Regional differences exist in EMCV genome and transmission is limited within a certain area. However, the cross-infection and transmission of EMCV between aardvark and mice appears most likely. Mutations have occurred in some amino acids of EMCV strain HNXX13 during the transmission in local aardvark herd and these mutations might make the virus easier to infect the aardvark. PMID:25272589

  10. [Isolation, identification and full-length genome sequence analysis of encephalomyocarditis virus from local aardvarks].

    PubMed

    Chang, Hong-Tao; Liu, Hui-Min; He, Xiu-Yuan; Zhao, Jun; Chen, Lu; Wang, Xin-Wei; Yang, Xia; Yao, Hui-Xia; Wang, Chuan-Qing

    2014-07-01

    Encephalomyocarditis virus (EMCV) is a natural epidemic zoonotic pathogen. However, no reports have been published regarding the isolation, identification and full-length genome of EMCV from a local aardvark population. In present study, an EMCV isolate HNXX13 was isolated from aardvarks named Huainan-pig in Henan Province. The systematic identification, full-length genome sequencing and molecular characteristic analysis of the isolate HNXX13 were conducted. The result showed that the isolate was spherical with a diameter of 24-30 nm, neither heat- nor acid-resistant, sensitive to trypsin, insensitive to chloroform, not protected by bivalent cationic, and the specific fluorescence was observed in the cytoplasm of BHK-21 cells infected with the isolate by using indirect fluorescence assay. The full-length genome of EMCV HNXX13 generated a 7 725bp sequence (GenBank: F771002), with 81.0%-99.9% nucleotide identity to reference strains from different animals, and 99.5% with a Chinese reference strain isolated earlier from a commercial pig herd. The phylogenetic tree based on the full-length genome and ORF sequences identified that all EMCV strains were divided into three groups G1, G2 and G3, and strain HNXX13 belonging to the G1 group with other Chinese reference strains. The result also identified that this EMCV infection could cause severe clinical signs in a local aardvark population, and enriches the molecular epidemiological data of EMCV in China. Regional differences exist in EMCV genome and transmission is limited within a certain area. However, the cross-infection and transmission of EMCV between aardvark and mice appears most likely. Mutations have occurred in some amino acids of EMCV strain HNXX13 during the transmission in local aardvark herd and these mutations might make the virus easier to infect the aardvark.

  11. Full-length high-temperature severe fuel damage test No. 2. Final safety analysis

    SciTech Connect

    Hesson, G.M.; Lombardo, N.J.; Pilger, J.P.; Rausch, W.N.; King, L.L.; Hurley, D.E.; Parchen, L.J.; Panisko, F.E.

    1993-09-01

    Hazardous conditions associated with performing the Full-Length High- Temperature (FLHT). Severe Fuel Damage Test No. 2 experiment have been analyzed. Major hazards that could cause harm or damage are (1) radioactive fission products, (2) radiation fields, (3) reactivity changes, (4) hydrogen generation, (5) materials at high temperature, (6) steam explosion, and (7) steam pressure pulse. As a result of this analysis, it is concluded that with proper precautions the FLHT- 2 test can be safely conducted.

  12. cDNA Library Enrichment of Full Length Transcripts for SMRT Long Read Sequencing

    PubMed Central

    Hartwig, Benjamin; Reinhardt, Richard; Schneeberger, Korbinian

    2016-01-01

    The utility of genome assemblies does not only rely on the quality of the assembled genome sequence, but also on the quality of the gene annotations. The Pacific Biosciences Iso-Seq technology is a powerful support for accurate eukaryotic gene model annotation as it allows for direct readout of full-length cDNA sequences without the need for noisy short read-based transcript assembly. We propose the implementation of the TeloPrime Full Length cDNA Amplification kit to the Pacific Biosciences Iso-Seq technology in order to enrich for genuine full-length transcripts in the cDNA libraries. We provide evidence that TeloPrime outperforms the commonly used SMARTer PCR cDNA Synthesis Kit in identifying transcription start and end sites in Arabidopsis thaliana. Furthermore, we show that TeloPrime-based Pacific Biosciences Iso-Seq can be successfully applied to the polyploid genome of bread wheat (Triticum aestivum) not only to efficiently annotate gene models, but also to identify novel transcription sites, gene homeologs, splicing isoforms and previously unidentified gene loci. PMID:27327613

  13. Crystal structure of full-length KcsA in its closed conformation

    SciTech Connect

    Uysal, Serdar; Vásquez, Valeria; Tereshko, Valentina; Esaki, Kaori; Fellouse, Frederic A.; Sidhu, Sachdev S.; Koide, Shohei; Perozo, Eduardo; Kossiakoff, Anthony; UC; Genentech

    2009-05-21

    KcsA is a proton-activated, voltage-modulated K(+) channel that has served as the archetype pore domain in the Kv channel superfamily. Here, we have used synthetic antigen-binding fragments (Fabs) as crystallographic chaperones to determine the structure of full-length KcsA at 3.8 A, as well as that of its isolated C-terminal domain at 2.6 A. The structure of the full-length KcsA-Fab complex reveals a well-defined, 4-helix bundle that projects approximately 70 A toward the cytoplasm. This bundle promotes a approximately 15 degree bending in the inner bundle gate, tightening its diameter and shifting the narrowest point 2 turns of helix below. Functional analysis of the full-length KcsA-Fab complex suggests that the C-terminal bundle remains whole during gating. We suggest that this structure likely represents the physiologically relevant closed conformation of KcsA.

  14. cDNA Library Enrichment of Full Length Transcripts for SMRT Long Read Sequencing.

    PubMed

    Cartolano, Maria; Huettel, Bruno; Hartwig, Benjamin; Reinhardt, Richard; Schneeberger, Korbinian

    2016-01-01

    The utility of genome assemblies does not only rely on the quality of the assembled genome sequence, but also on the quality of the gene annotations. The Pacific Biosciences Iso-Seq technology is a powerful support for accurate eukaryotic gene model annotation as it allows for direct readout of full-length cDNA sequences without the need for noisy short read-based transcript assembly. We propose the implementation of the TeloPrime Full Length cDNA Amplification kit to the Pacific Biosciences Iso-Seq technology in order to enrich for genuine full-length transcripts in the cDNA libraries. We provide evidence that TeloPrime outperforms the commonly used SMARTer PCR cDNA Synthesis Kit in identifying transcription start and end sites in Arabidopsis thaliana. Furthermore, we show that TeloPrime-based Pacific Biosciences Iso-Seq can be successfully applied to the polyploid genome of bread wheat (Triticum aestivum) not only to efficiently annotate gene models, but also to identify novel transcription sites, gene homeologs, splicing isoforms and previously unidentified gene loci. PMID:27327613

  15. A procedure for selective full length cDNA cloning of specific RNA species.

    PubMed Central

    Schmid, A; Cattaneo, R; Billeter, M A

    1987-01-01

    A method allowing routine establishment of full length and functionally competent cDNA clones of particular mRNAs from small preparations of polyadenylated RNA is described. Pairs of synthetic primers are used for first and second strand synthesis. They include sequences complementary to the 3' terminal regions of the mRNAs and of the full length first cDNA strands, respectively and bear a few additional nucleotides at their 5' ends. After synthesis of both cDNA strands in one tube, they are precisely trimmed back with T4 DNA polymerase in presence of only two nucleoside triphosphates, to yield sticky ends fitting into a vector plasmid cleaved with two restriction endonucleases. The procedure was first applied to the simultaneous cloning of all five major measles virus (MV) mRNA species from a persistently infected cell line. Two thirds of all clones contained full length MV-specific cDNAs. Screening of less than 200 clones was sufficient to obtain several independent clones corresponding to each mRNA, except for gene F which was represented only once. Images PMID:2884622

  16. Pleiotrophin Gene Therapy for Peripheral Ischemia: Evaluation of Full-Length and Truncated Gene Variants

    PubMed Central

    Fang, Qizhi; Mok, Pamela Y.; Thomas, Anila E.; Haddad, Daniel J.; Saini, Shereen A.; Clifford, Brian T.; Kapasi, Neel K.; Danforth, Olivia M.; Usui, Minako; Ye, Weisheng; Luu, Emmy; Sharma, Rikki; Bartel, Maya J.; Pathmanabhan, Jeremy A.; Ang, Andrew A. S.; Sievers, Richard E.; Lee, Randall J.; Springer, Matthew L.

    2013-01-01

    Pleiotrophin (PTN) is a growth factor with both pro-angiogenic and limited pro-tumorigenic activity. We evaluated the potential for PTN to be used for safe angiogenic gene therapy using the full length gene and a truncated gene variant lacking the domain implicated in tumorigenesis. Mouse myoblasts were transduced to express full length or truncated PTN (PTN or T-PTN), along with a LacZ reporter gene, and injected into mouse limb muscle and myocardium. In cultured myoblasts, PTN was expressed and secreted via the Golgi apparatus, but T-PTN was not properly secreted. Nonetheless, no evidence of uncontrolled growth was observed in cells expressing either form of PTN. PTN gene delivery to myocardium, and non-ischemic skeletal muscle, did not result in a detectable change in vascularity or function. In ischemic hindlimb at 14 days post-implantation, intramuscular injection with PTN-expressing myoblasts led to a significant increase in skin perfusion and muscle arteriole density. We conclude that (1) delivery of the full length PTN gene to muscle can be accomplished without tumorigenesis, (2) the truncated PTN gene may be difficult to use in a gene therapy context due to inefficient secretion, (3) PTN gene delivery leads to functional benefit in the mouse acute ischemic hindlimb model. PMID:23630585

  17. Hormone Binding to Recombinant Estrogen Receptors from Human, Alligator, Quail, Salamander, and Fathead Minnow

    EPA Science Inventory

    In this work, a 96-well plate estrogen receptor binding assay was developed to facilitate the direct comparison of chemical binding to full-length recombinant estrogen receptors across vertebrate classes. Receptors were generated in a baculovirus expression system. This approach ...

  18. Posturographic stabilisation of healthy subjects exposed to full-length mirror image is inversely related to body-image preoccupations.

    PubMed

    Galeazzi, Gian Maria; Monzani, Daniele; Gherpelli, Chiara; Covezzi, Roberta; Guaraldi, Gian Paolo

    2006-12-13

    Affective states, anxiety in particular, have been shown to negatively influence human postural control efficiency as measured by posturographic means, while exposure to a full-length mirror image of one's body exerts a stabilizing effect. We tested the hypothesis that body image concerns and preoccupations would relate negatively to this stabilising effect. Sixty-six healthy students, who screened negative for psychiatric disorders, completed rating scales for anxiety, depression and body image concerns. Posturography recordings of body sway were taken under three conditions: with eyes closed, looking at a vertical bar and looking at a full-length mirror. The Eyes Open/Mirror Stabilometric Quotient [EOMQ=(sway path with eyes closed/sway path looking at the mirror)x100], an index of how much postural control is stabilized by mirror feedback in comparison to the visual vertical bar condition, was significantly inversely related to body image concerns and preoccupations, and to trait anxiety. This finding confirms the impact of emotional factors on human postural control, which warrant further studies. If confirmed in clinical populations characterized by high levels of body image disturbances, e.g. eating disorders, it could lead to developments in the assessment and monitoring of these patients.

  19. A truncated fragment of Ov-ASP-1 consisting of the core pathogenesis-related-1 (PR-1) domain maintains adjuvanticity as the full-length protein.

    PubMed

    Guo, Jingjing; Yang, Yi; Xiao, Wenjun; Sun, Weilai; Yu, Hong; Du, Lanying; Lustigman, Sara; Jiang, Shibo; Kou, Zhihua; Zhou, Yusen

    2015-04-15

    The Onchocerca volvulus activation-associated secreted protein-1 (Ov-ASP-1) has good adjuvanticity for a variety of antigens and vaccines, probably due to its ability activate antigen-processing cells (APCs). However, the functional domain of Ov-ASP-1 as an adjuvant is not clearly defined. Based on the structural prediction of this protein family, we constructed a 16-kDa recombinant protein of Ov-ASP-1 that contains only the core pathogenesis-related-1 (PR-1) domain (residues 10-153), designated ASPPR. We found that ASPPR exhibits adjuvanticity similar to that of the full-length Ov-ASP-1 (residues 10-220) for various antigens, including ovalbumin (OVA), HBsAg protein antigen, and the HIV peptide 5 (Pep5) antigen, but it is more suitable for vaccine design in ASPPR-antigen fusion proteins, and more stable in PBS than Ov-ASP-1 stored at -70 °C. These results suggest that ASPPR might be the functional region of Ov-ASP-1 as an adjuvant, and therefore could be developed as an adjuvant for human use. PMID:25736195

  20. A truncated fragment of Ov-ASP-1 consisting of the core pathogenesis-related-1 (PR-1) domain maintains adjuvanticity as the full-length protein.

    PubMed

    Guo, Jingjing; Yang, Yi; Xiao, Wenjun; Sun, Weilai; Yu, Hong; Du, Lanying; Lustigman, Sara; Jiang, Shibo; Kou, Zhihua; Zhou, Yusen

    2015-04-15

    The Onchocerca volvulus activation-associated secreted protein-1 (Ov-ASP-1) has good adjuvanticity for a variety of antigens and vaccines, probably due to its ability activate antigen-processing cells (APCs). However, the functional domain of Ov-ASP-1 as an adjuvant is not clearly defined. Based on the structural prediction of this protein family, we constructed a 16-kDa recombinant protein of Ov-ASP-1 that contains only the core pathogenesis-related-1 (PR-1) domain (residues 10-153), designated ASPPR. We found that ASPPR exhibits adjuvanticity similar to that of the full-length Ov-ASP-1 (residues 10-220) for various antigens, including ovalbumin (OVA), HBsAg protein antigen, and the HIV peptide 5 (Pep5) antigen, but it is more suitable for vaccine design in ASPPR-antigen fusion proteins, and more stable in PBS than Ov-ASP-1 stored at -70 °C. These results suggest that ASPPR might be the functional region of Ov-ASP-1 as an adjuvant, and therefore could be developed as an adjuvant for human use.

  1. Recombination increases human immunodeficiency virus fitness, but not necessarily diversity.

    PubMed

    Vijay, N N V; Vasantika; Ajmani, Rahul; Perelson, Alan S; Dixit, Narendra M

    2008-06-01

    Recombination can facilitate the accumulation of mutations and accelerate the emergence of resistance to current antiretroviral therapies for human immunodeficiency virus (HIV) infection. Yet, since recombination can also dissociate favourable combinations of mutations, the benefit of recombination to HIV remains in question. The confounding effects of mutation, multiple infections of cells, random genetic drift and fitness selection that underlie HIV evolution render the influence of recombination difficult to unravel. We developed computer simulations that mimic the genomic diversification of HIV within an infected individual and elucidate the influence of recombination. We find, interestingly, that when the effective population size of HIV is small, recombination increases both the diversity and the mean fitness of the viral population. When the effective population size is large, recombination increases viral fitness but decreases diversity. In effect, recombination enhances (lowers) the likelihood of the existence of multi-drug resistant strains of HIV in infected individuals prior to the onset of therapy when the effective population size is small (large). Our simulations are consistent with several recent experimental observations, including the evolution of HIV diversity and divergence in vivo. The intriguing dependencies on the effective population size appear due to the subtle interplay of drift, selection and epistasis, which we discuss in the light of modern population genetics theories. Current estimates of the effective population size of HIV have large discrepancies. Our simulations present an avenue for accurate determination of the effective population size of HIV in vivo and facilitate establishment of the benefit of recombination to HIV.

  2. Full-Length cDNA Cloning, Molecular Characterization and Differential Expression Analysis of Lysophospholipase I from Ovis aries

    PubMed Central

    Liu, Nan-Nan; Liu, Zeng-Shan; Hu, Pan; Zhang, Ying; Lu, Shi-Ying; Li, Yan-Song; Yang, Yong-Jie; Zhang, Dong-Song; Zhou, Yu; Ren, Hong-Lin

    2016-01-01

    Lysophospholipase I (LYPLA1) is an important protein with multiple functions. In this study, the full-length cDNA of the LYPLA1 gene from Ovis aries (OaLypla1) was cloned using primers and rapid amplification of cDNA ends (RACE) technology. The full-length OaLypla1 was 2457 bp with a 5′-untranslated region (UTR) of 24 bp, a 3′-UTR of 1740 bp with a poly (A) tail, and an open reading frame (ORF) of 693 bp encoding a protein of 230 amino acid residues with a predicted molecular weight of 24,625.78 Da. Phylogenetic analysis showed that the OaLypla1 protein shared a high amino acid identity with LYPLA1 of Bos taurus. The recombinant OaLypla1 protein was expressed and purified, and its phospholipase activity was identified. Monoclonal antibodies (mAb) against OaLypla1 that bound native OaLypla1 were generated. Real-time PCR analysis revealed that OaLypla1 was constitutively expressed in the liver, spleen, lung, kidney, and white blood cells of sheep, with the highest level in the kidney. Additionally, the mRNA levels of OaLypla1 in the buffy coats of sheep challenged with virulent or avirulent Brucella strains were down-regulated compared to untreated sheep. The results suggest that OaLypla1 may have an important physiological role in the host response to bacteria. The function of OaLypla1 in the host response to bacterial infection requires further study in the future. PMID:27483239

  3. The Human Transcript Database: A Catalogue of Full Length cDNA Inserts

    SciTech Connect

    Bouckk John; Michael McLeod; Kim Worley; Richard Gibbs

    1999-09-10

    The BCM Search Launcher provided improved access to web-based sequence analysis services during the granting period and beyond. The Search Launcher web site grouped analysis procedures by function and provided default parameters that provided reasonable search results for most applications. For instance, most queries were automatically masked for repeat sequences prior to sequence database searches to avoid spurious matches. In addition to the web-based access and arrangements that were made using the functions easier, the BCM Search Launcher provided unique value-added applications like the BEAUTY sequence database search tool that combined information about protein domains and sequence database search results to give an enhanced, more complete picture of the reliability and relative value of the information reported. This enhanced search tool made evaluating search results more straight-forward and consistent. Some of the favorite features of the web site are the sequence utilities and the batch client functionality that allows processing of multiple samples from the command line interface. One measure of the success of the BCM Search Launcher is the number of sites that have adopted the models first developed on the site. The graphic display on the BLAST search from the NCBI web site is one such outgrowth, as is the display of protein domain search results within BLAST search results, and the design of the Biology Workbench application. The logs of usage and comments from users confirm the great utility of this resource.

  4. Mapping of the full length and the truncated interleukin-18 receptor alpha in the mouse brain

    PubMed Central

    Alboni, Silvia; Cervia, Davide; Ross, Brendon; Montanari, Claudia; Gonzalez, Alejandro Sanchez; Sanchez-Alavez, Manuel; Marcondes, Maria Cecilia Garibaldi; De Vries, David; Sugama, Shuei; Brunello, Nicoletta; Blom, Joan; Tascedda, Fabio; Conti, Bruno

    2009-01-01

    The cytokine IL-18 acts on the CNS both in physiological and pathological conditions. Its action occurs through the heterodimeric receptor IL-18Rα\\β. To better understand IL-18 central effects, we investigated in the mouse brain the distribution of two IL-18Rα transcripts, a full length and an isoform lacking the intracellular domain hypothesized to be a decoy receptor. Both isoforms were expressed in neurons throughout the brain primarily with overlapping distribution but also with some unique pattern. These data suggest that IL-18 may modulate neuronal functions and that its action may be regulated through expression of a decoy receptor. PMID:19640592

  5. Full-Length High-Temperature Severe Fuel Damage Test No. 5: Final safety analysis

    SciTech Connect

    Lanning, D.D.; Lombardo, N.J.; Panisko, F.E.

    1993-09-01

    This report presents the final safety analysis for the preparation, conduct, and post-test discharge operation for the Full-Length High Temperature Experiment-5 (FLHT-5) to be conducted in the L-24 position of the National Research Universal (NRU) Reactor at Chalk River Nuclear Laboratories (CRNL), Ontario, Canada. The test is sponsored by an international group organized by the US Nuclear Regulatory Commission. The test is designed and conducted by staff from Pacific Northwest Laboratory with CRNL staff support. The test will study the consequences of loss-of-coolant and the progression of severe fuel damage.

  6. [Rapid site-directed mutagenesis on full-length plasmid DNA by using designed restriction enzyme assisted mutagenesis].

    PubMed

    Zhang, Baozhong; Ran, Duoliang; Zhang, Xin; An, Xiaoping; Shan, Yunzhu; Zhou, Yusen; Tong, Yigang

    2009-02-01

    To use the designed restriction enzyme assisted mutagenesis technique to perform rapid site-directed mutagenesis on double-stranded plasmid DNA. The target amino acid sequence was reversely translated into DNA sequences with degenerate codons, resulting in large amount of silently mutated sequences containing various restriction endonucleases (REs). Certain mutated sequence with an appropriate RE was selected as the target DNA sequence for designing mutation primers. The full-length plasmid DNA was amplified with high-fidelity Phusion DNA polymerase and the amplified product was 5' phosphorylated by T4 polynucleotide kinase and then self-ligated. After transformation into an E. coli host the transformants were rapidly screened by cutting with the designed RE. With this strategy we successfully performed the site-directed mutagenesis on an 8 kb plasmid pcDNA3.1-pIgR and recovered the wild-type amino acid sequence of human polymeric immunoglobulin receptor (pIgR). A novel site-directed mutagenesis strategy based on DREAM was developed which exploited RE as a rapid screening measure. The highly efficient, high-fidelity Phusion DNA polymerase was applied to ensure the efficient and faithful amplification of the full-length sequence of a plasmid of up to 8 kb. This rapid mutagenesis strategy avoids using any commercial site-directed mutagenesis kits, special host strains or isotopes. PMID:19459340

  7. [Analysis of genetic recombination between human immunodeficiency virus type 1 (HIV-1) and HIV-2].

    PubMed

    Motomura, Kazushi

    2009-03-01

    It is estimated that one million people are dually infected with Human Immunodeficiency Virus type-I (HIV-1) and type-II (HIV-2) in West Africa and parts of India. HIV-1 and HIV-2 use the same receptor and coreceptors for entry into cells, and thus target the same cell populations in the host. Additionally, we first examined whether RNAs from HIV-1 and HIV-2 can be copackaged into the same virion. Therefore these properties suggest that in the dually infected population, it is likely that some cells can be infected by both HIV-1 and HIV-2, thereby providing opportunities for these two viruses to interact with each other. We constructed recombination assay system for measurement recombination frequencies and analyzed recombination rate between HIV-1 and HIV-2. We used modified near-full-length viruses that each contained a green fluorescent protein gene (gfp) with a different inactivating mutation. Thus, a functional gfp could be reconstituted via recombination, which was used to detect copackaging of HIV-1 and HIV-2 RNAs. In this study, approximately 0.2% of infection events generated the GFP phenotype. Therefore, the appearance of the GFP+ phenotype in the current system is approximately 35-fold lower than that between two homologous HIV-1 or HIV-2 viruses. We then mapped the general structures of the recombinant viruses and characterized the recombination junctions by DNA sequencing. We observed several different recombination patterns including those only had crossovers in gfp. The most common hybrid genomes had heterologous LTRs. Although infrequent, crossovers were also identified in the viral sequences. Such chimeric HIV-1 and HIV-2 viruses have yet to be observed in the infected population. It is unclear whether the lack of observed chimeras is due to the divergence between HIV-1 and HIV-2 being too great for such an event to occur, or whether such events could occur but have not yet been observed. Given the number of coinfected people, the potential for

  8. Full-length high-temperature severe fuel damage test No. 5

    SciTech Connect

    Lanning, D.D.; Lombardo, N.J.; Hensley, W.K.; Fitzsimmons, D.E.; Panisko, F.E.; Hartwell, J.K.

    1993-09-01

    This report describes and presents data from a severe fuel damage test that was conducted in the National Research Universal (NRU) reactor at Chalk River Nuclear Laboratories (CRNL), Ontario, Canada. The test, designated FLHT-5, was the fourth in a series of full-length high-temperature (FLHT) tests on light-water reactor fuel. The tests were designed and performed by staff from the US Department of Energy`s Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute. The test operation and test results are described in this report. The fuel bundle in the FLHT-5 experiment included 10 unirradiated full-length pressurized-water reactor (PWR) rods, 1 irradiated PWR rod and 1 dummy gamma thermometer. The fuel rods were subjected to a very low coolant flow while operating at low fission power. This caused coolant boilaway, rod dryout and overheating to temperatures above 2600 K, severe fuel rod damage, hydrogen generation, and fission product release. The test assembly and its effluent path were extensively instrumented to record temperatures, pressures, flow rates, hydrogen evolution, and fission product release during the boilaway/heatup transient. Post-test gamma scanning of the upper plenum indicated significant iodine and cesium release and deposition. Both stack gas activity and on-line gamma spectrometer data indicated significant ({approximately}50%) release of noble fission gases. Post-test visual examination of one side of the fuel bundle revealed no massive relocation and flow blockage; however, rundown of molten cladding was evident.

  9. Shear-Induced Unfolding and Enzymatic Cleavage of Full-Length VWF Multimers.

    PubMed

    Lippok, Svenja; Radtke, Matthias; Obser, Tobias; Kleemeier, Lars; Schneppenheim, Reinhard; Budde, Ulrich; Netz, Roland R; Rädler, Joachim O

    2016-02-01

    Proteolysis of the multimeric blood coagulation protein von Willebrand Factor (VWF) by ADAMTS13 is crucial for prevention of microvascular thrombosis. ADAMTS13 cleaves VWF within the mechanosensitive A2 domain, which is believed to open under shear flow. In this study, we combine fluorescence correlation spectroscopy (FCS) and a microfluidic shear cell to monitor real-time kinetics of full-length VWF proteolysis as a function of shear stress. For comparison, we also measure the Michaelis-Menten kinetics of ADAMTS13 cleavage of wild-type VWF in the absence of shear but partially denaturing conditions. Under shear, ADAMTS13 activity on full-length VWF arises without denaturing agent as evidenced by FCS and gel-based multimer analysis. In agreement with Brownian hydrodynamics simulations, we find a sigmoidal increase of the enzymatic rate as a function of shear at a threshold shear rate γ˙1/2 = 5522/s. The same flow-rate dependence of ADAMTS13 activity we also observe in blood plasma, which is relevant to predict hemostatic dysfunction. PMID:26840720

  10. Full-length genomic characterization and molecular evolution of canine parvovirus in China.

    PubMed

    Zhou, Ling; Tang, Qinghai; Shi, Lijun; Kong, Miaomiao; Liang, Lin; Mao, Qianqian; Bu, Bin; Yao, Lunguang; Zhao, Kai; Cui, Shangjin; Leal, Élcio

    2016-06-01

    Canine parvovirus type 2 (CPV-2) can cause acute haemorrhagic enteritis in dogs and myocarditis in puppies. This disease has become one of the most serious infectious diseases of dogs. During 2014 in China, there were many cases of acute infectious diarrhoea in dogs. Some faecal samples were negative for the CPV-2 antigen based on a colloidal gold test strip but were positive based on PCR, and a viral strain was isolated from one such sample. The cytopathic effect on susceptible cells and the results of the immunoperoxidase monolayer assay, PCR, and sequencing indicated that the pathogen was CPV-2. The strain was named CPV-NY-14, and the full-length genome was sequenced and analysed. A maximum likelihood tree was constructed using the full-length genome and all available CPV-2 genomes. New strains have replaced the original strain in Taiwan and Italy, although the CPV-2a strain is still predominant there. However, CPV-2a still causes many cases of acute infectious diarrhoea in dogs in China. PMID:27038801

  11. Full length parathyroid hormone (1–84) in the treatment of osteoporosis in postmenopausal women

    PubMed Central

    Jódar-Gimeno, Esteban

    2007-01-01

    Objective: To review the pharmacological properties and the available clinical data of full length parathyroid hormone (PTH) in post-menopausal osteoporosis. Sources: A MEDLINE search was completed, together with a review of information obtained from the manufacturer and from the medicine regulatory agencies. Study and data selection: Studies were selected according to relevance and availability. Relevant information (design, objectives, patients’ characteristics, outcomes, adverse events, dosing, etc) was analyzed. Results: Different studies have shown that, when administered intermittently as a subcutaneous injection in the abdomen, PTH increases bone mineral density (BMD) and prevents vertebral fractures. On completion of PTH therapy (up to 24 months), there is evidence that sequential treatment with alendronate is associated with a therapeutic benefit in terms of increase in BMD. Further trials are necessary to determine long-term safety and the role of PTH in combination with other treatments for osteoporosis and the effect of repeated cycles of PTH followed by an anti-catabolic agent. There are currently no completed comparative trials with other osteoporosis treatments. Conclusions: Full length PTH, given intermittently as an abdominal subcutaneous injection, appears to be a safe and efficacious treatment option for high risk osteoporosis. More data are needed to determine its specific role in osteoporosis treatment. PMID:18044089

  12. Gene therapy for colorectal cancer using adenovirus-mediated full-length antibody, cetuximab

    PubMed Central

    Xing, Man; Wang, Xiang; Chi, Yudan; Zhou, Dongming

    2016-01-01

    Cetuximab is a chimeric monoclonal antibody, approved to treat patients with metastatic colorectal cancer (mCRC), head and neck squamous cell carcinoma (HNSCC), non-small-cell lung cancer (NSCLC) for years. It functions by blocking the epidermal growth factor receptor (EGFR) from receiving signals or interacting with other proteins. Although the demand for cetuximab for the treatment of cancer patients in clinics is increasing, the complicated techniques involved and its high cost limit its wide applications. Here, a new, cheaper form of cetuximab was generated for cancer gene therapy. This was achieved by cloning the full-length cetuximab antibody into two serotypes of adenoviral vectors, termed as AdC68-CTB and Hu5-CTB. In vivo studies showed that a single dose of AdC68-CTB or Hu5-CTB induced sustained cetuximab expression and dramatically suppressed tumor growth in NCI-H508– or DiFi-inoculated nude mice. In conclusion, gene therapy using adenovirus expressing full-length cetuximab could be a novel alternative method for the effective treatment of colorectal cancer. PMID:27058423

  13. Structure of the full-length TRPV2 channel by cryo-EM

    PubMed Central

    Huynh, Kevin W.; Cohen, Matthew R.; Jiang, Jiansen; Samanta, Amrita; Lodowski, David T.; Zhou, Z. Hong; Moiseenkova-Bell, Vera Y.

    2016-01-01

    Transient receptor potential (TRP) proteins form a superfamily Ca2+-permeable cation channels regulated by a range of chemical and physical stimuli. Structural analysis of a ‘minimal' TRP vanilloid subtype 1 (TRPV1) elucidated a mechanism of channel activation by agonists through changes in its outer pore region. Though homologous to TRPV1, other TRPV channels (TRPV2–6) are insensitive to TRPV1 activators including heat and vanilloids. To further understand the structural basis of TRPV channel function, we determined the structure of full-length TRPV2 at ∼5 Å resolution by cryo-electron microscopy. Like TRPV1, TRPV2 contains two constrictions, one each in the pore-forming upper and lower gates. The agonist-free full-length TRPV2 has wider upper and lower gates compared with closed and agonist-activated TRPV1. We propose these newly revealed TRPV2 structural features contribute to diversity of TRPV channels. PMID:27021073

  14. Design, fabrication, and testing of an external fuel (UO2), full-length thermionic converter

    NASA Technical Reports Server (NTRS)

    Schock, A.; Raab, B.

    1971-01-01

    The development of a full-length external-fuel thermionic converter for in-pile testing is described. The development program includes out-of-pile performance testing of the fully fueled-converter, using RF-induction heating, before its installation in the in-pile test capsule. The external-fuel converter is cylindrical in shape, and consists of an inner, centrally cooled collector, and an outer emitter surrounded by nuclear fuel. The term full-length denotes that the converter is long enough to extend over the full height of the reactor core. Thus, the converter is not a scaled-down test device, but a full-scale fuel element of the thermionic reactor. The external-fuel converter concept permits a number of different design options, particularly with respect to the fuel composition and shape, and the collector cooling arrangement. The converter described was developed for the Jet Propulsion Laboratory, and is based on their concept for a thermionic reactor with uninsulated collector cooling as previously described. The converter is double-ended, with through-flow cooling, and with ceramic seals and emitter and collector power take-offs at both ends. The design uses a revolver-shaped tungsten emitter body, with the central emitter hole surrounded by six peripheral fuel holes loaded with cylindrical UO2 pellets.

  15. Full-length genomic characterization and molecular evolution of canine parvovirus in China.

    PubMed

    Zhou, Ling; Tang, Qinghai; Shi, Lijun; Kong, Miaomiao; Liang, Lin; Mao, Qianqian; Bu, Bin; Yao, Lunguang; Zhao, Kai; Cui, Shangjin; Leal, Élcio

    2016-06-01

    Canine parvovirus type 2 (CPV-2) can cause acute haemorrhagic enteritis in dogs and myocarditis in puppies. This disease has become one of the most serious infectious diseases of dogs. During 2014 in China, there were many cases of acute infectious diarrhoea in dogs. Some faecal samples were negative for the CPV-2 antigen based on a colloidal gold test strip but were positive based on PCR, and a viral strain was isolated from one such sample. The cytopathic effect on susceptible cells and the results of the immunoperoxidase monolayer assay, PCR, and sequencing indicated that the pathogen was CPV-2. The strain was named CPV-NY-14, and the full-length genome was sequenced and analysed. A maximum likelihood tree was constructed using the full-length genome and all available CPV-2 genomes. New strains have replaced the original strain in Taiwan and Italy, although the CPV-2a strain is still predominant there. However, CPV-2a still causes many cases of acute infectious diarrhoea in dogs in China.

  16. Structural Organization of a Full-Length Gp130/LIF-R Cytokine Receptor Transmembrane Complex

    SciTech Connect

    Skiniotis, G.; Lupardus, P.J.; Martick, M.; Walz, T.; Garcia, K.C.

    2009-05-26

    gp130 is a shared receptor for at least nine cytokines, and can signal either as a homodimer, or as a heterodimer with Leukemia Inhibitory Factor Receptor (LIF-R). Here we biophysically and structurally characterize the full-length, transmembrane form of a quaternary cytokine receptor complex consisting of gp130, LIF-R, the cytokine Ciliary Neurotrophic Factor (CNTF), and its alpha receptor (CNTF-R{alpha}). Thermodynamic analysis indicates that, unlike the cooperative assembly of the symmetric gp130/Interleukin-6/IL-6R{alpha} hexameric complex, CNTF/CNTF-R{alpha} heterodimerizes gp130 and LIF-R via non-cooperative energetics to form an asymmetric 1:1:1:1 complex. Single particle electron microscopic (EM) analysis of the full-length gp130/LIF-R/CNTF-R{alpha}/CNTF quaternary complex elucidates an asymmetric structural arrangement, in which the receptor extracellular and transmembrane segments join as a continuous, rigid unit, poised to sensitively transduce ligand engagement to the membrane-proximal intracellular signaling regions. These studies also enumerate the organizing principles for assembly of the 'tall' class of gp130-family cytokine receptor complexes including LIF, IL-27, IL-12, and others.

  17. Uroporphyrinogen-III synthase: Molecular cloning, nucleotide sequence, expression of a mouse full-length cDNA, and its localization on mouse chromosome 7

    SciTech Connect

    Xu, W.; Desnick, R.J.; Kozak, C.A.

    1995-04-10

    Uroporphyrinogen-III synthase, the fourth enzyme in the heme biosynthetic pathway, is responsible for the conversion of hydroxymethylbilane to the cyclic tetrapyrrole, uroporphyrinogen III. The deficient activity of URO-S is the enzymatic defect in congenital erythropoietic porphyria (CEP), an autosomal recessive disorder. For the generation of a mouse model of CEP, the human URO-S cDNA was used to screen 2 X 10{sup 6} recombinants from a mouse adult liver cDNA library. Ten positive clones were isolated, and dideoxy sequencing of the entire 1.6-kb insert of clone pmUROS-1 revealed 5{prime} and 3{prime} untranslated sequences of 144 and 623 bp, respectively, and an open reading frame of 798 bp encoding a 265-amino-acid polypeptide with a predicted molecular mass of 28,501 Da. The mouse and human coding sequences had 80.5 and 77.8% nucleotide and amino acid identity, respectively. The authenticity of the mouse cDNA was established by expression of the active monomeric enzyme in Escherichia coli. In addition, the analysis of two multilocus genetic crosses localized the mouse gene on chromosome 7, consistent with the mapping of the human gene to a position of conserved synteny on chromosome 10. The isolation, expression, and chromosomal mapping of this full-length cDNA should facilitate studies of the structure and organization of the mouse genomic sequence and the development of a mouse model of CEP for characterization of the disease pathogenesis and evaluation of gene therapy. 38 refs., 1 tab.

  18. Evidence of recombination within human alpha-papillomavirus

    PubMed Central

    Angulo, Manuel; Carvajal-Rodríguez, Antonio

    2007-01-01

    Background Human papillomavirus (HPV) has a causal role in cervical cancer with almost half a million new cases occurring each year. Presence of the carcinogenic HPV is necessary for the development of the invasive carcinoma of the genital tract. Therefore, persistent infection with carcinogenic HPV causes virtually all cervical cancers. Some aspects of the molecular evolution of this virus, as the putative importance of recombination in its evolutionary history, are an opened current question. In addition, recombination could also be a significant issue nowadays since the frequency of co-infection with more than one HPV type is not a rare event and, thus, new recombinant types could be currently being generated. Results We have used human alpha-PV sequences from the public database at Los Alamos National Laboratory to report evidence that recombination may exist in this virus. A model-based population genetic approach was used to infer the recombination signal from the HPV DNA sequences grouped attending to phylogenetic and epidemiological information, as well as to clinical manifestations. Our results agree with recently published ones that use a different methodology to detect recombination associated to the gene L2. In addition, we have detected significant recombination signal in the genes E6, E7, L2 and L1 at different groups, and importantly within the high-risk type HPV16. The method used has recently been shown to be one of the most powerful and reliable procedures to detect the recombination signal. Conclusion We provide new support to the recent evidence of recombination in HPV. Additionally, we performed the recombination estimation assuming the best-fit model of nucleotide substitution and rate variation among sites, of the HPV DNA sequence sets. We found that the gene with recombination in most of the groups is L2 but the highest values were detected in L1 and E6. Gene E7 was recombinant only within the HPV16 type. The topic deserves further study

  19. Infectious foot-and-mouth disease virus derived from a cloned full-length cDNA.

    PubMed

    Zibert, A; Maass, G; Strebel, K; Falk, M M; Beck, E

    1990-06-01

    A full-length cDNA plasmid of foot-and-mouth disease virus has been constructed. RNA synthesized in vitro by means of a bacteriophage SP6 promoter inserted in front of the cDNA led to the production of infectious particles upon transfection of BHK-21 cells. These particles were also found to be highly infectious for primary bovine kidney cells as well as for baby mice. The difficulty in cloning the foot-and-mouth disease virus cytidyl tract in Escherichia coli was circumvented by joining two separate cloned parts, representing the S and L fragments of the genome, and, in a second step, inserting a dC-dG homopolymer. Homopolymeric sequences of up to 25 cytidyl residues did not lead to the production of virus. Replicons containing poly(C) tracts long enough to permit virus replication were first established in yeast cells. One of these constructs could also be maintained in E. coli and was used to produce infectious RNA in vitro. The length of the poly(C) sequence in this cDNA plasmid was 32 nucleotides. However, the poly(C) tracts of two recombinant viruses found in transfected BHK-21 cells were 60 and 80 nucleotides long, respectively. Possible mechanisms leading to the enlargement of the poly(C) tract during virus replication are discussed.

  20. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones.

    PubMed

    Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Söderlund-Venermo, Maria; Young, Neal S; Brown, Kevin E

    2008-05-10

    Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showed no significant differences in ITR or NS regions. In the capsid region, there was a nucleotide sequence difference conferring an amino acid substitution (E176K) in the phospholipase A2-like motif of the VP1-unique (VP1u) region. The recombinant VP1u with the E176K mutation had no catalytic activity as compared with the wild-type. When this mutation was introduced into pB19-M20, infectivity was significantly attenuated, confirming the critical role of this motif. Investigation of the original serum from which pB19-FL was cloned confirmed that the phospholipase mutation was present in the native B19 virus.

  1. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones✰

    PubMed Central

    Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Venermo, Maria S Söderlund; Young, Neal S.; Brown, Kevin E.

    2008-01-01

    Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showed no significant differences in ITR or NS regions. In the capsid region, there was a nucleotide sequence difference conferring an amino acid substitution (E176K) in the phospholipase A2-like motif of the VP1-unique (VP1u) region. The recombinant VP1u with the E176K mutation had no catalytic activity as compared with the wild-type. When this mutation was introduced into pB19-M20, infectivity was significantly attenuated, confirming the critical role of this motif. Investigation of the original serum from which pB19-FL was cloned confirmed that the phospholipase mutation was present in the native B19 virus. PMID:18252260

  2. Innocuous full-length botulinum neurotoxin targets and promotes the expression of lentiviral vectors in central and autonomic neurons.

    PubMed

    O'Leary, V B; Ovsepian, S V; Raghunath, A; Huo, Q; Lawrence, G W; Smith, L; Dolly, J O

    2011-07-01

    Fragments of botulinum neurotoxin (BoNT) have been explored as potential targeting moieties and carriers of biomolecules into neurons, although with lower binding and translocation efficiency compared with intact proteins. This study exploits a detoxified recombinant form of full-length BoNT/B (BoTIM/B) fused with core streptavidin (CS-BoTIM/B) for lentiviral targeting to central and autonomic neurons. CS-BoTIM/B underwent an activity-dependent entry into cultured spinal cord neurons. Coupling CS-BoTIM/B to biotinylated lentivirus-encoding green fluorescent protein (GFP) endowed considerable neuron selectivity to the vector as evident from the preferential expression of the reporter in neurons co-cultured with skeletal muscle cells. CS-BoTIM/B-guided lentiviral transduction with the expression of a SNARE protein, SNAP-25 (S25), rendered non-susceptible to proteolysis by three BoNT serotypes, yielded a sizable decrease in cleaved S25 upon exposure of spinal cord neurons to these toxins. This was accompanied by synaptic transmission being spared from blockade by BoNT/A or BoNT/E, reflecting adequate translation and functional competence of recombinant multi-toxin-resistant S25. The augmented neurotropism conveyed on the lentivirus by CS-BoTIM/B was also demonstrated in vivo through enhanced expression of a reporter in intramural ganglionic neurons in the rat trachea, after injection of the targeted GFP-encoding lentivirus. Thus, a novel and realistic prospect for gene therapy of peripheral neuropathies is offered in this study through lentiviral targeting to neurons by CS-BoTIM/B.

  3. Full-length apolipoprotein E protects against the neurotoxicity of an apoE-related peptide

    PubMed Central

    Crutcher, K.A.; Lilley, H.N.; Anthony, S. R.; Zhou, W.; Narayanaswami, V.

    2009-01-01

    Apolipoprotein E was found to protect against the neurotoxic effects of a dimeric peptide derived from the receptor-binding region of this protein (residues 141–149). Both apoE3 and apoE4 conferred protection but the major N-terminal fragment of each isoform did not. Nor was significant protection provided by bovine serum albumin or apoA-I. Full-length apoE3 and apoE4 also inhibited the uptake of a fluorescent-labeled derivative of the peptide, suggesting that the mechanism of inhibition might involve competition for cell surface receptors/proteoglycans that mediate endocytosis and/or signaling pathways. These results might bear on the question of the role of apoE in neuronal degeneration, such as occurs in Alzheimer’s disease where apoE4 confers a significantly greater risk of pathology. PMID:19836363

  4. Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria

    PubMed Central

    Robinson, Michael-Paul; Ke, Na; Lobstein, Julie; Peterson, Cristen; Szkodny, Alana; Mansell, Thomas J.; Tuckey, Corinna; Riggs, Paul D.; Colussi, Paul A.; Noren, Christopher J.; Taron, Christopher H.; DeLisa, Matthew P.; Berkmen, Mehmet

    2015-01-01

    Current methods for producing immunoglobulin G (IgG) antibodies in engineered cells often require refolding steps or secretion across one or more biological membranes. Here, we describe a robust expression platform for biosynthesis of full-length IgG antibodies in the Escherichia coli cytoplasm. Synthetic heavy and light chains, both lacking canonical export signals, are expressed in specially engineered E. coli strains that permit formation of stable disulfide bonds within the cytoplasm. IgGs with clinically relevant antigen- and effector-binding activities are readily produced in the E. coli cytoplasm by grafting antigen-specific variable heavy and light domains into a cytoplasmically stable framework and remodelling the fragment crystallizable domain with amino-acid substitutions that promote binding to Fcγ receptors. The resulting cytoplasmic IgGs—named ‘cyclonals'—effectively bypass the potentially rate-limiting steps of membrane translocation and glycosylation. PMID:26311203

  5. Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria.

    PubMed

    Robinson, Michael-Paul; Ke, Na; Lobstein, Julie; Peterson, Cristen; Szkodny, Alana; Mansell, Thomas J; Tuckey, Corinna; Riggs, Paul D; Colussi, Paul A; Noren, Christopher J; Taron, Christopher H; DeLisa, Matthew P; Berkmen, Mehmet

    2015-01-01

    Current methods for producing immunoglobulin G (IgG) antibodies in engineered cells often require refolding steps or secretion across one or more biological membranes. Here, we describe a robust expression platform for biosynthesis of full-length IgG antibodies in the Escherichia coli cytoplasm. Synthetic heavy and light chains, both lacking canonical export signals, are expressed in specially engineered E. coli strains that permit formation of stable disulfide bonds within the cytoplasm. IgGs with clinically relevant antigen- and effector-binding activities are readily produced in the E. coli cytoplasm by grafting antigen-specific variable heavy and light domains into a cytoplasmically stable framework and remodelling the fragment crystallizable domain with amino-acid substitutions that promote binding to Fcγ receptors. The resulting cytoplasmic IgGs—named 'cyclonals'—effectively bypass the potentially rate-limiting steps of membrane translocation and glycosylation. PMID:26311203

  6. Mechanism of activation gating in the full-length KcsA K[superscript +] channel

    SciTech Connect

    Uysal, Serdar; Cuello, Luis G.; Cortes, D. Marien; Koide, Shohei; Kossiakoff, Anthony A.; Perozo, Eduardo

    2012-10-25

    Using a constitutively active channel mutant, we solved the structure of full-length KcsA in the open conformation at 3.9 {angstrom}. The structure reveals that the activation gate expands about 20 {angstrom}, exerting a strain on the bulge helices in the C-terminal domain and generating side windows large enough to accommodate hydrated K{sup +} ions. Functional and spectroscopic analysis of the gating transition provides direct insight into the allosteric coupling between the activation gate and the selectivity filter. We show that the movement of the inner gate helix is transmitted to the C-terminus as a straightforward expansion, leading to an upward movement and the insertion of the top third of the bulge helix into the membrane. We suggest that by limiting the extent to which the inner gate can open, the cytoplasmic domain also modulates the level of inactivation occurring at the selectivity filter.

  7. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons.

    PubMed

    Xu, Zhao; Wang, Hao

    2007-07-01

    Long terminal repeat retrotransposons (LTR elements) are ubiquitous eukaryotic transposable elements. They play important roles in the evolution of genes and genomes. Ever-growing amount of genomic sequences of many organisms present a great challenge to fast identifying them. That is the first and indispensable step to study their structure, distribution, functions and other biological impacts. However, until today, tools for efficient LTR retrotransposon discovery are very limited. Thus, we developed LTR_FINDER web server. Given DNA sequences, it predicts locations and structure of full-length LTR retrotransposons accurately by considering common structural features. LTR_FINDER is a system capable of scanning large-scale sequences rapidly and the first web server for ab initio LTR retrotransposon finding. We illustrate its usage and performance on the genome of Saccharomyces cerevisiae. The web server is freely accessible at http://tlife.fudan.edu.cn/ltr_finder/.

  8. The first detection and full-length genome sequence of porcine deltacoronavirus isolated in Lao PDR.

    PubMed

    Lorsirigool, Athip; Saeng-Chuto, Kepalee; Temeeyasen, Gun; Madapong, Adthakorn; Tripipat, Thitima; Wegner, Matthew; Tuntituvanont, Angkana; Intrakamhaeng, Manakant; Nilubol, Dachrit

    2016-10-01

    Porcine deltacoronavirus (PDCoV) has been reported in many countries, including Hong Kong, the United States, South Korea, China and Thailand. In January 2016, clinical diarrhea similar to that of porcine epidemic diarrhea virus (PEDV) with a lower mortality rate was reported on a swine farm in Lao PDR. Intestine samples were collected from 3-day-old pigs with clinical diarrhea and assayed for the presence of swine enteric coronaviruses. The PCR results were positive for PDCoV but negative for PEDV and TGEV. A phylogenetic tree demonstrated that PDCoV from Lao PDR was grouped separately from PDCoV isolates from China and the USA, but was more closely related to the Chinese isolates than to the US isolates. The full-length genome sequence of the novel PDCoV isolate P1_16_BTL_0116 was determined. PMID:27424024

  9. Isolation and characterization of full-length putative alcohol dehydrogenase genes from polygonum minus

    NASA Astrophysics Data System (ADS)

    Hamid, Nur Athirah Abd; Ismail, Ismanizan

    2013-11-01

    Polygonum minus, locally named as Kesum is an aromatic herb which is high in secondary metabolite content. Alcohol dehydrogenase is an important enzyme that catalyzes the reversible oxidation of alcohol and aldehyde with the presence of NAD(P)(H) as co-factor. The main focus of this research is to identify the gene of ADH. The total RNA was extracted from leaves of P. minus which was treated with 150 μM Jasmonic acid. Full-length cDNA sequence of ADH was isolated via rapid amplification cDNA end (RACE). Subsequently, in silico analysis was conducted on the full-length cDNA sequence and PCR was done on genomic DNA to determine the exon and intron organization. Two sequences of ADH, designated as PmADH1 and PmADH2 were successfully isolated. Both sequences have ORF of 801 bp which encode 266 aa residues. Nucleotide sequence comparison of PmADH1 and PmADH2 indicated that both sequences are highly similar at the ORF region but divergent in the 3' untranslated regions (UTR). The amino acid is differ at the 107 residue; PmADH1 contains Gly (G) residue while PmADH2 contains Cys (C) residue. The intron-exon organization pattern of both sequences are also same, with 3 introns and 4 exons. Based on in silico analysis, both sequences contain "classical" short chain alcohol dehydrogenases/reductases ((c) SDRs) conserved domain. The results suggest that both sequences are the members of short chain alcohol dehydrogenase family.

  10. Fabrication and Testing of Full-Length Single-Cell Externally Fueled Converters for Thermionic Reactors

    SciTech Connect

    Schock, Alfred

    1994-06-01

    The preceding paper described designs and analyses of thermionic reactors employing full-core-length single-cell converters with their heated emitters located on the outside of their internally cooled collectors, and it presented results of detailed parametric analyses which illustrate the benefits of this unconventional design. The present paper describes the fabrication and testing of full-length prototypical converters, both unfueled and fueled, and presents parametric results of electrically heated tests. The unfueled converter tests demonstrated the practicality of operating such long converters without shorting across a 0.3-mm interelectrode gap. They produced a measured peak output of 751 watts(e) from a single diode and a peak efficiency of 15.4%. The fueled converter tests measured the parametric performance of prototypic UO(subscript 2)-fueled converters designed for subsequent in-pile testing. They employed revolver-shaped tungsten elements with a central emitter hole surrounded by six fuel chambers. The full-length converters were heated by a water-cooled RF-induction coil inside an ion-pumped vacuum chamber. This required development of high-vacuum coaxial RF feedthroughs. In-pile test rules required multiple containment of the UO (subscript 2)-fuel, which complicated the fabrication of the test article and required successful development of techniques for welding tungsten and other refractory components. The test measured a peak power output of 530 watts(e) or 7.1 watts/cm (superscript 2) at an efficiency of 11.5%. There are three copies in the file. Cross-Reference a copy FSC-ESD-217-94-529 in the ESD files with a CID #8574.

  11. Molecular cloning and characterization of the full-length Hsp90 gene from Matricaria recutita.

    PubMed

    Ling, S P; Su, S S; Zhang, H M; Zhang, X S; Liu, X Y; Pan, G F; Yuan, Y

    2014-01-01

    Heat shock protein 90 (Hsp90) is one of the most abundant and conserved chaperone proteins and plays important roles in plant growth and responses to environmental stimuli. However, little is known regarding the sequence and function of Hsp90s in Matricaria recutita. In the present study, we cloned the full-length cDNA sequence of the hsp90 gene from this species. Using rapid amplification of cDNA ends technologies with 2 degenerate primers that were designed based on the hsp90 gene sequence from other members of Asteraceae, we isolated and characterized an Hsp90 homolog gene from M. recutita (Mr-Hsp90). The full-length Mr-hsp90 cDNA sequence, containing 2097 base pairs, encodes a protein of 698 amino acids. Based on amino acid sequence identity, Mr-Hsp90 showed high similarity to other cloned Hsp90 proteins. The Mr-Hsp90 protein was closely clustered with the Lactuca sativa in a phylogenetic tree. These results indicate that the cloned sequence of Mr-Hsp90 is a member of the Hsp90 family, which is reported for the first time in M. recutita. Next, we conducted a salt stress experiment to determine the protein's function under salt stress conditions. Survival of chamomile seedlings subjected to heat-shock pretreatment was significantly increased compared with groups that had not undergone heat-shock pretreatment in a salt stress environment. This indicates that Mr-Hsp90 plays an important role in the salt resistance of chamomile seedlings. PMID:25526220

  12. Targeting a complex transcriptome: the construction of the mouse full-length cDNA encyclopedia.

    PubMed

    Carninci, Piero; Waki, Kazunori; Shiraki, Toshiyuki; Konno, Hideaki; Shibata, Kazuhiro; Itoh, Masayoshi; Aizawa, Katsunori; Arakawa, Takahiro; Ishii, Yoshiyuki; Sasaki, Daisuke; Bono, Hidemasa; Kondo, Shinji; Sugahara, Yuichi; Saito, Rintaro; Osato, Naoki; Fukuda, Shiro; Sato, Kenjiro; Watahiki, Akira; Hirozane-Kishikawa, Tomoko; Nakamura, Mari; Shibata, Yuko; Yasunishi, Ayako; Kikuchi, Noriko; Yoshiki, Atsushi; Kusakabe, Moriaki; Gustincich, Stefano; Beisel, Kirk; Pavan, William; Aidinis, Vassilis; Nakagawara, Akira; Held, William A; Iwata, Hiroo; Kono, Tomohiro; Nakauchi, Hiromitsu; Lyons, Paul; Wells, Christine; Hume, David A; Fagiolini, Michela; Hensch, Takao K; Brinkmeier, Michelle; Camper, Sally; Hirota, Junji; Mombaerts, Peter; Muramatsu, Masami; Okazaki, Yasushi; Kawai, Jun; Hayashizaki, Yoshihide

    2003-06-01

    We report the construction of the mouse full-length cDNA encyclopedia,the most extensive view of a complex transcriptome,on the basis of preparing and sequencing 246 libraries. Before cloning,cDNAs were enriched in full-length by Cap-Trapper,and in most cases,aggressively subtracted/normalized. We have produced 1,442,236 successful 3'-end sequences clustered into 171,144 groups, from which 60,770 clones were fully sequenced cDNAs annotated in the FANTOM-2 annotation. We have also produced 547,149 5' end reads,which clustered into 124,258 groups. Altogether, these cDNAs were further grouped in 70,000 transcriptional units (TU),which represent the best coverage of a transcriptome so far. By monitoring the extent of normalization/subtraction, we define the tentative equivalent coverage (TEC),which was estimated to be equivalent to >12,000,000 ESTs derived from standard libraries. High coverage explains discrepancies between the very large numbers of clusters (and TUs) of this project,which also include non-protein-coding RNAs,and the lower gene number estimation of genome annotations. Altogether,5'-end clusters identify regions that are potential promoters for 8637 known genes and 5'-end clusters suggest the presence of almost 63,000 transcriptional starting points. An estimate of the frequency of polyadenylation signals suggests that at least half of the singletons in the EST set represent real mRNAs. Clones accounting for about half of the predicted TUs await further sequencing. The continued high-discovery rate suggests that the task of transcriptome discovery is not yet complete.

  13. [Genetic evidence for recombination and mutation in the emergence of human enterovirus 71].

    PubMed

    Liu, Ai-Ping; Tan, Hui; Xie, Qun; Chen, Bai-Tang; Liu, Xiao-Feng; Zhang, Yong

    2014-09-01

    We wished to understand the genetic recombination and phylogenetic characteristics of human en- terovirus A71 (EV-A71) and to explore its potential virulence-related sites. Full-length genomes of three EV-A71 strains isolated from patients in Chenzhou City (China) were sequenced and analyzed. Possible re- combination events and crossover sites were analyzed with Recombination Detection Program v4. 1. 6 by comparison with the complete genome sequences of 231 strains of EV-A71. Similarly, plot and bootscanning analyses were undertaken with SimPlot v3. 5. 1. Phylogenetic trees based on the sequences of VP1 regions were constructed with MEGA v5. 2 using the Kimura two-parameter model and neighbor-joining method. Results suggested that recombination events were detected among the three EV-A71 isolates from Chenzhou City. The common main parent sequence was from JF799986 isolated from samples in Guang- zhou City (China) in 2009, and the minor parent sequence was TW/70516/08. Intertypic recombination e- vents were found in the C4b strain (strain SHZH98 isolated in 1998) and C4a strain (Fuyang strain isola- ted in 2008) with the prototype strains of CVA4 and CVA14 in the 3D region. The chi-square test was used to screen-out potential virulence-related sites with nucleotide substitutions of different types of hand, foot, and mouth disease (HFMD) cases using SPSS v19.0. Results suggested that there were no significant nucleotide substitutions between death cases and severe-HFMD cases. Eighteen significant nucleotide substitutions were found between death/severe-HFMD cases and mild-HFMD cases, and all these 18 substitutions were distributed only in P2 and P3 regions. Intertypic recombination among the predominant circulating EV-A71 strains in the Chinese mainland and other EV-A strains probably dates before 1998, and intratypic recombination might have occurred frequently in the HFMD outbreak from 2008 to 2012. Substitutions in the non-capsid region may be correlated with the

  14. The feline oral microbiome: a provisional 16S rRNA gene based taxonomy with full-length reference sequences.

    PubMed

    Dewhirst, Floyd E; Klein, Erin A; Bennett, Marie-Louise; Croft, Julie M; Harris, Stephen J; Marshall-Jones, Zoe V

    2015-02-25

    The human oral microbiome is known to play a significant role in human health and disease. While less well studied, the feline oral microbiome is thought to play a similarly important role. To determine roles oral bacteria play in health and disease, one first has to be able to accurately identify bacterial species present. 16S rRNA gene sequence information is widely used for molecular identification of bacteria and is also useful for establishing the taxonomy of novel species. The objective of this research was to obtain full 16S rRNA gene reference sequences for feline oral bacteria, place the sequences in species-level phylotypes, and create a curated 16S rRNA based taxonomy for common feline oral bacteria. Clone libraries were produced using "universal" and phylum-selective PCR primers and DNA from pooled subgingival plaque from healthy and periodontally diseased cats. Bacteria in subgingival samples were also cultivated to obtain isolates. Full-length 16S rDNA sequences were determined for clones and isolates that represent 171 feline oral taxa. A provisional curated taxonomy was developed based on the position of each taxon in 16S rRNA phylogenetic trees. The feline oral microbiome curated taxonomy and 16S rRNA gene reference set will allow investigators to refer to precisely defined bacterial taxa. A provisional name such as "Propionibacterium sp. feline oral taxon FOT-327" is an anchor to which clone, strain or GenBank names or accession numbers can point. Future next-generation-sequencing studies of feline oral bacteria will be able to map reads to taxonomically curated full-length 16S rRNA gene sequences. PMID:25523504

  15. The feline oral microbiome: a provisional 16S rRNA gene based taxonomy with full-length reference sequences.

    PubMed

    Dewhirst, Floyd E; Klein, Erin A; Bennett, Marie-Louise; Croft, Julie M; Harris, Stephen J; Marshall-Jones, Zoe V

    2015-02-25

    The human oral microbiome is known to play a significant role in human health and disease. While less well studied, the feline oral microbiome is thought to play a similarly important role. To determine roles oral bacteria play in health and disease, one first has to be able to accurately identify bacterial species present. 16S rRNA gene sequence information is widely used for molecular identification of bacteria and is also useful for establishing the taxonomy of novel species. The objective of this research was to obtain full 16S rRNA gene reference sequences for feline oral bacteria, place the sequences in species-level phylotypes, and create a curated 16S rRNA based taxonomy for common feline oral bacteria. Clone libraries were produced using "universal" and phylum-selective PCR primers and DNA from pooled subgingival plaque from healthy and periodontally diseased cats. Bacteria in subgingival samples were also cultivated to obtain isolates. Full-length 16S rDNA sequences were determined for clones and isolates that represent 171 feline oral taxa. A provisional curated taxonomy was developed based on the position of each taxon in 16S rRNA phylogenetic trees. The feline oral microbiome curated taxonomy and 16S rRNA gene reference set will allow investigators to refer to precisely defined bacterial taxa. A provisional name such as "Propionibacterium sp. feline oral taxon FOT-327" is an anchor to which clone, strain or GenBank names or accession numbers can point. Future next-generation-sequencing studies of feline oral bacteria will be able to map reads to taxonomically curated full-length 16S rRNA gene sequences.

  16. Expression of Recombinant Human Amelogenin in Iranian Lizard Leishmania and Its Biological Function Assay

    PubMed Central

    YADEGARI, Zahra; BANDEHPOUR, Mojgan; KAZEMI, Bahram; SHARIFI-SARASIABI, Khojasteh

    2015-01-01

    Background: Amelogenins are the major components of enamel matrix proteins. Enamel matrix derivatives (EMD) can be used in periodontal diseases to regenerate periodontal tissues. The main aim of this study was to evaluate expression of full-length functional recombinant human amelogenin (rhAm) in Iranian lizard Leishmania (I.L.L.) as an alternative eukaryotic expression system. Methods: Human cDNA encoding a 175-amino acid amelogenin expression cassette was sub cloned into a pLEXSY vector. The construct was transferred into Leishmania cells by electroporation. The protein production was surveyed in the transcription and the translation levels. The expressed protein was purified and some of its biological properties were investigated in comparison to EMD and negative control. Results: Expression of rhAm was confirmed by RT-PCR and western blot test in Leishmania cells. Purified rhAm significantly inhibited the formation of tartrate-resistant acid phosphatase positive (TRAP+) multinuclear cells in calcitriol stimulated mouse marrow cultures. Moreover, it significantly promoted proliferation and DNA synthesis in L929 mouse fibroblast cells. Conclusion: Functional rhAm was successfully expressed in I.L.L. Easy handling and post translation modification were the main advantages of this expression system. It is suggested to investigate molecular properties of this rhAm in the future. PMID:26576377

  17. Factors Influencing the Production of MFSV Full-Length Clone: Maize Fine Streak Virus Proteins in Drosophila S2 Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize fine streak virus (MFSV) is negative-sense RNA virus member of the genus Nucleorhabdovirus. Our goal is to determine whether Drosophila S2 cells can support the production of a full-length clone of MFSV. We have previously demonstrated that the full-length MFSV nucleoprotein (N) and phosphopro...

  18. Antigenic properties and virulence of foot-and-mouth disease virus rescued from full-length cDNA clone of serotype O, typical vaccine strain.

    PubMed

    Kim, Rae-Hyung; Chu, Jia-Qi; Park, Jeong-Nam; Lee, Seo-Yong; Lee, Yeo-Joo; Ko, Mi-Kyeong; Hwang, Ji-Hyeon; Lee, Kwang-Nyeong; Kim, Su-Mi; Tark, Dongseob; Ko, Young-Joon; Lee, Hyang-Sim; Seo, Min-Goo; Park, Min-Eun; Kim, Byounghan; Park, Jong-Hyeon

    2015-01-01

    We cloned the full-length cDNA of O Manisa, the virus for vaccinating against foot-and-mouth disease. The antigenic properties of the virus recovered from the cDNA were similar to those of the parental virus. Pathogenesis did not appear in the pigs, dairy goats or suckling mice, but neutralizing antibodies were raised 5-6 days after the virus challenge. The utilization of O Manisa as a safe vaccine strain will increase if recombinant viruses can be manipulated by inserting or removing a marker gene for differential serology or replacing the protective gene from another serotype.

  19. Full-length RNA structure prediction of the HIV-1 genome reveals a conserved core domain.

    PubMed

    Sükösd, Zsuzsanna; Andersen, Ebbe S; Seemann, Stefan E; Jensen, Mads Krogh; Hansen, Mathias; Gorodkin, Jan; Kjems, Jørgen

    2015-12-01

    A distance constrained secondary structural model of the ≈10 kb RNA genome of the HIV-1 has been predicted but higher-order structures, involving long distance interactions, are currently unknown. We present the first global RNA secondary structure model for the HIV-1 genome, which integrates both comparative structure analysis and information from experimental data in a full-length prediction without distance constraints. Besides recovering known structural elements, we predict several novel structural elements that are conserved in HIV-1 evolution. Our results also indicate that the structure of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping protein-coding regions the COS is supported by a particular high frequency of compensatory base changes, suggesting functional importance for this element. This new structural element potentially organizes the whole genome into three major domains protruding from a conserved core structure with potential roles in replication and evolution for the virus. PMID:26476446

  20. Pulse-field electrophoresis indicates full-length Mycoplasma chromosomes range widely in size.

    PubMed Central

    Neimark, H C; Lange, C S

    1990-01-01

    Full-size linear chromosomes were prepared from mycoplasmas by using gamma-irradiation to introduce one (on average) double-strand break in their circular chromosomes. Chromosome sizes were estimated by pulsed-field gel electrophoresis (PFGE) from the mobilities of these full-length molecules relative to DNA size references. Sizes estimated for Ureaplasma urealyticum T960 and 16 Mycoplasma species ranged from 684 kbp (M. hominis) to 1315 kbp (M. iowae). Using this sample, we found no correlation between the mobility of the full-size linear chromosomes and their G + C content. Sizes for A. laidlawii and A. hippikon were within the range expected from renaturation kinetics. PFGE size estimates are in good agreement with sizes determined by other methods, including electron microscopy, an ordered clone library, and summation of restriction fragments. Our estimates also agree with those from renaturation kinetics for both the largest and some of the smallest chromosomes, but in the intermediate size range, renaturation kinetics consistently provides lower values than PFGE or electron microscopy. Our PFGE estimates show that mycoplasma chromosomes span a continual range of sizes, with several intermediate values falling between the previously recognized large and small chromosome size clusters. Images PMID:2216718

  1. Comprehensive analysis of the green-to-blue photoconversion of full-length Cyanobacteriochrome Tlr0924.

    PubMed

    Hardman, Samantha J O; Hauck, Anna F E; Clark, Ian P; Heyes, Derren J; Scrutton, Nigel S

    2014-11-01

    Cyanobacteriochromes are members of the phytochrome superfamily of photoreceptors and are of central importance in biological light-activated signaling mechanisms. These photoreceptors are known to reversibly convert between two states in a photoinitiated process that involves a basic E/Z isomerization of the bilin chromophore and, in certain cases, the breakage of a thioether linkage to a conserved cysteine residue in the bulk protein structure. The exact details and timescales of the reactions involved in these photoconversions have not been conclusively shown. The cyanobacteriochrome Tlr0924 contains phycocyanobilin and phycoviolobilin chromophores, both of which photoconvert between two species: blue-absorbing and green-absorbing, and blue-absorbing and red-absorbing, respectively. Here, we followed the complete green-to-blue photoconversion process of the phycoviolobilin chromophore in the full-length form of Tlr0924 over timescales ranging from femtoseconds to seconds. Using a combination of time-resolved visible and mid-infrared transient absorption spectroscopy and cryotrapping techniques, we showed that after photoisomerization, which occurs with a lifetime of 3.6 ps, the phycoviolobilin twists or distorts slightly with a lifetime of 5.3 ?s. The final step, the formation of the thioether linkage with the protein, occurs with a lifetime of 23.6 ms. PMID:25418104

  2. Comprehensive Analysis of the Green-to-Blue Photoconversion of Full-Length Cyanobacteriochrome Tlr0924

    PubMed Central

    Hardman, Samantha J.O.; Hauck, Anna F.E.; Clark, Ian P.; Heyes, Derren J.; Scrutton, Nigel S.

    2014-01-01

    Cyanobacteriochromes are members of the phytochrome superfamily of photoreceptors and are of central importance in biological light-activated signaling mechanisms. These photoreceptors are known to reversibly convert between two states in a photoinitiated process that involves a basic E/Z isomerization of the bilin chromophore and, in certain cases, the breakage of a thioether linkage to a conserved cysteine residue in the bulk protein structure. The exact details and timescales of the reactions involved in these photoconversions have not been conclusively shown. The cyanobacteriochrome Tlr0924 contains phycocyanobilin and phycoviolobilin chromophores, both of which photoconvert between two species: blue-absorbing and green-absorbing, and blue-absorbing and red-absorbing, respectively. Here, we followed the complete green-to-blue photoconversion process of the phycoviolobilin chromophore in the full-length form of Tlr0924 over timescales ranging from femtoseconds to seconds. Using a combination of time-resolved visible and mid-infrared transient absorption spectroscopy and cryotrapping techniques, we showed that after photoisomerization, which occurs with a lifetime of 3.6 ps, the phycoviolobilin twists or distorts slightly with a lifetime of 5.3 μs. The final step, the formation of the thioether linkage with the protein, occurs with a lifetime of 23.6 ms. PMID:25418104

  3. High-Resolution Sequence-Function Mapping of Full-Length Proteins

    PubMed Central

    Kowalsky, Caitlin A.; Klesmith, Justin R.; Stapleton, James A.; Kelly, Vince; Reichkitzer, Nolan; Whitehead, Timothy A.

    2015-01-01

    Comprehensive sequence-function mapping involves detailing the fitness contribution of every possible single mutation to a gene by comparing the abundance of each library variant before and after selection for the phenotype of interest. Deep sequencing of library DNA allows frequency reconstruction for tens of thousands of variants in a single experiment, yet short read lengths of current sequencers makes it challenging to probe genes encoding full-length proteins. Here we extend the scope of sequence-function maps to entire protein sequences with a modular, universal sequence tiling method. We demonstrate the approach with both growth-based selections and FACS screening, offer parameters and best practices that simplify design of experiments, and present analytical solutions to normalize data across independent selections. Using this protocol, sequence-function maps covering full sequences can be obtained in four to six weeks. Best practices introduced in this manuscript are fully compatible with, and complementary to, other recently published sequence-function mapping protocols. PMID:25790064

  4. The full-length transcripts and promoter analysis of intergenic microRNAs in Drosophila melanogaster.

    PubMed

    Qian, Jinjun; Zhang, Zan; Liang, Jingdong; Ge, Qiongqiong; Duan, Xuchu; Ma, Fei; Li, Fei

    2011-05-01

    MicroRNA (miRNA) transcription is still not well understood until now. To increase the miRNA abundance, we stimulated miRNA transcription with CuSO(4) and knocked down Drosha enzyme using dsRNA in Drosophila S2 cells. The full length transcripts of bantam, miR-276a and miR-277, the 5'-end of miR-8, the 3'-end of miR-2b and miR-10 were obtained. We also conducted a series of miRNA promoter analysis to prove the reliability of RACE results. Luciferase-reporter assays proved that both bantam and miR-276a promoters successfully drove the expressions of downstream luciferase genes. The promoter activities were impaired by introducing one or multiple mutations at predicted transcription factor binding sites. Chromatin immunoprecipitation analysis confirmed that hypophosphorylated RNA polymerase II and transcription factor c-Myc physically bind at miRNA promoter. RNA interference of transcription factors Mad and Prd led to down-expression of bantam, miR-277 and miR-2b but not miR-276a, whereas RNAi of Dorsal had the opposite effect. PMID:21333734

  5. Limited human infection due to recombinant raccoon pox virus

    USGS Publications Warehouse

    Rocke, T.E.; Dein, F.J.; Fuchsberger, M.; Fox, B.C.; Stinchcomb, D.T.; Osorio, J.G.

    2004-01-01

    A laboratory accident resulted in human exposure to a recombinant raccoon poxvirus (RCN) developed as a vaccine vector for antigens of Yersinia pestis for protection of wild rodents (and other animals) against plague. Within 9 days, the patient developed a small blister that healed within 4 weeks. Raccoon poxvirus was cultured from the lesion, and the patient developed antibody to plague antigen (F1) and RCN. This is the first documented case of human exposure to RCN.

  6. Efficient production of recombinant human pleiotrophin in yeast, Pichia pastoris.

    PubMed

    Murasugi, Akira; Kido, Isao; Kumai, Hideshi; Asami, Yukio

    2003-10-01

    Approximately 260 mg/l of authentic recombinant human pleiotrophin (rhPTN) was expressed into the medium of high-cell density fermentation using a Pichia pastoris protein expression system. The prepro-sequence of yeast alpha-mating factor was used successfully. The recombinant hPTN was efficiently recovered from the medium by expanded bed adsorption, and purified using successive column chromatography steps. In the purified rhPTN preparation, modified rhPTN were scarcely detected. Circular dichroism measurement of the purified PTN showed the presence of the characteristic beta-structures in the protein.

  7. A recombinant vaccinia virus expressing human carcinoembryonic antigen (CEA).

    PubMed

    Kaufman, H; Schlom, J; Kantor, J

    1991-07-30

    Carcinoembryonic antigen (CEA) is a 180-kDa glycoprotein expressed on most gastrointestinal carcinomas. A 2.4-kb cDNA clone, containing the complete coding sequence, was isolated from a human colon tumor cell library and inserted into a vaccinia virus genome. This newly developed construct was characterized by Southern blotting, DNA hybridization studies, and polymerase chain reaction analysis. The CEA gene was stably integrated into the vaccinia virus thymidine kinase gene. The recombinant was efficiently replicated upon serial passages in cell cultures and in animals. The recombinant virus expresses on the surface of infected cells a protein product recognized by a monoclonal antibody (COL-I) directed against CEA. Immunization of mice with the vaccinia construct elicited a humoral immune response against CEA. Pilot studies also showed that administration of the recombinant CEA vaccinia construct was able to greatly reduce the growth in mice of a syngeneic murine colon adenocarcinoma which had been transduced with the human CEA gene. The use of this new recombinant CEA vaccinia construct may thus provide an approach in the specific active immunotherapy of human GI cancer and other CEA expressing carcinoma types.

  8. Crystal structure of the full-length bacterial selenocysteine-specific elongation factor SelB.

    PubMed

    Itoh, Yuzuru; Sekine, Shun-Ichi; Yokoyama, Shigeyuki

    2015-10-15

    Selenocysteine (Sec), the 21(st) amino acid in translation, uses its specific tRNA (tRNA(Sec)) to recognize the UGA codon. The Sec-specific elongation factor SelB brings the selenocysteinyl-tRNA(Sec) (Sec-tRNA(Sec)) to the ribosome, dependent on both an in-frame UGA and a Sec-insertion sequence (SECIS) in the mRNA. The bacterial SelB binds mRNA through its C-terminal region, for which crystal structures have been reported. In this study, we determined the crystal structure of the full-length SelB from the bacterium Aquifex aeolicus, in complex with a GTP analog, at 3.2-Å resolution. SelB consists of three EF-Tu-like domains (D1-3), followed by four winged-helix domains (WHD1-4). The spacer region, connecting the N- and C-terminal halves, fixes the position of WHD1 relative to D3. The binding site for the Sec moiety of Sec-tRNA(Sec) is located on the interface between D1 and D2, where a cysteine molecule from the crystallization solution is coordinated by Arg residues, which may mimic Sec binding. The Sec-binding site is smaller and more exposed than the corresponding site of EF-Tu. Complex models of Sec-tRNA(Sec), SECIS RNA, and the 70S ribosome suggest that the unique secondary structure of tRNA(Sec) allows SelB to specifically recognize tRNA(Sec) and characteristically place it at the ribosomal A-site. PMID:26304550

  9. Crystal structure of the full-length bacterial selenocysteine-specific elongation factor SelB

    PubMed Central

    Itoh, Yuzuru; Sekine, Shun-ichi; Yokoyama, Shigeyuki

    2015-01-01

    Selenocysteine (Sec), the 21st amino acid in translation, uses its specific tRNA (tRNASec) to recognize the UGA codon. The Sec-specific elongation factor SelB brings the selenocysteinyl-tRNASec (Sec-tRNASec) to the ribosome, dependent on both an in-frame UGA and a Sec-insertion sequence (SECIS) in the mRNA. The bacterial SelB binds mRNA through its C-terminal region, for which crystal structures have been reported. In this study, we determined the crystal structure of the full-length SelB from the bacterium Aquifex aeolicus, in complex with a GTP analog, at 3.2-Å resolution. SelB consists of three EF-Tu-like domains (D1–3), followed by four winged-helix domains (WHD1–4). The spacer region, connecting the N- and C-terminal halves, fixes the position of WHD1 relative to D3. The binding site for the Sec moiety of Sec-tRNASec is located on the interface between D1 and D2, where a cysteine molecule from the crystallization solution is coordinated by Arg residues, which may mimic Sec binding. The Sec-binding site is smaller and more exposed than the corresponding site of EF-Tu. Complex models of Sec-tRNASec, SECIS RNA, and the 70S ribosome suggest that the unique secondary structure of tRNASec allows SelB to specifically recognize tRNASec and characteristically place it at the ribosomal A-site. PMID:26304550

  10. Full-length cDNA cloning and structural characterization of preproinsulin in Alligator sinensis.

    PubMed

    Zhang, R; Zhang, S Z; Li, E; Wang, C; Wang, C L; Wu, X B

    2014-01-01

    Insulin is an important endocrine hormone that plays a critical physiological role in regulating metabolism and glucostasis in vertebrates. In this study, the complete cDNA of Alligator sinensis preproinsulin gene was cloned for the first time by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends methods; the amino acid sequence encoded and protein structure were analyzed. The full-length of preproinsulin cDNA sequence consists of 528 base pairs (bp), comprising a 34-bp 5'-untranslated region, a 170-bp 3'-untranslated region and an open reading frame that is 324 bp in length. The open reading frame encodes a 107-amino acid preproinsulin with a molecular weight of approximately 12,153.8 Da, theoretical isoelectric point of 5.68, aliphatic index of 92.06, and grand average of hydropathicity of -0.157, from which a signal peptide, a B-chain, a C-peptide, and an A-chain are derived. Online analysis suggested that the deduced preproinsulin amino acid sequence contains a transmembrane region, and that it has a signal peptide whose cleavage site occurs between alanine 24 and alanine 25. Comparative analysis of preproinsulin amino acid sequences indicated that the A-chain and B-chain sequences of preproinsulins are highly conserved between reptiles and birds, and that the preproinsulin amino acid sequence of Alligator sinensis shares 89% similarity to that of Chelonia mydas, but low similarity of 48-63% to those of mammals and fishes. The phylogenetic tree constructed using the neighbor-joining method revealed that preproinsulin of Alligator sinensis had high homology with reptiles and birds, such as Chelonia mydas, Gallus gallus, and Columba livia. PMID:25366775

  11. Iterative Optimization of Molecular Mechanics Force Fields from NMR Data of Full-Length Proteins.

    PubMed

    Li, Da-Wei; Brüschweiler, Rafael

    2011-06-14

    High quality molecular mechanics force fields of proteins are key for the quantitative interpretation of experimental data and the predictive understanding of protein function based on computer simulations. A strategy is presented for the optimization of protein force fields based on full-length proteins in their native environment that is guided by experimental NMR chemical shifts and residual dipolar couplings (RDCs). An energy-based reweighting approach is applied to a long molecular dynamics trajectory, performed with a parent force field, to efficiently screen a large number of trial force fields. The force field that yields the best agreement with the experimental data is then used as the new parent force field, and the procedure is repeated until no further improvement is obtained. This method is demonstrated for the optimization of the backbone φ,ψ dihedral angle potential of the Amber ff99SB force field using six trial proteins and another 17 proteins for cross-validation using (13)C chemical shifts with and without backbone RDCs. The φ,ψ dihedral angle potential is systematically improved by the inclusion of correlation effects through the addition of up to 24 bivariate Gaussian functions of variable height, width, and tilt angle. The resulting force fields, termed ff99SB_φψ(g24;CS) and ff99SB_φψ(g8;CS,RDC), perform significantly better than their parent force field in terms of both NMR data reproduction and Cartesian coordinate root-mean-square deviations between the MD trajectories and the X-ray crystal structures. The strategy introduced here represents a powerful addition to force field optimization approaches by overcoming shortcomings of methods that are solely based on quantum-chemical calculations of small molecules and protein fragments in the gas phase.

  12. Mapping full-length porcine endogenous retroviruses in a large white pig.

    PubMed

    Herring, C; Quinn, G; Bower, R; Parsons, N; Logan, N A; Brawley, A; Elsome, K; Whittam, A; Fernandez-Suarez, X M; Cunningham, D; Onions, D; Langford, G; Scobie, L

    2001-12-01

    Xenotransplantation may bridge the widening gap between the shortage of donor organs and the increasing number of patients waiting for transplantation. However, a major safety issue is the potential cross-species transmission of porcine endogenous retroviruses (PERV). This problem could be resolved if it is possible to produce pigs that do not contain replication-competent copies of this virus. In order to determine the feasibility of this, we have determined the number of potentially replication-competent full-length PERV proviruses and obtained data on their integration sites within the porcine genome. We have screened genomic DNA libraries from a Large White pig for potentially intact proviruses. We identified six unique PERV B proviruses that were apparently intact in all three genes, while the majority of isolated proviruses were defective in one or more genes. No intact PERV A proviruses were found in this pig, despite the identification of multiple defective A proviruses. Genotyping of 30 unrelated pigs for these unique proviruses showed a heterogeneous distribution. Two proviruses were uncommon, present in 7 of 30 and 3 of 30 pigs, while three were each present in 24 of 30 pigs, and one was present in 30 of 30 animals examined. Our data indicate that few PERV proviruses in Large White pigs are capable of productive infection and suggest that many could be removed by selective breeding. Further studies are required to determine if all potentially functional proviruses could be removed by breeding or whether gene knockout techniques will be required to remove the residuum. PMID:11711616

  13. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    SciTech Connect

    Deymier, Martin J.; Claiborne, Daniel T.; Ende, Zachary; Ratner, Hannah K.; Kilembe, William; Hunter, Eric

    2014-11-15

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.

  14. Multiple biological activities of human recombinant interleukin 1.

    PubMed Central

    Dinarello, C A; Cannon, J G; Mier, J W; Bernheim, H A; LoPreste, G; Lynn, D L; Love, R N; Webb, A C; Auron, P E; Reuben, R C

    1986-01-01

    Complementary DNA coding for human monocyte interleukin 1 (IL-1), pI 7 form, was expressed in Escherichia coli. During purification, IL-1 activity on murine T cells was associated with the recombinant protein. Homogeneous human recombinant IL-1 (hrIL-1) was tested in several assays to demonstrate the immunological and inflammatory properties attributed to this molecule. hrIL-1 induced proliferative responses in a cloned murine T cell in the presence of suboptimal concentrations of mitogen, whereas no effect was observed with hrIL-1 alone. At concentrations of 0.05 ng/ml, hrIL-1 doubled the response to mitogen (5 X 10(6) half maximal units/mg). Human peripheral blood T cells depleted of adherent cells underwent a blastogenic response and released interleukin 2 in the presence of hrIL-1 and mitogen. hrIL-1 was a potent inflammatory agent by its ability to induce human dermal fibroblast prostaglandin E2 production in vitro and to produce monophasic (endogenous pyrogen) fever when injected into rabbits or endotoxin-resistant mice. These studies establish that the dominant pI 7 form of recombinant human IL-1 possesses immunological and inflammatory properties and acts on the central nervous system to produce fever. Images PMID:3519678

  15. Recombinant Human Parathyroid Hormone (1-84): A Review in Hypoparathyroidism.

    PubMed

    Kim, Esther S; Keating, Gillian M

    2015-07-01

    Full-length recombinant human parathyroid hormone [rhPTH (1-84); Natpara(®)] is approved in the USA as an adjunct to calcium and vitamin D therapy for control of hypocalcaemia in patients with hypoparathyroidism. This article reviews the clinical efficacy and tolerability of rhPTH (1-84) in hypoparathyroidism and summarizes its pharmacological properties. In a pivotal phase III trial, subcutaneous rhPTH (1-84) was effective in maintaining albumin-corrected total serum calcium levels while reducing/eliminating the need for oral calcium and active vitamin D. rhPTH (1-84) had a generally acceptable tolerability profile in this trial, with <3% of patients discontinuing treatment because of adverse events. Commonly occurring adverse reactions included hypocalcaemia, hypercalcaemia and hypercalciuria. As the first PTH replacement therapy for hypoparathyroid patients with hypocalcaemia, rhPTH (1-84) is an effective regimen, has generally acceptable tolerability and represents an important advance for the management of hypoparathyroidism.

  16. Functional expression of full-length TrkA in the prokaryotic host Magnetospirillum magneticum AMB-1 by using a magnetosome display system.

    PubMed

    Honda, Toru; Yasuda, Takayuki; Tanaka, Tsuyoshi; Hagiwara, Koji; Arai, Tohru; Yoshino, Tomoko

    2015-02-01

    Tropomyosin receptor kinase A (TrkA), a receptor tyrosine kinase, is known to be associated with various diseases. Thus, TrkA has become a major drug-screening target for these diseases. Despite the fact that the production of recombinant proteins by prokaryotic hosts has advantages, such as fast growth and ease of genetic engineering, the efficient production of functional receptor tyrosine kinase by prokaryotic hosts remains a major experimental challenge. Here, we report the functional expression of full-length TrkA on magnetosomes in Magnetospirillum magneticum AMB-1 by using a magnetosome display system. TrkAwas fused with the magnetosome-localized protein Mms13 and expressed on magnetosome surfaces. Recombinant TrkA showed both nerve growth factor (NGF)-binding and autophosphorylation activities. TrkA expressed on magnetosomes has the potential to be used, not only for further functional analysis of TrkA, but also for ligand screening.

  17. Significance of Urinary Full-Length Megalin in Patients with IgA Nephropathy

    PubMed Central

    Asao, Rin; Nonaka, Kanae; Sasaki, Yu; Trejo, Juan Alejandro Oliva; Kurosawa, Hiroyuki; Hirayama, Yoshiaki; Horikoshi, Satoshi; Tomino, Yasuhiko; Saito, Akihiko

    2014-01-01

    Background and Objectives Megalin is highly expressed at the apical membranes of proximal tubular epithelial cells. A urinary full-length megalin (C-megalin) assay is linked to the severity of diabetic nephropathy in type 2 diabetes. This study examined the relationship between levels of urinary C-megalin and histological findings in adult patients with IgA nephropathy (IgAN). Design, Setting, Participants, & Measurements Urine samples voided in the morning on the day of renal biopsy were obtained from 73 patients with IgAN (29 men and 44 women; mean age, 33 years) and 5 patients with membranous nephropathy (MN). Renal pathologic variables were analyzed using the Oxford classification of IgAN, the Shigematsu classification and the Clinical Guidelines of IgAN in Japan. The levels of urinary C-megalin were measured by sandwich ELISA. Results Histological analysis based on the Oxford classification revealed that the levels of urinary C-megalin were correlated with mesangial hypercellularity in IgAN patients (OR = 1.76, 95% CI: 1.04–3.27, P<0.05). There was a significant correlation between the levels of urinary C-megalin and the severity of chronic extracapillary abnormalities according to the Shigematsu classification in IgAN patients (β = 0.33, P = 0.008). The levels of urinary C-megalin were significantly higher in all risk levels of IgAN patients requiring dialysis using the Clinical Guidelines of IgAN in Japan than in the control group. The levels of urinary C-megalin were significantly higher in the high risk and very high risk grades than in the low risk grade (P<0.05). The levels of urinary C-megalin were significantly higher in MN patients compared to the control group. Conclusions The levels of urinary C-megalin are associated with histological abnormalities in adult IgAN patients. There is a possibility that urinary C-megalin is an independent predictor of disease progression of IgAN. In addition, our results suggest that urinary C-megalin is

  18. A novel copper(II) coordination at His186 in full-length murine prion protein

    SciTech Connect

    Watanabe, Yasuko; Hiraoka, Wakako; Igarashi, Manabu; Ito, Kimihito; Shimoyama, Yuhei; Horiuchi, Motohiro; Yamamori, Tohru; Yasui, Hironobu; Kuwabara, Mikinori; Inagaki, Fuyuhiko; Inanami, Osamu

    2010-04-09

    To explore Cu(II) ion coordination by His{sup 186} in the C-terminal domain of full-length prion protein (moPrP), we utilized the magnetic dipolar interaction between a paramagnetic metal, Cu(II) ion, and a spin probe introduced in the neighborhood of the postulated binding site by the spin labeling technique (SDSL technique). Six moPrP mutants, moPrP(D143C), moPrP(Y148C), moPrP(E151C), moPrP(Y156C), moPrP(T189C), and moPrP(Y156C,H186A), were reacted with a methane thiosulfonate spin probe and a nitroxide residue (R1) was created in the binding site of each one. Line broadening of the ESR spectra was induced in the presence of Cu(II) ions in moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) but not moPrP(D143R1). This line broadening indicated the presence of electron-electron dipolar interaction between Cu(II) and the nitroxide spin probe, suggesting that each interspin distance was within 20 A. The interspin distance ranges between Cu(II) and the spin probes of moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) were estimated to be 12.1 A, 18.1 A, 10.7 A, and 8.4 A, respectively. In moPrP(Y156R1,H186A), line broadening between Cu(II) and the spin probe was not observed. These results suggest that a novel Cu(II) binding site is involved in His186 in the Helix2 region of the C-terminal domain of moPrP{sup C}.

  19. High avidity antibodies to full-length VAR2CSA correlate with absence of placental malaria.

    PubMed

    Tutterrow, Yeung Lo; Salanti, Ali; Avril, Marion; Smith, Joseph D; Pagano, Ian S; Ako, Simon; Fogako, Josephine; Leke, Rose G F; Taylor, Diane Wallace

    2012-01-01

    VAR2CSA mediates sequestration of Plasmodium falciparum-infected erythrocytes in the placenta, increasing the risk of poor pregnancy outcomes. Naturally acquired antibodies (Ab) to placental parasites at delivery have been associated with improved pregnancy outcomes, but Ab levels and how early in pregnancy Ab must be present in order to eliminate placental parasites before delivery remains unknown. Antibodies to individual Duffy-binding like domains of VAR2CSA have been studied, but the domains lack many of the conformational epitopes present in full-length VAR2CSA (FV2). Thus, the purpose of this study was to describe the acquisition of Ab to FV2 in women residing in high and low transmission areas and determine how Ab levels during pregnancy correlate with clearance of placental parasites. Plasma samples collected monthly throughout pregnancy from pregnant women living in high and low transmission areas in Cameroon were evaluated for Ab to FV2 and the proportion of high avidity Ab (i.e., Ab that remain bound in the presence of 3M NH(4)SCN) was assessed. Ab levels and proportion of high avidity Ab were compared between women with placental malaria (PM(+)) and those without (PM(-)) at delivery. Results showed that PM(-) women had significantly higher Ab levels (p = 0.0047) and proportion of high avidity Ab (p = 0.0009) than PM(+) women throughout pregnancy. Specifically, women with moderate to high Ab levels (>5,000 MFI) and those with ≥ 35% high avidity Ab at 5-6 months were found to have 2.3 (95% CI, 1.0-4.9) and 7.6-fold (p = 0.0013, 95% CI: 1.2-50.0) reduced risk of placental malaria, respectively. These data show that high levels of Ab to FV2, particularly those with high avidity for FV2, produced by mid-pregnancy are important in clearing parasites from the placenta. Both high Ab levels and proportion of high avidity Ab to FV2 may serve as correlates of protection for assessing immunity against placental malaria. PMID:22761948

  20. Crystallization of recombinant human interleukin 1β

    NASA Astrophysics Data System (ADS)

    Einspahr, Howard; Clancy, L. L.; Muchmore, S. W.; Watenpaugh, K. D.; Harris, P. K. W.; Carter, D. B.; Curry, K. A.; Tomich, C.-S. C.; Yem, A. W.; Deibel, M. R.; Tracey, D. E.; Paslay, J. W.; Staite, N. D.; Carter, J. B.; Theriault, N. Y.; Reardon, I. M.; Zurcher-Neely, H. A.; Heinrikson, R. L.

    1988-07-01

    The gene for the fully processed form of human interleukin 1β was cloned from SK-hep-1 hepatoma cellular RNA and expressed at high levels in E. coli. The protein produced in E. coli. was purified to homogeneity by standard chromatographic methods, including adsorption and desorption from Procion Red Sepharose, sizing on a Superose 12 FPLC column, and anion exchange chromatography on QAE Sepharose. The result is a biologically active protein, rIL-1β, that migrates on two-dimensional gels as a single spot with a pI of 6.5 ± 0.2 and a molecular mass of 17, 500 daltons. Crystals of rIL-1β have been produced from concentrated solutions of the protein by ammonium sulfate precipitation. The crystals are tetragonal, have space group P41 or its enantiomer, have lattice constants of a = 58.46(1) Å and c = 77.02(3) Å, and scatter to at least 2 Å resolution. A structure determination ba these crystals is underway.

  1. Human Recombinant Insulin 1g - ug

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Proteins are the building blocks of our bodies and the living world around us. Within our bodies proteins make it possible for red blood cells to carry oxygen throughout the body. Others help transmit nerve impulses so we can hear, smell and feel the world around us. While others play a crucial role in preventing or causing disease. If the structure of a protein is known, then companies can develop new or improved drugs to fight the disease of which the protein is a part. To determine protein structure, researchers must grow near-perfect crystals of the protein. On Earth convection currents, sedimentation and other gravity-induced phenomena hamper crystal growth efforts. In microgravity researchers can grow near-perfect crystals in an environment free of these effects. Because of the enormous potential for new pharmaceutical products the Center for Macromolecular Crystallography--the NASA Commercial Space Center responsible for commercial protein crystal growth efforts has more than fifty major industry and academic partners. Research on crystals of human insulin could lead to improved treatments for diabetes.

  2. Pharmacological efficacy of anti-IL-1β scFv, Fab and full-length antibodies in treatment of rheumatoid arthritis.

    PubMed

    Qi, Jianying; Ye, Xianlong; Ren, Guiping; Kan, Fangming; Zhang, Yu; Guo, Mo; Zhang, Zhiyi; Li, Deshan

    2014-02-01

    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that mainly causes the synovial joint inflammation and cartilage destruction. Interleukin-1β (IL-1β) is an important proinflammatory cytokine involved in the pathogenesis of RA. In this study, we constructed and expressed anti-IL-1β-full-length antibody in CHO-K1-SV, anti-IL-1β-Fab and anti-IL-1β-scFv in Rosetta. We compared the therapeutic efficacy of three anti-IL-1β antibodies for CIA mice. Mice with CIA were subcutaneously injected with humanized anti-IL-1β-scFv, anti-IL-1β-Fab or anti-IL-1β-full-length antibody. The effects of treatment were determined by arthritis severity score, autoreactive humoral, cellular immune responses, histological lesion and cytokines production. Compared with anti-IL-1β-scFv treatments, anti-IL-1β-Fab and anti-IL-1β-full-length antibody therapy resulted in more significant effect in alleviating the severity of arthritis by preventing bone damage and cartilage destruction, reducing humoral and cellular immune responses, and down-regulating the expression of IL-1β, IL-6, IL-2, IFN-γ, TNF-α and MMP-3 in inflammatory tissue. The therapeutic effects of anti-IL-1β-Fab and anti-IL-1β-full-length antibodies on CIA mice had no significant difference. However, production of anti-IL-1β-full-length antibody in eukaryotic system is, in general, time-consuming and more expensive than that of anti-IL-1β-Fab in prokaryotic systems. In conclusion, as a small molecule antibody, anti-IL-1β-Fab is an ideal candidate for RA therapy.

  3. Bioinformatic Analysis of the Human Recombinant Iduronate 2-Sulfate Sulfatase

    PubMed Central

    Morales-Álvarez, Edwin D.; Rivera-Hoyos, Claudia M.; Landázuri, Patricia; Poutou-Piñales, Raúl A.; Pedroza-Rodríguez, Aura M.

    2016-01-01

    Mucopolysaccharidosis type II is a human recessive disease linked to the X chromosome caused by deficiency of lysosomal enzyme Iduronate 2-Sulfate Sulfatase (IDS), which leads to accumulation of glycosaminoglycans in tissues and organs. The human enzyme has been expressed in Escherichia coli and Pichia pastoris in attempt to develop more successful expression systems that allow the production of recombinant IDS for Enzyme Replacement Therapy (ERT). However, the preservation of native signal peptide in the sequence has caused conflicts in processing and recognition in the past, which led to problems in expression and enzyme activity. With the main object being the improvement of the expression system, we eliminate the native signal peptide of human recombinant IDS. The resulting sequence showed two modified codons, thus, our study aimed to analyze computationally the nucleotide sequence of the IDSnh without signal peptide in order to determine the 3D structure and other biochemical properties to compare them with the native human IDS (IDSnh). Results showed that there are no significant differences between both molecules in spite of the two-codon modifications detected in the recombinant DNA sequence. PMID:27335624

  4. Analysis of the full-length VP2 protein of canine parvoviruses circulating in Hungary.

    PubMed

    Cságola, Attila; Varga, Szilvia; Lőrincz, Márta; Tuboly, Tamás

    2014-09-01

    In recent years, the number of cases of disease caused by canine parvovirus 2 (CPV-2) in vaccinated dogs has increased. The aim of the present study was to identify CPV-2 strains present in Hungary. Forty-two out of 50 faecal specimens examined were positive, and 25 VP2 sequences were determined and analysed. Based on the current classification, the Hungarian viruses belong to New CPV-2a type, except two viruses that are recombinants of vaccine viruses and CPV-2a strains. The Tyr324Ile alteration was detected for the first time in Europe, and a "Hungarian-specific" substitution (Ala516Thr) was also identified in this study. The immunologically important parts of the currently spreading canine parvoviruses were examined and found to differ greatly from the vaccine strains that are widely used in Hungary.

  5. Comparison of Next-Generation Sequencing Technologies for Comprehensive Assessment of Full-Length Hepatitis C Viral Genomes.

    PubMed

    Thomson, Emma; Ip, Camilla L C; Badhan, Anjna; Christiansen, Mette T; Adamson, Walt; Ansari, M Azim; Bibby, David; Breuer, Judith; Brown, Anthony; Bowden, Rory; Bryant, Josie; Bonsall, David; Da Silva Filipe, Ana; Hinds, Chris; Hudson, Emma; Klenerman, Paul; Lythgow, Kieren; Mbisa, Jean L; McLauchlan, John; Myers, Richard; Piazza, Paolo; Roy, Sunando; Trebes, Amy; Sreenu, Vattipally B; Witteveldt, Jeroen; Barnes, Eleanor; Simmonds, Peter

    2016-10-01

    Affordable next-generation sequencing (NGS) technologies for hepatitis C virus (HCV) may potentially identify both viral genotype and resistance genetic motifs in the era of directly acting antiviral (DAA) therapies. This study compared the ability of high-throughput NGS methods to generate full-length, deep, HCV sequence data sets and evaluated their utility for diagnostics and clinical assessment. NGS methods using (i) unselected HCV RNA (metagenomics), (ii) preenrichment of HCV RNA by probe capture, and (iii) HCV preamplification by PCR implemented in four United Kingdom centers were compared. Metrics of sequence coverage and depth, quasispecies diversity, and detection of DAA resistance-associated variants (RAVs), mixed HCV genotypes, and other coinfections were compared using a panel of samples with different viral loads, genotypes, and mixed HCV genotypes/subtypes [geno(sub)types]. Each NGS method generated near-complete genome sequences from more than 90% of samples. Enrichment methods and PCR preamplification generated greater sequence depth and were more effective for samples with low viral loads. All NGS methodologies accurately identified mixed HCV genotype infections. Consensus sequences generated by different NGS methods were generally concordant, and majority RAVs were consistently detected. However, methods differed in their ability to detect minor populations of RAVs. Metagenomic methods identified human pegivirus coinfections. NGS provided a rapid, inexpensive method for generating whole HCV genomes to define infecting genotypes, RAVs, comprehensive viral strain analysis, and quasispecies diversity. Enrichment methods are particularly suited for high-throughput analysis while providing the genotype and information on potential DAA resistance.

  6. Construction of mate pair full-length cDNAs libraries and characterization of transcriptional start sites and termination sites

    PubMed Central

    Matsumoto, Kyoko; Suzuki, Ayako; Wakaguri, Hiroyuki; Sugano, Sumio; Suzuki, Yutaka

    2014-01-01

    To identify and characterize transcript structures ranging from transcriptional start sites (TSSs) to poly(A)-addition sites (PASs), we constructed and analyzed human TSS/PAS mate pair full-length cDNA libraries from 14 tissue types and four cell lines. The collected information enabled us to define TSS cluster (TSC) and PAS cluster (PAC) relationships for a total of 8530/9400 RefSeq genes, as well as 4251/5618 of their putative alternative promoters/terminators and 4619/4605 intervening transcripts, respectively. Analyses of the putative alternative TSCs and alternative PACs revealed that their selection appeared to be mostly independent, with rare exceptions. In those exceptional cases, pairs of transcript units rarely overlapped one another and were occasionally separated by Rad21/CTCF. We also identified a total of 172 similar cases in which TSCs and PACs spanned adjacent but distinct genes. In these cases, different transcripts may utilize different functional units of a particular gene or of adjacent genes. This approach was also useful for identifying fusion gene transcripts in cancerous cells. Furthermore, we could construct cDNA libraries in which 3′-end mate pairs were distributed randomly over the transcripts. These libraries were useful for assembling the internal structure of previously uncharacterized alternative promoter products, as well as intervening transcripts. PMID:25034687

  7. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana.

    PubMed

    Alkanaimsh, Salem; Karuppanan, Kalimuthu; Guerrero, Andrés; Tu, Aye M; Hashimoto, Bryce; Hwang, Min Sook; Phu, My L; Arzola, Lucas; Lebrilla, Carlito B; Dandekar, Abhaya M; Falk, Bryce W; Nandi, Somen; Rodriguez, Raymond L; McDonald, Karen A

    2016-01-01

    To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed. PMID:27379103

  8. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana

    PubMed Central

    Alkanaimsh, Salem; Karuppanan, Kalimuthu; Guerrero, Andrés; Tu, Aye M.; Hashimoto, Bryce; Hwang, Min Sook; Phu, My L.; Arzola, Lucas; Lebrilla, Carlito B.; Dandekar, Abhaya M.; Falk, Bryce W.; Nandi, Somen; Rodriguez, Raymond L.; McDonald, Karen A.

    2016-01-01

    To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed. PMID:27379103

  9. Analysis of 4,664 high-quality sequence-finished poplar full-length

    SciTech Connect

    Ralph, S.; Gunter, Lee E; Tuskan, Gerald A; Douglas, Carl; Holt, Robert A.; Jones, Steven; Marra, Marco; Bohlmann, J.

    2008-01-01

    The genus Populus includes poplars, aspens and cottonwoods, which will be collectively referred to as poplars hereafter unless otherwise specified. Poplars are the dominant tree species in many forest ecosystems in the Northern Hemisphere and are of substantial economic value in plantation forestry. Poplar has been established as a model system for genomics studies of growth, development, and adaptation of woody perennial plants including secondary xylem formation, dormancy, adaptation to local environments, and biotic interactions. As part of the poplar genome sequencing project and the development of genomic resources for poplar, we have generated a full-length (FL)-cDNA collection using the biotinylated CAP trapper method. We constructed four FLcDNA libraries using RNA from xylem, phloem and cambium, and green shoot tips and leaves from the P. trichocarpa Nisqually-1 genotype, as well as insect-attacked leaves of the P. trichocarpa x P. deltoides hybrid. Following careful selection of candidate cDNA clones, we used a combined strategy of paired end reads and primer walking to generate a set of 4,664 high-accuracy, sequence-verified FLcDNAs, which clustered into 3,990 putative unique genes. Mapping FLcDNAs to the poplar genome sequence combined with BLAST comparisons to previously predicted protein coding sequences in the poplar genome identified 39 FLcDNAs that likely localize to gaps in the current genome sequence assembly. Another 173 FLcDNAs mapped to the genome sequence but were not included among the previously predicted genes in the poplar genome. Comparative sequence analysis against Arabidopsis thaliana and other species in the non-redundant database of GenBank revealed that 11.5% of the poplar FLcDNAs display no significant sequence similarity to other plant proteins. By mapping the poplar FLcDNAs against transcriptome data previously obtained with a 15.5 K cDNA microarray, we identified 153 FLcDNA clones for genes that were differentially expressed in

  10. Isolation and characterization of a full length cDNA for dentatorubral-pallidoluysian atrophy (DRPLA) gene

    SciTech Connect

    Oyake, M.; Onodera, O.; Ikeuchi, T.

    1994-09-01

    Hereditary dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant spinocerebellar degeneration characterized by anticipation and variable combination of symptoms including myoclonus, epilepsy, cerebellar ataxia, choleoathetosis, and dementia. Recently, we discovered that DRPLA is caused by unstable expansion of a CAG repeat of a B37 gene on chromosome 12. To characterize functions of the DRPLA gene product, we isolated several cDNA clones for the DRPLA gene from human adult and fetus brain cDNA libraries, using an oligonucleotide flanking the CAG repeat. The cDNA spans 4247 bp in length and there is only an open reading frame coding for 986 amino acids. The CAG repeat, which is expanded in DRPLA, is located 291 bp downstream from the initiation methionine and encodes a polyglutamine tract. The deduced amino acid sequence from amino acids residues 582 to 707 has a high homology to published human hippocampus derived expressed sequence (M78755) located at chromosome 1p (63.8% identity), and 3{prime}-untranslated region of the DRPLA cDNA revealed homology to the mouse small nuclear RNA U7 gene (X54165). Northern blot analysis revealed a 4.7 knt transcript which is widely expressed in various tissues including heart, lung, kidney, placenta, skeletal muscle, and brain. In human adult brain, the transcript was broadly expressed including amygdala, caudate nucleus, corpus callosum, hippocampus, hypothalamus, substantia nigra, subthalamic nucleus and thalamus, and was not specific to the dentatorubral-pallidoluysian system. The availability of a full length cDNA will be highly useful for analyzing the pathogenesis of this unique neurodegenerative disease as well as for analyzing other CAG repeat related neurodegenerative diseases.

  11. Expression and characterization of biologically active human hepatocyte growth factor (HGF) by insect cells infected with HGF-recombinant baculovirus.

    PubMed

    Yee, C J; DeFrances, M C; Bell, A; Bowen, W; Petersen, B; Michalopoulos, G K; Zarnegar, R

    1993-08-10

    itself, did not have any detectable biological activity; however, it abrogated the stimulatory effects of full-length HGF on hepatocytes. This is the first successful production of bioactive recombinant HGF in large quantities, which will allow purification on the milligram scale of pro-HGF and will permit future studies to elucidate pathways involved in HGF activation by its target tissues. PMID:8347597

  12. Construction of a full-length enriched cDNA library and preliminary analysis of expressed sequence tags from Bengal Tiger Panthera tigris tigris.

    PubMed

    Liu, Changqing; Liu, Dan; Guo, Yu; Lu, Taofeng; Li, Xiangchen; Zhang, Minghai; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2013-01-01

    In this study, a full-length enriched cDNA library was successfully constructed from Bengal tiger, Panthera tigris tigris, the most well-known wild Animal. Total RNA was extracted from cultured Bengal tiger fibroblasts in vitro. The titers of primary and amplified libraries were 1.28 × 106 pfu/mL and 1.56 × 109 pfu/mL respectively. The percentage of recombinants from unamplified library was 90.2% and average length of exogenous inserts was 0.98 kb. A total of 212 individual ESTs with sizes ranging from 356 to 1108 bps were then analyzed. The BLASTX score revealed that 48.1% of the sequences were classified as a strong match, 45.3% as nominal and 6.6% as a weak match. Among the ESTs with known putative function, 26.4% ESTs were found to be related to all kinds of metabolisms, 19.3% ESTs to information storage and processing, 11.3% ESTs to posttranslational modification, protein turnover, chaperones, 11.3% ESTs to transport, 9.9% ESTs to signal transducer/cell communication, 9.0% ESTs to structure protein, 3.8% ESTs to cell cycle, and only 6.6% ESTs classified as novel genes. By EST sequencing, a full-length gene coding ferritin was identified and characterized. The recombinant plasmid pET32a-TAT-Ferritin was constructed, coded for the TAT-Ferritin fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-Ferritin recombinant protein was 2.32 ± 0.12 mg/mL. These results demonstrated that the reliability and representativeness of the cDNA library attained to the requirements of a standard cDNA library. This library provided a useful platform for the functional genome and transcriptome research of Bengal tigers. PMID:23708105

  13. Construction of a full-length enriched cDNA library and preliminary analysis of expressed sequence tags from Bengal Tiger Panthera tigris tigris.

    PubMed

    Liu, Changqing; Liu, Dan; Guo, Yu; Lu, Taofeng; Li, Xiangchen; Zhang, Minghai; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2013-05-24

    In this study, a full-length enriched cDNA library was successfully constructed from Bengal tiger, Panthera tigris tigris, the most well-known wild Animal. Total RNA was extracted from cultured Bengal tiger fibroblasts in vitro. The titers of primary and amplified libraries were 1.28 × 106 pfu/mL and 1.56 × 109 pfu/mL respectively. The percentage of recombinants from unamplified library was 90.2% and average length of exogenous inserts was 0.98 kb. A total of 212 individual ESTs with sizes ranging from 356 to 1108 bps were then analyzed. The BLASTX score revealed that 48.1% of the sequences were classified as a strong match, 45.3% as nominal and 6.6% as a weak match. Among the ESTs with known putative function, 26.4% ESTs were found to be related to all kinds of metabolisms, 19.3% ESTs to information storage and processing, 11.3% ESTs to posttranslational modification, protein turnover, chaperones, 11.3% ESTs to transport, 9.9% ESTs to signal transducer/cell communication, 9.0% ESTs to structure protein, 3.8% ESTs to cell cycle, and only 6.6% ESTs classified as novel genes. By EST sequencing, a full-length gene coding ferritin was identified and characterized. The recombinant plasmid pET32a-TAT-Ferritin was constructed, coded for the TAT-Ferritin fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-Ferritin recombinant protein was 2.32 ± 0.12 mg/mL. These results demonstrated that the reliability and representativeness of the cDNA library attained to the requirements of a standard cDNA library. This library provided a useful platform for the functional genome and transcriptome research of Bengal tigers.

  14. Construction of a Full-Length Enriched cDNA Library and Preliminary Analysis of Expressed Sequence Tags from Bengal Tiger Panthera tigris tigris

    PubMed Central

    Liu, Changqing; Liu, Dan; Guo, Yu; Lu, Taofeng; Li, Xiangchen; Zhang, Minghai; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2013-01-01

    In this study, a full-length enriched cDNA library was successfully constructed from Bengal tiger, Panthera tigris tigris, the most well-known wild Animal. Total RNA was extracted from cultured Bengal tiger fibroblasts in vitro. The titers of primary and amplified libraries were 1.28 × 106 pfu/mL and 1.56 × 109 pfu/mL respectively. The percentage of recombinants from unamplified library was 90.2% and average length of exogenous inserts was 0.98 kb. A total of 212 individual ESTs with sizes ranging from 356 to 1108 bps were then analyzed. The BLASTX score revealed that 48.1% of the sequences were classified as a strong match, 45.3% as nominal and 6.6% as a weak match. Among the ESTs with known putative function, 26.4% ESTs were found to be related to all kinds of metabolisms, 19.3% ESTs to information storage and processing, 11.3% ESTs to posttranslational modification, protein turnover, chaperones, 11.3% ESTs to transport, 9.9% ESTs to signal transducer/cell communication, 9.0% ESTs to structure protein, 3.8% ESTs to cell cycle, and only 6.6% ESTs classified as novel genes. By EST sequencing, a full-length gene coding ferritin was identified and characterized. The recombinant plasmid pET32a-TAT-Ferritin was constructed, coded for the TAT-Ferritin fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-Ferritin recombinant protein was 2.32 ± 0.12 mg/mL. These results demonstrated that the reliability and representativeness of the cDNA library attained to the requirements of a standard cDNA library. This library provided a useful platform for the functional genome and transcriptome research of Bengal tigers. PMID:23708105

  15. In vivo potential of recombinant granulysin against human tumors

    PubMed Central

    Al-Wasaby, Sameer; de Miguel, Diego; Aporta, Adriana; Naval, Javier; Conde, Blanca; Martínez-Lostao, Luis; Anel, Alberto

    2015-01-01

    9 kDa granulysin is a protein present in the granules of human CTL and NK cells, with cytolytic activity against microbes and tumors. Previous work from our group demonstrated that this granulysin isoform induced apoptosis in vitro on hematological tumor cells and on primary tumor cells from B-CLL patients. In the present work, recombinant 9 kDa granulysin was used as an anti-tumoral agent to study its in vivo effect on tumor development in athymic “nude” mice models bearing human breast adenocarcinoma MDA-MB-231 or multiple myeloma NCI-H929–derived xenografts. Granulysin prevented the in vivo development of detectable MDA-MB-231-derived tumors. In addition, recombinant granulysin was able to completely eradicate NCI-H929-derived tumors. All granulysin-treated tumors exhibited signs of apoptosis induction and an increased NK cell infiltration inside the tumor tissue comparing to control ones. Moreover, no in vivo deleterious effects of the recombinant 9 kDa granulysin doses used in this study were observed on the skin or on the internal organs of the animals. In conclusion, granulysin was able to inhibit the progression of MDA-MB-231-derived xenografts and also to eradicate multiple myeloma NCI-H929-derived xenografts. This work opens the door to the initiation of preclinical and possibly clinical studies for the use of 9 kDa granulysin as a new anti-tumoral treatment. PMID:26405603

  16. Human recombinant soluble guanylyl cyclase: expression, purification, and regulation

    NASA Technical Reports Server (NTRS)

    Lee, Y. C.; Martin, E.; Murad, F.

    2000-01-01

    The alpha1- and beta1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5'-hydroxymethyl-2'furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2, 4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein.

  17. Domain–domain interactions in full-length p53 and a specific DNA complex probed by methyl NMR spectroscopy

    PubMed Central

    Bista, Michal; Freund, Stefan M.; Fersht, Alan R.

    2012-01-01

    The tumor suppressor p53 is a homotetramer of 4 × 393 residues. Its core domain and tetramerization domain are linked and flanked by intrinsically disordered sequences, which hinder its full structural characterization. There is an outstanding problem of the state of the tetramerization domain. Structural studies on the isolated tetramerization domain show it is in a folded tetrameric conformation, but there are conflicting models from electron microscopy of the full-length protein, one of which proposes that the domain is not tetramerically folded and the tetrameric protein is stabilized by interactions between the N and C termini. Here, we present methyl-transverse relaxation optimized NMR spectroscopy (methyl-TROSY) investigations on the full-length and separate domains of the protein with its methionine residues enriched with 13C to probe its quaternary structure. We obtained high-quality spectra of both the full-length tetrameric p53 and its DNA complex, observing the environment at 11 specific methyl sites. The tetramerization domain was as tetramerically folded in the full-length constructs as in the isolated domain. The N and C termini were intrinsically disordered in both the full-length protein and its complex with a 20-residue specific DNA sequence. Additionally, we detected in the interface of the core (DNA-binding) and N-terminal parts of the protein a slow conformational exchange process that was modulated by specific recognition of DNA, indicating allosteric processes. PMID:22972749

  18. Cost-Effective Sequencing of Full-Length cDNA Clones Powered by a De Novo-Reference Hybrid Assembly

    PubMed Central

    Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka

    2010-01-01

    Background Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. Methodology We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence ∼800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. Conclusions The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only ∼US$3 per clone, demonstrating a significant advantage over previous approaches. PMID:20479877

  19. Recombinant production of TEV cleaved human parathyroid hormone.

    PubMed

    Audu, Christopher O; Cochran, Jared C; Pellegrini, Maria; Mierke, Dale F

    2013-08-01

    The parathyroid hormone, PTH, is responsible for calcium and phosphate ion homeostasis in the body. The first 34 amino acids of the peptide maintain the biological activity of the hormone and is currently marketed for calcium imbalance disorders. Although several methods for the production of recombinant PTH(1-34) have been reported, most involve the use of cleavage conditions that result in a modified peptide or unfavorable side products. Herein, we detail the recombinant production of (15) N-enriched human parathyroid hormone, (15) N PTH(1-34), generated via a plasmid vector that gives reasonable yield, low-cost protease cleavage (leaving the native N-terminal serine in its amino form), and purification by affinity and size exclusion chromatography. We characterize the product by multidimensional, heteronuclear NMR, circular dichroism, and LC/MS. PMID:23794508

  20. Sensitive Multiplexed Quantitative Analysis of Autoantibodies to Cancer Antigens with Chemically S-Cationized Full-Length and Water-Soluble Denatured Proteins.

    PubMed

    Futami, Junichiro; Nonomura, Hidenori; Kido, Momoko; Niidoi, Naomi; Fujieda, Nao; Hosoi, Akihiro; Fujita, Kana; Mandai, Komako; Atago, Yuki; Kinoshita, Rie; Honjo, Tomoko; Matsushita, Hirokazu; Uenaka, Akiko; Nakayama, Eiichi; Kakimi, Kazuhiro

    2015-10-21

    Humoral immune responses against tumor-associated antigens (TAAs) or cancer/testis antigens (CTAs) aberrantly expressed in tumor cells are frequently observed in cancer patients. Recent clinical studies have elucidated that anticancer immune responses with increased levels of anti-TAA/CTA antibodies improve cancer survival rates. Thus, these antibody levels are promising biomarkers for diagnosing the efficiency of cancer immunotherapy. Full-length antigens are favored for detecting anti-TAA/CTA antibodies because candidate antigen proteins contain multiple epitopes throughout their structures. In this study, we developed a methodology to prepare purified water-soluble and full-length antigens by using cysteine sulfhydryl group cationization (S-cationization) chemistry. S-Cationized antigens can be prepared from bacterial inclusion bodies, and they exhibit improved protein solubility but preserved antigenicity. Anti-TAA/CTA antibodies detected in cancer patients appeared to recognize linear epitopes, as well as conformational epitopes, and because the frequency of cysteine side-residues on the epitope-paratope interface was low, any adverse effects of S-cationization were virtually negligible for antibody binding. Furthermore, S-cationized antigen-immobilized Luminex beads could be successfully used in highly sensitive quantitative-multiplexed assays. Indeed, patients with a more broadly induced serum anti-TAA/CTA antibody level showed improved progression-free survival after immunotherapy. The comprehensive anti-TAA/CTA assay system, which uses S-cationized full-length and water-soluble recombinant antigens, may be a useful diagnostic tool for assessing the efficiency of cancer immunotherapy. PMID:26355635

  1. Evidence of Recombination and Genetic Diversity in Human Rhinoviruses in Children with Acute Respiratory Infection

    PubMed Central

    Ren, Peijun; Sheng, Jun; Yan, Huajie; Zhang, Jing; Lin, Xin; Wang, Yongjin; Delpeyroux, Francis; Deubel, Vincent

    2009-01-01

    Background Human rhinoviruses (HRVs) are a highly prevalent cause of acute respiratory infection in children. They are classified into at least three species, HRV-A, HRV-B and HRV-C, which are characterized by sequencing the 5′ untranslated region (UTR) or the VP4/VP2 region of the genome. Given the increased interest for novel HRV strain identification and their worldwide distribution, we have carried out clinical and molecular diagnosis of HRV strains in a 2-year study of children with acute respiratory infection visiting one district hospital in Shanghai. Methodology/Findings We cloned and sequenced a 924-nt fragment that covered part of the 5′UTR and the VP4/VP2 capsid genes. Sixty-four HRV-infected outpatients were diagnosed amongst 827 children with acute low respiratory tract infection. Two samples were co-infected with HRV-A and HRV-B or HRV-C. By comparative analysis of the VP4/VP2 sequences of the 66 HRVs, we showed a high diversity of strains in HRV-A and HRV-B species, and a prevalence of 51.5% of strains that belonged to the recently identified HRV-C species. When analyzing a fragment of the 5′ UTR, we characterized at least two subspecies of HRV-C: HRV-Cc, which clustered differently from HRV-A and HRV-B, and HRV-Ca, which resulted from previous recombination in this region with sequences related to HRV-A. The full-length sequence of one strain of each HRV-Ca and HRV-Cc subspecies was obtained for comparative analysis. We confirmed the close relationship of their structural proteins but showed apparent additional recombination events in the 2A gene and 3′UTR of the HRV-Ca strain. Double or triple infections with HRV-C and respiratory syncytial virus and/or bocavirus were diagnosed in 33.3% of the HRV-infected patients, but no correlation with severity of clinical outcome was observed. Conclusion Our study showed a high diversity of HRV strains that cause bronchitis and pneumonia in children. A predominance of HRV-C over HRV-A and HRV-B was

  2. Comparison of Next-Generation Sequencing Technologies for Comprehensive Assessment of Full-Length Hepatitis C Viral Genomes.

    PubMed

    Thomson, Emma; Ip, Camilla L C; Badhan, Anjna; Christiansen, Mette T; Adamson, Walt; Ansari, M Azim; Bibby, David; Breuer, Judith; Brown, Anthony; Bowden, Rory; Bryant, Josie; Bonsall, David; Da Silva Filipe, Ana; Hinds, Chris; Hudson, Emma; Klenerman, Paul; Lythgow, Kieren; Mbisa, Jean L; McLauchlan, John; Myers, Richard; Piazza, Paolo; Roy, Sunando; Trebes, Amy; Sreenu, Vattipally B; Witteveldt, Jeroen; Barnes, Eleanor; Simmonds, Peter

    2016-10-01

    Affordable next-generation sequencing (NGS) technologies for hepatitis C virus (HCV) may potentially identify both viral genotype and resistance genetic motifs in the era of directly acting antiviral (DAA) therapies. This study compared the ability of high-throughput NGS methods to generate full-length, deep, HCV sequence data sets and evaluated their utility for diagnostics and clinical assessment. NGS methods using (i) unselected HCV RNA (metagenomics), (ii) preenrichment of HCV RNA by probe capture, and (iii) HCV preamplification by PCR implemented in four United Kingdom centers were compared. Metrics of sequence coverage and depth, quasispecies diversity, and detection of DAA resistance-associated variants (RAVs), mixed HCV genotypes, and other coinfections were compared using a panel of samples with different viral loads, genotypes, and mixed HCV genotypes/subtypes [geno(sub)types]. Each NGS method generated near-complete genome sequences from more than 90% of samples. Enrichment methods and PCR preamplification generated greater sequence depth and were more effective for samples with low viral loads. All NGS methodologies accurately identified mixed HCV genotype infections. Consensus sequences generated by different NGS methods were generally concordant, and majority RAVs were consistently detected. However, methods differed in their ability to detect minor populations of RAVs. Metagenomic methods identified human pegivirus coinfections. NGS provided a rapid, inexpensive method for generating whole HCV genomes to define infecting genotypes, RAVs, comprehensive viral strain analysis, and quasispecies diversity. Enrichment methods are particularly suited for high-throughput analysis while providing the genotype and information on potential DAA resistance. PMID:27385709

  3. Comparison of Next-Generation Sequencing Technologies for Comprehensive Assessment of Full-Length Hepatitis C Viral Genomes

    PubMed Central

    Thomson, Emma; Ip, Camilla L. C.; Badhan, Anjna; Christiansen, Mette T.; Adamson, Walt; Ansari, M. Azim; Breuer, Judith; Brown, Anthony; Bowden, Rory; Bonsall, David; Da Silva Filipe, Ana; Hinds, Chris; Hudson, Emma; Klenerman, Paul; Lythgow, Kieren; Mbisa, Jean L.; McLauchlan, John; Myers, Richard; Piazza, Paolo; Roy, Sunando; Trebes, Amy; Sreenu, Vattipally B.; Witteveldt, Jeroen; Simmonds, Peter

    2016-01-01

    Affordable next-generation sequencing (NGS) technologies for hepatitis C virus (HCV) may potentially identify both viral genotype and resistance genetic motifs in the era of directly acting antiviral (DAA) therapies. This study compared the ability of high-throughput NGS methods to generate full-length, deep, HCV sequence data sets and evaluated their utility for diagnostics and clinical assessment. NGS methods using (i) unselected HCV RNA (metagenomics), (ii) preenrichment of HCV RNA by probe capture, and (iii) HCV preamplification by PCR implemented in four United Kingdom centers were compared. Metrics of sequence coverage and depth, quasispecies diversity, and detection of DAA resistance-associated variants (RAVs), mixed HCV genotypes, and other coinfections were compared using a panel of samples with different viral loads, genotypes, and mixed HCV genotypes/subtypes [geno(sub)types]. Each NGS method generated near-complete genome sequences from more than 90% of samples. Enrichment methods and PCR preamplification generated greater sequence depth and were more effective for samples with low viral loads. All NGS methodologies accurately identified mixed HCV genotype infections. Consensus sequences generated by different NGS methods were generally concordant, and majority RAVs were consistently detected. However, methods differed in their ability to detect minor populations of RAVs. Metagenomic methods identified human pegivirus coinfections. NGS provided a rapid, inexpensive method for generating whole HCV genomes to define infecting genotypes, RAVs, comprehensive viral strain analysis, and quasispecies diversity. Enrichment methods are particularly suited for high-throughput analysis while providing the genotype and information on potential DAA resistance. PMID:27385709

  4. Paroxetine suppresses recombinant human P2X7 responses.

    PubMed

    Dao-Ung, Phuong; Skarratt, Kristen K; Fuller, Stephen J; Stokes, Leanne

    2015-12-01

    P2X7 receptor (P2X7) activity may link inflammation to depressive disorders. Genetic variants of human P2X7 have been linked with major depression and bipolar disorders, and the P2X7 knockout mouse has been shown to exhibit anti-depressive-like behaviour. P2X7 is an ATP-gated ion channel and is a major regulator of the pro-inflammatory cytokine interleukin 1β (IL-1β) secretion from monocytes and microglia. We hypothesised that antidepressants may elicit their mood enhancing effects in part via modulating P2X7 activity and reducing inflammatory responses. In this study, we determined whether common psychoactive drugs could affect recombinant and native human P2X7 responses in vitro. Common antidepressants demonstrated opposing effects on human P2X7-mediated responses; paroxetine inhibited while fluoxetine and clomipramine mildly potentiated ATP-induced dye uptake in HEK-293 cells stably expressing recombinant human P2X7. Paroxetine inhibited dye uptake mediated by human P2X7 in a concentration-dependent manner with an IC(50) of 24 μM and significantly reduces ATP-induced inward currents. We confirmed that trifluoperazine hydrochloride suppressed human P2X7 responses (IC(50) of 6.4 μM). Both paroxetine and trifluoperazine did not inhibit rodent P2X7 responses, and mutation of a known residue (F 95L) did not alter the effect of either drug, suggesting neither drug binds at this site. Finally, we demonstrate that P2X7-induced IL-1β secretion from lipopolysaccharide (LPS)-primed human CD14(+) monocytes was suppressed with trifluoperazine and paroxetine.

  5. Functional analysis of recombinant human and Yarrowia lipolytica O-GlcNAc transferases expressed in Saccharomyces cerevisiae.

    PubMed

    Oh, Hye Ji; Moon, Hye Yun; Cheon, Seon Ah; Hahn, Yoonsoo; Kang, Hyun Ah

    2016-10-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation is an important post-translational modification in many cellular processes. It is mediated by O-GlcNAc transferases (OGTs), which catalyze the addition of O-GlcNAc to serine or threonine residues of the target proteins. In this study, we expressed a putative Yarrowia lipolytica OGT (YlOGT), the only homolog identified in the subphylum Saccharomycotina through bioinformatics analysis, and the human OGT (hOGT) as recombinant proteins in Saccharomyces cerevisiae, and performed their functional characterization. Immunoblotting assays using antibody against O-GlcNAc revealed that recombinant hOGT (rhOGT), but not the recombinant YlOGT (rYlOGT), undergoes auto-O-GlcNAcylation in the heterologous host S. cerevisiae. Moreover, the rhOGT expressed in S. cerevisiae showed a catalytic activity during in vitro assays using casein kinase II substrates, whereas no such activity was obtained in rYlOGT. However, the chimeric human-Y. lipolytica OGT, carrying the human tetratricopeptide repeat (TPR) domain along with the Y. lipolytica catalytic domain (CTD), mediated the transfer of O-GlcNAc moiety during the in vitro assays. Although the overexpression of full-length OGTs inhibited the growth of S. cerevisiae, no such inhibition was obtained upon overexpression of only the CTD fragment, indicating the role of TPR domain in growth inhibition. This is the first report on the functional analysis of the fungal OGT, indicating that the Y. lipolytica OGT retains its catalytic activity, although the physiological role and substrates of YlOGT remain to be elucidated. PMID:27687229

  6. Functional analysis of recombinant human and Yarrowia lipolytica O-GlcNAc transferases expressed in Saccharomyces cerevisiae.

    PubMed

    Oh, Hye Ji; Moon, Hye Yun; Cheon, Seon Ah; Hahn, Yoonsoo; Kang, Hyun Ah

    2016-10-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation is an important post-translational modification in many cellular processes. It is mediated by O-GlcNAc transferases (OGTs), which catalyze the addition of O-GlcNAc to serine or threonine residues of the target proteins. In this study, we expressed a putative Yarrowia lipolytica OGT (YlOGT), the only homolog identified in the subphylum Saccharomycotina through bioinformatics analysis, and the human OGT (hOGT) as recombinant proteins in Saccharomyces cerevisiae, and performed their functional characterization. Immunoblotting assays using antibody against O-GlcNAc revealed that recombinant hOGT (rhOGT), but not the recombinant YlOGT (rYlOGT), undergoes auto-O-GlcNAcylation in the heterologous host S. cerevisiae. Moreover, the rhOGT expressed in S. cerevisiae showed a catalytic activity during in vitro assays using casein kinase II substrates, whereas no such activity was obtained in rYlOGT. However, the chimeric human-Y. lipolytica OGT, carrying the human tetratricopeptide repeat (TPR) domain along with the Y. lipolytica catalytic domain (CTD), mediated the transfer of O-GlcNAc moiety during the in vitro assays. Although the overexpression of full-length OGTs inhibited the growth of S. cerevisiae, no such inhibition was obtained upon overexpression of only the CTD fragment, indicating the role of TPR domain in growth inhibition. This is the first report on the functional analysis of the fungal OGT, indicating that the Y. lipolytica OGT retains its catalytic activity, although the physiological role and substrates of YlOGT remain to be elucidated.

  7. A method for high precision sequencing of near full-length 16S rRNA genes on an Illumina MiSeq

    PubMed Central

    Darling, Aaron E.

    2016-01-01

    Background The bacterial 16S rRNA gene has historically been used in defining bacterial taxonomy and phylogeny. However, there are currently no high-throughput methods to sequence full-length 16S rRNA genes present in a sample with precision. Results We describe a method for sequencing near full-length 16S rRNA gene amplicons using the high throughput Illumina MiSeq platform and test it using DNA from human skin swab samples. Proof of principle of the approach is demonstrated, with the generation of 1,604 sequences greater than 1,300 nt from a single Nano MiSeq run, with accuracy estimated to be 100-fold higher than standard Illumina reads. The reads were chimera filtered using information from a single molecule dual tagging scheme that boosts the signal available for chimera detection. Conclusions This method could be scaled up to generate many thousands of sequences per MiSeq run and could be applied to other sequencing platforms. This has great potential for populating databases with high quality, near full-length 16S rRNA gene sequences from under-represented taxa and environments and facilitates analyses of microbial communities at higher resolution. PMID:27688981

  8. Molecular Comparisons of Full Length Metapneumovirus (MPV) Genomes, Including Newly Determined French AMPV-C and –D Isolates, Further Supports Possible Subclassification within the MPV Genus

    PubMed Central

    Brown, Paul A.; Lemaitre, Evelyne; Briand, François-Xavier; Courtillon, Céline; Guionie, Olivier; Allée, Chantal; Toquin, Didier; Bayon-Auboyer, Marie-Hélène; Jestin, Véronique; Eterradossi, Nicolas

    2014-01-01

    Four avian metapneumovirus (AMPV) subgroups (A–D) have been reported previously based on genetic and antigenic differences. However, until now full length sequences of the only known isolates of European subgroup C and subgroup D viruses (duck and turkey origin, respectively) have been unavailable. These full length sequences were determined and compared with other full length AMPV and human metapneumoviruses (HMPV) sequences reported previously, using phylogenetics, comparisons of nucleic and amino acid sequences and study of codon usage bias. Results confirmed that subgroup C viruses were more closely related to HMPV than they were to the other AMPV subgroups in the study. This was consistent with previous findings using partial genome sequences. Closer relationships between AMPV-A, B and D were also evident throughout the majority of results. Three metapneumovirus “clusters” HMPV, AMPV-C and AMPV-A, B and D were further supported by codon bias and phylogenetics. The data presented here together with those of previous studies describing antigenic relationships also between AMPV-A, B and D and between AMPV-C and HMPV may call for a subclassification of metapneumoviruses similar to that used for avian paramyxoviruses, grouping AMPV-A, B and D as type I metapneumoviruses and AMPV-C and HMPV as type II. PMID:25036224

  9. A method for high precision sequencing of near full-length 16S rRNA genes on an Illumina MiSeq

    PubMed Central

    Darling, Aaron E.

    2016-01-01

    Background The bacterial 16S rRNA gene has historically been used in defining bacterial taxonomy and phylogeny. However, there are currently no high-throughput methods to sequence full-length 16S rRNA genes present in a sample with precision. Results We describe a method for sequencing near full-length 16S rRNA gene amplicons using the high throughput Illumina MiSeq platform and test it using DNA from human skin swab samples. Proof of principle of the approach is demonstrated, with the generation of 1,604 sequences greater than 1,300 nt from a single Nano MiSeq run, with accuracy estimated to be 100-fold higher than standard Illumina reads. The reads were chimera filtered using information from a single molecule dual tagging scheme that boosts the signal available for chimera detection. Conclusions This method could be scaled up to generate many thousands of sequences per MiSeq run and could be applied to other sequencing platforms. This has great potential for populating databases with high quality, near full-length 16S rRNA gene sequences from under-represented taxa and environments and facilitates analyses of microbial communities at higher resolution.

  10. Construction of a full-length cDNA library of Solen grandis dunker and identification of defense- and immune-related genes

    NASA Astrophysics Data System (ADS)

    Sun, Guohua; Liu, Xiangquan; Ren, Lihua; Yang, Jianmin; Wei, Xiumei; Yang, Jialong

    2013-11-01

    The basic genetic characteristics, important functional genes, and entire transcriptome of Solen grandis Dunker were investigated by constructing a full-length cDNA library with the `switching mechanism at the 5'-end of the RNA transcript' (SMART) technique. Total RNA was isolated from the immune-relevant tissues, gills and hemocytes, using the Trizol reagent, and cDNA fragments were digested with Sfi I before being ligated to the pBluescript II SK* vector. The cDNA library had a titer of 1048 cfu μL-1 and a storage capacity of 1.05×106 cfu. Approximately 98% of the clones in the library were recombinants, and the fragment lengths of insert cDNA ranged from 0.8 kb to 3.0 kb. A total of 2038 expressed sequence tags were successfully sequenced and clustered into 965 unigenes. BLASTN analysis showed that 240 sequences were highly similar to the known genes (E-value < 1e -5; percent identity >80%), accounting for 25% of the total unigenes. According to the Gene Ontology, these unigenes were related to several biological processes, including cell structure, signal transport, protein synthesis, transcription, energy metabolism, and immunity. Fifteen of the identified sequences were related to defense and immunity. The full-length cDNA sequence of HSC70 was obtained. The cDNA library of S. grandis provided a useful resource for future researches of functional genomics related to stress tolerance, immunity, and other physiological activities.

  11. Recombinant human bone morphogenetic protein 2 in lateral ridge augmentation.

    PubMed

    Mehanna, Robert; Koo, Samuel; Kim, David M

    2013-01-01

    This case report describes the augmentation of severe lateral ridge defects in the maxilla and mandible using recombinant human bone morphogenetic protein 2 (rhBMP-2) on an absorbable collagen sponge (ACS). The surgical technique used tenting screws and a membrane to maintain space for the ACS. After 7 months of healing, the ridge width increased from 1 to 2 mm to 6 to 9 mm, thus allowing successful placement of dental implants. De novo bone formation through use of the surgical technique for space maintenance of rhBMP-2/ACS was demonstrated without the need for additional particulate bone grafting. PMID:23342352

  12. Nonproteolytic neuroprotection by human recombinant tissue plasminogen activator.

    PubMed

    Kim, Y H; Park, J H; Hong, S H; Koh, J Y

    1999-04-23

    Human recombinant tissue plasminogen activator (tPA) may benefit ischemic stroke patients by dissolving clots. However, independent of thrombolysis, tPA may also have deleterious effects on neurons by promoting excitotoxicity. Zinc neurotoxicity has been shown to be an additional key mechanism in brain injuries. Hence, if tPA affects zinc neurotoxicity, this may provide additional insights into its effect on neuronal death. Independent of its proteolytic action, tPA markedly attenuated zinc-induced cell death in cortical culture, and, when injected into cerebrospinal fluid, also reduced kainate seizure-induced hippocampal neuronal death in adult rats.

  13. Interactions between canine RAD51 and full length or truncated BRCA2 BRC repeats.

    PubMed

    Ochiai, K; Yoshikawa, Y; Oonuma, T; Tomioka, Y; Hashizume, K; Morimatsu, M

    2011-11-01

    In humans, mutations in the gene for the breast cancer susceptibility protein BRCA2 affect its interactions with the recombinase RAD51 and are associated with an increased risk of cancer. This interaction occurs through a series of eight BRC repeat sequences in BRCA2. A mammalian two-hybrid assay using individual BRC repeats demonstrated that BRC6 did not bind to RAD51, whereas there was strong (BRC1, 2 and 4), intermediate (BRC8), or weak (BRC3, 5 and 7) binding of other BRC repeats to RAD51. In serial deletion mutation experiments, binding strengths were increased when the C-terminal BRC repeat was removed from BRC1-8, BRC1-5 and BRC1-3. These results may provide an insight into the effects of missense or truncation mutations in BRCA2 in canine tumours.

  14. Crystallization and preliminary X-ray diffraction analysis of full-length and proteolytically activated pyruvate oxidase from Escherichia coli

    SciTech Connect

    Weidner, Annett; Neumann, Piotr; Wille, Georg; Stubbs, Milton T.; Tittmann, Kai

    2008-03-01

    The peripheral membrane flavoprotein pyruvate oxidase from E. coli has been crystallized in the full-length form and as a proteolytically activated truncation variant lacking the last 23 amino acids at the C-terminus. The thiamine diphosphate- and flavin-dependent peripheral membrane enzyme pyruvate oxidase from Escherichia coli (EcPOX) has been crystallized in the full-length form and as a proteolytically activated C-terminal truncation variant which lacks the last 23 amino acids (Δ23 EcPOX). Crystals were grown by the hanging-drop vapour-diffusion method using either protamine sulfate (full-length EcPOX) or 2-methyl-2,4-pentanediol (Δ23 EcPOX) as precipitants. Native data sets were collected at a X-ray home source to a resolution of 2.9 Å. The two forms of EcPOX crystallize in different space groups. Whereas full-length EcPOX crystallizes in the tetragonal space group P4{sub 3}2{sub 1}2 with two monomers per asymmetric unit, the crystals of Δ23 EcPOX belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} and contain 12 monomers per asymmetric unit.

  15. Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses.

    PubMed

    Kuno, G; Chang, G-J J

    2007-01-01

    Many members of the genus Flavivirus are the agents of important diseases of humans, livestock, and wildlife. Currently, no complete genome sequence is available for the three African viruses, Bagaza, Zika, and Kedougou viruses, each representing a distinct virus subgroup according to the latest virus classification. In this study, we obtained a complete genome sequence of each of those three viruses and characterized the open reading frames (ORFs) with respect to gene sizes, cleavage sites, potential glycosylation sites, distribution of cysteine residues, and unique motifs. The sequences of the three viruses were then scanned across the entire length of the ORF against available sequences of other African flaviviruses and selected reference viruses for genetic relatedness. The data collectively indicated that Kedougou virus was close to dengue viruses but nonetheless distinct, while Bagaza virus shared genetic relatedness with West Nile virus in several genomic regions. In the non-coding regions, it was found that a particular organizational pattern of conserved sequences in the 3' terminal region generally correlated with the current virus grouping.

  16. Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon

    PubMed Central

    2011-01-01

    Background Melon (Cucumis melo), an economically important vegetable crop, belongs to the Cucurbitaceae family which includes several other important crops such as watermelon, cucumber, and pumpkin. It has served as a model system for sex determination and vascular biology studies. However, genomic resources currently available for melon are limited. Result We constructed eleven full-length enriched and four standard cDNA libraries from fruits, flowers, leaves, roots, cotyledons, and calluses of four different melon genotypes, and generated 71,577 and 22,179 ESTs from full-length enriched and standard cDNA libraries, respectively. These ESTs, together with ~35,000 ESTs available in public domains, were assembled into 24,444 unigenes, which were extensively annotated by comparing their sequences to different protein and functional domain databases, assigning them Gene Ontology (GO) terms, and mapping them onto metabolic pathways. Comparative analysis of melon unigenes and other plant genomes revealed that 75% to 85% of melon unigenes had homologs in other dicot plants, while approximately 70% had homologs in monocot plants. The analysis also identified 6,972 gene families that were conserved across dicot and monocot plants, and 181, 1,192, and 220 gene families specific to fleshy fruit-bearing plants, the Cucurbitaceae family, and melon, respectively. Digital expression analysis identified a total of 175 tissue-specific genes, which provides a valuable gene sequence resource for future genomics and functional studies. Furthermore, we identified 4,068 simple sequence repeats (SSRs) and 3,073 single nucleotide polymorphisms (SNPs) in the melon EST collection. Finally, we obtained a total of 1,382 melon full-length transcripts through the analysis of full-length enriched cDNA clones that were sequenced from both ends. Analysis of these full-length transcripts indicated that sizes of melon 5' and 3' UTRs were similar to those of tomato, but longer than many other dicot

  17. Metabolism of chamaechromone in vitro with human liver microsomes and recombinant human drug-metabolizing enzymes.

    PubMed

    Lou, Yan; Hu, Haihong; Qiu, Yunqing; Zheng, Jinqi; Wang, Linrun; Zhang, Xingguo; Zeng, Su

    2014-04-01

    Chamaechromone is a major component in the dried roots of Stellera chamaejasme with antihepatitis B virus and insecticidal activity. In this study, metabolic profiles of chamaechromone were investigated in human liver microsomes. One monohydroxide and two monoglucuronides of chamaechromone were identified. The enzyme kinetics for both hydroxylation and glucuronidation were fitted to the Michaelis-Menten equation. The hydroxylation of chamaechromone was inhibited by α-naphthoflavone, and predominantly catalyzed by recombinant human cytochrome P450 1A2, whereas the glucuronidation was inhibited by quercetin, 1-naphthol, and fluconazole, and mainly catalyzed by recombinant human UDP-glucuronosyltransferase 1A3, 1A7, 1A9, and 2B7.

  18. Oral Immunization with Recombinant Vaccinia Virus Prime and Intramuscular Protein Boost Provides Protection against Intrarectal Simian-Human Immunodeficiency Virus Challenge in Macaques

    PubMed Central

    Thippeshappa, Rajesh; Tian, Baoping; Cleveland, Brad; Guo, Wenjin; Polacino, Patricia

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) acquisition occurs predominantly through mucosal transmission. We hypothesized that greater mucosal immune responses and protective efficacy against mucosal HIV-1 infection may be achieved by prime-boost immunization at mucosal sites. We used a macaque model to determine the safety, immunogenicity, and protective efficacy of orally delivered, replication-competent but attenuated recombinant vaccinia viruses expressing full-length HIV-1 SF162 envelope (Env) or simian immunodeficiency virus (SIV) Gag-Pol proteins. We examined the dose and route that are suitable for oral immunization with recombinant vaccinia viruses. We showed that sublingual inoculation of two vaccinia virus-naive pigtailed macaques with 5 × 108 PFU of recombinant vaccinia viruses was safe. However, sublingual inoculation with a higher dose or tonsillar inoculation resulted in secondary oral lesions, indicating the need to optimize the dose and route for oral immunization with replication-competent vaccinia virus vectors. Oral priming alone elicited antibody responses to vaccinia virus and to the SF162 Env protein. Intramuscular immunization with the SF162 gp120 protein at either 20 or 21 weeks postpriming resulted in a significant boost in antibody responses in both systemic and mucosal compartments. Furthermore, we showed that immune responses induced by recombinant vaccinia virus priming and intramuscular protein boosting provided protection against intrarectal challenge with the simian-human immunodeficiency virus SHIV-SF162-P4. PMID:26718849

  19. Recombinant human fibrinogen and sulfation of the. gamma. prime chain

    SciTech Connect

    Farrell, D.H.; Huang, S.; Chung, D.W.; Davie, E.W. ); Mulvihill, E.R. )

    1991-10-01

    Human fibrinogen and the homodimeric {gamma}{prime}-chain-containing variant have been expressed in BHK cells using cDNAs coding for the {alpha},{beta}, and {gamma} (or {gamma}{prime}) chains. The fibrinogens were secreted at levels greater than 4 {mu}g (mg of total cell protein){sup {minus}1}day{sup {minus}1} and were biologically active in clotting assays. Recombinant fibrinogen containing the {gamma}' chain incorporated {sup 35}SO{sub 4} into its chains during biosynthesis, while no incorporation occurred in the protein containing the {gamma} chain. The identity of the sulfated {gamma}{prime} chain was verified by its ability to form dimers during clotting. In addition, carboxypeptidase {Upsilon} digestion of the recombinant fibrinogen containing the {gamma}{prime} chain released 96% of the {sup 35}S label from the sulfated chain, and the radioactive material was identified as tyrosine O-sulfate. These results clarify previous findings of the sulfation of tyrosine in human fibrinogen.

  20. Recombinant human granulocyte colony-stimulating factor reverts vascular dysfunction.

    PubMed

    Squadrito, F; Altavilla, D; Squadrito, G; Campo, G M; Ioculano, M; Serranò, M; Minutoli, L; Arlotta, M; Musolino, C; Saitta, A; Caputi, A P

    1997-01-01

    The aim of our study was to investigate the vascular effects of recombinant human granulocyte colony-stimulating factor (rh G-CSF) in a rat model of irreversible vascular failure. Male anesthetized rats were subjected to the clamping of the splanchnic arteries for 45 min. This surgical procedure resulted in an irreversible state of shock (splanchnic artery occlusion shock) characterized by high mortality rate (0% survival, 120 min following the release of clamps), a profound hypotension and vascular dysfunction consisting of a marked hyporeactivity to phenylephrine (PE 1 nM-10 microM) of aortic rings. Administration of recombinant human granulocyte colony-stimulating factor (20 micrograms/kg i.v. 5 min after the release of occlusion) increased survival rate (90% 4 h after the release of occlusion), blunted the profound hypotension and reverted the marked vascular dysfunction. Finally, rh G-CSF inhibited the activity of inducible nitric oxide synthase in peritoneal macrophages activated with endotoxin. Our data suggest that rh G-CSF may influence vascular function when low-flow states occur.

  1. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    PubMed

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT. PMID:25816228

  2. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    PubMed

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  3. Genetic Recombination between Human and Animal Parasites Creates Novel Strains of Human Pathogen

    PubMed Central

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-01-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT. PMID:25816228

  4. Generation and analysis of a large-scale expressed sequence tags from a full-length enriched cDNA library of Siberian tiger (Panthera tigris altaica).

    PubMed

    Guo, Yu; Liu, Changqing; Lu, Taofeng; Liu, Dan; Bai, Chunyu; Li, Xiangchen; Ma, Yuehui; Guan, Weijun

    2014-05-15

    In this study, a full-length enriched cDNA library was successfully constructed from Siberian tiger, the world's most endangered species. The titers of primary and amplified libraries were 1.28×10(6)pfu/mL and 1.59×10(10)pfu/mL respectively. The proportion of recombinants from unamplified library was 91.3% and the average length of exogenous inserts was 1.06kb. A total of 279 individual ESTs with sizes ranging from 316 to 1258bps were then analyzed. Furthermore, 204 unigenes were successfully annotated and involved in 49 functions of the GO classification, cell (175, 85.5%), cellular process (165, 80.9%), and binding (152, 74.5%) are the dominant terms. 198 unigenes were assigned to 156 KEGG pathways, and the pathways with the most representation are metabolic pathways (18, 9.1%). The proportion pattern of each COG subcategory was similar among Panthera tigris altaica, P. tigris tigris and Homo sapiens, and general function prediction only cluster (44, 15.8%) represents the largest group, followed by translation, ribosomal structure and biogenesis (33, 11.8%), replication, recombination and repair (24, 8.6%), and only 7.2% ESTs classified as novel genes. Moreover, the recombinant plasmid pET32a-TAT-COL6A2 was constructed, coded for the Trx-TAT-COL6A2 fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-COL6A2 recombinant protein was 2.64±0.18mg/mL. This library will provide a useful platform for the functional genome and transcriptome research of for the P. tigris and other felid animals in the future.

  5. Generation and analysis of a large-scale expressed sequence tags from a full-length enriched cDNA library of Siberian tiger (Panthera tigris altaica).

    PubMed

    Guo, Yu; Liu, Changqing; Lu, Taofeng; Liu, Dan; Bai, Chunyu; Li, Xiangchen; Ma, Yuehui; Guan, Weijun

    2014-05-15

    In this study, a full-length enriched cDNA library was successfully constructed from Siberian tiger, the world's most endangered species. The titers of primary and amplified libraries were 1.28×10(6)pfu/mL and 1.59×10(10)pfu/mL respectively. The proportion of recombinants from unamplified library was 91.3% and the average length of exogenous inserts was 1.06kb. A total of 279 individual ESTs with sizes ranging from 316 to 1258bps were then analyzed. Furthermore, 204 unigenes were successfully annotated and involved in 49 functions of the GO classification, cell (175, 85.5%), cellular process (165, 80.9%), and binding (152, 74.5%) are the dominant terms. 198 unigenes were assigned to 156 KEGG pathways, and the pathways with the most representation are metabolic pathways (18, 9.1%). The proportion pattern of each COG subcategory was similar among Panthera tigris altaica, P. tigris tigris and Homo sapiens, and general function prediction only cluster (44, 15.8%) represents the largest group, followed by translation, ribosomal structure and biogenesis (33, 11.8%), replication, recombination and repair (24, 8.6%), and only 7.2% ESTs classified as novel genes. Moreover, the recombinant plasmid pET32a-TAT-COL6A2 was constructed, coded for the Trx-TAT-COL6A2 fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-COL6A2 recombinant protein was 2.64±0.18mg/mL. This library will provide a useful platform for the functional genome and transcriptome research of for the P. tigris and other felid animals in the future. PMID:24630959

  6. Full-length sequence analysis of a distinct isolate of Bidens mottle virus infecting sunflower in Taiwan.

    PubMed

    Liao, J Y; Hu, Chung-Chi; Chen, C C; Chang, C H; Deng, T C

    2009-01-01

    The full-length genome of a potyvirus, previously known as sunflower chlorotic spot virus isolate SF-1 (SCSV-SF-1) which causes novel symptoms on sunflowers (Helianthus annuus), was sequenced and analyzed. The genome of SCSV-SF-1 is 9,741 nucleotides long, encoding a polyprotein of 3,071 amino acids containing the consensus motifs of potyviruses. Sequence comparison revealed that the 3'-terminus of SCSV-SF-1 shared over 96% similarities with isolates of Bidens mottle virus (BiMoV). However, SCSV-SF-1 has a very narrow host range, excluding the diagnostic host species for BiMoV, Bidens pilosa and Zinnia elegans. Therefore, SCSV-SF-1 is a distinct isolate of BiMoV. This is the first report of the full-length nucleotide sequence of BiMoV infecting sunflower in Taiwan.

  7. Caspase 3 inactivates biologically active full length interleukin-33 as a classical cytokine but does not prohibit nuclear translocation

    SciTech Connect

    Ali, Shafaqat; Nguyen, Dang Quan; Falk, Werner; Martin, Michael Uwe

    2010-01-15

    IL-33 is a member of the IL-1 family of cytokines with dual function which either activates cells via the IL-33 receptor in a paracrine fashion or translocates to the nucleus to regulate gene transcription in an intracrine manner. We show that full length murine IL-33 is active as a cytokine and that it is not processed by caspase 1 to mature IL-33 but instead cleaved by caspase 3 at aa175 to yield two products which are both unable to bind to the IL-33 receptor. Full length IL-33 and its N-terminal caspase 3 breakdown product, however, translocate to the nucleus. Finally, bioactive IL-33 is not released by cells constitutively or after activation. This suggests that IL-33 is not a classical cytokine but exerts its function in the nucleus of intact cells and only activates others cells via its receptor as an alarm mediator after destruction of the producing cell.

  8. [Full-length cDNA cloning of flavonol synthase genes of Carthamus tinctorius and construction plant expression vector].

    PubMed

    Yang, Wen-ting; Liu, Xiu-ming; Wan, Qiu; Yao, Na; Wang, Nan; Zhang, Xue-meng; Jiao, Zhong-da; Li, Hai-yan; Li, Xiao-kun

    2015-02-01

    Flavonol synthase (FLS) is one of the key enzymes in flavonoids metabolic pathways. In this study, middle sequence was obtained from Carthamus tinctorius transcriptome sequencing results. Full-length cDNAs of FLS was cloned from petals of C. tinctorius to FLS by using RT-PCR and RACE technology. Its full-length cDNA was 1,201 bp, with an open reading frame of 1,101 bp and 336 encoded amino acids. The phylogenetic analysis showed that, FLS gene encoded amino acids in C. tinctorius were highly homologous with amino acids in congeneric Compositae species, especially Rudbeckia laciniata. The pBASTA-FLS plant expression vector was successfully built by the molecular biology method, which lays a foundation for further studying biology functions of the gene and biosynthesis mechanism of flavonoids.

  9. Full-Length gene enrichment by using an optimized RNA isolation protocol in Bixa orellana recalcitrant tissues.

    PubMed

    Rodríguez-Avila, N L; Narváez-Zapata, J A; Aguilar-Espinosa, M L; Rivera-Madrid, R

    2009-05-01

    A reliable protocol is described for isolation of large full-length cDNA from Bixa orellana mature tissues containing large quantities of pigments, phenols, and polysaccharides. This protocol involves the optimization of a commercial RNA extraction protocol in combination with a long distance reverse transcript PCR protocol. The principal advantages of this protocol are its high RNA yield and quality. The resulting RNA is suitable for RNA expression evaluation and production of large, full-length cDNA. This is the first time RNA has been isolated from all mature tissues in the tropical perennial plant B. orellana and has been proved viable for downstream applications, especially important for molecular biology studies on this economically important pigment-producing plant. PMID:19107604

  10. Massive Collection of Full-Length Complementary DNA Clones and Microarray Analyses:. Keys to Rice Transcriptome Analysis

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shoshi

    2009-02-01

    Completion of the high-precision genome sequence analysis of rice led to the collection of about 35,000 full-length cDNA clones and the determination of their complete sequences. Mapping of these full-length cDNA sequences has given us information on (1) the number of genes expressed in the rice genome; (2) the start and end positions and exon-intron structures of rice genes; (3) alternative transcripts; (4) possible encoded proteins; (5) non-protein-coding (np) RNAs; (6) the density of gene localization on the chromosome; (7) setting the parameters of gene prediction programs; and (8) the construction of a microarray system that monitors global gene expression. Manual curation for rice gene annotation by using mapping information on full-length cDNA and EST assemblies has revealed about 32,000 expressed genes in the rice genome. Analysis of major gene families, such as those encoding membrane transport proteins (pumps, ion channels, and secondary transporters), along with the evolution from bacteria to higher animals and plants, reveals how gene numbers have increased through adaptation to circumstances. Family-based gene annotation also gives us a new way of comparing organisms. Massive amounts of data on gene expression under many kinds of physiological conditions are being accumulated in rice oligoarrays (22K and 44K) based on full-length cDNA sequences. Cluster analyses of genes that have the same promoter cis-elements, that have similar expression profiles, or that encode enzymes in the same metabolic pathways or signal transduction cascades give us clues to understanding the networks of gene expression in rice. As a tool for that purpose, we recently developed "RiCES", a tool for searching for cis-elements in the promoter regions of clustered genes.

  11. Desensitisation of native and recombinant human urotensin-II receptors.

    PubMed

    Batuwangala, Madura S; Calo, Girolamo; Guerrini, Remo; Ng, Leong L; McDonald, John; Lambert, David G

    2009-11-01

    Human urotensin-II (U-II) is an 11-amino-acid cyclic peptide that activates a G(q)-coupled receptor named UT. Little is known about the desensitisation profile of this receptor as peptide binding is essentially irreversible. In the present study, we have examined the effects of U-II and carbachol on Ca(2+) signalling in SJCRH30 rhabdomyosarcoma (receptor density, B(max) approximately 0.1 pmol/mg protein) and human embroynic kidney (HEK)(hUT) (B(max) approximately 1.4 pmol/mg protein) cells expressing native and recombinant UT, respectively. In SJCRH30, HEK(hUT) and human peripheral blood mononuclear cells induced to express native UT by treatment with 2 microg/ml lipopolysaccharide (LPS), we have measured the effects of U-II treatment on UT mRNA. In SJCRH30 cells, primary stimulation with carbachol (250 microM) did not affect a secondary challenge with U-II (1 microM) and primary challenge with U-II did not affect a secondary challenge with carbachol. In contrast, in HEK(hUT) cells, primary stimulation with carbachol (250 microM) reduced a secondary challenge to U-II (1 microM) by 84% and primary challenge with U-II reduced a secondary challenge to carbachol by 76%. Pre-treatment of SJCRH30 cells with U-II reduced UT mRNA after 6 h and this returned to basal after 24 h. In recombinant HEK(hUT) cells, UT mRNA expression increased following a 6 h treatment with 1 microM U-II. U-II treatment of naïve un-stimulated peripheral blood mononuclear cells was without effect. However, when UT expression is up-regulated following 15 h of LPS treatment, a 6 h U-II challenge reduced UT mRNA by 66%. In summary, we report differences in the desensitisation profiles of native and recombinant U-II receptors. Design and interpretation of functional experiments are hampered by irreversibility of U-II binding.

  12. RT-PCR and sequence analysis of the full-length fusion protein of Canine Distemper Virus from domestic dogs.

    PubMed

    Romanutti, Carina; Gallo Calderón, Marina; Keller, Leticia; Mattion, Nora; La Torre, José

    2016-02-01

    During 2007-2014, 84 out of 236 (35.6%) samples from domestic dogs submitted to our laboratory for diagnostic purposes were positive for Canine Distemper Virus (CDV), as analyzed by RT-PCR amplification of a fragment of the nucleoprotein gene. Fifty-nine of them (70.2%) were from dogs that had been vaccinated against CDV. The full-length gene encoding the Fusion (F) protein of fifteen isolates was sequenced and compared with that of those of other CDVs, including wild-type and vaccine strains. Phylogenetic analysis using the F gene full-length sequences grouped all the Argentinean CDV strains in the SA2 clade. Sequence identity with the Onderstepoort vaccine strain was 89.0-90.6%, and the highest divergence was found in the 135 amino acids corresponding to the F protein signal-peptide, Fsp (64.4-66.7% identity). In contrast, this region was highly conserved among the local strains (94.1-100% identity). One extra putative N-glycosylation site was identified in the F gene of CDV Argentinean strains with respect to the vaccine strain. The present report is the first to analyze full-length F protein sequences of CDV strains circulating in Argentina, and contributes to the knowledge of molecular epidemiology of CDV, which may help in understanding future disease outbreaks. PMID:26611227

  13. RT-PCR and sequence analysis of the full-length fusion protein of Canine Distemper Virus from domestic dogs.

    PubMed

    Romanutti, Carina; Gallo Calderón, Marina; Keller, Leticia; Mattion, Nora; La Torre, José

    2016-02-01

    During 2007-2014, 84 out of 236 (35.6%) samples from domestic dogs submitted to our laboratory for diagnostic purposes were positive for Canine Distemper Virus (CDV), as analyzed by RT-PCR amplification of a fragment of the nucleoprotein gene. Fifty-nine of them (70.2%) were from dogs that had been vaccinated against CDV. The full-length gene encoding the Fusion (F) protein of fifteen isolates was sequenced and compared with that of those of other CDVs, including wild-type and vaccine strains. Phylogenetic analysis using the F gene full-length sequences grouped all the Argentinean CDV strains in the SA2 clade. Sequence identity with the Onderstepoort vaccine strain was 89.0-90.6%, and the highest divergence was found in the 135 amino acids corresponding to the F protein signal-peptide, Fsp (64.4-66.7% identity). In contrast, this region was highly conserved among the local strains (94.1-100% identity). One extra putative N-glycosylation site was identified in the F gene of CDV Argentinean strains with respect to the vaccine strain. The present report is the first to analyze full-length F protein sequences of CDV strains circulating in Argentina, and contributes to the knowledge of molecular epidemiology of CDV, which may help in understanding future disease outbreaks.

  14. Hibiscus latent Fort Pierce virus in Brazil and synthesis of its biologically active full-length cDNA clone.

    PubMed

    Gao, Ruimin; Niu, Shengniao; Dai, Weifang; Kitajima, Elliot; Wong, Sek-Man

    2016-10-01

    A Brazilian isolate of Hibiscus latent Fort Pierce virus (HLFPV-BR) was firstly found in a hibiscus plant in Limeira, SP, Brazil. RACE PCR was carried out to obtain the full-length sequences of HLFPV-BR which is 6453 nucleotides and has more than 99.15 % of complete genomic RNA nucleotide sequence identity with that of HLFPV Japanese isolate. The genomic structure of HLFPV-BR is similar to other tobamoviruses. It includes a 5' untranslated region (UTR), followed by open reading frames encoding for a 128-kDa protein and a 188-kDa readthrough protein, a 38-kDa movement protein, 18-kDa coat protein, and a 3' UTR. Interestingly, the unique feature of poly(A) tract is also found within its 3'-UTR. Furthermore, from the total RNA extracted from the local lesions of HLFPV-BR-infected Chenopodium quinoa leaves, a biologically active, full-length cDNA clone encompassing the genome of HLFPV-BR was amplified and placed adjacent to a T7 RNA polymerase promoter. The capped in vitro transcripts from the cloned cDNA were infectious when mechanically inoculated into C. quinoa and Nicotiana benthamiana plants. This is the first report of the presence of an isolate of HLFPV in Brazil and the successful synthesis of a biologically active HLFPV-BR full-length cDNA clone. PMID:27139727

  15. Construction and development of a mammalian cell-based full-length antibody display library for targeting hepatocellular carcinoma.

    PubMed

    Li, Feng; Liu, Yan-Hong; Li, Yan-Wen; Li, Yue-Hui; Xie, Ping-Li; Ju, Qiang; Chen, Lin; Li, Guan-Cheng

    2012-12-01

    We present a detailed method for constructing a mammalian cell-based full-length antibody display library for targeting hepatocellular carcinoma. Two novel mammalian library vectors pcDNA3-CHm and pcDNA3-CLm were constructed that contained restriction enzyme sites NheI, ClaI and antibody constant domain. Mammalian expression vector pcDNA3-CHm contains IgG heavy-chain (HC) constant region and glycosylphosphatidylinositol anchor (GPI) that could be anchored full-length antibodies on the surface of mammalian cells. GOLPH2 prokaryotic expression vector was carried out in Escherichia coli and purified by immobilized metal affinity chromatography. Variable domain of heavy-chain and variable domain of light-chain genes were respectively inserted into the vector pcDNA3-CHm and pcDNA3-CLm by ligation, and antibody libraries are displayed as whole IgG molecules on the cell surface by co-transfecting this HC-GPI with a light chain. By screening the cell library using magnetic beads and cell ELISA, the cell clone that displayed GOLPH2-specific antibodies on cell surfaces was identified. The mammalian cell-based antibody display library is a great potential application for displaying full-length functional antibodies of targeting hepatocellular carcinoma on the surface of mammalian cells. Anti-GOLPH2 display antibody was successfully isolated from the library.

  16. “Genome-wide recombination and chromosome segregation in human oocytes and embryos reveal selection for maternal recombination rates”

    PubMed Central

    Natesan, Senthilkumar A.; Joshi, Hrishikesh A.; Cimadomo, Danilo; Griffin, Darren K.; Sage, Karen; Summers, Michael C.; Thornhill, Alan R.; Housworth, Elizabeth; Herbert, Alex D.; Rienzi, Laura; Ubaldi, Filippo M.; Handyside, Alan H.; Hoffmann, Eva R.

    2015-01-01

    Crossover recombination reshuffles genes and prevents errors in segregation that lead to extra or missing chromosomes (aneuploidy) in human eggs, a major cause of pregnancy failure and congenital disorders. Here, we generate genome-wide maps of crossovers and chromosome segregation patterns by recovering all three products of single female meioses. Genotyping > 4 million informative single-nucleotide polymorphisms (SNPs) from 23 complete meioses allowed us to map 2,032 maternal and 1,342 paternal crossovers and to infer the segregation patterns of 529 chromosome pairs. We uncover a novel reverse chromosome segregation pattern in which both homologs separate their sister chromatids at meiosis I; detect selection for higher recombination rates in the female germline by the elimination of aneuploid embryos; and report chromosomal drive against non-recombinant chromatids at meiosis II. Collectively, our findings reveal that recombination not only affects homolog segregation at meiosis I but also the fate of sister chromatids at meiosis II. PMID:25985139

  17. Recombinant human LCAT normalizes plasma lipoprotein profile in LCAT deficiency.

    PubMed

    Simonelli, Sara; Tinti, Cristina; Salvini, Laura; Tinti, Laura; Ossoli, Alice; Vitali, Cecilia; Sousa, Vitor; Orsini, Gaetano; Nolli, Maria Luisa; Franceschini, Guido; Calabresi, Laura

    2013-11-01

    Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for cholesterol esterification in plasma. Mutations in the LCAT gene leads to two rare disorders, familial LCAT deficiency and fish-eye disease, both characterized by severe hypoalphalipoproteinemia associated with several lipoprotein abnormalities. No specific treatment is presently available for genetic LCAT deficiency. In the present study, recombinant human LCAT was expressed and tested for its ability to correct the lipoprotein profile in LCAT deficient plasma. The results show that rhLCAT efficiently reduces the amount of unesterified cholesterol (-30%) and promotes the production of plasma cholesteryl esters (+210%) in LCAT deficient plasma. rhLCAT induces a marked increase in HDL-C levels (+89%) and induces the maturation of small preβ-HDL into alpha-migrating particles. Moreover, the abnormal phospholipid-rich particles migrating in the LDL region were converted in normally sized LDL.

  18. Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhai, Y.; Cui, F. Z.

    2006-05-01

    Bones are biocomposites with hierarchical structure that require controlled mineral deposition during their self-assembly to form tissues with unique mechanical properties. Type I collagen proteins, acidic extracellular matrix proteins, play a critical role in mineral formation and many researches on artificial bones have been made inspired by nature using type I collagen derived from animal tissues. Here we report that recombinant human-like type I collagen, an acidic protein, can direct growth of hydroxyapatite (HA) nanocrystals in vitro in the form of self-assembly of nano-fibrils of mineralized collagen resembling extracellular matrix. The mineralized collagen fibrils aligned parallel to each other to form mineralized collagen fibers. HA nanocrystals grew on the surface of these collagen fibrils with the c-axis of nanocrystals of HA orienting along the longitudinal axis of the fibrils. These artificial analogs of bone have a potential clinical application in bone repair.

  19. Recombinant human LCAT normalizes plasma lipoprotein profile in LCAT deficiency.

    PubMed

    Simonelli, Sara; Tinti, Cristina; Salvini, Laura; Tinti, Laura; Ossoli, Alice; Vitali, Cecilia; Sousa, Vitor; Orsini, Gaetano; Nolli, Maria Luisa; Franceschini, Guido; Calabresi, Laura

    2013-11-01

    Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for cholesterol esterification in plasma. Mutations in the LCAT gene leads to two rare disorders, familial LCAT deficiency and fish-eye disease, both characterized by severe hypoalphalipoproteinemia associated with several lipoprotein abnormalities. No specific treatment is presently available for genetic LCAT deficiency. In the present study, recombinant human LCAT was expressed and tested for its ability to correct the lipoprotein profile in LCAT deficient plasma. The results show that rhLCAT efficiently reduces the amount of unesterified cholesterol (-30%) and promotes the production of plasma cholesteryl esters (+210%) in LCAT deficient plasma. rhLCAT induces a marked increase in HDL-C levels (+89%) and induces the maturation of small preβ-HDL into alpha-migrating particles. Moreover, the abnormal phospholipid-rich particles migrating in the LDL region were converted in normally sized LDL. PMID:24140107

  20. Immunomodulatory action of human recombinant erythropoietin in man.

    PubMed

    Imiela, J; Korczak-Kowalska, G; Małecki, R; Nowaczyk, M; Stepień-Sopniewska, B; Górski, A

    1993-03-01

    Recent findings suggest that recombinant human erythropoietin (rhEpo) may have an immunomodulating action. We have studied the in vitro and in vivo effects of rhEpo on immune functions in man. Low pharmacological concentrations of the hormone inhibit T-cell activation and proliferation, while higher ones are without that effect. The same Epo concentrations inhibit mitogen- and alloantigen-driven B-cell differentiation and immunoglobulin synthesis and, to a lesser extent, B-cell proliferation. In vivo treatment with rhEpo causes an initial inhibition of T- and B-cell proliferation, but with prolonged administration improved responsiveness is observed. Our data support the notion that rhEpo can regulate immune functions, a fact of potential clinical application. PMID:8514337

  1. Human cell lines: A promising alternative for recombinant FIX production.

    PubMed

    de Sousa Bomfim, Aline; Cristina Corrêa de Freitas, Marcela; Picanço-Castro, Virgínia; de Abreu Soares Neto, Mário; Swiech, Kamilla; Tadeu Covas, Dimas; Maria de Sousa Russo, Elisa

    2016-05-01

    Factor IX (FIX) is a vitamin K-dependent protein, and it has become a valuable pharmaceutical in the Hemophilia B treatment. We evaluated the potential of recombinant human FIX (rhFIX) expression in 293T and SK-Hep-1 human cell lines. SK-Hep-1-FIX cells produced higher levels of biologically active protein. The growth profile of 293T-FIX cells was not influenced by lentiviral integration number into the cellular genome. SK-Hep-1-FIX cells showed a significantly lower growth rate than SK-Hep-1 cells. γ-carboxylation process is significant to FIX biological activity, thus we performed a expression analysis of genes involved in this process. The 293T gene expression suggests that this cell line could efficiently carboxylate FIX, however only 28% of the total secreted protein is active. SK-Hep-1 cells did not express high amounts of VKORC1 and carboxylase, but this cell line secreted large amounts of active protein. Enrichment of culture medium with Ca(+2) and Mg(+2) ions did not affect positively rhFIX expression in SK-Hep-1 cells. In 293T cells, the addition of 0.5 mM Ca(+2) and 1 mM Mg(+2) resulted in higher rhFIX concentration. SK-Hep-1 cell line proved to be very effective in rhFIX production, and it can be used as a novel biotechnological platform for the production of recombinant proteins.

  2. Biological evaluation of recombinant human erythropoietin in pharmaceutical products.

    PubMed

    Ramos, A S; Schmidt, C A; Andrade, S S; Fronza, M; Rafferty, B; Dalmora, S L

    2003-11-01

    The potencies of mammalian cell-derived recombinant human erythropoietin pharmaceutical preparations, from a total of five manufacturers, were assessed by in vivo bioassay using standardized protocols. Eight-week-old normocythemic mice received a single subcutaneous injection followed by blood sampling 96 h later or multiple daily injections with blood sampling 24 h after the last injection. Reticulocyte counting by microscopic examination was employed as the end-point using the brilliant cresyl blue or selective hemolysis methods, together with automated flow cytometry. Different injection schedules were investigated and dose-response curves for the European Pharmacopoeia Biological Reference Preparation of erythropoietin were compared. Manual and automated methods of reticulocyte counting were correlated with respect to assay validity and precision. Using 8 mice per treatment group, intra-assay precision determined for all of the assays in the study showed coefficients of variation of 12.1-28.4% for the brilliant cresyl blue method, 14.1-30.8% for the selective hemolysis method and 8.5-19.7% for the flow cytometry method. Applying the single injection protocol, a combination of at least two independent assays was required to achieve the precision potency and confidence limits indicated by the manufacturers, while the multiple daily injection protocol yielded the same acceptable results within a single assay. Although the latter protocol using flow cytometry for reticulocyte counting gave more precise and reproducible results (intra-assay coefficients of variation: 5.9-14.2%), the well-characterized manual methods provide equally valid alternatives for the quality control of recombinant human erythropoietin therapeutic products.

  3. Full-length genome analyses of two new simian immunodeficiency virus (SIV) strains from mustached monkeys (C. Cephus) in Gabon illustrate a complex evolutionary history among the SIVmus/mon/gsn lineage.

    PubMed

    Liégeois, Florian; Schmidt, Fabian; Boué, Vanina; Butel, Christelle; Mouacha, Fatima; Ngari, Paul; Ondo, Bertrand Mve; Leroy, Eric; Heeney, Jonathan L; Delaporte, Eric; Peeters, Martine; Rouet, François

    2014-07-22

    The Simian Immunodeficiency Virus (SIV) mus/mon/gsn lineage is a descendant of one of the precursor viruses to the HIV-1/SIVcpz/gor viral lineage. SIVmus and SIVgsn were sequenced from mustached and greater spot nosed monkeys in Cameroon and SIVmon from mona monkeys in Cameroon and Nigeria. In order to further document the genetic diversity of SIVmus, we analyzed two full-length genomes of new strains identified in Gabon. The whole genomes obtained showed the expected reading frames for gag, pol, vif, vpr, tat, rev, env, nef, and also for a vpu gene. Analyses showed that the Gabonese SIVmus strains were closely related and formed a monophyletic clade within the SIVmus/mon/gsn lineage. Nonetheless, within this lineage, the position of both new SIVmus differed according to the gene analyzed. In pol and nef gene, phylogenetic topologies suggested different evolutions for each of the two new SIVmus strains whereas in the other nucleic fragments studied, their positions fluctuated between SIVmon, SIVmus-1, and SIVgsn. In addition, in C1 domain of env, we identified an insertion of seven amino acids characteristic for the SIVmus/mon/gsn and HIV‑1/SIVcpz/SIVgor lineages. Our results show a high genetic diversity of SIVmus in mustached monkeys and suggest cross-species transmission events and recombination within SIVmus/mon/gsn lineage. Additionally, in Central Africa, hunters continue to be exposed to these simian viruses, and this represents a potential threat to humans.

  4. Full-Length Genome Analyses of Two New Simian Immunodeficiency Virus (SIV) Strains from Mustached Monkeys (C. Cephus) in Gabon Illustrate a Complex Evolutionary History among the SIVmus/mon/gsn Lineage

    PubMed Central

    Liégeois, Florian; Schmidt, Fabian; Boué, Vanina; Butel, Christelle; Mouacha, Fatima; Ngari, Paul; Mve Ondo, Bertrand; Leroy, Eric; Heeney, Jonathan L.; Delaporte, Eric; Peeters, Martine; Rouet, François

    2014-01-01

    The Simian Immunodeficiency Virus (SIV) mus/mon/gsn lineage is a descendant of one of the precursor viruses to the HIV-1/SIVcpz/gor viral lineage. SIVmus and SIVgsn were sequenced from mustached and greater spot nosed monkeys in Cameroon and SIVmon from mona monkeys in Cameroon and Nigeria. In order to further document the genetic diversity of SIVmus, we analyzed two full-length genomes of new strains identified in Gabon. The whole genomes obtained showed the expected reading frames for gag, pol, vif, vpr, tat, rev, env, nef, and also for a vpu gene. Analyses showed that the Gabonese SIVmus strains were closely related and formed a monophyletic clade within the SIVmus/mon/gsn lineage. Nonetheless, within this lineage, the position of both new SIVmus differed according to the gene analyzed. In pol and nef gene, phylogenetic topologies suggested different evolutions for each of the two new SIVmus strains whereas in the other nucleic fragments studied, their positions fluctuated between SIVmon, SIVmus-1, and SIVgsn. In addition, in C1 domain of env, we identified an insertion of seven amino acids characteristic for the SIVmus/mon/gsn and HIV‑1/SIVcpz/SIVgor lineages. Our results show a high genetic diversity of SIVmus in mustached monkeys and suggest cross-species transmission events and recombination within SIVmus/mon/gsn lineage. Additionally, in Central Africa, hunters continue to be exposed to these simian viruses, and this represents a potential threat to humans. PMID:25054885

  5. Potencies of centrally- or peripherally-injected full-length kisspeptin or its C-terminal decapeptide on LH release in intact male rats.

    PubMed

    Pheng, Vutha; Uenoyama, Yoshihisa; Homma, Tamami; Inamoto, Yoko; Takase, Kenji; Yoshizawa-Kumagaye, Kumiko; Isaka, Shuji; Watanabe, Takushi X; Ohkura, Satoshi; Tomikawa, Junko; Maeda, Kei-ichiro; Tsukamura, Hiroko

    2009-08-01

    The aim of the present study was to compare the effects of full-length rat kisspeptin (rKp-52) with C-terminal decapeptide (Kp-10) of rat or human kisspeptin on LH release in intact male rats. Plasma LH profiles were determined by frequent blood sampling at 6-min intervals for 3 h after central or peripheral injection of kisspeptins. Intracerebroventricular (icv) injection of rKp-52 (0.1 nmol) induced a gradual increase in the plasma LH level, which remained high for the rest of the sampling period. On the other hand, icv injection of rKp-10 did not increase the plasma LH level at the same dose (0.1 nmol). A 10-times higher dose (1 nmol) of rKp-10 and hKp-10 increased the plasma LH level, but the increase was lower than that of rKp-52 icv injection. Intravenous (iv) injection of kisspeptins also stimulated LH release at 10 or 100 nmol/kg. In rKp-52 (10 nmol/kg)-treated animals, the plasma LH level reached a peak within 30 min and remained high until 60 min postinjection. The rKp-10- and hKp-10-injected animals showed a more rapid decline in plasma LH level after the peak found at around 30 min after the injections at both middle (10 nmol/kg) and high (100 nmol/kg) doses. The present study indicates that full-length kisspeptin is more effective in stimulating LH release compared with Kp-10 in male rats. The difference in LH-releasing activity may be the result of a difference in degradation of the peptides, but it is still worth determining whether an active domain other than the C-terminal decapeptide is present in full-length kisspeptin.

  6. Development of three full-length infectious cDNA clones of distinct brassica yellows virus genotypes for agrobacterium-mediated inoculation.

    PubMed

    Zhang, Xiao-Yan; Dong, Shu-Wei; Xiang, Hai-Ying; Chen, Xiang-Ru; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2015-02-01

    Brassica yellows virus is a newly identified species in the genus of Polerovirus within the family Luteoviridae. Brassica yellows virus (BrYV) is prevalently distributed throughout Mainland China and South Korea, is an important virus infecting cruciferous crops. Based on six BrYV genomic sequences of isolates from oilseed rape, rutabaga, radish, and cabbage, three genotypes, BrYV-A, BrYV-B, and BrYV-C, exist, which mainly differ in the 5' terminal half of the genome. BrYV is an aphid-transmitted and phloem-limited virus. The use of infectious cDNA clones is an alternative means of infecting plants that allows reverse genetic studies to be performed. In this study, full-length cDNA clones of BrYV-A, recombinant BrYV5B3A, and BrYV-C were constructed under control of the cauliflower mosaic virus 35S promoter. An agrobacterium-mediated inoculation system of Nicotiana benthamiana was developed using these cDNA clones. Three days after infiltration with full-length BrYV cDNA clones, necrotic symptoms were observed in the inoculated leaves of N. benthamiana; however, no obvious symptoms appeared in the upper leaves. Reverse transcription-PCR (RT-PCR) and western blot detection of samples from the upper leaves showed that the maximum infection efficiency of BrYVs could reach 100%. The infectivity of the BrYV-A, BrYV-5B3A, and BrYV-C cDNA clones was further confirmed by northern hybridization. The system developed here will be useful for further studies of BrYV, such as host range, pathogenicity, viral gene functions, and plant-virus-vector interactions, and especially for discerning the differences among the three genotypes. PMID:25499296

  7. Telomerase repeat amplification protocol (TRAP) activity upon recombinant expression and purification of human telomerase in a bacterial system.

    PubMed

    Hansen, Debra T; Thiyagarajan, Thirumagal; Larson, Amy C; Hansen, Jeffrey L

    2016-07-01

    Telomerase biogenesis is a highly regulated process that solves the DNA end-replication problem. Recombinant expression has so far been accomplished only within a eukaryotic background. Towards structural and functional analyses, we developed bacterial expression of human telomerase. Positive activity by the telomerase repeat amplification protocol (TRAP) was identified in cell extracts of Escherichia coli expressing a sequence-optimized hTERT gene, the full-length hTR RNA with a self-splicing hepatitis delta virus ribozyme, and the human heat shock complex of Hsp90, Hsp70, p60/Hop, Hsp40, and p23. The Hsp90 inhibitor geldanamycin did not affect post-assembly TRAP activity. By various purification methods, TRAP activity was also obtained upon expression of only hTERT and hTR. hTERT was confirmed by tandem mass spectrometry in a ∼120 kDa SDS-PAGE fragment from a TRAP-positive purification fraction. TRAP activity was also supported by hTR constructs lacking the box H/ACA small nucleolar RNA domain. End-point TRAP indicated expression levels within 3-fold of that from HeLa carcinoma cells, which is several orders of magnitude below detection by the direct assay. These results represent the first report of TRAP activity from a bacterium and provide a facile system for the investigation of assembly factors and anti-cancer therapeutics independently of a eukaryotic setting. PMID:26965413

  8. Short-term effects of recombinant human growth hormone and feeding on gluconeogenesis in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After a short-term fast, lactating women have increased rates of glucose production but not gluconeogenesis (GNG) despite relative hypoinsulinemia. We explored the effects of non-insulin-dependent increase in glucose utilization and recombinant human growth hormone (rhGH) on glucose production, glyc...

  9. Recombinant human bone morphogenetic protein-9 potently induces osteogenic differentiation of human periodontal ligament fibroblasts.

    PubMed

    Fuchigami, Sawako; Nakamura, Toshiaki; Furue, Kirara; Sena, Kotaro; Shinohara, Yukiya; Noguchi, Kazuyuki

    2016-04-01

    To accomplish effective periodontal regeneration for periodontal defects, several regenerative methods using growth and differentiation factors, including bone morphogenetic proteins (BMPs), have been developed. Bone morphogenetic protein-9 exhibits the most potent osteogenic activity of this growth factor family. However, it is unclear whether exogenous BMP-9 can induce osteogenic differentiation in human periodontal ligament (PDL) fibroblasts. Here, we examined the effects of recombinant human (rh) BMP-9 on osteoblastic differentiation in human PDL fibroblasts in vitro, compared with rhBMP-2. Recombinant human BMP-9 potently induced alkaline phosphatase (ALP) activity, mineralization, and increased expression of runt-related transcription factor-2/core binding factor alpha 1 (RUNX2/CBFA1), osterix, inhibitor of DNA binding/differentiation-1 (ID1), osteopontin, and bone sialoprotein genes, compared with rhBMP-2. The levels of rhBMP-9-induced osterix and ALP mRNA were significantly reduced in activin receptor-like kinase-1 and -2 small interfering RNA (siRNA)-transfected human PDL fibroblasts. Recombinant human BMP-9-induced ALP activity was not inhibited by noggin, in contrast to rhBMP-2 induced ALP activity, which was. Phosphorylation of SMAD1/5/8 in human PDL fibroblasts was induced by addition of rhBMP-9. Recombinant human BMP-9-induced ALP activity was suppressed by SB203580, SP600125, and U0126, which are inhibitors of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2), respectively. Our data suggest that rhBMP-9 is a potent inducer of the differentiation of human PDL fibroblasts into osteoblast-like cells and that this may be mediated by the SMAD and mitogen-activated protein kinase (p38, ERK1/2, and JNK) pathways. PMID:26879145

  10. The Drosophila gene collection: Identification of putative full-length cDNAs for 70 percent of D. melanogaster genes

    SciTech Connect

    Stapleton, Mark; Liao, Guochun; Brokstein, Peter; Hong, Ling; Carninci, Piero; Shiraki, Toshiyuki; Hayashizaki, Yoshihide; Champe, Mark; Pacleb, Joanne; Wan, Ken; Yu, Charles; Carlson, Joe; George, Reed; Celniker, Susan; Rubin, Gerald M.

    2002-08-12

    Collections of full-length nonredundant cDNA clones are critical reagents for functional genomics. The first step toward these resources is the generation and single-pass sequencing of cDNA libraries that contain a high proportion of full-length clones. The first release of the Drosophila Gene Collection Release 1 (DGCr1) was produced from six libraries representing various tissues, developmental stages, and the cultured S2 cell line. Nearly 80,000 random 5prime expressed sequence tags (EST) from these libraries were collapsed into a nonredundant set of 5849 cDNAs, corresponding to {approx}40 percent of the 13,474 predicted genes in Drosophila. To obtain cDNA clones representing the remaining genes, we have generated an additional 157,835 5prime ESTs from two previously existing and three new libraries. One new library is derived from adult testis, a tissue we previously did not exploit for gene discovery; two new cap-trapped normalized libraries are derived from 0-22hr embryos and adult heads. Taking advantage of the annotated D. melanogaster genome sequence, we clustered the ESTs by aligning them to the genome. Clusters that overlap genes not already represented by cDNA clones in the DGCr1 were analyzed further, and putative full-length clones were selected for inclusion in the new DGC. This second release of the DGC (DGCr2) contains 5061 additional clones, extending the collection to 10,910 cDNAs representing >70 percent of the predicted genes in Drosophila.

  11. An analysis of expressed sequence tags of developing castor endosperm using a full-length cDNA library

    PubMed Central

    Lu, Chaofu; Wallis, James G; Browse, John

    2007-01-01

    Background Castor seeds are a major source for ricinoleate, an important industrial raw material. Genomics studies of castor plant will provide critical information for understanding seed metabolism, for effectively engineering ricinoleate production in transgenic oilseeds, or for genetically improving castor plants by eliminating toxic and allergic proteins in seeds. Results Full-length cDNAs are useful resources in annotating genes and in providing functional analysis of genes and their products. We constructed a full-length cDNA library from developing castor endosperm, and obtained 4,720 ESTs from 5'-ends of the cDNA clones representing 1,908 unique sequences. The most abundant transcripts are genes encoding storage proteins, ricin, agglutinin and oleosins. Several other sequences are also very numerous, including two acidic triacylglycerol lipases, and the oleate hydroxylase (FAH12) gene that is responsible for ricinoleate biosynthesis. The role(s) of the lipases in developing castor seeds are not clear, and co-expressing of a lipase and the FAH12 did not result in significant changes in hydroxy fatty acid accumulation in transgenic Arabidopsis seeds. Only one oleate desaturase (FAD2) gene was identified in our cDNA sequences. Sequence and functional analyses of the castor FAD2 were carried out since it had not been characterized previously. Overexpression of castor FAD2 in a FAH12-expressing Arabidopsis line resulted in decreased accumulation of hydroxy fatty acids in transgenic seeds. Conclusion Our results suggest that transcriptional regulation of FAD2 and FAH12 genes maybe one of the mechanisms that contribute to a high level of ricinoleate accumulation in castor endosperm. The full-length cDNA library will be used to search for additional genes that affect ricinoleate accumulation in seed oils. Our EST sequences will also be useful to annotate the castor genome, which whole sequence is being generated by shotgun sequencing at the Institute for Genome

  12. Diversity of full-length subtype E HIV type 1 env sequences in early seroconvertors from northern Thailand.

    PubMed

    Yu, X F; Wang, Z; Beyrer, C; Celentano, D D; Khamboonruang, C; Nelson, K

    1997-11-01

    Although both HIV-1 subtypes B and E have been identified from infected individuals in Thailand, subtype E is the main form of HIV currently circulating in the country. Full-length gp160 sequences were obtained from 2 early seroconverters from northern Thailand in a study to learn more about the HIV-1 sequences currently being transmitted among recently infected individuals. Subject A01021 was a female prostitute who tested negative for antibodies to HIV-1 in April 1993, then positive in July 1993. Subject E11429 was a male military conscript who tested negative for antibodies to HIV-1 in May 1993, then positive in November 1993. Uncultured peripheral blood mononuclear cells (PBMCs) were collected from these two individuals in January 1994 and about 2500-bp segments containing the full-length gp160 gene were amplified by nested polymerase chain reaction (PCR) using the Expand high-fidelity PCR system. The nucleotide sequences of full-length gp120 from the subjects were subtype E based upon phylogenetic analysis. The gp120 sequences from the 2 seroconverters appeared more diverse than previously published subtype E HIV-1 sequences from Thailand. Overall, however, the subtype E HIV-1 gp120 sequences from Thailand were less diversified compared to the subtype E HIV-1 isolated from people with AIDS in the Central African Republic. Most of the observed amino acid variations were limited to the 5 variable regions in gp120. Therefore, vaccine strategies which elicit immune responses to the conserved regions of HIV-1 env protein will have a greater possibility of success.

  13. Identification of 48 full-length MHC-DAB functional alleles in miiuy croaker and evidence for positive selection.

    PubMed

    Liu, Jiang; Sun, Yueyan; Xu, Tianjun

    2016-07-01

    Major histocompatibility complex (MHC) molecules play a vital role in the immune response and are a highly polymorphic gene superfamily in vertebrates. As the molecular marker associated with polymorphism and disease susceptibility/resistance, the polymorphism of MHC genes has been investigated in many tetrapods and teleosts. Most studies were focused on the polymorphism of the second exon, which encodes the peptide-binding region (PBR) in the α1- or β1-domain, but few studies have examined the full-length coding region. To comprehensive investigate the polymorphism of MHC gene, we identified 48 full-length miiuy croaker (Miichthys miiuy) MHC class IIB (Mimi-DAB) functional alleles from 26 miiuy croaker individuals. All of the alleles encode 34 amino acid sequences, and a high level of polymorphism was detected in Mimi-DAB alleles. The rate of non-synonymous substitutions (dN) occurred at a significantly higher frequency than that of synonymous substitutions (dS) in the PBR, and this result suggests that balancing selection maintains polymorphisms at the Mimi-DAB locus. Phylogenetic analysis based on the full-length and exon 2 sequences of Mimi-DAB alleles both showed that the Mimi-DAB alleles were clustered into two major groups. A total of 19 positive selected sites were identified on the Mimi-DAB alleles after testing for positive selection, and 14 sites were predicted to be associated with antigen-binding sites, which suggests that most of selected sites are significant for disease resistance. The polymorphism of Mimi-DAB alleles provides an important resource for analyzing the association between the polymorphism of MHC gene and disease susceptibility/resistance, and for researching the molecular selective breeding of miiuy croaker with enhanced disease resistance. PMID:27164216

  14. 78 FR 78838 - Grant of Interim Extension of the Term of U.S. Patent No. 5,496,801; Recombinant Human...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ...,801; Recombinant Human Parathyroid Hormone AGENCY: United States Patent and Trademark Office, Commerce... human biological product recombinant human parathyroid hormone. The application indicates that Biologics License Application 125511 for the drug product, recombinant human parathyroid hormone, was filed...

  15. Binding of Full-Length HIV-1 gp120 to CD4 Induces Structural Reorientation around the gp120 Core

    SciTech Connect

    Ashish,F.; Garg, R.; Anguita, J.; Krueger, J.

    2006-01-01

    Small-angle x-ray scattering data on the unliganded full-length fully glycosylated HIV-1 gp120, the soluble CD4 (domains 1-2) receptor and their complex in solution are presented. Ab initio structure restorations using these data provides the first look at the envelope shape for the unliganded and the complexed gp120 molecule. Fitting known crystal structures of the unliganded SIV and the complexed HIV gp120 core regions within our resultant shape constraints reveals movement of the V3 loop upon binding.

  16. Construction and EST sequencing of full-length, drought stress cDNA libraries for common beans (Phaseolus vulgaris L.)

    PubMed Central

    2011-01-01

    Background Common bean is an important legume crop with only a moderate number of short expressed sequence tags (ESTs) made with traditional methods. The goal of this research was to use full-length cDNA technology to develop ESTs that would overlap with the beginning of open reading frames and therefore be useful for gene annotation of genomic sequences. The library was also constructed to represent genes expressed under drought, low soil phosphorus and high soil aluminum toxicity. We also undertook comparisons of the full-length cDNA library to two previous non-full clone EST sets for common bean. Results Two full-length cDNA libraries were constructed: one for the drought tolerant Mesoamerican genotype BAT477 and the other one for the acid-soil tolerant Andean genotype G19833 which has been selected for genome sequencing. Plants were grown in three soil types using deep rooting cylinders subjected to drought and non-drought stress and tissues were collected from both roots and above ground parts. A total of 20,000 clones were selected robotically, half from each library. Then, nearly 10,000 clones from the G19833 library were sequenced with an average read length of 850 nucleotides. A total of 4,219 unigenes were identified consisting of 2,981 contigs and 1,238 singletons. These were functionally annotated with gene ontology terms and placed into KEGG pathways. Compared to other EST sequencing efforts in common bean, about half of the sequences were novel or represented the 5' ends of known genes. Conclusions The present full-length cDNA libraries add to the technological toolbox available for common bean and our sequencing of these clones substantially increases the number of unique EST sequences available for the common bean genome. All of this should be useful for both functional gene annotation, analysis of splice site variants and intron/exon boundary determination by comparison to soybean genes or with common bean whole-genome sequences. In addition the

  17. NMR characterization of full-length farnesylated and non-farnesylated H-Ras and its implications for Raf activation.

    PubMed

    Thapar, Roopa; Williams, Jason G; Campbell, Sharon L

    2004-11-01

    The C terminus, also known as the hypervariable region (residues 166-189), of H-, N-, and K-Ras proteins has sequence determinants necessary for full activation of downstream effectors such as Raf kinase and PI-3 kinase as well as for the correct targeting of Ras proteins to lipid rafts and non-raft membranes. There is considerable interest in understanding how residues in the extreme C terminus of the different Ras proteins and farnesylation of the CaaX box cysteine affect Ras membrane localization and allosteric activation of Raf kinase. To provide insights into the structural and dynamic changes that occur in Ras upon farnesylation, we have used NMR spectroscopy to compare the properties of truncated H-Ras (1-166), to non-processed full-length H-Ras (residues 1-185) and full-length (1-189) farnesylated H-Ras. We report that the C-terminal helix alpha-5 extends to residue N172, and the remaining 17 amino acid residues in the C terminus are conformationally averaged in solution. Removal of either 23 or 18 amino acid residues from the C terminus of full length H-Ras generates truncated H-Ras (1-166) and H-Ras (1-171) proteins, respectively, that have been structurally characterized and are biochemical active. Here we report that C-terminal truncation of H-Ras results in minor structural and dynamic perturbations that are propagated throughout the H-Ras protein including increased flexibility of the central beta-sheet and the C-terminal helix alpha-5. Ordering of residues in loop-2, which is involved in Raf CRD binding is also observed. Farnesylation of full-length H-Ras at C186 does not result in detectable conformational changes in H-Ras. Chemical shift mapping studies of farnesylated and non-farnesylated forms of H-Ras with the Raf-CRD show that the farnesyl moiety, the extreme H-Ras C terminus and residues 23-30, contribute to H-Ras:Raf-CRD interactions, thereby increasing the affinity of H-Ras for the Raf-CRD.

  18. Production of full-length soluble Plasmodium falciparum RH5 protein vaccine using a Drosophila melanogaster Schneider 2 stable cell line system

    PubMed Central

    Hjerrild, Kathryn A.; Jin, Jing; Wright, Katherine E.; Brown, Rebecca E.; Marshall, Jennifer M.; Labbé, Geneviève M.; Silk, Sarah E.; Cherry, Catherine J.; Clemmensen, Stine B.; Jørgensen, Thomas; Illingworth, Joseph J.; Alanine, Daniel G. W.; Milne, Kathryn H.; Ashfield, Rebecca; de Jongh, Willem A.; Douglas, Alexander D.; Higgins, Matthew K.; Draper, Simon J.

    2016-01-01

    The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has recently emerged as a leading candidate antigen against the blood-stage human malaria parasite. However it has proved challenging to identify a heterologous expression platform that can produce a soluble protein-based vaccine in a manner compliant with current Good Manufacturing Practice (cGMP). Here we report the production of full-length PfRH5 protein using a cGMP-compliant platform called ExpreS2, based on a Drosophila melanogaster Schneider 2 (S2) stable cell line system. Five sequence variants of PfRH5 were expressed that differed in terms of mutagenesis strategies to remove potential N-linked glycans. All variants bound the PfRH5 receptor basigin and were recognized by a panel of monoclonal antibodies. Analysis following immunization of rabbits identified quantitative and qualitative differences in terms of the functional IgG antibody response against the P. falciparum parasite. The antibodies induced by one protein variant were shown to be qualitatively similar to responses induced by other vaccine platforms. This work identifies Drosophila S2 cells as a clinically-relevant platform suited for the production of ‘difficult-to-make’ proteins from Plasmodium parasites, and identifies a PfRH5 sequence variant that can be used for clinical production of a non-glycosylated, soluble full-length protein vaccine immunogen. PMID:27457156

  19. Dendritic cells loaded with mRNA encoding full-length tumor antigens prime CD4+ and CD8+ T cells in melanoma patients.

    PubMed

    Van Nuffel, An M T; Benteyn, Daphné; Wilgenhof, Sofie; Pierret, Lauranne; Corthals, Jurgen; Heirman, Carlo; van der Bruggen, Pierre; Coulie, Pierre G; Neyns, Bart; Thielemans, Kris; Bonehill, Aude

    2012-05-01

    It is generally thought that dendritic cells (DCs) loaded with full-length tumor antigen could improve immunotherapy by stimulating broad T-cell responses and by allowing treatment irrespective of the patient's human leukocyte antigen (HLA) type. To investigate this, we determined the specificity of T cells from melanoma patients treated with DCs loaded with mRNA encoding a full-length tumor antigen fused to a signal peptide and an HLA class II sorting signal, allowing presentation in HLA class I and II. In delayed-type hypersensitive (DTH)-biopsies and blood, we found functional CD8(+) and CD4(+) T cells recognizing novel treatment-antigen-derived epitopes, presented by several HLA types. Additionally, we identified a CD8(+) response specific for the signal peptide incorporated to elicit presentation by HLA class II and a CD4(+) response specific for the fusion region of the signal peptide and one of the antigens. This demonstrates that the fusion proteins contain newly created immunogenic sequences and provides evidence that ex vivo-generated mRNA-modified DCs can induce effector CD8(+) and CD4(+) T cells from the naive T-cell repertoire of melanoma patients. Thus, this work provides definitive proof that DCs presenting the full antigenic spectrum of tumor antigens can induce T cells specific for novel epitopes and can be administered to patients irrespective of their HLA type.

  20. Dendritic Cells Loaded With mRNA Encoding Full-length Tumor Antigens Prime CD4+ and CD8+ T Cells in Melanoma Patients

    PubMed Central

    Van Nuffel, An MT; Benteyn, Daphné; Wilgenhof, Sofie; Pierret, Lauranne; Corthals, Jurgen; Heirman, Carlo; van der Bruggen, Pierre; Coulie, Pierre G; Neyns, Bart; Thielemans, Kris; Bonehill, Aude

    2012-01-01

    It is generally thought that dendritic cells (DCs) loaded with full-length tumor antigen could improve immunotherapy by stimulating broad T-cell responses and by allowing treatment irrespective of the patient's human leukocyte antigen (HLA) type. To investigate this, we determined the specificity of T cells from melanoma patients treated with DCs loaded with mRNA encoding a full-length tumor antigen fused to a signal peptide and an HLA class II sorting signal, allowing presentation in HLA class I and II. In delayed-type hypersensitive (DTH)-biopsies and blood, we found functional CD8+ and CD4+ T cells recognizing novel treatment-antigen-derived epitopes, presented by several HLA types. Additionally, we identified a CD8+ response specific for the signal peptide incorporated to elicit presentation by HLA class II and a CD4+ response specific for the fusion region of the signal peptide and one of the antigens. This demonstrates that the fusion proteins contain newly created immunogenic sequences and provides evidence that ex vivo-generated mRNA-modified DCs can induce effector CD8+ and CD4+ T cells from the naive T-cell repertoire of melanoma patients. Thus, this work provides definitive proof that DCs presenting the full antigenic spectrum of tumor antigens can induce T cells specific for novel epitopes and can be administered to patients irrespective of their HLA type. PMID:22371843

  1. Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response

    PubMed Central

    Sakurai, Tetsuya; Plata, Germán; Rodríguez-Zapata, Fausto; Seki, Motoaki; Salcedo, Andrés; Toyoda, Atsushi; Ishiwata, Atsushi; Tohme, Joe; Sakaki, Yoshiyuki; Shinozaki, Kazuo; Ishitani, Manabu

    2007-01-01

    Background Cassava, an allotetraploid known for its remarkable tolerance to abiotic stresses is an important source of energy for humans and animals and a raw material for many industrial processes. A full-length cDNA library of cassava plants under normal, heat, drought, aluminum and post harvest physiological deterioration conditions was built; 19968 clones were sequence-characterized using expressed sequence tags (ESTs). Results The ESTs were assembled into 6355 contigs and 9026 singletons that were further grouped into 10577 scaffolds; we found 4621 new cassava sequences and 1521 sequences with no significant similarity to plant protein databases. Transcripts of 7796 distinct genes were captured and we were able to assign a functional classification to 78% of them while finding more than half of the enzymes annotated in metabolic pathways in Arabidopsis. The annotation of sequences that were not paired to transcripts of other species included many stress-related functional categories showing that our library is enriched with stress-induced genes. Finally, we detected 230 putative gene duplications that include key enzymes in reactive oxygen species signaling pathways and could play a role in cassava stress response features. Conclusion The cassava full-length cDNA library here presented contains transcripts of genes involved in stress response as well as genes important for different areas of cassava research. This library will be an important resource for gene discovery, characterization and cloning; in the near future it will aid the annotation of the cassava genome. PMID:18096061

  2. Production of full-length soluble Plasmodium falciparum RH5 protein vaccine using a Drosophila melanogaster Schneider 2 stable cell line system.

    PubMed

    Hjerrild, Kathryn A; Jin, Jing; Wright, Katherine E; Brown, Rebecca E; Marshall, Jennifer M; Labbé, Geneviève M; Silk, Sarah E; Cherry, Catherine J; Clemmensen, Stine B; Jørgensen, Thomas; Illingworth, Joseph J; Alanine, Daniel G W; Milne, Kathryn H; Ashfield, Rebecca; de Jongh, Willem A; Douglas, Alexander D; Higgins, Matthew K; Draper, Simon J

    2016-01-01

    The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has recently emerged as a leading candidate antigen against the blood-stage human malaria parasite. However it has proved challenging to identify a heterologous expression platform that can produce a soluble protein-based vaccine in a manner compliant with current Good Manufacturing Practice (cGMP). Here we report the production of full-length PfRH5 protein using a cGMP-compliant platform called ExpreS(2), based on a Drosophila melanogaster Schneider 2 (S2) stable cell line system. Five sequence variants of PfRH5 were expressed that differed in terms of mutagenesis strategies to remove potential N-linked glycans. All variants bound the PfRH5 receptor basigin and were recognized by a panel of monoclonal antibodies. Analysis following immunization of rabbits identified quantitative and qualitative differences in terms of the functional IgG antibody response against the P. falciparum parasite. The antibodies induced by one protein variant were shown to be qualitatively similar to responses induced by other vaccine platforms. This work identifies Drosophila S2 cells as a clinically-relevant platform suited for the production of 'difficult-to-make' proteins from Plasmodium parasites, and identifies a PfRH5 sequence variant that can be used for clinical production of a non-glycosylated, soluble full-length protein vaccine immunogen. PMID:27457156

  3. Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models

    PubMed Central

    Rivera-Hernandez, Tania; Pandey, Manisha; Henningham, Anna; Cole, Jason; Choudhury, Biswa; Cork, Amanda J.; Gillen, Christine M.; Ghaffar, Khairunnisa Abdul; West, Nicholas P.; Silvestri, Guido; Good, Michael F.; Moyle, Peter M.; Toth, Istvan; Nizet, Victor; Batzloff, Michael R.

    2016-01-01

    ABSTRACT Group A Streptococcus (GAS) is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i) streptolysin O (SLO), interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), group A streptococcal C5a peptidase (SCPA), arginine deiminase (ADI), and trigger factor (TF); (ii) the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii) group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model. PMID:27302756

  4. The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin.

    PubMed Central

    Gao, F; Robertson, D L; Morrison, S G; Hui, H; Craig, S; Decker, J; Fultz, P N; Girard, M; Shaw, G M; Hahn, B H; Sharp, P M

    1996-01-01

    Since 1989, human immunodeficiency virus type 1 (HIV-1) has spread explosively through the heterosexual population in Thailand. This epidemic is caused primarily by viruses classified as "subtype E", which, on the basis of limited sequence comparisons, appear to represent hybrids of subtypes A (gag) and E (env). However, the true evolutionary origins of "subtype E" viruses are still obscure since no complete genomes have been analyzed, and only one full-length subtype A sequence has been available for phylogenetic comparison. In this study, we determined full-length proviral sequences for "subtype E" viruses from Thailand (93TH253) and the Central African Republic (90CR402) and for a subtype A virus from Uganda (92UG037). We also sequenced the long terminal repeat (LTR) regions from 16 virus strains representing clades A, C, E, F, and G. Detailed phylogenetic analyses of these sequences indicated that "subtype E" viruses do indeed represent A/E recombinants with multiple points of crossover along their genomes. The extracellular portion of env, parts of vif and vpr, as well as most of the LTR are of subtype E origin, whereas the remainder of the genome is of subtype A origin. The possibility that the discordant phylogenetic positions of "subtype E" viruses in gag- and env-derived trees are the result of unusual rates or patterns of evolution was also considered but was ruled out on the basis of two lines of evidence: (i) phylogenetic trees constructed for synonymous and nonsynonymous substitutions yielded the same discordant branching orders for "subtype E" gag and env gene sequences, thus excluding selection-driven evolution, and (ii) multiple crossovers in the viral genome are most consistent with the copy choice model of recombination and have been observed in other documented examples of HIV-1 intersubtype recombination. Thai and CAR "subtype E" viruses exhibited the same pattern of A/E mosaicism, indicating that the recombination event occurred in Africa prior

  5. High-Resolution Patterns of Meiotic Recombination across the Human Major Histocompatibility Complex

    PubMed Central

    Cullen, Michael; Perfetto, Stephen P.; Klitz, William; Nelson, George; Carrington, Mary

    2002-01-01

    Definitive characteristics of meiotic recombination events over large (i.e., >1 Mb) segments of the human genome remain obscure, yet they are essential for establishing the haplotypic structure of the genome and for efficient mapping of complex traits. We present a high-resolution map of recombination at the kilobase level across a 3.3-Mb interval encompassing the major histocompatibility complex (MHC). Genotyping of 20,031 single sperm from 12 individuals resulted in the identification and fine mapping of 325 recombinant chromosomes within genomic intervals as small as 7 kb. Several principal characteristics of recombination in this region were observed: (1) rates of recombination can differ significantly between individuals; (2) intense hot spots of recombination occur at least every 0.8 Mb but are not necessarily evenly spaced; (3) distribution in the location of recombination events can differ significantly among individuals; (4) between hot spots, low levels of recombination occur fairly evenly across 100-kb segments, suggesting the presence of warm spots of recombination; and (5) specific sequence motifs associate significantly with recombination distribution. These data provide a plausible model for recombination patterns of the human genome overall. PMID:12297984

  6. An expanded taxonomy of hepatitis C virus genotype 6: Characterization of 22 new full-length viral genomes.

    PubMed

    Li, Chunhua; Barnes, Eleanor; Newton, Paul N; Fu, Yongshui; Vongsouvath, Manivanh; Klenerman, Paul; Okamoto, Hiroaki; Abe, Kenji; Pybus, Oliver G; Lu, Ling

    2015-02-01

    We characterized the full-length genomes of 22 hepatitis C virus genotype 6 (HCV-6) isolates: 10 from Vietnam (classified into subtypes 6e, 6h, 6p, 6r, 6s, and 6u), one from China (confirmed as a new subtype 6xd), and 11 from the Lao PDR (representing a new subtype 6xe plus eight novel variants). With these 22 new genomes, HCV-6 now has a diverse and extended taxonomic structure, comprised of 28 assigned subtypes (denoted 6a-6xe) and 27 unassigned lineages, all of which have been represented by full-length genomes. Our phylogenetic analyses also included many partially-sequenced novel variants of HCV-6 from Lao PDR. This revealed that Lao HCV isolates are genetically very diverse and are phylogenetically distributed in multiple lineages within genotype 6. Our results suggest that HCV-6 has been maintained in Laos, a landlocked country, since the common ancestor of genotype 6 and indicates historical dispersal of HCV-6 across Southeast Asia.

  7. An expanded taxonomy of hepatitis C virus genotype 6: Characterization of 22 new full-length viral genomes

    PubMed Central

    Li, Chunhua; Barnes, Eleanor; Newton, Paul N.; Fu, Yongshui; Vongsouvath, Manivanh; Klenerman, Paul; Okamoto, Hiroaki; Abe, Kenji; Pybus, Oliver G.; Lu, Ling

    2015-01-01

    We characterized the full-length genomes of 22 hepatitis C virus genotype 6 (HCV-6) isolates: 10 from Vietnam (classified into subtypes 6e, 6h, 6p, 6r, 6s, and 6u), one from China (confirmed as a new subtype 6xd), and 11 from the Lao PDR (representing a new subtype 6xe plus eight novel variants). With these 22 new genomes, HCV-6 now has a diverse and extended taxonomic structure, comprised of 28 assigned subtypes (denoted 6a-6xe) and 27 unassigned lineages, all of which have been represented by full-length genomes. Our phylogenetic analyses also included many partially-sequenced novel variants of HCV-6 from Lao PDR. This revealed that Lao HCV isolates are genetically very diverse and are phylogenetically distributed in multiple lineages within genotype 6. Our results suggest that HCV-6 has been maintained in Laos, a landlocked country, since the common ancestor of genotype 6 and indicates historical dispersal of HCV-6 across Southeast Asia. PMID:25589238

  8. Structural studies on full-length talin1 reveal a compact auto-inhibited dimer: Implications for talin activation

    PubMed Central

    Goult, Benjamin T.; Xu, Xiao-Ping; Gingras, Alexandre R.; Swift, Mark; Patel, Bipin; Bate, Neil; Kopp, Petra M.; Barsukov, Igor L.; Critchley, David R.; Volkmann, Niels; Hanein, Dorit

    2013-01-01

    Talin is a large adaptor protein that activates integrins and couples them to cytoskeletal actin. Talin contains an N-terminal FERM (band 4.1, ezrin, radixin, moesin) domain (the head) linked to a flexible rod comprised of 13 amphipathic helical bundles (R1–R13) that terminate in a C-terminal helix (DD) that forms an anti-parallel dimer. We derived a three-dimensional structural model of full-length talin at a resolution of approximately 2.5 nm using EM reconstruction of full-length talin and the known shapes of the individual domains and inter-domain angles as derived from small angle X-ray scattering. Talin adopts a compact conformation consistent with a dimer in which the two talin rods form a donut-shaped structure, with the two talin heads packed side by side occupying the hole at the center of this donut. In this configuration, the integrin binding site in the head domain and the actin-binding site at the carboxy-terminus of the rod are masked, implying that talin must unravel before it can support integrin activation and engage the actin cytoskeleton. PMID:23726984

  9. Full length articles published in BJOMS during 2010-11--an analysis by sub-specialty and study type.

    PubMed

    Arakeri, Gururaj; Colbert, Serryth; Rosenbaum, Gavin; Brennan, Peter A

    2012-12-01

    Full length articles such as prospective and retrospective studies, case series, laboratory-based research and reviews form the majority of papers published in the British Journal of Oral and Maxillofacial Surgery (BJOMS). We were interested to evaluate the breakdown of these types of articles both by sub-specialty and the type of study as well as the proportion that are written by UK colleagues compared to overseas authors over a 2 year period (2010-11). A total of 191 full length articles across all sub-specialties of our discipline were published, with 107 papers (56%) coming from UK authors. There were proportionately more oncology papers arising from the UK than overseas (60 and 30% of total respectively) while the opposite was found for cleft/deformity studies (10% and 22%). There was only one laboratory-based study published from the UK compared with 27 papers from overseas. The number of quality papers being submitted to the Journal continues to increase, and the type of article being published between UK and overseas probably reflects different practices and case-loads amongst colleagues. The relatively few UK laboratory based studies published in BJOMS compared to overseas authors are most likely due to authors seeking the most prestigious journals possible for their work. PMID:23021639

  10. Predicting the strength of UP-elements and full-length E. coli σE promoters

    PubMed Central

    Rhodius, Virgil A.; Mutalik, Vivek K.; Gross, Carol A.

    2012-01-01

    Predicting the location and strength of promoters from genomic sequence requires accurate sequenced-based promoter models. We present the first model of a full-length bacterial promoter, encompassing both upstream sequences (UP-elements) and core promoter modules, based on a set of 60 promoters dependent on σE, an alternative ECF-type σ factor. UP-element contribution, best described by the length and frequency of A- and T-tracts, in combination with a PWM-based core promoter model, accurately predicted promoter strength both in vivo and in vitro. This model also distinguished active from weak/inactive promoters. Systematic examination of promoter strength as a function of RNA polymerase (RNAP) concentration revealed that UP-element contribution varied with RNAP availability and that the σE regulon is comprised of two promoter types, one of which is active only at high concentrations of RNAP. Distinct promoter types may be a general mechanism for increasing the regulatory capacity of the ECF group of alternative σ's. Our findings provide important insights into the sequence requirements for the strength and function of full-length promoters and establish guidelines for promoter prediction and for forward engineering promoters of specific strengths. PMID:22156164

  11. Functional and expression analyses of transcripts based on full-length cDNAs of Sorghum bicolor.

    PubMed

    Shimada, Setsuko; Makita, Yuko; Kuriyama-Kondou, Tomoko; Kawashima, Mika; Mochizuki, Yoshiki; Hirakawa, Hideki; Sato, Shusei; Toyoda, Tetsuro; Matsui, Minami

    2015-12-01

    Sorghum bicolor is one of the most important crops for food and bioethanol production. Its small diploid genome and resistance to environmental stress make sorghum an attractive model for studying the functional genomics of the Saccharinae and other C4 grasses. We analyzed the domain-based functional annotation of the cDNAs using the gene ontology (GO) categories for molecular function to characterize all the genes cloned in the full-length cDNA library of sorghum. The sorghum cDNA library successfully captured a wide range of cDNA-encoded proteins with various functions. To characterize the protein function of newly identified cDNAs, a search of their deduced domains and comparative analyses in the Oryza sativa and Zea mays genomes were carried out. Furthermore, genes on the sense strand corresponding to antisense transcripts were classified based on the GO of molecular function. To add more information about these genes, we have analyzed the expression profiles using RNA-Seq of three tissues (spikelet, seed and stem) during the starch-filling phase. We performed functional analysis of tissue-specific genes and expression analysis of genes of starch biosynthesis enzymes. This functional analysis of sorghum full-length cDNAs and the transcriptome information will facilitate further analysis of the Saccharinae and grass families.

  12. An efficient full-length cDNA amplification strategy based on bioinformatics technology and multiplexed PCR methods.

    PubMed

    Chen, Nan; Wang, Wei-Min; Wang, Huan-Ling

    2016-01-13

    A novel strategy for amplification full-length cDNA and promoter sequences has been developed using bioinformatics technology and multiplexed PCR methods in this study. The amplification of 3' ends of cDNA is performed according to the modified classic 3' RACE techniques, therein the more efficient and effective oligo(dT)-anchor primer with hairpin structure is specially designed. For the amplification of 5' ends of cDNA, two or three-round TAIL-PCR or touch-down PCR using arbitrary degenerate (AD) and sequence-specific reverse (SPR) primers is performed until the 5' sequence of multi-assembled fragment reaches the exon1 region identified by aligning this fragment to reference genome database. Then another TAIL-PCR or touch-down PCR using genomic DNA as template is conducted to obtain the remaining 5' and promoter sequences. The 5' end sites of cDNA are predicted by aligning finally assembled fragment to homologous reference genes of other species, and screening the relative locations of common characteristic cis-elements in silico on promoter. The putative 5' ends are further validated by primers corresponding to these predicted sites in cDNAs. This method is suitable for researchers to isolate limited full-length cDNA sequences due to its operability, inexpensiveness, efficiency and speediness.

  13. Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing.

    PubMed

    Shin, Jongoh; Lee, Sooin; Go, Min-Jeong; Lee, Sang Yup; Kim, Sun Chang; Lee, Chul-Ho; Cho, Byung-Kwan

    2016-01-01

    Demands for faster and more accurate methods to analyze microbial communities from natural and clinical samples have been increasing in the medical and healthcare industry. Recent advances in next-generation sequencing technologies have facilitated the elucidation of the microbial community composition with higher accuracy and greater throughput than was previously achievable; however, the short sequencing reads often limit the microbial composition analysis at the species level due to the high similarity of 16S rRNA amplicon sequences. To overcome this limitation, we used the nanopore sequencing platform to sequence full-length 16S rRNA amplicon libraries prepared from the mouse gut microbiota. A comparison of the nanopore and short-read sequencing data showed that there were no significant differences in major taxonomic units (89%) except one phylotype and three taxonomic units. Moreover, both sequencing data were highly similar at all taxonomic resolutions except the species level. At the species level, nanopore sequencing allowed identification of more species than short-read sequencing, facilitating the accurate classification of the bacterial community composition. Therefore, this method of full-length 16S rRNA amplicon sequencing will be useful for rapid, accurate and efficient detection of microbial diversity in various biological and clinical samples. PMID:27411898

  14. Bacterial Expression, Purification and In Vitro Phosphorylation of Full-Length Ribosomal S6 Kinase 2 (RSK2)

    PubMed Central

    Derewenda, Urszula; Artamonov, Mykhaylo V.; Somlyo, Avril V.; Derewenda, Zygmunt S.

    2016-01-01

    Ribosomal S6 kinases (RSK) play important roles in cell signaling through the mitogen-activated protein kinase (MAPK) pathway. Each of the four RSK isoforms (RSK1-4) is a single polypeptide chain containing two kinase domains connected by a linker sequence with regulatory phosphorylation sites. Here, we demonstrate that full-length RSK2—which is implicated in several types of cancer, and which is linked to the genetic Coffin-Lowry syndrome—can be overexpressed with high yields in Escherichia coli as a fusion with maltose binding protein (MBP), and can be purified to homogeneity after proteolytic removal of MBP by affinity and size-exclusion chromatography. The purified protein can be fully activated in vitro by phosphorylation with protein kinases ERK2 and PDK1. Compared to full-length RSK2 purified from insect host cells, the bacterially expressed and phosphorylated murine RSK2 shows the same levels of catalytic activity after phosphorylation, and sensitivity to inhibition by RSK-specific inhibitor SL0101. Interestingly, we detect low levels of phosphorylation in the nascent RSK2 on Ser386, owing to autocatalysis by the C-terminal domain, independent of ERK. This observation has implications for in vivo signaling, as it suggests that full activation of RSK2 by PDK1 alone is possible, circumventing at least in some cases the requirement for ERK. PMID:27732676

  15. Full-length sequence analysis of chloroquine resistance transporter gene in Plasmodium falciparum isolates from Sabah, Malaysia.

    PubMed

    Tan, Lii Lian; Lau, Tiek Ying; Timothy, William; Prabakaran, Dhanaraj

    2014-01-01

    Chloroquine resistance (CQR) in falciparum malaria was identified to be associated with several mutations in the chloroquine resistance transporter gene (pfcrt) that encodes the transmembrane transporter in digestive vacuole membrane of the parasite. This study aimed to investigate the point mutations across the full-length pfcrt in Plasmodium falciparum isolates in Sabah, Malaysia. A total of 31 P. falciparum positive samples collected from Keningau, Kota Kinabalu, and Kudat, Sabah, were analyzed. pfcrt was PCR amplified and cloned prior to sequence analysis. This study showed that all the previously described 10 point mutations associated with CQR at codons 72, 74, 75, 76, 97, 220, 271, 326, 356, and 371 were found with different prevalence. Besides, two novel point mutations, I166V and H273N, were identified with 22.5% and 19.3%, respectively. Three haplotypes, namely, CVMNK (29%), CVIET (3.2%), and SVMNT (67.7%), were identified. High prevalence of SVMNT among P. falciparum isolates from Sabah showed that these isolates are closer to the P. falciparum isolates from Papua New Guinea rather than to the more proximal Southeast Asian CVIET haplotype. Full-length analysis of pfcrt showed that chloroquine resistant P. falciparum in Sabah is still prevalent despite the withdrawal of chloroquine usage since 1979. PMID:25574497

  16. A new approach to retrieve full lengths of functional genes from soil by PCR-DGGE and metagenome walking.

    PubMed

    Morimoto, Sho; Fujii, Takeshi

    2009-05-01

    Metagenomes are a vast genetic resource, and various approaches have been developed to explore them. Here, we present a new approach to retrieve full lengths of functional genes from soil DNA using PCR-denaturing gradient gel electrophoresis (DGGE) followed by metagenome walking. Partial fragments of benzoate 1,2-dioxygenase alpha subunit gene (benA) were detected from a 3-chlorobenzoate (3CB)-dosed soil by PCR-DGGE, and one DGGE band induced by 3CB was used as a target fragment for metagenome walking. The walking retrieved the flanking regions of the target fragment from the soil DNA, resulting in recovery of the full length of benA and also downstream gene (benB). The same strategy retrieved another gene, tfdC, and a complete tfdC and two downstream genes were obtained from the same soil. PCR-DGGE allows screening for target genes based on their potential for degrading contaminants in the environment. This feature provides an advantage over other existing metagenomic approaches.

  17. Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing

    PubMed Central

    Shin, Jongoh; Lee, Sooin; Go, Min-Jeong; Lee, Sang Yup; Kim, Sun Chang; Lee, Chul-Ho; Cho, Byung-Kwan

    2016-01-01

    Demands for faster and more accurate methods to analyze microbial communities from natural and clinical samples have been increasing in the medical and healthcare industry. Recent advances in next-generation sequencing technologies have facilitated the elucidation of the microbial community composition with higher accuracy and greater throughput than was previously achievable; however, the short sequencing reads often limit the microbial composition analysis at the species level due to the high similarity of 16S rRNA amplicon sequences. To overcome this limitation, we used the nanopore sequencing platform to sequence full-length 16S rRNA amplicon libraries prepared from the mouse gut microbiota. A comparison of the nanopore and short-read sequencing data showed that there were no significant differences in major taxonomic units (89%) except one phylotype and three taxonomic units. Moreover, both sequencing data were highly similar at all taxonomic resolutions except the species level. At the species level, nanopore sequencing allowed identification of more species than short-read sequencing, facilitating the accurate classification of the bacterial community composition. Therefore, this method of full-length 16S rRNA amplicon sequencing will be useful for rapid, accurate and efficient detection of microbial diversity in various biological and clinical samples. PMID:27411898

  18. Solid-State NMR Structure of a Pathogenic Fibril of Full-Length Human α-Synuclein

    PubMed Central

    Tuttle, Marcus D.; Comellas, Gemma; Nieuwkoop, Andrew J.; Covell, Dustin J.; Berthold, Deborah A.; Kloepper, Kathryn D.; Courtney, Joseph M.; Kim, Jae K.; Barclay, Alexander M.; Kendall, Amy; Wan, William; Stubbs, Gerald; Schwieters, Charles D.; Lee, Virginia M. Y.; George, Julia M.; Rienstra, Chad M.

    2016-01-01

    Misfolded α-synuclein amyloid fibrils are the principal components of Lewy bodies and neurites, hallmarks of Parkinson’s disease (PD). Here we present a high-resolution structure of an α-synuclein fibril, in a form that induces robust pathology in primary neuronal culture, determined by solid-state NMR spectroscopy and validated by electron microscopy and X-ray fiber diffraction. Over 200 unique long-range distance restraints define a consensus structure with common amyloid features including parallel in-register β-sheets and hydrophobic core residues, but also substantial complexity, arising from diverse structural features: an intermolecular salt bridge, a glutamine ladder, close backbone interactions involving small residues, and several steric zippers stabilizing a novel, orthogonal Greek-key topology. These characteristics contribute to the robust propagation of this fibril form, as evidenced by structural similarity of early-onset PD mutants. The structure provides a framework for understanding the interactions of α-synuclein with other proteins and small molecules to diagnose and treat PD. PMID:27018801

  19. Substrate Specificity of Purified Recombinant Human β-Carotene 15,15′-Oxygenase (BCO1)*

    PubMed Central

    dela Seña, Carlo; Narayanasamy, Sureshbabu; Riedl, Kenneth M.; Curley, Robert W.; Schwartz, Steven J.; Harrison, Earl H.

    2013-01-01

    Humans cannot synthesize vitamin A and thus must obtain it from their diet. β-Carotene 15,15′-oxygenase (BCO1) catalyzes the oxidative cleavage of provitamin A carotenoids at the central 15–15′ double bond to yield retinal (vitamin A). In this work, we quantitatively describe the substrate specificity of purified recombinant human BCO1 in terms of catalytic efficiency values (kcat/Km). The full-length open reading frame of human BCO1 was cloned into the pET-28b expression vector with a C-terminal polyhistidine tag, and the protein was expressed in the Escherichia coli strain BL21-Gold(DE3). The enzyme was purified using cobalt ion affinity chromatography. The purified enzyme preparation catalyzed the oxidative cleavage of β-carotene with a Vmax = 197.2 nmol retinal/mg BCO1 × h, Km = 17.2 μm and catalytic efficiency kcat/Km = 6098 m−1 min−1. The enzyme also catalyzed the oxidative cleavage of α-carotene, β-cryptoxanthin, and β-apo-8′-carotenal to yield retinal. The catalytic efficiency values of these substrates are lower than that of β-carotene. Surprisingly, BCO1 catalyzed the oxidative cleavage of lycopene to yield acycloretinal with a catalytic efficiency similar to that of β-carotene. The shorter β-apocarotenals (β-apo-10′-carotenal, β-apo-12′-carotenal, β-apo-14′-carotenal) do not show Michaelis-Menten behavior under the conditions tested. We did not detect any activity with lutein, zeaxanthin, and 9-cis-β-carotene. Our results show that BCO1 favors full-length provitamin A carotenoids as substrates, with the notable exception of lycopene. Lycopene has previously been reported to be unreactive with BCO1, and our findings warrant a fresh look at acycloretinal and its alcohol and acid forms as metabolites of lycopene in future studies. PMID:24187135

  20. A general strategy for generating intact, full-length IgG antibodies that penetrate into the cytosol of living cells.

    PubMed

    Choi, Dong-Ki; Bae, Jeomil; Shin, Seung-Min; Shin, Ju-Yeon; Kim, Sunghoon; Kim, Yong-Sung

    2014-01-01

    Full-length IgG antibodies cannot cross cell membranes of living cells; this limits their use for direct targeting of cytosolic proteins. Here, we describe a general strategy for the generation of intact, full-length IgG antibodies, herein called cytotransmabs, which internalize into living cells and localize in the cytosol. We first generated a humanized light chain variable domain (VL) that could penetrate into the cytosol of living cells and was engineered for association with various subtypes of human heavy chain variable domains (VHs). When light chains with humanized VL were co-expressed with 3 heavy chains (HCs), including 2 HCs of the clinically approved adalimumab (Humira®) and bevacizumab (Avastin®), all 3 purified IgG antibodies were internalized into the cytoplasm of living cells. Cytotransmabs primarily internalized into living cells by the clathrin-mediated endocytic pathway through interactions with heparin sulfate proteoglycan that was expressed on the cell surface. The cytotransmabs escaped into the cytosol from early endosomes without being further transported into other cellular compartments, like the lysosomes, endoplasmic reticulum, Golgi apparatus, and nucleus. Furthermore, we generated a cytotransmab that co-localized with the targeted cytosolic protein when it was incubated with living cells, demonstrating that the cytotransmab can directly target cytosolic proteins. Internalized cytotransmabs did not show any noticeable cytotoxicity and remained in the cytosol for more than 6 h before being degraded by proteosomes. These results suggest that cytotransmabs, which efficiently enter living cells and reach the cytosolic space, will find widespread uses as research, diagnostic, and therapeutic agents.

  1. Construction and Characterization of Highly Infectious Full-Length Molecular Clones of a HIV-1 CRF07_BC Isolate from Xinjiang, China

    PubMed Central

    Wang, Zheng; Hong, Kunxue; Zhang, Jing; Zhang, Lei; Li, Dan; Ren, Li; Liang, Hua; Shao, Yiming

    2013-01-01

    Among the various subtypes of the M group of human immunodeficiency virus type 1 (HIV-1), clade CRF07_BC is the most prevalent in China. To date, no strong replicable CRF07_BC infectious clone has been constructed. Here we report on the construction and characterization of highly replicable infectious molecular clones from the isolate XJDC6291 of this HIV-1 subtype. Four full-length clones pXJDC2-7, pXJDC3-7, pXJDC2-6 and pXJDC3-6 were successfully produced, but only pXJDC2-7 presented detectable infectivity and replication capability. To improve the replication capability of pXJDC2-7, a 4.8 kb region spanning from the pol Integrase to nef gene of the clone was replaced by PCR products of the corresponding fragments from the original isolate XJDC6291, which produced two clones pXJDC13 and pXJDC17 that exhibited strong replication capability. The viral stocks obtained by pXJDC-13 and pXJDC-17 transfection into 293T cells replicated efficiently in human PBMCs, human primary CD4+ T cells and displayed CCR5 tropism. Sequence alignment between pXJDC13, pXJDC17 and pXJDC2-7 suggested that polymorphisms in the V1V2 region may influence infectivity, and reverse genetic experiment showed that V1V2 polymorphisms may influence the infectivity of the clones but did not affect the replication capability at a significant level. pXJDC13 and pXJDC17 displayed strong replication capability and are the first full-length infectious clones of HIV-1 CRF07_BC clade in the world. The availability of CRF07_BC infectious clones provides a useful tool for a wide range of studies, including antiretroviral drug and vaccine research as related to this HIV subtype. PMID:24324545

  2. A general strategy for generating intact, full-length IgG antibodies that penetrate into the cytosol of living cells

    PubMed Central

    Choi, Dong-Ki; Bae, Jeomil; Shin, Seung-Min; Shin, Ju-Yeon; Kim, Sunghoon; Kim, Yong-Sung

    2014-01-01

    Full-length IgG antibodies cannot cross cell membranes of living cells; this limits their use for direct targeting of cytosolic proteins. Here, we describe a general strategy for the generation of intact, full-length IgG antibodies, herein called cytotransmabs, which internalize into living cells and localize in the cytosol. We first generated a humanized light chain variable domain (VL) that could penetrate into the cytosol of living cells and was engineered for association with various subtypes of human heavy chain variable domains (VHs). When light chains with humanized VL were co-expressed with 3 heavy chains (HCs), including 2 HCs of the clinically approved adalimumab (Humira®) and bevacizumab (Avastin®), all 3 purified IgG antibodies were internalized into the cytoplasm of living cells. Cytotransmabs primarily internalized into living cells by the clathrin-mediated endocytic pathway through interactions with heparin sulfate proteoglycan that was expressed on the cell surface. The cytotransmabs escaped into the cytosol from early endosomes without being further transported into other cellular compartments, like the lysosomes, endoplasmic reticulum, Golgi apparatus, and nucleus. Furthermore, we generated a cytotransmab that co-localized with the targeted cytosolic protein when it was incubated with living cells, demonstrating that the cytotransmab can directly target cytosolic proteins. Internalized cytotransmabs did not show any noticeable cytotoxicity and remained in the cytosol for more than 6 h before being degraded by proteosomes. These results suggest that cytotransmabs, which efficiently enter living cells and reach the cytosolic space, will find widespread uses as research, diagnostic, and therapeutic agents. PMID:25484049

  3. Sustained release emphasizing recombinant human bone morphogenetic protein-2.

    PubMed

    Hollinger; Uludag; Winn

    1998-05-01

    Bone homeostasis is a dynamic process involving a myriad of cells and substrates modulated by regulatory signals such as hormones, growth and differentiating factors. When this environment is damaged, the regenerative sequalae follows a programmed pattern, and the capacity for successful recovery is often dependent on the extent of the injury. Many bony deficits that are excessively traumatic will not result in complete recovery and require therapeutic intervention(s) such as autografting or grafting from banked bone. However, for numerous reasons, an unacceptably high rate of failure is associated with these conventional therapies. Thus, alternative approaches are under investigation. A class of osteogenic regulatory molecules, the bone morphogenetic proteins (BMPs), have been isolated, cloned and characterized as potent supplements to augment bone regeneration. Optimizing a therapeutic application for BMPs may be dependent upon localized sustained release which in kind relies on a safe and well characterized carrier system. This review will discuss the current status of BMPs in bone regeneration and specifically will present the potential for a clinical therapeutic role of recombinant human BMP-2 sustained release carrier systems. PMID:10837631

  4. Recombinant Human Factor IX Produced from Transgenic Porcine Milk

    PubMed Central

    Lee, Meng-Hwan; Lin, Yin-Shen; Tu, Ching-Fu; Yen, Chon-Ho

    2014-01-01

    Production of biopharmaceuticals from transgenic animal milk is a cost-effective method for highly complex proteins that cannot be efficiently produced using conventional systems such as microorganisms or animal cells. Yields of recombinant human factor IX (rhFIX) produced from transgenic porcine milk under the control of the bovine α-lactalbumin promoter reached 0.25 mg/mL. The rhFIX protein was purified from transgenic porcine milk using a three-column purification scheme after a precipitation step to remove casein. The purified protein had high specific activity and a low ratio of the active form (FIXa). The purified rhFIX had 11.9 γ-carboxyglutamic acid (Gla) residues/mol protein, which approached full occupancy of the 12 potential sites in the Gla domain. The rhFIX was shown to have a higher isoelectric point and lower sialic acid content than plasma-derived FIX (pdFIX). The rhFIX had the same N-glycosylation sites and phosphorylation sites as pdFIX, but had a higher specific activity. These results suggest that rhFIX produced from porcine milk is physiologically active and they support the use of transgenic animals as bioreactors for industrial scale production in milk. PMID:24955355

  5. Boundary mode lubrication of articular cartilage by recombinant human lubricin.

    PubMed

    Gleghorn, Jason P; Jones, Aled R C; Flannery, Carl R; Bonassar, Lawrence J

    2009-06-01

    Lubrication of cartilage involves a variety of physical and chemical factors, including lubricin, a synovial glycoprotein that has been shown to be a boundary lubricant. It is unclear how lubricin boundary lubricates a wide range of bearings from tissue to artificial surfaces, and if the mechanism is the same for both soluble and bound lubricin. In the current study, experiments were conducted to investigate the hypothesis that recombinant human lubricin (rh-lubricin) lubricates cartilage in a dose-dependent manner and that soluble and bound fractions of rh-lubricin both contribute to the lubrication process. An rh-lubricin dose response was observed with maximal lubrication achieved at concentrations of rh-lubricin greater than 50 microg/mL. A concentration-response variable-slope model was fit to the data, and indicated that rh-lubricin binding to cartilage was not first order. The pattern of decrease in equilibrium friction coefficient indicated that aggregation of rh-lubricin or steric arrangement may regulate boundary lubrication. rh-lubricin localized at the cartilage surface was found to lubricate a cartilage-glass interface in boundary mode, as did soluble rh-lubricin at high concentrations (150 microg/mL); however, the most effective lubrication occurred when both soluble and bound rh-lubricin were present at the interface. These findings point to two distinct mechanisms by which rh-lubricin lubricates, one mechanism involving lubricin bound to the tissue surface and the other involving lubricin in solution.

  6. Inhibition of recombinant human maltase glucoamylase by salacinol and derivatives.

    PubMed

    Rossi, Elena J; Sim, Lyann; Kuntz, Douglas A; Hahn, Dagmar; Johnston, Blair D; Ghavami, Ahmad; Szczepina, Monica G; Kumar, Nag S; Sterchi, Erwin E; Nichols, Buford L; Pinto, B M; Rose, David R

    2006-06-01

    Inhibitors targeting pancreatic alpha-amylase and intestinal alpha-glucosidases delay glucose production following digestion and are currently used in the treatment of Type II diabetes. Maltase-glucoamylase (MGA), a family 31 glycoside hydrolase, is an alpha-glucosidase anchored in the membrane of small intestinal epithelial cells responsible for the final step of mammalian starch digestion leading to the release of glucose. This paper reports the production and purification of active human recombinant MGA amino terminal catalytic domain (MGAnt) from two different eukaryotic cell culture systems. MGAnt overexpressed in Drosophila cells was of quality and quantity suitable for kinetic and inhibition studies as well as future structural studies. Inhibition of MGAnt was tested with a group of prospective alpha-glucosidase inhibitors modeled after salacinol, a naturally occurring alpha-glucosidase inhibitor, and acarbose, a currently prescribed antidiabetic agent. Four synthetic inhibitors that bind and inhibit MGAnt activity better than acarbose, and at comparable levels to salacinol, were found. The inhibitors are derivatives of salacinol that contain either a selenium atom in place of sulfur in the five-membered ring, or a longer polyhydroxylated, sulfated chain than salacinol. Six-membered ring derivatives of salacinol and compounds modeled after miglitol were much less effective as MGAnt inhibitors. These results provide information on the inhibitory profile of MGAnt that will guide the development of new compounds having antidiabetic activity.

  7. Double blind trial of recombinant human erythropoietin in preterm infants.

    PubMed Central

    Emmerson, A J; Coles, H J; Stern, C M; Pearson, T C

    1993-01-01

    Twenty four infants between 27 and 33 weeks' gestation were recruited into a double blind study to investigate the use of recombinant human erythropoietin (r-HuEpo) for the prevention of anaemia of prematurity. Between 50 and 150 U of r-HuEpo (n = 16) or placebo was administered subcutaneously twice a week from 7 days of age until discharge. There was a significant increase in the reticulocyte count in infants receiving r-HuEpo sustained from the second week of treatment until discharge compared with placebo. There was a reduction in the number of transfusions required in the r-HuEpo group with only 47% requiring a transfusion compared with 87% in the placebo group. During treatment with r-HuEpo there was a significant rise in the red cell folate concentration, a significant fall in the ferritin concentration, and a significantly higher percentage of haemoglobin F at discharge suggesting active erythropoiesis. The study provides strong evidence for the efficacy of r-HuEpo in stimulating erythropoiesis and reducing the requirement for transfusions for anaemia of prematurity. PMID:8466265

  8. Is Recombinant Human TSH a Trigger for Graves' Orbitopathy?

    PubMed Central

    Daumerie, C.; Boschi, A.; Perros, P.

    2012-01-01

    The pathogenesis of Graves' orbitopathy (GO) remains unknown. The hypothesis of a causal relationship between autoimmunity against the TSH receptor (TSHR) and GO is supported by clinical studies. Radioiodine treatment is associated with worsening or new onset of GO, possibly via antigen shedding or by inducing hypothyroidism. The coexistence of thyroid cancer with Graves' disease (GD) and GO is rare. Here we report 3 cases of reactivation of GO in patients who underwent treatment with recombinant human TSH (rhTSH) and radioiodine ablation. In each case, a thyroidectomy was performed to treat the GD, and an incidental thyroid cancer was discovered. In all 3 cases, reactivation of GO was observed 3–6 weeks after administration of rhTSH, despite maintaining euthyroidism, which was unaccompanied by a rise in serum TSHR antibodies after radioiodine and despite steroids in 1 of the 3 patients. These observations suggest that binding of either TSH or TSHR antibodies to the TSHR, independently of thyroid status, may be causally related to deterioration of GO. Clinicians should be aware of a possible association between rhTSH administration and reactivation of GO, which should be taken into account before prescribing rhTSH in patients with GO. Prophylactic steroids may need to be considered for patients at high risk of exacerbation of GO. PMID:24783004

  9. Is Recombinant Human TSH a Trigger for Graves' Orbitopathy?

    PubMed

    Daumerie, C; Boschi, A; Perros, P

    2012-07-01

    The pathogenesis of Graves' orbitopathy (GO) remains unknown. The hypothesis of a causal relationship between autoimmunity against the TSH receptor (TSHR) and GO is supported by clinical studies. Radioiodine treatment is associated with worsening or new onset of GO, possibly via antigen shedding or by inducing hypothyroidism. The coexistence of thyroid cancer with Graves' disease (GD) and GO is rare. Here we report 3 cases of reactivation of GO in patients who underwent treatment with recombinant human TSH (rhTSH) and radioiodine ablation. In each case, a thyroidectomy was performed to treat the GD, and an incidental thyroid cancer was discovered. In all 3 cases, reactivation of GO was observed 3-6 weeks after administration of rhTSH, despite maintaining euthyroidism, which was unaccompanied by a rise in serum TSHR antibodies after radioiodine and despite steroids in 1 of the 3 patients. These observations suggest that binding of either TSH or TSHR antibodies to the TSHR, independently of thyroid status, may be causally related to deterioration of GO. Clinicians should be aware of a possible association between rhTSH administration and reactivation of GO, which should be taken into account before prescribing rhTSH in patients with GO. Prophylactic steroids may need to be considered for patients at high risk of exacerbation of GO. PMID:24783004

  10. Expression, purification, and characterization of recombinant human glutamine synthetase.

    PubMed Central

    Listrom, C D; Morizono, H; Rajagopal, B S; McCann, M T; Tuchman, M; Allewell, N M

    1997-01-01

    A bacterial expression system has been engineered for human glutamine synthetase (EC 6.3.1.2) that produces approximately 60 mg of enzyme (20% of the bacterial soluble protein) and yields approx. 8 mg of purified enzyme per litre of culture. The recombinant enzyme was purified 5-fold to apparent homogeneity and characterized. It has a subunit molecular mass of approx. 45000 Da. The Vmax value obtained using a radioactive assay with ammonia and l-[G-3H]glutamic acid as substrates was 15.9 micromol/min per mg, 40% higher than that obtained in the colorimetric assay (9.9 micromol/min per mg) with hydroxylamine replacing ammonia as a substrate. Km values for glutamate were 3.0 mM and 3.5 mM, and for ATP they were 2.0 mM and 2. 9 mM for the radioactive and spectrophotometric assays respectively. The Km for ammonia in the radioactive assay was 0.15 mM. The midpoint of thermal inactivation was 49.7 degrees C. Hydroxylamine, Mg(II) and Mg(II)-ATP stabilized the enzyme against thermal inactivation, whereas ATP promoted inactivation. The pure enzyme is stable for several months in storage and provides a source for additional studies, including X-ray crystallography. PMID:9359847

  11. A recombinant human enzyme for enhanced interstitial transport of therapeutics.

    PubMed

    Bookbinder, L H; Hofer, A; Haller, M F; Zepeda, M L; Keller, G-A; Lim, J E; Edgington, T S; Shepard, H M; Patton, J S; Frost, G I

    2006-08-28

    Subcutaneously injected therapeutics must pass through the interstitial matrix of the skin in order to reach their intended targets. This complex, three-dimensional structure limits the type and quantity of drugs that can be administered by local injection. Here we found that depolymerization of the viscoelastic component of the interstitial matrix in animal models with a highly purified recombinant human hyaluronidase enzyme (rHuPH20) increased the dispersion of locally injected drugs, across a broad range of molecular weights without tissue distortion. rHuPH20 increased infusion rates and the pattern and extent of appearance of locally injected drugs in systemic blood. In particular, rHuPH20 changed the pharmacokinetic profiles and significantly augmented the absolute bioavailability of locally injected large protein therapeutics. Importantly, within 24 h of injection, the interstitial viscoelastic barriers were restored without histologic alterations or signs of inflammation. rHuPH20 may function as an interstitial delivery enhancing agent capable of increasing the dispersion and bioavailability of coinjected drugs that may enable subcutaneous administration of therapeutics and replace intravenous delivery.

  12. Human recombinant RNASET2: A potential anti-cancer drug

    PubMed Central

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate. PMID:27014725

  13. Full-Length Fibronectin Drives Fibroblast Accumulation at the Surface of Collagen Microtissues during Cell-Induced Tissue Morphogenesis

    PubMed Central

    Foolen, Jasper; Shiu, Jau-Ye; Mitsi, Maria; Zhang, Yang; Chen, Christopher S.; Vogel, Viola

    2016-01-01

    Generating and maintaining gradients of cell density and extracellular matrix (ECM) components is a prerequisite for the development of functionality of healthy tissue. Therefore, gaining insights into the drivers of spatial organization of cells and the role of ECM during tissue morphogenesis is vital. In a 3D model system of tissue morphogenesis, a fibronectin-FRET sensor recently revealed the existence of two separate fibronectin populations with different conformations in microtissues, i.e. ‘compact and adsorbed to collagen’ versus ‘extended and fibrillar’ fibronectin that does not colocalize with the collagen scaffold. Here we asked how the presence of fibronectin might drive this cell-induced tissue morphogenesis, more specifically the formation of gradients in cell density and ECM composition. Microtissues were engineered in a high-throughput model system containing rectangular microarrays of 12 posts, which constrained fibroblast-populated collagen gels, remodeled by the contractile cells into trampoline-shaped microtissues. Fibronectin’s contribution during the tissue maturation process was assessed using fibronectin-knockout mouse embryonic fibroblasts (Fn-/- MEFs) and floxed equivalents (Fnf/f MEFs), in fibronectin-depleted growth medium with and without exogenously added plasma fibronectin (full-length, or various fragments). In the absence of full-length fibronectin, Fn-/- MEFs remained homogenously distributed throughout the cell-contracted collagen gels. In contrast, in the presence of full-length fibronectin, both cell types produced shell-like tissues with a predominantly cell-free compacted collagen core and a peripheral surface layer rich in cells. Single cell assays then revealed that Fn-/- MEFs applied lower total strain energy on nanopillar arrays coated with either fibronectin or vitronectin when compared to Fnf/f MEFs, but that the presence of exogenously added plasma fibronectin rescued their contractility. While collagen

  14. Full-Length Fibronectin Drives Fibroblast Accumulation at the Surface of Collagen Microtissues during Cell-Induced Tissue Morphogenesis.

    PubMed

    Foolen, Jasper; Shiu, Jau-Ye; Mitsi, Maria; Zhang, Yang; Chen, Christopher S; Vogel, Viola

    2016-01-01

    Generating and maintaining gradients of cell density and extracellular matrix (ECM) components is a prerequisite for the development of functionality of healthy tissue. Therefore, gaining insights into the drivers of spatial organization of cells and the role of ECM during tissue morphogenesis is vital. In a 3D model system of tissue morphogenesis, a fibronectin-FRET sensor recently revealed the existence of two separate fibronectin populations with different conformations in microtissues, i.e. 'compact and adsorbed to collagen' versus 'extended and fibrillar' fibronectin that does not colocalize with the collagen scaffold. Here we asked how the presence of fibronectin might drive this cell-induced tissue morphogenesis, more specifically the formation of gradients in cell density and ECM composition. Microtissues were engineered in a high-throughput model system containing rectangular microarrays of 12 posts, which constrained fibroblast-populated collagen gels, remodeled by the contractile cells into trampoline-shaped microtissues. Fibronectin's contribution during the tissue maturation process was assessed using fibronectin-knockout mouse embryonic fibroblasts (Fn-/- MEFs) and floxed equivalents (Fnf/f MEFs), in fibronectin-depleted growth medium with and without exogenously added plasma fibronectin (full-length, or various fragments). In the absence of full-length fibronectin, Fn-/- MEFs remained homogenously distributed throughout the cell-contracted collagen gels. In contrast, in the presence of full-length fibronectin, both cell types produced shell-like tissues with a predominantly cell-free compacted collagen core and a peripheral surface layer rich in cells. Single cell assays then revealed that Fn-/- MEFs applied lower total strain energy on nanopillar arrays coated with either fibronectin or vitronectin when compared to Fnf/f MEFs, but that the presence of exogenously added plasma fibronectin rescued their contractility. While collagen decoration of

  15. Development of a Competitive Binding Assay System with Recombinant Estrogen Receptors from Multiple Species

    EPA Science Inventory

    ABSTRACT In the current study, we developed a new system using full-length recombinant baculovirus-expressed estrogen receptors which allows for direct comparison of binding across species. Estrogen receptors representing five vertebrate classes were compared: human (hERα), quai...

  16. Interaction of the Full-length Bax Protein with Biomimetic Mitochondrial Liposomes: A Small-Angle Neutron Scattering and Fluorescence Study

    SciTech Connect

    Satsoura, D; Kucerka, Norbert; Shivakumar, S; Pencer, J; Griffiths, C; Leber, B; Andrews, D.W; Katsaras, John; Fradin, C

    2012-01-01

    In response to apoptotic stimuli, the pro-apoptotic protein Bax inserts in the outer mitochondrial membrane, resulting in the formation of pores and the release of several mitochondrial components, and sealing the cell's fate. To study the binding of Bax to membranes, we used an in vitro system consisting of 50 nm diameter liposomes prepared with a lipid composition mimicking that of mitochondrial membranes in which recombinant purified full-length Bax was inserted via activation with purified tBid. We detected the association of the protein with the membrane using fluorescence fluctuation methods, and found that it could well be described by an equilibrium between soluble and membrane-bound Bax and that at a high protein-toliposome ratio the binding seemed to saturate at about 15 Bax proteins per 50 nm diameter liposome. We then obtained structural data for samples in this saturated binding regime using small-angle neutron scattering under different contrast matching conditions. Utilizing a simple model to fit the neutron data, we observed that a significant amount of the protein mass protrudes above the membrane, in contrast to the conjecture that all of the membrane-associated Bax states are umbrella-like. Upon protein binding, we also observed a thinning of the lipid bilayer accompanied by an increase in liposome radius, an effect reminiscent of the action of antimicrobial peptides on membranes.

  17. Multiplexed next-generation sequencing and de novo assembly to obtain near full-length HIV-1 genome from plasma virus.

    PubMed

    Aralaguppe, Shambhu G; Siddik, Abu Bakar; Manickam, Ashokkumar; Ambikan, Anoop T; Kumar, Milner M; Fernandes, Sunjay Jude; Amogne, Wondwossen; Bangaruswamy, Dhinoth K; Hanna, Luke Elizabeth; Sonnerborg, Anders; Neogi, Ujjwal

    2016-10-01

    Analysing the HIV-1 near full-length genome (HIV-NFLG) facilitates new understanding into the diversity of virus population dynamics at individual or population level. In this study we developed a simple but high-throughput next generation sequencing (NGS) protocol for HIV-NFLG using clinical specimens and validated the method against an external quality control (EQC) panel. Clinical specimens (n=105) were obtained from three cohorts from two highly conserved HIV-1C epidemics (India and Ethiopia) and one diverse epidemic (Sweden). Additionally an EQC panel (n=10) was used to validate the protocol. HIV-NFLG was performed amplifying the HIV-genome (Gag-to-nef) in two fragments. NGS was performed using the Illumina HiSeq2500 after multiplexing 24 samples, followed by de novo assembly in Iterative Virus Assembler or VICUNA. Subtyping was carried out using several bioinformatics tools. Amplification of HIV-NFLG has 90% (95/105) success-rate in clinical specimens. NGS was successful in all clinical specimens (n=45) and EQA samples (n=10) attempted. The mean error for mutations for the EQC panel viruses were <1%. Subtyping identified two as A1C recombinant. Our results demonstrate the feasibility of a simple NGS-based HIV-NFLG that can potentially be used in the molecular surveillance for effective identification of subtypes and transmission clusters for operational public health intervention.

  18. Full-length protein extraction protocols and gel-based downstream applications in formalin-fixed tissue proteomics.

    PubMed

    Tanca, Alessandro; Uzzau, Sergio; Addis, Maria Filippa

    2015-01-01

    Archival formalin-fixed, paraffin-embedded (FFPE) tissue repositories and their associated clinical information can represent a valuable resource for tissue proteomics. In order to make these tissues available for protein biomarker discovery and validation studies, dedicated sample preparation procedures overcoming the intermolecular cross-links introduced by formalin need to be implemented. This chapter describes a full-length protein extraction protocol optimized for downstream gel-based proteomics applications. Using the procedures detailed here, SDS-PAGE, western immunoblotting, GeLC-MS/MS, 2D-PAGE, and 2D-DIGE can be carried out on FFPE tissues. Technical tips, critical aspects, and drawbacks of the method are presented and discussed.

  19. The longest mitochondrial RNA editing PPR protein MEF12 in Arabidopsis thaliana requires the full-length E domain.

    PubMed

    Härtel, Barbara; Zehrmann, Anja; Verbitskiy, Daniil; Takenaka, Mizuki

    2013-01-01

    Mitochondrial RNA editing factor 12 (MEF12) was identified in a screen for editing defects of a chemically mutated plant population in Arabidopsis thaliana. The MEF12 editing protein is required for the C to U change of nucleotide nad5-374. The MEF12 polypeptide is characterized by an exceptionally long stretch of 25 pentatricopeptide repeats (PPR) and a C-terminal extension domain. Editing is lost in mutant plants with a stop codon in the extending element. A T-DNA insertion substituting the 10 C-terminal amino acids of the extension domain reduces RNA editing to about 20% at the target site in a mutant plant. These results support the importance of the full-length extension module for functional RNA editing in plant mitochondria.

  20. Full-length sequence analysis of hepatitis E virus isolates: showing potential determinants of virus genotype and identity.

    PubMed

    Yang, Dong; Jiang, Mei; Jin, Min; Qiu, Zhigang; Cui, Weihong; Shen, Zhiqiang; Li, Bo; Gong, Lianfeng; Chen, Zhaoli; Wang, Xinwei; Li, Jun-Wen

    2013-12-01

    The complete genome sequence of a genotype 4 strain of hepatitis E virus (CH-YT-HEV02) from a patient (in Yantai, China) has been determined. Phylogenetic analysis showed that CH-YT-HEV02 belongs to genotype 4, subtype 4a. However, the phylogenetic analysis indicated that it was most closely related to JKO-CHiSai98C (AB197673) strain, sharing only 91.6% sequence identity with it. Judging from the phylogenetic tree based on the full-length nucleotide sequences of all 70 genotype 4 HEV isolates retrieved from GenBank up to May, 2013, the CH-YT-HEV02 isolates could serve as a Yantai-indigenous strain. A broader comparison with other genotype isolates revealed that there are a few conserved amino acids in the HVR region of different HEV genotypes, and two amino acid motifs in ORF2 and ORF3 might serve as signatures of genotype diversity of HEV.

  1. Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform.

    PubMed

    Cao, Liu; Li, Wenmei; Kim, Sangsoo; Brodie, Steven G; Deng, Chu-Xia

    2003-01-15

    Senescence may function as a two-edged sword that brings unexpected consequences to organisms. Here we provide evidence to support this theory by showing that the absence of the Brca1 full-length isoform causes senescence in mutant embryos and cultured cells as well as aging and tumorigenesis in adult mice. Haploid loss of p53 overcame embryonic senescence but failed to prevent the adult mutant mice from prematurely aging, which included decreased life span, reduced body fat deposition, osteoporosis, skin atrophy, and decreased wound healing. We further demonstrate that mutant cells that escaped senescence had undergone clonal selection for faster proliferation and extensive genetic/molecular alterations, including overexpression of cyclin D1 and cyclin A and loss of p53. These observations provide the first in vivo evidence that links cell senescence to aging due to impaired function of Brca1 at the expense of tumorigenesis.

  2. The Helios Prototype flying wing stretches almost the full length of the 300-foot-long hangar at NAS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Helios Prototype flying wing stretches almost the full length of the 300-foot-long hangar at NASA's Dryden flight Research Center, Edwards, California. The 247-foot span solar-powered aircraft, resting on its ground maneuvering dolly, was on display for a visit of NASA Administrator Sean O'Keefe and other NASA officials on January 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on August 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as 'atmospheric satellites,' performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.

  3. Full-length enriched cDNA libraries and ORFeome analysis of sugarcane hybrid and ancestor genotypes.

    PubMed

    Nishiyama, Milton Yutaka; Ferreira, Savio Siqueira; Tang, Pei-Zhong; Becker, Scott; Pörtner-Taliana, Antje; Souza, Glaucia Mendes

    2014-01-01

    Sugarcane is a major crop used for food and bioenergy production. Modern cultivars are hybrids derived from crosses between Saccharum officinarum and Saccharum spontaneum. Hybrid cultivars combine favorable characteristics from ancestral species and contain a genome that is highly polyploid and aneuploid, containing 100-130 chromosomes. These complex genomes represent a huge challenge for molecular studies and for the development of biotechnological tools that can facilitate sugarcane improvement. Here, we describe full-length enriched cDNA libraries for Saccharum officinarum, Saccharum spontaneum, and one hybrid genotype (SP803280) and analyze the set of open reading frames (ORFs) in their genomes (i.e., their ORFeomes). We found 38,195 (19%) sugarcane-specific transcripts that did not match transcripts from other databases. Less than 1.6% of all transcripts were ancestor-specific (i.e., not expressed in SP803280). We also found 78,008 putative new sugarcane transcripts that were absent in the largest sugarcane expressed sequence tag database (SUCEST). Functional annotation showed a high frequency of protein kinases and stress-related proteins. We also detected natural antisense transcript expression, which mapped to 94% of all plant KEGG pathways; however, each genotype showed different pathways enriched in antisense transcripts. Our data appeared to cover 53.2% (17,563 genes) and 46.8% (937 transcription factors) of all sugarcane full-length genes and transcription factors, respectively. This work represents a significant advancement in defining the sugarcane ORFeome and will be useful for protein characterization, single nucleotide polymorphism and splicing variant identification, evolutionary and comparative studies, and sugarcane genome assembly and annotation.

  4. High yield purification of full-length functional hERG K+ channels produced in Saccharomyces cerevisiae.

    PubMed

    Molbaek, Karen; Scharff-Poulsen, Peter; Helix-Nielsen, Claus; Klaerke, Dan A; Pedersen, Per Amstrup

    2015-01-01

    The hERG potassium channel is essential for repolarization of the cardiac action potential. Due to this vital function, absence of unintended and potentially life-threatening interactions with hERG is required for approval of new drugs. The structure of hERG is therefore one of the most sought-after. To provide purified hERG for structural studies and new hERG biomimetic platforms for detection of undesirable interactions, we have developed a hERG expression platform generating unprecedented amounts of purified and functional hERG channels. Full-length hERG, with or without a C-terminally fused green fluorescent protein (GFP) His 8-tag was produced from a codon-optimized hERG cDNA in Saccharomyces cerevisiae. Both constructs complemented the high potassium requirement of a knock-out Saccharomyces cerevisiae strain, indicating correct tetramer assembly in vivo. Functionality was further demonstrated by Astemizole binding to membrane embedded hERG-GFP-His 8 with a stoichiometry corresponding to tetramer assembly. The 156 kDa hERG-GFP protein accumulated to a membrane density of 1.6%. Fluorescence size exclusion chromatography of hERG-GFP-His 8 solubilized in Fos-Choline-12 supplemented with cholesteryl-hemisuccinate and Astemizole resulted in a monodisperse elution profile demonstrating a high quality of the hERG channels. hERG-GFP-His 8 purified by Ni-affinity chromatography maintained the ability to bind Astemizole with the correct stoichiometry indicating that the native, tetrameric structure was preserved. To our knowledge this is the first reported high-yield production and purification of full length, tetrameric and functional hERG. This significant breakthrough will be paramount in obtaining hERG crystal structures, and in establishment of new high-throughput hERG drug safety screening assays. PMID:25656388

  5. Full-Length Enriched cDNA Libraries and ORFeome Analysis of Sugarcane Hybrid and Ancestor Genotypes

    PubMed Central

    Becker, Scott; Pörtner-Taliana, Antje; Souza, Glaucia Mendes

    2014-01-01

    Sugarcane is a major crop used for food and bioenergy production. Modern cultivars are hybrids derived from crosses between Saccharum officinarum and Saccharum spontaneum. Hybrid cultivars combine favorable characteristics from ancestral species and contain a genome that is highly polyploid and aneuploid, containing 100–130 chromosomes. These complex genomes represent a huge challenge for molecular studies and for the development of biotechnological tools that can facilitate sugarcane improvement. Here, we describe full-length enriched cDNA libraries for Saccharum officinarum, Saccharum spontaneum, and one hybrid genotype (SP803280) and analyze the set of open reading frames (ORFs) in their genomes (i.e., their ORFeomes). We found 38,195 (19%) sugarcane-specific transcripts that did not match transcripts from other databases. Less than 1.6% of all transcripts were ancestor-specific (i.e., not expressed in SP803280). We also found 78,008 putative new sugarcane transcripts that were absent in the largest sugarcane expressed sequence tag database (SUCEST). Functional annotation showed a high frequency of protein kinases and stress-related proteins. We also detected natural antisense transcript expression, which mapped to 94% of all plant KEGG pathways; however, each genotype showed different pathways enriched in antisense transcripts. Our data appeared to cover 53.2% (17,563 genes) and 46.8% (937 transcription factors) of all sugarcane full-length genes and transcription factors, respectively. This work represents a significant advancement in defining the sugarcane ORFeome and will be useful for protein characterization, single nucleotide polymorphism and splicing variant identification, evolutionary and comparative studies, and sugarcane genome assembly and annotation. PMID:25222706

  6. Misassembly of full-length Disrupted-in-Schizophrenia 1 protein is linked to altered dopamine homeostasis and behavioral deficits

    PubMed Central

    Trossbach, S V; Bader, V; Hecher, L; Pum, M E; Masoud, S T; Prikulis, I; Schäble, S; de Souza Silva, M A; Su, P; Boulat, B; Chwiesko, C; Poschmann, G; Stühler, K; Lohr, K M; Stout, K A; Oskamp, A; Godsave, S F; Müller-Schiffmann, A; Bilzer, T; Steiner, H; Peters, P J; Bauer, A; Sauvage, M; Ramsey, A J; Miller, G W; Liu, F; Seeman, P; Brandon, N J; Huston, J P; Korth, C

    2016-01-01

    Disrupted-in-schizophrenia 1 (DISC1) is a mental illness gene first identified in a Scottish pedigree. So far, DISC1-dependent phenotypes in animal models have been confined to expressing mutant DISC1. Here we investigated how pathology of full-length DISC1 protein could be a major mechanism in sporadic mental illness. We demonstrate that a novel transgenic rat model, modestly overexpressing the full-length DISC1 transgene, showed phenotypes consistent with a significant role of DISC1 misassembly in mental illness. The tgDISC1 rat displayed mainly perinuclear DISC1 aggregates in neurons. Furthermore, the tgDISC1 rat showed a robust signature of behavioral phenotypes that includes amphetamine supersensitivity, hyperexploratory behavior and rotarod deficits, all pointing to changes in dopamine (DA) neurotransmission. To understand the etiology of the behavioral deficits, we undertook a series of molecular studies in the dorsal striatum of tgDISC1 rats. We observed an 80% increase in high-affinity DA D2 receptors, an increased translocation of the dopamine transporter to the plasma membrane and a corresponding increase in DA inflow as observed by cyclic voltammetry. A reciprocal relationship between DISC1 protein assembly and DA homeostasis was corroborated by in vitro studies. Elevated cytosolic dopamine caused an increase in DISC1 multimerization, insolubility and complexing with the dopamine transporter, suggesting a physiological mechanism linking DISC1 assembly and dopamine homeostasis. DISC1 protein pathology and its interaction with dopamine homeostasis is a novel cellular mechanism that is relevant for behavioral control and may have a role in mental illness. PMID:26754951

  7. Full-length, glycosylated NSP4 is localized to plasma membrane caveolae by a novel raft isolation technique.

    PubMed

    Storey, Stephen M; Gibbons, Thomas F; Williams, Cecelia V; Parr, Rebecca D; Schroeder, Friedhelm; Ball, Judith M

    2007-06-01

    Rotavirus NSP4, initially characterized as an endoplasmic reticulum intracellular receptor, is a multifunctional viral enterotoxin that induces diarrhea in murine pups. There have been recent reports of the secretion of a cleaved NSP4 fragment (residues 112 to 175) and of the association of NSP4 with LC3-positive autophagosomes, raft membranes, and microtubules. To determine if NSP4 traffics to a specific subset of rafts at the plasma membrane, we isolated caveolae from plasma membrane-enriched material that yielded caveola membranes free of endoplasmic reticulum and nonraft plasma membrane markers. Analyses of the newly isolated caveolae from rotavirus-infected MDCK cells revealed full-length, high-mannose glycosylated NSP4. The lack of Golgi network-specific processing of the caveolar NSP4 glycans supports studies showing that NSP4 bypasses the Golgi apparatus. Confocal imaging showed the colocalization of NSP4 with caveolin-1 early and late in infection, elucidating the temporal and spatial NSP4-caveolin-1 association during infection. These data were extended with fluorescent resonance energy transfer analyses that confirmed the NSP4 and caveolin-1 interaction in that the specific fluorescently tagged antibodies were within 10 nm of each other during infection. Cells transfected with NSP4 showed patterns of staining and colocalization with caveolin-1 similar to those of infected cells. This study presents an endoplasmic reticulum contaminant-free caveola isolation protocol; describes the presence of full-length, endoglycosidase H-sensitive NSP4 in plasma membrane caveolae; provides confirmation of the NSP4-caveolin interaction in the presence and absence of other viral proteins; and provides a final plasma membrane destination for Golgi network-bypassing NSP4 transport. PMID:17376898

  8. Full-Length Gαq–Phospholipase C-β3 Structure Reveals Interfaces of the C-terminal Coiled-Coil Domain

    PubMed Central

    Lyon, Angeline M.; Dutta, Somnath; Boguth, Cassandra A.; Skiniotis, Georgios; Tesmer, John J. G.

    2013-01-01

    Phospholipase C-β (PLCβ) is directly activated by Gαq, but the molecular basis for how its distal C-terminal domain (CTD) contributes to maximal activity is poorly understood. Herein we present both the crystal structure and cryo-EM 3D reconstructions of human full-length PLCβ3 in complex with murine Gαq. The distal CTD forms an extended, monomeric helical bundle consisting of three anti-parallel segments with structural similarity to membrane-binding bin–amphiphysin–Rvs (BAR) domains. Sequence conservation of the distal CTD identifies putative membrane and protein interaction sites, the latter of which bind the N-terminal helix of Gαq in both the crystal structure and cryo-EM reconstructions. Functional analysis suggests the distal CTD plays roles in membrane targeting and in optimizing the orientation of the catalytic core at the membrane for maximal rates of lipid hydrolysis. PMID:23377541

  9. Full-lengthq-phospholipase C-β3 structure reveals interfaces of the C-terminal coiled-coil domain

    SciTech Connect

    Lyon, Angeline M.; Dutta, Somnath; Boguth, Cassandra A.; Skiniotis, Georgios; Tesmer, John J.G.

    2014-08-21

    Phospholipase C-β (PLCβ) is directly activated by Gαq, but the molecular basis for how its distal C-terminal domain (CTD) contributes to maximal activity is poorly understood. Herein we present both the crystal structure and cryo-EM three-dimensional reconstructions of human full-length PLCβ3 in complex with mouse Gαq. The distal CTD forms an extended monomeric helical bundle consisting of three antiparallel segments with structural similarity to membrane-binding bin-amphiphysin-Rvs (BAR) domains. Sequence conservation of the distal CTD suggests putative membrane and protein interaction sites, the latter of which bind the N-terminal helix of Gαq in both the crystal structure and cryo-EM reconstructions. Functional analysis suggests that the distal CTD has roles in membrane targeting and in optimizing the orientation of the catalytic core at the membrane for maximal rates of lipid hydrolysis.

  10. Full-length Gα(q)-phospholipase C-β3 structure reveals interfaces of the C-terminal coiled-coil domain.

    PubMed

    Lyon, Angeline M; Dutta, Somnath; Boguth, Cassandra A; Skiniotis, Georgios; Tesmer, John J G

    2013-03-01

    Phospholipase C-β (PLCβ) is directly activated by Gαq, but the molecular basis for how its distal C-terminal domain (CTD) contributes to maximal activity is poorly understood. Herein we present both the crystal structure and cryo-EM three-dimensional reconstructions of human full-length PLCβ3 in complex with mouse Gαq. The distal CTD forms an extended monomeric helical bundle consisting of three antiparallel segments with structural similarity to membrane-binding bin-amphiphysin-Rvs (BAR) domains. Sequence conservation of the distal CTD suggests putative membrane and protein interaction sites, the latter of which bind the N-terminal helix of Gαq in both the crystal structure and cryo-EM reconstructions. Functional analysis suggests that the distal CTD has roles in membrane targeting and in optimizing the orientation of the catalytic core at the membrane for maximal rates of lipid hydrolysis. PMID:23377541

  11. Recombinant Human Semenogelin-1 (Sg1) and Sg1 (1-159) form Detergent Stable Amyloid like Aggregates in vitro.

    PubMed

    Sharma, Neetu; Vishwanath, S; Patel, Basant K

    2016-01-01

    Senile seminal vesicle amyloidosis (SSVA) is associated with deposition of semenogelin-1 (Sg1) protein aggregates in seminal vesicles that may manifest as hematospermia. Sg1 is the predominant protein that entraps spermatozoa which are freed upon fragmentation of Sg1 by the protease prostate specific antigen (PSA), post semen release. Certain small peptide fragments of Sg1 have been reported to form amyloid aggregates in vitro that can enhance HIV infectivity to cell cultures. However, the amyloid deposits in the seminal vesicles are expected to be that of the full length Sg1, as PSA is encountered downstream. So far, amyloid forming ability of full length Sg1 has not been established in vitro. Here, we examined the amyloidogenicity of full length Sg1 and a large fragment Sg1 (1-159), using recombinant proteins and tested if Zinc has any effect on their aggregation. Levels of Zinc, which is essential for health of male reproductive system, gradually decline with age. We succeeded in forming amyloid-like aggregates of Sg1 full length and Sg1 (1-159) fragment showing detergent stability and found that presence of Zn2+ substantially inhibits their amyloid aggregation in vitro. Possibly, high Zn2+ found in seminal plasma of young individuals may have preventive role against aggregation of Sg1 in seminal vesicles.

  12. Expression of the synthetic gene for human angiogenin in recombinant vaccinia virus

    SciTech Connect

    Netesova, N.A.; Petrov, V.S.; Cheshenko, N.V.

    1995-08-01

    The gene for angiogenin was cloned into vaccinia virus genome. The recombinant virus expressing angiogenin was obtained. The level of protein synthesis directed by the recombinant virus was analyzed by immunoblotting using monoclonal antibodies against human angiogenin. 15 refs., 2 figs.

  13. Human norovirus genogroup II recombinants in Thailand, 2009-2014.

    PubMed

    Phumpholsup, Tikumporn; Chieochansin, Thaweesak; Vongpunsawad, Sompong; Vuthitanachot, Viboonsuk; Payungporn, Sunchai; Poovorawan, Yong

    2015-10-01

    Norovirus (NoV) is a major cause of nonbacterial acute gastroenteritis worldwide. New strains emerge partly due to viral recombination. In Thailand, there is a lack of data on NoV recombinants among clinical isolates. We screened stool samples from pediatric diarrheal patients for norovirus by RT-PCR and found GII.4 to be the most prevalent genotype. Phylogenetic and SimPlot analyses detected seven intra-genogroup recombinant strains: three GII.21/GII.3, two GII.12/GII.3, and two GII.12/GII.1 recombinants. Maximum chi-square analysis indicated that all had similar breakpoints near the ORF1/ORF2 junction (p < 0.001), either slightly upstream within the C-terminus of RdRp or downstream within the N-terminal domain of VP1.

  14. Evidence of structural genomic region recombination in Hepatitis C virus

    PubMed Central

    Cristina, Juan; Colina, Rodney

    2006-01-01

    Background/Aim Hepatitis C virus (HCV) has been the subject of intense research and clinical investigation as its major role in human disease has emerged. Although homologous recombination has been demonstrated in many members of the family Flaviviridae, to which HCV belongs, there have been few studies reporting recombination on natural populations of HCV. Recombination break-points have been identified in non structural proteins of the HCV genome. Given the implications that recombination has for RNA virus evolution, it is clearly important to determine the extent to which recombination plays a role in HCV evolution. In order to gain insight into these matters, we have performed a phylogenetic analysis of 89 full-length HCV strains from all types and sub-types, isolated all over the world, in order to detect possible recombination events. Method Putative recombinant sequences were identified with the use of SimPlot program. Recombination events were confirmed by bootscaning, using putative recombinant sequence as a query. Results Two crossing over events were identified in the E1/E2 structural region of an intra-typic (1a/1c) recombinant strain. Conclusion Only one of 89 full-length strains studied resulted to be a recombinant HCV strain, revealing that homologous recombination does not play an extensive roll in HCV evolution. Nevertheless, this mechanism can not be denied as a source for generating genetic diversity in natural populations of HCV, since a new intra-typic recombinant strain was found. Moreover, the recombination break-points were found in the structural region of the HCV genome. PMID:16813646

  15. Recombinant Human VEGF165b Inhibits Experimental Choroidal Neovascularization

    PubMed Central

    Hua, Jing; Spee, Christine; Kase, Satoru; Rennel, Emma S.; Magnussen, Anette L.; Qiu, Yan; Varey, Alex; Dhayade, Sandeep; Churchill, Amanda J.; Harper, Steven J.; Hinton, David R.

    2010-01-01

    Purpose. Vascular endothelial growth factor (VEGF-A) is the principal stimulator of angiogenesis in wet age-related macular degeneration (AMD). However, VEGF-A is generated by alternate splicing into two families, the proangiogenic VEGF-Axxx family and the antiangiogenic VEGF-Axxxb family. It is the proangiogenic family that is responsible for the blood vessel growth seen in AMD. Methods. To determine the role of antiangiogenic isoforms of VEGF-A as inhibitors of choroidal neovascularization, the authors used a model of laser-induced choroidal neovascularization in the mouse eye and investigated VEGF-A165b effects on endothelial cells and VEGFRs in vitro. Results. VEGF-A165b inhibited VEGF-A165–mediated endothelial cell migration with a dose effect similar to that of ranibizumab and bevacizumab and 200-fold more potent than that of pegaptanib. VEGF-A165b bound both VEGFR1 and VEGFR2 with affinity similar to that of VEGF-A165. After laser injury, mice were injected either intraocularly or subcutaneously with recombinant human VEGF-A165b. Intraocular injection of rhVEGF-A165b gave a pronounced dose-dependent inhibition of fluorescein leakage, with an IC50 of 16 pg/eye, neovascularization (IC50, 0.8 pg/eye), and lesion as assessed by histologic staining (IC50, 8 pg/eye). Subcutaneous administration of 100 μg twice a week also inhibited fluorescein leakage and neovascularization and reduced lesion size. Conclusions. These results show that VEGF-A165b is a potent antiangiogenic agent in a mouse model of age-related macular degeneration and suggest that increasing the ratio of antiangiogenic-to-proangiogenic isoforms may be therapeutically effective in this condition. PMID:20237252

  16. Myelostimulatory activity of recombinant human interleukin-2 in mice

    SciTech Connect

    Talmadge, J.E.; Schneider, M.; Keller, J.; Ruscetti, F.; Longo, D.; Pennington, R.; Bowersox, O.; Tribble, H.

    1989-05-01

    In a series of studies designed to extend our understanding of interleukin-2 (IL-2) and to study the effect of biologic response modifiers on bone marrow, we observed that administering recombinant human (rH) IL-2 to normal mice resulted in an increase in the frequency of colony-forming units-culture (CFU-C) in bone marrow. In addition, rH IL-2 was able to accelerate host recovery from cyclophosphamide (CTX)- or radiation-induced bone marrow depression and peripheral blood leukopenia. Not only can rH IL-2 accelerate, in a dose-dependent manner, the return of bone marrow, peripheral blood cellularity, and CFU-C frequency to normal levels following cytoreduction by CTX or irradiation, but it also significantly increases CFU-C frequency to greater than normal levels. Furthermore, rH IL-2 can significantly prolong survival of animals receiving a lethal dose of irradiation or CTX. Thus, multiple mechanisms are responsible for the synergistic therapeutic activity associated with rH IL-2 and CTX. rH IL-2 does not act only as an immunomodulatory agent in the presence or absence of suppressor T cells, but also accelerates host recovery from cytoreductive agents, resulting in decreased leukopenia and perhaps resistances to secondary infection. Thus, rH IL-2 plus chemotherapy may increase therapeutic activity against neoplastic disease, not only by adding immune stimulation to the direct antitumor effect of the drug but also by allowing delivery of higher, more effective doses of chemotherapy.

  17. Analysis of carbohydrate residues on recombinant human thyrotropin receptor.

    PubMed

    Oda, Y; Sanders, J; Roberts, S; Maruyama, M; Kiddie, A; Furmaniak, J; Smith, B R

    1999-06-01

    An investigation of the sugar groups on recombinant human TSH receptors (TSHR) expressed in CHO-K1 cells and solubilized with detergents is described. Western blotting studies with TSHR monoclonal antibodies showed that the receptor was present principally as two bands with approximate molecular masses of 120 and 100 kDa. Further blotting studies using lectins and/or involving treatment with different glycosidases indicated that the 100-kDa band contained about 16 kDa of high mannose-type sugars, and the 120-kDa band contained about 33 kDa of complex-type sugars. It was possible to separate the 120- and 100-kDa components of the TSHRs by lectin affinity chromatography. In particular, Galanthus nivalis lectin, which binds high mannose-type sugars, bound the 100-kDa band, but not the 120-kDa band, whereas Datura stramonium lectin, which binds complex-type sugars, bound the 120-kDa band, but not the 100-kDa band. 125I-Labeled TSH binding studies with the various lectin column fractions showed that TSH-binding activity was principally associated with the complex-type sugar containing the 120-kDa form of the receptor rather than the high mannose-containing 100-kDa form. During peptide chain glycosylation, high mannose-type sugar residues are attached first and then modified by the formation of complex type structures to form the mature glycoprotein. Our data suggest that in the case of the TSH receptor, this type of posttranslational processing has an important role in forming the TSH-binding site.

  18. High cell density cultivation of recombinant Escherichia coli for prodrug of recombinant human GLPs production.

    PubMed

    Zhou, Ying; Ma, Xue; Hou, Zheng; Xue, Xiaoyan; Meng, Jingru; Li, Mingkai; Jia, Min; Luo, Xiaoxing

    2012-09-01

    Glucagon-like peptide-1 (GLP-1)(2) has been attracting increasing interest on account of its prominent benefits in type 2 diabetes. However, its clinical applications are limited by the short half-life in vivo. To overcome this limitation, a new polymer of GLP-1 was developed by prodrug strategy. In this study a recombinant protein, rhGLPs, was successfully constructed, cloned into plasmid pET30a (+) and expressed in Escherichia coli ArcticExpress(DE3)RP in the form of inclusion body. The recombinant fusion protein productivity could be enhanced by high cell density culture of the recombinant strain. As a result, about 40 g wet weight cells per liter were obtained. The protein was purified by size-exclusion chromatography on a Superdex 75 column and refolded using reverse dilution and dialysis methods. SDS-PAGE, HPLC and MALDI-TOF mass spectrometry were undertaken to determine the purity and molecular weight of rhGLPs. Bioactivity assay revealed that it had glucose-lowering and insulin-releasing action in vivo. PMID:22771632

  19. Comparison of recombinant human haptocorrin expressed in human embryonic kidney cells and native haptocorrin.

    PubMed

    Furger, Evelyne; Fedosov, Sergey N; Lildballe, Dorte Launholt; Waibel, Robert; Schibli, Roger; Nexo, Ebba; Fischer, Eliane

    2012-01-01

    Haptocorrin (HC) is a circulating corrinoid binding protein with unclear function. In contrast to transcobalamin, the other transport protein in blood, HC is heavily glycosylated and binds a variety of cobalamin (Cbl) analogues. HC is present not only in blood but also in various secretions like milk, tears and saliva. No recombinant form of HC has been described so far. We report the expression of recombinant human HC (rhHC) in human embryonic kidney cells. We purified the protein with a yield of 6 mg (90 nmol) per litre of cell culture supernatant. The isolated rhHC behaved as native HC concerning its spectral properties and ability to recognize both Cbl and its baseless analogue cobinamide. Similar to native HC isolated from blood, rhHC bound to the asialoglycoprotein receptor only after removal of terminal sialic acid residues by treatment with neuraminidase. Interestingly, rhHC, that compared to native HC contains four excessive amino acids (…LVPR) at the C-terminus, showed subtle changes in the binding kinetics of Cbl, cobinamide and the fluorescent Cbl conjugate CBC. The recombinant protein has properties very similar to native HC and although showing slightly different ligand binding kinetics, rhHC is valuable for further biochemical and structural studies.

  20. Construction of phosphorylation interaction networks by text mining of full-length articles using the eFIP system.

    PubMed

    Tudor, Catalina O; Ross, Karen E; Li, Gang; Vijay-Shanker, K; Wu, Cathy H; Arighi, Cecilia N

    2015-01-01

    Protein phosphorylation is a reversible post-translational modification where a protein kinase adds a phosphate group to a protein, potentially regulating its function, localization and/or activity. Phosphorylation can affect protein-protein interactions (PPIs), abolishing interaction with previous binding partners or enabling new interactions. Extracting phosphorylation information coupled with PPI information from the scientific literature will facilitate the creation of phosphorylation interaction networks of kinases, substrates and interacting partners, toward knowledge discovery of functional outcomes of protein phosphorylation. Increasingly, PPI databases are interested in capturing the phosphorylation state of interacting partners. We have previously developed the eFIP (Extracting Functional Impact of Phosphorylation) text mining system, which identifies phosphorylated proteins and phosphorylation-dependent PPIs. In this work, we present several enhancements for the eFIP system: (i) text mining for full-length articles from the PubMed Central open-access collection; (ii) the integration of the RLIMS-P 2.0 system for the extraction of phosphorylation events with kinase, substrate and site information; (iii) the extension of the PPI module with new trigger words/phrases describing interactions and (iv) the addition of the iSimp tool for sentence simplification to aid in the matching of syntactic patterns. We enhance the website functionality to: (i) support searches based on protein roles (kinases, substrates, interacting partners) or using keywords; (ii) link protein entities to their corresponding UniProt identifiers if mapped and (iii) support visual exploration of phosphorylation interaction networks using Cytoscape. The evaluation of eFIP on full-length articles achieved 92.4% precision, 76.5% recall and 83.7% F-measure on 100 article sections. To demonstrate eFIP for knowledge extraction and discovery, we constructed phosphorylation-dependent interaction

  1. Construction of phosphorylation interaction networks by text mining of full-length articles using the eFIP system.

    PubMed

    Tudor, Catalina O; Ross, Karen E; Li, Gang; Vijay-Shanker, K; Wu, Cathy H; Arighi, Cecilia N

    2015-01-01

    Protein phosphorylation is a reversible post-translational modification where a protein kinase adds a phosphate group to a protein, potentially regulating its function, localization and/or activity. Phosphorylation can affect protein-protein interactions (PPIs), abolishing interaction with previous binding partners or enabling new interactions. Extracting phosphorylation information coupled with PPI information from the scientific literature will facilitate the creation of phosphorylation interaction networks of kinases, substrates and interacting partners, toward knowledge discovery of functional outcomes of protein phosphorylation. Increasingly, PPI databases are interested in capturing the phosphorylation state of interacting partners. We have previously developed the eFIP (Extracting Functional Impact of Phosphorylation) text mining system, which identifies phosphorylated proteins and phosphorylation-dependent PPIs. In this work, we present several enhancements for the eFIP system: (i) text mining for full-length articles from the PubMed Central open-access collection; (ii) the integration of the RLIMS-P 2.0 system for the extraction of phosphorylation events with kinase, substrate and site information; (iii) the extension of the PPI module with new trigger words/phrases describing interactions and (iv) the addition of the iSimp tool for sentence simplification to aid in the matching of syntactic patterns. We enhance the website functionality to: (i) support searches based on protein roles (kinases, substrates, interacting partners) or using keywords; (ii) link protein entities to their corresponding UniProt identifiers if mapped and (iii) support visual exploration of phosphorylation interaction networks using Cytoscape. The evaluation of eFIP on full-length articles achieved 92.4% precision, 76.5% recall and 83.7% F-measure on 100 article sections. To demonstrate eFIP for knowledge extraction and discovery, we constructed phosphorylation-dependent interaction

  2. Crystal Structure of DNA Cytidine Deaminase ABOBEC3G Catalytic Deamination Domain Suggests a Binding Mode of Full-length Enzyme to Single-stranded DNA*

    PubMed Central

    Lu, Xiuxiu; Zhang, Tianlong; Xu, Zeng; Liu, Shanshan; Zhao, Bin; Lan, Wenxian; Wang, Chunxi; Ding, Jianping; Cao, Chunyang

    2015-01-01

    APOBEC3G (A3G) is a DNA cytidine deaminase (CD) that demonstrates antiviral activity against human immunodeficiency virus 1 (HIV-1) and other pathogenic virus. It has an inactive N-terminal CD1 virus infectivity factor (Vif) protein binding domain (A3G-CD1) and an actively catalytic C-terminal CD2 deamination domain (A3G-CD2). Although many studies on the structure of A3G-CD2 and enzymatic properties of full-length A3G have been reported, the mechanism of how A3G interacts with HIV-1 single-stranded DNA (ssDNA) is still not well characterized. Here, we reported a crystal structure of a novel A3G-CD2 head-to-tail dimer (in which the N terminus of the monomer H (head) interacts with the C terminus of monomer T (tail)), where a continuous DNA binding groove was observed. By constructing the A3G-CD1 structural model, we found that its overall fold was almost identical to that of A3G-CD2. We mutated the residues located in or along the groove in monomer H and the residues in A3G-CD1 that correspond to those seated in or along the groove in monomer T. Then, by performing enzymatic assays, we confirmed the reported key elements and the residues in A3G necessary to the catalytic deamination. Moreover, we identified more than 10 residues in A3G essential to DNA binding and deamination reaction. Therefore, this dimer structure may represent a structural model of full-length A3G, which indicates a possible binding mode of A3G to HIV-1 ssDNA. PMID:25542899

  3. Crystal structure of DNA cytidine deaminase ABOBEC3G catalytic deamination domain suggests a binding mode of full-length enzyme to single-stranded DNA.

    PubMed

    Lu, Xiuxiu; Zhang, Tianlong; Xu, Zeng; Liu, Shanshan; Zhao, Bin; Lan, Wenxian; Wang, Chunxi; Ding, Jianping; Cao, Chunyang

    2015-02-13

    APOBEC3G (A3G) is a DNA cytidine deaminase (CD) that demonstrates antiviral activity against human immunodeficiency virus 1 (HIV-1) and other pathogenic virus. It has an inactive N-terminal CD1 virus infectivity factor (Vif) protein binding domain (A3G-CD1) and an actively catalytic C-terminal CD2 deamination domain (A3G-CD2). Although many studies on the structure of A3G-CD2 and enzymatic properties of full-length A3G have been reported, the mechanism of how A3G interacts with HIV-1 single-stranded DNA (ssDNA) is still not well characterized. Here, we reported a crystal structure of a novel A3G-CD2 head-to-tail dimer (in which the N terminus of the monomer H (head) interacts with the C terminus of monomer T (tail)), where a continuous DNA binding groove was observed. By constructing the A3G-CD1 structural model, we found that its overall fold was almost identical to that of A3G-CD2. We mutated the residues located in or along the groove in monomer H and the residues in A3G-CD1 that correspond to those seated in or along the groove in monomer T. Then, by performing enzymatic assays, we confirmed the reported key elements and the residues in A3G necessary to the catalytic deamination. Moreover, we identified more than 10 residues in A3G essential to DNA binding and deamination reaction. Therefore, this dimer structure may represent a structural model of full-length A3G, which indicates a possible binding mode of A3G to HIV-1 ssDNA.

  4. Human immunodeficiency virus superinfection and recombination: current state of knowledge and potential clinical consequences.

    PubMed

    Blackard, Jason T; Cohen, Daniel E; Mayer, Kenneth H

    2002-04-15

    Superinfection with multiple strains or subtypes of the human and simian immunodeficiency viruses has been documented. Recent increases in the prevalences of both unprotected anal intercourse and sexually transmitted diseases among men who have sex with men indicate that these men continue to practice unsafe sex and, therefore, are at risk for superinfection with the human immunodeficiency virus (HIV). Recurrent exposure to HIV among seropositive individuals who engage in high-risk behaviors can have serious consequences, because superinfection is a necessary first step for viral recombination to occur. Recombination may produce more virulent viruses, drug-resistant viruses, or viruses with altered cell tropism. Additionally, recombinant viruses and superinfection can accelerate disease progression and increase the likelihood of sexual transmission by increasing virus load in the blood and genital tract. The extent of superinfection and recombination in persons living with HIV is unknown. The implications of HIV superinfection and the generation of recombinant viruses are discussed. PMID:11915000

  5. Factorially designed crystallization trials of the full-length P0 myelin membrane glycoprotein. I. Precipitation diagram

    NASA Astrophysics Data System (ADS)

    Sedzik, Jan; Kotake, Yoshiko; Uyemura, Keiichi; Ataka, Mitsuo

    2003-01-01

    P0 glycoprotein is the abundant membrane protein of myelin of the peripheral nervous system. We report now the statistical design of the crystallization experiments; based on our belief that important information regarding supersaturation of protein or its solubility nature, as well as metastable state, nucleation or precipitation, are hidden in the trials in which no crystals grow. It is possible to work out this information when the whole set of experiments is designed in such a way as to allow statistical analyses. We selected seven factors, which we believe to be important for crystallization: protein concentration, pH of buffer, nature of precipitant, concentration of precipitant, nature of detergent, additives and temperature. The experimental matrix and detailed work sheet to make 148 solutions having random but balanced combination of these levels were calculated using the program DESIGN. A visual evaluation of crystallization drops was performed using light microscopy. We were able to plot the precipitation boundary diagram. Based on this diagram we have eliminated factors (and levels) that were driving the protein into precipitation. It is known that the precipitation boundary is related to the solubility curves for protein crystals, in the neighborhood of which nucleation and further crystallization is most likely to occur. These conditions are currently being refined to identify important factors (or its levels) that can be crucial in obtaining large and well diffracting crystals. Full-length P0 protein has never been crystallized for structural determination.

  6. The full-length cell-cell fusogen EFF-1 is monomeric and upright on the membrane

    NASA Astrophysics Data System (ADS)

    Zeev-Ben-Mordehai, Tzviya; Vasishtan, Daven; Siebert, C. Alistair; Grünewald, Kay

    2014-05-01

    Fusogens are membrane proteins that remodel lipid bilayers to facilitate membrane merging. Although several fusogen ectodomain structures have been solved, structural information on full-length, natively membrane-anchored fusogens is scarce. Here we present the electron cryo microscopy three-dimensional reconstruction of the Caenorhabditis elegans epithelial fusion failure 1 (EFF-1) protein natively anchored in cell-derived membrane vesicles. This reveals a membrane protruding, asymmetric, elongated monomer. Flexible fitting of a protomer of the EFF-1 crystal structure, which is homologous to viral class-II fusion proteins, shows that EFF-1 has a hairpin monomeric conformation before fusion. These structural insights, when combined with our observations of membrane-merging intermediates between vesicles, enable us to propose a model for EFF-1 mediated fusion. This process, involving identical proteins on both membranes to be fused, follows a mechanism that shares features of SNARE-mediated fusion while using the structural building blocks of the unilaterally acting class-II viral fusion proteins.

  7. Sequencing and analysis of 10967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis

    SciTech Connect

    Morin, R D; Chang, E; Petrescu, A; Liao, N; Kirkpatrick, R; Griffith, M; Butterfield, Y; Stott, J; Barber, S; Babakaiff, R; Matsuo, C; Wong, D; Yang, G; Smailus, D; Brown-John, M; Mayo, M; Beland, J; Gibson, S; Olson, T; Tsai, M; Featherstone, R; Chand, S; Siddiqui, A; Jang, W; Lee, E; Klein, S; Prange, C; Myers, R M; Green, E D; Wagner, L; Gerhard, D; Marra, M; Jones, S M; Holt, R

    2005-10-31

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection initiative. Here we present an analysis of 10967 clones (8049 from X. laevis and 2918 from X. tropicalis). The clone set contains 2013 orthologs between X. laevis and X. tropicalis as well as 1795 paralog pairs within X. laevis. 1199 are in-paralogs, believed to have resulted from an allotetraploidization event approximately 30 million years ago, and the remaining 546 are likely out-paralogs that have resulted from more ancient gene duplications, prior to the divergence between the two species. We do not detect any evidence for positive selection by the Yang and Nielsen maximum likelihood method of approximating d{sub N}/d{sub S}. However, d{sub N}/d{sub S} for X. laevis in-paralogs is elevated relative to X. tropicalis orthologs. This difference is highly significant, and indicates an overall relaxation of selective pressures on duplicated gene pairs. Within both groups of paralogs, we found evidence of subfunctionalization, manifested as differential expression of paralogous genes among tissues, as measured by EST information from public resources. We have observed, as expected, a higher instance of subfunctionalization in out-paralogs relative to in-paralogs.

  8. Molecular Cloning and Characterization of Full-Length cDNA of Calmodulin Gene from Pacific Oyster Crassostrea gigas

    PubMed Central

    Li, Xing-Xia; Yu, Wen-Chao; Cai, Zhong-Qiang; He, Cheng; Wei, Na

    2016-01-01

    The shell of the pearl oyster (Pinctada fucata) mainly comprises aragonite whereas that of the Pacific oyster (Crassostrea gigas) is mainly calcite, thereby suggesting the different mechanisms of shell formation between above two mollusks. Calmodulin (CaM) is an important gene for regulating the uptake, transport, and secretion of calcium during the process of shell formation in pearl oyster. It is interesting to characterize the CaM in oysters, which could facilitate the understanding of the different shell formation mechanisms among mollusks. We cloned the full-length cDNA of Pacific oyster CaM (cgCaM) and found that the cgCaM ORF encoded a peptide of 113 amino acids containing three EF-hand calcium-binding domains, its expression level was highest in the mantle, hinting that the cgCaM gene is probably involved in shell formation of Pacific oyster, and the common ancestor of Gastropoda and Bivalvia may possess at least three CaM genes. We also found that the numbers of some EF hand family members in highly calcified species were higher than those in lowly calcified species and the numbers of these motifs in oyster genome were the highest among the mollusk species with whole genome sequence, further hinting the correlation between CaM and biomineralization. PMID:27703977

  9. Full-length enriched cDNA library construction from tissues related to energy metabolism in pigs.

    PubMed

    Lee, Kyung-Tai; Byun, Mi-Jeong; Lim, Dajeong; Kang, Kyung-Soo; Kim, Nam-Soon; Oh, Jung-Hwa; Chung, Chung-Soo; Park, Hae-Suk; Shin, Younhee; Kim, Tae-Hun

    2009-12-31

    Genome sequencing of the pig is being accelerated because of its importance as an evolutionary and biomedical model animal as well as a major livestock animal. However, information on expressed porcine genes is insufficient to allow annotation and use of the genomic information. A series of expressed sequence tags of 5' ends of five full-length enriched cDNA libraries (SUSFLECKs) were functionally characterized. SUSFLECKs were constructed from porcine abdominal fat, induced fat cells, loin muscle, liver, and pituitary gland, and were composed of non-normalized and normalized libraries. A total of 55,658 ESTs that were sequenced once from the 5' ends of clones were produced and assembled into 17,684 unique sequences with 7,736 contigs and 9,948 singletons. In Gene Ontology analysis, two significant biological process leaf nodes were found: gluconeogenesis and translation elongation. In functional domain analysis based on the Pfam database, the beta transducin repeat domain of WD40 protein was the most frequently occurring domain. Twelve genes, including SLC25A6, EEF1G, EEF1A1, COX1, ACTA1, SLA, and ANXA2, were significantly more abundant in fat tissues than in loin muscle, liver, and pituitary gland in the SUSFLECKs. These characteristics of SUSFLECKs determined by EST analysis can provide important insight to discover the functional pathways in gene networks and to expand our understanding of energy metabolism in the pig.

  10. REAL-Select: Full-Length Antibody Display and Library Screening by Surface Capture on Yeast Cells

    PubMed Central

    Günther, Ralf; Becker, Stefan; Kolmar, Harald; Hock, Björn

    2014-01-01

    We describe a novel approach named REAL-Select for the non-covalent display of IgG-molecules on the surface of yeast cells for the purpose of antibody engineering and selection. It relies on the capture of secreted native full-length antibodies on the cell surface via binding to an externally immobilized ZZ domain, which tightly binds antibody Fc. It is beneficial for high-throughput screening of yeast-displayed IgG-libraries during antibody discovery and development. In a model experiment, antibody-displaying yeast cells were isolated from a 1∶1,000,000 mixture with control cells confirming the maintenance of genotype-phenotype linkage. Antibodies with improved binding characteristics were obtained by affinity maturation using REAL-Select, demonstrating the ability of this system to display antibodies in their native form and to detect subtle changes in affinity by flow cytometry. The biotinylation of the cell surface followed by functionalization with a streptavidin-ZZ fusion protein is an approach that is independent of the genetic background of the antibody-producing host and therefore can be expected to be compatible with other eukaryotic expression hosts such as P. pastoris or mammalian cells. PMID:25501029

  11. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    SciTech Connect

    Krieg, A.M.; Gourley, M.F.; Steinberg, A.D. )

    1991-05-01

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymic epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells.

  12. Two distinct trimeric conformations of natively membrane-anchored full-length herpes simplex virus 1 glycoprotein B.

    PubMed

    Zeev-Ben-Mordehai, Tzviya; Vasishtan, Daven; Hernández Durán, Anna; Vollmer, Benjamin; White, Paul; Prasad Pandurangan, Arun; Siebert, C Alistair; Topf, Maya; Grünewald, Kay

    2016-04-12

    Many viruses are enveloped by a lipid bilayer acquired during assembly, which is typically studded with one or two types of glycoproteins. These viral surface proteins act as the primary interface between the virus and the host. Entry of enveloped viruses relies on specialized fusogen proteins to help merge the virus membrane with the host membrane. In the multicomponent herpesvirus fusion machinery, glycoprotein B (gB) acts as this fusogen. Although the structure of the gB ectodomain postfusion conformation has been determined, any other conformations (e.g., prefusion, intermediate conformations) have so far remained elusive, thus restricting efforts to develop antiviral treatments and prophylactic vaccines. Here, we have characterized the full-length herpes simplex virus 1 gB in a native membrane by displaying it on cell-derived vesicles and using electron cryotomography. Alongside the known postfusion conformation, a novel one was identified. Its structure, in the context of the membrane, was determined by subvolume averaging and found to be trimeric like the postfusion conformation, but appeared more condensed. Hierarchical constrained density-fitting of domains unexpectedly revealed the fusion loops in this conformation to be apart and pointing away from the anchoring membrane. This vital observation is a substantial step forward in understanding the complex herpesvirus fusion mechanism, and opens up new opportunities for more targeted intervention of herpesvirus entry. PMID:27035968

  13. Construction and characterization of a full-length cDNA infectious clone of emerging porcine Senecavirus A.

    PubMed

    Chen, Zhenhai; Yuan, Fangfeng; Li, Yanhua; Shang, Pengcheng; Schroeder, Robin; Lechtenberg, Kelly; Henningson, Jamie; Hause, Benjamin; Bai, Jianfa; Rowland, Raymond R R; Clavijo, Alfonso; Fang, Ying

    2016-10-01

    A full-length cDNA infectious clone, pKS15-01-Clone, was constructed from an emerging Senecavirus A (SVA; strain KS15-01). To explore the potential use as a viral backbone for expressing marker genes, the enhanced green fluorescent protein (EGFP)-tagged reporter virus (vKS15-01-EGFP) was generated using reverse genetics. Compared to the parental virus, the pKS15-01-Clone derived virus (vKS15-01-Clone) replicated efficiently in vitro and in vivo, and induced similar levels of neutralizing antibody and cytokine responses in infected animals. In contrast, the vKS15-01-EGFP virus showed impaired growth ability and induced lower level of immune response in infected animals. Lesions on the dorsal snout and coronary bands were observed in all pigs infected by parental virus KS15-01, but not in pigs infected with vKS15-01-Clone or vKS15-01-EGFP viruses. These results demonstrated that the infectious clone and EGFP reporter virus could be used as important tools in further elucidating the SVA pathogenesis and development of control measures.

  14. Expression, purification, and characterization of recombinant human and murine milk fat globule-epidermal growth factor-factor 8.

    PubMed

    Castellanos, Erick R; Ciferri, Claudio; Phung, Wilson; Sandoval, Wendy; Matsumoto, Marissa L

    2016-08-01

    Milk fat globule-epidermal growth factor-factor 8 (MFG-E8), as its name suggests, is a major glycoprotein component of milk fat globules secreted by the mammary epithelium. Although its role in milk fat production is unclear, MFG-E8 has been shown to act as a bridge linking apoptotic cells to phagocytes for removal of these dying cells. MFG-E8 is capable of bridging these two very different cell types via interactions through both its epidermal growth factor (EGF)-like domain(s) and its lectin-type C domains. The EGF-like domain interacts with αVβ3 and αVβ5 integrins on the surface of phagocytes, whereas the C domains bind phosphatidylserine found on the surface of apoptotic cells. In an attempt to purify full-length, recombinant MFG-E8 expressed in either insect cells or CHO cells, we find that it is highly aggregated. Systematic truncation of the domain architecture of MFG-E8 indicates that the C domains are mainly responsible for the aggregation propensity. Addition of Triton X-100 to the conditioned cell culture media allowed partial recovery of non-aggregated, full-length MFG-E8. A more comprehensive detergent screen identified CHAPS as a stabilizer of MFG-E8 and allowed purification of a significant portion of non-aggregated, full-length protein. The CHAPS-stabilized recombinant MFG-E8 retained its natural ability to bind both αVβ3 and αVβ5 integrins and phosphatidylserine suggesting that it is properly folded and active. Herein we describe an efficient purification method for production of non-aggregated, full-length MFG-E8.

  15. Expression, purification, and characterization of recombinant human and murine milk fat globule-epidermal growth factor-factor 8.

    PubMed

    Castellanos, Erick R; Ciferri, Claudio; Phung, Wilson; Sandoval, Wendy; Matsumoto, Marissa L

    2016-08-01

    Milk fat globule-epidermal growth factor-factor 8 (MFG-E8), as its name suggests, is a major glycoprotein component of milk fat globules secreted by the mammary epithelium. Although its role in milk fat production is unclear, MFG-E8 has been shown to act as a bridge linking apoptotic cells to phagocytes for removal of these dying cells. MFG-E8 is capable of bridging these two very different cell types via interactions through both its epidermal growth factor (EGF)-like domain(s) and its lectin-type C domains. The EGF-like domain interacts with αVβ3 and αVβ5 integrins on the surface of phagocytes, whereas the C domains bind phosphatidylserine found on the surface of apoptotic cells. In an attempt to purify full-length, recombinant MFG-E8 expressed in either insect cells or CHO cells, we find that it is highly aggregated. Systematic truncation of the domain architecture of MFG-E8 indicates that the C domains are mainly responsible for the aggregation propensity. Addition of Triton X-100 to the conditioned cell culture media allowed partial recovery of non-aggregated, full-length MFG-E8. A more comprehensive detergent screen identified CHAPS as a stabilizer of MFG-E8 and allowed purification of a significant portion of non-aggregated, full-length protein. The CHAPS-stabilized recombinant MFG-E8 retained its natural ability to bind both αVβ3 and αVβ5 integrins and phosphatidylserine suggesting that it is properly folded and active. Herein we describe an efficient purification method for production of non-aggregated, full-length MFG-E8. PMID:27102803

  16. CHO expressed recombinant human lactoferrin as an adjuvant for BCG.

    PubMed

    Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K

    2015-12-01

    Lactoferrin (LF), an iron binding protein with immune modulatory activities, has adjuvant activity to enhance vaccine efficacy. Tuberculosis (TB) is a pulmonary disease caused by the pathogen Mycobacterium tuberculosis (MTB). Progressive TB disease is clinically defined by damaging pulmonary pathology, a result of inflammation due to immune reactivity. The current vaccine for TB, an attenuated strain of Mycobacterium bovis, Bacillus Calmette Guerin (BCG), has only limited efficacy to prevent adult pulmonary TB. This study examines a Chinese hamster ovary (CHO) expressed recombinant human LF (rHLF) to boost efficacy of the BCG vaccine and delay early pathology post infectious challenge. C57BL/6 mice were immunized with BCG, or BCG admixed with either rHLF or bovine LF (bLF; internal control), or remained unvaccinated. Mice were then aerosol challenged with Erdman MTB. All vaccinated mice demonstrated decreased organ bacterial load up to 19 weeks post infection compared with non-vaccinated controls. Furthermore, mice receiving bLF or rHLF supplemented BCG vaccines showed a modest decrease in lung pathology developed over time, compared to the BCG vaccine alone. While mice vaccinated with BCG/rHLF demonstrated increased general lung inflammation at day 7, it occurred without noticeable increase in pro-inflammatory cytokines. At later times, decreased pathology in the rHLF groups correlated with decreased inflammatory cytokines. Splenic recall to BCG antigens showed BCG/rHLF vaccination increased production of IFN-γ, IL-6, and GM-CSF compared to naïve, BCG, and BCG/bLF groups. Analysis of T cell stimulating functions of bone marrow derived macrophages and dendritic cells treated with BCG/bLF or BCG/rHLF showed decreases in IL-10 production when co-cultured with sensitized CD4 and CD8 T cells, compared to those cultured with macrophages/dendritic cells treated with BCG without LF. These results indicate that addition of rHLF to the BCG vaccine can modulate development

  17. Transmission distortion affecting human noncrossover but not crossover recombination: a hidden source of meiotic drive.

    PubMed

    Odenthal-Hesse, Linda; Berg, Ingrid L; Veselis, Amelia; Jeffreys, Alec J; May, Celia A

    2014-02-01

    Meiotic recombination ensures the correct segregation of homologous chromosomes during gamete formation and contributes to DNA diversity through both large-scale reciprocal crossovers and very localised gene conversion events, also known as noncrossovers. Considerable progress has been made in understanding factors such as PRDM9 and SNP variants that influence the initiation of recombination at human hotspots but very little is known about factors acting downstream. To address this, we simultaneously analysed both types of recombinant molecule in sperm DNA at six highly active hotspots, and looked for disparity in the transmission of allelic variants indicative of any cis-acting influences. At two of the hotspots we identified a novel form of biased transmission that was exclusive to the noncrossover class of recombinant, and which presumably arises through differences between crossovers and noncrossovers in heteroduplex formation and biased mismatch repair. This form of biased gene conversion is not predicted to influence hotspot activity as previously noted for SNPs that affect recombination initiation, but does constitute a powerful and previously undetected source of recombination-driven meiotic drive that by extrapolation may affect thousands of recombination hotspots throughout the human genome. Intriguingly, at both of the hotspots described here, this drive favours strong (G/C) over weak (A/T) base pairs as might be predicted from the well-established correlations between high GC content and recombination activity in mammalian genomes. PMID:24516398

  18. Prognostic significance of full-length estrogen receptor beta expression in stage I-III triple negative breast cancer

    PubMed Central

    Shanle, Erin K; Onitilo, Adedayo A; Huang, Wei; Kim, KyungMann; Zang, Chong; Engel, Jessica M; Xu, Wei; Wisinski, Kari B

    2015-01-01

    Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype for which there is a need to identify new therapeutic targets. Full-length estrogen receptor beta (ERβ1) may be a possible target given its antiproliferative effects on breast cancer cells. The prognostic significance of ERβ in breast cancer subtypes has remained elusive, and disparate results observed across previously published reports might be due to the detection of multiple ERβ isoforms, the lack of specific antibodies and the use of different cutoffs to define ERβpositivity. The objective of this retrospective study was to determine the association between ERβ1 expression and disease-free and overall survival, as well as Ki67 expression, in non-metastatic TNBC. Immunohistochemical protocols were optimized using xenograft tissues obtained from a breast cancer cell line with inducible ERβ1 expression. ERβ1 localization and expression were assessed in two cohorts of TNBC using the VECTRATM platform. There was a close relationship between nuclear and cytoplasmic ERβ1 expression. ERβ1 was expressed in a subset of TNBCs, but its expression was significantly associated with Ki67 in only one of the cohorts. There was no significant association between ERβ1 expression and disease-free and overall survival in either cohort. Although these results suggest that ERβ1 expression alone may not be informative in TNBCs, this study provides a new strategy for optimizing and objectively measuring ERβ1 expression in tissues, which may provide a standard for ERβ1 immunohistochemistry in future large-scale clinical studies aimed at better understanding the role of ERβ1 in breast cancer. PMID:26328009

  19. The photoinitiated reaction pathway of full-length cyanobacteriochrome Tlr0924 monitored over 12 orders of magnitude.

    PubMed

    Hauck, Anna F E; Hardman, Samantha J O; Kutta, Roger J; Greetham, Gregory M; Heyes, Derren J; Scrutton, Nigel S

    2014-06-20

    The coupling of photochemistry to protein chemical and structural change is crucial to biological light-activated signaling mechanisms. This is typified by cyanobacteriochromes (CBCRs), members of the phytochrome superfamily of photoreceptors that exhibit a high degree of spectral diversity, collectively spanning the entire visible spectrum. CBCRs utilize a basic E/Z isomerization of the bilin chromophore as the primary step in their photocycle, which consists of reversible photoconversion between two photostates. Despite intense interest in these photoreceptors as signal transduction modules a complete description of light-activated chemical and structural changes has not been reported. The CBCR Tlr0924 contains both phycocyanobilin and phycoviolobilin chromophores, and these two species photoisomerize in parallel via spectrally and kinetically equivalent intermediates before the second step of the photoreaction where the reaction pathways diverge, the loss of a thioether linkage to a conserved cysteine residue occurs, and the phycocyanobilin reaction terminates in a red-absorbing state, whereas the phycoviolobilin reaction proceeds more rapidly to a final green-absorbing state. Here time-resolved visible transient absorption spectroscopy (femtosecond to second) has been used, in conjunction with time-resolved IR spectroscopy (femtosecond to nanosecond) and cryotrapping techniques, to follow the entire photoconversion of the blue-absorbing states to the green- and red-absorbing states of the full-length form of Tlr0924 CBCR. Our analysis shows that Tlr0924 undergoes an unprecedented long photoreaction that spans from picoseconds to seconds. We show that the thermally driven, long timescale changes are less complex than those reported for the red/far-red photocycles of the related phytochrome photoreceptors. PMID:24817121

  20. Gene Organization in Rice Revealed by Full-Length cDNA Mapping and Gene Expression Analysis through Microarray

    PubMed Central

    Satoh, Kouji; Doi, Koji; Nagata, Toshifumi; Kishimoto, Naoki; Suzuki, Kohji; Otomo, Yasuhiro; Kawai, Jun; Nakamura, Mari; Hirozane-Kishikawa, Tomoko; Kanagawa, Saeko; Arakawa, Takahiro; Takahashi-Iida, Juri; Murata, Mitsuyoshi; Ninomiya, Noriko; Sasaki, Daisuke; Fukuda, Shiro; Tagami, Michihira; Yamagata, Harumi; Kurita, Kanako; Kamiya, Kozue; Yamamoto, Mayu; Kikuta, Ari; Bito, Takahito; Fujitsuka, Nahoko; Ito, Kazue; Kanamori, Hiroyuki; Choi, Il-Ryong; Nagamura, Yoshiaki; Matsumoto, Takashi; Murakami, Kazuo; Matsubara, Ken-ichi; Carninci, Piero; Hayashizaki, Yoshihide; Kikuchi, Shoshi

    2007-01-01

    Rice (Oryza sativa L.) is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA) sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE) genes, 33K annotated non-expressed (ANE) genes, and 5.5K non-annotated expressed (NAE) genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria. PMID:18043742

  1. Cloning and functional characterization of the ovine Hormone Sensitive Lipase (HSL) full-length cDNAs: an integrated approach.

    PubMed

    Lampidonis, Antonis D; Argyrokastritis, Alexandros; Stravopodis, Dimitrios J; Voutsinas, Gerassimos E; Ntouroupi, Triantafyllia G; Margaritis, Lukas H; Bizelis, Iosif; Rogdakis, Emmanuel

    2008-06-15

    Hormone Sensitive Lipase (HSL) is a highly regulated enzyme that mediates lipolysis in adipocytes. HSL enzymatic activity is increased by adrenergic agonists, such as catecholamines and glucagons, which induce cyclic AMP (cAMP) intracellular production, subsequently followed by the activation of Protein Kinase A (PKA) and its downstream signalling cascade reactions. Since HSL constitutes the key enzyme in the regulation of lipid stores and the only enzyme being subjected to hormonal regulation [in terms of the recently identified Adipose Triglyceride Lipase (ATGL)], the ovine Hormone Sensitive Lipase (ovHSL) full-length cDNA clones were isolated, using a Polymerase Chain Reaction-based (PCR) strategy. The two isolated isoforms ovHSL-A and ovHSL-B contain two highly homologous Open Reading Frame (ORF) regions of 2.089 Kb and 2.086 Kb, respectively, the latter having been missed the 688th triplet coding for glutamine (DeltaQ(688)). The putative 695 and 694 amino acid respective sequences bear strong homologies with other HSL protein family members. Southern blotting analysis revealed that HSL is represented as a single copy gene in the ovine genome, while Reverse Transcription-PCR (RT-PCR) approaches unambiguously dictated its variable transcriptional expression profile in the different tissues examined. Interestingly, as undoubtedly corroborated by both RT-PCR and Western blotting analysis, ovHSL gene expression is notably enhanced in the adipose tissue during the fasting period, when lipolysis is highly increased in ruminant species. Based on the crystal structure of an Archaeoglobus fulgidus enzyme, a three-dimensional (3D) molecular model of the ovHSL putative catalytic domain was constructed, thus providing an inchoative insight into understanding the enzymatic activity and functional regulation mechanisms of the ruminant HSL gene product(s).

  2. Epstein-Barr virus genetic variation in Vietnamese patients with nasopharyngeal carcinoma: full-length analysis of LMP1.

    PubMed

    Nguyen-Van, Do; Ernberg, Ingemar; Enrberg, Ingemar; Phan-Thi Phi, Phi; Tran-Thi, Chinh; Hu, LiFu

    2008-10-01

    Genetic variation in tumor virus genes and its impact on function might contribute to the understanding of geographic differences in risks for virus-associated tumors. This is particularly true for the genes known to contribute to the biology of the tumor. It is has been proposed that Epstein-Barr virus (EBV) gene variation has a role in the high risk of nasopharyngeal carcinoma (NPC) in South-East Asia. NPC is among the five most common cancers in Vietnam. EBV-NPC cells always express EBV nuclear antigen 1 (EBNA1) and also frequently latent membrane protein 1 and 2 (LMP1 & LMP2). To investigate EBV gene variation in Vietnamese NPC patients we analyzed the full length of LMP1 gene including its promoter region, and the N-termini of both EBNA1 and LMP2A genes from five NPC biopsies. We detected two EBV variants V1 and V2 based on the LMP1 nucleotide sequence pattern compared with the prototype B95-8 and some available sequences including Chinese variants. The V1 variant shows strong similarity to a variant dominant in Southern China (China 1), while the V2 variant is similar to a Thai variant SEA 2 and partly identity with GD1 in the C-terminus. The promoter region and transmembrane domain of the SEA 2-like samples contained some specific differences compared with previously published variants. In contrast, analysis of EBNA1 N- and LMP2A N-termini only revealed minor changes. Our findings reinforces that the polymorphisms of whole LMP1 sequence should be considered in future EBV molecular epidemiology studies in different geographic populations.

  3. Ultra-Deep Sequencing of HIV-1 near Full-Length and Partial Proviral Genomes Reveals High Genetic Diversity among Brazilian Blood Donors

    PubMed Central

    Pessôa, Rodrigo; Loureiro, Paula; Esther Lopes, Maria; Carneiro-Proietti, Anna B. F.; Sabino, Ester C; Busch, Michael P.; Sanabani, Sabri S

    2016-01-01

    Background Here, we aimed to gain a comprehensive picture of the HIV-1 diversity in the northeast and southeast part of Brazil. To this end, a high-throughput sequencing-by-synthesis protocol and instrument were used to characterize the near full length (NFLG) and partial HIV-1 proviral genome in 259 HIV-1 infected blood donors at four major blood centers in Brazil: Pro-Sangue foundation (São Paulo state (SP), n 51), Hemominas foundation (Minas Gerais state (MG), n 41), Hemope foundation (Recife state (PE), n 96) and Hemorio blood bank (Rio de Janeiro (RJ), n 70). Materials and Methods A total of 259 blood samples were obtained from 195 donors with long-standing infections and 64 donors with a lack of stage information. DNA was extracted from the peripheral blood mononuclear cells (PBMCs) to amplify the HIV-1 NFLGs from five overlapping fragments. The amplicons were molecularly bar-coded, pooled, and sequenced by Illumina paired-end protocol. Results Of the 259 samples studied, 208 (80%) NFLGs and 49 (18.8%) partial fragments were de novo assembled into contiguous sequences and successfully subtyped. Of these 257 samples, 183 (71.2%) were pure subtypes consisting of clade B (n = 167, 65%), C (n = 10, 3.9%), F1 (n = 4, 1.5%), and D (n = 2, 0.7%). Recombinant viruses were detected in 74 (28.8%) samples and consist of unique BF1 (n = 41, 15.9%), BC (n = 7, 2.7%), BCF1 (n = 4, 1.5%), CF1 and CDK (n = 1, 0.4%, each), CRF70_BF1 (n = 4, 1.5%), CRF71_BF1 (n = 12, 4.7%), and CRF72_BF1 (n = 4, 1.5%). Evidence of dual infection was detected in four patients coinfected with the same subtype (n = 3) and distinct subtype (n = 1). Conclusion Based on this work, subtype B appears to be the prevalent subtype followed by a high proportion of intersubtype recombinants that appeared to be arising continually in this country. Our study represents the largest analysis of the viral NFLG ever undertaken worldwide and provides insights into the understanding the genesis of the HIV-1

  4. Expression, purification, and characterization of recombinant human transferrin from rice (Oryza sativa L.)

    PubMed Central

    Zhang, Deshui; Nandi, Somen; Bryan, Paula; Pettit, Steve; Nguyen, Diane; Santos, Mary Ann; Huang, Ning

    2010-01-01

    Transferrin is an essential ingredient used in cell culture media due to its crucial role in regulating cellular iron uptake, transport, and utilization. It is also a promising drug carrier used to increase a drug’s therapeutic index via the unique transferrin receptor-mediated endocytosis pathway. Due to the high risk of contamination with blood-borne pathogens from the use of human- or animal plasma-derived transferrin, recombinant transferrin is preferred for use as a replacement for native transferrin. We expressed recombinant human transferrin in rice (Oryza sativa L.) at a high level of 1% seed dry weight (10 g/kg). The recombinant human transferrin was able to be extracted with saline buffers and then purified by a one step anion exchange chromatographic process to greater than 95% purity. The rice-derived recombinant human transferrin was shown to be not only structurally similar to the native human transferrin, but also functionally the same as native transferrin in terms of reversible iron binding and promoting cell growth and productivity. These results indicate that rice-derived recombinant human transferrin should be a safe and low cost alternative to human or animal plasma-derived transferrin for use in cell culture-based biopharmaceutical production of protein therapeutics and vaccines. PMID:20447458

  5. Primary structure of pregnancy zone protein. Molecular cloning of a full-length PZP cDNA clone by the polymerase chain reaction.

    PubMed

    Devriendt, K; Van den Berghe, H; Cassiman, J J; Marynen, P

    1991-01-17

    A full-length cDNA clone of the human pregnancy zone protein (PZP) was cloned from the hepatocellular carcinoma cell line Hep3B. Based on the exon sequences of the PZP gene (Devriendt et al. (1989) Gene 81, 325-334; Marynen et al., unpublished data), primer pairs were designed to amplify six overlapping fragments of the PZP cDNA. The obtained cDNA is 4609 bp long and contains an open reading frame coding for 1482 amino acids, including a signal peptide of 25 amino acid residues. Comparison with the published partial PZP amino acid sequence (Sottrup-Jensen et al. (1984) Proc. Natl. Acad. Sci. USA 81, 7353-7357) and the PZP genomic sequences confirmed the identity as a PZP cDNA. 71% of the corresponding amino acid residues in PZP and human alpha 2-macroglobulin (alpha 2M) are identical and all cysteine residues are conserved. A typical internal thiol ester site and a bait domain were identified. A Pro/Thr polymorphism was identified at amino acid position 1180, and an A/G nucleotide polymorphism at bp 4097.

  6. KIAA1114, a full-length protein encoded by the trophinin gene, is a novel surface marker for isolating tumor-initiating cells of multiple hepatocellular carcinoma subtypes

    PubMed Central

    Kim, Sae Won; Yang, Hyun Gul; Kang, Moon Cheol; Lee, Seungwon; Namkoong, Hong; Lee, Seung-Woo; Sung, Young Chul

    2014-01-01

    Identification of novel biomarkers for tumor-initiating cells (TICs) is of critical importance for developing diagnostic and therapeutic strategies against cancers. Here we identified the role of KIAA1114, a full-length translational product of the trophinin gene, as a distinctive marker for TICs in human liver cancer by developing a DNA vaccine-induced monoclonal antibody targeting the putative extracellular domain of KIAA1114. Compared with other established markers of liver TICs, KIAA1114 was unique in that its expression was detected in both alpha fetoprotein (AFP)-positive and AFP-negative hepatocellular carcinoma (HCC) cell lines with the expression levels of KIAA1114 being positively correlated to their tumorigenic potentials. Notably, KIAA1114 expression was strongly detected in primary hepatic tumor, but neither in the adjacent non-tumorous tissue from the same patient nor normal liver tissue. KIAA1114high cells isolated from HCC cell lines displayed TIC-like features with superior functional and phenotypic traits compared to their KIAA1114low counterparts, including tumorigenic abilities in xenotransplantation model, in vitro colony- and spheroid-forming capabilities, expression of stemness-associated genes, and migratory capacity. Our findings not only address the value of a novel antigen, KIAA1114, as a potential diagnostic factor of human liver cancer, but also as an independent biomarker for identifying TIC populations that could be broadly applied to the heterogeneous HCC subtypes. PMID:24713374

  7. Growth of human hemopoietic colonies in response to recombinant gibbon interleukin 3: comparison with human recombinant granulocyte and granulocyte-macrophage colony-stimulating factor

    SciTech Connect

    Messner, H.A.; Yamasaki, K.; Jamal, N.; Minden, M.M.; Yang, Y.C.; Wong, G.G.; Clark, S.C.

    1987-10-01

    Supernatants of COS-1 cells transfected with gibbon cDNA encoding interleukin 3 (IL-3) with homology to sequences for human IL-3 were tested for ability to promote growth of various human hemopoietic progenitors. The effect of these supernatants as a source of recombinant IL-3 was compared to that of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) as well as to that of medium conditioned by phytohemagglutinin-stimulated leukocytes. The frequency of multilineage colonies, erythroid bursts, and megakaryocyte colonies in cultures containing the COS-1 cell supernatant was equivalent to the frequency observed in the controls and significantly higher than found in cultures plated with recombinant GM-CSF. G-CSF did not support the formation of multilineage colonies, erythroid bursts, and megakaryocyte colonies. In contrast, growth of granulocyte-macrophage colonies was best supported with GM-CSF, while recombinant IL-3 yielded colonies at lower or at best equivalent frequency. The simultaneous addition of higher concentrations of GM-CSF to cultures containing IL-3 in optimal amounts did not enhance the formation of multilineage colonies, erythroid bursts, and megakaryocyte colonies. However, the frequency of such colonies and bursts increased with GM-CSF when cultures were plated with suboptimal concentrations of IL-3. Growth of colonies within the granulocyte-macrophage lineage is optimally supported by GM-CSF and does not increase with further addition of IL-3.

  8. Directional recombination is initiated at a double strand break in human nuclear extracts.

    PubMed Central

    Lopez, B S; Corteggiani, E; Bertrand-Mercat, P; Coppey, J

    1992-01-01

    The involvement of a double strand break in the initiation of homologous recombination was examined in human nuclear extracts. M13 duplex derivatives, containing inserts in the LacZ' region (producing white plaques), were cleaved by restriction enzymes and coincubated in the extracts with a circular plasmid containing the LacZ' region without insert, and unable to produce plaques. Repair was estimated by the ability to produce plaques after transfection into JM109 (recA1) bacteria. Recombination with the plasmid enhances the number of plaques and also the frequency of M13 producing blue plaques. Heterologous insertions in the region surrounding the break were analyzed for their effects on initiation of recombination. The extent of repair by recombination (number of plaques) was compared with the number of blue plaques among the repaired population. Initiation of recombination is inhibited when heterologous insertions are located at 7bp from the break, on the right side as well as on the left side. A low level of recombination is measurable for 27 bp of homology but the maximum efficiency of recombination occurred with homologies of 165 or 320 bp from the break to the heterologous insertion. At 320 bp, the extent of recombinational repair remained at a plateau level but the frequency of blue plaques progressively decreases. We have also analyzed the effect of different sizes of inserts. With longer inserts, a longer length of homology adjacent to the break is required for optimum recombination. However, the size of the insert does not affect the low level of recombination that occurred with a short homology (27 bp). The results indicate that the process is initiated at or near the break, requires homology on both sides of the break and is followed by an elongation from the double strand break to the distal regions of the DNA. Our data provide some support to the double-strand-break repair model established for meiotic recombination in yeast. PMID:1311076

  9. Metabolism of ethylbenzene by human liver microsomes and recombinant human cytochrome P450s (CYP).

    PubMed

    Sams, Craig; Loizou, George D; Cocker, John; Lennard, Martin S

    2004-03-01

    The enzyme kinetics of the initial hydroxylation of ethylbenzene to form 1-phenylethanol were determined in human liver microsomes. The individual cytochrome P450 (CYP) forms catalysing this reaction were identified using selective inhibitors and recombinant preparations of hepatic CYPs. Production of 1-phenylethanol in hepatic microsomes exhibited biphasic kinetics with a high affinity, low Km, component (mean Km = 8 microM; V(max) = 689 pmol/min/mg protein; n = 6 livers) and a low affinity, high Km, component (Km = 391 microM; V(max) = 3039 pmol/min/mg protein; n = 6). The high-affinity component was inhibited 79%-95% (mean 86%) by diethyldithiocarbamate, and recombinant CYP2E1 was shown to metabolise ethylbenzene with low Km (35 microM), but also low (max) (7 pmol/min/pmol P450), indicating that this isoform catalysed the high-affinity component. Recombinant CYP1A2 and CYP2B6 exhibited high V(max) (88 and 71 pmol/min/pmol P450, respectively) and high Km (502 and 219 microM, respectively), suggesting their involvement in catalysing the low-affinity component. This study has demonstrated that CYP2E1 is the major enzyme responsible for high-affinity side chain hydroxylation of ethylbenzene in human liver microsomes. Activity of this enzyme in the population is highly variable due to induction or inhibition by physiological factors, chemicals in the diet or some pharmaceuticals. This variability can be incorporated into the risk assessment process to improve the setting of occupational exposure limits and guidance values for biological monitoring.

  10. Expression of full-length p53 and its isoform Δp53 in breast carcinomas in relation to mutation status and clinical parameters

    PubMed Central

    Baumbusch, Lars O; Myhre, Simen; Langerød, Anita; Bergamaschi, Anna; Geisler, Stephanie B; Lønning, Per E; Deppert, Wolfgang; Dornreiter, Irene; Børresen-Dale, Anne-Lise

    2006-01-01

    Background The tumor suppressor gene p53 (TP53) controls numerous signaling pathways and is frequently mutated in human cancers. Novel p53 isoforms suggest alternative splicing as a regulatory feature of p53 activity. Results In this study we have analyzed mRNA expression of both wild-type and mutated p53 and its respective Δp53 isoform in 88 tumor samples from breast cancer in relation to clinical parameters and molecular subgroups. Three-dimensional structure differences for the novel internally deleted p53 isoform Δp53 have been predicted. We confirmed the expression of Δp53 mRNA in tumors using quantitative real-time PCR technique. The mRNA expression levels of the two isoforms were strongly correlated in both wild-type and p53-mutated tumors, with the level of the Δp53 isoform being approximately 1/3 of that of the full-length p53 mRNA. Patients expressing mutated full-length p53 and non-mutated (wild-type) Δp53, "mutational hybrids", showed a slightly higher frequency of patients with distant metastasis at time of diagnosis compared to other patients with p53 mutations, but otherwise did not differ significantly in any other clinical parameter. Interestingly, the p53 wild-type tumors showed a wide range of mRNA expression of both p53 isoforms. Tumors with mRNA expression levels in the upper or lower quartile were significantly associated with grade and molecular subtypes. In tumors with missense or in frame mutations the mRNA expression levels of both isoforms were significantly elevated, and in tumors with nonsense, frame shift or splice mutations the mRNA levels were significantly reduced compared to those expressing wild-type p53. Conclusion Expression of p53 is accompanied by the functionally different isoform Δp53 at the mRNA level in cell lines and human breast tumors. Investigations of "mutational hybrid" patients highlighted that wild-type Δp53 does not compensates for mutated p53, but rather may be associated with a worse prognosis. In tumors

  11. Genetic recombination pathways and their application for genome modification of human embryonic stem cells.

    PubMed

    Nieminen, Mikko; Tuuri, Timo; Savilahti, Harri

    2010-10-01

    Human embryonic stem cells are pluripotent cells derived from early human embryo and retain a potential to differentiate into all adult cell types. They provide vast opportunities in cell replacement therapies and are expected to become significant tools in drug discovery as well as in the studies of cellular and developmental functions of human genes. The progress in applying different types of DNA recombination reactions for genome modification in a variety of eukaryotic cell types has provided means to utilize recombination-based strategies also in human embryonic stem cells. Homologous recombination-based methods, particularly those utilizing extended homologous regions and those employing zinc finger nucleases to boost genomic integration, have shown their usefulness in efficient genome modification. Site-specific recombination systems are potent genome modifiers, and they can be used to integrate DNA into loci that contain an appropriate recombination signal sequence, either naturally occurring or suitably pre-engineered. Non-homologous recombination can be used to generate random integrations in genomes relatively effortlessly, albeit with a moderate efficiency and precision. DNA transposition-based strategies offer substantially more efficient random strategies and provide means to generate single-copy insertions, thus potentiating the generation of genome-wide insertion libraries applicable in genetic screens.

  12. [Preparation of Recombinant Human Adenoviruses Labeled with miniSOG].

    PubMed

    Zou, Xiaohui; Xiao, Rong; Guo, Xiaojuan; Qu, Jianguo; Lu, Zhuozhuang; Hong, Tao

    2016-01-01

    We wished to study the intracellular transport of adenoviruses. We constructed a novel recombinant adenovirus in which the structural protein IX was labeled with a mini-singlet oxygen generator (miniSOG). The miniSOG gene was synthesized by overlapping extension polymerase chain reaction (PCR), cloned to the pcDNA3 vector, and expressed in 293 cells. Activation of miniSOG generated sufficient numbers of singlet oxygen molecules to catalyze polymerization of diaminobenzidine into an osmiophilic reaction product resolvable by transmission electron microscopy (TEM). To construct miniSOG-labelled recombinant adenoviruses, the miniSOG gene was subcloned downstream of the IX gene in a pShuttle plasmid. Adenoviral plasmid pAd5-IXSOG was generated by homologous recombination of the modified shuttle plasmid (pShuttle-IXSOG) with the backbone plasmid (pAdeasy-1) in the BJ5183 strain of Eschericia coli. Adenovirus HAdV-5-IXSOG was rescued by transfection of 293 cells with the linearized pAd5-IXSOG. After propagation, virions were purified using the CsC1 ultracentrifugation method. Finally, HAdV-5-IXSOG in 2.0 mL with a particle titer of 6 x 1011 vp/mL was obtained. Morphology of HAdV-5-IXSOG was verified by TEM. Fusion of IX with the miniSOG gene was confirmed by PCR. In conclusion, miniSOG-labeled recombinant adenoviruses were constructed, which could be valuable tools for virus tracking by TEM. PMID:27295881

  13. Multiple full-length NS3 molecules are required for optimal unwinding of oligonucleotide DNA in vitro.

    PubMed

    Tackett, Alan J; Chen, Yingfeng; Cameron, Craig E; Raney, Kevin D

    2005-03-18

    NS3 (nonstructural protein 3) from the hepatitis C virus is a 3' --> 5' helicase classified in helicase superfamily 2. The optimally active form of this helicase remains uncertain. We have used unwinding assays in the presence of a protein trap to investigate the first cycle of unwinding by full-length NS3. When the enzyme was in excess of the substrate, NS3 (500 nM) unwound >80% of a DNA substrate containing a 15-nucleotide overhang and a 30-bp duplex (45:30-mer; 1 nM). This result indicated that the active form of NS3 that was bound to the DNA prior to initiation of the reaction was capable of processive DNA unwinding. Unwinding with varying ratios of NS3 to 45:30-mer allowed us to investigate the active form of NS3 during the first unwinding cycle. When the substrate concentration slightly exceeded that of the enzyme, little or no unwinding was observed, indicating that if a monomeric form of the protein is active, then it exhibits very low processivity. Binding of NS3 to the 45:30-mer was measured by electrophoretic mobility shift assays, resulting in K(D) = 2.7 +/- 0.4 nM. Binding to individual regions of the substrate was investigated by measuring the K(D) for a 15-mer oligonucleotide as well as a 30-mer duplex. NS3 bound tightly to the 15-mer (K(D) = 1.3 +/- 0.2 nM) and, surprisingly, fairly tightly to the double-stranded 30-mer (K(D) = 11.3 +/- 1.3 nM). However, NS3 was not able to rapidly unwind a blunt-end duplex. Thus, under conditions of optimal unwinding, the 45:30-mer is initially saturated with the enzyme, including the duplex region. The unwinding data are discussed in terms of a model whereby multiple molecules of NS3 bound to the single-stranded DNA portion of the substrate are required for optimal unwinding.

  14. Facile Method for the Site-Specific, Covalent Attachment of full-length IgG onto Nanoparticles

    PubMed Central

    Hui, James Zhe; Al Zaki, Ajlan; Cheng, Zhiliang; Popik, Vladimir; Zhang, Hongtao; Luning Prak, Eline T.

    2014-01-01

    Antibodies, most commonly IgGs, have been widely used as targeting ligands in research and therapeutic applications due to their wide array of targets, high specificity and proven efficacy. Many of these applications require antibodies to be conjugated onto surfaces (e.g. nanoparticles and microplates); however, most conventional bioconjugation techniques exhibit low crosslinking efficiencies, reduced functionality due to non-site-specific labeling and random surface orientation, and/or require protein engineering (e.g. cysteine handles), which can be technically challenging. To overcome these limitations, we have recombinantly expressed Protein Z, which binds the Fc region of IgG, with an UV active non-natural amino acid benzoylphenyalanine (BPA) within its binding domain. Upon exposure to long wavelength UV light, the BPA is activated and forms a covalent link between the Protein Z and the bound Fc region of IgG. This technology was combined with expressed protein ligation (EPL), which allowed for the introduction of a fluorophore and click chemistry-compatible azide group onto the C-terminus of Protein Z during the recombinant protein purification step. This enabled crosslinked-Protein Z-IgG complexes to be efficiently and site-specifically attached to aza-dibenzycyclooctyne-modified nanoparticles, via copper-free click chemistry. PMID:24729432

  15. Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells.

    PubMed

    Wahls, W P; Wallace, L J; Moore, P D

    1990-01-12

    Hypervariable minisatellite DNA sequences are short tandemly repeated sequences that are present throughout the human genome and are implicated to enhance recombination. We have constructed a consensus hypervariable minisatellite sequence and analyzed its effect on homologous recombination in human cells in culture. The consensus sequence d(AGAGGTGGGCAGGTGG)6.5 is shown to stimulate homologous recombination up to 13.5-fold. The stimulation occurs at a distance and in both directions but does show a quantitative directionality. Stimulation occurs in a codominant manner, and the sequence is inherited equally in the products. Enhancement is maintained, but at a reduced level, when double-strand breaks are introduced into the substrates. Multiple unselected recombination events are promoted, and preferential stimulation of reciprocal exchange events is demonstrated. PMID:2295091

  16. Identification and isolation of full-length cDNA sequences by sequencing and analysis of expressed sequence tags from guarana (Paullinia cupana).

    PubMed

    Figueirêdo, L C; Faria-Campos, A C; Astolfi-Filho, S; Azevedo, J L

    2011-01-01

    The current intense production of biological data, generated by sequencing techniques, has created an ever-growing volume of unanalyzed data. We reevaluated data produced by the guarana (Paullinia cupana) transcriptome sequencing project to identify cDNA clones with complete coding sequences (full-length clones) and complete sequences of genes of biotechnological interest, contributing to the knowledge of biological characteristics of this organism. We analyzed 15,490 ESTs of guarana in search of clones with complete coding regions. A total of 12,402 sequences were analyzed using BLAST, and 4697 full-length clones were identified, responsible for the production of 2297 different proteins. Eighty-four clones were identified as full-length for N-methyltransferase and 18 were sequenced in both directions to obtain the complete genome sequence, and confirm the search made in silico for full-length clones. Phylogenetic analyses were made with the complete genome sequences of three clones, which showed only 0.017% dissimilarity; these are phylogenetically close to the caffeine synthase of Theobroma cacao. The search for full-length clones allowed the identification of numerous clones that had the complete coding region, demonstrating this to be an efficient and useful tool in the process of biological data mining. The sequencing of the complete coding region of identified full-length clones corroborated the data from the in silico search, strengthening its efficiency and utility. PMID:21732283

  17. Identification and isolation of full-length cDNA sequences by sequencing and analysis of expressed sequence tags from guarana (Paullinia cupana).

    PubMed

    Figueirêdo, L C; Faria-Campos, A C; Astolfi-Filho, S; Azevedo, J L

    2011-06-21

    The current intense production of biological data, generated by sequencing techniques, has created an ever-growing volume of unanalyzed data. We reevaluated data produced by the guarana (Paullinia cupana) transcriptome sequencing project to identify cDNA clones with complete coding sequences (full-length clones) and complete sequences of genes of biotechnological interest, contributing to the knowledge of biological characteristics of this organism. We analyzed 15,490 ESTs of guarana in search of clones with complete coding regions. A total of 12,402 sequences were analyzed using BLAST, and 4697 full-length clones were identified, responsible for the production of 2297 different proteins. Eighty-four clones were identified as full-length for N-methyltransferase and 18 were sequenced in both directions to obtain the complete genome sequence, and confirm the search made in silico for full-length clones. Phylogenetic analyses were made with the complete genome sequences of three clones, which showed only 0.017% dissimilarity; these are phylogenetically close to the caffeine synthase of Theobroma cacao. The search for full-length clones allowed the identification of numerous clones that had the complete coding region, demonstrating this to be an efficient and useful tool in the process of biological data mining. The sequencing of the complete coding region of identified full-length clones corroborated the data from the in silico search, strengthening its efficiency and utility.

  18. Recombination among human non-polio enteroviruses: implications for epidemiology and evolution.

    PubMed

    Kyriakopoulou, Zaharoula; Pliaka, Vaia; Amoutzias, Grigoris D; Markoulatos, Panayotis

    2015-04-01

    Human enteroviruses (EV) belong to the Picornaviridae family and are among the most common viruses infecting humans. They consist of up to 100 immunologically and genetically distinct types: polioviruses, coxsackieviruses A and B, echoviruses, and the more recently characterized 43 EV types. Frequent recombinations and mutations in enteroviruses have been recognized as the main mechanisms for the observed high rate of evolution, thus enabling them to rapidly respond and adapt to new environmental challenges. The first signs of genetic exchanges between enteroviruses came from polioviruses many years ago, and since then recombination has been recognized, along with mutations, as the main cause for reversion of vaccine strains to neurovirulence. More recently, non-polio enteroviruses became the focus of many studies, where recombination was recognized as a frequent event and was correlated with the appearance of new enterovirus lineages and types. The accumulation of multiple inter- and intra-typic recombination events could also explain the series of successive emergences and disappearances of specific enterovirus types that could in turn explain the epidemic profile of circulation of several types. This review focuses on recombination among human non-polio enteroviruses from all four species (EV-A, EV-B, EV-C, and EV-D) and discusses the recombination effects on enterovirus epidemiology and evolution.

  19. High-level expression and preparation of recombinant human fibrinogen as biopharmaceuticals.

    PubMed

    Hirashima, Masaki; Imamura, Takayuki; Yano, Kentaro; Kawamura, Ryoichi; Meta, Akihiro; Tokieda, Yoshiyuki; Nakashima, Toshihiro

    2016-02-01

    Fibrinogen is a large and complex glycoprotein containing two sets of each of three different chains (α, β and γ). There have been no reports of high-level expression of fibrinogen at commercial levels using mammalian cultured cells such as CHO cells because of the difficulty in highly expressing a protein with such a complex structure. We achieved high-level (1.3 g/l or higher) expression of recombinant human fibrinogen using CHO DG44 cells by optimizing the expression system and culture conditions. We also succeeded in establishing a high-recovery preparation method for recombinant fibrinogen that rarely yields degraded products. To characterize the properties of the recombinant human fibrinogen, we performed SDS-PAGE; western blotting of the α, β and γ chains using specific antibodies and scanning electron microscopy observations of fibrin fibres. We also evaluated the functional equivalence between recombinant fibrinogen and plasma fibrinogen with respect to the release of fibrinopeptides initiated by thrombin and its cross-linking properties. The basic properties of recombinant fibrinogen showed no apparent differences from those of plasma fibrinogen. Here, we report the development of methods for the culture and preparation of recombinant human fibrinogen of satisfactory quality that can be scaled up to the commercial level.

  20. The CEA/CD3-Bispecific Antibody MEDI-565 (MT111) Binds a Nonlinear Epitope in the Full-Length but Not a Short Splice Variant of CEA

    PubMed Central

    Huang, Jiaqi; Brohawn, Philip; Morehouse, Chris; Lekstrom, Kristen; Baeuerle, Patrick A.; Wu, Herren; Yao, Yihong; Coats, Steven R.; Dall’Acqua, William; Damschroder, Melissa; Hammond, Scott A.

    2012-01-01

    MEDI-565 (also known as MT111) is a bispecific T-cell engager (BiTE®) antibody in development for the treatment of patients with cancers expressing carcinoembryonic antigen (CEA). MEDI-565 binds CEA on cancer cells and CD3 on T cells to induce T-cell mediated killing of cancer cells. To understand the molecular basis of human CEA recognition by MEDI-565 and how polymorphisms and spliced forms of CEA may affect MEDI-565 activity, we mapped the epitope of MEDI-565 on CEA using mutagenesis and homology modeling approaches. We found that MEDI-565 recognized a conformational epitope in the A2 domain comprised of amino acids 326–349 and 388–410, with critical residues F326, T328, N333, V388, G389, P390, E392, I408, and N410. Two non-synonymous single-nucleotide polymorphisms (SNPs) (rs10407503, rs7249230) were identified in the epitope region, but they are found at low homozygosity rates. Searching the National Center for Biotechnology Information GenBank® database, we further identified a single, previously uncharacterized mRNA splice variant of CEA that lacks a portion of the N-terminal domain, the A1 and B1 domains, and a large portion of the A2 domain. Real-time quantitative polymerase chain reaction analysis of multiple cancers showed widespread expression of full-length CEA in these tumors, with less frequent but concordant expression of the CEA splice variant. Because the epitope was largely absent from the CEA splice variant, MEDI-565 did not bind or mediate T-cell killing of cells solely expressing this form of CEA. In addition, the splice variant did not interfere with MEDI-565 binding or activity when co-expressed with full-length CEA. Thus MEDI-565 may broadly target CEA-positive tumors without regard for expression of the short splice variant of CEA. Together our data suggest that MEDI-565 activity will neither be impacted by SNPs nor by a splice variant of CEA. PMID:22574157

  1. Molecular investigation of a full-length genome of a Q1-like IBV strain isolated in Italy in 2013.

    PubMed

    Franzo, Giovanni; Listorti, Valeria; Naylor, Clive J; Lupini, Caterina; Laconi, Andrea; Felice, Viviana; Drigo, Michele; Catelli, Elena; Cecchinato, Mattia

    2015-12-01

    Since 1996 a new Infectious Bronchitis virus (IBV) genotype, referred to as Q1, circulated in China and was reported for the first time in Italy in 2011, associated with an increase of mortality, kidney lesions and proventriculitis. During northern Italian outbreak of respiratory disease in a broiler flock in 2013, an IBV strain was detected by RT-PCR and characterized as Q1-like based on partial S1 sequence. The virus was isolated and named γCoV/Ck/Italy/I2022/13. All coding regions of the isolate were sequenced and compared with 130 complete genome sequences of IBV and TCoV, downloaded from ViPR. This showed the highest identity with a Chinese strain CK/CH/LDL/97I (p-distance=0.044). To identify potential recombination events a complete genome SimPlot analysis was carried out which revealed the presence of possible multiple recombination events, but the minor parent strains remained unknown. A phylogenetic analysis of the complete S1 gene was performed using all complete S1 sequences available on ViPR and showed the isolate clustered with an Q1-like strain isolated in Italy in 2011 (p-distance=0.004) and a group of Chinese Q1-like strains isolated from the mid 90's (p-distance equal or higher than 0.001). It could be hypothesized that the isolate descended from the Italian 2011 Q1-like strain or was the result of a separate introduction from China through commercial trade or migratory birds; but the data currently available does not distinguish between these possibilities.

  2. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination.

    PubMed

    Onafuwa-Nuga, Adewunmi; Telesnitsky, Alice

    2009-09-01

    The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.

  3. Otoferlin Deficiency in Zebrafish Results in Defects in Balance and Hearing: Rescue of the Balance and Hearing Phenotype with Full-Length and Truncated Forms of Mouse Otoferlin

    PubMed Central

    Chatterjee, Paroma; Padmanarayana, Murugesh; Abdullah, Nazish; Holman, Chelsea L.; LaDu, Jane; Tanguay, Robert L.

    2015-01-01

    Sensory hair cells convert mechanical motion into chemical signals. Otoferlin, a six-C2 domain transmembrane protein linked to deafness in humans, is hypothesized to play a role in exocytosis at hair cell ribbon synapses. To date, however, otoferlin has been studied almost exclusively in mouse models, and no rescue experiments have been reported. Here we describe the phenotype associated with morpholino-induced otoferlin knockdown in zebrafish and report the results of rescue experiments conducted with full-length and truncated forms of otoferlin. We found that expression of otoferlin occurs early in development and is restricted to hair cells and the midbrain. Immunofluorescence microscopy revealed localization to both apical and basolateral regions of hair cells. Knockdown of otoferlin resulted in hearing and balance defects, as well as locomotion deficiencies. Further, otoferlin morphants had uninflated swim bladders. Rescue experiments conducted with mouse otoferlin restored hearing, balance, and inflation of the swim bladder. Remarkably, truncated forms of otoferlin retaining the C-terminal C2F domain also rescued the otoferlin knockdown phenotype, while the individual N-terminal C2A domain did not. We conclude that otoferlin plays an evolutionarily conserved role in vertebrate hearing and that truncated forms of otoferlin can rescue hearing and balance. PMID:25582200

  4. Cloning, Purification, and Characterization of Recombinant Human Extracellular Superoxide Dismutase in SF9 Insect Cells

    PubMed Central

    Shrestha, Pravesh; Yun, Ji-Hye; Kim, Woo Taek; Kim, Tae-Yoon; Lee, Weontae

    2016-01-01

    A balance between production and degradation of reactive oxygen species (ROS) is critical for maintaining cellular homeostasis. Increased levels of ROS during oxidative stress are associated with disease conditions. Antioxidant enzymes, such as extracellular superoxide dismutase (EC-SOD), in the extracellular matrix (ECM) neutralize the toxicity of superoxide. Recent studies have emphasized the importance of EC-SOD in protecting the brain, lungs, and other tissues from oxidative stress. Therefore, EC-SOD would be an excellent therapeutic drug for treatment of diseases caused by oxidative stress. We cloned both the full length (residues 1–240) and truncated (residues 19–240) forms of human EC-SOD (hEC-SOD) into the donor plasmid pFastBacHTb. After transposition, the bacmid was transfected into the Sf9-baculovirus expression system and the expressed hEC-SOD purified using FLAG-tag. Western blot analysis revealed that hEC-SOD is present both as a monomer (33 kDa) and a dimer (66 kDa), as detected by the FLAG antibody. A water-soluble tetrazolium (WST-1) assay showed that both full length and truncated hEC-SOD proteins were enzymatically active. We showed that a potent superoxide dismutase inhibitor, diethyldithiocarbamate (DDC), inhibits hEC-SOD activity. PMID:26912083

  5. Induction of intrachromosomal homologous recombination in human cells by raltitrexed, an inhibitor of thymidylate synthase.

    PubMed

    Waldman, Barbara Criscuolo; Wang, Yibin; Kilaru, Kasturi; Yang, Zhengguan; Bhasin, Alaukik; Wyatt, Michael D; Waldman, Alan S

    2008-10-01

    Thymidylate deprivation brings about "thymineless death" in prokaryotes and eukaryotes. Although the precise mechanism for thymineless death has remained elusive, inhibition of the enzyme thymidylate synthase (TS), which catalyzes the de novo synthesis of TMP, has served for many years as a basis for chemotherapeutic strategies. Numerous studies have identified a variety of cellular responses to thymidylate deprivation, including disruption of DNA replication and induction of DNA breaks. Since stalled or collapsed replication forks and strand breaks are generally viewed as being recombinogenic, it is not surprising that a link has been demonstrated between recombination induction and thymidylate deprivation in bacteria and lower eukaryotes. A similar connection between recombination and TS inhibition has been suggested by studies done in mammalian cells, but the relationship between recombination and TS inhibition in mammalian cells had not been demonstrated rigorously. To gain insight into the mechanism of thymineless death in mammalian cells, in this work we undertook a direct investigation of recombination in human cells treated with raltitrexed (RTX), a folate analog that is a specific inhibitor of TS. Using a model system to study intrachromosomal homologous recombination in cultured fibroblasts, we provide definitive evidence that treatment with RTX can stimulate accurate recombination events in human cells. Gene conversions not associated with crossovers were specifically enhanced several-fold by RTX. Additional experiments demonstrated that recombination events provoked by a double-strand break (DSB) were not impacted by treatment with RTX, nor was error-prone DSB repair via nonhomologous end-joining. Our work provides evidence that thymineless death in human cells is not mediated by corruption of DSB repair processes and suggests that an increase in chromosomal recombination may be an important element of cellular responses leading to thymineless death.

  6. Topological Data Analysis Generates High-Resolution, Genome-wide Maps of Human Recombination.

    PubMed

    Camara, Pablo G; Rosenbloom, Daniel I S; Emmett, Kevin J; Levine, Arnold J; Rabadan, Raul

    2016-07-01

    Meiotic recombination is a fundamental evolutionary process driving diversity in eukaryotes. In mammals, recombination is known to occur preferentially at specific genomic regions. Using topological data analysis (TDA), a branch of applied topology that extracts global features from large data sets, we developed an efficient method for mapping recombination at fine scales. When compared to standard linkage-based methods, TDA can deal with a larger number of SNPs and genomes without incurring prohibitive computational costs. We applied TDA to 1,000 Genomes Project data and constructed high-resolution whole-genome recombination maps of seven human populations. Our analysis shows that recombination is generally under-represented within transcription start sites. However, the binding sites of specific transcription factors are enriched for sites of recombination. These include transcription factors that regulate the expression of meiosis- and gametogenesis-specific genes, cell cycle progression, and differentiation blockage. Additionally, our analysis identifies an enrichment for sites of recombination at repeat-derived loci matched by piwi-interacting RNAs. PMID:27345159

  7. Construction and identification of recombinant adenovirus carrying human TIMP-1shRNA gene.

    PubMed

    Sun, Y L; Xie, H; Lin, H L; Feng, Q; Liu, Y

    2015-01-16

    The aim of this study was to construct the recombinant adenovirus carrying human TIMP-1shRNA gene expression system for preliminary identification to lay the foundation for the further study of gene therapy. Using the Adeno-X system, the recombinant adenovirus plasmid pAdeno-X green fluorescent protein (GFP)-tissue inhibitor of metalloprotease (TIMP)-1 small hairpin (1shRNA) was constructed by including the target gene fragment of the TIMP-1shRNA shuttle plasmid pShuttle2-GFP-TIMP-1shRNA and the backbone plasmid pAdeno-X by homologous recombination in Escherichia coli. Recombinant plasmids were transfected into HEK293A cells to package the recombinant adenovirus rvAdeno-XGFP-TIMP-1shRNA. The recombinant adenovirus was identified by polymerase chain reaction, and the viral titer and infection efficiency were detected using GFP. Polymerase chain reaction and restriction endonuclease digestion demonstrated that rvAdeno-XGFP-TIMP-1shRNA had been successfully constructed, which has a strong ability to infect the kidney. The TIMP-1shRNA adenovirus expression vector was successfully constructed using homologous recombination methods.

  8. Immunotoxicity Assessment of Rice-Derived Recombinant Human Serum Albumin Using Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Fu, Kai; Cheng, Qin; Liu, Zhenwei; Chen, Zhen; Wang, Yan; Ruan, Honggang; Zhou, Lu; Xiong, Jie; Xiao, Ruijing; Liu, Shengwu; Zhang, Qiuping; Yang, Daichang

    2014-01-01

    Human serum albumin (HSA) is extensively used in clinics to treat a variety of diseases, such as hypoproteinemia, hemorrhagic shock, serious burn injuries, cirrhotic ascites and fetal erythroblastosis. To address supply shortages and high safety risks from limited human donors, we recently developed recombinant technology to produce HSA from rice endosperm. To assess the risk potential of HSA derived from Oryza sativa (OsrHSA) before a First-in-human (FIH) trial, we compared OsrHSA and plasma-derived HSA (pHSA), evaluating the potential for an immune reaction and toxicity using human peripheral blood mononuclear cells (PBMCs). The results indicated that neither OsrHSA nor pHSA stimulated T cell proliferation at 1x and 5x dosages. We also found no significant differences in the profiles of the CD4+ and CD8+ T cell subsets between OsrHSA- and pHSA-treated cells. Furthermore, the results showed that there were no significant differences between OsrHSA and pHSA in the production of cytokines such as interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-10 and IL-4. Our results demonstrated that OsrHSA has equivalent immunotoxicity to pHSA when using the PBMC model. Moreover, this ex vivo system could provide an alternative approach to predict potential risks in novel biopharmaceutical development. PMID:25099245

  9. In vitro glucuronidation kinetics of deoxynivalenol by human and animal microsomes and recombinant human UGT enzymes.

    PubMed

    Maul, Ronald; Warth, Benedikt; Schebb, Nils Helge; Krska, Rudolf; Koch, Matthias; Sulyok, Michael

    2015-06-01

    The mycotoxin deoxynivalenol (DON), formed by Fusarium species, is one of the most abundant mycotoxins contaminating food and feed worldwide. Upon ingestion, the majority of the toxin is excreted by humans and animal species as glucuronide conjugate. First in vitro data indicated that DON phase II metabolism is strongly species dependent. However, kinetic data on the in vitro metabolism as well as investigations on the specific enzymes responsible for DON glucuronidation in human are lacking. In the present study, the DON metabolism was investigated using human microsomal fractions and uridine-diphosphoglucuronyltransferases (UGTs) as well as liver microsomes from five animal species. Only two of the twelve tested human recombinant UGTs led to the formation of DON glucuronides with a different regiospecificity. UGT2B4 predominantly catalyzed the formation of DON-15-O-glucuronide (DON-15GlcA), while for UGT2B7 the DON-3-O-glucuronide (DON-3GlcA) metabolite prevailed. For human UGTs, liver, and intestinal microsomes, the glucuronidation activities were low. The estimated apparent intrinsic clearance (Clapp,int) for all human UGT as well as tissue homogenates was <1 mL/min mg protein. For the animal liver microsomes, moderate Clapp,int between 1.5 and 10 mL/min mg protein were calculated for carp, trout, and porcine liver. An elevated glucuronidation activity was detected for rat and bovine liver microsomes leading to Clapp,int between 20 and 80 mL/min mg protein. The obtained in vitro data points out that none of the animal models is suitable for estimating the human DON metabolism with respect to the metabolite pattern and formation rate.

  10. The region of antithrombin interacting with full-length heparin chains outside the high-affinity pentasaccharide sequence extends to Lys136 but not to Lys139.

    PubMed

    Arocas, V; Turk, B; Bock, S C; Olson, S T; Björk, I

    2000-07-25

    The interaction of a well-defined pentasaccharide sequence of heparin with a specific binding site on antithrombin activates the inhibitor through a conformational change. This change increases the rate of antithrombin inhibition of factor Xa, whereas acceleration of thrombin inhibition requires binding of both inhibitor and proteinase to the same heparin chain. An extended heparin binding site of antithrombin outside the specific pentasaccharide site has been proposed to account for the higher affinity of the inhibitor for full-length heparin chains by interacting with saccharides adjacent to the pentasaccharide sequence. To resolve conflicting evidence regarding the roles of Lys136 and Lys139 in this extended site, we have mutated the two residues to Ala or Gln. Mutation of Lys136 decreased the antithrombin affinity for full-length heparin by at least 5-fold but minimally altered the affinity for the pentasaccharide. As a result, the full-length heparin and pentasaccharide affinities were comparable. The reduced affinity for full-length heparin was associated with the loss of one ionic interaction and was caused by both a lower overall association rate constant and a higher overall dissociation rate constant. In contrast, mutation of Lys139 affected neither full-length heparin nor pentasaccharide affinity. The rate constants for inhibition of thrombin and factor Xa by the complexes between antithrombin and full-length heparin or pentasaccharide were unaffected by both mutations, indicating that neither Lys136 nor Lys139 is involved in heparin activation of the inhibitor. Together, these results show that Lys136 forms part of the extended heparin binding site of antithrombin that participates in the binding of full-length heparin chains, whereas Lys139 is located outside this site. PMID:10913257

  11. Early and late antibody responses to full-length and truncated constructs of outer surface protein A of Borrelia burgdorferi in Lyme disease.

    PubMed

    Kalish, R A; Leong, J M; Steere, A C

    1995-06-01

    The immunoglobulin G (IgG) antibody response to outer surface protein A (OspA) of Borrelia burgdorferi has been reported to occur late in the course of Lyme disease. To learn when reactivity to particular epitopes of OspA develops and whether the strength of particular responses correlates with the duration of arthritis and HLA-DR specificities, we determined the IgM and IgG responses by enzyme-linked immunosorbent assay in 128 patients with various manifestations of Lyme disease to full-length recombinant OspA and three OspA fragments which divided the protein approximately into thirds. Among the 10 patients who were followed serially, an early IgM response was often found to epitopes in all three fragments of OspA, sometimes accompanied by a weak IgG response, primarily to an epitope in the middle third of the protein. Months to years later, the seven patients who had prolonged or moderate episodes of arthritis developed strong IgG responses to OspA, especially to epitopes in the N-terminal and C-terminal fragments, that paralleled the course of the arthritis. In single serum samples from 128 patients, a similar pattern of IgM and IgG reactivity with OspA epitopes was seen in patients with early or late manifestations of the illness. Of the 80 patients with arthritis, 62 (78%) had IgG responses to OspA, usually with the strongest reactivity to the C-terminal fragment. In these patients, the strength of the IgG response to OspA correlated with the duration of arthritis; in HLA-DR4-positive patients, most of whom had chronic arthritis, this association was attributable to reactivity with the C-terminal fragment. Thus, patients with Lyme disease often have early responses to OspA, but those with prolonged arthritis do not develop IgG responses to certain epitopes of the protein until late in the illness. In patients with HLA-DR4, the strength of IgG reactivity with one or more epitopes in the C-terminal fragment of OspA correlates with the duration of arthritis.

  12. Early and late antibody responses to full-length and truncated constructs of outer surface protein A of Borrelia burgdorferi in Lyme disease.

    PubMed Central

    Kalish, R A; Leong, J M; Steere, A C

    1995-01-01

    The immunoglobulin G (IgG) antibody response to outer surface protein A (OspA) of Borrelia burgdorferi has been reported to occur late in the course of Lyme disease. To learn when reactivity to particular epitopes of OspA develops and whether the strength of particular responses correlates with the duration of arthritis and HLA-DR specificities, we determined the IgM and IgG responses by enzyme-linked immunosorbent assay in 128 patients with various manifestations of Lyme disease to full-length recombinant OspA and three OspA fragments which divided the protein approximately into thirds. Among the 10 patients who were followed serially, an early IgM response was often found to epitopes in all three fragments of OspA, sometimes accompanied by a weak IgG response, primarily to an epitope in the middle third of the protein. Months to years later, the seven patients who had prolonged or moderate episodes of arthritis developed strong IgG responses to OspA, especially to epitopes in the N-terminal and C-terminal fragments, that paralleled the course of the arthritis. In single serum samples from 128 patients, a similar pattern of IgM and IgG reactivity with OspA epitopes was seen in patients with early or late manifestations of the illness. Of the 80 patients with arthritis, 62 (78%) had IgG responses to OspA, usually with the strongest reactivity to the C-terminal fragment. In these patients, the strength of the IgG response to OspA correlated with the duration of arthritis; in HLA-DR4-positive patients, most of whom had chronic arthritis, this association was attributable to reactivity with the C-terminal fragment. Thus, patients with Lyme disease often have early responses to OspA, but those with prolonged arthritis do not develop IgG responses to certain epitopes of the protein until late in the illness. In patients with HLA-DR4, the strength of IgG reactivity with one or more epitopes in the C-terminal fragment of OspA correlates with the duration of arthritis

  13. Intragenic recombination at the human phosphoglucomutase 1 locus: Predictions fulfilled

    SciTech Connect

    Takahashi, Norio ); Neel, J.V. )

    1993-11-15

    In 1982, the authors advanced a phylogeny that attributed eight alleles of the phosphoglucomutase 1 locus (PGM1) to three independent mutations in a primal allele, followed by four intragenic recombination events involving these mutants. The recent description of a cDNA probe for this locus now renders it possible to test the validity of this phylogeny. cDNAs of PGM1 reverse-transcribed from mRNAs obtained from Japanese individuals possessing eight different electrophoretically defined alleles (PGM1*1+, PGM1*1-, PGM1*2+, PGM1*2-, PGM1*3+, PGM1*3-, PGM1*7+, PGM1*7-) were amplified by PCR and the sequences were determined. Only three different base substitutions were identified when PGM1*1+ was taken as the reference allele, as follows: an A to T transversion at residue 265, a C to T transition at residue 723, and a T to C transition at residue 1320. The second of these substitutions creates a BglII restriction enzyme site and the third creates a Nla III site. At the amino acid level, these substitutions alter amino acid 67 from Lys to Met, amino acid 220 from Arg to Cys, and amino acid 419 from Tyr to His, respectively. These mutations resulted in the electrophoretic properties defining PGM1*7+, the PGM1*2+, and PGM1*1- alleles, respectively. Subsequent intragenic recombinational events resulted in the remaining four alleles. For two of these latter alleles (PGM1*7- and PGM1*3-), more than one type of intragenic crossover can produce the allele. These findings verify the predicted phylogeny and provide a case study in the evolution of complexity at a genetic locus.