NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.
2004-01-01
This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.
Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Horta,Lucas G.
2011-01-01
Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.
Finite Element Simulation of Three Full-Scale Crash Tests for Cessna 172 Aircraft
NASA Technical Reports Server (NTRS)
Mason, Brian H.; Warren, Jerry E., Jr.
2017-01-01
The NASA Emergency Locator Transmitter Survivability and Reliability (ELT-SAR) project was initiated in 2013 to assess the crash performance standards for the next generation of emergency locator transmitter (ELT) systems. Three Cessna 172 aircraft were acquired to perform crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Full-scale crash tests were conducted in the summer of 2015 and each test article was subjected to severe, but survivable, impact conditions including a flare-to-stall during emergency landing, and two controlled-flight-into-terrain scenarios. Full-scale finite element analyses were performed using a commercial explicit solver, ABAQUS. The first test simulated impacting a concrete surface represented analytically by a rigid plane. Tests 2 and 3 simulated impacting a dirt surface represented analytically by an Eulerian grid of brick elements using a Mohr-Coulomb material model. The objective of this paper is to summarize the test and analysis results for the three full-scale crash tests. Simulation models of the airframe which correlate well with the tests are needed for future studies of alternate ELT mounting configurations.
Facilities and Methods Used in Full-scale Airplane Crash-fire Investigation
NASA Technical Reports Server (NTRS)
Black, Dugald O.
1952-01-01
The facilities and the techniques employed in the conduct of full scale airplane crash-fire studies currently being conducted at the NACA Lewis laboratory are discussed herein. This investigation is part of a comprehensive study of the airplane crash-fire problem. The crash configuration chosen, the general physical layout of the crash site, the test methods, the instrumentation, the data-recording systems, and the post-crash examination procedure are described
NASA/FAA general aviation crash dynamics program
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Hayduk, R. J.; Carden, H. D.
1981-01-01
The program involves controlled full scale crash testing, nonlinear structural analyses to predict large deflection elastoplastic response, and load attenuating concepts for use in improved seat and subfloor structure. Both analytical and experimental methods are used to develop expertise in these areas. Analyses include simplified procedures for estimating energy dissipating capabilities and comprehensive computerized procedures for predicting airframe response. These analyses are developed to provide designers with methods for predicting accelerations, loads, and displacements on collapsing structure. Tests on typical full scale aircraft and on full and subscale structural components are performed to verify the analyses and to demonstrate load attenuating concepts. A special apparatus was built to test emergency locator transmitters when attached to representative aircraft structure. The apparatus is shown to provide a good simulation of the longitudinal crash pulse observed in full scale aircraft crash tests.
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Polanco, Michael A.
2010-01-01
A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26-ft/sec and 40-ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test predictions and continuing through post-test validation.
LS-DYNA Analysis of a Full-Scale Helicopter Crash Test
NASA Technical Reports Server (NTRS)
Annett, Martin S.
2010-01-01
A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26 ft/sec and 40 ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated LS-DYNA finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test and continuing through post test validation.
Experimental Photogrammetric Techniques Used on Five Full-Scale Aircraft Crash Tests
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2016-01-01
Between 2013 and 2015, full-scale crash tests were conducted on five aircraft at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). Two tests were conducted on CH-46E airframes as part of the Transport Rotorcraft Airframe Crash Testbed (TRACT) project, and three tests were conduced on Cessna 172 aircraft as part of the Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project. Each test served to evaluate a variety of crashworthy systems including: seats, occupants, restraints, composite energy absorbing structures, and Emergency Locator Transmitters. As part of each test, the aircraft were outfitted with a variety of internal and external cameras that were focused on unique aspects of the crash event. A subset of three camera was solely used in the acquisition of photogrammetric test data. Examples of this data range from simple two-dimensional marker tracking for the determination of aircraft impact conditions to entire full-scale airframe deformation to markerless tracking of Anthropomorphic Test Devices (ATDs, a.k.a. crash test dummies) during the crash event. This report describes and discusses the techniques used and implications resulting from the photogrammetric data acquired from each of the five tests.
DOT National Transportation Integrated Search
2009-07-31
The Federal Railroad Administration sponsored a full-scale train-to-train crash energy management (CEM) technology test that was conducted on March 23, 2006, at the Transportation Technology Center in Pueblo, Colorado. The Volpe National Transportati...
Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.
2010-01-01
A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.
Full-Scale Crash Tests and Analyses of Three High-Wing Single
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Littell, Justin D.; Stimson, Chad M.; Jackson, Karen E.; Mason, Brian H.
2015-01-01
The NASA Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project was initiated in 2014 to assess the crash performance standards for the next generation of ELT systems. Three Cessna 172 aircraft have been acquired to conduct crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Testing is scheduled for the summer of 2015 and will simulate three crash conditions; a flare to stall while emergency landing, and two controlled flight into terrain scenarios. Instrumentation and video coverage, both onboard and external, will also provide valuable data of airframe response. Full-scale finite element analyses will be performed using two separate commercial explicit solvers. Calibration and validation of the models will be based on the airframe response under these varying crash conditions.
Simulating the Impact Response of Three Full-Scale Crash Tests of Cessna 172 Aircraft
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.; Annett, Martin S.; Stimson, Chad M.
2017-01-01
During the summer of 2015, a series of three full-scale crash tests were performed at the Landing and Impact Research Facility located at NASA Langley Research Center of Cessna 172 aircraft. The first test (Test 1) represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test (Test 2) represented a controlled-flight- into-terrain (CFIT) with a nose down pitch attitude of the aircraft, which impacted onto soft soil. The third test (Test 3) also represented a CFIT with a nose up pitch attitude of the aircraft, which resulted in a tail strike condition. Test 3 was also conducted onto soft soil. These crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters and to generate impact test data for model calibration. Finite element models were generated and impact analyses were conducted to simulate the three impact conditions using the commercial nonlinear, transient dynamic finite element code, LS-DYNA®. The objective of this paper is to summarize test-analysis results for the three full-scale crash tests.
Calibration of Airframe and Occupant Models for Two Full-Scale Rotorcraft Crash Tests
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Horta, Lucas G.; Polanco, Michael A.
2012-01-01
Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. Accelerations and kinematic data collected from the crash tests were compared to a system integrated finite element model of the test article. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the second full-scale crash test. This combination of heuristic and quantitative methods was used to identify modeling deficiencies, evaluate parameter importance, and propose required model changes. It is shown that the multi-dimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and co-pilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. This approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and test planning guidance. Complete crash simulations with validated finite element models can be used to satisfy crash certification requirements, thereby reducing overall development costs.
NASA Astrophysics Data System (ADS)
Calloway, Raymond S.; Knight, Vernie H., Jr.
NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.
NASA Technical Reports Server (NTRS)
Cheng, R. Y. K.
1977-01-01
The aircraft structural crash behavior and occupant survivability for aircraft crashes on a soil surface was studied. The results of placement, compaction, and maintenance of two soil test beds are presented. The crators formed by the aircraft after each test are described.
Occupant Responses in a Full-Scale Crash Test of the Sikorsky ACAP Helicopter
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; McEntire, Joseph; Lewis, Alan
2002-01-01
A full-scale crash test of the Sikorsky Advanced Composite Airframe Program (ACAP) helicopter was performed in 1999 to generate experimental data for correlation with a crash simulation developed using an explicit nonlinear, transient dynamic finite element code. The airframe was the residual flight test hardware from the ACAP program. For the test, the aircraft was outfitted with two crew and two troop seats, and four anthropomorphic test dummies. While the results of the impact test and crash simulation have been documented fairly extensively in the literature, the focus of this paper is to present the detailed occupant response data obtained from the crash test and to correlate the results with injury prediction models. These injury models include the Dynamic Response Index (DRI), the Head Injury Criteria (HIC), the spinal load requirement defined in FAR Part 27.562(c), and a comparison of the duration and magnitude of the occupant vertical acceleration responses with the Eiband whole-body acceleration tolerance curve.
Crash Tests of Work Zone Traffic Control Devices
DOT National Transportation Integrated Search
1990-02-01
Full-scale vehicle crash tests evaluated performance of typical work zone traffic control devices. Modified test procedures and evaluation criteria from NCHRP Report 230 were used in 108 tests, providing significant insight into impact performance. P...
NASA Technical Reports Server (NTRS)
Burrows, Leroy T.
1993-01-01
During the 1960's over 30 full-scale aircraft crash tests were conducted by the Flight Safety Foundation under contract to the Aviation Applied Technology Directorate (AATD) of the U.S. Army Aviation Systems Command (AVSCOM). The purpose of these tests were to conduct crash injury investigations that would provide a basis for the formulation of sound crash resistance design criteria for light fixed-wing and rotary wing aircraft. This resulted in the Crash Survival Design Criteria Designer's Guide which was first published in 1967 and has been revised numerous times, the last being in 1989. Full-scale aircraft crash testing is an expensive way to investigate structural deformations of occupied spaces and to determine the decelerative loadings experienced by occupants in a crash. This gave initial impetus to the U.S. Army to develop analytical methods to predict the dynamic response of aircraft structures in a crash. It was believed that such analytical tools could be very useful in the preliminary design stage of a new helicopter system which is required to demonstrate a level of crash resistance and had to be more cost effective than full-scale crash tests or numerous component design support tests. From an economic point of view, it is more efficient to optimize for the incorporation of crash resistance features early in the design stage. However, during preliminary design it is doubtful if sufficient design details, which influence the exact plastic deformation shape of structural elements, will be available. The availability of simple procedures to predict energy absorption and load-deformation characteristics will allow the designer to initiate valuable cost, weight, and geometry tradeoff studies. The development of these procedures will require some testing of typical specimens. This testing should, as a minimum, verify the validity of proposed procedures for providing pertinent nonlinear load-deformation data. It was hoped that through the use of these analytical models, the designer could optimize aircraft design for crash resistance from both a weight and cost increment standpoint, thus enhancing the acceptance of the design criteria for crash resistance.
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Horta, Lucas G.; Jackson, Karen E.; Polanco, Michael A.; Littell, Justin D.
2012-01-01
Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber (DEA) under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. The presence of this energy absorbing device reduced the peak impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to a system-integrated finite element model of the test article developed in parallel with the test program. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests were conducted to evaluate the impact performances of various components and subsystems, including new crush tubes and the DEA blocks. Parameters defined for the system-integrated finite element model were determined from these tests. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the full-scale crash test without the DEA. This combination of heuristic and quantitative methods identified modeling deficiencies, evaluated parameter importance, and proposed required model changes. The multidimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and copilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. One lesson learned was that this approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and pretest predictions. Complete crash simulations with validated finite element models can be used to satisfy crash certification requirements, potentially reducing overall development costs.
Simulating the Response of a Composite Honeycomb Energy Absorber. Part 2; Full-Scale Impact Testing
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Annett, Martin S.; Jackson, Karen E.; Polanco, Michael A.
2012-01-01
NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test.
General aviation crash safety program at Langley Research Center
NASA Technical Reports Server (NTRS)
Thomson, R. G.
1976-01-01
The purpose of the crash safety program is to support development of the technology to define and demonstrate new structural concepts for improved crash safety and occupant survivability in general aviation aircraft. The program involves three basic areas of research: full-scale crash simulation testing, nonlinear structural analyses necessary to predict failure modes and collapse mechanisms of the vehicle, and evaluation of energy absorption concepts for specific component design. Both analytical and experimental methods are being used to develop expertise in these areas. Analyses include both simplified procedures for estimating energy absorption capabilities and more complex computer programs for analysis of general airframe response. Full-scale tests of typical structures as well as tests on structural components are being used to verify the analyses and to demonstrate improved design concepts.
Comparative analysis of PA-31-350 Chieftain (N44LV) accident and NASA crash test data
NASA Technical Reports Server (NTRS)
Hayduk, R. J.
1979-01-01
A full scale, controlled crash test to simulate the crash of a Piper PA-31-350 Chieftain airplane is described. Comparisons were performed between the simulated crash and the actual crash in order to assess seat and floor behavior, and to estimate the acceleration levels experienced in the craft at the time of impact. Photographs, acceleration histories, and the tested airplane crash data is used to augment the accident information to better define the crash conditions. Measured impact parameters are presented along with flight path velocity and angle in relation to the impact surface.
MASH TL-4 crash testing and evaluation of the RESTORE barrier.
DOT National Transportation Integrated Search
2015-11-01
Three full-scale vehicle crash tests were conducted according to the MASH Test Level 4 (TL-4) safety performance criteria on a : restorable and reusable energy-absorbing roadside/median barrier, designated the RESTORE barrier. The system utilized for...
NASA/FAA general aviation crash dynamics program - An update
NASA Technical Reports Server (NTRS)
Hayduk, R. J.; Thomson, R. G.; Carden, H. D.
1979-01-01
Work in progress in the NASA/FAA General Aviation Crash Dynamics Program for the development of technology for increased crash-worthiness and occupant survivability of general aviation aircraft is presented. Full-scale crash testing facilities and procedures are outlined, and a chronological summary of full-scale tests conducted and planned is presented. The Plastic and Large Deflection Analysis of Nonlinear Structures and Modified Seat Occupant Model for Light Aircraft computer programs which form part of the effort to predict nonlinear geometric and material behavior of sheet-stringer aircraft structures subjected to large deformations are described, and excellent agreement between simulations and experiments is noted. The development of structural concepts to attenuate the load transmitted to the passenger through the seats and subfloor structure is discussed, and an apparatus built to test emergency locator transmitters in a realistic environment is presented.
Atahan, Ali O; Hiekmann, J Marten; Himpe, Jeffrey; Marra, Joseph
2018-07-01
Road restraint systems are designed to minimize the undesirable effects of roadside accidents and improve safety of road users. These systems are utilized at either side or median section of roads to contain and redirect errant vehicles. Although restraint systems are mainly designed against car, truck and bus impacts there is an increasing pressure by the motorcycle industry to incorporate motorcycle protection systems into these systems. In this paper development details of a new and versatile motorcycle barrier, CMPS, coupled with an existing vehicle barrier is presented. CMPS is intended to safely contain and redirect motorcyclists during a collision event. First, crash performance of CMPS design is evaluated by means of a three dimensional computer simulation program LS-DYNA. Then full-scale crash tests are used to verify the acceptability of CMPS design. Crash tests were performed at CSI proving ground facility using a motorcycle dummy in accordance with prEN 1317-8 specification. Full-scale crash test results show that CMPS is able to successfully contain and redirect dummy with minimal injury risk on the dummy. Damage on the barrier is also minimal proving the robustness of the CMPS design. Based on the test findings and further review by the authorities the implementation of CMPS was recommended at highway system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rear Seat Occupant Thorax Protection in Near Side Impacts
Bohman, Katarina; Rosén, Erik; Sunnevang, Cecilia; Boström, Ola
2009-01-01
Thoracic side-airbags (SAB) have proven to protect front seat occupants in side impacts. This benefit has not been evaluated for rear seat occupants who are typically small statured. The objective was to analyze field data from rear seat occupants in near side impacts, and evaluate the effect of a SAB in the rear seat, through full scale vehicle tests. A field study using the NASS-CDS database was performed to review rear seat crash characteristics, occupant injuries (Abbreviated Injury Scale 3+, AIS3+) and injury sources. Full scale tests were performed with the side impact dummy SID-IIs at two different crash severities, with and without SAB in a midsize passenger car. Field data showed that of all AIS3+ injured restrained occupants 13 years and older, 59% had AIS3+ thoracic injuries and 38% had AIS3+ head injuries. The thoracic injuries were distributed to lungs (60%), skeletal fractures (38%) and injuries to arteries (1,26%) and heart (0,1%). For AIS3+ injured children, age 4–12, 51% had AIS3+ thoracic injuries and 54% had AIS3+ head injuries. Compared to adults, children sustained less fractures and more lung injuries. The rear side interior was the main injury source regardless of age group. In the full scale tests, the thoracic side-airbag reduced the average rib deflection by 50% and resulted in an AIS3+ injury risk reduction from 36% to 3%. At the higher impact speed, SAB reduced the injury risk from 93% to 24%. The full scale crash tests showed that SAB offer a significant potential for thoracic injury reduction in the crash severities causing the majority of serious injuries in real life crashes. PMID:20184828
DOT National Transportation Integrated Search
2016-12-01
Two full-scale impact tests were conducted to measure the crashworthiness performance of Crash Energy Management (CEM) equipped passenger rail cars. On December 3, 2003, a single car impacted a fixed barrier at approximately 35 mph and on February 26...
Train-to-Train Impact Test of Crash-Energy Management Passenger Rail Equipment: Occupant Experiments
DOT National Transportation Integrated Search
2006-11-06
As part of an ongoing passenger rail crashworthiness effort, : a full-scale impact test of a train with crash energy management : (CEM) passenger cars was conducted on March 23, 2006. In : this test, a train made up of a CEM cab car, four CEM coach :...
Vehicle postmortem and data analysis of a passenger rail car collision test
DOT National Transportation Integrated Search
2002-04-23
There is an ongoing research program in the United States to investigate and improve rail equipment crashworthiness. As part of this effort, a series of full-scale rail vehicle crash tests are being performed to investigate the crash response of exis...
Impact tests of crash energy management passenger rail cars: analysis and structural measurements
DOT National Transportation Integrated Search
2004-11-13
Two full-scale impact tests were conducted to measure the : crashworthiness performance of Crash Energy Management : (CEM) passenger rail cars. On December 3, 2003 a single car : impacted a fixed barrier at approximately 35 mph and on : February 26, ...
Determination of the maximum MGS mounting height : phase II detailed analysis with LS-DYNA.
DOT National Transportation Integrated Search
2012-12-01
Determination of the maximum Midwest Guardrail System (MGS) mounting height was performed in two phases. : Phase I concentrated on crash testing: two full-scale crash tests were performed on the MGS with top-rail mounting heights : of 34 in. (864 mm)...
Preparations for a train-to-train impact test of crash-energy management passenger rail equipment
DOT National Transportation Integrated Search
2005-03-16
Preparations are ongoing for a full-scale train-to-train : impact test of crash-energy management (CEM) equipment, : during which a cab car-led passenger consist, initially moving : at 30 mph, will impact a standing locomotive-led consist. The : coll...
Full-Scale Crash Test of an MD-500 Helicopter
NASA Technical Reports Server (NTRS)
Littell, Justin
2011-01-01
A full-scale crash test was successfully conducted in March 2010 of an MD-500 helicopter at NASA Langley Research Center s Landing and Impact Research Facility. The reasons for conducting this test were threefold: 1 To generate data to be used with finite element computer modeling efforts, 2 To study the crashworthiness features typically associated with a small representative helicopter, and 3 To compare aircraft response to data collected from a previously conducted MD-500 crash test, which included an externally deployable energy absorbing (DEA) concept. Instrumentation on the airframe included accelerometers on various structural components of the airframe; and strain gages on keel beams, skid gear and portions of the skin. Three Anthropomorphic Test Devices and a specialized Human Surrogate Torso Model were also onboard to collect occupant loads for evaluation with common injury risk criteria. This paper presents background and results from this crash test conducted without the DEA concept. These results showed accelerations of approximately 30 to 50 g on the airframe at various locations, little energy attenuation through the airframe, and moderate to high probability of occupant injury for a variety of injury criteria.
A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Jackson, K. E.; Fasanella, E. L.
2003-01-01
The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.
DOT National Transportation Integrated Search
2016-05-01
Full-scale rollover crash tests were performed on three non-pressure tank carbodies to validate previous analytical work and : determine the effectiveness of two different types of protective structures in protecting the top fittings. The tests were ...
Crash Testing of Helicopter Airframe Fittings
NASA Technical Reports Server (NTRS)
Clarke, Charles W.; Townsend, William; Boitnott, Richard
2004-01-01
As part of the Rotary Wing Structures Technology Demonstration (RWSTD) program, a surrogate RAH-66 seat attachment fitting was dynamically tested to assess its response to transient, crash impact loads. The dynamic response of this composite material fitting was compared to the performance of an identical fitting subjected to quasi-static loads of similar magnitude. Static and dynamic tests were conducted of both smaller bench level and larger full-scale test articles. At the bench level, the seat fitting was supported in a steel fixture, and in the full-scale tests, the fitting was integrated into a surrogate RAH-66 forward fuselage. Based upon the lessons learned, an improved method to design, analyze, and test similar composite material fittings is proposed.
Experimental investigation of the crashworthiness of scaled composite sailplane fuselages
NASA Technical Reports Server (NTRS)
Kampf, Karl-Peter; Crawley, Edward F.; Hansman, R. John, Jr.
1989-01-01
The crash dynamics and energy absorption of composite sailplane fuselage segments undergoing nose-down impact were investigated. More than 10 quarter-scale structurally similar test articles, typical of high-performance sailplane designs, were tested. Fuselages segments were fabricated of combinations of fiberglass, graphite, Kevlar, and Spectra fabric materials. Quasistatic and dynamic tests were conducted. The quasistatic tests were found to replicate the strain history and failure modes observed in the dynamic tests. Failure modes of the quarter-scale model were qualitatively compared with full-scale crash evidence and quantitatively compared with current design criteria. By combining material and structural improvements, substantial increases in crashworthiness were demonstrated.
Full-Scale Crash Test and Finite Element Simulation of a Composite Prototype Helicopter
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; Lyle, Karen H.
2003-01-01
A full-scale crash test of a prototype composite helicopter was performed at the Impact Dynamics Research Facility at NASA Langley Research Center in 1999 to obtain data for validation of a finite element crash simulation. The helicopter was the flight test article built by Sikorsky Aircraft during the Advanced Composite Airframe Program (ACAP). The composite helicopter was designed to meet the stringent Military Standard (MIL-STD-1290A) crashworthiness criteria and was outfitted with two crew and two troop seats and four anthropomorphic dummies. The test was performed at 38-ft/s vertical and 32.5-ft/s horizontal velocity onto a rigid surface. An existing modal-vibration model of the Sikorsky ACAP helicopter was converted into a model suitable for crash simulation. A two-stage modeling approach was implemented and an external user-defined subroutine was developed to represent the complex landing gear response. The crash simulation was executed with a nonlinear, explicit transient dynamic finite element code. Predictions of structural deformation and failure, the sequence of events, and the dynamic response of the airframe structure were generated and the numerical results were correlated with the experimental data to validate the simulation. The test results, the model development, and the test-analysis correlation are described.
DOT National Transportation Integrated Search
2011-09-01
This report presents the test results and finite element correlations of a full-scale dynamic collision between a locomotive and a highway truck loaded with two heavy steel coils. The locomotive consist was moving at 58 miles per hour before it struc...
NASA Technical Reports Server (NTRS)
Carden, H. D.
1984-01-01
Three six-place, low wing, twin-engine general aviation airplane test specimens were crash tested at the langley Impact Dynamics research Facility under controlled free-flight conditions. One structurally unmodified airplane was the baseline airplane specimen for the test series. The other airplanes were structurally modified to incorporate load-limiting (energy-absorbing) subfloor concepts into the structure for full scale crash test evaluation and comparison to the unmodified airplane test results. Typically, the lowest floor accelerations and anthropomorphic dummy occupant responses, and the least seat crushing of standard and load-limiting seats, occurred in the modified load-limiting subfloor airplanes wherein the greatest structural crushing of the subfloor took place. The better performing of the two load-limiting subfloor concepts reduced the peak airplane floor accelerations at the pilot and four seat/occupant locations to -25 to -30 g's as compared to approximately -50 to -55 g's acceleration magnitude for the unmodified airplane structure.
Plans for crash-tested bridge railings for longitudinal wood decks
M. A. Ritter; R. K. Faller; P. D. Hilbrich Lee; B. T. Rosson; S. R. Duwadi
1995-01-01
In the past decade, bridge railing design criteria have moved away from static-load design and have focused on full-scale crash testing as a more appropriate and reliable means of evaluating bridge railings. The five bridge railing plans presented reflect the results of a cooperative research project between the Midwest Roadside Safety Facility, University of Nebraska...
Impact Landing Dynamics Facility Crash Test
1975-08-03
Photographed on: 08/03/75. -- By 1972 the Lunar Landing Research Facility was no longer in use for its original purpose. The 400-foot high structure was swiftly modified to allow engineers to study the dynamics of aircraft crashes. "The Impact Dynamics Research Facility is used to conduct crash testing of full-scale aircraft under controlled conditions. The aircraft are swung by cables from an A-frame structure that is approximately 400 ft. long and 230 foot high. The impact runway can be modified to simulate other grand crash environments, such as packed dirt, to meet a specific test requirement." "In 1972, NASA and the FAA embarked on a cooperative effort to develop technology for improved crashworthiness and passenger survivability in general aviation aircraft with little or no increase in weight and acceptable cost. Since then, NASA has "crashed" dozens of GA aircraft by using the lunar excursion module (LEM) facility originally built for the Apollo program." This photograph shows Crash Test No. 7. Crash Test: Test #7
A review of the analytical simulation of aircraft crash dynamics
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Carden, Huey D.; Boitnott, Richard L.; Hayduk, Robert J.
1990-01-01
A large number of full scale tests of general aviation aircraft, helicopters, and one unique air-to-ground controlled impact of a transport aircraft were performed. Additionally, research was also conducted on seat dynamic performance, load-limiting seats, load limiting subfloor designs, and emergency-locator-transmitters (ELTs). Computer programs were developed to provide designers with methods for predicting accelerations, velocities, and displacements of collapsing structure and for estimating the human response to crash loads. The results of full scale aircraft and component tests were used to verify and guide the development of analytical simulation tools and to demonstrate impact load attenuating concepts. Analytical simulation of metal and composite aircraft crash dynamics are addressed. Finite element models are examined to determine their degree of corroboration by experimental data and to reveal deficiencies requiring further development.
Vertical drop test of a transport fuselage center section including the wheel wells
NASA Technical Reports Server (NTRS)
Williams, M. S.; Hayduk, R. J.
1983-01-01
A Boeing 707 fuselage section was drop tested to measure structural, seat, and anthropomorphic dummy response to vertical crash loads. The specimen had nominally zero pitch, roll and yaw at impact with a sink speed of 20 ft/sec. Results from this drop test and other drop tests of different transport sections will be used to prepare for a full-scale crash test of a B-720.
Patient Litter System Response in a Full-Scale CH-46 Crash Test.
Weisenbach, Charles A; Rooks, Tyler; Bowman, Troy; Fralish, Vince; McEntire, B Joseph
2017-03-01
U.S. Military aeromedical patient litter systems are currently required to meet minimal static strength performance requirements at the component level. Operationally, these components must function as a system and are subjected to the dynamics of turbulent flight and potentially crash events. The first of two full-scale CH-46 crash tests was conducted at NASA's Langley Research Center and included an experiment to assess patient and litter system response during a severe but survivable crash event. A three-tiered strap and pole litter system was mounted into the airframe and occupied by three anthropomorphic test devices (ATDs). During the crash event, the litter system failed to maintain structural integrity and collapsed. Component structural failures were recorded from the litter support system and the litters. The upper ATD was displaced laterally into the cabin, while the middle ATD was displaced longitudinally into the cabin. Acceleration, force, and bending moment data from the instrumented middle ATD were analyzed using available injury criteria. Results indicated that a patient might sustain a neck injury. The current test illustrates that a litter system, with components designed and tested to static requirements only, experiences multiple component structural failures during a dynamic crash event and does not maintain restraint control of its patients. It is unknown if a modern litter system, with components tested to the same static criteria, would perform differently. A systems level dynamic performance requirement needs to be developed so that patients can be provided with protection levels equivalent to that provided to seated aircraft occupants. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Instrumentation and data acquisition for full-scale aircraft crash testing
NASA Technical Reports Server (NTRS)
Jones, Lisa E.; Fasanella, Edwin L.
1993-01-01
The Landing and Impact Dynamics Branch of the NASA Langley Research Center has been conducting full-scale aircraft crash tests since the 1970s. Using a pendulum method, aircraft are suspended by cables from a 240-ft high gantry and swung into the impact surface at various attitudes and velocities. Instrumentation for these tests include on-board high-speed cameras, strain gages, load cells, displacement transducers, and accelerometers. Transducers in the aircraft are hard-wired through a long umbilical cable to the data acquisition room. Up to 96 channels of data can be collected at a typical rate of 4000 samples per second. Data acquisition using an FM multiplexed analog system and a high-speed personal computer based digital system is described.
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Stimson, Chad M.
2016-01-01
Full-scale crash tests were conducted on three Cessna 172 aircraft at NASA Langley Research Center's Landing and Impact Research facility during the summer of 2015. The purpose of the three tests was to evaluate the performance of commercially available Emergency Locator Transmitter (ELT) systems and support development of enhanced installation guidance. ELTs are used to provide location information to Search and Rescue (SAR) organizations in the event of an aviation distress situation, such as a crash. The crash tests simulated three differing severe but survivable crash conditions, in which it is expected that the onboard occupants have a reasonable chance of surviving the accident and would require assistance from SAR personnel. The first simulated an emergency landing onto a rigid surface, while the second and third simulated controlled flight into terrain. Multiple ELT systems were installed on each airplane according to federal regulations. The majority of the ELT systems performed nominally. In the systems which did not activate, post-test disassembly and inspection offered guidance for non-activation cause in some cases, while in others, no specific cause could be found. In a subset of installations purposely disregarding best practice guidelines, failure of the ELT-to-antenna cabling connections were found. Recommendations for enhanced installation guidance of ELT systems will be made to the Radio Technical Commission for Aeronautics (RTCA) Special Committee 229 for consideration for adoption in a future release of ELT minimum operational performance specifications. These recommendations will be based on the data gathered during this test series as well as a larger series of crash simulations using computer models that will be calibrated based on these data
Overview of the Transport Rotorcraft Airframe Crash Testbed (TRACT) Full Scale Crash Tests
NASA Technical Reports Server (NTRS)
Annett, Martin; Littell, Justin
2015-01-01
The Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate Anthropomorphic Test Devices (ATD) responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 ATDs were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the horizontal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.
Designing for aircraft structural crashworthiness
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Caiafa, C.
1981-01-01
This report describes structural aviation crash dynamics research activities being conducted on general aviation aircraft and transport aircraft. The report includes experimental and analytical correlations of load-limiting subfloor and seat configurations tested dynamically in vertical drop tests and in a horizontal sled deceleration facility. Computer predictions using a finite-element nonlinear computer program, DYCAST, of the acceleration time-histories of these innovative seat and subfloor structures are presented. Proposed application of these computer techniques, and the nonlinear lumped mass computer program KRASH, to transport aircraft crash dynamics is discussed. A proposed FAA full-scale crash test of a fully instrumented radio controlled transport airplane is also described.
Advances in crash dynamics for aircraft safety
NASA Astrophysics Data System (ADS)
Guida, M.; Marulo, F.; Abrate, S.
2018-04-01
This paper studies the ability of the fuselage's lower lobe to absorb the energy during a crash landing, where the introduction of the composite materials can improve the crash survivability thanks to the crushing capability of structural parts to limit the effects of deceleration on the occupants. Providing a protective shell around the occupants and minimizing the risks of injuries during and immediately after the crash in the post-crash regime is a safety requirement. This study consists of: (1) numerical and experimental investigations on small components to verify design concepts using high performance composite materials; (2) analyses of full scale crashes of fuselage lower lobes. This paper outlines an approach for demonstrating the crashworthiness characteristics of the airframe performing a drop test at low velocity impact to validate a numerical model obtained by assembling structural components and materials' properties previously obtained by testing coupons and sub-elements.
Crashworthiness requirements for commuter rail passenger seats
DOT National Transportation Integrated Search
2005-11-05
Occupant experiments using instrumented crash test dummies seated in commuter rail seats have been conducted on board full-scale impact tests of rail cars. The tests have been conducted using both conventional cars and cars modified to incorporate cr...
Best Practices for Crash Modeling and Simulation
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.
2002-01-01
Aviation safety can be greatly enhanced by the expeditious use of computer simulations of crash impact. Unlike automotive impact testing, which is now routine, experimental crash tests of even small aircraft are expensive and complex due to the high cost of the aircraft and the myriad of crash impact conditions that must be considered. Ultimately, the goal is to utilize full-scale crash simulations of aircraft for design evaluation and certification. The objective of this publication is to describe "best practices" for modeling aircraft impact using explicit nonlinear dynamic finite element codes such as LS-DYNA, DYNA3D, and MSC.Dytran. Although "best practices" is somewhat relative, it is hoped that the authors' experience will help others to avoid some of the common pitfalls in modeling that are not documented in one single publication. In addition, a discussion of experimental data analysis, digital filtering, and test-analysis correlation is provided. Finally, some examples of aircraft crash simulations are described in several appendices following the main report.
Energy Absorbing Seat System for an Agricultural Aircraft
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jones, Lisa E. (Technical Monitor)
2002-01-01
A task was initiated to improve the energy absorption capability of an existing aircraft seat through cost-effective retrofitting, while keeping seat-weight increase to a minimum. This task was undertaken as an extension of NASA ongoing safety research and commitment to general aviation customer needs. Only vertical crash scenarios have been considered in this task which required the energy absorbing system to protect the seat occupant in a range of crash speeds up to 31 ft/sec. It was anticipated that, the forward and/or side crash accelerations could be attenuated with the aid of airbags, the technology of which is currently available in automobiles and military helicopters. Steps which were followed include, preliminary crush load determination, conceptual design of cost effective energy absorbers, fabrication and testing (static and dynamic) of energy absorbers, system analysis, design and fabrication of dummy seat/rail assembly, dynamic testing of dummy seat/rail assembly, and finally, testing of actual modified seat system with a dummy occupant. A total of ten full scale tests have been performed including three of the actual aircraft seat. Results from full-scale tests indicated that occupant loads were attenuated successfully to survivable levels.
Testing and evaluation of sign support with cluster attachments.
DOT National Transportation Integrated Search
1990-04-01
Two full-scale crash tests were conducted on the Louisiana two-post, inclined, slip-base sign assembly with cluster sign attachment. These two tests were performed and evaluated in accordance with guidelines under NCHRP Report 230 and standards estab...
Material Model Evaluation of a Composite Honeycomb Energy Absorber
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.
2012-01-01
A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.
Evaluation of the Second Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full Scale Crash Test
NASA Technical Reports Server (NTRS)
Annett, Martin; Littell, Justin
2015-01-01
Two Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate ATD responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 Anthropomorphic Test Devices (ATDs) were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the longitudinal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.
Development of a frontal small overlap crashworthiness evaluation test.
Sherwood, Christopher P; Mueller, Becky C; Nolan, Joseph M; Zuby, David S; Lund, Adrian K
2013-01-01
Small overlap frontal crashes are those in which crash forces are applied outboard of the vehicle's longitudinal frame rails. In-depth analyses of crashes indicate that such crashes account for a significant proportion of frontal crashes with seriously injured occupants. The objective of this research was to evaluate possible barrier crash tests that could be used to evaluate the crashworthiness of vehicles across a spectrum of small overlap crash types. Sixteen full-scale vehicle tests were conducted using 3 midsize passenger vehicles in up to 6 different test configurations, including vehicle-to-vehicle and barrier tests. All vehicles were tested at 64 km/h with an instrumented Hybrid III midsize male driver dummy. All test configurations resulted in primary loading of the wheel, suspension system, and hinge pillar. Vehicles underwent substantial lateral movement during the crash, which varied by crash configuration. The occupant compartments had significant intrusion, particularly to the most outboard structures. Inboard movement of the steering wheel in combination with outboard movement of the dummies (due to the lateral vehicle motion) caused limited interaction with the frontal air bag in most cases. When assessing overall crashworthiness (based on injury measures, structural deformation, and occupant kinematics), one vehicle had superior performance in each crash configuration. This was confirmation that the countermeasures benefiting performance in a single small overlap test also will provide a benefit in other crash configurations. Based on these test results, the Insurance Institute for Highway Safety has developed a small overlap crashworthiness evaluation with the following characteristics: a rigid flat barrier with a 150-mm corner radius, 25 percent overlap, 64 km/h test speed, and a Hybrid III midsize male driver dummy.
Documentation of deformation from passenger rail two-car impact test
DOT National Transportation Integrated Search
2003-11-01
The Volpe Center has been conducting research into rail equipment crashworthiness in support of the Federal Railroad Administrations (FRA) Office of Research and Development. As part of this research, full-scale crash tests of passenger cars have ...
Crash Energy Management Crush Zone Designs : Features, Functions and Forms
DOT National Transportation Integrated Search
2007-03-13
On March 23, 2006, a full-scale test was conducted on a passenger train retrofitted with newly developed cab and coach car crush zone designs. This test was conducted as part of a larger testing program to establish the degree of enhanced performance...
Development of airframe design technology for crashworthiness.
NASA Technical Reports Server (NTRS)
Kruszewski, E. T.; Thomson, R. G.
1973-01-01
This paper describes the NASA portion of a joint FAA-NASA General Aviation Crashworthiness Program leading to the development of improved crashworthiness design technology. The objectives of the program are to develop analytical technology for predicting crashworthiness of structures, provide design improvements, and perform full-scale crash tests. The analytical techniques which are being developed both in-house and under contract are described, and typical results from these analytical programs are shown. In addition, the full-scale testing facility and test program are discussed.
Repair of Budd Pioneer Coach car crush zones
DOT National Transportation Integrated Search
2007-05-01
The research team conducted a project to repair cars for use in a full-scale train-to-train collision test with crash energy management systems. The two cars had been damaged in previous dynamic tests. Several components required replacement, and som...
Evaluation of the New York low-tension three-cable barrier on curved alignment.
DOT National Transportation Integrated Search
2013-02-01
Three full-scale crash tests were performed on the New York Department of Transportations (NYSDOTs) curved, lowtension, : three-cable barrier systems utilizing the MASH Test Level 3 safety performance criteria. The cable barrier system : for te...
Train-to-Train Impact Test of Crash-Energy Management Passenger Rail Equipment: Structural Results
DOT National Transportation Integrated Search
2006-01-01
On March 23, 2006, a full-scale test was conducted on a : passenger rail train retrofitted with newly developed cab end : and non-cab end crush zone designs. This test was conducted : as part of a larger testing program to establish the degree of : e...
Train-to-train impact test of crash energy management passenger rail equipment.
DOT National Transportation Integrated Search
2007-02-01
On March 23, 2006, a full-scale test was conducted on a passenger rail train retrofitted with newly developed cab and coach car crush zone designs. This test was conducted as part of a larger testing program to establish the degree of enhanced perfor...
A train-to-train impact test of crash energy management passenger rail equipment
DOT National Transportation Integrated Search
2006-12-04
This paper gives an overview of the in-line full-scale impact tests conducted by the Federal : Railroad Administration and discusses a strategy for preventing override between colliding : equipment. Override of the impacting equipment during a passen...
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Jackson, Karen E.; Annett, Martin S.; Seal, Michael D.; Fasanella, Edwin L.
2015-01-01
Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45deg/-45deg/-45deg/+45deg] with respect to the vertical direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction, and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soft soil. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.
Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2010-01-01
The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.
Light aircraft crash safety program
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Hayduk, R. J.
1974-01-01
NASA is embarked upon research and development tasks aimed at providing the general aviation industry with a reliable crashworthy airframe design technology. The goals of the NASA program are: reliable analytical techniques for predicting the nonlinear behavior of structures; significant design improvements of airframes; and simulated full-scale crash test data. The analytical tools will include both simplified procedures for estimating energy absorption characteristics and more complex computer programs for analysis of general airframe structures under crash loading conditions. The analytical techniques being developed both in-house and under contract are described, and a comparison of some analytical predictions with experimental results is shown.
MASH test 3-11 on the 5-inch cast in place deck barrier anchors.
DOT National Transportation Integrated Search
2011-12-01
A full-scale crash test was performed to evaluate the impact performance of a Texas T223 concrete : beam and post bridge rail anchored to a 5-inch cast-in-place deck (CIPD). The testing followed the MASH : standards for Test Level 3 (TL-3) longitudin...
NASA general aviation crashworthiness seat development
NASA Technical Reports Server (NTRS)
Fasanella, E. L.; Alfaro-Bou, E.
1979-01-01
Three load limiting seat concepts for general aviation aircraft designed to lower the deceleration of the occupant in the event of a crash were sled tested and evaluated with reference to a standard seat. Dummy pelvis accelerations were reduced up to 50 percent with one of the concepts. Computer program MSOMLA (Modified Seat Occupant Model for Light Aircraft) was used to simulate the behavior of a dummy passenger in a NASA full-scale crash test of a twin engine light aircraft. A computer graphics package MANPLOT was developed to pictorially represent the occupant and seat motion.
NASA Astrophysics Data System (ADS)
Kh. Beheshti, Hamid
This study is focusing on the application of foam materials in aviation. These materials are being used for acoustic purposes, as padding in the finished interior panels of the aircraft, and as seat cushions. Foams are mostly used in seating applications. Since seat cushion is directly interacting with the body of occupant, it has to be ergonomically comfortable beside of absorbing the energy during the impact. All the seats and seat cushions have to pass regulations defined by Federal Aviation Administration (FAA). In fact, all airplane companies are required to certify the subcomponents of aircrafts before installing them on the main structure, fuselage. Current Federal Aviation Administration Regulations require a dynamic sled test of the entire seat system for certifying the seat cushions. This dynamic testing is required also for replacing the deteriorated cushions with new cushions. This involves a costly and time-consuming certification process. AGATE group has suggested a procedure based on quasi-static testing in order to certify new seat cushions without conducting full-scale dynamic sled testing. AGATE subcomponent methodology involves static tests of the energy-absorbing foam cushions and design validation by conducting a full-scale dynamic seat test. Microscopic and macroscopic studies are necessary to provide a complete understanding about performance of foams during the crash. Much investigation has been done by different sources to obtain the reliable modeling in terms of demonstration of mechanical behavior of foams. However, rate sensitivity of foams needs more attention. A mathematical hybrid dynamic model for the cushion underneath of the human body will be taken into consideration in this research. Analytical and finite element codes such as MADYMO and LS-DYNA codes have the potential to greatly speed up the crashworthy design process, to help certify seats and aircraft to dynamic crash loads, to predict seat and occupant response to impact with the probability of injury, and to evaluate numerous crash scenarios not economically feasible with full-scale crash testing. Therefore, these codes are being used to find the accurate response of spinal load during the impact of model including human body, seat cushion and seat under different acceleration pulses. (Abstract shortened by UMI.)
Universal breakaway steel post for other applications.
DOT National Transportation Integrated Search
2014-04-01
The Universal Breakaway Steel Post (UBSP) was developed and evaluated to replace the existing Controlled Release : Terminal (CRT) wood posts which were used in the original bullnose guardrail system. Previously, three full-scale crash : tests were pe...
Croft, Arthur C; Philippens, Mathieu M G M
2007-03-01
Human subjects and the recently developed RID2 rear impact crash test dummy were exposed to a series of full scale, vehicle-to-vehicle crash tests. To evaluate the biofidelity of the RID2 anthropometric test dummy on the basis of calculated neck injury criterion (NIC) values by comparing these values to those obtained from human subjects exposed in the very same crashes. The widely used and familiar hybrid III dummy has been said to lack biofidelity in the special application of low speed rear impact crashes. Several attempts have been made to modify this dummy with only marginal success. Two completely new dummies have been developed; the BioRID and the RID2. Neither have been tested under real world crash boundary conditions in side-by-side comparisons with live human subjects. Volunteer subjects, including a 50th percentile male, a 95th percentile male, and a 50th percentile female, were placed in the driver's seat of a vehicle and subjected to a series of three low speed rear impact crashes each. The RID2 dummy, which is modeled after a 50th percentile male, was placed in the passenger seat in each case. Both subjects and dummy were fully instrumented and acceleration-time histories were recorded. From this data, velocities of the heads and torsos were determined and both were used to calculate the NIC values for both crash test subjects and the RID2. The RID2 demonstrated generally higher head accelerations and NIC values than those of the human subjects. Most of the observed variations might be explained on the basis of differing head restraint geometry, posture, and body size. The RID2 NIC values compared most favorably with those of the 50th percentile male subject. For the whole group, the correlations between RID2 and human subjects did not reach statistical significance. The small number of test subjects and crash tests limited the statistical power of this pilot study, and the correlation between the RID2 and human subject NIC values were not statistically significant. The overall qualitative performance and biofidelity of the RID2 was reasonable when compared with the male human 50th percentile subject. Its overall higher ranges of head acceleration and calculated NIC values compared to all of the human subjects were generally consistent. This condition could likely be improved by increasing the stiffness of the RID2 neck. Biofidelic validation of the RID2 will require ongoing testing using a larger number of human subjects and varying boundary conditions. The results of this pilot study, while encouraging, should be considered preliminary.
DOT National Transportation Integrated Search
2004-11-13
As a part of ongoing passenger rail equipment safety research, a full-scale impact test of two cars with energy absorbing end structures was carried out on February 26, 2004. In this test, two coupled cars impacted a rigid barrier at 29 mph. Similar ...
DOT National Transportation Integrated Search
2011-09-01
This report presents the results of a locomotive and three loaded hopper car consist traveling at 29 miles per hour colliding with a stationary consist of 35 loaded hopper cars. The details of test instrumentation, LS-DYNA finite element simulation, ...
Test matrices for evaluating cable median barriers placed in v-ditches.
DOT National Transportation Integrated Search
2012-07-01
Cable barrier systems designed to be used in median ditches have been traditionally full-scale crash tested placed either : within 4 ft from the slope break point (SBP) of a 4H:1V front slope or near the bottom of the ditch. Recently, there has been ...
MGS dynamic deflections and working widths at lower speeds.
DOT National Transportation Integrated Search
2015-09-01
The Midwest Guardrail System (MGS) has been full-scale crash tested in many configurations, including : installations adjacent to slopes, with different types of wood posts, with and without blockouts, for culvert and bridge : applications, and at hi...
A Comparative Analysis of Two Full-Scale MD-500 Helicopter Crash Tests
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2011-01-01
Two full scale crash tests were conducted on a small MD-500 helicopter at NASA Langley Research Center fs Landing and Impact Research Facility. One of the objectives of this test series was to compare airframe impact response and occupant injury data between a test which outfitted the airframe with an external composite passive energy absorbing honeycomb and a test which had no energy absorbing features. In both tests, the nominal impact velocity conditions were 7.92 m/sec (26 ft/sec) vertical and 12.2 m/sec (40 ft/sec) horizontal, and the test article weighed approximately 1315 kg (2900 lbs). Airframe instrumentation included accelerometers and strain gages. Four Anthropomorphic Test Devices were also onboard; three of which were standard Hybrid II and III, while the fourth was a specialized torso. The test which contained the energy absorbing honeycomb showed vertical impact acceleration loads of approximately 15 g, low risk for occupant injury probability, and minimal airframe damage. These results were contrasted with the test conducted without the energy absorbing honeycomb. The test results showed airframe accelerations of approximately 40 g in the vertical direction, high risk for injury probability in the occupants, and substantial airframe damage.
Safer bridge railings, volume 1 summary report.
DOT National Transportation Integrated Search
1984-06-01
This study consisted of strength analyses of five in-service bridge railing systems, thirty full-scale vehicle crash tests on those railing systems and on a load measuring wall, the development of recommended design guidelines and deve1opment of reco...
Homogenization of Vehicle Fleet Frontal Crash Pulses from 2000–2010
Locey, Caitlin M.; Garcia-Espana, J. Felipe; Toh, Akira; Belwadi, Aditya; Arbogast, Kristy B.; Maltese, Matthew R.
2012-01-01
Full-scale vehicle crash tests are performed globally to assess vehicle structure and restraint system performance. The crash pulse, captured by accelerometers mounted within the occupant compartment, measures the motion of the vehicle during the impact event. From an occupant’s perspective, the crash pulse is the inertial event to which the vehicle’s restraint systems must respond in order to mitigate the forces and accelerations that act on a passenger, and thus reduce injury risk. The objective of this study was to quantify the characteristics of crash pulses for different vehicle types in the contemporary North American fleet, and delineate current trends in crash pulse evolution. NHTSA and Transport Canada crash test databases were queried for full-frontal rigid barrier crash tests of passenger vehicles model year 2000–2010 with impact angle equaling zero degrees. Acceleration-time histories were analyzed for all accelerometers attached to the vehicle structure within the occupant compartment. Custom software calculated the following crash pulse characteristics (CPCs): peak deceleration, time of peak deceleration, onset rate, pulse duration, and change in velocity. Vehicle body types were classified by adapting the Highway Loss Data Institute (HLDI) methodology, and vehicles were assigned a generation start year in place of model year in order to more accurately represent structural change over time. 1094 vehicle crash tests with 2795 individual occupant compartment-mounted accelerometers were analyzed. We found greater peak decelerations and and shorter pulse durations across multiple vehicle types in newer model years as compared to older. For midsize passenger cars, large passenger cars, and large SUVs in 56 km/h rigid barrier tests, maximum deceleration increased by 0.40, 0.96, and 1.57 g/year respectively, and pulse duration decreased by 0.74, 1.87, and 2.51 ms/year. We also found that the crash pulse characteristics are becoming more homogeneous in the modern vehicle fleet; the range of peak deceleration values for all vehicle classes decreased from 17.1 g in 1997–1999 generation start years to 10.7 g in 2009–2010 generation years, and the pulse duration range decreased from 39.5 ms to 13.4 ms for the same generation year groupings. This latter finding suggests that the designs of restraint systems may become more universally applicable across vehicle body types, since the occupant compartment accelerations are not as divergent for newer vehicles. PMID:23169139
1969-01-16
Concept model of the Lunar Excursion Module tested in the Full-Scale wind tunnel. -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 356.-L69-670 Bell Lunar Landing Training Vehicle (LLTV): Following the crash of a sister Lunar Landing Training Vehicle at Ellington Field in Houston, Texas, the LLTV NASA 952 was sent from Houston to Langley for tests in the 30 x 60 Full Scale Tunnel. The LLTV was returned to Houston for further training use a short time later. NASA 952 is now on exhibit at the Johnson Space Center in Houston, Texas.
Evaluation of the First Transport Rotorcraft Airframe Crash Testbed (TRACT 1) Full-Scale Crash Test
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Littell, Justin D.; Jackson, Karen E.; Bark, Lindley W.; DeWeese, Rick L.; McEntire, B. Joseph
2014-01-01
In 2012, the NASA Rotary Wing Crashworthiness Program initiated the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program by obtaining two CH-46E helicopters from the Navy CH-46E Program Office (PMA-226) at the Navy Flight Readiness Center in Cherry Point, North Carolina. Full-scale crash tests were planned to assess dynamic responses of transport-category rotorcraft under combined horizontal and vertical impact loading. The first crash test (TRACT 1) was performed at NASA Langley Research Center's Landing and Impact Research Facility (LandIR), which enables the study of critical interactions between the airframe, seat, and occupant during a controlled crash environment. The CH-46E fuselage is categorized as a medium-lift rotorcraft with fuselage dimensions comparable to a regional jet or business jet. The first TRACT test (TRACT 1) was conducted in August 2013. The primary objectives for TRACT 1 were to: (1) assess improvements to occupant loads and displacement with the use of crashworthy features such as pre-tensioning active restraints and energy absorbing seats, (2) develop novel techniques for photogrammetric data acquisition to measure occupant and airframe kinematics, and (3) provide baseline data for future comparison with a retrofitted airframe configuration. Crash test conditions for TRACT 1 were 33-ft/s forward and 25-ft/s vertical combined velocity onto soft soil, which represent a severe, but potentially survivable impact scenario. The extraordinary value of the TRACT 1 test was reflected by the breadth of meaningful experiments. A total of 8 unique experiments were conducted to evaluate ATD responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and photogrammetric techniques. A combination of Hybrid II, Hybrid III, and ES-2 Anthropomorphic Test Devices (ATDs) were placed in forward and side facing seats and occupant results were compared against injury criteria. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats, legacy troop bench seats, and a three-tiered patient litter. In addition, two standing ATDs were used to evaluate the benefit of Mobile Aircrew Restraint Systems (MARS) versus a standard gunner's belt. The ATD with the MARS survived the impact, while fatal head blunt trauma occurred for the standing ATD held by the legacy gunner's belt. In addition to occupant loading, the structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation.
Constrained Laboratory vs. Unconstrained Steering-Induced Rollover Crash Tests.
Kerrigan, Jason R; Toczyski, Jacek; Roberts, Carolyn; Zhang, Qi; Clauser, Mark
2015-01-01
The goal of this study was to evaluate how well an in-laboratory rollover crash test methodology that constrains vehicle motion can reproduce the dynamics of unconstrained full-scale steering-induced rollover crash tests in sand. Data from previously-published unconstrained steering-induced rollover crash tests using a full-size pickup and mid-sized sedan were analyzed to determine vehicle-to-ground impact conditions and kinematic response of the vehicles throughout the tests. Then, a pair of replicate vehicles were prepared to match the inertial properties of the steering-induced test vehicles and configured to record dynamic roof structure deformations and kinematic response. Both vehicles experienced greater increases in roll-axis angular velocities in the unconstrained tests than in the constrained tests; however, the increases that occurred during the trailing side roof interaction were nearly identical between tests for both vehicles. Both vehicles experienced linear accelerations in the constrained tests that were similar to those in the unconstrained tests, but the pickup, in particular, had accelerations that were matched in magnitude, timing, and duration very closely between the two test types. Deformations in the truck test were higher in the constrained than the unconstrained, and deformations in the sedan were greater in the unconstrained than the constrained as a result of constraints of the test fixture, and differences in impact velocity for the trailing side. The results of the current study suggest that in-laboratory rollover tests can be used to simulate the injury-causing portions of unconstrained rollover crashes. To date, such a demonstration has not yet been published in the open literature. This study did, however, show that road surface can affect vehicle response in a way that may not be able to be mimicked in the laboratory. Lastly, this study showed that configuring the in-laboratory tests to match the leading-side touchdown conditions could result in differences in the trailing side impact conditions.
Loo, B P Y; Tsui, K L
2007-06-01
This paper aims to determine the percentage of road crashes resulting in injuries requiring hospital care that are reported to the police and to identify factors associated with reporting such crashes to the police. The data of one of two hospitals in the Road Casualty Information System were matched with the police's Traffic Accident Database System. Factors affecting the police-reporting rate were examined at two levels: the different reporting rates among subgroups examined and tested with chi2 tests; and multiple explanatory factors were scrutinised with a logistic regression model to arrive at the odds ratios to reflect the probability of police-reporting among subgroups. The police-reporting rate was estimated to be 57.5-59.9%. In particular, under-reporting among children (reporting rate = 33.6%) and cyclists (reporting rate = 33.0%) was notable. Accurate and reliable road crash data are essential for unveiling the full-scale and nature of the road safety problem. The police crash database needs to be supplemented by other data. In particular, any estimation about the social costs of road crashes must recognise the under-reporting problem. The large number of injuries not reflected in the police crash database represents a major public health issue that should be carefully examined.
Collision safety comparison of conventional and crash energy management passenger rail car designs
DOT National Transportation Integrated Search
2003-04-22
In conjunction with full-scale equipment tests, collision dynamics models of passenger rail cars have been developed to investigate the benefits provided by incorporating energy-absorbing crush zones at the ends of the cars. In a collision, the major...
Midwest guardrail system (MGS) with an omitted post.
DOT National Transportation Integrated Search
2016-02-22
The objective of this research study was to evaluate the MGS (31 tall W-beam guardrail) with an omitted post according to the safety performance criteria provided in MASH. A single full-scale crash test was conducted with the 2270P pickup truck in...
Survey of NASA research on crash dynamics
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Carden, H. D.; Hayduk, R. J.
1984-01-01
Ten years of structural crash dynamics research activities conducted on general aviation aircraft by the National Aeronautics and Space Administration (NASA) are described. Thirty-two full-scale crash tests were performed at Langley Research Center, and pertinent data on airframe and seat behavior were obtained. Concurrent with the experimental program, analytical methods were developed to help predict structural behavior during impact. The effects of flight parameters at impact on cabin deceleration pulses at the seat/occupant interface, experimental and analytical correlation of data on load-limiting subfloor and seat configurations, airplane section test results for computer modeling validation, and data from emergency-locator-transmitter (ELT) investigations to determine probable cause of false alarms and nonactivations are assessed. Computer programs which provide designers with analytical methods for predicting accelerations, velocities, and displacements of collapsing structures are also discussed.
Crash Testing and Simulation of a Cessna 172 Aircraft: Pitch Down Impact Onto Soft Soil
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.
2016-01-01
During the summer of 2015, NASA Langley Research Center conducted three full-scale crash tests of Cessna 172 (C-172) aircraft at the NASA Langley Landing and Impact Research (LandIR) Facility. The first test represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test, which is the focus of this paper, represented a controlled-flight-into-terrain (CFIT) with a nose-down pitch attitude of the aircraft, which impacted onto soft soil. The third test, also conducted onto soil, represented a CFIT with a nose-up pitch attitude of the aircraft, which resulted in a tail strike condition. These three crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters (ELTs) and to generate impact test data for model validation. LS-DYNA finite element models were generated to simulate the three test conditions. This paper describes the model development and presents test-analysis comparisons of acceleration and velocity time-histories, as well as a comparison of the time sequence of events for Test 2 onto soft soil.
Relationship between accident severity and full-scale crash test. Volume II, Appendices
DOT National Transportation Integrated Search
1984-08-01
Available accident files are used to generate a 4l2-accident data base of guardrail impacts. This base is analyzed to develop a statistical model for predicting accident severity index (ASI) as a function of vehicle type or weight, impact speed, and ...
Roberts, Carolyn W; Toczyski, Jacek; Kerrigan, Jason R
2018-04-22
While rollover crashes are rare, approximately one third of vehicle occupant fatalities occur in rollover crashes. Most severe-to-fatal injuries resulting from rollover crashes occur in the head or neck region, due to head and neck interaction with the roof during the crash. While many studies have used anthropomorphic test devices (ATDs) to predict head and neck injury, the biofidelity of ATDs in rollover has not been established. This study aims to build on previous research to compare the dynamic response and injuries sustained by four post mortem human surrogates (PMHS) to those predicted by six different ATDs in full-scale rollover crash tests. Additionally, this study evaluates injuries sustained by PMHS relative to possible contributing factors including occupant kinematics, occupant anthropometry, and vehicle roof deformation. While the vehicle kinematics and roof deformation were comparable for all tests, three out of the four PMHS sustained cervical spine injury, but only the tallest specimen sustained cervical spine fracture. Neck flexion at the time of head-to-roof contact appears to have affected cervical spine injury risk in these cases. Despite the injuries sustained in the PMHS, none of the six ATDs measured forces or accelerations that exceeded injury assessment reference values (IARVs), which adds to recent literature illustrating substantial differences between ATDs and PMHS in a rollover-like scenario. Copyright © 2018. Published by Elsevier Ltd.
ATD Occupant Responses from Three Full-Scale General Aviation Crash Tests
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Annett, Martin S.
2016-01-01
During the summer of 2015, three Cessna 172 General Aviation (GA) aircraft were crash tested at the Landing and Impact Research (LandIR) Facility at NASA Langley Research Center (LaRC). Three different crash scenarios were represented. The first test simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway. The second test simulated a controlled flight into terrain with a nose down pitch of the aircraft, and the third test simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system (DAS) captured 64 channels of airframe acceleration, along with accelerations and loads in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices (ATDs) representing the pilot and copilot. Each of the three tests contained different airframe loading conditions and different types of restraints for both the pilot and co-pilot ATDs. The results show large differences in occupant response and restraint performance with varying likelihoods of occupant injury.
Crash test and evaluation of temporary wood sign support system for large guide signs.
DOT National Transportation Integrated Search
2016-07-01
The objective of this research task was to evaluate the impact performance of a temporary wood sign support : system for large guide signs. It was desired to use existing TxDOT sign hardware in the design to the extent possible. : The full-scale cras...
DOT National Transportation Integrated Search
1984-08-01
Available accident files are used to generate a 4l2-accident data base of guardrail impacts. This base is analyzed to develop a statistical model for predicting accident severity index (ASI) as a function of vehicle type or weight, impact speed, and ...
DOT National Transportation Integrated Search
2013-03-01
Work zone traffic control devices such as temporary single sign supports are a primary means to communicate : information to motorists in work zone areas. The Federal Highway Administration and the Manual on Uniform Traffic : Control Devices require ...
Application of Probability Methods to Assess Crash Modeling Uncertainty
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Stockwell, Alan E.; Hardy, Robin C.
2003-01-01
Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stress-strain behaviors, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the effects of finite element modeling assumptions on the predicted responses. The vertical drop test of a Fokker F28 fuselage section will be the focus of this paper. The results of a probabilistic analysis using finite element simulations will be compared with experimental data.
Application of Probability Methods to Assess Crash Modeling Uncertainty
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Stockwell, Alan E.; Hardy, Robin C.
2007-01-01
Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stress-strain behaviors, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the effects of finite element modeling assumptions on the predicted responses. The vertical drop test of a Fokker F28 fuselage section will be the focus of this paper. The results of a probabilistic analysis using finite element simulations will be compared with experimental data.
Accelerations and Passenger Harness Loads Measured in Full-Scale Light-Airplane Crashes
NASA Technical Reports Server (NTRS)
Eiband, A. Martin; Simpkinson, Scott H.; Black, Dugald O.
1953-01-01
Full-scale light-airplane crashes simulating stall-spin accidents were conducted to determine the decelerations to which occupants are exposed and the resulting harness forces encountered in this type of accident. Crashes at impact speeds from 42 to 60 miles per hour were studied. The airplanes used were of the familiar steel-tube, fabric-covered, tandem, two-seat type. In crashes up to an impact speed of 60 miles per hour, crumpling of the forward fuselage structure prevented the maximum deceleration at the rear-seat location from exceeding 26 to 33g. This maximum g value appeared independent of the impact speed. Restraining forces in the seatbelt - shoulder-harness combination reached 5800 pounds. The rear-seat occupant can survive crashes of the type studied at impact speeds up to 60 miles per hour, if body movement is restrained by an adequate seatbelt-shoulder-harness combination so as to prevent injurious contact with obstacles normally present in the cabin. Inwardly collapsing cabin structure, however, is a potential hazard in the higher-speed crashes.
Mechanism of Start and Development of Aircraft Crash Fires
NASA Technical Reports Server (NTRS)
Pinkel, I. Irving; Preston, G. Merritt; Pesman, Gerard J.
1952-01-01
Full-scale aircraft crashes were made to investigate the mechanism of the start and development of aircraft crash fires. The results are discussed herein. This investigation revealed the characteristics of the ignition sources, the manner in which the combustibles spread, the mechanism of the union of the combustibles and ignition sources, and the pertinent factors governing the development of a crash fire as observed in this program.
Railing systems for use on timber deck bridges
Ronald K. Faller; Michael A. Ritter; Barry T. Rosson; Sheila R. Duwadi
1999-01-01
Bridge railing systems in the United States have historically been designed based on static load criteria given in the AASHTO Standard Specifications for Highway Bridges. In the past decade, full-scale vehicle crash testing has been recognized as a more appropriate and reliable method of evaluating bridge railing acceptability. In 1989. AASHTO published the Guide...
Crashworthy railing for timber bridges
Michael A. Ritter; Ronald K. Faller; Sheila Rimal Duwadi
1999-01-01
Bridge railing systems in the United States have historically beers designed based on static load criteria given in the American Association of State Highway and Transportation 0fficials (AASHTO) Standard Specifications for Highway Bridges. In the past decade, full-scale vehicle crash testing has been recognized as a more appropriate and reliable method of evaluating...
Full Spectrum Crashworthiness Criteria for Rotorcraft
2011-12-01
hydraulic orifice and metering pin technologies. One drawback of this technology is that the shock strut loads can exceed the design strength allowable...where the velocity v is to be computed. For example, using a pendulum -style swing method for full-scale aircraft crash tests introduces a pitch...performed at LandIR using a parallel pendulum swing technique (Figure 6-10). Equidistant pivot-point platforms are located at the top of the gantry
Melvin, John W; Begeman, Paul C; Faller, Ronald K; Sicking, Dean L; McClellan, Scott B; Maynard, Edwin; Donegan, Michael W; Mallott, Annette M; Gideon, Thomas W
2006-11-01
Biomechanical analysis of Indy car crashes using on-board impact recorders (Melvin et al. 1998, Melvin et al. 2001) indicates that Indy car driver protection in high-energy crashes can be achieved in frontal, side, and rear crashes with severities in the range of 100 to 135 G peak deceleration and velocity changes in the range of 50 to 70 mph. These crashes were predominantly single-car impacts with the rigid concrete walls of oval tracks. This impressive level of protection was found to be due to the unique combination of a very supportive and tight-fitting cockpit-seating package, a six-point belt restraint system, and effective head padding with an extremely strong chassis that defines the seat and cockpit of a modern Indy car. In 2000 and 2001, a series of fatal crashes in stock car racing created great concern for improving the crash protection for drivers in those racecars. Unlike the Indy car, the typical racing stock car features a more spacious driver cockpit due to its resemblance to the shape of a passenger car. The typical racing seat used in stock cars did not have the same configuration or support characteristics of the Indy car seat, and five-point belt restraints were used. The tubular steel space frame chassis of a stock car also differs from an Indy car's composite chassis structure in both form and mechanical behavior. This paper describes the application of results of the biomechanical analysis of the Indy car crash studies to the unique requirements of stock car racing driver crash protection. Sled test and full-scale crash test data using both Hybrid III frontal crash anthropomorphic test devices (ATDs) and BioSID side crash ATDs for the purpose of evaluating countermeasures involving restraint systems, seats and head/neck restraints has been instrumental in guiding these developments. In addition, the development of deformable walls for oval tracks (the SAFER Barrier) is described as an adjunct to improved occupant restraint through control of the crash forces acting on a racing car. NASCAR (National Association for Stock Car Auto Racing, Inc) implemented crash recording in stock car racing in its three national series in 2002. Data from 2925 crashes from 2002 through the 2005 season are summarized in terms of crash severity, crash direction, injury outcome, and protective system performance.
Crash Simulation of a Vertical Drop Test of a B737 Fuselage Section with Overhead Bins and Luggage
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.
2004-01-01
The focus of this paper is to describe a crash simulation of a 30-ft/s vertical drop test of a Boeing 737 (B737) fuselage section. The drop test of the 10-ft. long fuselage section of a B737 aircraft was conducted in November of 2000 at the FAA Technical Center in Atlantic City, NJ. The fuselage section was outfitted with two different commercial overhead stowage bins. In addition, 3,229-lbs. of luggage were packed in the cargo hold to represent a maximum take-off weight condition. The main objective of the test was to evaluate the response and failure modes of the overhead stowage bins in a narrow-body transport fuselage section when subjected to a severe, but survivable, impact. A secondary objective of the test was to generate experimental data for correlation with the crash simulation. A full-scale 3-dimensional finite element model of the fuselage section was developed and a crash simulation was conducted using the explicit, nonlinear transient dynamic code, MSC.Dytran. Pre-test predictions of the fuselage and overhead bin responses were generated for correlation with the drop test data. A description of the finite element model and an assessment of the analytical/experimental correlation are presented. In addition, suggestions for modifications to the model to improve correlation are proposed.
A Summary of DOD-Sponsored Research Performed at NASA Langley's Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.
2004-01-01
The Impact Dynamics Research Facility (IDRF) is a 240-ft.-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The IDRF was originally built in the early 1960's for use as a Lunar Landing Research Facility. As such, the facility was configured to simulate the reduced gravitational environment of the Moon, allowing the Apollo astronauts to practice lunar landings under realistic conditions. In 1985, the IDRF was designated a National Historic Landmark based on its significant contributions to the Apollo Moon Landing Program. In the early 1970's the facility was converted into its current configuration as a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft, airframe components, and space vehicles in support of the General Aviation (GA) aircraft industry, the U.S. Department of Defense (DOD), the rotorcraft industry, and the NASA Space program. The objectives of this paper are twofold: to describe the IDRF facility and its unique capabilities for conducting structural impact testing, and to summarize the impact tests performed at the IDRF in support of the DOD. These tests cover a time period of roughly 2 1/2 decades, beginning in 1975 with the full-scale crash test of a CH-47 Chinook helicopter, and ending in 1999 with the external fuel system qualification test of a UH-60 Black Hawk helicopter. NASA officially closed the IDRF in September 2003; consequently, it is important to document the past contributions made in improved human survivability and impact tolerance through DOD-sponsored research performed at the IDRF.
Energy absorption studied to reduce aircraft crash forces
NASA Technical Reports Server (NTRS)
1981-01-01
The NASA/FAA aircraft safety reseach programs for general aviation aircraft are discussed. Energy absorption of aircraft subflooring and redesign of interior flooring are being studied. The testing of energy absorbing configurations is described. The three NASA advanced concepts performed at neary the maximum possible amount of energy absorption, and one of two minimum modifications concepts performed well. Planned full scale tests are described. Airplane seat concepts are being considered.
Crash test ratings and real-world frontal crash outcomes: a CIREN study.
Ryb, Gabriel E; Burch, Cynthia; Kerns, Timothy; Dischinger, Patricia C; Ho, Shiu
2010-05-01
To establish whether the Insurance Institute for Highway Safety (IIHS) offset crash test ratings are linked to different mortality rates in real world frontal crashes. The study used Crash Injury Research Engineering Network drivers of age older than 15 years who were involved in frontal crashes. The Crash Injury Research Engineering Network is a convenience sample of persons injured in crashes with at least one Abbreviated Injury Scale score of 3+ injury or two Abbreviated Injury Scale score of 2+ injuries who were either treated at a Level I trauma center or died. Cases were grouped by IIHS crash test ratings (i.e., good, acceptable, marginal, poor, and not rated). Those rated marginal were excluded because of their small numbers. Mortality rates experienced by these ratings-based groups were compared using the Mantel-Haenszel chi test. Multiple logistic regression models were built to adjust for confounders (i.e., occupant, vehicular, and crash factors). A total of 1,226 cases were distributed within not rated (59%), poor (12%), average (16%), and good (14%) categories. Those rated good and average experienced a lower unadjusted mortality rate. After adjustment by confounders, those in vehicles rated good experienced a lower risk of death (adjusted OR 0.38 [0.16-0.90]) than those in vehicles rated poor. There was no significant effect for "acceptable" rating. Other factors influencing the occurrence of death were age, DeltaV >or=70 km/h, high body mass index, and lack of restraint use. After adjusting for occupant, vehicular, and crash factors, drivers of vehicles rated good by the IIHS experienced a lower risk of death in frontal crashes.
Mechanism of Start and Development of Aircraft Crash Fires
NASA Technical Reports Server (NTRS)
Pinkel, I. Irving; Preston, G. Merritt; Pesman, Gerard J.
1952-01-01
Full-scale aircraft crashes, devised to give surge fuel spillage and a high incidence of fire, were made to investigate the mechanism of the start and development of aircraft crash fires. The results are discussed. herein. This investigation revealed the characteristics of the ignition sources, the manner in which the combustibles spread., the mechanism of the union of the combustibles and ignition sources, and the pertinent factors governing the development of a crash fire as observed in this program.
Bumper and grille airbags concept for enhanced vehicle compatibility in side impact: phase II.
Barbat, Saeed; Li, Xiaowei; Prasad, Priya
2013-01-01
Fundamental physics and numerous field studies have shown a higher injury and fatality risk for occupants in smaller and lighter vehicles when struck by heavier, taller and higher vehicles. The consensus is that the significant parameters influencing compatibility in front-to-side crashes are geometric interaction, vehicle stiffness, and vehicle mass. The objective of this research is to develop a concept of deployable bumper and grille airbags for improved vehicle compatibility in side impact. The external airbags, deployed upon signals from sensors, may help mitigate the effect of weight, geometry and stiffness differences and reduce side intrusions. However, a highly reliable pre-crash sensing system is required to enable the reliable deployment, which is currently not technologically feasible. Analytical and numerical methods and hardware testing were used to help develop the deployable external airbags concept. Various Finite Element (FE) models at different stages were developed and an extensive number of iterations were conducted to help optimize airbag and inflator parameters to achieve desired targets. The concept development was executed and validated in two phases. This paper covers Phase II ONLY, which includes: (1) Re-design of the airbag geometry, pressure, and deployment strategies; (2) Further validation using a Via sled test of a 48 kph perpendicular side impact of an SUV-type impactor against a stationary car with US-SID-H3 crash dummy in the struck side; (3) Design of the reaction surface necessary for the bumper airbag functionality. The concept was demonstrated through live deployment of external airbags with a reaction surface in a full-scale perpendicular side impact of an SUV against a stationary passenger car at 48 kph. This research investigated only the concept of the inflatable devices since pre-crash sensing development was beyond the scope of this research. The concept design parameters of the bumper and grille airbags are presented in this paper. Full vehicle-to-vehicle crash test results, Via sled test, and simulation results are also presented. Head peak acceleration, Head Injury Criteria (HIC), Thoracic Trauma Index (TTI), and Pelvic acceleration for the SID-H3 dummy and structural intrusion profiles were used as performance metrics for the bumper and grille airbags. Results obtained from the Via sled tests and the full vehicle-to-vehicle tests with bumper and grille airbags were compared to those of baseline test results with no external airbags.
TRACT 2 Frame Drop Test AT NASA Langley Research Center's Landin
2014-05-09
(Tract)2 Transport Rotorcraft Airframe Crash Testbed; Full Frame Drop Test: rotary wing crash worthiness, impact research at NASA Langley Research Center's Landing and Impact Research (LandIR) Facility Building 1297
DOT National Transportation Integrated Search
2013-03-01
Current TxDOT practice allows installation of all existing chevron sizes on 7-ft mounting height, but restricts the use of 4-ft mounting height for the three smallest existing chevron signsthat is, 12 inches 18 inches, 18 inches 24 inches, a...
Brown, J Kristine; Jing, Yuezhou; Wang, Stewart; Ehrlich, Peter F
2006-02-01
Motor vehicle crashes (MVCs) account for 50% of pediatric trauma. Safety improvements are typically tested with child crash dummies using an in vitro model. The Crash Injury Research Engineering Network (CIREN) provides an in vivo validation process. Previous research suggest that children in lateral crashes or front-seat locations have higher Injury Severity Scale scores and lower Glasgow Coma Scale scores than those in frontal-impact crashes. However, specific injury patterns and crash characteristics have not been characterized. Data were collected from the CIREN multidisciplinary crash reconstruction network (10 pediatric trauma centers). Injuries were examined with regard to crash direction (frontal/lateral), restraint use, seat location, and change in velocity at impact (DeltaV). Injuries were limited to Abbreviated Injury Scale (AIS) scores of 3 or higher and included head, thoracic, abdominal, pelvic, spine, and long bone (orthopedic) injuries. Standard age groupings (0-4, 5-9, 10-14, and 15-18 years) were used. Statistical analyses used Fisher's Exact test and multiple logistic regressions. Four hundred seventeen MVCs with 2500 injuries were analyzed (males = 219, females = 198). Controlling for DeltaV and age, children in lateral-impact crashes (n = 232) were significantly more likely to suffer severe injuries to the head and thorax as compared with children in frontal crashes (n = 185), who were more likely to suffer severe spine and orthopedic injuries. Children in a front-seat (n = 236) vs those in a back-seat (n = 169) position had more injuries to the thoracic (27% vs 17%), abdominal (21% vs 13%), pelvic (11% vs 1%), and orthopedic (28% vs 10%) regions (P < .05 for all). Seat belts were protective for pelvic (5% vs 12% unbelted) and orthopedic (15% vs 40%) injuries (odds ratio = 3, P < .01 for both). A reproducible pattern of injury is noted for children involved in lateral-impact crashes characterized by head and chest injuries. The Injury Severity Scale scores were higher for children in front-seat positions. Increased lateral-impact safety measures such as mandatory side curtain airbags may decrease morbidity. Furthermore, continued public education for positioning children in the back seat of cars is warranted.
Differential Rollover Risk in Vehicle-to-Traffic Barrier Collisions
Gabauer, Douglas J.; Gabler, Hampton C.
2009-01-01
In the roadside safety community, there has been debate over the influence of vehicle and barrier type on rollover rates in traffic barrier crashes. This study investigated rollover rates between sport utility vehicles (SUVs), pickup trucks, and cars in vehicle-traffic barrier crashes and has examined the effect of barrier type on rollover risk for concrete barrier and metal barrier impacts. The analysis included 955 barrier impact cases that were selected from 11-years of in-depth crash data available through the National Automotive Sampling System (NASS) / Crashworthiness Data System (CDS). In real world tow-away level longitudinal barrier collisions, the most important predictors of vehicle rollover were found to be vehicle type and whether the vehicle was tracking prior to barrier impact. Based on binary logistic regression, SUVs were found to have 8 times the risk of rollover as cars in barrier impacts. Although pickups were found to have an increased risk of rollover compared to cars, the risk was not as pronounced as that found for SUVs. This finding has direct implications for the full scale crash testing of longitudinal barriers as the testing procedures have been predicated on the assumption that the pickup truck provides a critical or worst case impact scenario. In towaway crashes, our study does not support the notion that concrete barriers have a higher risk of vehicle rollover than metal beam barriers. PMID:20184839
Crash Test of an MD-500 Helicopter with a Deployable Energy Absorber Concept
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Jackson, Karen E.; Kellas, Sotiris
2010-01-01
On December 2, 2009, a full scale crash test was successfully conducted of a MD-500 helicopter at the NASA Langley Research Center Landing and Impact Research Facility . The purpose of this test was to evaluate a novel composite honeycomb deployable energy absorbing (DEA) concept for attenuation of structural and crew loads during helicopter crashes under realistic crash conditions. The DEA concept is an alternative to external airbags, and absorbs impact energy through crushing. In the test, the helicopter impacted the concrete surface with 11.83 m/s (38.8 ft/s) horizontal, 7.80 m/s (25.6 ft/s) vertical and 0.15 m/s (0.5 ft/s) lateral velocities; corresponding to a resultant velocity of 14.2 m/s (46.5 ft/s). The airframe and skid gear were instrumented with accelerometers and strain gages to determine structural integrity and load attenuation, while the skin of the airframe was covered with targets for use by photogrammetry to record gross vehicle motion before, during, and after the impact. Along with the collection of airframe data, one Hybrid III 50th percentile anthropomorphic test device (ATD), two Hybrid II 50th percentile ATDs and a specialized human surrogate torso model (HSTM) occupant were seated in the airframe and instrumented for the collection of occupant loads. Resultant occupant data showed that by using the DEA, the loads on the Hybrid II and Hybrid III ATDs were in the Low Risk regime for the injury criteria, while structural data showed the airframe retained its structural integrity post crash. Preliminary results show that the DEA is a viable concept for the attenuation of impact loads.
Figler, Bradley D; Mack, Christopher D; Kaufman, Robert; Wessells, Hunter; Bulger, Eileen; Smith, Thomas G; Voelzke, Bryan
2014-03-01
The National Highway Traffic Safety Administration's New Car Assessment Program (NCAP) implemented side-impact crash testing on all new vehicles since 1998 to assess the likelihood of major thoracoabdominal injuries during a side-impact crash. Higher crash test rating is intended to indicate a safer car, but the real-world applicability of these ratings is unknown. Our objective was to determine the relationship between a vehicle's NCAP side-impact crash test rating and the risk of major thoracoabdominal injury among the vehicle's occupants in real-world side-impact motor vehicle crashes. The National Automotive Sampling System Crashworthiness Data System contains detailed crash and injury data in a sample of major crashes in the United States. For model years 1998 to 2010 and crash years 1999 to 2010, 68,124 occupants were identified in the Crashworthiness Data System database. Because 47% of cases were missing crash severity (ΔV), multiple imputation was used to estimate the missing values. The primary predictor of interest was the occupant vehicle's NCAP side-impact crash test rating, and the outcome of interest was the presence of major (Abbreviated Injury Scale [AIS] score ≥ 3) thoracoabdominal injury. In multivariate analysis, increasing NCAP crash test rating was associated with lower likelihood of major thoracoabdominal injury at high (odds ratio [OR], 0.8; 95% confidence interval [CI], 0.7-0.9; p < 0.01) and medium (OR, 0.9; 95% CI, 0.8-1.0; p < 0.05) crash severity (ΔV), but not at low ΔV (OR, 0.95; 95% CI, 0.8-1.2; p = 0.55). In our model, older age and absence of seat belt use were associated with greater likelihood of major thoracoabdominal injury at low and medium ΔV (p < 0.001), but not at high ΔV (p ≥ 0.09). Among adults in model year 1998 to 2010 vehicles involved in medium and high severity motor vehicle crashes, a higher NCAP side-impact crash test rating is associated with a lower likelihood of major thoracoabdominal trauma. Epidemiologic study, level III.
Begg, Dorothy J; Langley, John D; Brookland, Rebecca L; Ameratunga, Shanthi; Gulliver, Pauline
2014-01-01
The aim of this study was to determine whether pre-licence driving experiences, that is driving before beginning the licensing process, increased or decreased crash risk as a car driver, during the learner or the restricted licence stages of the graduated driver licensing system (GDLS). Study participants were 15-24 year old members of the New Zealand Drivers Study (NZDS) - a prospective cohort study of newly licensed car drivers. The interview stages of the NZDS are linked to, the three licensing stages of the GDLS: learner, restricted and full. Baseline demographic (age, ethnicity, residential location, deprivation), personality (impulsivity, sensation seeking, aggression) and, behavioural data, (including pre-licensed driving behaviour), were obtained at the learner licence interview. Data on distance driven and crashes that occurred at the learner licence and restricted licence stages, were reported at the restricted and full licence interviews, respectively. Crash data were also obtained from police traffic crash report files and this was combined with the self-reported crash data. The analysis of the learner licence stage crashes, when only supervised driving is allowed, was based on the participants who had passed the restricted licence test and undertaken the NZDS, restricted licence interview (n=2358). The analysis of the restricted licence stage crashes, when unsupervised driving is first allowed, was based on those who had passed the full licence test and completed the full licence interview (n=1428). After controlling for a range of demographic, personality, behavioural variables and distance driven, Poisson regression showed that the only pre-licence driving behaviour that showed a consistent relationship with subsequent crashes was on-road car driving which was associated with an increased risk of being the driver in a car crash during the learner licence period. This research showed that pre-licensed driving did not reduce crash risk among learner or restricted licensed drivers, and in some cases (such as on-road car driving) may have increased risk. Young people should be discouraged from the illegal behaviour of driving a car on-road before licensing. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Morgan, Ray
2004-01-01
A project manager recounts his decisions before and during the aftermath of the crash of a full-size flying model of Quetzalcoatlus northropi. The unstable pterodactyl crashed without harming anyone, although it caused a local power outage. The manager summarizes lessons learned about flight testing prototypes, including the effects of impatience.
Full-Scale Transport controlled Impact Demonstration
NASA Technical Reports Server (NTRS)
Hayduk, R. J. (Compiler)
1986-01-01
The controlled impact demonstration (CID) test of a transport aircraft took place on December 1, 1984, crashing at a prepared site on Rogers Dry Lakebed, Edwards Air Force Base, California. The demonstration was a setback for the antimisting kerosene (AMK) researchers. The impact conditions, considerably different from the planned scenario, exposed large quantities of degraded AMK and hydraulic fluid and caused unexpectedly hot ignition sources, bulk loss of fuel from the right wing, airflow patterns over the wings and fuselage that were untested on AMK, and fuel intrusion into the lower fuselage. The test was much more severe than planned and is generally considered to be unrepresentative of the type of survivable crash that would benefit from AMK. Ninety-seven percent of the sensors on the fuselage and wing structure, seats, dummies, restraint systems, galley, and bins were active at impact. A wealth of sensor data was collected from this once-in-a-lifetime research test. The flight data recorder experiments on board were also generally successful.
Real-world injury patterns associated with Hybrid III sternal deflections in frontal crash tests.
Brumbelow, Matthew L; Farmer, Charles M
2013-01-01
This study investigated the relationship between the peak sternal deflection measurements recorded by the Hybrid III 50th percentile male anthropometric test device (ATD) in frontal crash tests and injury and fatality outcomes for drivers in field crashes. ATD sternal deflection data were obtained from the Insurance Institute for Highway Safety's 64 km/h, 40 percent overlap crashworthiness evaluation tests for vehicles with seat belt crash tensioners, load limiters, and good-rated structure. The National Automotive Sampling System Crashworthiness Data System (NASS-CDS) was queried for frontal crashes of these vehicles in which the driver was restrained by a seat belt and air bag. Injury probability curves were calculated by frontal crash type using the injuries coded in NASS-CDS and peak ATD sternal deflection data. Fatality Analysis Reporting System (FARS) front-to-front crashes with exactly one driver death were also studied to determine whether the difference in measured sternal deflections for the 2 vehicles was related to the odds of fatality. For center impacts, moderate overlaps, and large overlaps in NASS-CDS, the probability of the driver sustaining an Abbreviated Injury Scale (AIS) score ≥ 3 thoracic injury, or any nonextremity AIS ≥ 3 injury, increased with increasing ATD sternal deflection measured in crash tests. For small overlaps, however, these probabilities decreased with increasing deflection. For FARS crashes, the fatally injured driver more often was in the vehicle with the lower measured deflection in crash tests (55 vs. 45%). After controlling for other factors, a 5-mm difference in measured sternal deflections between the 2 vehicles was associated with a fatality odds ratio of 0.762 for the driver in the vehicle with the greater deflection (95% confidence interval = 0.373, 1.449). Restraint systems that reduce peak Hybrid III sternal deflection in a moderate overlap crash test are beneficial in real-world crashes with similar or greater overlap but likely have a disbenefit in crashes with small overlap. This may occur because belt-force limiters employed to control deflections allow excursion that could produce contact with interior vehicle components in small overlaps, given the more oblique occupant motion and potential inboard movement of the air bag. Although based on a limited number of cases, this interpretation is supported by differences in skeletal fracture locations among drivers in crashes with different overlaps. Current restraint systems could be improved by designs that reduce sternal deflection in moderate and large overlap crashes without increasing occupant excursion in small overlap crashes.
Plane down in the city: Operation Crash and Surge.
Kann, Duane F; Draper, Thomas W
2014-01-01
This article is about the experiences gained from the largest full-scale exercise ever conducted in the State of Florida, specifically regarding the Orlando International Airport (MCO) venues. The exercise was centred on an airplane crashing into a hotel just outside of MCO property. The scenario clarified details regarding Incident Command and the unique jurisdictional responsibilities associated with a large-scale mass casualty incident. There were additional challenges with airline operations, walking wounded, and information sharing that provided valuable experiences toward enhancing emergency operations. This article also outlines information gained by the MCO "go team" that traveled to San Francisco following the crash of Asiana flight 214. This real-life incident shone a light on many of the strengths and opportunities found throughout the MCO exercise and this article shows the interrelationship of both of these invaluable experiences.
Development of fire test methods for airplane interior materials
NASA Technical Reports Server (NTRS)
Tustin, E. A.
1978-01-01
Fire tests were conducted in a 737 airplane fuselage at NASA-JSC to characterize jet fuel fires in open steel pans (simulating post-crash fire sources and a ruptured airplane fuselage) and to characterize fires in some common combustibles (simulating in-flight fire sources). Design post-crash and in-flight fire source selections were based on these data. Large panels of airplane interior materials were exposed to closely-controlled large scale heating simulations of the two design fire sources in a Boeing fire test facility utilizing a surplused 707 fuselage section. Small samples of the same airplane materials were tested by several laboratory fire test methods. Large scale and laboratory scale data were examined for correlative factors. Published data for dangerous hazard levels in a fire environment were used as the basis for developing a method to select the most desirable material where trade-offs in heat, smoke and gaseous toxicant evolution must be considered.
Absorbable energy monitoring scheme: new design protocol to test vehicle structural crashworthiness.
Ofochebe, Sunday M; Enibe, Samuel O; Ozoegwu, Chigbogu G
2016-05-01
In vehicle crashworthiness design optimization detailed system evaluation capable of producing reliable results are basically achieved through high-order numerical computational (HNC) models such as the dynamic finite element model, mesh-free model etc. However the application of these models especially during optimization studies is basically challenged by their inherent high demand on computational resources, conditional stability of the solution process, and lack of knowledge of viable parameter range for detailed optimization studies. The absorbable energy monitoring scheme (AEMS) presented in this paper suggests a new design protocol that attempts to overcome such problems in evaluation of vehicle structure for crashworthiness. The implementation of the AEMS involves studying crash performance of vehicle components at various absorbable energy ratios based on a 2DOF lumped-mass-spring (LMS) vehicle impact model. This allows for prompt prediction of useful parameter values in a given design problem. The application of the classical one-dimensional LMS model in vehicle crash analysis is further improved in the present work by developing a critical load matching criterion which allows for quantitative interpretation of the results of the abstract model in a typical vehicle crash design. The adequacy of the proposed AEMS for preliminary vehicle crashworthiness design is demonstrated in this paper, however its extension to full-scale design-optimization problem involving full vehicle model that shows greater structural detail requires more theoretical development.
NASA Technical Reports Server (NTRS)
Hayduk, R. J.
1986-01-01
On December 1, 1984, NASA and the Federal Aviation Administration (FAA) conducted the first remotely piloted air-to-ground crash test of a transport category aircraft. The Full-Scale Transport Controlled Impact Demonstration (CID) was the culmination of 4 years of effort by the two agencies. NASA and the FAA had many objectives during the joint planning and execution of the Controlled Impact Demonstration. The structural loads experiment was very successful. Ninety-seven percent of the channels were active at impact. The data is still being assessed. Only a portion of the data is presented here; approximately 80 channels of data are available. Analysis of the remaining data is in progress. Interior photography was also very successful. One hundred percent of the cameras functioned. The film contains unique information on the development of fire and smoke in the interior of the aircraft. From a human tolerance point of view, the CID was simulation of a survivable crash.
[Artefacts of questionnaire-based psychological testing of drivers].
Łuczak, Anna; Tarnowski, Adam
2014-01-01
The purpose of this article is to draw attention to a significant role of social approval variable in the qustionnaire-based diagnosis of drivers' psychological aptitude. Three questionnaires were used: Formal Characteristics of Behavior - Temperament Inventory (FCB-TI), Eysenck Personality Questionnaire (EPQ-R(S) and Impulsiveness Questionnaire (Impulsiveness, Venturesomeness, Empathy - IVE). Three groups of drivers were analyzed: professional "without crashes" (N = 46), nonprofessional "without crashes" (N = 75), and nonprofessional "with crashes" (N = 75). Nonprofessional drivers "without crashes" significantly stood up against other drivers. Their personality profile, indicating a significantly utmost perseveration, emotional reactivity, neuroticism, impulsiveness and the lowest endurance did not fit in to the requirements to be met by drivers. The driver safety profile was characteristic of professional drivers (the lowest level of perseveration, impulsiveness and neuroticism and the highest level of endurance). Similar profile occurred among nonprofessional drivers--the offenders of road crashes. Compared to the nonprofessional "without crashes" group, professional drivers and offenders of road crashes were also characterized by a significantly higher score on the Lie scale, determining the need for social approval. This is likely to result from the study procedure according to which the result of professional drivers testing had an impact on a possible continuity of their job and that of nonprofessional drivers "with crashes" decided about possible recovery of the driving license. The variable of social approval can be a significant artifact in the study of psychological drivers' testing and reduce the reliability of the results of questionnaire methods.
Crash Testing and Simulation of a Cessna 172 Aircraft: Hard Landing Onto Concrete
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.
2016-01-01
A full-scale crash test of a Cessna 172 aircraft was conducted at the Landing and Impact Research Facility at NASA Langley Research Center during the summer of 2015. The purpose of the test was to evaluate the performance of Emergency Locator Transmitters (ELTs) that were mounted at various locations in the aircraft and to generate impact test data for model validation. A finite element model of the aircraft was developed for execution in LSDYNA to simulate the test. Measured impact conditions were 722.4-in/s forward velocity and 276-in/s vertical velocity with a 1.5deg pitch (nose up) attitude. These conditions were intended to represent a survivable hard landing. The impact surface was concrete. During the test, the nose gear tire impacted the concrete, followed closely by impact of the main gear tires. The main landing gear spread outward, as the nose gear stroked vertically. The only fuselage contact with the impact surface was a slight impact of the rearmost portion of the lower tail. Thus, capturing the behavior of the nose and main landing gear was essential to accurately predict the response. This paper describes the model development and presents test-analysis comparisons in three categories: inertial properties, time sequence of events, and acceleration and velocity time-histories.
Safety Analysis of Dual Purpose Metal Cask Subjected to Impulsive Loads due to Aircraft Engine Crash
NASA Astrophysics Data System (ADS)
Shirai, Koji; Namba, Kosuke; Saegusa, Toshiari
In Japan, the first Interim Storage Facility of spent nuclear fuel away from reactor site is being planned to start its commercial operation around 2010, in use of dual-purpose metal cask in the northern part of Main Japan Island. Business License Examination for safety design approval has started since March, 2007. To demonstrate the more scientific and rational performance of safety regulation activities on each phase for the first license procedure, CREPEI has executed demonstration tests with full scale casks, such as drop tests onto real targets without impact limiters(1) and seismic tests subjected to strong earthquake motions(2). Moreover, it is important to develop the knowledge for the inherent security of metal casks under extreme mechanical-impact conditions, especially for increasing interest since the terrorist attacks from 11th September 2001(3)-(6). This paper presents dynamic mechanical behavior of the metal cask lid closure system caused by direct aircraft engine crash and describes calculated results (especially, leak tightness based on relative dynamic displacements between metallic seals). Firstly, the local penetration damage of the interim storage facility building by a big passenger aircraft engine crash (diameter 2.7m, length 4.3m, weight 4.4ton, impact velocity 90m/s) has been examined. The reduced velocity is calculated by the local damage formula for concrete structure with its thickness of 70cm. The load vs. time function for this reduced velocity (60m/s) is estimated by the impact analysis using Finite Element code LS-DYNA with the full scale engine model onto a hypothetically rigid target. Secondly, as the most critical scenarios for the metal cask, two impact scenarios (horizontal impact hitting the cask and vertical impact onto the lid metallic seal system) are chosen. To consider the geometry of all bolts for two lids, the gasket reaction forces and the inner pressure of the cask cavity, the detailed three dimensional FEM models are developed and calculated. Main criteria for estimating the maximum leakage rate for the lid metallic seal system are no loss of the pre-stress of the lid bolts, no appearance of the plastic region between the metal seal flanges, and no large relative deformation of the lid seals. Finally, in both cases, the low leakage rate for the metal cask lid closure system under the impulsive loads due to aircraft engine crash will be proved thoroughly.
Deployable System for Crash-Load Attenuation
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jackson, Karen E.
2007-01-01
An externally deployable honeycomb structure is investigated with respect to crash energy management for light aircraft. The new concept utilizes an expandable honeycomb-like structure to absorb impact energy by crushing. Distinguished by flexible hinges between cell wall junctions that enable effortless deployment, the new energy absorber offers most of the desirable features of an external airbag system without the limitations of poor shear stability, system complexity, and timing sensitivity. Like conventional honeycomb, once expanded, the energy absorber is transformed into a crush efficient and stable cellular structure. Other advantages, afforded by the flexible hinge feature, include a variety of deployment options such as linear, radial, and/or hybrid deployment methods. Radial deployment is utilized when omnidirectional cushioning is required. Linear deployment offers better efficiency, which is preferred when the impact orientation is known in advance. Several energy absorbers utilizing different deployment modes could also be combined to optimize overall performance and/or improve system reliability as outlined in the paper. Results from a series of component and full scale demonstration tests are presented as well as typical deployment techniques and mechanisms. LS-DYNA analytical simulations of selected tests are also presented.
Design and Test of an Improved Crashworthiness Small Composite Airframe
NASA Technical Reports Server (NTRS)
Terry, James E.; Hooper, Steven J.; Nicholson, Mark
2002-01-01
The purpose of this small business innovative research (SBIR) program was to evaluate the feasibility of developing small composite airplanes with improved crashworthiness. A combination of analysis and half scale component tests were used to develop an energy absorbing airframe. Four full scale crash tests were conducted at the NASA Impact Dynamics Research Facility, two on a hard surface and two onto soft soil, replicating earlier NASA tests of production general aviation airplanes. Several seat designs and restraint systems including both an air bag and load limiting shoulder harnesses were tested. Tests showed that occupant loads were within survivable limits with the improved structural design and the proper combination of seats and restraint systems. There was no loss of cabin volume during the events. The analysis method developed provided design guidance but time did not allow extending the analysis to soft soil impact. This project demonstrated that survivability improvements are possible with modest weight penalties. The design methods can be readily applied by airplane designers using the examples in this report.
NASA Astrophysics Data System (ADS)
Youn, Younghan; Koo, Jeong-Seo
The complete evaluation of the side vehicle structure and the occupant protection is only possible by means of the full scale side impact crash test. But, auto part manufacturers such as door trim makers can not conduct the test especially when the vehicle is under the developing process. The main objective of this study is to obtain the design guidelines by a simple component level impact test. The relationship between the target absorption energy and impactor speed were examined using the energy absorbed by the door trim. Since each different vehicle type required different energy levels on the door trim. A simple impact test method was developed to estimate abdominal injury by measuring reaction force of the impactor. The reaction force will be converted to a certain level of the energy by the proposed formula. The target of absorption energy for door trim only and the impact speed of simple impactor are derived theoretically based on the conservation of energy. With calculated speed of dummy and the effective mass of abdomen, the energy allocated in the abdomen area of door trim was calculated. The impactor speed can be calculated based on the equivalent energy of door trim absorbed during the full crash test. With the proposed design procedure for the door trim by a simple impact test method was demonstrated to evaluate the abdominal injury. This paper describes a study that was conducted to determine sensitivity of several design factors for reducing abdominal injury values using the matrix of orthogonal array method. In conclusion, with theoretical considerations and empirical test data, the main objective, standardization of door trim design using the simple impact test method was established.
Creating pedestrian crash scenarios in a driving simulator environment.
Chrysler, Susan T; Ahmad, Omar; Schwarz, Chris W
2015-01-01
In 2012 in the United States, pedestrian injuries accounted for 3.3% of all traffic injuries but, disproportionately, pedestrian fatalities accounted for roughly 14% of traffic-related deaths (NHTSA 2014 ). In many other countries, pedestrians make up more than 50% of those injured and killed in crashes. This research project examined driver response to crash-imminent situations involving pedestrians in a high-fidelity, full-motion driving simulator. This article presents a scenario development method and discusses experimental design and control issues in conducting pedestrian crash research in a simulation environment. Driving simulators offer a safe environment in which to test driver response and offer the advantage of having virtual pedestrian models that move realistically, unlike test track studies, which by nature must use pedestrian dummies on some moving track. An analysis of pedestrian crash trajectories, speeds, roadside features, and pedestrian behavior was used to create 18 unique crash scenarios representative of the most frequent and most costly crash types. For the study reported here, we only considered scenarios where the car is traveling straight because these represent the majority of fatalities. We manipulated driver expectation of a pedestrian both by presenting intersection and mid-block crossing as well as by using features in the scene to direct the driver's visual attention toward or away from the crossing pedestrian. Three visual environments for the scenarios were used to provide a variety of roadside environments and speed: a 20-30 mph residential area, a 55 mph rural undivided highway, and a 40 mph urban area. Many variables of crash situations were considered in selecting and developing the scenarios, including vehicle and pedestrian movements; roadway and roadside features; environmental conditions; and characteristics of the pedestrian, driver, and vehicle. The driving simulator scenarios were subjected to iterative testing to adjust time to arrival triggers for the pedestrian actions. This article discusses the rationale behind creating the simulator scenarios and some of the procedural considerations for conducting this type of research. Crash analyses can be used to construct test scenarios for driver behavior evaluations using driving simulators. By considering trajectories, roadway, and environmental conditions of real-world crashes, representative virtual scenarios can serve as safe test beds for advanced driver assistance systems. The results of such research can be used to inform pedestrian crash avoidance/mitigation systems by identifying driver error, driver response time, and driver response choice (i.e., steering vs. braking).
Scaling effects in the impact response of graphite-epoxy composite beams
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.
1989-01-01
In support of crashworthiness studies on composite airframes and substructure, an experimental and analytical study was conducted to characterize size effects in the large deflection response of scale model graphite-epoxy beams subjected to impact. Scale model beams of 1/2, 2/3, 3/4, 5/6, and full scale were constructed of four different laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic. The beam specimens were subjected to eccentric axial impact loads which were scaled to provide homologous beam responses. Comparisons of the load and strain time histories between the scale model beams and the prototype should verify the scale law and demonstrate the use of scale model testing for determining impact behavior of composite structures. The nonlinear structural analysis finite element program DYCAST (DYnamic Crash Analysis of STructures) was used to model the beam response. DYCAST analysis predictions of beam strain response are compared to experimental data and the results are presented.
Li, Ye; Xing, Lu; Wang, Wei; Wang, Hao; Dong, Changyin; Liu, Shanwen
2017-10-01
Multi-vehicle rear-end (MVRE) crashes during small-scale inclement (SSI) weather cause high fatality rates on freeways, which cannot be solved by traditional speed limit strategies. This study aimed to reduce MVRE crash risks during SSI weather using different longitudinal driver assistance systems (LDAS). The impact factors on MVRE crashes during SSI weather were firstly analyzed. Then, four LDAS, including Forward collision warning (FCW), Autonomous emergency braking (AEB), Adaptive cruise control (ACC) and Cooperative ACC (CACC), were modeled based on a unified platform, the Intelligent Driver Model (IDM). Simulation experiments were designed and a large number of simulations were then conducted to evaluate safety effects of different LDAS. Results indicate that the FCW and ACC system have poor performance on reducing MVRE crashes during SSI weather. The slight improvement of sight distance of FCW and the limitation of perception-reaction time of ACC lead the failure of avoiding MVRE crashes in most scenarios. The AEB system has the better effect due to automatic perception and reaction, as well as performing the full brake when encountering SSI weather. The CACC system has the best performance because wireless communication provides a larger sight distance and a shorter time delay at the sub-second level. Sensitivity analyses also indicated that the larger number of vehicles and speed changes after encountering SSI weather have negative impacts on safety performances. Results of this study provide useful information for accident prevention during SSI weather. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Evaluation of the Euroncap Crash Test Safety Ratings in the Real World
Segui-Gomez, Maria; Lopez-Valdes, Francisco J.; Frampton, Richard
2007-01-01
We investigated whether the rating obtained in the EuroNCAP test procedures correlates with injury protection to vehicle occupants in real crashes using data in the UK Cooperative Crash Injury Study (CCIS) database from 1996 to 2005. Multivariate Poisson regression models were developed, using the Abbreviated Injury Scale (AIS) score by body region as the dependent variable and the EuroNCAP score for that particular body region, seat belt use, mass ratio and Equivalent Test Speed (ETS) as independent variables. Our models identified statistically significant relationships between injury severity and safety belt use, mass ratio and ETS. We could not identify any statistically significant relationships between the EuroNCAP body region scores and real injury outcome except for the protection to pelvis-femur-knee in frontal impacts where scoring “green” is significantly better than scoring “yellow” or “red”.
Hallman, Jason J; Brasel, Karen J; Yoganandan, Narayan; Pintar, Frank A
2009-10-01
Injury mechanisms from frontal airbags, first identified in anecdotal reports, are now well documented for pediatric, small female, and out-of-position occupants. In contrast, torso side airbags have not yet been consistently associated with specific injury risks in field assessments. To determine possible torso side airbag-related injuries, the present study identified crashes involving side airbags from reports within the CIREN, NASS, and SCI databases. Injury patterns were compared to patterns from lateral crashes in absence of side airbag. Splenic trauma (AIS 3+) was found present in five cases of torso side airbag deployment at lower impact severity (as measured by velocity change and compartment intrusion) than cases of splenic trauma without side airbag. Five additional cases were found to contain similar injury patterns but occurred with greater crash severity. To supplement case analyses, full scale sled tests were conducted with a THOR-NT dummy and cadaveric specimen. Four THOR tests with door- and seat-mounted torso side airbags confirmed that out-of-position (early inflation stage) airbag contact elevated thoracic injury metrics compared to optimal (fully inflated) contact. Out-of-position seat-mounted airbag deployment also produced AIS 3 splenic trauma in the cadaveric specimen. Due to potentially sudden or delayed onset of intraperitoneal hemorrhage and hypovolemic shock following splenic trauma, further biomechanical investigation of this anecdotal evidence is essential to identify injury mechanisms, prevention techniques, and methods for early diagnosis.
Hallman, Jason J.; Brasel, Karen J.; Yoganandan, Narayan; Pintar, Frank A.
2009-01-01
Injury mechanisms from frontal airbags, first identified in anecdotal reports, are now well documented for pediatric, small female, and out-of-position occupants. In contrast, torso side airbags have not yet been consistently associated with specific injury risks in field assessments. To determine possible torso side airbag-related injuries, the present study identified crashes involving side airbags from reports within the CIREN, NASS, and SCI databases. Injury patterns were compared to patterns from lateral crashes in absence of side airbag. Splenic trauma (AIS 3+) was found present in five cases of torso side airbag deployment at lower impact severity (as measured by velocity change and compartment intrusion) than cases of splenic trauma without side airbag. Five additional cases were found to contain similar injury patterns but occurred with greater crash severity. To supplement case analyses, full scale sled tests were conducted with a THOR-NT dummy and cadaveric specimen. Four THOR tests with door- and seat-mounted torso side airbags confirmed that out-of-position (early inflation stage) airbag contact elevated thoracic injury metrics compared to optimal (fully inflated) contact. Out-of-position seat-mounted airbag deployment also produced AIS 3 splenic trauma in the cadaveric specimen. Due to potentially sudden or delayed onset of intraperitoneal hemorrhage and hypovolemic shock following splenic trauma, further biomechanical investigation of this anecdotal evidence is essential to identify injury mechanisms, prevention techniques, and methods for early diagnosis. PMID:20184829
NASA Astrophysics Data System (ADS)
Henn, Philipp; Liewald, Mathias; Sindel, Manfred
2018-05-01
As lightweight design as well as crash performance are crucial to future car body design, exact material characterisation is important to use materials at their full potential and reach maximum efficiency. Within the scope of this paper, the potential of newly established bending-tension test procedure to characterise material crashworthiness is investigated. In this test setup for the determination of material failure, a buckling-bending test is coupled with a subsequent tensile test. If prior bending load is critical, tensile strength and elongation in the subsequent tensile test are dramatically reduced. The new test procedure therefore offers an applicable definition of failure as the incapacity of energy consumption in subsequent phases of the crash represents failure of a component. In addition to that, the correlation of loading condition with actual crash scenarios (buckling and free bending) is improved compared to three- point bending test. The potential of newly established bending-tension test procedure to characterise material crashworthiness is investigated in this experimental studys on two aluminium sheet alloys. Experimental results are validated with existing ductility characterisation from edge compression test.
Arregui-Dalmases, Carlos; Kerrigan, Jason R; Sanchez-Molina, David; Velazquez-Ameijide, Juan; Crandall, Jeff R
2015-01-01
Perform a systematic review for the most relevant pelvic injury research involving PMHS. The review begins with an explanation of the pelvic anatomy and a general description of pelvic fracture patterns followed by the particular case of pelvic fractures sustained in pedestrian-vehicle collisions. Field data documenting the vehicle, crash, and human risk factors for pedestrian pelvic injuries are assessed. A summary of full-scale PMHS tests and subsystem lateral pelvic tests is provided with an interpretation of the most significant findings for the most relevant studies. Based on the mechanisms of pedestrian pelvic injury, force, acceleration, and velocity and compression have been assessed as predictive variables by researchers although no consensus criterion exists.
Multi-Level Experimental and Analytical Evaluation of Two Composite Energy Absorbers
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.; Annett, Martin S.; Seal, Michael D., II
2015-01-01
Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45 deg/-45 deg/-45 deg/+45 deg] with respect to the vertical, or crush, direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soil, which is characterized as a sand/clay mixture. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.
Repeatability study of replicate crash tests: A signal analysis approach.
Seppi, Jeremy; Toczyski, Jacek; Crandall, Jeff R; Kerrigan, Jason
2017-10-03
To provide an objective basis on which to evaluate the repeatability of vehicle crash test methods, a recently developed signal analysis method was used to evaluate correlation of sensor time history data between replicate vehicle crash tests. The goal of this study was to evaluate the repeatability of rollover crash tests performed with the Dynamic Rollover Test System (DRoTS) relative to other vehicle crash test methods. Test data from DRoTS tests, deceleration rollover sled (DRS) tests, frontal crash tests, frontal offset crash tests, small overlap crash tests, small overlap impact (SOI) crash tests, and oblique crash tests were obtained from the literature and publicly available databases (the NHTSA vehicle database and the Insurance Institute for Highway Safety TechData) to examine crash test repeatability. Signal analysis of the DRoTS tests showed that force and deformation time histories had good to excellent repeatability, whereas vehicle kinematics showed only fair repeatability due to the vehicle mounting method for one pair of tests and slightly dissimilar mass properties (2.2%) in a second pair of tests. Relative to the DRS, the DRoTS tests showed very similar or higher levels of repeatability in nearly all vehicle kinematic data signals with the exception of global X' (road direction of travel) velocity and displacement due to the functionality of the DRoTS fixture. Based on the average overall scoring metric of the dominant acceleration, DRoTS was found to be as repeatable as all other crash tests analyzed. Vertical force measures showed good repeatability and were on par with frontal crash barrier forces. Dynamic deformation measures showed good to excellent repeatability as opposed to poor repeatability seen in SOI and oblique deformation measures. Using the signal analysis method as outlined in this article, the DRoTS was shown to have the same or better repeatability of crash test methods used in government regulatory and consumer evaluation test protocols.
Banks, Siobhan; Catcheside, Peter; Lack, Leon; Grunstein, Ron R; McEvoy, R Doug
2004-09-15
Partial sleep deprivation and alcohol consumption are a common combination, particularly among young drivers. We hypothesized that while low blood alcohol concentration (<0.05 g/dL) may not significantly increase crash risk, the combination of partial sleep deprivation and low blood alcohol concentration would cause significant performance impairment. Experimental Sleep Disorders Unit Laboratory 20 healthy volunteers (mean age 22.8 years; 9 men). Subjects underwent driving simulator testing at 1 am on 2 nights a week apart. On the night preceding simulator testing, subjects were partially sleep deprived (5 hours in bed). Alcohol consumption (2-3 standard alcohol drinks over 2 hours) was randomized to 1 of the 2 test nights, and blood alcohol concentrations were estimated using a calibrated Breathalyzer. During the driving task subjects were monitored continuously with electroencephalography for sleep episodes and were prompted every 4.5 minutes for answers to 2 perception scales-performance and crash risk. Mean blood alcohol concentration on the alcohol night was 0.035 +/- 0.015 g/dL. Compared with conditions during partial sleep deprivation alone, subjects had more microsleeps, impaired driving simulator performance, and poorer ability to predict crash risk in the combined partial sleep deprivation and alcohol condition. Women predicted crash risk more accurately than did men in the partial sleep deprivation condition, but neither men nor women predicted the risk accurately in the sleep deprivation plus alcohol condition. Alcohol at legal blood alcohol concentrations appears to increase sleepiness and impair performance and the detection of crash risk following partial sleep deprivation. When partially sleep deprived, women appear to be either more perceptive of increased crash risk or more willing to admit to their driving limitations than are men. Alcohol eliminated this behavioral difference.
Delamination Modeling of Composites for Improved Crash Analysis
NASA Technical Reports Server (NTRS)
Fleming, David C.
1999-01-01
Finite element crash modeling of composite structures is limited by the inability of current commercial crash codes to accurately model delamination growth. Efforts are made to implement and assess delamination modeling techniques using a current finite element crash code, MSC/DYTRAN. Three methods are evaluated, including a straightforward method based on monitoring forces in elements or constraints representing an interface; a cohesive fracture model proposed in the literature; and the virtual crack closure technique commonly used in fracture mechanics. Results are compared with dynamic double cantilever beam test data from the literature. Examples show that it is possible to accurately model delamination propagation in this case. However, the computational demands required for accurate solution are great and reliable property data may not be available to support general crash modeling efforts. Additional examples are modeled including an impact-loaded beam, damage initiation in laminated crushing specimens, and a scaled aircraft subfloor structures in which composite sandwich structures are used as energy-absorbing elements. These examples illustrate some of the difficulties in modeling delamination as part of a finite element crash analysis.
NASA Technical Reports Server (NTRS)
Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane
1995-01-01
Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.
Zaloshnja, Eduard; Miller, Ted; Council, Forrest; Persaud, Bhagwant
2004-01-01
This paper presents estimates for both the economic and comprehensive costs per crash for three police-coded severity groupings within 16 selected crash types and within two speed limit categories (
Zaloshnja, Eduard; Miller, Ted; Council, Forrest; Persaud, Bhagwant
2004-01-01
This paper presents estimates for both the economic and comprehensive costs per crash for three police-coded severity groupings within 16 selected crash types and within two speed limit categories (<=45 and >=50 mph). The economic costs are hard dollar costs. The comprehensive costs include economic costs and quality of life losses. We merged previously developed costs per victim keyed on the Abbreviated Injury Scale (AIS) into US crash data files that scored injuries in both the AIS and police-coded severity scales to produce per crash estimates. The most costly crashes were non-intersection fatal/disabling injury crashes on a road with a speed limit of 50 miles per hour or higher where multiple vehicles crashed head-on or a single vehicle struck a human (over 1.69 and $1.16 million per crash, respectively). The annual cost of police-reported run-off-road collisions, which include both rollovers and object impacts, represented 34% of total costs. PMID:15319129
The full moon and motorcycle related mortality: population based double control study
Shafir, Eldar
2017-01-01
Abstract Objective To test whether a full moon contributes to motorcycle related deaths. Design Population based, individual level, double control, cross sectional analysis. Setting Nighttime (4 pm to 8 am), United States. Participants 13 029 motorcycle fatalities throughout the United States, 1975 to 2014 (40 years). Main outcome measure Motorcycle fatalities during a full moon. Results 13 029 motorcyclists were in fatal crashes during 1482 relevant nights. The typical motorcyclist was a middle aged man (mean age 32 years) riding a street motorcycle with a large engine in a rural location who experienced a head-on frontal impact and was not wearing a helmet. 4494 fatal crashes occurred on the 494 nights with a full moon (9.10/night) and 8535 on the 988 control nights without a full moon (8.64/night). Comparisons yielded a relative risk of 1.05 associated with the full moon (95% confidence interval 1.02 to 1.09, P=0.005), a conditional odds ratio of 1.26 (95% confidence interval 1.17 to 1.37, P<0.001), and an absolute increase of 226 additional deaths over the study interval. The increase extended to diverse types of motorcyclists, vehicles, and crashes; was accentuated during a supermoon; and replicated in analyses from the United Kingdom, Canada, and Australia. Conclusion The full moon is associated with an increased risk of fatal motorcycle crashes, although potential confounders cannot be excluded. An awareness of the risk might encourage motorcyclists to ride with extra care during a full moon and, more generally, to appreciate the power of seemingly minor distractions at all times. PMID:29229755
The full moon and motorcycle related mortality: population based double control study.
Redelmeier, Donald A; Shafir, Eldar
2017-12-11
To test whether a full moon contributes to motorcycle related deaths. Population based, individual level, double control, cross sectional analysis. Nighttime (4 pm to 8 am), United States. 13 029 motorcycle fatalities throughout the United States, 1975 to 2014 (40 years). Motorcycle fatalities during a full moon. 13 029 motorcyclists were in fatal crashes during 1482 relevant nights. The typical motorcyclist was a middle aged man (mean age 32 years) riding a street motorcycle with a large engine in a rural location who experienced a head-on frontal impact and was not wearing a helmet. 4494 fatal crashes occurred on the 494 nights with a full moon (9.10/night) and 8535 on the 988 control nights without a full moon (8.64/night). Comparisons yielded a relative risk of 1.05 associated with the full moon (95% confidence interval 1.02 to 1.09, P=0.005), a conditional odds ratio of 1.26 (95% confidence interval 1.17 to 1.37, P<0.001), and an absolute increase of 226 additional deaths over the study interval. The increase extended to diverse types of motorcyclists, vehicles, and crashes; was accentuated during a supermoon; and replicated in analyses from the United Kingdom, Canada, and Australia. The full moon is associated with an increased risk of fatal motorcycle crashes, although potential confounders cannot be excluded. An awareness of the risk might encourage motorcyclists to ride with extra care during a full moon and, more generally, to appreciate the power of seemingly minor distractions at all times. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Driver air bag effectiveness by severity of the crash.
Segui-Gomez, M
2000-01-01
OBJECTIVES: This analysis provided effectiveness estimates of the driver-side air bag while controlling for severity of the crash and other potential confounders. METHODS: Data were from the National Automotive Sampling System (1993-1996). Injury severity was described on the basis of the Abbreviated Injury Scale, Injury Severity Score, Functional Capacity Index, and survival. Ordinal, linear, and logistic multivariate regression methods were used. RESULTS: Air bag deployment in frontal or near-frontal crashes decreases the probability of having severe and fatal injuries (e.g., Abbreviated Injury Scale score of 4-6), including those causing a long-lasting high degree of functional limitation. However, air bag deployment in low-severity crashes increases the probability that a driver (particularly a woman) will sustain injuries of Abbreviated Injury Scale level 1 to 3. Air bag deployment exerts a net injurious effect in low-severity crashes and a net protective effect in high-severity crashes. The level of crash severity at which air bags are protective is higher for female than for male drivers. CONCLUSIONS: Air bag improvement should minimize the injuries induced by their deployment. One possibility is to raise their deployment level so that they deploy only in more severe crashes. PMID:11029991
Application of Probabilistic Analysis to Aircraft Impact Dynamics
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Padula, Sharon L.; Stockwell, Alan E.
2003-01-01
Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stressstrain behaviors, laminated composites, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the uncertainty in the simulated responses. Several criteria are used to determine that a response surface method is the most appropriate probabilistic approach. The work is extended to compare optimization results with and without probabilistic constraints.
Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.
2015-01-01
A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).
Design of the Cross Section Shape of AN Aluminum Crash Box for Crashworthiness Enhancement of a CAR
NASA Astrophysics Data System (ADS)
Kim, S. B.; Huh, H.; Lee, G. H.; Yoo, J. S.; Lee, M. Y.
This paper deals with the crashworthiness of an aluminum crash box for an auto-body with the various shapes of cross section such as a rectangle, a hexagon and an octagon. First, crash boxes with various cross sections were tested with numerical simulation to obtain the energy absorption capacity and the mean load. In case of the simple axial crush, the octagon shape shows higher mean load and energy absorption than the other two shapes. Secondly, the crash boxes were assembled to a simplified auto-body model for the overall crashworthiness. The model consists of a bumper, crash boxes, front side members and a sub-frame representing the behavior of a full car at the low speed impact. The analysis result shows that the rectangular cross section shows the best performance as a crash box which deforms prior to the front side member. The hexagonal and octagonal cross sections undergo torsion and local buckling as the width of cross section decreases while the rectangular cross section does not. The simulation result of the rectangular crash box was verified with the experimental result. The simulation result shows close tendency in the deformed shape and the load-displacement curve to the experimental result.
NASA Technical Reports Server (NTRS)
Somers, Jeffrey; Granderson, Brad; Scheuring, Rick
2010-01-01
This slide presentation reviews NASA's efforts to arrive at protection of occupants of the ORION space craft on landing. An Abbreviated Injury Scale (AIS) has been developed, it is an anatomically-based, consensus-derived, global severity scoring system that classifies each injury by body region according to its relative importance on a 6-point ordinal scale. It reviews an Operationmally Relevant Injury Scale (ORIS), a classification methodology, and shows charts that detail the results of applying this ORIS to the injury databases. One chart uses NASCAR injury classification. It discusses providing a context for the level of risk inherent in the Orion landings in terms that people understand and have a sense for. For example is the risk of injury during an Orion landing roughly the same, better or worse than: An aircraft carrier landing, a NASCAR crash, or a helicopter crash, etc? The data for NASCAR and Indy Racing league (IRL) racing crash and injury data was reviewed. The risk from the Air Force, Navy, and Army injury data was also reviewed. Past NASA and the Soyuz programs injury risks are also reviewed. The work is an attempt to formulate a recommendation to the Orion Project for an acceptable level of injury risk associated with Nominal and Off-Nominal landing cases. The presentation also discusses the data mining and use of the data to Validate NASA Operationally-Relevant Injury Scale (NORIS) / Military Operationally-Relevant Injury Scale (MORIS), developing injury risk criteria, the types of data that are required, NASCAR modeling techniques and crash data, and comparison with the Brinkley model. The development of injury risk curves for each biodynamic response parameter is discussed. One of the main outcomes of this work is to establish an accurate Automated Test Dummy (ATD) that can be used to measure human tolerances.
Crash fatality and vehicle incompatibility in collisions between cars and light trucks or vans.
Ossiander, Eric M; Koepsell, Thomas D; McKnight, Barbara
2014-12-01
In crashes between a car and a light truck or van (LTV), car occupants are more likely to be killed than LTV occupants. The extent this is due to the greater harm imposed by LTVs on cars or the greater protection they offer their own occupants is not known. We conducted a case-control study of collisions between two passenger vehicles in the USA during 1990-2008. Cases were all decedents in fatal crashes (N=157,684); one control was selected from each crash in a national probability sample of crashes (N=379,458). Adjusted for the type of vehicle they were riding in and other confounders, occupants of vehicles colliding with any type of LTVs (categorised as compact sport utility vehicles (SUV), full-size SUVs, minivans, full-size vans, compact pickups and full-size pickups) were at higher risk of death compared with occupants colliding with cars. Adjusted for the type of vehicle they crashed with and other confounders, occupants of LTVs in a collision with any vehicle were at lower risk of death compared with car occupants. Compared with a crash between two cars, the overall RR of death in a crash between any of the other 27 different combinations of vehicle types was 1.0 or greater, except for crashes between two full-size pickups, where the RR of death was 0.9. Although LTVs protect their own occupants better than cars do, LTVs are associated with an excess total risk of death in crashes with cars or other LTVs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Ispas, N.; Năstăsoiu, M.
2016-08-01
Reducing occupant injuries for cars involves in traffic accidents is a main target of today cars designers. Known as active or passive safety, many technological solutions were developing over the time for an actual better car's occupant safety. In the real world, in traffic accidents are often involved cars from different generations with various safety historical solutions. The main aim of these papers are to quantify the influences over the car driver chest loads in cases of same or different generation of cars involved in side car crashes. Both same and different cars generations were used for the study. Other goal of the paper was the study of in time loads conformity for diver's chests from both cars involved in crash. The paper's experimental results were obtained by support of DSD, Dr. Steffan Datentechnik GmbH - Linz, Austria. The described tests were performed in full test facility of DSD Linz, in “Easter 2015 PC-Crash Seminar”. In all crashes we obtaining results from both dummy placed in impacted and hits car. The novelty of the paper are the comparisons of data set from each of driver (dummy) of two cars involved in each of six experimental crashes. Another novelty of this paper consists in possibilities to analyse the influences of structural historical cars solutions over deformation and loads in cases of traffic accidents involved. Paper's conclusions can be future used for car passive safety improvement.
The effects of airbags and seatbelts on occupant injury in longitudinal barrier crashes.
Gabauer, Douglas J; Gabler, Hampton C
2010-02-01
Longitudinal barriers, such as guardrails, are designed to prevent a vehicle that leaves the roadway from impacting a more dangerous object while minimizing the risk of injury to the vehicle occupants. Current full-scale test procedures for these devices do not consider the effect of occupant restraints such as seatbelts and airbags. The purpose of this study was to determine the extent to which restraints are used or deployed in longitudinal barrier collisions and their subsequent effect on occupant injury. Binary logistic regression models were generated to predict occupant injury risk using data from the National Automotive Sampling System / Crashworthiness Data System from 1997 through 2007. In tow-away longitudinal barrier crashes, airbag deployment rates were 70% for airbag-equipped vehicles. Compared with unbelted occupants without an airbag available, seat belt restrained occupants with an airbag available had a dramatically decreased risk of receiving a serious (MAIS 3+) injury (odds-ratio (OR)=0.03; 95% CI: 0.004-0.24). A similar decrease was observed among those restrained by seat belts, but without an airbag available (OR=0.03; 95% CI: 0.001- 0.79). No significant differences in risk of serious injuries were observed between unbelted occupants with an airbag available compared with unbelted occupants without an airbag available (OR=0.53; 95% CI=0.10-2.68). This study refutes the perception in the roadside safety community that airbags rarely deploy in frontal barrier crashes, and suggests that current longitudinal barrier occupant risk criteria may over-estimate injury potential for restrained occupants involved in a longitudinal barrier crash. Copyright 2010 Elsevier Ltd. All rights reserved.
An Index For Rating the Total Secondary Safety of Vehicles from Real World Crash Data
Newstead, S.; Watson, L.; Cameron, M.
2007-01-01
This study proposes a total secondary safety index for light passenger vehicles that rates the relative performance of vehicles in protecting both their own occupants and other road users in the full range of real world crash circumstances. The index estimates the risk of death or serious injury to key road users in crashes involving light passenger vehicles across the full range of crash types. The proposed index has been estimated from real world crash data from Australasia and was able to identify vehicles that have superior or inferior total secondary safety characteristics compared with the average vehicle. PMID:18184497
How to decrease pedestrian injuries: conceptual evolutions starting from 137 crash tests.
Thollon, Lionel; Jammes, Christian; Behr, Michel; Arnoux, Pierre-Jean; Cavallero, Claude; Brunet, Christian
2007-02-01
The improvement of vulnerable users' protection has become an essential objective for our society. Injury assessments observed in clinical traumatology have led researchers and manufacturers to understand the mechanisms involved and to design safe vehicles (to reduce the severity of pedestrian injuries). In all, 137 crash tests between 1979 and 2004 with postmortal human subjects (PMHS) were performed at the Laboratory of Applied Biomechanics to access pedestrian protection. A retrospective analysis of these experimental tests, pedestrian/car impacts (full scale or subsystems), performed at the laboratory is thus proposed. This document focuses on injury mechanisms investigation on the evolution of the experimental approach, as well as on the vehicles' technological improvements performed by car manufacturers. The analysis of experimental results (injury assessment, kinematics, vehicle deformations, etc.) shows the complexity and variety of injury mechanisms. The injury assessment shows the need to improve lower-limb joints protection, as well as head and spine segments, because of the difficulties of surgical repair of these injuries. Experimental tests contribute to evaluate the automobile safety evolution in the field of pedestrian protection. The main induced car improvements concern considerable efforts on vehicle material behavior and their capacity to dissipate energy during shocks (replacement of the convex rigid bumpers by deformable structures, modification of the windscreen structure). They also concern the suppression of all aggressive structures for the pedestrian (spare wheel initially placed on the front part of the vehicle, protection of the heels of windscreen wiper, etc.).
NASA Technical Reports Server (NTRS)
Polanco, Michael
2010-01-01
The forward and vertical impact stability of a composite honeycomb Deployable Energy Absorber (DEA) was evaluated during a full-scale crash test of an MD-500 helicopter at NASA Langley?s Landing and Impact Research Facility. The lower skin of the helicopter was retrofitted with DEA components to protect the airframe subfloor upon impact and to mitigate loads transmitted to Anthropomorphic Test Device (ATD) occupants. To facilitate the design of the DEA for this test, an analytical study was conducted using LS-DYNA(Registered TradeMark) to evaluate the performance of a shell-based DEA incorporating different angular cell orientations as well as simultaneous vertical and forward impact conditions. By conducting this study, guidance was provided in obtaining an optimum design for the DEA that would dissipate the kinetic energy of the airframe while maintaining forward and vertical impact stability.
Evaluation of the CSA 2010 Operational Model Test: Full Report
DOT National Transportation Integrated Search
2011-08-01
In accordance with its primary mission to reduce crashes, injuries, and fatalities involving large trucks and buses, the Federal Motor Carrier Safety Administration (FMCSA) initiated the Comprehensive Safety Analysis 2010 (CSA 2010) Operational Model...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppola, Anthony; Faruque, Omar; Truskin, James F
As automotive fuel economy requirements increase, the push for reducing overall vehicle weight will likely include the consideration of materials that have not previously been part of mainstream vehicle design and manufacturing, including carbon fiber composites. Vehicle manufacturers currently rely on computer-aided engineering (CAE) methods as part of the design and development process, so going forward, the ability to accurately and predictably model carbon fiber composites will be necessary. If composites are to be used for structural components, this need applies to both, crash and quasi-static modeling. This final report covers the results of a five-year, $6.89M, 50% cost-shared researchmore » project between Department of Energy (DOE) and the US Advanced Materials Partnership (USAMP) under Cooperative Agreement DE-EE-0005661 known as “Validation of Material Models for Automotive Carbon Fiber Composite Structures Via Physical and Crash Testing (VMM).” The objective of the VMM Composites Project was to validate and assess the ability of physics-based material models to predict crash performance of automotive primary load-carrying carbon fiber composite structures. Simulation material models that were evaluated included micro-mechanics based meso-scale models developed by the University of Michigan (UM) and micro-plane models by Northwestern University (NWU) under previous collaborations with the DOE and Automotive Composites Consortium/USAMP, as well as five commercial crash codes: LS-DYNA, RADIOSS, VPS/PAM-CRASH, Abaqus, and GENOA-MCQ. CAE predictions obtained from seven organizations were compared with experimental results from quasi-static testing and dynamic crash testing of a thermoset carbon fiber composite front-bumper and crush-can (FBCC) system gathered under multiple loading conditions. This FBCC design was developed to demonstrate progressive crush, virtual simulation, tooling, fabrication, assembly, non-destructive evaluation and crash testing advances in order to assess the correlation of the predicted results to the physical tests. The FBCC was developed to meet a goal of 30-35% mass reduction while aiming for equivalent energy absorption as a steel component for which baseline experimental results were obtained from testing in the same crash modes. The project also evaluated crash performance of thermoplastic composite structures fabricated from commercial prepreg materials and low cost carbon fiber sourced from Oak Ridge National Laboratory. The VMM Project determined that no set of predictions from a CAE supplier were found to be universally accurate among all the six crash modes evaluated. In general, crash modes that were most dependent on the properties of the prepreg were more accurate than those that were dependent on the behavior of the joints. The project found that current CAE modeling methods or best practices for carbon fiber composites have not achieved standardization, and accuracy of CAE is highly reliant on the experience of its users. Coupon tests alone are not sufficient to develop an accurate material model, but it is necessary to bridge the gap between the coupon data and performance of the actual structure with a series of subcomponent level tests. Much of the unreliability of the predictions can be attributed to shortcomings in our ability to mathematically link the effects of manufacturing and material variability into the material models. This is a subject of ongoing research in the industry. The final report is organized by key technical tasks to describe how the validation project developed, modeled and compared crash data obtained on the composite FBCC to the multiple sets of CAE predictions. Highlights of the report include a discussion of the quantitative comparison between predictions and experimental data, as well as an in-depth discussion of remaining technological gaps that exist in the industry, which are intended to spur innovations and improvements in CAE technology.« less
Coimbra, Raul; Conroy, Carol; Hoyt, David B; Pacyna, Sharon; May, MarSue; Erwin, Steve; Tominaga, Gail; Kennedy, Frank; Sise, Michael; Velky, Tom
2008-07-01
In spite of improvements in motor vehicle safety systems and crashworthiness, motor vehicle crashes remain one of the leading causes of brain injury. The purpose of this study was to determine if the damage distribution across the frontal plane affected brain injury severity of occupants in frontal impacts. Occupants in "head on" frontal impacts with a Principal Direction of Force (PDOF) equal to 11, 12, or 1o'clock who sustained serious brain injury were identified using the Crash Injury Research Engineering Network (CIREN) database. Impacts were further classified based on the damage distribution across the frontal plane as distributed, offset, and extreme offset (corner). Overall, there was no significant difference for brain injury severity (based on Glasgow Coma Scale<9, or brain injury AIS>2) comparing occupants in the different impact categories. For occupants in distributed frontal impacts, safety belt use was protective (odds ratio (OR)=0.61) and intrusion at the occupant's seat position was four times more likely to result in severe (Glasgow Coma Scale (GCS)<9) brain injury (OR=4.35). For occupants in offset frontal impacts, again safety belt use was protective against severe brain injury (OR=0.25). Possibly due to the small number of brain-injured occupants in corner impacts, safety belts did not significantly protect against increased brain injury severity during corner impacts. This study supports the importance of safety belt use to decrease brain injury severity for occupants in distributed and offset frontal crashes. It also illustrates how studying "real world" crashes may provide useful information on occupant injuries under impact circumstances not currently covered by crash testing.
Keall, Michael D; Newstead, Stuart
2016-01-01
Vehicle safety rating systems aim firstly to inform consumers about safe vehicle choices and, secondly, to encourage vehicle manufacturers to aspire to safer levels of vehicle performance. Primary rating systems (that measure the ability of a vehicle to assist the driver in avoiding crashes) have not been developed for a variety of reasons, mainly associated with the difficult task of disassociating driver behavior and vehicle exposure characteristics from the estimation of crash involvement risk specific to a given vehicle. The aim of the current study was to explore different approaches to primary safety estimation, identifying which approaches (if any) may be most valid and most practical, given typical data that may be available for producing ratings. Data analyzed consisted of crash data and motor vehicle registration data for the period 2003 to 2012: 21,643,864 observations (representing vehicle-years) and 135,578 crashed vehicles. Various logistic models were tested as a means to estimate primary safety: Conditional models (conditioning on the vehicle owner over all vehicles owned); full models not conditioned on the owner, with all available owner and vehicle data; reduced models with few variables; induced exposure models; and models that synthesised elements from the latter two models. It was found that excluding young drivers (aged 25 and under) from all primary safety estimates attenuated some high risks estimated for make/model combinations favored by young people. The conditional model had clear biases that made it unsuitable. Estimates from a reduced model based just on crash rates per year (but including an owner location variable) produced estimates that were generally similar to the full model, although there was more spread in the estimates. The best replication of the full model estimates was generated by a synthesis of the reduced model and an induced exposure model. This study compared approaches to estimating primary safety that could mimic an analysis based on a very rich data set, using variables that are commonly available when registered fleet data are linked to crash data. This exploratory study has highlighted promising avenues for developing primary safety rating systems for vehicle makes and models.
Objective tests for forward looking pedestrian crash avoidance/mitigation systems.
DOT National Transportation Integrated Search
2014-06-01
This report documents the work completed by the Crash Avoidance Metrics Partnership (CAMP) Crash Imminent Braking : (CIB) Consortium during the project titled Objective Tests for Forward Looking Pedestrian Crash Avoidance/Mitigation : Systems. ...
Traffic-law enforcement and risk of death from motor-vehicle crashes: case-crossover study.
Redelmeier, Donald A; Tibshirani, Robert J; Evans, Leonard
2003-06-28
Driving offences and traffic deaths are common in countries with high rates of motor-vehicle use. We tested whether traffic convictions, because of their direct effect on the recipient, might be associated with a reduced risk of fatal motor-vehicle crashes. We identified licensed drivers in Ontario, Canada, who had been involved in fatal crashes in the past 11 years. We used the case-crossover design to analyse the protective effect of recent convictions on individual drivers. 8975 licensed drivers had fatal crashes during the study period. 21501 driving convictions were recorded for all drivers from the date of obtaining a full licence to the date of fatal crash, equivalent to about one conviction per driver every 5 years. The risk of a fatal crash in the month after a conviction was about 35% lower than in a comparable month with no conviction for the same driver (95% CI 20-45, p=0.0002). The benefit lessened substantially by 2 months and was not significant by 3-4 months. The benefit was not altered by age, previous convictions, and other personal characteristics; was greater for speeding violations with penalty points than speeding violations without points; was no different for crashes of differing severity; and was not seen in drivers whose licences were suspended. Traffic-law enforcement effectively reduces the frequency of fatal motor-vehicle crashes in countries with high rates of motor-vehicle use. Inconsistent enforcement, therefore, may contribute to thousands of deaths each year worldwide.
Lai, Xinghua; Ma, Chunsheng; Hu, Jingwen; Zhou, Qing
2012-09-01
Occupant injury in real world vehicle accidents can be significantly affected by a set of crash characteristics, of which impact direction and impact location (or damage location) in general scale interval (e.g., frontal impact is frequently defined as general damage to vehicle frontal end with impact angle range of 11-1 o'clock) have been identified to associate with injury outcome. The effects of crash configuration in more specific scale of interval on the injury characteristics have not been adequately investigated. This paper presents a statistical analysis to investigate the combined effects of specific impact directions and impact locations on the serious-to-fatal injuries of driver occupants involved in near-side collisions using crash data from National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) for the calendar years of 1995-2005. The screened injury dataset is categorized by three impact locations (side front, side center and side distributed) and two impact directions (oblique impact at 10 o'clock and pure lateral impact at 9 o'clock), resulting in six crash configurations in total. The weighted counts and the risks of different types of injuries in each subgroup are calculated, with which the relative risks along with 95% confidence intervals under oblique impacts versus lateral impacts in each impact location category are computed. Accordingly, the most frequent injury patterns, the risks and the coded-sources of serious thoracic injuries in different crash configurations are identified. The approach adopted in the present study provides new perspectives into occupant injury outcomes and associated mechanism. Results of the analyses reveal the importance of consideration of the crash configurations beyond the scope of existing side-impact regulatory tests and stress the necessity of vehicle crashworthiness and restraint system design in omni-direction to better protect occupants in real-world crash scenarios. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kusano, Kristofer D; Gabler, Hampton C
2015-01-01
The U.S. New Car Assessment Program (NCAP) now tests for forward collision warning (FCW) and lane departure warning (LDW). The design of these warnings differs greatly between vehicles and can result in different real-world field performance in preventing or mitigating the effects of collisions. The objective of this study was to compare the expected number of crashes and injured drivers that could be prevented if all vehicles in the fleet were equipped with the FCW and LDW systems tested under the U.S. NCAP. To predict the potential crashes and serious injury that could be prevented, our approach was to computationally model the U.S. crash population. The models simulated all rear-end and single-vehicle road departure collisions that occurred in a nationally representative crash database (NASS-CDS). A sample of 478 single-vehicle crashes from NASS-CDS 2012 was the basis for 24,822 simulations for LDW. A sample of 1,042 rear-end collisions from NASS-CDS years 1997-2013 was the basis for 7,616 simulations for FCW. For each crash, 2 simulations were performed: (1) without the system present and (2) with the system present. Models of each production safety system were based on 54 model year 2010-2014 vehicles that were evaluated under the NCAP confirmation procedure for LDW and/or FCW. NCAP performed 40 LDW and 45 FCW tests of these vehicles. The design of the FCW systems had a dramatic impact on their potential to prevent crashes and injuries. Between 0 and 67% of crashes and 2 and 69% of moderately to fatally injured drivers in rear-end impacts could have been prevented if all vehicles were equipped with the FCW systems. Earlier warning times resulted in increased benefits. The largest effect on benefits, however, was the lower operating speed threshold of the systems. Systems that only operated at speeds above 20 mph were less than half as effective as those that operated above 5 mph with similar warning times. The production LDW systems could have prevented between 11 and 23% of drift-out-of-lane crashes and 13 and 22% of seriously to fatally injured drivers. A majority of the tested LDW systems delivered warnings near the point when the vehicle first touched the lane line, leading to similar benefits. Minimum operating speed also greatly affected LDW effectiveness. The results of this study show that the expected field performance of FCW and LDW systems are highly dependent on the design and system limitations. Systems that delivered warnings earlier and operated at lower speeds may prevent far more crashes and injuries than systems that warn late and operate only at high speeds. These results suggest that future FCW and LDW evaluation should prioritize early warnings and full-speed range operation. A limitation of this study is that additional crash avoidance features that may also mitigate collisions-for example, brake assist, automated braking, or lane-keeping assistance-were not evaluated during the NCAP tests or in our benefits models. The potential additional mitigating effects of these systems were not quantified in this study.
Crash Simulation of a Boeing 737 Fuselage Section Vertical Drop Test
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Jones, Yvonne T.; Frings, Gary; Vu, Tong
2004-01-01
A 30-ft/s vertical drop test of a fuselage section of a Boeing 737 aircraft was conducted in October of 1999 at the FAA Technical Center in Atlantic City, NJ. This test was performed to evaluate the structural integrity of a conformable auxiliary fuel tank mounted beneath the floor and to determine its effect on the impact response of the airframe structure and the occupants. The test data were used to compare with a finite element simulation of the fuselage structure and to gain a better understanding of the impact physics through analytical/experimental correlation. To perform this simulation, a full-scale 3-dimensional finite element model of the fuselage section was developed using the explicit, nonlinear transient-dynamic finite element code, MSC.Dytran. The emphasis of the simulation was to predict the structural deformation and floor-level acceleration responses obtained from the drop test of the B737 fuselage section with the auxiliary fuel tank.
Burks, Stephen V.; Anderson, Jon E.; Bombyk, Matthew; Haider, Rebecca; Ganzhorn, Derek; Jiao, Xueyang; Lewis, Connor; Lexvold, Andrew; Liu, Hong; Ning, Jiachen; Toll, Alice; Hickman, Jeffrey S.; Mabry, Erin; Berger, Mark; Malhotra, Atul; Czeisler, Charles A.; Kales, Stefanos N.
2016-01-01
Study Objectives: To evaluate the effect of an employer-mandated obstructive sleep apnea (OSA) program on the risk of serious preventable truck crashes. Methods: Data are from the first large-scale, employer-mandated program to screen, diagnose, and monitor OSA treatment adherence in the US trucking industry. A retrospective analysis of cohorts was constructed: polysomnogram-diagnosed drivers (OSA positive n = 1,613, OSA negative n = 403) were matched to control drivers unlikely to have OSA (n = 2,016) on two factors affecting crash risk, experience-at-hire and length of job tenure; tenure was matched on the date of each diagnosed driver's polysomnogram. Auto-adjusting positive airway pressure (APAP) treatment was provided to all cases (i.e. OSA positive drivers); treatment adherence was objectively monitored. Cases were grouped by treatment adherence: “Full Adherence” (n = 682), “Partial Adherence” (n = 571), or “No Adherence” (n = 360). Preventable Department-of-Transportation-reportable crashes/100,000 miles were compared across study subgroups. Robustness was assessed. Results: After the matching date, “No Adherence” cases had a preventable Department of Transportation-reportable crash rate that was fivefold greater (incidence rate ratio = 4.97, 95% confidence interval: 2.09, 10.63) than that of matched controls (0.070 versus 0.014 per 100,000 miles). The crash rate of “Full Adherence” cases was statistically similar to controls (incidence rate ratio = 1.02, 95% confidence interval: 0.48, 2.04; 0.014 per 100,000 miles). Conclusions: Nontreatment-adherent OSA-positive drivers had a fivefold greater risk of serious preventable crashes, but were discharged or quit rapidly, being retained only one-third as long as other subjects. Thus, the mandated program removed risky nontreatment-adherent drivers and retained adherent drivers at the study firm. Current regulations allow nonadherent OSA cases to drive at another firm by keeping their diagnosis private. Commentary: A commentary on this article appears in this issue on page 961. Citation: Burks SV, Anderson JE, Bombyk M, Haider R, Ganzhorn D, Jiao X, Lewis C, Lexvold A, Liu H, Ning J, Toll A, Hickman JS, Mabry E, Berger M, Malhotra A, Czeisler CA, Kales SN. Nonadherence with employer-mandated sleep apnea treatment and increased risk of serious truck crashes. SLEEP 2016;39(5):967–975. PMID:27070139
Anthropometry for WorldSID, a World-Harmonized Midsize Male Side Impact Crash Dummy
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Moss; Z. Wang; M. Salloum
2000-06-19
The WorldSID project is a global effort to design a new generation side impact crash test dummy under the direction of the International Organization for Standardization (ISO). The first WorldSID crash dummy will represent a world-harmonized mid-size adult male. This paper discusses the research and rationale undertaken to define the anthropometry of a world standard midsize male in the typical automotive seated posture. Various anthropometry databases are compared region by region and in terms of the key dimensions needed for crash dummy design. The Anthropometry for Motor Vehicle Occupants (AMVO) dataset, as established by the University of Michigan Transportation Researchmore » Institute (UMTRI), is selected as the basis for the WorldSID mid-size male, updated to include revisions to the pelvis bone location. The proposed mass of the dummy is 77.3kg with full arms. The rationale for the selected mass is discussed. The joint location and surface landmark database is appended to this paper.« less
Predicting regional variations in mortality from motor vehicle crashes.
Clark, D E; Cushing, B M
1999-02-01
To show that the previously-observed inverse relationship between population density and per-capita mortality from motor vehicle crashes can be derived from a simple mathematical model that can be used for prediction. The authors proposed models in which the number of fatal crashes in an area was directly proportional to the population and also to some power of the mean distance between hospitals. Alternatively, these can be parameterized as Weibull survival models. Using county and state data from the U.S. Census, the authors fitted linear regression equations on a logarithmic scale to test the validity of these models. The southern states conformed to a different model from the other states. If an indicator variable was used to distinguish these groups, the resulting model accounted for 74% of the variation from state to state (Alaska excepted). After controlling for mean inter-hospital distance, the southern states had a per-capita mortality 1.37 times that of the other states. Simply knowing the mean distance between hospitals in a region allows a fiarly accurate estimate of its per-capita mortality from vehicle crashes. After controlling for this factor, vehicle crash mortality per capita is higher in the southern states, for reasons yet to be explained.
Development of test scenarios for off-roadway crash countermeasures based on crash statistics
DOT National Transportation Integrated Search
2002-09-01
This report presents the results from an analysis of off-roadway crashes and proposes a set of crash-imminent scenarios to objectively test countermeasure systems for light vehicles (passenger cars, sport utility vehicles, vans, and pickup trucks) ba...
Impact data from a transport aircraft during a controlled impact demonstration
NASA Technical Reports Server (NTRS)
Fasanella, E. L.; Alfaro-Bou, E.; Hayduk, R. J.
1986-01-01
On December 1, 1984, the FAA and NASA conducted a remotely piloted air-to-ground crash test of a Boeing 720 transport aircraft instrumented to measure crash loads of the structure and the anthropomorphic dummy passengers. Over 330 time histories of accelerations and loads collected during the Full-Scale Transport Controlled Impact Demonstration (CID) for the 1-sec period after initial impact are presented. Although a symmetric 1 deg. nose-up attitude with a 17 ft/sec sink rate was planned, the plane was yawed and rolled 13 deg. at initial (left-wing) impact. The first fuselage impact occurred near the nose wheel well with the nose pitched down 2.5 deg. Peak normal (vertical) floor accelerations were highest in the cockpit and forward cabin near the nose wheel well and were approximately 14G. The remaining cabin floor received normal acceleration peaks of 7G or less. The peak longitudinal floor accelerations showed a similar distribution, with the highest (7G) in the cockpit and forward cabin, decreasing to 4G or less toward the rear. Peak transverse floor accelerations ranged from about 5G in the cockpit to 1G in the aft fuselage.
Chen, Feng; Chen, Suren; Ma, Xiaoxiang
2016-01-01
Traffic and environmental conditions (e.g., weather conditions), which frequently change with time, have a significant impact on crash occurrence. Traditional crash frequency models with large temporal scales and aggregated variables are not sufficient to capture the time-varying nature of driving environmental factors, causing significant loss of critical information on crash frequency modeling. This paper aims at developing crash frequency models with refined temporal scales for complex driving environments, with such an effort providing more detailed and accurate crash risk information which can allow for more effective and proactive traffic management and law enforcement intervention. Zero-inflated, negative binomial (ZINB) models with site-specific random effects are developed with unbalanced panel data to analyze hourly crash frequency on highway segments. The real-time driving environment information, including traffic, weather and road surface condition data, sourced primarily from the Road Weather Information System, is incorporated into the models along with site-specific road characteristics. The estimation results of unbalanced panel data ZINB models suggest there are a number of factors influencing crash frequency, including time-varying factors (e.g., visibility and hourly traffic volume) and site-varying factors (e.g., speed limit). The study confirms the unique significance of the real-time weather, road surface condition and traffic data to crash frequency modeling. PMID:27322306
Savino, Giovanni; Rizzi, Matteo; Brown, Julie; Piantini, Simone; Meredith, Lauren; Albanese, Bianca; Pierini, Marco; Fitzharris, Michael
2014-01-01
In 2006, Motorcycle Autonomous Emergency Braking (MAEB) was developed by a European Consortium (Powered Two Wheeler Integrated Safety, PISa) as a crash severity countermeasure for riders. This system can detect an obstacle through sensors in the front of the motorcycle and brakes automatically to achieve a 0.3 g deceleration if the collision is inevitable and the rider does not react. However, if the rider does brake, full braking force is applied automatically. Previous research into the potential benefits of MAEB has shown encouraging results. However, this was based on MAEB triggering algorithms designed for motorcycle crashes involving impacts with fixed objects and rear-end crashes. To estimate the full potential benefit of MAEB, there is a need to understand the full spectrum of motorcycle crashes and further develop triggering algorithms that apply to a wider spectrum of crash scenarios. In-depth crash data from 3 different countries were used: 80 hospital admittance cases collected during 2012-2013 within a 3-h driving range of Sydney, Australia, 40 crashes with Injury Severity Score (ISS)>15 collected in the metropolitan area of Florence, Italy, during 2009-2012, and 92 fatal crashes that occurred in Sweden during 2008-2009. In the first step, the potential applicability of MAEB among the crashes was assessed using a decision tree method. To achieve this, a new triggering algorithm for MAEB was developed to address crossing scenarios as well as crashes involving stationary objects. In the second step, the potential benefit of MAEB across the applicable crashes was examined by using numerical computer simulations. Each crash was reconstructed twice-once with and once without MAEB deployed. The principal finding is that using the new triggering algorithm, MAEB is seen to apply to a broad range of multivehicle motorcycle crashes. Crash mitigation was achieved through reductions in impact speed of up to approximately 10 percent, depending on the crash scenario and the initial vehicle pre-impact speeds. This research is the first attempt to evaluate MAEB with simulations on a broad range of crash scenarios using in-depth data. The results give further insights into the feasibility of MAEB in different speed ranges. It is clear then that MAEB is a promising technology that warrants further attention by researchers, manufacturers, and regulators.
Motor vehicle crash-related subdural hematoma from real-world head impact data.
Urban, Jillian E; Whitlow, Christopher T; Edgerton, Colston A; Powers, Alexander K; Maldjian, Joseph A; Stitzel, Joel D
2012-12-10
Abstract Approximately 1,700,000 people sustain a traumatic brain injury (TBI) each year and motor vehicle crashes (MVCs) are a leading cause of hospitalization from TBI. Acute subdural hematoma (SDH) is a common intracranial injury that occurs in MVCs associated with high mortality and morbidity rates. In this study, SDH volume and midline shift have been analyzed in order to better understand occupant injury by correlating them to crash and occupant parameters. Fifty-seven head computed tomography (CT) scans were selected from the Crash Injury Research Engineering Network (CIREN) with Abbreviated Injury Scale (AIS) level 3+ SDH. Semi-automated methods were used to isolate the intracranial volume. SDH and additional occupant intracranial injuries were segmented across axial CT images, providing a total SDH injury volume. SDH volume was correlated to crash parameters and occupant characteristics. Results show a positive correlation between SDH volume and crash severity in near-side and frontal crashes. Additionally, the location of the resulting hemorrhage varied by crash type. Those with greater SDH volumes had significantly lower Glasgow Coma Scale (GCS) scores at the crash site in near-side crashes. Age and fracture type were found to be significant contributors to SDH volume. This study is a volumetric analysis of real world brain injuries and known MVC impacts. The results of this study demonstrate a relationship among SDH volume, crash mechanics, and occupant characteristics that provide a better understanding of the injury mechanisms of MVC-associated TBI.
49 CFR 572.191 - General description.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES SID-IIsD Side Impact Crash Test Dummy, Small Adult Female § 572.191 General description. (a) The SID-IIsD Side Impact Crash Test... test sensors for the SID-IIsD Side Impact Crash Test Dummy, 5th percentile adult female, is shown in...
49 CFR 572.191 - General description.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES SID-IIsD Side Impact Crash Test Dummy, Small Adult Female § 572.191 General description. (a) The SID-IIsD Side Impact Crash Test... test sensors for the SID-IIsD Side Impact Crash Test Dummy, 5th percentile adult female, is shown in...
Validation of the 'full reconnection model' of the sawtooth instability in KSTAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Y. B.; Ko, J. S.; Choe, G. H.
In this paper, the central safety factor (q 0) during sawtooth oscillation has been measured with a great accuracy with the motional Stark effect (MSE) system on KSTAR and the measured value was However, this measurement alone cannot validate the disputed full and partial reconnection models definitively due to non-trivial off-set error (~0.05). Supplemental experiment of the excited m = 2, m = 3 modes that are extremely sensitive to the background q 0 and core magnetic shear definitively validates the 'full reconnection model'. The radial position of the excited modes right after the crash and time evolution into themore » 1/1 kink mode before the crash in a sawtoothing plasma suggests that in the MHD quiescent period after the crash and before the crash. Finally, additional measurement of the long lived m = 3, m = 5 modes in a non-sawtoothing discharge (presumably ) further validates the 'full reconnection model'.« less
Validation of the 'full reconnection model' of the sawtooth instability in KSTAR
Nam, Y. B.; Ko, J. S.; Choe, G. H.; ...
2018-03-26
In this paper, the central safety factor (q 0) during sawtooth oscillation has been measured with a great accuracy with the motional Stark effect (MSE) system on KSTAR and the measured value was However, this measurement alone cannot validate the disputed full and partial reconnection models definitively due to non-trivial off-set error (~0.05). Supplemental experiment of the excited m = 2, m = 3 modes that are extremely sensitive to the background q 0 and core magnetic shear definitively validates the 'full reconnection model'. The radial position of the excited modes right after the crash and time evolution into themore » 1/1 kink mode before the crash in a sawtoothing plasma suggests that in the MHD quiescent period after the crash and before the crash. Finally, additional measurement of the long lived m = 3, m = 5 modes in a non-sawtoothing discharge (presumably ) further validates the 'full reconnection model'.« less
Comparison of current ATDs with Chinese adults in anthropometry.
Cao, Libo; Zhang, Kai; Lv, Xin; Yan, Lingbo
2016-05-18
Crash test dummies are full-scale anthropomorphic test devices (ATDs) that simulate the dimensions, weight proportions, and articulation of the human body and are used to measure human injury potential in vehicle crashes. The Hybrid III dummy family, which is widely used currently, takes selected percentiles of anthropometry dimensions of U.S. adults as design references. The objective of this study was to assess the difference in anthropometry between Chinese adults and the currently used dummy. Based on the Chinese National Physical Fitness Surveillance of the year 2000, 2005, 2010 and National Standard of China GB/T 10000-1988, a series of anthropometric parameters for Chinese adults were obtained, and data analysis was conducted between Chinese adults and ATDs that are currently used. The comparison revealed distinct anthropometric difference between ATDs and Chinese adults. Based on the latest data, median Chinese females were about 2.6% lower in stature and about 8.03% lower in body weight than the ATD design targets. Similarly, median Chinese males were about 3.48% shorter and weighed 11.89% less than the ATD design targets. Although the anthropometric differences between Chinese adults and the Hybrid III ATD specifications were modest and growing smaller, it is advisable to take the differences in anthropometry between ATDs and Chinese adults into consideration when developing new vehicles in China to provide effective protection specifically for Chinese occupants.
O'Neill, Brian
2009-04-01
Motor vehicle crashes result in some 1.2 million deaths and many more injuries worldwide each year and is one of the biggest public health problems facing societies today. This article reviews the history of, and future potential for, one important countermeasure-designing vehicles that reduce occupant deaths and injuries. For many years, people had urged automakers to add design features to reduce crash injuries, but it was not until the mid-1960s that the idea of pursuing vehicle countermeasures gained any significant momentum. In 1966, the U.S. Congress passed the National Traffic and Motor Vehicle Safety Act, requiring the government to issue a comprehensive set of vehicle safety standards. This was the first broad set of requirements issued anywhere in the world, and within a few years similar standards were adopted in Europe and Australia. Early vehicle safety standards specified a variety of safety designs resulting in cars being equipped with lap/shoulder belts, energy-absorbing steering columns, crash-resistant door locks, high-penetration-resistant windshields, etc. Later, the standards moved away from specifying particular design approaches and instead used crash tests and instrumented dummies to set limits on the potential for serious occupant injuries by crash mode. These newer standards paved the way for an approach that used the marketplace, in addition to government regulation, to improve vehicle safety designs-using crash tests and instrumented dummies to provide consumers with comparative safety ratings for new vehicles. The approach began in the late 1970s, when NHTSA started publishing injury measures from belted dummies in new passenger vehicles subjected to frontal barrier crash tests at speeds somewhat higher than specified in the corresponding regulation. This program became the world's first New Car Assessment Program (NCAP) and rated frontal crashworthiness by awarding stars (five stars being the best and one the worst) derived from head and chest injury measures recorded on driver and front-seat test dummies. NHTSA later added side crash tests and rollover ratings to the U.S. NCAP. Consumer crash testing spread worldwide in the 1990s. In 1995, the Insurance Institute for Highway Safety (IIHS) began using frontal offset crash tests to rate and compare frontal crashworthiness and later added side and rear crash assessments. Shortly after, Europe launched EuroNCAP to assesses new car performance including front, side, and front-end pedestrian tests. The influence of these consumer-oriented crash test programs on vehicle designs has been major. From the beginning, U.S. NCAP results prompted manufacturers to improve seat belt performance. Frontal offset tests from IIHS and EuroNCAP resulted in greatly improved front-end crumple zones and occupant compartments. Side impact tests have similarly resulted in improved side structures and accelerated the introduction of side impact airbags, especially those designed to protect occupant's heads. Vehicle safety designs, initially driven by regulations and later by consumer demand because of crash testing, have proven to be very successful public health measures. Since they were first introduced in the late 1960s, vehicle safety designs have saved hundreds of thousands of lives and prevented countless injuries worldwide. The designs that improved vehicle crashworthiness have been particularly effective. Some newer crash avoidance designs also have the potential to be effective-e.g., electronic stability control is already saving many lives in single-vehicle crashes. However, determining the actual effectiveness of these new technologies is a slow process and needs real-world crash experience because there are no assessment equivalent of crash tests for crash avoidance designs.
Sunnevång, Cecilia; Pipkorn, Bengt; Boström, Ola
2015-01-01
This study aims, by means of the WorldSID 50th percentile male, to evaluate thoracic loading and injury risk to the near-side occupant due to occupant-to-occupant interaction in combination with loading from an intruding structure. Nine vehicle crash tests were performed with a 50th percentile WorldSID male dummy in the near-side (adjacent to the intruding structure) seat and a THOR or ES2 dummy in the far-side (opposite the intruding structure) seat. The near-side seated WorldSID was equipped with 6 + 6 IR-Traccs (LH and RH) in the thorax/abdomen enabling measurement of bilateral deflection. To differentiate deflection caused by the intrusion, and the deflection caused by the neighboring occupant, time history curves were analyzed. The crash tests were performed with different modern vehicles, equipped with thorax side airbags and inflatable curtains, ranging from a compact car to a large sedan, and in different loading conditions such as car-to-car, barrier, and pole tests. Lateral delta V based on vehicle tunnel acceleration and maximum residual intrusion at occupant position were used as a measurement of crash severity to compare injury measurements. In the 9 vehicle crash tests, thoracic loading, induced by the intruding structure as well as from the far-side occupant, varied due to the size and structural performance of the car as well as the severity of the crash. Peak deflection on the thoracic outboard side occurred during the first 50 ms of the event. Between 70 to 150 ms loading induced by the neighboring occupant occurred and resulted in an inboard-side peak deflection and viscous criterion. In the tests where the target vehicle lateral delta V was below 30 km/h and intrusion less than 200 mm, deflections were low on both the outboard (20-40 mm) and inboard side (10-15 mm). At higher crash severities, delta V 35 km/h and above as well as intrusions larger than 350 mm, the inboard deflections (caused by interaction to the far-side occupant) were of the same magnitude or even higher (30-70 mm) than the outboard deflections (30-50 mm). A WorldSID 50th percentile male equipped with bilateral IR-Traccs can detect loading to the thorax from a neighboring occupant making injury risk assessment feasible for this type of loading. At crash severities resulting in a delta V above 35 km/h and intrusions larger than 350 mm, both the inboard deflection and VC resulted in high risks of Abbreviated Injury Scale (AIS) 3+ injury, especially for a senior occupant.
Benefits of a Low Severity Frontal Crash Test
Digges, Kennerly; Dalmotas, Dainius
2007-01-01
The US Federal Motor Vehicle Safety Standard for frontal protection requires vehicle crash tests into a rigid barrier with two belted dummies in the front seats. The standard was recently modified to require two separate 56 Kph frontal tests. In one test the dummies are 50% males. In the other test, the dummies are 5% females. Analysis of crash test data indicates that the 56 Kph test does not encourage technology to reduce chest injuries in lower severity crashes. Tests conducted by Transport Canada provide data from belted 5% female dummies in the front seats of vehicles that were subjected crashes into a rigid barrier at 40 Kph. An analysis of the results showed that for many vehicles, the risks of serious chest injuries were higher in the 40 Kph test than in a 56 Kph test. This paper examines the benefits that would result from a requirement for a low severity (40 Kph) frontal barrier crash test with two belted 5% female dummies and more stringent chest injury requirements. A preliminary benefits analysis for chest deflection allowable in the range of 28 mm. to 36 mm. was conducted. A standard that limits the chest deflection to 34 mm. would reduce serious chest injury by 16% to 24% for the belted population in frontal crashes. PMID:18184499
Benefits of a low severity frontal crash test.
Digges, Kennerly; Dalmotas, Dainius
2007-01-01
The US Federal Motor Vehicle Safety Standard for frontal protection requires vehicle crash tests into a rigid barrier with two belted dummies in the front seats. The standard was recently modified to require two separate 56 Kph frontal tests. In one test the dummies are 50% males. In the other test, the dummies are 5% females. Analysis of crash test data indicates that the 56 Kph test does not encourage technology to reduce chest injuries in lower severity crashes. Tests conducted by Transport Canada provide data from belted 5% female dummies in the front seats of vehicles that were subjected crashes into a rigid barrier at 40 Kph. An analysis of the results showed that for many vehicles, the risks of serious chest injuries were higher in the 40 Kph test than in a 56 Kph test. This paper examines the benefits that would result from a requirement for a low severity (40 Kph) frontal barrier crash test with two belted 5% female dummies and more stringent chest injury requirements. A preliminary benefits analysis for chest deflection allowable in the range of 28 mm. to 36 mm. was conducted. A standard that limits the chest deflection to 34 mm. would reduce serious chest injury by 16% to 24% for the belted population in frontal crashes.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
... [Docket No. NHTSA-2009-0194] RIN 2127-AK64 Anthropomorphic Test Devices; Hybrid III Test Dummy, ES-2re Side Impact Crash Test Dummy AGENCY: National Highway Traffic Safety Administration (NHTSA), Department... adopted specifications and qualification requirements for a new crash test dummy called the ``ES- 2re...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... [Docket No. NHTSA-2010-0146] RIN 2127-AK64 Anthropomorphic Test Devices; Hybrid III Test Dummy, ES-2re Side Impact Crash Test Dummy AGENCY: National Highway Traffic Safety Administration (NHTSA), Department..., 2008, concerning a 50th percentile adult male side crash test dummy called the ``ES-2re'' test dummy...
Bohman, Katarina; Arbogast, Kristy B; Loeb, Helen; Charlton, Judith L; Koppel, Sjaan; Cross, Suzanne L
2018-02-28
The aim of this study was to evaluate the consequences of frontal and oblique crashes when positioning a Hybrid III (HIII) 6-year-old child anthropometric test device (ATD) using observed child passenger postures from a naturalistic driving study (NDS). Five positions for booster-seated children aged 4-7 years were selected, including one reference position according to the FMVSS 213 ATD seating protocol and 4 based on real-world observed child passenger postures from an NDS including 2 user positions with forward tilting torso and 2 that combined both forward and lateral inboard tilting of the torso. Seventeen sled tests were conducted in a mid-sized vehicle body at 64 km/h (European New Car Assessment Programme [Euro NCAP] Offset Deformable Barrier [ODB] pulse), in full frontal and oblique (15°) crash directions. The rear-seated HIII 6-year-old child ATD was restrained on a high-back booster seat. In 10 tests, the booster seat was also attached with a top tether. In the oblique tests, the ATD was positioned on the far side. Three camera views and ATD responses (head, neck, and chest) were analyzed. The shoulder belt slipped off the shoulder in all ATD positions in the oblique test configuration. In full frontal tests, the shoulder belt stayed on the shoulder in 3 out of 9 tests. Head acceleration and neck tension were decreased in the forward leaning positions; however, the total head excursion increased up to 210 mm compared to te reference position, due to belt slip-off and initial forward leaning position. These results suggest that real-world child passenger postures may contribute to shoulder belt slip-off and increased head excursion, thus increasing the risk of head injury. Restraint system development needs to include a wider range of sitting postures that children may choose, in addition to the specified postures of ATDs in seating test protocols, to ensure robust performance across diverse use cases. In addition, these tests revealed that the child ATD is limited in its ability to mimic real-world child passenger postures. There is a need to develop child human body models that may offer greater flexibility for these types of crash evaluations.
Is passenger vehicle incompatibility still a problem?
Teoh, Eric R; Nolan, Joseph M
2012-01-01
Passenger cars often are at a disadvantage when colliding with light trucks (sport utility vehicles [SUVs] and pickups) due to differences in mass, vehicle structural alignment, and stiffness. In 2003, vehicle manufacturers agreed to voluntary measures to improve compatibility, especially in front-to-front and front-to-side crashes, with full adherence to be achieved by September 2009. This study examined whether fatality rates are consistent with the expected benefit of this agreement. Analyses examined 2 death rates for 1- to 4-year-old passenger vehicles during 2000-2001 and 2008-2009 in the United States: occupant deaths per million registered vehicle years in these vehicles and deaths in other cars that collided with these vehicles in 2-vehicle crashes per million registered vehicle years. These rates were computed for each study period and for cars/minivans (referred to as cars), SUVs, and pickups by curb weight (in 500-pound increments). The latter death rate, referred to as the car crash partner death rate, also was computed for front-to-front crashes and front-to-side crashes where the front of the 1- to 4-year-old vehicle struck the side of the partner car. In both study periods, occupant death rates generally decreased for each vehicle type both with increasing curb weight and over time. SUVs experienced the greatest declines compared with cars and pickups. This is due in part to the early fitment of electronic stability control in SUVs, which drastically reduced the incidence of single-vehicle rollover crashes. Pickups had the highest death rates in both study periods. Car crash partner death rates generally declined over time for all vehicle categories but more steeply for SUVs and pickups colliding with cars than for cars colliding with cars. In fact, the car crash partner death rates for SUVs and cars were nearly identical during 2008-2009, suggesting that the voluntary design changes for compatibility have been effective. Car crash partner death rates also declined for pickups, but their rates were consistently the highest in both study periods. It is impossible to disentangle the individual contributions of the compatibility agreement, improved crashworthiness of cars, and other factors in reducing car crash partner fatality rates. However, the generally larger reductions in car crash partner death rates for SUVs and pickups indicate the likely benefits of the agreement. Overall, this study finds that the system of regulatory testing, voluntary industry initiatives, and consumer information testing has led to a passenger vehicle fleet that is much more compatible in crashes.
"Captive Column" Crash Tests : Crash Testing of a Light Standard Luminaire Pole
DOT National Transportation Integrated Search
1981-03-01
Under contract No. DOT-FH-11-9606 the Nevada Department of Transportation (NDOT) conducted crash testing to study the capability of "Captive Column" light standard appurtenances under controlled conditions. The studies were precursors of actual on si...
49 CFR 572.191 - General description.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES IIsD Side Impact Crash Test Dummy, Small Adult Female § 572.191 General description. (a) The SID-IIsD Side Impact Crash Test Dummy... the SID-IIsD Side Impact Crash Test Dummy, 5th percentile adult female, is shown in drawing 180-0000...
49 CFR 572.181 - General description.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES 2re Side Impact Crash Test Dummy, 50th Percentile Adult Male § 572.181 General description. (a) The ES-2re Side Impact Crash Test... (PADI) of the ES-2re Side Impact Crash Test Dummy, February 2008, incorporated by reference, see § 572...
49 CFR 572.191 - General description.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES IIsD Side Impact Crash Test Dummy, Small Adult Female § 572.191 General description. (a) The SID-IIsD Side Impact Crash Test Dummy... the SID-IIsD Side Impact Crash Test Dummy, 5th percentile adult female, is shown in drawing 180-0000...
Controlled Impact Demonstration instrumented test dummies installed in plane
NASA Technical Reports Server (NTRS)
1984-01-01
In this photograph are seen some of dummies in the passenger cabin of the B-720 aircraft. NASA Langley Research Center instrumented a large portion of the aircraft and the dummies for loads in a crashworthiness research program. In 1984 NASA Dryden Flight Research Facility and the Federal Aviation Adimistration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID). The test involved crashing a Boeing 720 aircraft with four JT3C-7 engines burning a mixture of standard fuel with an additive called Anti-misting Kerosene (AMK) designed to supress fire. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four degraders (one on each engine); and the FAA refined AMK (blending, testing, and fueling a full-size aircraft). The 15 flights had 15 takeoffs, 14 landings and a larger number of approaches to about 150 feet above the prepared crash site under remote control. These flight were used to introduce AMK one step at a time into some of the fuel tanks and engines while monitoring the performance of the engines. On the final flight (No. 15) with no crew, all fuel tanks were filled with a total of 76,000 pounds of AMK and the remotely-piloted aircraft landed on Rogers Dry Lakebed in an area prepared with posts to test the effectiveness of the AMK in a controlled impact. The CID, which some wags called the Crash in the Desert, was spectacular with a large fireball enveloping and burning the B-720 aircraft. From the standpoint of AMK the test was a major set-back, but for NASA Langley, the data collected on crashworthiness was deemed successful and just as important.
Functional recovery patterns in seriously injured automotive crash victims.
McMurry, Timothy L; Poplin, Gerald S; Crandall, Jeff
2016-09-01
The functional capacity index (FCI) is designed to predict functional loss 12 months post-injury for each injury in the 2008 Abbreviated Injury Scale (AIS) manual on a scale from 0 (death) to 100 (full recovery), but FCI has never been validated. This study compared FCI predicted loss with patient-reported 12-month outcomes as measured through the Short Form 36 (SF-36) health assessment survey. Using follow-up data collected on 2,858 adult car crash occupants in the Crash Injury Research and Engineering Network (CIREN) database, we compared FCI predicted outcomes to occupants' Physical Component Summary (PCS) scores, which are weighted averages of the SF-36 items addressing physical function. Our analyses included descriptive statistics, plots of typical recovery patterns, and a mixed effects regression model that describes PCS as a function of FCI, demographics, comorbidities, and injury pattern while also adjusting for the occupants' pre-crash physical capabilities. We further examined injuries in patients who report a significant drop in PCS 12 months post-crash despite being predicted to fully recover. At baseline, the CIREN population exhibited PCS scores similar to the overall population (mean = 51.1, SD = 10.3). Twelve months post-crash, occupants with predicted impairment (FCI < 100) report a substantial decrease in physical function, and those who were predicted to fully recover still report some, albeit less, impairment. In the multivariate mixed-effects regression model, FCI is a strongly significant (P-value <.0001) predictor of PCS, with each 1-point drop in FCI predicting a 0.27-point drop in PCS. Maximum AIS severities in the head, spine, and lower extremity body regions were also significantly associated with PCS (P-values <.05). Among occupants who were expected to fully recover but who report a significant drop in PCS at 12 months, spinal fractures without cord involvement account for 5 of the 10 most common AIS 2+ injuries. FCI was associated with 12-month outcomes but may not adequately describe the recovery from some head, spine, and lower extremity injuries. Some occupants who were expected to recover still report functional loss 12 months post-injury.
DOT National Transportation Integrated Search
2014-04-01
Through the analysis of national crash databases from the National Highway Traffic Safety Administration, pre-crash scenarios are identified, prioritized, and described for the development of objective tests for pedestrian crash avoidance/mitigation ...
Seacrist, Thomas; Belwadi, Aditya; Prabahar, Abhiti; Chamberlain, Samuel; Megariotis, James; Loeb, Helen
2016-09-01
Motor vehicle crashes are the leading cause of death for teens. Previous teen and adult crash rates have been based upon fatal crashes, police-reported crashes, and estimated miles driven. Large-scale naturalistic driving studies offer the opportunity to compute crash rates using a reliable methodology to capture crashes and driving exposure. The Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study contains extensive real-world data on teen and adult driving. This article presents findings on the crash rates of novice teen and experienced adult drivers in naturalistic crashes. A subset from the SHRP2 database consisting of 539 crash events for novice teens (16-19 years, n = 549) and experienced adults (35-54 years, n = 591) was used. Onboard instrumentation such as scene cameras, accelerometers, and Global Positioning System logged time series data at 10 Hz. Scene videos were reviewed for all events to identify rear-end striking crashes. Dynamic variables such as acceleration and velocity were analyzed for rear-end striking events. Number of crashes, crash rates, rear-end striking crash severity, and rear-end striking impact velocity were compared between novice teens and experienced adults. Video review of the SHRP2 crashes identified significantly more crashes (P < 0.01) and rear-end striking crashes (P < 0.01) among the teen group than among the adult group. This yielded crash rates of 30.0 crashes per million miles driven for novice teens compared to 5.3 crashes per million miles driven for experienced adults. The crash rate ratio for teens vs. adults was 5.7. The rear-end striking crash rate was 13.5 and 1.8 per million miles driven for novice teens and experienced adults, respectively. The rear-end striking crash rate ratio for teens vs. adults was 7.5. The rear-end striking crash severity measured by the accelerometers was greater (P < 0.05) for the teen group (1.8 ± 0.9 g; median = 1.6 g) than for the adult group (1.1 ± 0.4 g; median = 1.0 g), suggesting that teen crashes tend to be more serious than adult crashes. Increased rear-end striking impact velocity (P < 0.01) was also observed for novice teens (18.8 ± 13.2 mph; median = 18.9 mph) compared to experienced adults (3.3 ± 1.2 mph; median = 2.8 mph). To our knowledge, this is the first study to compare crash rates between teens and adults using a large-scale naturalistic driving database. Unlike previous crash rates, the reported rates reliably control for crash type and driving exposure. These results conform to previous findings that novice teens exhibit increased crash rates compared to experienced adults.
Impact Analyses and Tests of Metal Cask Considering Aircraft Engine Crash - 12308
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sanghoon; Choi, Woo-Seok; Kim, Ki-Young
2012-07-01
The structural integrity of a dual purpose metal cask currently under development by the Korea Radioactive Waste Management Cooperation (KRMC) is evaluated through analyses and tests under a high-speed missile impact considering the targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from the literature. The missile impact velocity was set at 150 m/s, and two impact orientations were considered. A simplified missile simulating a commercial aircraft engine is designed from an impact load history curve provided in the literature. In the analyses, the focus is on the evaluation of themore » containment boundary integrity of the metal cask. The analyses results are compared with the results of tests using a 1/3 scale model. The results show very good agreements, and the procedure and methodology adopted in the structural analyses are validated. While the integrity of the cask is maintained in one evaluation where the missile impacts the top side of the free standing cask, the containment boundary is breached in another case in which the missile impacts the center of the cask lid in a perpendicular orientation. A safety assessment using a numerical simulation of an aircraft engine crash into spent nuclear fuel storage systems is performed. A commercially available explicit finite element code is utilized for the dynamic simulation, and the strain rate effect is included in the modeling of the materials used in the target system and missile. The simulation results show very good agreement with the test results. It is noted that this is the first test considering an aircraft crash in Korea. (authors)« less
Crash test for the Copenhagen problem.
Nagler, Jan
2004-06-01
The Copenhagen problem is a simple model in celestial mechanics. It serves to investigate the behavior of a small body under the gravitational influence of two equally heavy primary bodies. We present a partition of orbits into classes of various kinds of regular motion, chaotic motion, escape and crash. Collisions of the small body onto one of the primaries turn out to be unexpectedly frequent, and their probability displays a scale-free dependence on the size of the primaries. The analysis reveals a high degree of complexity so that long term prediction may become a formidable task. Moreover, we link the results to chaotic scattering theory and the theory of leaking Hamiltonian systems.
DOT National Transportation Integrated Search
2012-05-01
An accurate measure of crash costs is required to support effective decision-making about transportation investments. In particular, underinvestment will occur if measurement fails to capture the full cost of crashes. Such mis-measurement and underin...
Keall, Michael D; Frith, William J
2004-06-01
From May 1999, a new system for licensing older drivers was introduced in New Zealand. It included a practical on-road driving test with expanded scope, to be completed every two years from the time the driver turns 80. The relationship between crashes and test performance needed to be studied to inform the debate regarding the testing system. The population studied was all drivers who entered this licensing system during its first three years of operation. They were defined as crash involved if they were involved in an injury crash during the two years following their first licensure under the new system. Logistic regression was used to describe the risk of crash involvement in terms of driving test performance and other driver characteristics. Each driving test failure was associated with a 33% increase in the odds of crash involvement (95% CI 14% to 55%), controlling for age, gender, minor traffic violations, and whether the older driver lived with another licensed driver or not. Minor traffic violations in the two years following the driving test were associated with twice the odds of crash involvement. These results suggest that the new on-road driving test does identify older driver behaviors or limitations that are related to crash liability. It is anticipated that the results presented here will provide essential information for discussing older driver licensing systems, whose impact will grow in importance as the population of drivers ages.
Ehrlich, Peter F; Brown, J Kristine; Sochor, Mark R; Wang, Stewart C; Eichelberger, Martin E
2006-11-01
Motor vehicle crashes account for more than 50% of pediatric injuries. Triage of pediatric patients to appropriate centers can be based on the crash/injury characteristics. Pediatric motor vehicle crash/injury characteristics can be determined from an in vitro laboratory using child crash dummies. However, to date, no detailed data with respect to outcomes and crash mechanism have been presented with a pediatric in vivo model. The Crash Injury Research Engineering Network is comprised of 10 level 1 trauma centers. Crashes were examined with regard to age, crash severity (DeltaV), crash direction, restraint use, and airbag deployment. Multiple logistic regression analysis was performed with Injury Severity Score (ISS) and Glasgow Coma Scale (GCS) as outcomes. Standard age groupings (0-4, 5-9, 10-14, and 15-18) were used. The database is biases toward a survivor population with few fatalities. Four hundred sixty-one motor vehicle crashes with 2500 injuries were analyzed (242 boys, 219 girls). Irrespective of age, DeltaV > 30 mph resulted in increased ISS and decreased GCS (eg, for 0-4 years, DeltaV < 30: ISS = 10, GCS = 13.5 vs DeltaV > 30: ISS = 19.5, GCS = 10.6; P < .007, < .002, respectively). Controlling for DeltaV, children in lateral crashes had increased ISS and decreased GCS versus those in frontal crashes. Airbag deployment was protective for children 15 to 18 years old and resulted in a lower ISS and higher GCS (odds ratio, 2.1; 95% confidence interval, 0.9-4.6). Front-seat passengers suffered more severe (ISS > 15) injuries than did backseat passengers (odds ratio, 1.7; 95% confidence interval, 0.7-3.4). A trend was noted for children younger than 12 years sitting in the front seat to have increased ISS and decreased GCS with airbag deployment but was limited by case number. A reproducible pattern of increased ISS and lower GCS characterized by high severity, lateral crashes in children was noted. Further analysis of the specific injuries as a function and the crash characteristic can help guide management and prevention strategies.
Pre-crash scenarios at road junctions: A clustering method for car crash data.
Nitsche, Philippe; Thomas, Pete; Stuetz, Rainer; Welsh, Ruth
2017-10-01
Given the recent advancements in autonomous driving functions, one of the main challenges is safe and efficient operation in complex traffic situations such as road junctions. There is a need for comprehensive testing, either in virtual simulation environments or on real-world test tracks. This paper presents a novel data analysis method including the preparation, analysis and visualization of car crash data, to identify the critical pre-crash scenarios at T- and four-legged junctions as a basis for testing the safety of automated driving systems. The presented method employs k-medoids to cluster historical junction crash data into distinct partitions and then applies the association rules algorithm to each cluster to specify the driving scenarios in more detail. The dataset used consists of 1056 junction crashes in the UK, which were exported from the in-depth "On-the-Spot" database. The study resulted in thirteen crash clusters for T-junctions, and six crash clusters for crossroads. Association rules revealed common crash characteristics, which were the basis for the scenario descriptions. The results support existing findings on road junction accidents and provide benchmark situations for safety performance tests in order to reduce the possible number parameter combinations. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Knight, Norman F., Jr.
2002-01-01
A lightweight energy-absorbing keel-beam concept was developed and retrofitted in a general aviation type aircraft to improve crashworthiness performance. The energy-absorbing beam consisted of a foam-filled cellular structure with glass fiber and hybrid glass/kevlar cell walls. Design, analysis, fabrication and testing of the keel beams prior to installation and subsequent full-scale crash testing of the aircraft are described. Factors such as material and fabrication constraints, damage tolerance, crush stress/strain response, seat-rail loading, and post crush integrity, which influenced the course of the design process are also presented. A theory similar to the one often used for ductile metal box structures was employed with appropriate modifications to estimate the sustained crush loads for the beams. This, analytical tool, coupled with dynamic finite element simulation using MSC.Dytran were the prime design and analysis tools. The validity of the theory as a reliable design tool was examined against test data from static crush tests of beam sections while the overall performance of the energy-absorbing subfloor was assessed through dynamic testing of 24 in long subfloor assemblies.
Validation of the Australian Propensity for Angry Driving Scale (Aus-PADS).
Leal, Nerida L; Pachana, Nancy A
2009-09-01
The present study used a university sample to assess the test-retest reliability and validity of the Australian Propensity for Angry Driving Scale (Aus-PADS). The scale has stability over time, and convergent validity was established, as Aus-PADS scores correlated significantly with established anger and impulsivity measures. Discriminant validity was also established, as Aus-PADS scores did not correlate with Venturesomeness scores. The Aus-PADS has demonstrated criterion validity, as scores were correlated with behavioural measures, such as yelling at other drivers, gesturing at other drivers, and feeling angry but not doing anything. Aus-PADS scores reliably predicted the frequency of these behaviours over and above other study variables. No significant relationship between aggressive driving and crash involvement was observed. It was concluded that the Aus-PADS is a reliable and valid tool appropriate for use in Australian research, and that the potential relationship between aggressive driving and crash involvement warrants further investigation with a more representative (and diverse) driver sample.
Aftershocks following crash of currency exchange rate: The case of RUB/USD in 2014
NASA Astrophysics Data System (ADS)
Usmanova, Vasilya; Lysogorskiy, Yury V.; Abe, Sumiyoshi
2018-02-01
The dynamical behavior of the currency exchange rate after its large-scale catastrophe is discussed through a case study of the rate of Russian rubles to US dollars after its crash in 2014. It is shown that, similarly to the case of the stock market crash, the relaxation is characterized by a power law, which is in analogy with the Omori-Utsu law for earthquake aftershocks. The waiting-time distribution is found to also obey a power law. Furthermore, the event-event correlation is discussed, and the aging phenomenon and scaling property are observed. Comments are made on (non-)Markovianity of the aftershock process and on a possible relevance of glassy dynamics to the market system after the crash.
Gaewsky, James P; Weaver, Ashley A; Koya, Bharath; Stitzel, Joel D
2015-01-01
A 3-phase real-world motor vehicle crash (MVC) reconstruction method was developed to analyze injury variability as a function of precrash occupant position for 2 full-frontal Crash Injury Research and Engineering Network (CIREN) cases. Phase I: A finite element (FE) simplified vehicle model (SVM) was developed and tuned to mimic the frontal crash characteristics of the CIREN case vehicle (Camry or Cobalt) using frontal New Car Assessment Program (NCAP) crash test data. Phase II: The Toyota HUman Model for Safety (THUMS) v4.01 was positioned in 120 precrash configurations per case within the SVM. Five occupant positioning variables were varied using a Latin hypercube design of experiments: seat track position, seat back angle, D-ring height, steering column angle, and steering column telescoping position. An additional baseline simulation was performed that aimed to match the precrash occupant position documented in CIREN for each case. Phase III: FE simulations were then performed using kinematic boundary conditions from each vehicle's event data recorder (EDR). HIC15, combined thoracic index (CTI), femur forces, and strain-based injury metrics in the lung and lumbar vertebrae were evaluated to predict injury. Tuning the SVM to specific vehicle models resulted in close matches between simulated and test injury metric data, allowing the tuned SVM to be used in each case reconstruction with EDR-derived boundary conditions. Simulations with the most rearward seats and reclined seat backs had the greatest HIC15, head injury risk, CTI, and chest injury risk. Calculated injury risks for the head, chest, and femur closely correlated to the CIREN occupant injury patterns. CTI in the Camry case yielded a 54% probability of Abbreviated Injury Scale (AIS) 2+ chest injury in the baseline case simulation and ranged from 34 to 88% (mean = 61%) risk in the least and most dangerous occupant positions. The greater than 50% probability was consistent with the case occupant's AIS 2 hemomediastinum. Stress-based metrics were used to predict injury to the lower leg of the Camry case occupant. The regional-level injury metrics evaluated for the Cobalt case occupant indicated a low risk of injury; however, strain-based injury metrics better predicted pulmonary contusion. Approximately 49% of the Cobalt occupant's left lung was contused, though the baseline simulation predicted 40.5% of the lung to be injured. A method to compute injury metrics and risks as functions of precrash occupant position was developed and applied to 2 CIREN MVC FE reconstructions. The reconstruction process allows for quantification of the sensitivity and uncertainty of the injury risk predictions based on occupant position to further understand important factors that lead to more severe MVC injuries.
Brumbelow, Matthew L; Mueller, Becky C; Arbelaez, Raul A
2015-01-01
The Insurance Institute for Highway Safety (IIHS) introduced its side impact consumer information test program in 2003. Since that time, side airbags and structural improvements have been implemented across the fleet and the proportion of good ratings has increased to 93% of 2012-2014 model year vehicles. Research has shown that drivers of good-rated vehicles are 70% less likely to die in a left-side crash than drivers of poor-rated vehicles. Despite these improvements, side impact fatalities accounted for about one quarter of passenger vehicle occupant fatalities in 2012. This study is a detailed analysis of real-world cases with serious injury resulting from side crashes of vehicles with good ratings in the IIHS side impact test. NASS-CDS and Crash Injury Research and Engineering Network (CIREN) were queried for occupants of good-rated vehicles who sustained an Abbreviated Injury Scale (AIS) ≥ 3 injury in a side-impact crash. The resulting 110 cases were categorized by impact configuration and other factors that contributed to injury. Patterns of impact configuration, restraint performance, and occupant injury were identified and discussed in the context of potential upgrades to the current IIHS side impact test. Three quarters of the injured occupants were involved in near-side impacts. For these occupants, the most common factors contributing to injury were crash severities greater than the IIHS test, inadequate side-airbag performance, and lack of side-airbag coverage for the injured body region. In the cases where an airbag was present but did not prevent the injury, occupants were often exposed to loading centered farther forward on the vehicle than in the IIHS test. Around 40% of the far-side occupants were injured from contact with the struck-side interior structure, and almost all of these cases were more severe than the IIHS test. The remaining far-side occupants were mostly elderly and sustained injury from the center console, instrument panel, or seat belt. In addition, many far-side occupants were likely out of position due to events preceding the side impact and/or being unbelted. Individual changes to the IIHS side impact test have the potential to reduce the number of serious injuries in real-world crashes. These include impacting the vehicle farther forward (relevant to 28% of all cases studied), greater test severity (17%), the inclusion of far-side occupants (9%), and more restrictive injury criteria (9%). Combinations of these changes could be more effective.
Validation of the ‘full reconnection model’ of the sawtooth instability in KSTAR
NASA Astrophysics Data System (ADS)
Nam, Y. B.; Ko, J. S.; Choe, G. H.; Bae, Y.; Choi, M. J.; Lee, W.; Yun, G. S.; Jardin, S.; Park, H. K.
2018-06-01
The central safety factor (q 0) during sawtooth oscillation has been measured with a great accuracy with the motional Stark effect (MSE) system on KSTAR and the measured value was However, this measurement alone cannot validate the disputed full and partial reconnection models definitively due to non-trivial off-set error (~0.05). Supplemental experiment of the excited m = 2, m = 3 modes that are extremely sensitive to the background q 0 and core magnetic shear definitively validates the ‘full reconnection model’. The radial position of the excited modes right after the crash and time evolution into the 1/1 kink mode before the crash in a sawtoothing plasma suggests that in the MHD quiescent period after the crash and before the crash. Additional measurement of the long lived m = 3, m = 5 modes in a non-sawtoothing discharge (presumably ) further validates the ‘full reconnection model’.
Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Kellas, Sotiris; Fuchs, Yvonne T.
2009-01-01
This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.
Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fuchs, Yvonne T.; Kellas, Sotiris
2008-01-01
This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.
49 CFR 572.181 - General description.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES ES-2re Side Impact Crash Test Dummy, 50th Percentile Adult Male § 572.181 General description. (a) The ES-2re Side Impact Crash... (PADI) of the ES-2re Side Impact Crash Test Dummy, February 2008, incorporated by reference, see § 572...
49 CFR 572.181 - General description.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES ES-2re Side Impact Crash Test Dummy, 50th Percentile Adult Male § 572.181 General description. (a) The ES-2re Side Impact Crash... (PADI) of the ES-2re Side Impact Crash Test Dummy, February 2008, incorporated by reference, see § 572...
49 CFR 563.10 - Crash test performance and survivability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 6 2011-10-01 2011-10-01 false Crash test performance and survivability. 563.10 Section 563.10 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EVENT DATA RECORDERS § 563.10 Crash test performance and survivability. (a) Each...
CID Aircraft pre-impact lakebed skid
NASA Technical Reports Server (NTRS)
1984-01-01
The B-720 is seen viewed moments after impact and just before hitting the wing openers. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four degraders (one on each engine); and the FAA refined AMK (blending, testing, and fueling a full-size aircraft). The 15 flights had 15 takeoffs, 14 landings and a larger number of approaches to about 150 feet above the prepared crash site under remote control. These flight were used to introduce AMK one step at a time into some of the fuel tanks and engines while monitoring the performance of the engines. On the final flight (No. 15) with no crew, all fuel tanks were filled with a total of 76,000 pounds of AMK and the remotely-piloted aircraft landed on Rogers Dry Lakebed in an area prepared with posts to test the effectiveness of the AMK in a controlled impact. The CID, which some wags called the Crash in the Desert, was spectacular with a large fireball enveloping and burning the B-720 aircraft. From the standpoint of AMK the test was a major set-back, but for NASA Langley, the data collected on crashworthiness was deemed successful and just as important.
NASA Technical Reports Server (NTRS)
1984-01-01
In this photograph the B-720 is seen during the moments of initial impact. The left wing is digging into the lakebed while the aircraft continues sliding towards wing openers. In 1984 NASA Dryden Flight Research Facility and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID). The test involved crashing a Boeing 720 aircraft with four JT3C-7 engines burning a mixture of standard fuel with an additive, Anti-misting Kerosene (AMK), designed to supress fire. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four degraders (one on each engine); and the FAA refined AMK (blending, testing, and fueling a full-size aircraft). The 15 flights had 15 takeoffs, 14 landings and a larger number of approaches to about 150 feet above the prepared crash site under remote control. These flight were used to introduce AMK one step at a time into some of the fuel tanks and engines while monitoring the performance of the engines. On the final flight (No. 15) with no crew, all fuel tanks were filled with a total of 76,000 pounds of AMK and the remotely-piloted aircraft landed on Rogers Dry Lakebed in an area prepared with posts to test the effectiveness of the AMK in a controlled impact. The CID, which some wags called the Crash in the Desert, was spectacular with a large fireball enveloping and burning the B-720 aircraft. From the standpoint of AMK the test was a major set-back, but for NASA Langley, the data collected on crashworthiness was deemed successful and just as important.
Cervical and thoracic spine injury from interactions with vehicle roofs in pure rollover crashes.
Bambach, M R; Grzebieta, R H; McIntosh, A S; Mattos, G A
2013-01-01
Around one third of serious injuries sustained by belted, non-ejected occupants in pure rollover crashes occur to the spine. Dynamic rollover crash test methodologies have been established in Australia and the United States, with the aims of understanding injury potential in rollovers and establishing the basis of an occupant rollover protection crashworthiness test protocol that could be adopted by consumer new car assessment programmes and government regulators internationally. However, for any proposed test protocol to be effective in reducing the high trauma burden resulting from rollover crashes, appropriate anthropomorphic devices that replicate real-world injury mechanisms and biomechanical loads are required. To date, consensus regarding the combination of anthropomorphic device and neck injury criteria for rollover crash tests has not been reached. The aim of the present study is to provide new information pertaining to the nature and mechanisms of spine injury in pure rollover crashes, and to assist in the assessment of spine injury potential in rollover crash tests. Real-world spine injury cases that resulted from pure rollover crashes in the United States between 2000 and 2009 are identified, and compared with cadaver experiments under vertical load by other authors. The analysis is restricted to contained, restrained occupants that were injured from contact with the vehicle roof structure during a pure rollover, and the role of roof intrusion in creating potential for spine injury is assessed. Recommendations for assessing the potential for spine injury in rollover occupant protection crash test protocols are made. Copyright © 2012 Elsevier Ltd. All rights reserved.
A new method for predicting crashworthiness.
Council, F M; Stewart, J R; Cox, C L
1997-01-01
Consumer information concerning the predicted 'safeness' of a new car model is based on the results of crash tests. Unfortunately, because it allows comparisons only within size/weight groups, the information is somewhat incompatible with the normal car-purchase decision process since consumers often consider cars within different groups. In addition, based on past research, the association of the crash-test information with real-world crash outcomes is, at best, somewhat limited. The goal of this study was to explore a methodology for improving this information, a methodology which incorporates not only the crash-test information, but also information concerning real-world occupant injury experience in prior crashes involving similar vehicles ('clones'). The clone information included both driver injury severity in past clone crashes from the North Carolina accident file and various indicators of relative driver injury in clones extracted from published insurance-related data from the Highway Loss Data Institute (HLDI). Final models developed included both measures of the Head Index Criteria (HIC) from the crash test and some measure of clone performances as significant predictors. While the North Carolina clone data is intuitively 'cleaner' in that it describes injury level per crash rather than per insured year, the medical claims indices from the HLDI data consistently were shown to be the stronger predictors. Future research will need to look at ways of better combining the crash-test variables and of possible modifications to the HLDI indices. In general, the analyses generated encouraging results that appear to point to possible improvements in the crashworthiness information.
Lateral automobile impacts and the risk of traumatic brain injury.
Bazarian, Jeffrey J; Fisher, Susan Gross; Flesher, William; Lillis, Robert; Knox, Kerry L; Pearson, Thomas A
2004-08-01
We determine the relative risk and severity of traumatic brain injury among occupants of lateral impacts compared with occupants of nonlateral impacts. This was a secondary analysis of the National Highway Traffic Safety Administration's National Automotive Sampling System, Crashworthiness Data Systems for 2000. Analysis was restricted to occupants of vehicles in which at least 1 person experienced an injury with Abbreviated Injury Scale score greater than 2. Traumatic brain injury was defined as an injury to the head or skull with an Abbreviated Injury Scale score greater than 2. Outcomes were analyzed using the chi2 test and multivariate logistic regression, with adjustment of variance to account for weighted probability sampling. Of the 1,115 occupants available for analysis, impact direction was lateral for 230 (18.42%) occupants and nonlateral for 885 (81.58%) occupants. One hundred eighty-seven (16.07%) occupants experienced a traumatic brain injury, 14.63% after lateral and 16.39% after nonlateral impact. The unadjusted relative risk of traumatic brain injury after lateral impact was 0.89 (95% confidence interval [CI] 0.51 to 1.56). After adjusting for several important crash-related variables, the relative risk of traumatic brain injury was 2.60 (95% CI 1.1 to 6.0). Traumatic brain injuries were more severe after lateral impact according to Abbreviated Injury Scale and Glasgow Coma Scale scores. The proportion of fatal or critical crash-related traumatic brain injuries attributable to lateral impact was 23.5%. Lateral impact is an important independent risk factor for the development of traumatic brain injury after a serious motor vehicle crash. Traumatic brain injuries incurred after lateral impact are more severe than those resulting from nonlateral impact. Vehicle modifications that increase head protection could reduce crash-related severe traumatic brain injuries by up to 61% and prevent up to 2,230 fatal or critical traumatic brain injuries each year in the United States.
Aircraft Crash Survival Design Guide. Volume 2. Aircraft Crash Environment and Human Tolerance
1980-01-01
anthropometry , and crash test dummies, all of which serves as background for the design information presented in the other volumes. .I / V. L...Aeromedical Institute furnished assistance in locat- ing recent information on human tolerance, anthropometry , and crash test dummies. .3 TABLE OF CONTENTS...83 6.1 INTRODUCTION . . . . . . .. ..... 83 6.2 ANTHROPOMETRY . . . . . . 83 6.2.1 Conventional Anthropometric Measurements
Evaluation of Vehicle-Based Crash Severity Metrics.
Tsoi, Ada H; Gabler, Hampton C
2015-01-01
Vehicle change in velocity (delta-v) is a widely used crash severity metric used to estimate occupant injury risk. Despite its widespread use, delta-v has several limitations. Of most concern, delta-v is a vehicle-based metric which does not consider the crash pulse or the performance of occupant restraints, e.g. seatbelts and airbags. Such criticisms have prompted the search for alternative impact severity metrics based upon vehicle kinematics. The purpose of this study was to assess the ability of the occupant impact velocity (OIV), acceleration severity index (ASI), vehicle pulse index (VPI), and maximum delta-v (delta-v) to predict serious injury in real world crashes. The study was based on the analysis of event data recorders (EDRs) downloaded from the National Automotive Sampling System / Crashworthiness Data System (NASS-CDS) 2000-2013 cases. All vehicles in the sample were GM passenger cars and light trucks involved in a frontal collision. Rollover crashes were excluded. Vehicles were restricted to single-event crashes that caused an airbag deployment. All EDR data were checked for a successful, completed recording of the event and that the crash pulse was complete. The maximum abbreviated injury scale (MAIS) was used to describe occupant injury outcome. Drivers were categorized into either non-seriously injured group (MAIS2-) or seriously injured group (MAIS3+), based on the severity of any injuries to the thorax, abdomen, and spine. ASI and OIV were calculated according to the Manual for Assessing Safety Hardware. VPI was calculated according to ISO/TR 12353-3, with vehicle-specific parameters determined from U.S. New Car Assessment Program crash tests. Using binary logistic regression, the cumulative probability of injury risk was determined for each metric and assessed for statistical significance, goodness-of-fit, and prediction accuracy. The dataset included 102,744 vehicles. A Wald chi-square test showed each vehicle-based crash severity metric estimate to be a significant predictor in the model (p < 0.05). For the belted drivers, both OIV and VPI were significantly better predictors of serious injury than delta-v (p < 0.05). For the unbelted drivers, there was no statistically significant difference between delta-v, OIV, VPI, and ASI. The broad findings of this study suggest it is feasible to improve injury prediction if we consider adding restraint performance to classic measures, e.g. delta-v. Applications, such as advanced automatic crash notification, should consider the use of different metrics for belted versus unbelted occupants.
Nilsson, Daniel; Lindman, Magdalena; Victor, Trent; Dozza, Marco
2018-04-01
Single-vehicle run-off-road crashes are a major traffic safety concern, as they are associated with a high proportion of fatal outcomes. In addressing run-off-road crashes, the development and evaluation of advanced driver assistance systems requires test scenarios that are representative of the variability found in real-world crashes. We apply hierarchical agglomerative cluster analysis to define similarities in a set of crash data variables, these clusters can then be used as the basis in test scenario development. Out of 13 clusters, nine test scenarios are derived, corresponding to crashes characterised by: drivers drifting off the road in daytime and night-time, high speed departures, high-angle departures on narrow roads, highways, snowy roads, loss-of-control on wet roadways, sharp curves, and high speeds on roads with severe road surface conditions. In addition, each cluster was analysed with respect to crash variables related to the crash cause and reason for the unintended lane departure. The study shows that cluster analysis of representative data provides a statistically based method to identify relevant properties for run-off-road test scenarios. This was done to support development of vehicle-based run-off-road countermeasures and driver behaviour models used in virtual testing. Future studies should use driver behaviour from naturalistic driving data to further define how test-scenarios and behavioural causation mechanisms should be included. Copyright © 2018 Elsevier Ltd. All rights reserved.
Computer simulations and experimental study on crash box of automobile in low speed collision
NASA Astrophysics Data System (ADS)
Liu, Yanjie; Ding, Lin; Yan, Shengyuan; Yang, Yongsheng
2008-11-01
Based on the problems of energy-absorbing components in the automobile low speed collision process, according to crash box frontal crash test in low speed as the example, the simulation analysis of crash box impact process was carried out by Hyper Mesh and LS-DYNA. Each parameter on the influence modeling was analyzed by mathematics analytical solution and test comparison, which guaranteed that the model was accurate. Combination of experiment and simulation result had determined the weakness part of crash box structure crashworthiness aspect, and improvement method of crash box crashworthiness was discussed. Through numerical simulation of the impact process of automobile crash box, the obtained analysis result was used to optimize the design of crash box. It was helpful to improve the vehicles structure and decrease the collision accident loss at most. And it was also provided a useful method for the further research on the automobile collision.
The Field Relevance of NHTSA's Oblique Research Moving Deformable Barrier Tests.
Prasad, Priya; Dalmotas, Dainius; German, Alan
2014-11-01
A small overlap frontal crash test has been recently introduced by the Insurance Institute for Highway Safety in its frontal rating scheme. Another small overlap frontal crash test is under development by the National Highway Traffic Safety Administration (NHTSA). Whereas the IIHS test is conducted against a fixed rigid barrier, the NHTSA test is conducted with a moving deformable barrier that overlaps 35% of the vehicle being tested and the angle between the longitudinal axis of the barrier and the longitudinal axis of the test vehicle is 15 degrees. The field relevance of the IIHS test has been the subject of a paper by Prasad et al. (2014). The current study is aimed at examining the field relevance of the NHTSA test. The field relevance is indicated by the frequency of occurrence of real world crashes that are simulated by the test conditions, the proportion of serious-to-fatal real world injuries explained by the test condition, and rates of serious injury to the head, chest and other body regions in the real world crashes resembling the test condition. The database examined for real world crashes is NASS. Results of the study indicate that 1.4% of all frontal 11-to-1 o'clock crashes are simulated by the test conditions that account for 2.4% to 4.5% of all frontal serious-to-fatal (MAIS3+F) injuries. Injury rates of the head and the chest are substantially lower in far-side than in near-side frontal impacts. Crash test ATD rotational responses of the head in the tests overpredict the real world risk of serious-to-fatal brain injuries.
Association of contact loading in diffuse axonal injuries from motor vehicle crashes.
Yoganandan, Narayan; Gennarelli, Thomas A; Zhang, Jiangyue; Pintar, Frank A; Takhounts, Erik; Ridella, Stephen A
2009-02-01
Although studies have been conducted to analyze brain injuries from motor vehicle crashes, the association of head contact has not been fully established. This study examined the association in occupants sustaining diffuse axonal injuries (DAIs). The 1997 to 2006 motor vehicle Crash Injury Research Engineering Network database was used. All crash modes and all changes in velocity were included; ejections and rollovers were excluded; injuries to front and rear seat occupants with and without restraint use were considered. DAI were coded in the database using Abbreviated Injury Scale 1990. Loss of consciousness was included and head contact was based on medical- and crash-related data. Sixty-seven occupants with varying ages were coded with DAI. Forty-one adult occupants (mean, 33 years of age, 171-cm tall, 71-kg weight; 30 drivers, 11 passengers) were analyzed. Mean change in velocity was 41.2 km/h and Glasgow Coma Scale score was 4. There were 33 lateral, 6 frontal, and 2 rear crashes with 32 survivors and 9 were fatalities. Two occupants in the same crash did not sustain DAI. Although skull fractures and scalp injuries occurred in some impacts, head contact was identified in all frontal, rear, and far side, and all but one nearside crashes. Using a large sample size of occupants sustaining DAI in 1991 to 2006 model year vehicles, DAI occurred more frequently in side than frontal crashes, is most commonly associated with impact load transfer, and is not always accompanied by skull fractures. The association of head contact in >95% of cases underscores the importance of evaluating crash-related variables and medical information for trauma analysis. It would be prudent to include contact loading in addition to angular kinematics in the analysis and characterization of DAI.
49 CFR 572.140 - Incorporation by reference.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Child Crash Test Dummy, Alpha Version § 572.140 Incorporation by reference. (a) The following materials... entitled, “Parts List and Drawings, Subpart P Hybrid III 3-year-old child crash test dummy, (H-III3C, Alpha..., Disassembly and Inspection (PADI), Subpart P, Hybird III 3-year-old Child Crash Test Dummy, (H-III3C, Alpha...
49 CFR 572.140 - Incorporation by reference.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Child Crash Test Dummy, Alpha Version § 572.140 Incorporation by reference. (a) The following materials... entitled, “Parts List and Drawings, Subpart P Hybrid III 3-year-old child crash test dummy, (H-III3C, Alpha..., Disassembly and Inspection (PADI), Subpart P, Hybird III 3-year-old Child Crash Test Dummy, (H-III3C, Alpha...
49 CFR 572.140 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Child Crash Test Dummy, Alpha Version § 572.140 Incorporation by reference. (a) The following materials... entitled, “Parts List and Drawings, Subpart P Hybrid III 3-year-old child crash test dummy, (H-III3C, Alpha..., Disassembly and Inspection (PADI), Subpart P, Hybird III 3-year-old Child Crash Test Dummy, (H-III3C, Alpha...
49 CFR 572.140 - Incorporation by reference.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Child Crash Test Dummy, Alpha Version § 572.140 Incorporation by reference. (a) The following materials... entitled, “Parts List and Drawings, Subpart P Hybrid III 3-year-old child crash test dummy, (H-III3C, Alpha..., Disassembly and Inspection (PADI), Subpart P, Hybird III 3-year-old Child Crash Test Dummy, (H-III3C, Alpha...
49 CFR 572.140 - Incorporation by reference.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Child Crash Test Dummy, Alpha Version § 572.140 Incorporation by reference. (a) The following materials... entitled, “Parts List and Drawings, Subpart P Hybrid III 3-year-old child crash test dummy, (H-III3C, Alpha..., Disassembly and Inspection (PADI), Subpart P, Hybird III 3-year-old Child Crash Test Dummy, (H-III3C, Alpha...
Evaluation of an autonomous braking system in real-world PTW crashes.
Savino, Giovanni; Pierini, Marco; Rizzi, Matteo; Frampton, Richard
2013-01-01
Powered 2-wheelers (PTWs) are becoming increasingly popular in Europe. They have the ability to get around traffic queues, thus lowering fuel consumption and increasing mobility. The risk of rider injury in a traffic crash is however much higher than that associated with car users. The European project, Powered Two Wheeler Integrated Safety (PISa), identified an autonomous braking system (AB) as a priority to reduce the injury consequences of a PTW crash. The aim of this study was to assess the potential effectiveness of the AB system developed in PISa, taking into account the specific system characteristics that emerged during the design, development and testing phases. Fifty-eight PTW cases representing European crash configurations were examined, in which 43 percent of riders sustained a Maximum Abbreviated Injury Scale (MAIS) 2+ injury. Two of the most common crash types were a PTW impacting a stationary object (car following scenario) 16% and an object pulling across the PTW path (crossing scenario) 54%. An expert team analysed the in-depth material of the sample crashes and determined a posteriori to what extent the AB would have affected the crash. For those cases where the AB was evaluated as applicable, a further quantitative evaluation of the benefits was conducted by considering a set of different possible rider reactions in addition to that exhibited in the actual crash. In 67 percent of cases, the application of AB could have mitigated the crash outcome. Analysis of those real crash cases showed the potential for an expert rider to avoid the collision. An early reaction of the rider, associated with a correct application of the brakes would have avoided 18 of the 37 car following/crossing scenarios. Conversely, according to the analysis, an expert rider would not have been able to avoid 19 of the 37 cases. In 14 of those 19 cases, the AB would have contributed to mitigating the crash outcome. This study demonstrated significant potential for application of the autonomous braking system in car following and crossing scenarios. In addition, the theoretical benefit curves for the AB globally, were able to provide good quantitative indications of its benefits in real cases where the AB was considered applicable. Further analysis with larger databases is suggested in order to confirm the magnitude of benefits in the PTW crash population.
Bajaj, Jasmohan S; Saeian, Kia; Schubert, Christine M; Hafeezullah, Muhammad; Franco, Jose; Varma, Rajiv R; Gibson, Douglas P; Hoffmann, Raymond G; Stravitz, R Todd; Heuman, Douglas M; Sterling, Richard K; Shiffman, Mitchell; Topaz, Allyne; Boyett, Sherry; Bell, Debulon; Sanyal, Arun J
2009-01-01
Patients with minimal hepatic encephalopathy (MHE) have impaired driving skills, but association of MHE with motor vehicle crashes is unclear. Standard psychometric tests (SPT) or inhibitory control test (ICT) can be used to diagnose MHE. The aim was to determine the association of MHE with crashes and traffic violations over the preceding year and on 1-year follow-up. Cirrhotics were diagnosed with MHE by ICT (MHEICT) and SPT (MHESPT). Self and department-of-transportation (DOT)-reports were used to determine crashes and violations over the preceding year. Agreement between self and DOT-reports was analyzed. Patients then underwent 1 year follow-up for crash/violation occurrence. Crashes in those with/without MHEICT and MHESPT were compared. 167 cirrhotics had DOT-reports, of which 120 also had self-reports. A significantly higher proportion of MHEICT cirrhotics experienced crashes in the preceding year compared to those without MHE by self-report (17% vs. 0%, p=0.0004) and DOT-reports (17% vs. 3%, p=0.004, relative risk:5.77). SPT did not differentiate between those with/without crashes. A significantly higher proportion of patients with crashes had MHEICT compared to MHESPT, both self-reported (100% vs. 50%, p=0.03) and DOT-reported (89% vs. 44%, p=0.01). There was excellent agreement between self and DOT-reports for crashes and violations (Kappa 0.90 and 0.80). 109 patients were followed prospectively. MHEICT patients had a significantly higher future crashes/violations compared to those without (22% vs. 7%, p=0.03) but MHESPT did not. MHEICT (Odds ratio:4.51) and prior year crash/violation (Odds ratio:2.96) were significantly associated with future crash/violation occurrence. PMID:19670416
Updated review of potential test procedures for FMVSS no.208
DOT National Transportation Integrated Search
1999-10-01
The objective of a crash test for Federal Motor Vehicle Safety Standard (FMVSS) No. 208 is to measure how well a passenger vehicle would protect its occupants in the event of a serious real world frontal crash. The ideal frontal crash procedure will ...
Innovative Anti Crash Absorber for a Crashworthy Landing Gear
NASA Astrophysics Data System (ADS)
Guida, Michele; Marulo, Francesco; Montesarchio, Bruno; Bruno, Massimiliano
2014-06-01
This paper defines an innovative concept to anti-crash absorber in composite material to be integrated on the landing gear as an energy-absorbing device in crash conditions to absorb the impact energy. A composite cylinder tube in carbon fiber material is installed coaxially to the shock absorber cylinder and, in an emergency landing gear condition, collapses in order to enhance the energy absorption performance of the landing system. This mechanism has been developed as an alternative solution to a high-pressure chamber installed on the Agusta A129 CBT helicopter, which can be considered dangerous when the helicopter operates in hard and/or crash landing. The characteristics of the anti-crash device are presented and the structural layout of a crashworthy landing gear adopting the developed additional energy absorbing stage is outlined. Experimental and numerical results relevant to the material characterization and the force peaks evaluation of the system development are reported. The anti-crash prototype was designed, analysed, optimized, made and finally the potential performances of a landing gear with the additional anti-crash absorber system are tested by drop test and then correlated with a similar test without the anti-crash system, showing that appreciable energy absorbing capabilities and efficiencies can be obtained in crash conditions.
Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology Demonstration
2016-08-01
percentile male occupant and 21 ft/s crash velocity ............................................................................69 Fig. 78 Posttest ...34 ft/s crash velocity ............................................................................71 Fig. 82 Posttest photo for test no. 2, 50th...74 Fig. 86 Posttest photo for test no. 3, 50th percentile male occupant and 42
Development of crash imminent test scenarios for Integrated Vehicle-Based Safety Systems
DOT National Transportation Integrated Search
2007-04-01
This report identifies crash imminent test scenarios based on common pre-crash scenarios for integrated vehicle-based safety systems that alert the driver of a light vehicle or a heavy truck to an impending rear-end, lane change, or run-off-road cras...
A simulation study of spine biofidelity in the hybrid-III 6-year-old ATD.
Wu, Jun; Cao, Libo; Reed, Matthew P; Hu, Jingwen
2013-01-01
Because of the lack of pediatric biomechanical data, Hybrid-III (HIII) child anthropomorphic test devices (ATDs) are essentially scaled from the mid-size male ATD based on the geometric considerations. These ATDs inherit a rigid thoracic spine from the adult HIII ATDs, which has been criticized as unrealistic. Therefore, the objective of this study was to explore possible design modifications for improving the spine biofidelity of the HIII 6-year-old ATD. A previously developed and validated HIII 6-year-old MADYMO ATD model was used as the baseline model to investigate the effects of design modifications on the spine biofidelity of the current ATD. Several sets of child volunteer and cadaver test data were considered as the design targets, including child volunteer low-speed crash test data, pediatric cadaver cervical spine tensile test data, and child cadaver crash test data. ATD design modifications include adding an additional joint to the thoracic spine region and changing the joint characteristics at the cervical and lumbar spine regions. Optimization techniques were used to match simulation results to each set of test results. The results indicate that the translational characteristics of the cervical and lumbar spine in the current child ATD need to be reduced to achieve realistic spine flexibility. Adding an additional joint at the thoracic spine region with degree of freedom in both flexion/extension and tension would significantly improve the ATD biofidelity in terms of predicting the overall spine curvature and head excursion in frontal crashes. Future ATD spine modification should focus on reducing the neck and lumbar tension stiffness and adding additional flexibility both in flexion/extension and tension at the thoracic spine region. The child ATD model developed in this study can be used as an important tool to improve child ATD biofidelity and child restraint system design in motor vehicle crashes.
Robertson, L S
1996-01-01
OBJECTIVES. Two phases of attempts to improve passenger car crash worthiness have occurred: minimum safety standards and publicized crash tests. This study evaluated these attempts, as well as changes in seat belt and alcohol use, in terms of their effect on occupant death and fatal crash rates. METHODS. Data on passenger car occupant fatalities and total involvement in fatal crashes, for 1975 through 1991, were obtained from the Fatal Accident Reporting System. Rates per mile were calculated through published sources on vehicle use by vehicle age. Regression estimates of effects of regulation, publicized crash tests, seat belt use and alcohol involvement were obtained. RESULTS. Substantial reductions in fatalities occurred in the vehicle model years from the late 1960s through most of the 1970s, when federal standards were applied. Some additional increments in reduced death rates, attributable to additional improved vehicle crashworthiness, occurred during the period of publicized crash tests. Increased seat belt use and reduced alcohol use also contributed significantly to reduced deaths. CONCLUSIONS. Minimum safety standards, crashworthiness improvements, seat belt use laws, and reduced alcohol use each contributed to a large reduction in passenger car occupant deaths. PMID:8561238
Thoracic injuries to contained and restrained occupants in single-vehicle pure rollover crashes.
Bambach, M R; Grzebieta, R H; McIntosh, A S
2013-01-01
Around one in three contained and restrained seriously injured occupants in single-vehicle pure rollover crashes receive a serious injury to the thorax. With dynamic rollover test protocols currently under development, there is a need to understand the nature and cause of serious thoracic injuries incurred in rollover events. This will allow decisions to be made with regards to adoption of a suitable crash test dummy and appropriate thoracic injury criteria in such protocols. Valid rollover occupant protection test protocols will lead to vehicle improvements that will reduce the high trauma burden of vehicle rollover crashes. This paper presents an analysis of contained and restrained occupants involved in single-vehicle pure rollover crashes that occurred in the United States between 2000 and 2009 (inclusive). Serious thoracic injury typology and causality are determined. A logistic regression model is developed to determine associations between the incidence of serious thoracic injury and the human, vehicle and environmental characteristics of the crashes. Recommendations are made with regards to the appropriate assessment of potential thoracic injury in dynamic rollover occupant protection crash test protocols. Copyright © 2012 Elsevier Ltd. All rights reserved.
Impact of graduated driver licensing restrictions on crashes involving young drivers in New Zealand
Begg, D; Stephenson, S; Alsop, J; Langley, J
2001-01-01
Objective—To determine the impact on young driver crashes of the three main driving restrictions in the New Zealand graduated driver licensing (GDL) system: night-time curfew, no carrying of young passengers, and a blood alcohol limit of 30 mg/100 ml. Method—The database for this study was created by linking police crash reports to hospital inpatient records (1980–95). Multivariate logistic regression was used to compare car crashes involving a young driver licensed before GDL (n=2252) with those who held a restricted graduated licence (n=980) and with those who held a full graduated licence (n=1273), for each of the main driving restrictions. Results—Compared with the pre-GDL group, the restricted licence drivers had fewer crashes at night (p=0.003), fewer involving passengers of all ages (p=0.018), and fewer where alcohol was suspected (p=0.034), but not fewer involving young casualties (p=0.980). Compared with the pre-GDL drivers, those with the full graduated licence had fewer night crashes (p=0.042) but did not differ significantly for any of the other factors examined. Conclusion—These results suggest that some of the GDL restrictions, especially the night-time curfew, have contributed to a reduction in serious crashes involving young drivers. PMID:11770654
Impact of graduated driver licensing restrictions on crashes involving young drivers in New Zealand.
Begg, D J; Stephenson, S; Alsop, J; Langley, J
2001-12-01
To determine the impact on young driver crashes of the three main driving restrictions in the New Zealand graduated driver licensing (GDL) system: night-time curfew, no carrying of young passengers, and a blood alcohol limit of 30 mg/100 ml. The database for this study was created by linking police crash reports to hospital inpatient records (1980-95). Multivariate logistic regression was used to compare car crashes involving a young driver licensed before GDL (n=2,252) with those who held a restricted graduated licence (n=980) and with those who held a full graduated licence (n=1,273), for each of the main driving restrictions. Compared with the pre-GDL group, the restricted licence drivers had fewer crashes at night (p=0.003), fewer involving passengers of all ages (p=0.018), and fewer where alcohol was suspected (p=0.034), but not fewer involving young casualties (p=0.980). Compared with the pre-GDL drivers, those with the full graduated licence had fewer night crashes (p=0.042) but did not differ significantly for any of the other factors examined. These results suggest that some of the GDL restrictions, especially the night-time curfew, have contributed to a reduction in serious crashes involving young drivers.
Rozzini, Luca; Riva, Maddalena; Zanetti, Marina; Gottardi, Federica; Caratozzolo, Salvatore; Vicini Chilovi, Barbara; Trabucchi, Marco; Padovani, Alessandro
2013-06-01
To examine the usefulness of specific neurocognitive tests for predicting the crash involvement in ultra-octogenarian population. A total of 800 subjects (mean age 82.4 + 3.1 years) underwent a battery of neuropsychological tests. Global intellectual functioning was assessed using the Mini Mental State Examination, mental flexibility and information processing speed were assessed using the Trail Making Test parts A and B (TMT-A and TMT-B), long-term memory was evaluated with the short story, and visuo-spatial skills were tested with Clock Drawing Test. One year after this evaluation, 343 (43%) participants have been interviewed by a telephone call to know if they were currently driving and if they had a car crash during this period. Two hundred ninety-seven subjects had their driving license renewed and completed the follow-up 1 year after. Data shows that less than 11% of this group had a car crash during the first year of observation (Crash Involved). Older subjects involved in a car crash showed significant worse performances on TMT-B (TMT-B pathological Crash Involved vs. Noncrash Involved 47% vs. 27%; p = 0.02) and on short story (short story pathological Crash Involved vs. Noncrash Involved 19% vs. 5%; p = 0.02). Trail Making test B and short story have been demonstrated to provide a predictive value of driving performance of older people. Therefore, we suggest that a simple and standardized battery of neuropsychological tests, lasting about 30 min and administered by an experienced staff, is a good diagnostic instrument for risk prevention of driving activity of older drivers. Copyright © 2012 John Wiley & Sons, Ltd.
A comparison between a child-size PMHS and the Hybrid III 6 YO in a sled frontal impact.
Lopez-Valdes, Francisco J; Forman, Jason; Kent, Richard; Bostrom, Ola; Segui-Gomez, Maria
2009-10-01
As pediatric PMHS data are extremely limited, evidence of kinematic differences between pediatric ATDs and live humans comes from comparison of laboratory data to field crash data. Despite the existence of regulations intended to prevent head injuries, these remain the most common serious injuries sustained by children in crashes. In this study, nine frontal sled tests using a Hybrid III 6YO and three tests performed with a child-size adult PMHS were compared, with focus on the kinematic responses (especially of the head) and the seatbelt forces generated during the impact. Two different restraint systems (a pretensioning, force-limiting seatbelt, and a non pretensioning force-limiting standard belt) and two different impact speeds (29 km/h and 48 km/h) were compared. Data from the PMHS were scaled using the erect sitting height of a 50th percentile 6YO and both scaled and unscaled data are presented. The ATD predicted correctly the peak values of the scaled displacements of the PMHS, but differences in relevant parameters such as torso angle and resultant acceleration at different locations were found between the dummy and the PMHS. The ATD's stiffer thoracic spine is hypothesized as a major cause of these differences.
Dong, Chunjiao; Clarke, David B; Yan, Xuedong; Khattak, Asad; Huang, Baoshan
2014-09-01
Crash data are collected through police reports and integrated with road inventory data for further analysis. Integrated police reports and inventory data yield correlated multivariate data for roadway entities (e.g., segments or intersections). Analysis of such data reveals important relationships that can help focus on high-risk situations and coming up with safety countermeasures. To understand relationships between crash frequencies and associated variables, while taking full advantage of the available data, multivariate random-parameters models are appropriate since they can simultaneously consider the correlation among the specific crash types and account for unobserved heterogeneity. However, a key issue that arises with correlated multivariate data is the number of crash-free samples increases, as crash counts have many categories. In this paper, we describe a multivariate random-parameters zero-inflated negative binomial (MRZINB) regression model for jointly modeling crash counts. The full Bayesian method is employed to estimate the model parameters. Crash frequencies at urban signalized intersections in Tennessee are analyzed. The paper investigates the performance of MZINB and MRZINB regression models in establishing the relationship between crash frequencies, pavement conditions, traffic factors, and geometric design features of roadway intersections. Compared to the MZINB model, the MRZINB model identifies additional statistically significant factors and provides better goodness of fit in developing the relationships. The empirical results show that MRZINB model possesses most of the desirable statistical properties in terms of its ability to accommodate unobserved heterogeneity and excess zero counts in correlated data. Notably, in the random-parameters MZINB model, the estimated parameters vary significantly across intersections for different crash types. Copyright © 2014 Elsevier Ltd. All rights reserved.
Structural and topological phase transitions on the German Stock Exchange
NASA Astrophysics Data System (ADS)
Wiliński, M.; Sienkiewicz, A.; Gubiec, T.; Kutner, R.; Struzik, Z. R.
2013-12-01
We find numerical and empirical evidence for dynamical, structural and topological phase transitions on the (German) Frankfurt Stock Exchange (FSE) in the temporal vicinity of the worldwide financial crash. Using the Minimal Spanning Tree (MST) technique, a particularly useful canonical tool of the graph theory, two transitions of the topology of a complex network representing the FSE were found. The first transition is from a hierarchical scale-free MST representing the stock market before the recent worldwide financial crash, to a superstar-like MST decorated by a scale-free hierarchy of trees representing the market’s state for the period containing the crash. Subsequently, a transition is observed from this transient, (meta)stable state of the crash to a hierarchical scale-free MST decorated by several star-like trees after the worldwide financial crash. The phase transitions observed are analogous to the ones we obtained earlier for the Warsaw Stock Exchange and more pronounced than those found by Onnela-Chakraborti-Kaski-Kertész for the S&P 500 index in the vicinity of Black Monday (October 19, 1987) and also in the vicinity of January 1, 1998. Our results provide an empirical foundation for the future theory of dynamical, structural and topological phase transitions on financial markets.
Aircraft Carrier Flight Deck Fire Fighting Tactics and Equipment Evaluation Tests
1987-02-26
pattern nozzles; 8. proper fire fighting techniques for possible titanium ignition in an F-14 crash (deleted later by direction of FLSC, being studied ...separately); 9. effect of full fire involvement of "ready for flight" aircraft (deleted later by direction of FLSC, being studied separately). The...to refine and identify specific hardware and tactical requirements generated from the studies conducted during the scoping tests; 3. concept
Lord, Dominique; Washington, Simon P; Ivan, John N
2005-01-01
There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states-perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of "excess" zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to "excess" zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed-and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros.
Risk factors for motor vehicle crashes in older women.
Margolis, Karen L; Kerani, Roxanne Pieper; McGovern, Paul; Songer, Thomas; Cauley, Jane A; Ensrud, Kristine E
2002-03-01
Motor vehicle crash and fatality rates are higher per mile driven for elderly drivers, with an exponential increase above age 75. Identifying elderly drivers who are at risk for automobile crashes may help direct interventions to reduce their high rate of injuries and deaths. Subjects were 1416 women aged 65 to 84 enrolled in the Portland, Ore. site of the Study of Osteoporotic Fractures. Motor vehicle crash information for the years 1986-1995 for each participant was obtained from the Oregon State Department of Transportation. Items from questionnaires, interviews, and physical examinations were tested prospectively for associations with the occurrence of motor vehicle crashes. About one third of participants (415 of 1416) had a motor vehicle crash during a mean follow-up time of 5.7 years. After adjustment for age and weekly driving mileage, risk factors significantly associated with motor vehicle crashes were a fall in the previous year [hazard ratio (HR) 1.53, 95% confidence interval (CI) 1.26-1.86], a greater orthostatic systolic blood pressure drop (HR 1.11 per 12.5 mm Hg, 95% CI 1.01-1.22), and increased foot reaction time (HR 1.10 per 0.06 second, 95% CI 1.00-1.22). Other neuromuscular tests, functional status, medical diagnoses, vision tests, and cognitive tests did not predict motor vehicle crashes in this study population. This prospective study with extended follow-up of a large cohort of elderly women has identified crash risk factors that can be measured in the clinical setting. Further study is needed to determine if interventions aimed at these risk factors can decrease the risk of motor vehicle crashes.
NASA Technical Reports Server (NTRS)
1984-01-01
Following its controlled impact on posts imbedded in the lakebed, the B-720 is sliding sideways and almost enveloped in the large fireball with only the aircraft's nose and right wing-tip exposed. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four degraders (one on each engine); and the FAA refined AMK (blending, testing, and fueling a full-size aircraft). The 15 flights had 15 takeoffs, 14 landings and a larger number of approaches to about 150 feet above the prepared crash site under remote control. These flight were used to introduce AMK one step at a time into some of the fuel tanks and engines while monitoring the performance of the engines. On the final flight (No. 15) with no crew, all fuel tanks were filled with a total of 76,000 pounds of AMK and the remotely-piloted aircraft landed on Rogers Dry Lakebed in an area prepared with posts to test the effectiveness of the AMK in a controlled impact. The CID, which some wags called the Crash in the Desert, was spectacular with a large fireball enveloping and burning the B-720 aircraft. From the standpoint of AMK the test was a major set-back, but for NASA Langley, the data collected on crashworthiness was deemed successful and just as important.
CID Aircraft post-impact lakebed skid
NASA Technical Reports Server (NTRS)
1984-01-01
Moments after hitting and sliding through the wing openers the aircraft burst into flame, with a spectacular fireball seen emanating from the right inboard engine area. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four degraders (one on each engine); and the FAA refined AMK (blending, testing, and fueling a full-size aircraft). The 15 flights had 15 takeoffs, 14 landings and a larger number of approaches to about 150 feet above the prepared crash site under remote control. These flight were used to introduce AMK one step at a time into some of the fuel tanks and engines while monitoring the performance of the engines. On the final flight (No. 15) with no crew, all fuel tanks were filled with a total of 76,000 pounds of AMK and the remotely-piloted aircraft landed on Rogers Dry Lakebed in an area prepared with posts to test the effectiveness of the AMK in a controlled impact. The CID, which some wags called the Crash in the Desert, was spectacular with a large fireball enveloping and burning the B-720 aircraft. From the standpoint of AMK the test was a major set-back, but for NASA Langley, the data collected on crashworthiness was deemed successful and just as important.
NASA Technical Reports Server (NTRS)
1984-01-01
The B-720 after impact and sliding through the wing openers is becoming enveloped in a fireball. The right wing appears to be folding over as the aircraft continues to slide. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four degraders (one on each engine); and the FAA refined AMK (blending, testing, and fueling a full-size aircraft). The 15 flights had 15 takeoffs, 14 landings and a larger number of approaches to about 150 feet above the prepared crash site under remote control. These flight were used to introduce AMK one step at a time into some of the fuel tanks and engines while monitoring the performance of the engines. On the final flight (No. 15) with no crew, all fuel tanks were filled with a total of 76,000 pounds of AMK and the remotely-piloted aircraft landed on Rogers Dry Lakebed in an area prepared with posts to test the effectiveness of the AMK in a controlled impact. The CID, which some wags called the Crash in the Desert, was spectacular with a large fireball enveloping and burning the B-720 aircraft. From the standpoint of AMK the test was a major set-back, but for NASA Langley, the data collected on crashworthiness was deemed successful and just as important.
CID Aircraft in practice flight above target impact site with wing cutters
NASA Technical Reports Server (NTRS)
1984-01-01
In this photograph the B-720 is seen making a practice close approach over the prepared impact site. The wing openers, designed to tear open the wings and spill the fuel, are clearly seen on the ground just at the start of the bed of rocks. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four degraders (one on each engine); and the FAA refined AMK (blending, testing, and fueling a full-size aircraft). The 15 flights had 15 takeoffs, 14 landings and a larger number of approaches to about 150 feet above the prepared crash site under remote control. These flight were used to introduce AMK one step at a time into some of the fuel tanks and engines while monitoring the performance of the engines. On the final flight (No. 15) with no crew, all fuel tanks were filled with a total of 76,000 pounds of AMK and the remotely-piloted aircraft landed on Rogers Dry Lakebed in an area prepared with posts to test the effectiveness of the AMK in a controlled impact. The CID, which some wags called the Crash in the Desert, was spectacular with a large fireball enveloping and burning the B-720 aircraft. From the standpoint of AMK the test was a major set-back, but for NASA Langley, the data collected on crashworthiness was deemed successful and just as important.
Application of Poisson random effect models for highway network screening.
Jiang, Ximiao; Abdel-Aty, Mohamed; Alamili, Samer
2014-02-01
In recent years, Bayesian random effect models that account for the temporal and spatial correlations of crash data became popular in traffic safety research. This study employs random effect Poisson Log-Normal models for crash risk hotspot identification. Both the temporal and spatial correlations of crash data were considered. Potential for Safety Improvement (PSI) were adopted as a measure of the crash risk. Using the fatal and injury crashes that occurred on urban 4-lane divided arterials from 2006 to 2009 in the Central Florida area, the random effect approaches were compared to the traditional Empirical Bayesian (EB) method and the conventional Bayesian Poisson Log-Normal model. A series of method examination tests were conducted to evaluate the performance of different approaches. These tests include the previously developed site consistence test, method consistence test, total rank difference test, and the modified total score test, as well as the newly proposed total safety performance measure difference test. Results show that the Bayesian Poisson model accounting for both temporal and spatial random effects (PTSRE) outperforms the model that with only temporal random effect, and both are superior to the conventional Poisson Log-Normal model (PLN) and the EB model in the fitting of crash data. Additionally, the method evaluation tests indicate that the PTSRE model is significantly superior to the PLN model and the EB model in consistently identifying hotspots during successive time periods. The results suggest that the PTSRE model is a superior alternative for road site crash risk hotspot identification. Copyright © 2013 Elsevier Ltd. All rights reserved.
Crash probability estimation via quantifying driver hazard perception.
Li, Yang; Zheng, Yang; Wang, Jianqiang; Kodaka, Kenji; Li, Keqiang
2018-07-01
Crash probability estimation is an important method to predict the potential reduction of crash probability contributed by forward collision avoidance technologies (FCATs). In this study, we propose a practical approach to estimate crash probability, which combines a field operational test and numerical simulations of a typical rear-end crash model. To consider driver hazard perception characteristics, we define a novel hazard perception measure, called as driver risk response time, by considering both time-to-collision (TTC) and driver braking response to impending collision risk in a near-crash scenario. Also, we establish a driving database under mixed Chinese traffic conditions based on a CMBS (Collision Mitigation Braking Systems)-equipped vehicle. Applying the crash probability estimation in this database, we estimate the potential decrease in crash probability owing to use of CMBS. A comparison of the results with CMBS on and off shows a 13.7% reduction of crash probability in a typical rear-end near-crash scenario with a one-second delay of driver's braking response. These results indicate that CMBS is positive in collision prevention, especially in the case of inattentive drivers or ole drivers. The proposed crash probability estimation offers a practical way for evaluating the safety benefits in the design and testing of FCATs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Solutions for acceleration measurement in vehicle crash tests
NASA Astrophysics Data System (ADS)
Dima, D. S.; Covaciu, D.
2017-10-01
Crash tests are useful for validating computer simulations of road traffic accidents. One of the most important parameters measured is the acceleration. The evolution of acceleration versus time, during a crash test, form a crash pulse. The correctness of the crash pulse determination depends on the data acquisition system used. Recommendations regarding the instrumentation for impact tests are given in standards, which are focused on the use of accelerometers as impact sensors. The goal of this paper is to present the device and software developed by authors for data acquisition and processing. The system includes two accelerometers with different input ranges, a processing unit based on a 32-bit microcontroller and a data logging unit with SD card. Data collected on card, as text files, is processed with a dedicated software running on personal computers. The processing is based on diagrams and includes the digital filters recommended in standards.
Analytical modeling of transport aircraft crash scenarios to obtain floor pulses
NASA Technical Reports Server (NTRS)
Wittlin, G.; Lackey, D.
1983-01-01
The KRAS program was used to analyze transport aircraft candidate crash scenarios. Aircraft floor pulses and seat/occupant responses are presented. Results show that: (1) longitudinal only pulses can be represented by equivalent step inputs and/or static requirements; (2) the L1649 crash test floor longitudinal pulse for the aft direction (forward inertia) is less than 9g static or an equivalent 5g pulse; aft inertia accelerations are extremely small ((ch76) 3g) for representative crash scenarios; (3) a viable procedure to relate crash scenario floor pulses to standard laboratory dynamic and static test data using state of the art analysis and test procedures was demonstrated; and (4) floor pulse magnitudes are expected to be lower for wide body aircraft than for smaller narrow body aircraft.
The Antiaircraft Journal. Volume 96, Number 3, May-June 1953
1953-06-01
blast effects are not only apt to be comparatively slight at likely AAA po- sitions, but their computation depends closely on the chosen height of...might crash with the bomb still aboard. In the first instance, the bomb might explode normally with a full - scale explosion at the proper altitude...and contamination. In most circumstances, the fall-out of radioactive materials from the cloud column result- ing from an air burst will not be a
NASA Astrophysics Data System (ADS)
Durrenberger, L.; Even, D.; Molinari, A.; Rusinek, A.
2006-08-01
In order to reduce the gas emission without decreasing the passengers safety, the UHSS (Ultra High Strength Steel) steels are more and more used in the automotive industry. The very high mechanical characteristics of these steels allow to reduce the car weight thanks to the thickness reduction of the structure parts. The aim of this study is to analyse the plastic pre-strain effect (forming) on the crash properties of a crash-box structure. In order to achieve this goal, experimental rheological tests have been performed by combining quasi-static tensile tests followed by dynamic tensile test (8.10 - 3 s - 1 ≤ dot{\\varepsilon} ≤ 1000 s - 1) for a TRIP steel produced by ARCELOR. The combination of these results allows to obtain a better understanding of the steel behaviour in dynamic loading under different strain paths. All these information are necessary for an efficient simulation of crash test by including a pertinent material response. A special attention is given to the influence of the previous forming process on the dynamical response of crash boxes.
Crash tests of four identical high-wing single-engine airplanes
NASA Technical Reports Server (NTRS)
Vaughan, V. L., Jr.; Hayduk, R. J.
1980-01-01
Four identical four place, high wing, single engine airplane specimens with nominal masses of 1043 kg were crash tested at the Langley Impact Dynamics Research Facility under controlled free flight conditions. These tests were conducted with nominal velocities of 25 m/sec along the flight path angles, ground contact pitch angles, and roll angles. Three of the airplane specimens were crashed on a concrete surface; one was crashed on soil. Crash tests revealed that on a hard landing, the main landing gear absorbed about twice the energy for which the gear was designed but sprang back, tending to tip the airplane up to its nose. On concrete surfaces, the airplane impacted and remained in the impact attitude. On soil, the airplane flipped over on its back. The crash impact on the nose of the airplane, whether on soil or concrete, caused massive structural crushing of the forward fuselage. The liveable volume was maintained in both the hard landing and the nose down specimens but was not maintained in the roll impact and nose down on soil specimens.
Overview Of Structural Behavior and Occupant Responses from Crash Test of a Composite Airplane
NASA Technical Reports Server (NTRS)
Jones, Lisa E.; Carden, Huey D.
1995-01-01
As part of NASA's composite structures crash dynamics research, a general aviation aircraft with composite wing, fuselage and empennage (but with metal subfloor structure) was crash tested at the NASA Langley Research Center Impact Research Facility. The test was conducted to determine composite aircraft structural behavior for crash loading conditions and to provide a baseline for a similar aircraft test with a modified subfloor. Structural integrity and cabin volume were maintained. Lumbar loads for dummy occupants in energy absorbing seats wer substantially lower than those in standard aircraft seats; however, loads in the standard seats were much higher that those recorded under similar conditions for an all-metallic aircraft.
Crash tests of three identical low-wing single-engine airplane
NASA Technical Reports Server (NTRS)
Castle, C. B.; Alfaro-Bou, E.
1983-01-01
Three identical four place, low wing single engine airplane specimens with nominal masses of 1043 kg were crash tested under controlled free flight conditions. The tests were conducted at the same nominal velocity of 25 m/sec along the flight path. Two airplanes were crashed on a concrete surface (at 10 and 30 deg pitch angles), and one was crashed on soil (at a -30 deg pitch angle). The three tests revealed that the specimen in the -30 deg test on soil sustained massive structural damage in the engine compartment and fire wall. Also, the highest longitudinal cabin floor accelerations occurred in this test. Severe damage, but of lesser magnitude, occurred in the -30 deg test on concrete. The highest normal cabin floor accelerations occurred in this test. The least structural damage and lowest accelerations occurred in the 10 deg test on concrete.
49 CFR 572.180 - Incorporated materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES 2re Side Impact Crash Test... 50th Percentile Adult Male Side Impact Crash Test Dummy, February 2008,” incorporated by reference in...
Park, Juneyoung; Abdel-Aty, Mohamed; Lee, Jaeyoung
2016-09-01
Although many researchers have estimated the crash modification factors (CMFs) for specific treatments (or countermeasures), there is a lack of prior studies that have explored the variation of CMFs. Thus, the main objectives of this study are: (a) to estimate CMFs for the installation of different types of roadside barriers, and (b) to determine the changes of safety effects for different crash types, severities, and conditions. Two observational before-after analyses (i.e. empirical Bayes (EB) and full Bayes (FB) approaches) were utilized in this study to estimate CMFs. To consider the variation of safety effects based on different vehicle, driver, weather, and time of day information, the crashes were categorized based on vehicle size (passenger and heavy), driver age (young, middle, and old), weather condition (normal and rain), and time difference (day time and night time). The results show that the addition of roadside barriers is safety effective in reducing severe crashes for all types and run-off roadway (ROR) crashes. On the other hand, it was found that roadside barriers tend to increase all types of crashes for all severities. The results indicate that the treatment might increase the total number of crashes but it might be helpful in reducing injury and severe crashes. In this study, the variation of CMFs was determined for ROR crashes based on the different vehicle, driver, weather, and time information. Based on the findings from this study, the variation of CMFs can enhance the reliability of CMFs for different roadway conditions in decision making process. Also, it can be recommended to identify the safety effects of specific treatments for different crash types and severity levels with consideration of the different vehicle, driver, weather, and time of day information. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.
Effect of crash pulse shape on seat stroke requirements for limiting loads on occupants of aircraft
NASA Technical Reports Server (NTRS)
Carden, Huey D.
1992-01-01
An analytical study was made to provide comparative information on various crash pulse shapes that potentially could be used to test seats under conditions included in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats, show the effects that crash pulse shape can have on the seat stroke requirements necessary to maintain a specified limit loading on the seat/occupant during crash pulse loadings, compare results from certain analytical model pulses with approximations of actual crash pulses, and compare analytical seat results with experimental airplace crash data. Structural and seat/occupant displacement equations in terms of the maximum deceleration, velocity change, limit seat pan load, and pulse time for five potentially useful pulse shapes were derived; from these, analytical seat stroke data were obtained for conditions as specified in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats.
Patterns of drug use in fatal crashes.
Romano, Eduardo; Pollini, Robin A
2013-08-01
To characterize drug prevalence among fatally injured drivers, identify significant associations (i.e. day of week, time of day, age, gender), and compare findings with those for alcohol. Descriptive and logistic mixed-model regression analyses of Fatality Analysis Reporting System data. US states with drug test results for >80% of fatally injured drivers, 1998-2010. Drivers killed in single-vehicle crashes on public roads who died at the scene of the crash (n = 16 942). Drug test results, blood alcohol concentration (BAC), gender, age and day and time of crash. Overall, 45.1% of fatally injured drivers tested positive for alcohol (39.9% BAC ≥ 0.08) and 25.9% for drugs. The most common drugs present were stimulants (7.2%) and cannabinols (7.1%), followed by 'other' drugs (4.1%), multiple drugs (4.1%), narcotics (2.1%) and depressants (1.5%). Drug-involved crashes occurred with relative uniformity throughout the day while alcohol-involved crashes were more common at night (P < 0.01). The odds of testing positive for drugs varied depending upon drug class, driver characteristics, time of day and the presence of alcohol. Fatal single-vehicle crashes involving drugs are less common than those involving alcohol and the characteristics of drug-involved crashes differ, depending upon drug class and whether alcohol is present. Concerns about drug-impaired driving should not detract from the current law enforcement focus on alcohol-impaired driving. © 2013 Society for the Study of Addiction.
Boufous, Soufiane; Ivers, Rebecca; Senserrick, Teresa; Stevenson, Mark
2011-10-01
This study separately examined the impact of the outcomes of a practical on-road driving test and a hazard perception test on the likelihood of traffic crashes among a cohort of newly licensed young drivers in New South Wales (NSW), Australia. The DRIVE study is a prospective cohort study of drivers aged 17 to 24 years holding their first-year provisional driver license in NSW. Information obtained from 20,822 participants in a detailed baseline questionnaire was linked to information on the number of attempts at a mandatory practical on-road driving test and hazard perception test as well as police-reported traffic crashes. After controlling for a number of sociodemographic and behavioral factors as well as factors related to driver learning experiences, multivariate analysis showed that those who failed the practical on-road test at least 4 times had an increased risk of involvement in a traffic crash compared to those who passed the test at first attempt (relative risk [RR]: 1.79, 95% confidence interval [CI]: 1.20-2.65). The crash risk among those who failed the practical on-road test at least 4 times was particularly high in females (RR: 2.10, 95% CI: 1.20-3.68). Similarly, those who failed the hazard perception test at least twice had an increased risk of involvement in a traffic crash (RR: 1.83, 95% CI: 1.27-2.63) compared to those who passed the test on the first attempt. The crash risk of those who failed the hazard perception test at least twice was particularly high in males (RR: 2.5, 95% CI: 1.5-4.1) and among those from rural and remote areas (RR: 5.53, 95% CI: 1.63-18.71). The findings have implications on licensing practices and suggest the need for adequate strategies to assist young drivers with multiple failures in the driving and hazard perception tests.
Cheng, Wen; Gill, Gurdiljot Singh; Sakrani, Taha; Dasu, Mohan; Zhou, Jiao
2017-11-01
Motorcycle crashes constitute a very high proportion of the overall motor vehicle fatalities in the United States, and many studies have examined the influential factors under various conditions. However, research on the impact of weather conditions on the motorcycle crash severity is not well documented. In this study, we examined the impact of weather conditions on motorcycle crash injuries at four different severity levels using San Francisco motorcycle crash injury data. Five models were developed using Full Bayesian formulation accounting for different correlations commonly seen in crash data and then compared for fitness and performance. Results indicate that the models with serial and severity variations of parameters had superior fit, and the capability of accurate crash prediction. The inferences from the parameter estimates from the five models were: an increase in the air temperature reduced the possibility of a fatal crash but had a reverse impact on crashes of other severity levels; humidity in air was not observed to have a predictable or strong impact on crashes; the occurrence of rainfall decreased the possibility of crashes for all severity levels. Transportation agencies might benefit from the research results to improve road safety by providing motorcyclists with information regarding the risk of certain crash severity levels for special weather conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Crash energy absorption of two-segment crash box with holes under frontal load
NASA Astrophysics Data System (ADS)
Choiron, Moch. Agus; Sudjito, Hidayati, Nafisah Arina
2016-03-01
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.
Nonparametric Analyses of Log-Periodic Precursors to Financial Crashes
NASA Astrophysics Data System (ADS)
Zhou, Wei-Xing; Sornette, Didier
We apply two nonparametric methods to further test the hypothesis that log-periodicity characterizes the detrended price trajectory of large financial indices prior to financial crashes or strong corrections. The term "parametric" refers here to the use of the log-periodic power law formula to fit the data; in contrast, "nonparametric" refers to the use of general tools such as Fourier transform, and in the present case the Hilbert transform and the so-called (H, q)-analysis. The analysis using the (H, q)-derivative is applied to seven time series ending with the October 1987 crash, the October 1997 correction and the April 2000 crash of the Dow Jones Industrial Average (DJIA), the Standard & Poor 500 and Nasdaq indices. The Hilbert transform is applied to two detrended price time series in terms of the ln(tc-t) variable, where tc is the time of the crash. Taking all results together, we find strong evidence for a universal fundamental log-frequency f=1.02±0.05 corresponding to the scaling ratio λ=2.67±0.12. These values are in very good agreement with those obtained in earlier works with different parametric techniques. This note is extracted from a long unpublished report with 58 figures available at , which extensively describes the evidence we have accumulated on these seven time series, in particular by presenting all relevant details so that the reader can judge for himself or herself the validity and robustness of the results.
Free-Spinning-Tunnel Tests of a 1/20-Scale Model of the Northrop N-9M Airplane
NASA Technical Reports Server (NTRS)
MacDougall, George F., Jr.; Lichtenstein, Jacob H.
1946-01-01
Spin tests of a 1/20-scale model of the Northrop N-9M airplane have been performed in the Langley 20-foot free-spinning tunnel. The erect and inverted spin and recovery characteristics were determined for various loading conditions and the effect of deflecting the flaps and of extending the landing gear was investigated. The investigation also included tests to determine the size parachute required for satisfactory spin recovery by parachute action alone. The tests were performed at an equivalent spin altitude of 15,000 feet. A specialized recovery technique consisting of rapid full reversal of the rudder pedals against the spin combined with turning the wheel against the spin and movement of the stick forward is recommended for all loadings and configurations of the airplane. The results also indicated that a 7-foot-diameter spin-recovery parachute having a drag coefficient of 0.7 attached to the outboard wing tip with a towline of 10 to 30 feet or an 8.8-foot-diameter parachute attached to the fixed portion of the wing between the elevons and the pitch flaps with a 30-foot towline would provide satisfactory recovery from demonstration spins by parachute action alone. It appears possible that the first N-9M airplane may have crashed because of failure to recover from a spin.
Rage against the machine? Google's self-driving cars versus human drivers.
Teoh, Eric R; Kidd, David G
2017-12-01
Automated driving represents both challenges and opportunities in highway safety. Google has been developing self-driving cars and testing them under employee supervision on public roads since 2009. These vehicles have been involved in several crashes, and it is of interest how this testing program compares to human drivers in terms of safety. Google car crashes were coded by type and severity based on narratives released by Google. Crash rates per million vehicle miles traveled (VMT) were computed for crashes deemed severe enough to be reportable to police. These were compared with police-reported crash rates for human drivers. Crash types also were compared. Google cars had a much lower rate of police-reportable crashes per million VMT than human drivers in Mountain View, Calif., during 2009-2015 (2.19 vs 6.06), but the difference was not statistically significant. The most common type of collision involving Google cars was when they got rear-ended by another (human-driven) vehicle. Google cars shared responsibility for only one crash. These results suggest Google self-driving cars, while a test program, are safer than conventional human-driven passenger vehicles; however, currently there is insufficient information to fully examine the extent to which disengagements affected these results. Results suggest that highly-automated vehicles can perform more safely than human drivers in certain conditions, but will continue to be involved in crashes with conventionally-driven vehicles. Copyright © 2017. Published by Elsevier Ltd.
Prevalence of driver physical factors leading to unintentional lane departure crashes.
Cicchino, Jessica B; Zuby, David S
2017-07-04
Some lane-keeping assist systems in development and production provide autonomous braking and steering to correct unintentional lane drift but otherwise require drivers to fully control their vehicles. The goal of this study was to quantify the proportion of drivers involved in unintentional lane drift crashes who would be unable to regain control of their vehicles to inform the design of such systems. The NHTSA's National Motor Vehicle Crash Causation Survey collected in-depth, on-scene data for a nationally representative sample of 5,470 U.S. police-reported passenger vehicle crashes during 2005-2007 that occurred between 6 a.m. and midnight and for which emergency medical services were dispatched. The physical states of drivers involved in the 631 lane drift crashes in the sample, which represented 259,034 crashes nationally, were characterized. Thirty-four percent of drivers who crashed because they drifted from their lanes were sleeping or otherwise incapacitated. These drivers would be unlikely to regain full control of their vehicles if an active safety system prevented their initial drift. An additional 13% of these drivers had a nonincapacitating medical issue, blood alcohol concentration (BAC) ≥ 0.08%, or other physical factor that may not allow them to regain full vehicle control. When crashes involved serious or fatal injuries, 42% of drivers who drifted were sleeping or otherwise incapacitated, and an additional 14% were impacted by a nonincapacitating medical issue, BAC ≥ 0.08%, or other physical factor. Designers of active safety systems that provide autonomous lateral control should consider that a substantial proportion of drivers at risk of lane drift crashes are incapacitated. Systems that provide only transient corrective action may not ultimately prevent lane departure crashes for these drivers, and drivers who do avoid lane drift crashes because of these systems may be at high risk of other types of crashes when they attempt to regain control. Active lane-keeping assist systems may need to be combined with in-vehicle driver monitoring to identify incapacitated drivers and safely remove them from the roadway if the systems are to reach their maximum potential benefit.
Harland, Karisa K; Carney, Cher; McGehee, Daniel
2016-07-03
The objective of this study was to estimate the prevalence and odds of fleet driver errors and potentially distracting behaviors just prior to rear-end versus angle crashes. Analysis of naturalistic driving videos among fleet services drivers for errors and potentially distracting behaviors occurring in the 6 s before crash impact. Categorical variables were examined using the Pearson's chi-square test, and continuous variables, such as eyes-off-road time, were compared using the Student's t-test. Multivariable logistic regression was used to estimate the odds of a driver error or potentially distracting behavior being present in the seconds before rear-end versus angle crashes. Of the 229 crashes analyzed, 101 (44%) were rear-end and 128 (56%) were angle crashes. Driver age, gender, and presence of passengers did not differ significantly by crash type. Over 95% of rear-end crashes involved inadequate surveillance compared to only 52% of angle crashes (P < .0001). Almost 65% of rear-end crashes involved a potentially distracting driver behavior, whereas less than 40% of angle crashes involved these behaviors (P < .01). On average, drivers spent 4.4 s with their eyes off the road while operating or manipulating their cell phone. Drivers in rear-end crashes were at 3.06 (95% confidence interval [CI], 1.73-5.44) times adjusted higher odds of being potentially distracted than those in angle crashes. Fleet driver driving errors and potentially distracting behaviors are frequent. This analysis provides data to inform safe driving interventions for fleet services drivers. Further research is needed in effective interventions to reduce the likelihood of drivers' distracting behaviors and errors that may potentially reducing crashes.
Construct exploit constraint in crash analysis by bypassing canary
NASA Astrophysics Data System (ADS)
Huang, Ning; Huang, Shuguang; Huang, Hui; Chang, Chao
2017-08-01
Selective symbolic execution is a common program testing technology. Developed on the basis of it, some crash analysis systems are often used to test the fragility of the program by constructing exploit constraints, such as CRAX. From the study of crash analysis based on symbolic execution, this paper find that this technology cannot bypass the canary stack protection mechanisms. This paper makes the improvement uses the API hook in Linux. Experimental results show that the use of API hook can effectively solve the problem that crash analysis cannot bypass the canary protection.
Crash Certification by Analysis - Are We There Yet?
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.
2006-01-01
This paper addresses the issue of crash certification by analysis. This broad topic encompasses many ancillary issues including model validation procedures, uncertainty in test data and analysis models, probabilistic techniques for test-analysis correlation, verification of the mathematical formulation, and establishment of appropriate qualification requirements. This paper will focus on certification requirements for crashworthiness of military helicopters; capabilities of the current analysis codes used for crash modeling and simulation, including some examples of simulations from the literature to illustrate the current approach to model validation; and future directions needed to achieve "crash certification by analysis."
An Approach to the Derivation of the Cost of UK Vehicle Crash Injuries
Morris, Andrew; Welsh, Ruth; Barnes, Jo; Chambers-Smith, Dawn
2006-01-01
An approach to costing of road crash injury has been developed using data from a ‘Willingness-to-pay’ survey mapped to injuries listed in the Abbreviated Injury Scale 1998 Revision. The costs derived have been applied to a database of real-world crash injuries that have been collected as part of the UK Cooperative Crash Injury Study (CCIS). The approach has been developed in order to determine future research priorities in vehicle passive safety. When all injuries in all crash-types are examined, the results highlight the cost of ‘Whiplash’ in the UK. When more serious injuries are considered, specifically those at AIS 2+, the cost of head injuries becomes evident in both frontal and side impacts. PMID:16968643
Crashworthiness Design of the Shear Bolts for Light Collision Safety Devices
NASA Astrophysics Data System (ADS)
Kim, Jin Sung; Huh, Hoon; Kwon, Tae Soo
This paper introduces the jig set for the crash test and the crash test results of shear bolts which are designed to fail at train crash conditions. The tension and shear bolts are attached to Light Collision Safety Devices(LCSD) as a mechanical fuse when tension and shear bolts reach their failure load designed. The kinetic energy due to the crash is absorbed by the secondary energy absorbing device after LCSD are detached from the main body by the fracture of shear bolts. A single shear bolt was designed to fail at the load of 250 kN. The jig set designed to convert a compressive loading to a shear loading was installed to the high speed crash tester for dynamic shear tests. Two strain gauges were attached at the parallel section of the jig set to measure the load responses acting on the shear bolts. Crash tests were performed with a carrier whose mass was 250 kg and the initial speed of the carrier was 9 m/sec. From the quasi-static and dynamic experiments as well as the numerical analysis, the capacity of the shear bolts were accurately predicted for the crashworthiness design.
Nie, Bingbing; Sathyanarayan, Deepak; Ye, Xin; Crandall, Jeff R; Panzer, Matthew B
2018-02-28
Recent field data analysis has demonstrated that knee airbags (KABs) can reduce occupant femur and pelvis injuries but may be insufficient to decrease leg injuries in motor vehicle crashes. An enhanced understanding of the associated injury mechanisms requires accurate assessment of physiological-based occupant parameters, some of which are difficult or impossible to obtain from experiments. This study sought to explore how active muscle response can influence the injury risk of lower extremities during KAB deployment using computational biomechanical analysis. A full-factorial matrix, consisting of 48 finite element simulations of a 50th percentile occupant human model in a simplified vehicle interior, was designed. The matrix included 32 new cases in combination with 16 previously reported cases. The following influencing factors were taken into account: muscle activation, KAB use, KAB design, pre-impact seating position, and crash mode. Responses of 32 lower extremity muscles during emergency braking were replicated using one-dimensional elements of a Hill-type constitutive model, with the activation level determined from inverse dynamics and validated by existing volunteer tests. Dynamics of unfolding and inflating of the KABs were represented using the state-of-the-art corpuscular particle method. Abbreviated Injury Scale (AIS) 2+ injury risks of the knee-thigh-hip (KTH) complex and the tibia were assessed using axial force and resultant bending moments. With all simulation cases being taken together, a general linear model was used to assess factor significance (P <.05). As estimated by the regression model across all simulation cases, use of KABs significantly reduced axial femur forces by 4.74 ± 0.43 kN and AIS 2+ injury risk of KTH by 47 ± 6% (P <.05) but did not provide substantial change to injury risk of leg fractures. Muscle activation significantly increased axial force and bending moment of the femur (3.87 ± 0.38 kN and 64.3 ± 5.9 Nm), the tibia (1.49 ± 0.12 kN and 43.0 ± 6.4 Nm), and the resultant probability of AIS 2+ tibia injuries by 36 ± 6% regardless of KAB use and crash scenario. Specifically, when counting on a relative scale, muscle activation exhibited more prominent elevation of injury risk for in-position occupants than out-of-position occupants. In a representative crash scenario-that is, using a bottom-deployed KAB in a nearside oblique impact-muscle bracing of the right leg may lead to 2.6 times higher tibia fracture risk than being relaxed for an out-of-position occupant and 5.4 times higher for an in-position occupant. The mechanism of higher leg injuries in the presence of KAB deployment in real-world crashes can be interpreted by the increased effective body mass, axial compression along the shafts of long bones, and altered pre-impact posture due to muscle contraction. The present analysis suggests that active muscle response can increase the risk of lower extremity injury during occupant-KAB interaction. This study demonstrated the feasibility of advanced human models to investigate the influence of physiologically based parameters on injury outcomes evidenced in field study and insight from computational examination on human variability for development of future restraint systems. Future efforts are recommended on realistic vehicle and restraint environment and advanced modeling strategies toward a full understanding of KAB efficacy.
Pizza, Fabio; Contardi, Sara; Mondini, Susanna; Trentin, Lino; Cirignotta, Fabio
2009-01-01
Study Objectives: To test the reliability of a driving-simulation test for the objective measurement of daytime alertness compared with the Multiple Sleep Latency Test (MSLT) and with the Maintenance of Wakefulness Test (MWT), and to test the ability to drive safely, in comparison with on-road history, in the clinical setting of untreated severe obstructive sleep apnea. Design: N/A. Setting: Sleep laboratory. Patients or Participants: Twenty-four patients with severe obstructive sleep apnea and reported daytime sleepiness varying in severity (as measured by the Epworth Sleepiness Scale). Interventions: N/A. Measurements and Results: Patients underwent MSLT and MWT coupled with 4 sessions of driving-simulation test on 2 different days randomly distributed 1 week apart. Simulated-driving performance (in terms of lane-position variability and crash occurrence) was correlated with sleep latency on the MSLT and more significantly on the MWT, showing a predictive validity toward the detection of sleepy versus alert patients with obstructive sleep apnea. In addition, patients reporting excessive daytime sleepiness or a history of car crashes showed poorer performances on the driving simulator. Conclusions: A simulated driving test is a suitable tool for objective measurement of daytime alertness in patients with obstructive sleep apnea. Further studies are needed to clarify the association between simulated-driving performance and on-road crash risk of patients with sleep disordered breathing. Citation: Pizza F; Contardi S; Mondini S; Trentin L; Cirignotta F. Daytime sleepiness and driving performance in patients with obstructive sleep apnea: comparison of the MSLT, the MWT, and a simulated driving task. SLEEP 2009;32(3):382-391. PMID:19294958
Strandroth, Johan; Sternlund, Simon; Lie, Anders; Tingvall, Claes; Rizzi, Matteo; Kullgren, Anders; Ohlin, Maria; Fredriksson, Rikard
2014-11-01
Pedestrians and bicyclists account for a significant share of deaths and serious injuries in the road transport system. The protection of pedestrians in car-to-pedestrian crashes has therefore been addressed by friendlier car fronts and since 1997, the European New Car Assessment Program (Euro NCAP) has assessed the level of protection for most car models available in Europe. In the current study, Euro NCAP pedestrian scoring was compared with real-life injury outcomes in car-to-pedestrian and car-tobicyclist crashes occurring in Sweden. Approximately 1200 injured pedestrians and 2000 injured bicyclists were included in the study. Groups of cars with low, medium and high pedestrian scores were compared with respect to pedestrian injury severity on the Maximum Abbreviated Injury Scale (MAIS)-level and risk of permanent medical impairment (RPMI). Significant injury reductions to both pedestrians and bicyclists were found between low and high performing cars. For pedestrians, the reduction of MAIS2+, MAIS3+, RPMI1+ and RPMI10+ ranged from 20-56% and was significant on all levels except for MAIS3+ injuries. Pedestrian head injuries had the highest reduction, 80-90% depending on level of medical impairment. For bicyclist, an injury reduction was only observed between medium and high performing cars. Significant injury reductions were found for all body regions. It was also found that cars fitted with autonomous emergency braking including pedestrian detection might have a 60-70% lower crash involvement than expected. Based on these results, it was recommended that pedestrian protection are implemented on a global scale to provide protection for vulnerable road users worldwide.
Locomotive to Automobile Baseline Crash Tests
DOT National Transportation Integrated Search
1975-08-01
Four Locomotive to Automobile Crash tests were performed by the Dynamic Science Division of Ultrasystems at DOT's High Speed Ground Test Center under contract to the Transportation Systems Center, which is conducting the work for the Federal Railroad...
The new car assessment program: does it predict the relative safety of vehicles in actual crashes?
Nirula, Ram; Mock, Charles N; Nathens, Avery B; Grossman, David C
2004-10-01
Federal motor vehicle safety standards are based on crash test dummy analyses that estimate the relative risk of traumatic brain injury (TBI) and severe thoracic injury (STI) by quantifying head (Head Injury Criterion [HIC]) and chest (Chest Gravity Score [CGS]) acceleration. The New Car Assessment Program (NCAP) combines these probabilities to yield the vehicle's five-star rating. The validity of the NCAP system as it relates to an actual motor vehicle crash (MVC) remains undetermined. We therefore sought to determine whether HIC and CGS accurately predict TBI and STI in actual crashes, and compared the NCAP five-star rating system to the rates of TBI and/or STI in actual MVCs. We analyzed frontal crashes with restrained drivers from the 1994 to 1998 National Automotive Sampling System. The relationship of HIC and CGS to the probabilities of TBI and STI derived from crash tests were respectively compared with the HIC-TBI and CGS-STI risk relationships observed in actual crashes while controlling for covariates. Receiver operating characteristic curves determined the sensitivity and specificity of HIC and CGS as predictors of TBI and STI, respectively. Estimates of the likelihood of TBI and/or STI (in actual MVCs) were compared with the expected probabilities of TBI and STI (determined by crash test analysis), as they relate to NCAP ratings. The crash tests overestimate TBI likelihood at HIC scores >800 and underestimate it at scores <500. STI likelihood is overestimated when CGS exceeds 40 g. Receiver operating characteristic curves demonstrated poor sensitivity and specificity of HIC and CGS in predicting injury. The actual MVC injury probability estimates did not vary between vehicles of different NCAP rating. HIC and CGS are poor predictors of TBI and STI in actual MVCs. The NCAP five-star rating system is unable to differentiate vehicles of varying crashworthiness in actual MVCs. More sensitive parameters need to be developed and incorporated into vehicle crash safety testing to provide consumers and automotive manufacturers with useful tools with which to measure vehicle safety.
Scanlon, John M; Sherony, Rini; Gabler, Hampton C
2017-05-29
Accounting for one fifth of all crashes and one sixth of all fatal crashes in the United States, intersection crashes are among the most frequent and fatal crash modes. Intersection advanced driver assistance systems (I-ADAS) are emerging vehicle-based active safety systems that aim to help drivers safely navigate intersections. The objective of this study was to estimate the number of crashes and number of vehicles with a seriously injured driver (Maximum Abbreviated Injury Scale [MAIS] 3+) that could be prevented or reduced if, for every straight crossing path (SCP) intersection crash, one of the vehicles had been equipped with an I-ADAS. This study retrospectively simulated 448 U.S. SCP crashes as if one of the vehicles had been equipped with I-ADAS. Crashes were reconstructed to determine the path and speeds traveled by the vehicles. Cases were then simulated with I-ADAS. A total of 30 variations of I-ADAS were considered in this study. These variations consisted of 5 separate activation timing thresholds, 3 separate computational latency times, and 2 different I-ADAS response modalities (i.e., a warning or autonomous braking). The likelihood of a serious driver injury was computed for every vehicle in every crash using impact delta-V. The results were then compiled across all crashes in order to estimate system effectiveness. The model predicted that an I-ADAS that delivers an alert to the driver has the potential to prevent 0-23% of SCP crashes and 0-25% of vehicles with a seriously injured driver. Conversely, an I-ADAS that autonomously brakes was found to have the potential to prevent 25-59% of crashes and 38-79% of vehicles with a seriously injured driver. I-ADAS effectiveness is a strong function of design. Increasing computational latency time from 0 to 0.5 s was found to reduce crash and injury prevention estimates by approximately one third. For an I-ADAS that delivers an alert, crash/injury prevention effectiveness was found to be very sensitive to changes in activation timing (warning delivered 1.0 to 3.0 s prior to impact). If autonomous braking was used, system effectiveness was found to largely plateau for activation timings greater than 1.5 s prior to impact. In general, the results of this study suggest that I-ADAS will be 2-3 times more effective if an autonomous braking system is utilized over a warning-based system. This study highlights the potential effectiveness of I-ADAS in the U.S. vehicle fleet, while also indicating the sensitivity of system effectiveness to design specifications. The results of this study should be considered by designers of I-ADAS and evaluators of this technology considering a future I-ADAS safety test.
Differences in state drug testing and reporting by driver type in U.S. fatal traffic crashes.
Slater, Megan E; Castle, I-Jen P; Logan, Barry K; Hingson, Ralph W
2016-07-01
Driving under the influence of drugs, including marijuana, has become more prevalent in recent years despite local, state, and federal efforts to prevent such increases. The Fatality Analysis Reporting System (FARS) is the primary source of drugged driving data for fatal crashes in the United States but lacks the completeness required to calculate unbiased estimates of drug use among drivers involved in fatal crashes. This article uses the 2013 FARS dataset to present differences in state drug testing rates by driver type, driver fault type, and state-level factors; discusses limitations related to analysis and interpretation of drugged driving data; and offers suggestions for improvements that may enable appropriate use of FARS drug testing data in the future. Results showed that state drug testing rates were highest among drivers who died at the scene of the crash (median=70.8%) and drivers who died and were at fault in the crash (median=64.4%). The lowest testing rates were seen among surviving drivers who were not transported to a hospital (median=14.0%) and surviving drivers who were not at fault in the crash (median=10.0%). Drug testing rates differed by state blood alcohol content (BAC) testing rate across all driver types and driver fault types, and in general, states that tested a higher percentage of drivers for BAC had higher drug testing rates. Testing rates might be increased through standardization and mandatory testing policies. FARS data users should continue to be cautious about the limitations of using currently available data to quantify drugged driving. More efforts are needed to improve drug testing and reporting practices, and more research is warranted to establish drug concentration levels at which driving skills become impaired. Copyright © 2016 Elsevier Ltd. All rights reserved.
Instrumentation Methodology for Automobile Crash Testing
DOT National Transportation Integrated Search
1974-08-01
Principal characteristics of existing data acquisition practices and instrumentation methodologies have been reviewed to identify differences which are responsible for difficulties in comparing and interpreting structural crash test data. Recommendat...
Crash energy absorption of two-segment crash box with holes under frontal load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choiron, Moch Agus, E-mail: agus-choiron@ub.ac.id; Sudjito,; Hidayati, Nafisah Arina
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base.more » Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.« less
Woitsch, Gernot; Sinz, Wolfgang
2014-01-01
Combination of active and passive safety systems is a future key to further improvement in vehicle safety. Autonomous braking systems are able to reduce collision speeds, and therefore severity levels significantly. Passengers change their position due to pre-impact vehicle motion, a fact, which has not yet been considered in common crash tests. For this paper, finite elements simulations of crash tests were performed to show that forward displacements due to pre-crash braking do not necessarily increase dummy load levels. So the influence of different pre-crash scenarios, all leading to equal closing speeds in the crash phase, are considered in terms of vehicle motion (pitching, deceleration) and restraint system configurations (belt load limiter, pretensioner). The influence is evaluated by dummy loads as well as contact risk between the dummy and the interior. Copyright © 2013 Elsevier Ltd. All rights reserved.
Emergency evacuation tests of a crashed L-1649.
DOT National Transportation Integrated Search
1966-08-01
Four basic evacuation tests were performed on a crashed L-1649 in Phoenix, Arizona, to document problem areas, passenger reaction, emergency lighting, slope of flooring and other items affecting passenger egress. Two day and two night tests were run ...
Exciting New Take on a Classic: Crash Testing Activity Puts the Egg in the Driver's Seat
ERIC Educational Resources Information Center
Board, Keith
2011-01-01
An excellent common activity in technology and engineering classes involves dropping an egg from a significant height in a protective device designed and built by students. This article describes how the author uses the classic "egg drop" as an inspiration to have students modify a small crash test vehicle that speeds down a track and crashes into…
Exciting New Take on a Classic: Crash Test Activity Puts the Egg in the Driver's Seat
ERIC Educational Resources Information Center
Board, Keith
2011-01-01
An excellent common activity in technology and engineering classes involves dropping an egg from a significant height in a protective device designed and built by students. This article describes how the author uses the classic "egg drop" as an inspiration to have students modify a small crash test vehicle that speeds down a track and crashes into…
49 CFR 572.180 - Incorporated materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES ES-2re Side Impact Crash... 50th Percentile Adult Male Side Impact Crash Test Dummy, February 2008,” incorporated by reference in...
49 CFR 572.180 - Incorporated materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES ES-2re Side Impact Crash... 50th Percentile Adult Male Side Impact Crash Test Dummy, February 2008,” incorporated by reference in...
Development of collision avoidance for light vehicles : near-crash/crash event data recorders
DOT National Transportation Integrated Search
2006-12-01
This report presents the results of an analysis effort undertaken to address the following research question: What sensor(s) can be cost effectively added to vehicles on a wide scale to significantly improve the understanding and modeling of naturali...
Crash test and evaluation of 3-ft mounting height sign support system.
DOT National Transportation Integrated Search
2016-07-01
The Texas Department of Transportation (TxDOT) and other transportation agencies continue to : research potential countermeasure for mitigating wrong-way crashes. Because many drivers involved in : wrong-way crashes are impaired, some highway safety ...
Recovering full repair costs of INDOT infrastructure damaged by motor vehicle crashes.
DOT National Transportation Integrated Search
2011-01-01
There are approximately 4,000 instances per year where state property located along Indiana Department of Transportation : (INDOT) maintained right-of-way needs to be replaced or repaired due to motor vehicle crashes. INDOT incurs significant financi...
Multivariate spatial models of excess crash frequency at area level: case of Costa Rica.
Aguero-Valverde, Jonathan
2013-10-01
Recently, areal models of crash frequency have being used in the analysis of various area-wide factors affecting road crashes. On the other hand, disease mapping methods are commonly used in epidemiology to assess the relative risk of the population at different spatial units. A natural next step is to combine these two approaches to estimate the excess crash frequency at area level as a measure of absolute crash risk. Furthermore, multivariate spatial models of crash severity are explored in order to account for both frequency and severity of crashes and control for the spatial correlation frequently found in crash data. This paper aims to extent the concept of safety performance functions to be used in areal models of crash frequency. A multivariate spatial model is used for that purpose and compared to its univariate counterpart. Full Bayes hierarchical approach is used to estimate the models of crash frequency at canton level for Costa Rica. An intrinsic multivariate conditional autoregressive model is used for modeling spatial random effects. The results show that the multivariate spatial model performs better than its univariate counterpart in terms of the penalized goodness-of-fit measure Deviance Information Criteria. Additionally, the effects of the spatial smoothing due to the multivariate spatial random effects are evident in the estimation of excess equivalent property damage only crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Spinal injury in car crashes: crash factors and the effects of occupant age.
Bilston, Lynne E; Clarke, Elizabeth C; Brown, Julie
2011-08-01
Motor vehicle crashes are the leading cause of serious spinal injury in most developed nations. However, since these injuries are rare, systematic analyses of the crash factors that are predictive of spinal injury have rarely been performed. This study aimed to use a population-reference crash sample to identify crash factors associated with moderate to severe spinal injury, and how these vary with occupant age. The US National Automotive Sampling System Crashworthiness Data System (NASS) data for 1993-2007 were analysed using logistic regression to identify crash factors associated with Abbreviated Injury Scale (AIS)2+ spinal injury among restrained vehicle passengers. Risk of moderate or severe spinal injury (AIS2+) was associated with higher severity crashes (OR=3.5 (95% CI 2.6 to 4.6)), intrusion into an occupant's seating position (OR=2.7 (95% CI 1.9 to 3.7)), striking a fixed object rather than another car (OR=1.7 (95% CI 1.3 to 2.1)), and use of a shoulder-only belt (OR=2.7 (95% CI 1.5 to 4.8)). Older occupants (65 years or older) were at higher risk of spinal injury than younger adults in frontal, side and rollover crashes. Children under 16 were at a lower risk of spinal injury than adults in all crash types except frontal crashes. While the risk of serious spinal injury in motor vehicle crashes is low, these injuries are more common in crashes of higher severity or into fixed objects, and in the presence of intrusion. There are elevated risks of spinal injury for older occupants compared with younger adults, which may reflect changes in biomechanical tolerances with age. Children appear to be at lower risk of serious spinal injury than adults except in frontal crashes.
Effectiveness of antilock braking systems in reducing motorcycle fatal crash rates.
Teoh, Eric R
2011-04-01
Overbraking and underbraking have been shown to be common factors in motorcycle crashes. Antilock braking systems (ABS) prevent wheels from locking during braking and may make riders less reluctant to apply full braking force. The objective of this study was to evaluate the effect of ABS in fatal motorcycle crashes. Motorcycle drivers involved in fatal crashes per 10,000 registered vehicle years were compared for 13 motorcycle models with optional ABS and those same models without the option during 2003-2008. Motorcycles with optional ABS were included only if the presence of the option could be identified from the vehicle identification number. The rate of fatal motorcycle crashes per 10,000 registered vehicle years was 37 percent lower for ABS models than for their non-ABS versions. ABS appears to be highly effective in preventing fatal motorcycle crashes based on some early adopters of motorcycle ABS technology.
NASA Astrophysics Data System (ADS)
Gill, G.; Sakrani, T.; Cheng, W.; Zhou, J.
2017-09-01
Many studies have utilized the spatial correlations among traffic crash data to develop crash prediction models with the aim to investigate the influential factors or predict crash counts at different sites. The spatial correlation have been observed to account for heterogeneity in different forms of weight matrices which improves the estimation performance of models. But very rarely have the weight matrices been compared for the prediction accuracy for estimation of crash counts. This study was targeted at the comparison of two different approaches for modelling the spatial correlations among crash data at macro-level (County). Multivariate Full Bayesian crash prediction models were developed using Decay-50 (distance-based) and Queen-1 (adjacency-based) weight matrices for simultaneous estimation crash counts of four different modes: vehicle, motorcycle, bike, and pedestrian. The goodness-of-fit and different criteria for accuracy at prediction of crash count reveled the superiority of Decay-50 over Queen-1. Decay-50 was essentially different from Queen-1 with the selection of neighbors and more robust spatial weight structure which rendered the flexibility to accommodate the spatially correlated crash data. The consistently better performance of Decay-50 at prediction accuracy further bolstered its superiority. Although the data collection efforts to gather centroid distance among counties for Decay-50 may appear to be a downside, but the model has a significant edge to fit the crash data without losing the simplicity of computation of estimated crash count.
Case series analysis of hindfoot injuries sustained by drivers in frontal motor vehicle crashes.
Ye, Xin; Funk, James; Forbes, Aaron; Hurwitz, Shepard; Shaw, Greg; Crandall, Jeff; Freeth, Rob; Michetti, Chris; Rudd, Rodney; Scarboro, Mark
2015-09-01
Improvements to vehicle frontal crashworthiness have led to reductions in toe pan and instrument panel intrusions as well as leg, foot, and ankle loadings in standardized crash tests. Current field data, however, suggests the proportion of foot and ankle injuries sustained by drivers in frontal crashes has not decreased over the past two decades. To explain the inconsistency between crash tests results and real world lower limb injury prevalence, this study investigated the injury causation scenario for the specific hind-foot injury patterns observed in frontal vehicle crashes. Thirty-four cases with leg, foot, and ankle injuries were selected from the Crash Injury Research and Engineering Network (CIREN) database. Talus fractures were present in 20 cases, representing the most frequent hind-foot skeletal injuries observed among the reviewed cases. While axial compression was the predominant loading mechanism causing 18 injuries, 11 injured ankles involved inversion or eversion motion, and 5 involved dorsiflexion as the injury mechanism. Injured ankles of drivers were more biased towards the right aspect with foot pedals contributing to injuries in 13 of the 34 cases. Combined, the results suggest that despite recent advancement of vehicle performance in crash tests, efforts to reduce axial forces sustained in lower extremity should be prioritized. The analysis of injury mechanisms in this study could aid in crash reconstructions and the development of safety systems for vehicles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOT National Transportation Integrated Search
2011-09-01
There are approximately 4,000 instances per year that require infrastructure located along right-of-way maintained by the Indiana Department of Transportation (INDOT) to be replaced or repaired due to motor vehicle crashes. This infrastructure includ...
Simulation System of Car Crash Test in C-NCAP Analysis Based on an Improved Apriori Algorithm*
NASA Astrophysics Data System (ADS)
Xiang, LI
In order to analysis car crash test in C-NCAP, an improved algorithm is given based on Apriori algorithm in this paper. The new algorithm is implemented with vertical data layout, breadth first searching, and intersecting. It takes advantage of the efficiency of vertical data layout and intersecting, and prunes candidate frequent item sets like Apriori. Finally, the new algorithm is applied in simulation of car crash test analysis system. The result shows that the relations will affect the C-NCAP test results, and it can provide a reference for the automotive design.
Cars with antilock brakes no longer are overinvolved in fatal crashes
DOT National Transportation Integrated Search
2000-04-15
New tests suggest that cars with antilock braking system no longer are disproportionately involved in certain types of fatal crashes, but antilocks still are not producing reductions in overall fatal crash risk. Since the poor experience of cars with...
Multidisciplinary Design Optimization of a Full Vehicle with High Performance Computing
NASA Technical Reports Server (NTRS)
Yang, R. J.; Gu, L.; Tho, C. H.; Sobieszczanski-Sobieski, Jaroslaw
2001-01-01
Multidisciplinary design optimization (MDO) of a full vehicle under the constraints of crashworthiness, NVH (Noise, Vibration and Harshness), durability, and other performance attributes is one of the imperative goals for automotive industry. However, it is often infeasible due to the lack of computational resources, robust simulation capabilities, and efficient optimization methodologies. This paper intends to move closer towards that goal by using parallel computers for the intensive computation and combining different approximations for dissimilar analyses in the MDO process. The MDO process presented in this paper is an extension of the previous work reported by Sobieski et al. In addition to the roof crush, two full vehicle crash modes are added: full frontal impact and 50% frontal offset crash. Instead of using an adaptive polynomial response surface method, this paper employs a DOE/RSM method for exploring the design space and constructing highly nonlinear crash functions. Two NMO strategies are used and results are compared. This paper demonstrates that with high performance computing, a conventionally intractable real world full vehicle multidisciplinary optimization problem considering all performance attributes with large number of design variables become feasible.
Rogers, P D; Gibson, C; Wilcox, S J; Chong, A
2009-01-01
The crashworthiness of occupied proprietary wheelchairs, which are transported in motor vehicles, is currently assessed by physical crash testing in accordance with ISO 7176-19. If such wheelchairs are modified to meet the needs of the occupant, e.g. the addition of special seating, environmental control systems or life support equipment, then those making the modifications take on the manufacturer's responsibilities, one of these being the assessment of the modified wheelchair's ability to withstand vehicle crash forces. Destructively testing bespoke wheelchair designs is not practical so, currently, the transport-related risk is assessed using best engineering judgement. To improve this process virtual crash testing of the wheelchair and occupant was used. A modified crash criteria from ISO 7176-19 is proposed to enable assessment of the wheelchair's crashworthiness and provide the clinical engineer with an informed judgement of how both wheelchair alone and occupant and wheelchair together will behave in a crash.
Light airplane crash tests at impact velocities of 13 and 27 m/sec
NASA Technical Reports Server (NTRS)
Alfaro-Bou, E.; Vaughan, V. L., Jr.
1977-01-01
Two similar general aviation airplanes were crash tested at the Langley impact dynamics research facility at velocities of 13 and 27 m/sec. Other flight parameters were held constant. The facility, instrumentation, tests specimens, and test method are briefly described. Structural damage and accelerometer data are discussed.
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2015-01-01
During the summer of 2015, three Cessna 172 aircraft were crash tested at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). The three tests simulated three different crash scenarios. The first simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway, the second simulated a controlled flight into terrain with a nose down pitch on the aircraft, and the third simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system captured 64 channels of airframe acceleration, along with acceleration and load in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices, representing the pilot and co-pilot. Each test contained different airframe loading conditions and results show large differences in airframe performance. This paper presents test methods used to conduct the crash tests and will summarize the airframe results from the test series.
Differences in young driver crash involvement in states with varying licensure practices.
Ferguson, S A; Leaf, W A; Williams, A F; Preusser, D F
1996-03-01
Teenage driver licensing practices and the crashes of teenagers were compared in several states with differing laws and policies regarding licensure. High school seniors in Delaware, a state with laws that allow early driving and licensure, reported that they first drove on a public road, obtained a learner's permit and obtained a driver's license at younger ages than high school seniors in other northeastern states (Connecticut, New Jersey and upstate New York). State crash data indicated that Delaware and Connecticut, which allow unrestricted licensing at age 16, showed the highest rates of 16-year-old driver involvements in nonfatal and fatal injury crashes. Pennsylvania and upstate New York, which have night driving curfews for 16 year-olds, showed lower crash rates overall and much lower crash rates during their respective curfew hours. New Jersey and Nassau and Suffolk counties, where unsupervised driving by 16 year-olds is generally not allowed, showed the lowest crash rates for 16 year-olds. Graduated licensing programs that include delayed full-privilege licensure, night driving curfews, and extended periods of supervised practice driving are a possible countermeasure for the high motor vehicle crash rates of young drivers.
Safety analytics for integrating crash frequency and real-time risk modeling for expressways.
Wang, Ling; Abdel-Aty, Mohamed; Lee, Jaeyoung
2017-07-01
To find crash contributing factors, there have been numerous crash frequency and real-time safety studies, but such studies have been conducted independently. Until this point, no researcher has simultaneously analyzed crash frequency and real-time crash risk to test whether integrating them could better explain crash occurrence. Therefore, this study aims at integrating crash frequency and real-time safety analyses using expressway data. A Bayesian integrated model and a non-integrated model were built: the integrated model linked the crash frequency and the real-time models by adding the logarithm of the estimated expected crash frequency in the real-time model; the non-integrated model independently estimated the crash frequency and the real-time crash risk. The results showed that the integrated model outperformed the non-integrated model, as it provided much better model results for both the crash frequency and the real-time models. This result indicated that the added component, the logarithm of the expected crash frequency, successfully linked and provided useful information to the two models. This study uncovered few variables that are not typically included in the crash frequency analysis. For example, the average daily standard deviation of speed, which was aggregated based on speed at 1-min intervals, had a positive effect on crash frequency. In conclusion, this study suggested a methodology to improve the crash frequency and real-time models by integrating them, and it might inspire future researchers to understand crash mechanisms better. Copyright © 2017 Elsevier Ltd. All rights reserved.
Determination of crash test pulses and their application to aircraft seat analysis
NASA Technical Reports Server (NTRS)
Alfaro-Bou, E.; Williams, M. S.; Fasanella, E. L.
1981-01-01
Deceleration time histories (crash pulses) from a series of twelve light aircraft crash tests conducted at NASA Langley Research Center (LaRC) were analyzed to provide data for seat and airframe design for crashworthiness. Two vertical drop tests at 12.8 m/s (42 ft/s) and 36 G peak deceleration (simulating one of the vertical light aircraft crash pulses) were made using an energy absorbing light aircraft seat prototype. Vertical pelvis acceleration measured in a 50 percentile dummy in the energy absorbing seat were found to be 45% lower than those obtained from the same dummy in a typical light aircraft seat. A hybrid mathematical seat-occupant model was developed using the DYCAST nonlinear finite element computer code and was used to analyze a vertical drop test of the energy absorbing seat. Seat and occupant accelerations predicted by the DYCAST model compared quite favorably with experimental values.
Validation of the ENSCO surrogate bogie vehicle, FOIL test numbers 92F028 through 92F031
DOT National Transportation Integrated Search
1994-11-01
This document contains the results from four crash tests conducted at the Federal Outdoor Impact Laboratory (FOIL) located at the Turner-Fairbank Highway Research Center in McLean, Virginia. The crash tests involved two reusable bogie vehicles impact...
Ferguson, Susan A
2007-12-01
Electronic stability control (ESC) is designed to help drivers maintain heading control of their vehicles in high-speed or sudden maneuvers and on slippery roads. The wider proliferation of ESC across the vehicle fleet has allowed evaluation of its effects in real-world crashes in many countries, including Japan, Germany, Sweden, France, Great Britain, and the United States. This article provides a summary of the findings. Studies that examined the real-world effectiveness of ESC were reviewed. Crash effects have been examined for different roadways, using differing analytic methods, different crash severities, and different make/model vehicles including both cars and SUVs. The review discusses the methodological differences and examines the findings according to vehicle type, crash type and severity, and road conditions. The overwhelming majority of studies find that ESC is highly effective in reducing single-vehicle crashes in cars and SUVs. Fatal single-vehicle crashes involving cars are reduced by about 30-50% and SUVs by 50-70%. Fatal rollover crashes are estimated to be about 70-90% lower with ESC regardless of vehicle type. A number of studies find improved effectiveness in reducing crashes when road conditions are slippery. There is little or no effect of ESC in all multi-vehicle crashes; however, there is a 17-38% reduction in more serious, fatal multi-vehicle crashes. Given the extraordinary benefits of ESC in preventing crashes, especially those with more serious outcomes, the implementation of ESC should be accelerated to cover the full range of passenger vehicles in both developed and developing markets.
IIHS side crash test ratings and occupant death risk in real-world crashes.
Teoh, Eric R; Lund, Adrian K
2011-10-01
To evaluate how well the Insurance Institute for Highway Safety (IIHS) side crash test ratings predict real-world occupant death risk in side-impact crashes. The IIHS has been evaluating passenger vehicle side crashworthiness since 2003. In the IIHS side crash test, a vehicle is impacted perpendicularly on the driver's side by a moving deformable barrier simulating a typical sport utility vehicle (SUV) or pickup. Injury ratings are computed for the head/neck, torso, and pelvis/leg, and vehicles are rated based on their ability to protect occupants' heads and resist occupant compartment intrusion. Component ratings are combined into an overall rating of good, acceptable, marginal, or poor. A driver-only rating was recalculated by omitting rear passenger dummy data. Data were extracted from the Fatality Analysis Reporting System (FARS) and National Automotive Sampling System/General Estimates System (NASS/GES) for the years 2000-2009. Analyses were restricted to vehicles with driver side air bags with head and torso protection as standard features. The risk of driver death was computed as the number of drivers killed (FARS) divided by the number involved (NASS/GES) in left-side impacts and was modeled using logistic regression to control for the effects of driver age and gender and vehicle type and curb weight. Death rates per million registered vehicle years were computed for all outboard occupants and compared by overall rating. Based on the driver-only rating, drivers of vehicles rated good were 70 percent less likely to die when involved in left-side crashes than drivers of vehicles rated poor, after controlling for driver and vehicle factors. Compared with vehicles rated poor, driver death risk was 64 percent lower for vehicles rated acceptable and 49 percent lower for vehicles rated marginal. All 3 results were statistically significant. Among components, vehicle structure rating exhibited the strongest relationship with driver death risk. The vehicle registration-based results for drivers were similar, suggesting that the benefit was not due to differences in crash risk. The same pattern of results held for outboard occupants in nearside crashes per million registered vehicle years and, with the exception of marginally rated vehicles, also held for other crash types. Results show that IIHS side crash test ratings encourage designs that improve crash protection in meaningful ways beyond encouraging head protection side air bags, particularly by promoting vehicle structures that limit occupant compartment intrusion. Results further highlight the need for a strong occupant compartment and its influence in all types of crashes.
DOT National Transportation Integrated Search
2000-07-01
In December 1997, North Carolina became the second state to enact a comprehensive Graduated Driver Licensing (GDL) system. The purpose of the GSL is to reduce young driver crashes by introducing beginning drivers to the full range of driving experien...
DOT National Transportation Integrated Search
1999-04-01
The purpose of this study is to crash test and evaluate new or modified roadside safety hardware and, where necessary, redesign the devices to improve their impact performance. The three major areas addressed in this study are the impact performance ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-29
... electrical isolation requirements, the test specifications and requirements for electrical isolation monitoring, the state-of-charge of electric energy storage devices prior to the crash tests, a proposed protective barrier compliance option for electrical safety, the use of alternative gas to crash test hydrogen...
Factors that influence chest injuries in rollovers.
Digges, Kennerly; Eigen, Ana; Tahan, Fadi; Grzebieta, Raphael
2014-01-01
The design of countermeasures to reduce serious chest injuries for belted occupants involved in rollover crashes requires an understanding of the cause of these injuries and of the test conditions to assure the effectiveness of the countermeasures. This study defines rollover environments and occupant-to-vehicle interactions that cause chest injuries for belted drivers. The NASS-CDS was examined to determine the frequency and crash severity for belted drivers with serious (Abbreviated Injury Scale [AIS] 3+) chest injuries in rollovers. Case studies of NASS crashes with serious chest injuries sustained by belted front occupants were undertaken and damage patterns were determined. Vehicle rollover tests with dummies were examined to determine occupant motion in crashes with damage similar to that observed in the NASS cases. Computer simulations were performed to further explore factors that could contribute to chest injury. Finite element model (FEM) vehicle models with both the FEM Hybrid III dummy and THUMS human model were used in the simulations. Simulation of rollovers with 6 quarter-turns or less indicated that increases in the vehicle pitch, either positive or negative, increased the severity of dummy chest loadings. This finding was consistent with vehicle damage observations from NASS cases. For the far-side occupant, the maximum chest loadings were caused by belt and side interactions during the third quarter-turn and by the center console loading during the fourth quarter-turn. The results showed that the THUMS dummy produced more realistic kinematics and improved insights into skeletal and chest organ loadings compared to the Hybrid III dummy. These results suggest that a dynamic rollover test to encourage chest injury reduction countermeasures should induce a roll of at least 4 quarter-turns and should also include initial vehicle pitch and/or yaw so that the vehicle's axis of rotation is not aligned with its inertial roll axis during the initial stage of the rollover.
Injury risk functions for frontal oblique collisions.
Andricevic, Nino; Junge, Mirko; Krampe, Jonas
2018-03-09
The objective of this article was the construction of injury risk functions (IRFs) for front row occupants in oblique frontal crashes and a comparison to IRF of nonoblique frontal crashes from the same data set. Crashes of modern vehicles from GIDAS (German In-Depth Accident Study) were used as the basis for the construction of a logistic injury risk model. Static deformation, measured via displaced voxels on the postcrash vehicles, was used to calculate the energy dissipated in the crash. This measure of accident severity was termed objective equivalent speed (oEES) because it does not depend on the accident reconstruction and thus eliminates reconstruction biases like impact direction and vehicle model year. Imputation from property damage cases was used to describe underrepresented low-severity crashes-a known shortcoming of GIDAS. Binary logistic regression was used to relate the stimuli (oEES) to the binary outcome variable (injured or not injured). IRFs for the oblique frontal impact and nonoblique frontal impact were computed for the Maximum Abbreviated Injury Scale (MAIS) 2+ and 3+ levels for adults (18-64 years). For a given stimulus, the probability of injury for a belted driver was higher in oblique crashes than in nonoblique frontal crashes. For the 25% injury risk at MAIS 2+ level, the corresponding stimulus for oblique crashes was 40 km/h but it was 64 km/h for nonoblique frontal crashes. The risk of obtaining MAIS 2+ injuries is significantly higher in oblique crashes than in nonoblique crashes. In the real world, most MAIS 2+ injuries occur in an oEES range from 30 to 60 km/h.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Tom P.
2016-05-20
Previous analyses have indicated that mass reduction is associated with an increase in crash frequency (crashes per VMT), but a decrease in fatality or casualty risk once a crash has occurred, across all types of light-duty vehicles. These results are counter-intuitive: one would expect that lighter, and perhaps smaller, vehicles have better handling and shorter braking distances, and thus should be able to avoid crashes that heavier vehicles cannot. And one would expect that heavier vehicles would have lower risk once a crash has occurred than lighter vehicles. However, these trends occur under several alternative regression model specifications. This reportmore » tests whether these results continue to hold after accounting for crash severity, by excluding crashes that result in relatively minor damage to the vehicle(s) involved in the crash. Excluding non-severe crashes from the initial LBNL Phase 2 and simultaneous two-stage regression models for the most part has little effect on the unexpected relationships observed in the baseline regression models. This finding suggests that other subtle differences in vehicles and/or their drivers, or perhaps biases in the data reported in state crash databases, are causing the unexpected results from the regression models.« less
Boyd, Douglas D
2015-06-01
Towards further improving general aviation aircraft crashworthiness, multi-axis dynamic tests have been required for aircraft certification (14CFR23.562) since 1985. The objective of this study was to determine if occupants in aircraft certified to these higher crashworthiness standards show a mitigated fraction of fatal accidents and/or injury severity. The NTSB aviation database was queried for accidents occurring between 2002 and 2012 involving aircraft certified to, or immune from, dynamic crash testing and manufactured after 1999. Only operations conducted under 14CFR Part 91 were considered. Statistical analysis employed proportion tests and logistic regression. Off-airport landings are associated with high decelerative forces; however for off-airport landings, the fraction of fatal accidents for aircraft subject to, or exempt from, dynamic crash testing was similar (0.53 and 0.60, respectively). Unexpectedly, for on-airport landings a higher fraction of fatalities was evident for aircraft whose certification mandated dynamic crash testing. Improved crashworthiness standards would be expected to translate into a reduced severity of accident injuries. For all accidents, as well as for those deemed survivable, the fraction of minor and serious injuries was reduced for occupants in aircraft certified to the higher crashworthiness standards. Surprisingly, the fraction of occupants fatally injured was not decreased for aircraft subject to dynamic crash tests. To shed light on this unexpected finding flight history, airman demographics and post-impact fires for aircraft for which dynamic crash testing is mandatory or exempt was examined. For the former cohort the median distance of the accident flight was nearly 44% higher. Aircraft subject to dynamic crash testing were also involved in a greater fraction (0.25 versus 0.12, respectively) of post-impact fires. Our data suggest that while the more stringent crashworthiness standards have mitigated minor and serious injuries, surprisingly the fraction of occupants fatally injured is unaltered. The unchanged fraction of fatal injuries may reflect partly (a) fatigue associated with longer flight distances and (b) a greater proportion of post-impact fires. Copyright © 2015 Elsevier Ltd. All rights reserved.
Molnar, Amber O; Hiremath, Swapnil; Brown, Pierre A; Akbari, Ayub
2016-07-19
Many patients with kidney failure "crash" onto dialysis or initiate dialysis in an unplanned fashion. There are varying definitions, but essentially, a patient is labeled as having a crash dialysis start if he or she has little to no care by a nephrologist prior to starting dialysis. A patient is labeled as having an unplanned dialysis start when he or she starts dialysis with a catheter or during a hospitalization. Given the high prevalence and poor outcomes associated with crash and unplanned dialysis starts, it is important to establish a better understanding of patient risk factors. We will conduct a systematic review and meta-analysis with a focus on both crash and unplanned dialysis starts. The first objective will be to determine patient risk factors for crash and unplanned dialysis starts. Secondary objectives will be to determine the most common criteria used to define both crash and unplanned dialysis starts and to determine outcomes associated with crash and unplanned dialysis starts. We will search MEDLINE, EMBASE and Cochrane Library from inception to the present date for all studies that report the characteristics and outcomes of patients who have crash vs. non-crash dialysis starts or unplanned vs. planned dialysis starts. We will also extract from included studies the criteria used to define crash and unplanned dialysis starts. If there are any eligible randomized controlled trials, quality assessment will be performed using the Cochrane Risk of Bias Assessment Tool. Observational studies will be evaluated using the Newcastle-Ottawa Scale. Data will be pooled in meta-analysis if deemed appropriate. The results of this review will inform the design of strategies to help reduce the incidence of crash and unplanned dialysis starts. Prospero CRD42016032916.
Direct medical costs of motorcycle crashes in Ontario
Pincus, Daniel; Wasserstein, David; Nathens, Avery B.; Bai, Yu Qing; Redelmeier, Donald A.; Wodchis, Walter P.
2017-01-01
BACKGROUND: There is no reliable estimate of costs incurred by motorcycle crashes. Our objective was to calculate the direct costs of all publicly funded medical care provided to individuals after motorcycle crashes compared with automobile crashes. METHODS: We conducted a population-based, matched cohort study of adults in Ontario who presented to hospital because of a motorcycle or automobile crash from 2007 through 2013. For each case, we identified 1 control absent a motor vehicle crash during the study period. Direct costs for each case and control were estimated in 2013 Canadian dollars from the payer perspective using methodology that links health care use to individuals over time. We calculated costs attributable to motorcycle and automobile crashes within 2 years using a difference-in-differences approach. RESULTS: We identified 26 831 patients injured in motorcycle crashes and 281 826 injured in automobile crashes. Mean costs attributable to motorcycle and automobile crashes were $5825 and $2995, respectively (p < 0.001). The rate of injury was triple for motorcycle crashes compared with automobile crashes (2194 injured annually/100 000 registered motorcycles v. 718 injured annually/100 000 registered automobiles; incidence rate ratio [IRR] 3.1, 95% confidence interval [CI] 2.8 to 3.3, p < 0.001). Severe injuries, defined as those with an Abbreviated Injury Scale ≥ 3, were 10 times greater (125 severe injuries annually/100 000 registered motorcycles v. 12 severe injuries annually/100 000 registered automobiles; IRR 10.4, 95% CI 8.3 to 13.1, p < 0.001). INTERPRETATION: Considering both the attributable cost and higher rate of injury, we found that each registered motorcycle in Ontario costs the public health care system 6 times the amount of each registered automobile. Medical costs may provide an additional incentive to improve motorcycle safety. PMID:29158454
Opportunities for crash and injury reduction: A multiharm approach for crash data analysis.
Mallory, Ann; Kender, Allison; Moorhouse, Kevin
2017-05-29
A multiharm approach for analyzing crash and injury data was developed for the ultimate purpose of getting a richer picture of motor vehicle crash outcomes for identifying research opportunities in crash safety. Methods were illustrated using a retrospective analysis of 69,597 occupant cases from NASS CDS from 2005 to 2015. Occupant cases were analyzed by frequency and severity of outcome: fatality, injury by Abbreviated Injury Scale (AIS), number of cases, attributable fatality, disability, and injury costs. Comparative analysis variables included precrash scenario, impact type, and injured body region. Crash and injury prevention opportunities vary depending on the search parameters. For example, occupants in rear-end crash scenarios were more frequent than in any other precrash configuration, yet there were significantly more fatalities and serious injury cases in control loss, road departure, and opposite direction crashes. Fatality is most frequently associated with head and thorax injury, and disability is primarily associated with extremity injury. Costs attributed to specific body regions are more evenly distributed, dominated by injuries to the head, thorax, and extremities but with contributions from all body regions. Though AIS 3+ can be used as a single measure of harm, an analysis based on multiple measures of harm gives a much more detailed picture of the risk presented by a particular injury or set of crash conditions. The developed methods represent a new approach to crash data mining that is expected to be useful for the identification of research priorities and opportunities for reduction of crashes and injuries. As the pace of crash safety improvement accelerates with innovations in both active and passive safety, these techniques for combining outcome measures for insights beyond fatality and serious injury will be increasingly valuable.
NASA Technical Reports Server (NTRS)
Loeb, M.; Moran, S. V.
1977-01-01
It has been suggested that expressions of annoyance attributable to aircraft noise may reflect in part fear of aircraft overflights and possible crashes. If this is true, then residents of areas where crashes have occurred should express more annoyance. To test this hypothesis, 50 residents of an Albany, New York area where an aircraft crash producing fatalities recently occurred and 50 residents of a comparable nearby area without such a history, were asked to respond to a 'Quality of Life Questionnaire.' Among the items were some designed to test annoyance by noise and fear of aircraft overflights. It was predicted that those in the crash area would express more fear and would more often identify aircraft as a noise source. These hypotheses were sustained. A near-replication was carried out in Louisville, Kentucky; results were much the same. Analyses indicated that for the crash-area groups, there was associating of aircraft fear and noise annoyance responses; this was true to an apparently lesser extent for non-crash groups. The greater annoyance of crash groups by aircraft community noise apparently does not carry over to situations in which aircraft noise is assessed in the laboratory.
Examination of Microburst Development in Colorado Thunderstorm for the 5 August 1982 Case
1989-01-01
reaches the surface. This low-altitude wind shear hazard was tragically highlighted 2 with the crash of Eastern Airlines Flight 66 on approach to JFK ... Airport in New York on 24 June 1975. The crash was caused by an intense small-scale downdraft descending to the surface and spreading out
Effects of BMI on the risk and frequency of AIS 3+ injuries in motor-vehicle crashes.
Rupp, Jonathan D; Flannagan, Carol A C; Leslie, Andrew J; Hoff, Carrie N; Reed, Matthew P; Cunningham, Rebecca M
2013-01-01
Determine the effects of BMI on the risk of serious-to-fatal injury (Abbreviated Injury Scale ≥ 3 or AIS 3+) to different body regions for adults in frontal, nearside, farside, and rollover crashes. Multivariate logistic regression analysis was applied to a probability sample of adult occupants involved in crashes generated by combining the National Automotive Sampling System (NASS-CDS) with a pseudoweighted version of the Crash Injury Research and Engineering Network database. Logistic regression models were applied to weighted data to estimate the change in the number of occupants with AIS 3+ injuries if no occupants were obese. Increasing BMI increased risk of lower-extremity injury in frontal crashes, decreased risk of lower-extremity injury in nearside impacts, increased risk of upper-extremity injury in frontal and nearside crashes, and increased risk of spine injury in frontal crashes. Several of these findings were affected by interactions with gender and vehicle type. If no occupants in frontal crashes were obese, 7% fewer occupants would sustain AIS 3+ upper-extremity injuries, 8% fewer occupants would sustain AIS 3+ lower-extremity injuries, and 28% fewer occupants would sustain AIS 3+ spine injuries. Results of this study have implications on the design and evaluation of vehicle safety systems. Copyright © 2013 The Obesity Society.
Death and injury in aerial spraying: pre-crash, crash, and post-crash prevention strategies.
Richter, E D; Gordon, M; Halamish, M; Gribetz, B
1981-01-01
To prevent crash-related death and injury among spray pilots, a program including pre-crash, crash and post-crash stages of intervention for aircraft, physical environment, and pilots and ground crews was proposed in accordance with a matrix of options derived from road crash epidemiology. In addition to the dangers of fixed obstacles, low-altitude runs, and heavy work schedules, work hazards included combined exposures to noise, vibration, G forces, heat stress, pesticides, and dehydration. Together, these exposures were believed to have produced slight, but crucial decreases in pilot performance, alertness and skill. For aircraft, the major pre-crash measure was cockpit air cooling, with filter technologies to prevent in-flight pesticide exposure. Crash and post-crash design changes to reduce energy transfers to the pilot's body (thermal, kinetic) were the most important recommendations, because absolute prevention of the crash event was unlikely. For the environment, pre-crash recommendations included marking fixed obstacles, such as power and telephone lines, but preferably their elimination. Other measures included drainage pits with sodium hydroxide points to neutralize parathion and prevent dispersion of parathion-containing mists. Pilot pre-crash measures (more fluid intake, biological monitoring--EMG, urinary alkyl phosphate, cholinesterase testing) required special organizational arrangements. Systematic application of options from the foregoing matrix suggest that the high risk of death and injury from aerial spraying is unnecessary.
Vorona, Robert Daniel; Szklo-Coxe, Mariana; Lamichhane, Rajan; Ware, J. Catesby; McNallen, Ann; Leszczyszyn, David
2014-01-01
Background and Objective: Early high school start times (EHSST) may lead to sleep loss in adolescents (“teens”), thus resulting in higher crash rates. (Vorona et al., 2011). In this study, we examined two other adjacent Virginia counties for the two years subsequent to the above-mentioned study. We again hypothesized that teens from jurisdictions with EHSST (versus later) experience higher crash rates. Methods: Virginia Department of Motor Vehicles supplied de-identified aggregate data on weekday crashes and time-of-day for 16-18 year old (teen) and adult drivers for school years 2009-2010 and 2010-2011 in Henrico and Chesterfield Counties (HC and CC, respectively). Teen crash rates for counties with early (CC) versus later (HC) school start-times were compared using two-sample Z-tests and these compared to adult crash rates using pair-wise tests. Results: Chesterfield teens manifested a statistically higher crash rate of 48.8/1,000 licensed drivers versus Henrico's 37.9/1,000 (p = 0.04) for 2009-2010. For 2010-2011, CC 16-17 year old teens demonstrated a statistically significant higher crash rate (53.2/1,000 versus 42.0/1,000), while for 16-18 teens a similar trend was found, albeit nonsignificant (p = 0.09). Crash peaks occurred 1 hour earlier in the morning and 2 hours earlier in the afternoon in Chesterfield, consistent with commute times. Post hoc analyses found significantly more run-off road crashes to the right (potentially sleep-related) in Chesterfield teens. Adult crash rates and traffic congestion did not differ between counties. Conclusions: Higher teen crash rates occurred in jurisdictions with EHSST, as in our prior study. This study contributes to and extends existing data on preventable teen crashes and high school start times. Citation: Vorona RD, Szklo-Coxe M, Lamichhane R, Ware JC, McNallen A, Leszczyszyn D. Adolescent crash rates and school start times in two central Virginia counties, 2009-2011: a follow-up study to a southeastern Virginia study, 2007-2008. J Clin Sleep Med 2014;10(11):1169-1177. PMID:25325600
Voas, Robert B
2008-03-01
Currently, the implementation of sobriety checkpoint programs, which have been demonstrated to be effective in reducing alcohol-related crashes, is limited by the belief that they require large consignments of police officers and result in few arrests. However, one of the earliest evaluations of a checkpoint program in Charlottesville, Virginia, demonstrated that effective checkpoints could be mounted in which police officers made as many arrests as officers on regular patrols. That study was printed by the NHTSA but was not published in a peer-reviewed journal. Because of its significance to current issues in the staffing of and procedures for checkpoint operations, this article reanalyzes the results of that study and describes the procedures implemented in checkpoints. A before-and-after control design was used to measure the change in nighttime crashes from three baseline years to the program year. Two analyses were conducted: the first on the percentage of all crashes occurring at night in the test city--Charlottesville--and the second on the percentage of all nighttime crashes in the state of Virginia that occurred in the test city. In addition, three waves of random-digit-dialing telephone surveys were conducted: one before and two during the checkpoint program in the test city, and the comparison city, Blacksburg. Finally, the number of impaired-driving arrests per officer hour at the checkpoints was compared with the number of arrests per hour by officers on regular patrol and the effect on arrests of the use of passive sensors was determined. The monthly percentage of nighttime crashes in Charlottesville was reduced by 17% (p = 000) in relation to the baseline level. The percentage of nighttime crashes in the state of Virginia that occurred in Charlottesville was reduced by 11% (p = .013) from baseline levels. Drivers arrested at checkpoints had lower BACs than those arrested by the regular patrols; however, the conviction rates were the same. The arrest per officer hour did not differ significantly between the two types of enforcement operations. Awareness of the checkpoint activity was high (72%) among nighttime at-risk drivers in the test city. Half reported seeing a checkpoint operation, and a quarter reported being interviewed. Use of a passive alcohol sensor by officers at the checkpoint increased arrests by almost a factor of three. The results of the evaluation suggest that small-scale sobriety checkpoints can be implemented as part of the regular enforcement program in moderate-sized jurisdictions and that they can be as efficient in producing arrests as standard enforcement patrols, particularly if passive alcohol sensors are used.
Factors Related to Fatal Injury in Frontal Crashes Involving European Cars
Frampton, Richard; Page, Marianne; Thomas, Pete
2006-01-01
Despite considerable improvements in frontal impact crashworthiness, frontal crashes still account for a major number of front seat occupant fatalities in Great Britain. This study attempted to determine the remaining potential for further fatality reduction with passive safety improvements in frontal crashes. No evidence was found to support an increase in crash test speeds. Instead, assessment of scope for survival showed that at least 27% of all fatal drivers and 39% of all fatal front seat passengers have survival potential given attention to older occupant’s chest injury tolerance and passenger compartment intrusion under 60 km/h. Considering only fatal frontal crashes that might be assessed with a barrier test, showed an estimated survival potential of at least 49% of belted drivers and 60% of belted front seat passengers. The high proportion of unbelted fatalities suggested that targeting unbelted occupant protection could have additional benefit. PMID:16968628
Aguero-Valverde, Jonathan
2013-01-01
In recent years, complex statistical modeling approaches have being proposed to handle the unobserved heterogeneity and the excess of zeros frequently found in crash data, including random effects and zero inflated models. This research compares random effects, zero inflated, and zero inflated random effects models using a full Bayes hierarchical approach. The models are compared not just in terms of goodness-of-fit measures but also in terms of precision of posterior crash frequency estimates since the precision of these estimates is vital for ranking of sites for engineering improvement. Fixed-over-time random effects models are also compared to independent-over-time random effects models. For the crash dataset being analyzed, it was found that once the random effects are included in the zero inflated models, the probability of being in the zero state is drastically reduced, and the zero inflated models degenerate to their non zero inflated counterparts. Also by fixing the random effects over time the fit of the models and the precision of the crash frequency estimates are significantly increased. It was found that the rankings of the fixed-over-time random effects models are very consistent among them. In addition, the results show that by fixing the random effects over time, the standard errors of the crash frequency estimates are significantly reduced for the majority of the segments on the top of the ranking. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fitzharris, Michael; Fildes, Brian; Newstead, Stuart; Logan, David
2004-01-01
In-depth data at MUARC was used to evaluate the Australian Design Rule 69 (ADR69) - Full frontal dynamic crash requirement, as well as the effectiveness of frontal airbag deployment on injury risk and associated cost of injury. ADR69 was introduced in Australia in mid-1995 and was based largely on the US equivalent FMVSS-208. The results indicate reductions in excess of 90% in the likelihood of sustaining AIS 2+ injuries in body regions where frontal airbags would be expected to benefit. The average injury cost savings for drivers of post-ADR69 manufactured vehicles was found to be up to AUD19,000 dollars depending on body region considered. Limitations and implications of these findings are discussed.
Fitzharris, Michael; Fildes, Brian; Newstead, Stuart; Logan, David
2004-01-01
In-depth data at MUARC was used to evaluate the Australian Design Rule 69 (ADR69) - Full frontal dynamic crash requirement, as well as the effectiveness of frontal airbag deployment on injury risk and associated cost of injury. ADR69 was introduced in Australia in mid-1995 and was based largely on the US equivalent FMVSS-208. The results indicate reductions in excess of 90% in the likelihood of sustaining AIS 2+ injuries in body regions where frontal airbags would be expected to benefit. The average injury cost savings for drivers of post-ADR69 manufactured vehicles was found to be up to AUD$19,000 depending on body region considered. Limitations and implications of these findings are discussed.
Study of crash energy absorption characteristics of inversion tube on passenger vehicle
NASA Astrophysics Data System (ADS)
Liu, Jiandong; Liu, Tao; Yao, Shengjie; Zhao, Rutao
2017-09-01
This article studied the energy absorption characteristics of the inversion tube and acquired the inversion tube design key dimensions under theoretical conditions by performing formula derivation in the quasi-static and dynamic state based on the working principle of the inversion tube: free inversion. The article further adopted HyperMesh and LS-Dyna to perform simulation and compared the simulation result with the theoretical calculating value for comparison. The design was applied in the full-vehicle model to perform 50km/h front fullwidth crash simulation. The findings showed that the deformation mode of the inversion tube in the full-vehicle crash was consistent with the design mode, and the inversion tube absorbed 33.0% of total energy, thereby conforming to the vehicle safety design requirements.
Association Between NCAP Ratings and Real-World Rear Seat Occupant Risk of Injury.
Metzger, Kristina B; Gruschow, Siobhan; Durbin, Dennis R; Curry, Allison E
2015-01-01
Several studies have evaluated the correlation between U.S. or Euro New Car Assessment Program (NCAP) ratings and injury risk to front seat occupants, in particular driver injuries. Conversely, little is known about whether NCAP 5-star ratings predict real-world risk of injury to restrained rear seat occupants. The NHTSA has identified rear seat occupant protection as a specific area under consideration for improvements to its NCAP. In order to inform NHTSA's efforts, we examined how NCAP's current 5-star rating system predicts risk of moderate or greater injury among restrained rear seat occupants in real-world crashes. We identified crash-involved vehicles, model year 2004-2013, in NASS-CDS (2003-2012) with known make and model and nonmissing occupant information. We manually matched these vehicles to their NCAP star ratings using data on make, model, model year, body type, and other identifying information. The resultant linked NASS-CDS and NCAP database was analyzed to examine associations between vehicle ratings and rear seat occupant injury risk; risk to front seat occupants was also estimated for comparison. Data were limited to restrained occupants and occupant injuries were defined as any injury with a maximum Abbreviated Injury Scale (AIS) score of 2 or greater. We linked 95% of vehicles in NASS-CDS to a specific vehicle in NCAP. The 18,218 vehicles represented an estimated 6 million vehicles with over 9 million occupants. Rear seat passengers accounted for 12.4% of restrained occupants. The risk of injury in all crashes for restrained rear seat occupants was lower in vehicles with a 5-star driver rating in frontal impact tests (1.4%) than with 4 or fewer stars (2.6%, P =.015); results were similar for the frontal impact passenger rating (1.3% vs. 2.4%, P =.024). Conversely, side impact driver and passenger crash tests were not associated with rear seat occupant injury risk (driver test: 1.7% for 5-star vs. 1.8% for 1-4 stars; passenger test: 1.6% for 5 stars vs 1.8% for 1-4 stars). Current frontal impact test procedures provide some degree of discrimination in real-world rear seat injury risk among vehicles with 5 compared to fewer than 5 stars. However, there is no evidence that vehicles with a 5-star side impact passenger rating, which is the only crash test procedure to include an anthropomorphic test dummy (ATD) in the rear, demonstrate lower risks of injury in the rear than vehicles with fewer than 5 stars. These results support prioritizing modifications to the NCAP program that specifically evaluate rear seat injury risk to restrained occupants of all ages.
Characteristics of the Injury Environment in Far-Side Crashes
Digges, K.; Gabler, H; Mohan, P.; Alonso, B.
2005-01-01
The population of occupants in far-side crashes that are documented in the US National database (NASS/CDS) was studied. The annual number of front seat occupants with serious or fatal injuries in far-side planar and rollover crashes was 17,194. The crash environment that produces serious and fatal injuries to belted front seat occupants in planar far-side crashes was investigated in detail. It was found that both the change in velocity and extent of damage were important factors that relate to crash severity. The median severity for crashes with serious or fatal injuries was a lateral delta-V of 28 kph and an extent of damage of CDC 3.6. Vehicle-to-vehicle impacts were simulated by finite element models to determine the intrusion characteristics associated with the median crash condition. These simulations indicated that the side damage caused by the IIHS barrier was representative of the damage in crashes that produce serious injuries in far-side crashes. Occupant simulations of the IIHS barrier crash at 28 kph showed that existing dummies lack biofidelity in upper body motion. The analysis suggested test conditions for studying far-side countermeasures and supported earlier studies that showed the need for an improved dummy to evaluate safety performance in the far-side crash environment. PMID:16179148
Impact test of a crash-energy management passenger rail car
DOT National Transportation Integrated Search
2004-04-06
On December 3, 2003, a single-car impact test was : conducted to assess the crashworthiness performance of a : modified passenger rail car. A coach car retrofitted with a : Crash Energy Management (CEM) end structure impacted a : fixed barrier at app...
Safety impact of an integrated crash warning system based on field test data.
DOT National Transportation Integrated Search
2011-06-13
This paper provides the results of an analysis : conducted to assess the safety impact of an integrated : vehicle-based crash warning system based on : naturalistic driving data collected from a field : operational test. The system incorporates four ...
A test-based method for the assessment of pre-crash warning and braking systems.
Bálint, András; Fagerlind, Helen; Kullgren, Anders
2013-10-01
In this paper, a test-based assessment method for pre-crash warning and braking systems is presented where the effectiveness of a system is measured by its ability to reduce the number of injuries of a given type or severity in car-to-car rear-end collisions. Injuries with whiplash symptoms lasting longer than 1 month and MAIS2+ injuries in both vehicles involved in the crash are considered in the assessment. The injury reduction resulting from the impact speed reduction due to a pre-crash system is estimated using a method which has its roots in the dose-response model. Human-machine interaction is also taken into account in the assessment. The results reflect the self-protection as well as the partner-protection performance of a pre-crash system in the striking vehicle in rear-end collisions and enable a comparison between two or more systems. It is also shown how the method may be used to assess the importance of warning as part of a pre-crash system. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Goong; Wang, Yi-Ching; Perronnet, Alain; Gu, Cong; Yao, Pengfei; Bin-Mohsin, Bandar; Hajaiej, Hichem; Scully, Marlan O.
2017-03-01
Computational mathematics, physics and engineering form a major constituent of modern computational science, which now stands on an equal footing with the established branches of theoretical and experimental sciences. Computational mechanics solves problems in science and engineering based upon mathematical modeling and computing, bypassing the need for expensive and time-consuming laboratory setups and experimental measurements. Furthermore, it allows the numerical simulations of large scale systems, such as the formation of galaxies that could not be done in any earth bound laboratories. This article is written as part of the 21st Century Frontiers Series to illustrate some state-of-the-art computational science. We emphasize how to do numerical modeling and visualization in the study of a contemporary event, the pulverizing crash of the Germanwings Flight 9525 on March 24, 2015, as a showcase. Such numerical modeling and the ensuing simulation of aircraft crashes into land or mountain are complex tasks as they involve both theoretical study and supercomputing of a complex physical system. The most tragic type of crash involves ‘pulverization’ such as the one suffered by this Germanwings flight. Here, we show pulverizing airliner crashes by visualization through video animations from supercomputer applications of the numerical modeling tool LS-DYNA. A sound validation process is challenging but essential for any sophisticated calculations. We achieve this by validation against the experimental data from a crash test done in 1993 of an F4 Phantom II fighter jet into a wall. We have developed a method by hybridizing two primary methods: finite element analysis and smoothed particle hydrodynamics. This hybrid method also enhances visualization by showing a ‘debris cloud’. Based on our supercomputer simulations and the visualization, we point out that prior works on this topic based on ‘hollow interior’ modeling can be quite problematic and, thus, not likely to be correct. We discuss the effects of terrain on pulverization using the information from the recovered flight-data-recorder and show our forensics and assessments of what may have happened during the final moments of the crash. Finally, we point out that our study has potential for being made into real-time flight crash simulators to help the study of crashworthiness and survivability for future aviation safety. Some forward-looking statements are also made.
Comparison between Euro NCAP test results and real-world crash data.
Kullgren, Anders; Lie, Anders; Tingvall, Claes
2010-12-01
The objective of this study was 2-fold: first, to compare Euro NCAP safety ratings of cars with those published by the Folksam real-world injury ratings; and second, to compare injury risk measures between Euro NCAP 2 and 5 Star cars with real-world injury and disability outcomes using police and insurance injury data. Car models were grouped according to the Euro NCAP star rating scores. Folksam risk of injury ratings come from statistical analysis of real-world crashes using police and insurance databases. The paired comparison method using 2-car crashes was used to control for crash speed and the mass differences between cars of different weights were normalized. For all comparisons, 5-star rated Euro NCAP cars were found to have a lower risk of injury compared to 2-star rated cars (5-star cars were 10% ± 2.5% lower risk than 2-star cars). For fatal and serious injuries, the difference was 23 ± 8 percent, and for fatal injuries alone the difference was 68 ± 32 percent. By comparison, the Folksam 5-star rated cars had a relative risk of 0.020 ± 0.0024, whereas 2-star rated car risk was 0.028 ± 0.0016, corresponding to a 27 percent difference in risk between 5- and 2-star cars. Good correlation was found between Euro NCAP test results and real-world injury outcomes. The largest difference in injury risk between 2- and 5-star rated cars in Euro NCAP was found for risk of fatality, confirming that car manufacturers have focused their safety performance on serious crash outcomes. In addition, Euro NCAP crash tests were shown to be highly correlated with serious crash performance, confirming their relevance for evaluating real-world crash performance. Good concordance was found between Euro NCAP and Folksam real-world crash and injury ratings.
Origin of crashes in three US stock markets: shocks and bubbles
NASA Astrophysics Data System (ADS)
Johansen, Anders
2004-07-01
This paper presents an exclusive classification of the largest crashes in Dow Jones industrial average, SP500 and NASDAQ in the past century. Crashes are objectively defined as the top-rank filtered drawdowns (loss from the last local maximum to the next local minimum disregarding noise fluctuations), where the size of the filter is determined by the historical volatility of the index. It is shown that all crashes can be linked to either an external shock, e.g., outbreak of war, or a log-periodic power law (LPPL) bubble with an empirically well-defined complex value of the exponent. Conversely, with one sole exception all previously identified LPPL bubbles are followed by a top-rank drawdown. As a consequence, the analysis presented suggest a one-to-one correspondence between market crashes defined as top-rank filtered drawdowns on one hand and surprising news and LPPL bubbles on the other. We attribute this correspondence to the efficient market hypothesis effective on two quite different time scales depending on whether the market instability the crash represent is internally or externally generated.
Crash test and evaluation of the TxDOT T631 bridge rail.
DOT National Transportation Integrated Search
2014-01-01
In August 2010, Midwest Roadside Safety Facility (MwRSF) developed and crash tested a low-cost, energy-absorbing bridge rail for the Manual for Assessing Safety Hardware (MASH) TL-3 applications. This low-cost bridge rail was designed to be compatibl...
Ford Festiva center impacts with a narrow fixed object (rigid pole) : resource materials
DOT National Transportation Integrated Search
1995-08-01
This document contains the results from five crash tests conducted at the Federal Outdoor Impact Laboratory (FOIL) located at the Turner-Fairbank Highway Research Center in McLean, Virginia. The crash tests involved five Ford Festiva two-door sedans,...
Development of a finite element model of the Thor crash test dummy
DOT National Transportation Integrated Search
2000-03-06
The paper describes the development of a detailed finite element model of the new advanced frontal crash test dummy, Thor. The Volpe Center is developing the model for LS-DYNA in collaboration with GESAC, the dummy hardware developer, under the direc...
Controlled Impact Demonstration
1984-12-01
The Controlled Impact Demonstration (or colloquially the Crash In the Desert) was a joint project between NASA and the Federal Aviation Administration (FAA) that intentionally crashed a remotely controlled Boeing 720 aircraft to acquire data and test new technologies that might help passengers and crew survive. The crash required more than four years of preparation by NASA Ames Research Center, Langley Research Center, Dryden Flight Research Center, the FAA, and General Electric. After numerous test runs, the plane was crashed on December 1, 1984. The test went generally according to plan, and produced a spectacular fireball that required more than an hour to extinguish. The FAA concluded that about one-quarter of the passengers would have survived, that the antimisting kerosene test fuel did not sufficiently reduce the risk of fire, and that several changes to equipment in the passenger compartment of aircraft were needed. NASA concluded that a head-up display and with microwave landing system would have helped the pilot more safely fly the aircraft.
Factors Related to Serious Injury In Post-NCAP European Cars Involved in Frontal Crashes
Frampton, Richard; Williams, Owen; Thomas, Pete
2004-01-01
This study examined the relationship between EuroNCAP ratings for body region protection and real world injury risk for 653 belted drivers in frontal crashes. It was also able to comment on further improvements in crash protection for post-EuroNCAP cars. Protection for the head and lower leg appeared good. In terms of life threatening injury, results showed a need to prioritise chest protection, whilst for impairment, protection for the upper leg and ankle/foot should be considered. The EuroNCAP body region scoring system reflects trends in real crash injury risks to all body regions, except for the chest, where there is no clear trend. More generally, further development in the testing regime could usefully concentrate on a restraint system test and the use of smaller dummies seated appropriately, rather than an increase of the test speed. PMID:15319115
Factors related to serious injury in post-NCAP European cars involved in frontal crashes.
Frampton, Richard; Williams, Owen; Thomas, Pete
2004-01-01
ABSTRACT This study examined the relationship between EuroNCAP ratings for body region protection and real world injury risk for 653 belted drivers in frontal crashes. It was also able to comment on further improvements in crash protection for post-EuroNCAP cars. Protection for the head and lower leg appeared good. In terms of life threatening injury, results showed a need to prioritise chest protection, whilst for impairment, protection for the upper leg and ankle/foot should be considered. The EuroNCAP body region scoring system reflects trends in real crash injury risks to all body regions, except for the chest, where there is no clear trend. More generally, further development in the testing regime could usefully concentrate on a restraint system test and the use of smaller dummies seated appropriately, rather than an increase of the test speed.
Analysis for the Progressive Failure Response of Textile Composite Fuselage Frames
NASA Technical Reports Server (NTRS)
Johnson, Eric R.; Boitnott, Richard L. (Technical Monitor)
2002-01-01
A part of aviation accident mitigation is a crash worthy airframe structure, and an important measure of merit for a crash worthy structure is the amount of kinetic energy that can be absorbed in the crush of the structure. Prediction of the energy absorbed from finite element analyses requires modeling the progressive failure sequence. Progressive failure modes may include material degradation, fracture and crack growth, and buckling and collapse. The design of crash worthy airframe components will benefit from progressive failure analyses that have been validated by tests. The subject of this research is the development of a progressive failure analysis for textile composite. circumferential fuselage frames subjected to a quasi-static, crash-type load. The test data for these frames are reported, and these data, along with stub column test data, are to be used to develop and to validate methods for the progressive failure response.
Rib and sternum fractures in the elderly and extreme elderly following motor vehicle crashes.
Bansal, Vishal; Conroy, Carol; Chang, David; Tominaga, Gail T; Coimbra, Raul
2011-05-01
As the population ages, the need to protect the elderly during motor vehicle crashes becomes increasingly critical. This study focuses on causation of elderly rib and sternum fractures in seriously injured elderly occupants involved in motor vehicle crashes. We used data from the Crash Injury Research and Engineering Network (CIREN) database (1997-2009). Study case criteria included occupant (≥ 65 years old) drivers (sitting in the left outboard position of the first row) or passengers (sitting in the first row right outboard position) who were in frontal or side impacts. To avoid selection bias, only occupants with a Maximum Abbreviated Injury Scale (MAIS) 3 (serious) or greater severity injury were included in this study. Odds ratios were used as a descriptive measure of the strength of association between variables and Chi square tests were used to determine if there was a statistically significant relationship between categorical variables. Of the 211 elderly (65-79 years old) occupants with thoracic injury, 92.0% had rib fractures and 19.6% had sternum fractures. For the 76 extreme elderly (80 years or older) with thoracic injury, 90.4% had rib fractures and 27.7% had sternum fractures. Except for greater mortality and more rib fractures caused by safety belts, there were no differences between the extreme elderly and the elderly occupants. Current safety systems may need to be redesigned to prevent rib and sternum fractures in occupants 80 years and older. Copyright © 2010 Elsevier Ltd. All rights reserved.
Non-linear dynamics of compound sawteeth in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, J.-H., E-mail: jae-heon.ahn@polytechnique.edu; Garbet, X.; Sabot, R.
2016-05-15
Compound sawteeth is studied with the XTOR-2F code. Non-linear full 3D magnetohydrodynamic simulations show that the plasma hot core is radially displaced and rotates during the partial crash, but is not fully expelled out of the q = 1 surface. Partial crashes occur when the radius of the q = 1 surface exceeds a critical value, at fixed poloidal beta. This critical value depends on the plasma elongation. The partial crash time is larger than the collapse time of an ordinary sawtooth, likely due to a weaker diamagnetic stabilization. This suggests that partial crashes result from a competition between destabilizing effects such as themore » q = 1 radius and diamagnetic stabilization.« less
Examination of the role of the combination of alcohol and cannabis in South Australian road crashes.
Baldock, M R J; Lindsay, V L
2015-01-01
The aim of the present study was to examine the role of cannabis in road crashes in South Australia, with a particular focus on the extent to which crashes involving cannabis also involve alcohol. Hospital data, police-reported crash data, and the results of forensic tests of blood samples for drugs and alcohol were collected for 1,074 crash participants (drivers or motorcyclists) admitted to hospital. A sample of 135 coroners' reports was also examined to determine the role of alcohol and cannabis in fatal crashes. The 3 years of linked data for hospital admission cases revealed that alcohol played a greater role in road crashes than other drugs. Approximately 1 in 5 drivers or motorcyclists had a blood alcohol concentration (BAC) above the legal limit of 0.05. Routine testing for cannabis, methamphetamine, and MDMA revealed a drug-positive rate of approximately 1 in 10 of those tested, with over half of these positive to cannabis. More than a third of cannabis cases also involved alcohol. The majority of those who were positive for alcohol had a BAC above 0.15 g/100 mL. BACs were similarly high among drivers positive for both alcohol and cannabis. The findings of the hospital data and the coroners' reports were consistent with each other in terms of providing confirmation that alcohol is still the drug associated with the greatest level of road trauma on South Australian roads. Furthermore, alcohol was also present in around half of the cannabis cases and, when present, tended to be present at very high levels. The results of this study emphasize that, although drug driving is clearly a problem, the most important form of impaired driving that needs to be the target of enforcement is drink driving. Roadside drug testing is important but should not be conducted in such a way that reduces the deterrent value of random breath testing.
Crash Testing in the Lab: Putting a New Stop to the CO2 Car!
ERIC Educational Resources Information Center
Decker, Rob
2005-01-01
Every year in the United States, the federal government, insurance companies and automobile manufacturers wreck hundreds of cars for safety-testing purposes. All this crashing comes in an effort to rate vehicular safety for the public. Inspired by numerous movies with car chases, dramatic wrecks and television commercials showing car safety tests,…
Effects of forming history on crash simulation of a vehicle
NASA Astrophysics Data System (ADS)
Gökler, M. İ.; Doğan, U. Ç.; Darendeliler, H.
2016-08-01
The effects of forming on the crash simulation of a vehicle have been investigated by considering the load paths produced by sheet metal forming process. The frontal crash analysis has been performed by the finite element method, firstly without considering the forming history, to find out the load paths that absorb the highest energy. The sheet metal forming simulations have been realized for each structural component of the load paths and the frontal crash analysis has been repeated by including forming history. The results of the simulations with and without forming effects have been compared with the physical crash test results available in literature.
Crash tests of four low-wing twin-engine airplanes with truss-reinforced fuselage structure
NASA Technical Reports Server (NTRS)
Williams, M. S.; Fasanella, E. L.
1982-01-01
Four six-place, low-wing, twin-engine, general aviation airplane test specimens were crash tested under controlled free flight conditions. All airplanes were impacted on a concrete test surface at a nomial flight path velocity of 27 m/sec. Two tests were conducted at a -15 deg flight path angle (0 deg pitch angle and 15 deg pitch angle), and two were conducted at a -30 deg flight path angle (-30 deg pitch angle). The average acceleration time histories (crash pulses) in the cabin area for each principal direction were calculated for each crash test. In addition, the peak floor accelerations were calculated for each test as a function of aircraft fuselage longitudinal station number. Anthropomorphic dummy accelerations were analyzed using the dynamic response index and severity index (SI) models. Parameters affecting the dummy restraint system were studied; these parameters included the effect of no upper torso restraint, measurement of the amount of inertia-reel strap pullout before locking, measurement of dummy chest forward motion, and loads in the restraints. With the SI model, the dummies with no shoulder harness received head impacts above the concussive threshold.
Federal Market Information Technology in the Post Flash Crash Era: Roles for Supercomputing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E. Wes; Leinweber, David; Ruebel, Oliver
2011-09-16
This paper describes collaborative work between active traders, regulators, economists, and supercomputing researchers to replicate and extend investigations of the Flash Crash and other market anomalies in a National Laboratory HPC environment. Our work suggests that supercomputing tools and methods will be valuable to market regulators in achieving the goal of market safety, stability, and security. Research results using high frequency data and analytics are described, and directions for future development are discussed. Currently the key mechanism for preventing catastrophic market action are “circuit breakers.” We believe a more graduated approach, similar to the “yellow light” approach in motorsports tomore » slow down traffic, might be a better way to achieve the same goal. To enable this objective, we study a number of indicators that could foresee hazards in market conditions and explore options to confirm such predictions. Our tests confirm that Volume Synchronized Probability of Informed Trading (VPIN) and a version of volume Herfindahl-Hirschman Index (HHI) for measuring market fragmentation can indeed give strong signals ahead of the Flash Crash event on May 6 2010. This is a preliminary step toward a full-fledged early-warning system for unusual market conditions.« less
77 FR 74144 - Federal Motor Vehicle Safety Standards; Event Data Recorders
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... submitted to NHTSA through one of the preceding methods and a copy should also be sent to the Office of... and Crash Test Performance Requirements D. NHTSA's Validation of and Reliance on EDR Data in Its Crash... for the purpose of post-crash assessment of vehicle safety system performance.\\1\\ EDR data are used to...
49 CFR 572.191 - General description.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... the SID-IIsD Side Impact Crash Test Dummy, July 1, 2008,” and, (5) Sign convention for signal outputs reference document SAE J1733 Information Report, titled “Sign Convention for Vehicle Crash Testing,” dated...
Stuke, Lance E; Nirula, Raminder; Gentilello, Larry M; Shafi, Shahid
2010-10-01
More than 9,000 vehicle occupants die each year in side-impact vehicle collisions, primarily from head injuries. The authors hypothesized that side-curtain air bags significantly improve head and neck safety in side-impact crash testing. Side-impact crash-test data were obtained from the Insurance Institute for Highway Safety, which ranks occupant protection as good, acceptable, marginal, or poor. Vehicles of the same make and model that underwent side-impact crash testing both with and without side-curtain air bags were compared, as well as the protective effect of these air bags on occupants' risk for head and neck injury. Of all the passenger vehicles, 25 models have undergone side-impact crash testing with and without side-curtain air bags by the Insurance Institute for Highway Safety. Only 3 models without side-curtain air bags (12%) provided good head and neck protection for drivers, while 21 cars with side-curtain air bags (84%) provided good protection (P < .001). For rear passengers, the added protection from side-curtain air bags was less dramatic but significant (84% without vs 100% with side-curtain air bags, P = .04). Side-curtain air bags significantly improve vehicle occupant safety in side-impact crash tests. Installation of these air bags should be federally mandated in all passenger vehicles. Copyright © 2010 Elsevier Inc. All rights reserved.
Effectiveness of graduated driver licensing in reducing motor vehicle crashes.
Foss, R D; Evenson, K R
1999-01-01
To determine whether graduated driver licensing (GDL) systems and nighttime curfews reduce motor vehicle crashes, fatalities, or injuries among young drivers. We used Cochrane Collaboration search strategies to locate studies of graduated licensing or night driving restrictions. Studies were selected if they examined the effects of either (1) a comprehensive graduated driver licensing system including well-integrated components, or (2) nighttime driving restrictions/curfews that could affect young persons' nighttime driving, on a clearly defined crash or injury outcome. Seven studies met inclusion criteria. Two independent studies of the New Zealand graduated licensing program found a sustained 7%-8% reduction in teen driver crash injuries attributable to the program. No other full graduated licensing system has been evaluated to date. Four studies of either a general curfew or a nighttime driving restriction for teens, a key element of graduated licensing, found substantial crash reductions during restricted hours, with 23%-25% lower crash injury and fatality rates for curfews beginning prior to midnight. One study found no change in late night crashes before and after a 1 a.m.-6 a.m. night driving restriction took effect. The logic and empirical bases for graduated licensing are sound. Moreover, there is evidence that one central element, a restriction on nighttime driving by novices, reduces young driver crashes. However, a definitive conclusion about the effectiveness of GDL systems for reducing motor vehicle crashes or crash-related injuries must await examination of other GDL systems. This should be possible within the next few years, as several states and Canadian provinces have recently enacted GDL programs.
Sleep-deprived young drivers and the risk for crash: the DRIVE prospective cohort study.
Martiniuk, Alexandra L C; Senserrick, Teresa; Lo, Serigne; Williamson, Ann; Du, Wei; Grunstein, Ronald R; Woodward, Mark; Glozier, Nick; Stevenson, Mark; Norton, Robyn; Ivers, Rebecca Q
2013-07-01
Short sleep duration is common in adolescents and young adults, and short sleep duration is a risk factor for motor vehicle crash. To assess the association between hours of sleep and the risk for motor vehicle crash, including the time of day of crash and types of crash (single, multiple vehicle, run off road, and intersection). Prospective cohort study. New South Wales, Australia. Questionnaire responses were obtained from 20,822 newly licensed drivers aged 17 to 24 years. Participants held a first-stage provisional license between June 2003 and December 2004 prospectively linked to licensing and police-reported crash data, with an average of 2 years of follow-up. Analyses were conducted on a subsample of 19,327 participants for which there was full information. Sleeping 6 or fewer hours per night. The main outcome variable was police-reported crash. Multivariable Poisson regression models were used to investigate the role of sleep duration on the risk for crash. On average, those who reported sleeping 6 or fewer hours per night had an increased risk for crash compared with those who reported sleeping more than 6 hours (relative risk [RR], 1.21; 95% CI, 1.04-1.41). Less weekend sleep was significantly associated with an increased risk for run-off-road crashes (RR, 1.55; 95% CI, 1.21-2.00). Crashes for individuals who had less sleep per night (on average and on weekends) were significantly more likely to occur between 8 pm and 6 am (RR, 1.86; 95% CI, 1.11-3.13, for midnight to 5:59 am and RR, 1.66; 95% CI, 1.15-2.39, for 8:00 pm to 11:59 pm). Less sleep per night significantly increased the risk for crash for young drivers. Less sleep on weekend nights increased the risk for run-off-road crashes and crashes occurring in the late-night hours. This provides rationale for governments and health care providers to address sleep-related crashes among young drivers.
Albert, Devon L; Beeman, Stephanie M; Kemper, Andrew R
2018-02-28
The objective of this research was to compare the occupant kinematics of the Hybrid III (HIII), THOR-M, and postmortem human surrogates (PMHS) during full-scale frontal sled tests under 3 safety restraint conditions: knee bolster (KB), knee bolster and steering wheel airbag (KB/SWAB), and knee bolster airbag and steering wheel airbag (KBAB/SWAB). A total of 20 frontal sled tests were performed with at least 2 tests performed per restraint condition per surrogate. The tests were designed to match the 2012 Toyota Camry New Car Assessment Program (NCAP) full-scale crash test. Rigid polyurethane foam surrogates with compressive strength ratings of 65 and 19 psi were used to simulate the KB and KBAB, respectively. The excursions of the head, shoulders, hips, knees, and ankles were collected using motion capture. Linear acceleration and angular velocity data were also collected from the head, thorax, and pelvis of each surrogate. Time histories were compared between surrogates and restraint conditions using ISO/TS 18571. All surrogates showed some degree of sensitivity to changes in restraint condition. For example, the use of a KBAB decreased the pelvis accelerations and the forward excursions of the knees and hips for all surrogates. However, these trends were not observed for the thorax, shoulders, and head, which showed more sensitivity to the presence of a SWAB. The average scores computed using ISO/TS 18571 for the HIII/PMHS and THOR-M/PMHS comparisons were 0.527 and 0.518, respectively. The HIII had slightly higher scores than the THOR-M for the excursions (HIII average = 0.574; THOR average = 0.520). However, the THOR-M had slightly higher scores for the accelerations and angular rates (HIII average = 0.471; THOR average = 0.516). The data from the current study showed that both KBABs and SWABs affected the kinematics of all surrogates during frontal sled tests. The results of the objective rating analysis indicated that the HIII and THOR-M had comparable overall biofidelity scores. The THOR-M slightly outperformed the HIII for the acceleration and angular velocity data. However, the HIII scored slightly better than the THOR-M for the excursion data. The most notable difference in biofidelity was for the knee excursions, where the HIII had a much higher average ISO score. Only the biofidelity of the HIII and THOR-M with regard to occupant kinematics was evaluated in this study; therefore, future work will evaluate the biofidelity of the ATDs in terms of lower extremity loading, thoracic response, and neck loading.
Carter, Patrick M; Flannagan, Carol A C; Bingham, C Raymond; Cunningham, Rebecca M; Rupp, Jonathan D
2014-01-01
Seat belts are the most effective method of decreasing fatal and nonfatal motor vehicle crash injury. Advocacy groups have recently been successful in enacting repeals of mandatory motorcycle helmet laws in several states. In some states, this has prompted renewed efforts aimed at repealing mandatory seat belt laws. To evaluate and quantify the potential impact of rescinding seat belt laws on annual crash-related fatalities, nonfatal injuries, and associated economic costs, using Michigan as a model, to inform the national debate. Proportional injury rates were calculated utilizing police-reported statewide passenger vehicle crash data from 1999 and 2002, where belt use rates approximate estimates associated with repeal of primary and secondary seat belt laws. Proportional rates were applied to the most recent year of crash data (2011) to estimate changes in statewide fatalities and nonfatal injuries. National cost estimates were applied to injury data to calculate associated economic costs. Full repeal of the seat belt law is estimated to result in an additional 163 fatalities, 13,722 nonfatal injuries, and an associated societal cost of $1.6 billion annually. Repeal of the primary seat belt law only is estimated to result in an additional 95 fatalities, 9156 nonfatal injuries, and an associated societal cost of $1.0 billion annually. This analysis suggests that repealing the either the primary or full seat belt law would have a substantial and negative impact on public health, increasing motor vehicle crash related fatality, nonfatal injury, and associated economic costs.
Ker, Katharine; Roberts, Ian; Collier, Timothy; Beyer, Fiona; Bunn, Frances; Frost, Chris
2005-03-01
The effectiveness of post-licence driver education for preventing road traffic crashes was quantified using a systematic review and meta-analyses of randomised controlled trials. Searches of appropriate electronic databases, the Internet and reference lists of relevant papers were conducted. The searches were not restricted by language or publication status. Data were pooled from 21 randomised controlled trials, including over 300,000 full licence-holding drivers of all ages. Nineteen trials reported subsequent traffic offences, with a pooled relative risk of 0.96 (95% confidence interval 0.94, 0.98). Fifteen trials reported traffic crashes with a pooled relative risk of 0.98 (0.96, 1.01). Four trials reported injury crashes with a pooled relative risk of 1.12 (0.88, 1.41). The results provide no evidence that post-licence driver education is effective in preventing road injuries or crashes. Although the results are compatible with a small reduction in the occurrence of traffic crashes, this may be due to selection biases or bias in the included trials.
Compliance crash testing of the Type 60K terminus.
DOT National Transportation Integrated Search
2008-12-01
Crash testing for compliance with NCHRP Report 350 was performed on a Type 60K terminus. The Type 60K terminus was : comprised of Type 60K portable concrete barrier (TL-3 approved) anchored to Type 60 concrete barrier at one end but free at the : oth...
DOT National Transportation Integrated Search
2005-01-01
This report addresses how the Code of Virginia can be changed to improve Virginia's rate of testing for blood alcohol concentration (BAC) among drivers involved in crashes where there is a fatality. Currently, the implied consent statute in the Code ...
49 CFR 552.14 - Content of petition.
Code of Federal Regulations, 2012 CFR
2012-10-01
... for Expedited Rulemaking To Establish Dynamic Automatic Suppression System Test Procedures for Federal... petitioner shall provide the following information: (a) A set of proposed test procedures for S28.1, S28.2... unbelted occupant positions that are likely to occur during a frontal crash where pre-crash braking occurs...
49 CFR 552.14 - Content of petition.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for Expedited Rulemaking To Establish Dynamic Automatic Suppression System Test Procedures for Federal... petitioner shall provide the following information: (a) A set of proposed test procedures for S28.1, S28.2... unbelted occupant positions that are likely to occur during a frontal crash where pre-crash braking occurs...
49 CFR 552.14 - Content of petition.
Code of Federal Regulations, 2013 CFR
2013-10-01
... for Expedited Rulemaking To Establish Dynamic Automatic Suppression System Test Procedures for Federal... petitioner shall provide the following information: (a) A set of proposed test procedures for S28.1, S28.2... unbelted occupant positions that are likely to occur during a frontal crash where pre-crash braking occurs...
Wang, Bo; Hallmark, Shauna; Savolainen, Peter; Dong, Jing
2017-12-01
Prior research has shown the probability of a crash occurring on horizontal curves to be significantly higher than on similar tangent segments, and a disproportionally higher number of curve-related crashes occurred in rural areas. Challenges arise when analyzing the safety of horizontal curves due to imprecision in integrating information as to the temporal and spatial characteristics of each crash with specific curves. The second Strategic Highway Research Program(SHRP 2) conducted a large-scale naturalistic driving study (NDS),which provides a unique opportunity to better understand the contributing factors leading to crash or near-crash events. This study utilizes high-resolution behavioral data from the NDS to identify factors associated with 108 safety critical events (i.e., crashes or near-crashes) on rural two-lane curves. A case-control approach is utilized wherein these events are compared to 216 normal, baseline-driving events. The variables examined in this study include driver demographic characteristics, details of the traffic environment and roadway geometry, as well as driver behaviors such as in-vehicle distractions. Logistic regression models are estimated to discern those factors affecting the likelihood of a driver being crash-involved. These factors include high-risk behaviors, such as speeding and visual distractions, as well as curve design elements and other roadway characteristics such as pavement surface conditions. This paper successfully integrated driver behavior, vehicle characteristics, and roadway environments into the same model. Logistic regression model was found to be an effective way to investigate crash risks using naturalistic driving data. This paper revealed a number of contributing factors to crashes on rural two-lane curves, which has important implications in traffic safety policy and curve geometry design. This paper also discussed limitations and lessons learned from working with the SHRP 2 NDS data. It will benefit future researchers who work with similar type of data. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tabiei, Al; Lawrence, Charles; Fasanella, Edwin L.
2009-01-01
A series of crash tests were conducted with dummies during simulated Orion crew module landings at the Wright-Patterson Air Force Base. These tests consisted of several crew configurations with and without astronaut suits. Some test results were collected and are presented. In addition, finite element models of the tests were developed and are presented. The finite element models were validated using the experimental data, and the test responses were compared with the computed results. Occupant crash data, such as forces, moments, and accelerations, were collected from the simulations and compared with injury criteria to assess occupant survivability and injury. Some of the injury criteria published in the literature is summarized for completeness. These criteria were used to determine potential injury during crew impact events.
Sleep-related vehicle crashes on low speed roads.
Filtness, A J; Armstrong, K A; Watson, A; Smith, S S
2017-02-01
Very little is known about the characteristics of sleep related (SR) crashes occurring on low speed roads compared with current understanding of the role of sleep in crashes occurring on high speed roads e.g. motorways. To address this gap, analyses were undertaken to identify the differences and similarities between (1) SR crashes occurring on roads with low (≤60km/h) and high (≥100km/h) speed limits, and (2) SR crashes and not-SR crashes occurring on roads with low speed limits. Police reports of all crashes occurring on low and high speed roads over a ten year period between 2000 and 2009 were examined for Queensland, Australia. Attending police officers identified all crash attributes, including 'fatigue/fell asleep', which indicates that the police believe the crash to have a causal factor relating to falling asleep, sleepiness due to sleep loss, time of day, or fatigue. Driver or rider involvement in crashes was classified as SR or not-SR. All crash-associated variables were compared using Chi-square tests (Cramer's V=effect size). A series of logistic regression was performed, with driver and crash characteristics as predictors of crash category. A conservative alpha level of 0.001 determined statistical significance. There were 440,855 drivers or riders involved in a crash during this time; 6923 (1.6%) were attributed as SR. SR crashes on low speed roads have similar characteristics to those on high speed roads with young (16-24y) males consistently over represented. SR crashes on low speed roads are noticeably different to not-SR crashes in the same speed zone in that male and young novice drivers are over represented and outcomes are more severe. Of all the SR crashes identified, 41% occurred on low speed roads. SR crashes are not confined to high speed roads. Low speed SR crashes warrant specific investigation because they occur in densely populated areas, exposing a greater number of people to risk and have more severe outcomes than not-SR crashes on the same low speed roads. Copyright © 2016 Elsevier Ltd. All rights reserved.
Emergency Locator Transmitter Crash Testing
2015-07-29
Drop-testing a series of three Cessna 172 aircraft, NASA simulated severe but survivable plane accidents on July 2, July 29 and August 26, 2015, to test emergency locator transmitters (ELTs). A research team equipped the vintage airplanes with five ELTs, two crash test dummies, cameras and data-collecting sensors. ELTs are installed on general aviation and commercial planes to transmit a location signal in the event of a crash. Current ELT models send that signal to orbiting satellites, which repeat it to the nearest search and rescue ground station. The signal is used to determine and transmit the ELT's identity and location to rescuers. ELTs have to work in the extreme circumstances involved in an airplane crash. Included in those extreme circumstances are the possibilities of excessive vibration, fire and impact damage. NASA research is designed to find practical ways to improve ELT system performance and robustness, giving rescue workers the best chance of saving lives. The research was funded by the Search and Rescue Mission Office at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The testing took place at NASA’s Langley Research Center in Hampton, Virginia. This is a video of the July 29, 2015, test.
Chen, Feng; Chen, Suren; Ma, Xiaoxiang
2018-06-01
Driving environment, including road surface conditions and traffic states, often changes over time and influences crash probability considerably. It becomes stretched for traditional crash frequency models developed in large temporal scales to capture the time-varying characteristics of these factors, which may cause substantial loss of critical driving environmental information on crash prediction. Crash prediction models with refined temporal data (hourly records) are developed to characterize the time-varying nature of these contributing factors. Unbalanced panel data mixed logit models are developed to analyze hourly crash likelihood of highway segments. The refined temporal driving environmental data, including road surface and traffic condition, obtained from the Road Weather Information System (RWIS), are incorporated into the models. Model estimation results indicate that the traffic speed, traffic volume, curvature and chemically wet road surface indicator are better modeled as random parameters. The estimation results of the mixed logit models based on unbalanced panel data show that there are a number of factors related to crash likelihood on I-25. Specifically, weekend indicator, November indicator, low speed limit and long remaining service life of rutting indicator are found to increase crash likelihood, while 5-am indicator and number of merging ramps per lane per mile are found to decrease crash likelihood. The study underscores and confirms the unique and significant impacts on crash imposed by the real-time weather, road surface, and traffic conditions. With the unbalanced panel data structure, the rich information from real-time driving environmental big data can be well incorporated. Copyright © 2018 National Safety Council and Elsevier Ltd. All rights reserved.
Liu, Shu-Yuan; Perez, Miguel A; Lau, Nathan
2018-04-01
This study investigated the association between driving safety and seven sleep disorders amongst 3541 participants of the Second Strategic Highway Research Program (SHRP 2) naturalistic driving study. SHRP 2 collected naturalistic driving data from participants between 16 and 98 years old by instrumenting participants' vehicles. The analyses used logistic regression to determine the likelihood of crash or near-crash involvement, Poisson log-linear regression to assess crash or near-crash rate, and ordinal logistic regression to assess driver maneuver appropriateness and crash or near-crash severity. These analyses did not account for any medical treatments for the sleep disorders. Females with restless legs syndrome/Willis-Ekbom disease (RLS/WED), drivers with insomnia or narcolepsy, are associated with significantly higher risk of crash or near-crash. Drivers with shift work sleep disorder (SWSD) are associated with significantly increased crash or near-crash rate. Females with RLS/WED or sleep apnea and drivers with SWSD are associated with less safe driver maneuver and drivers with periodic limb movement disorder are associated with more severe events. The four analyses provide no evidence of safety decrements associated with migraine. This study is the first examination on the association between seven sleep disorders and different measures of driving risk using large-scale naturalistic driving study data. The results corroborate much of the existing simulator and epidemiological research related to sleep-disorder patients and their driving safety, but add ecological validity to those findings. These results contribute to the empirical basis for medical professionals, policy makers, and employers in making decisions to aid individuals with sleep disorders in balancing safety and personal mobility.
Dummy Measurement of Chest Injuries Induced by Two-Point Shoulder Belts
Augenstein, J.; Perdeck, E.; Bowen, J.; Stratton, J.; Horton, T.; Singer, M.; Digges, K.; Malliaris, A.; Steps, J.
2000-01-01
The University of Miami’s William Lehman Injury Research Center at the Jackson Memorial Medical Center conducts interdisciplinary investigations to study seriously injured restrained occupants in frontal automobile collisions. Engineering analysis of these crashes is conducted in conjunction with the National Crash Analysis Center at the George Washington University. The multidisciplinary research team includes expertise in crash investigation, crash reconstruction, computer graphics, biomechanics of injuries, crash data analysis, trauma care, and all of the medical specialties associated with the Ryder Trauma Center at Jackson Memorial Hospital. More than 350 injured occupants and their crashes have been studied in depth. The purpose of this paper is to report on an observed pattern of liver lacerations suffered by drivers wearing shoulder belts, without the lap belt fastened and to assess the ability of existing crash test dummies to measure the potential for these injuries. During the initial years of the study, 48 cases of drivers protected by shoulder belts but without the lap belt fastened met the criteria for the study. Fifty percent of these drivers suffered liver lacerations. Further study showed that 22 of the crashes involved damage to the right front of the vehicle. Among the drivers in vehicles with right front damage, 92% sustained injuries to the liver. This observation indicated that 2-point belts were most likely to produce liver injuries in low severity frontal collisions when the crash direction is 1 to 2 o’clock. An analysis of the National Accident Sampling System for the years 1988-95 indicated that liver injuries constitute about 0.5% of the injuries suffered by drivers who are in tow-away crashes. NASS data showed that the risk of chest injury is more likely among drivers with automatic shoulder belts than drivers with 3-point manual belts. The crash test dummies showed no difference in chest injury measures. Finite element computer modeling demonstrated that the high deflection of the right lower rib on the Hybrid III dummy predicts the liver injuries in the 1 o’clock crashes. These higher deflections were less apparent at the location of the center chest deflection measurement device on the Hybrid III. PMID:11558077
Dummy measurement of chest injuries induced by two-point shoulder belts.
Augenstein, J; Perdeck, E; Bowen, J; Stratton, J; Horton, T; Singer, M; Digges, K; Malliaris, A; Steps, J
2000-01-01
The University of Miami's William Lehman Injury Research Center at the Jackson Memorial Medical Center conducts interdisciplinary investigations to study seriously injured restrained occupants in frontal automobile collisions. Engineering analysis of these crashes is conducted in conjunction with the National Crash Analysis Center at the George Washington University. The multidisciplinary research team includes expertise in crash investigation, crash reconstruction, computer graphics, biomechanics of injuries, crash data analysis, trauma care, and all of the medical specialties associated with the Ryder Trauma Center at Jackson Memorial Hospital. More than 350 injured occupants and their crashes have been studied in depth. The purpose of this paper is to report on an observed pattern of liver lacerations suffered by drivers wearing shoulder belts, without the lap belt fastened and to assess the ability of existing crash test dummies to measure the potential for these injuries. During the initial years of the study, 48 cases of drivers protected by shoulder belts but without the lap belt fastened met the criteria for the study. Fifty percent of these drivers suffered liver lacerations. Further study showed that 22 of the crashes involved damage to the right front of the vehicle. Among the drivers in vehicles with right front damage, 92% sustained injuries to the liver. This observation indicated that 2-point belts were most likely to produce liver injuries in low severity frontal collisions when the crash direction is 1 to 2 o'clock. An analysis of the National Accident Sampling System for the years 1988-95 indicated that liver injuries constitute about 0.5% of the injuries suffered by drivers who are in tow-away crashes. NASS data showed that the risk of chest injury is more likely among drivers with automatic shoulder belts than drivers with 3-point manual belts. The crash test dummies showed no difference in chest injury measures. Finite element computer modeling demonstrated that the high deflection of the right lower rib on the Hybrid III dummy predicts the liver injuries in the 1 o'clock crashes. These higher deflections were less apparent at the location of the center chest deflection measurement device on the Hybrid III.
A comparison of KABCO and AIS injury severity metrics using CODES linked data.
Burch, Cynthia; Cook, Lawrence; Dischinger, Patricia
2014-01-01
The research objective is to compare the consistency of distributions between crash assigned (KABCO) and hospital assigned (Abbreviated Injury Scale, AIS) injury severity scoring systems for 2 states. The hypothesis is that AIS scores will be more consistent between the 2 studied states (Maryland and Utah) than KABCO. The analysis involved Crash Outcome Data Evaluation System (CODES) data from 2 states, Maryland and Utah, for years 2006-2008. Crash report and hospital inpatient data were linked probabilistically and International Classification of Diseases (CMS 2013) codes from hospital records were translated into AIS codes. KABCO scores from police crash reports were compared to those AIS scores within and between the 2 study states. Maryland appears to have the more severe crash report KABCO scoring for injured crash participants, with close to 50 percent of all injured persons being coded as a level B or worse, and Utah observes approximately 40 percent in this group. When analyzing AIS scores, some fluctuation was seen within states over time, but the distribution of MAIS is much more comparable between states. Maryland had approximately 85 percent of hospitalized injured cases coded as MAIS = 1 or minor. In Utah this percentage was close to 80 percent for all 3 years. This is quite different from the KABCO distributions, where Maryland had a smaller percentage of cases in the lowest injury severity category as compared to Utah. This analysis examines the distribution of 2 injury severity metrics different in both design and collection and found that both classifications are consistent within each state from 2006 to 2008. However, the distribution of both KABCO and Maximum Abbreviated Injury Scale (MAIS) varies between the states. MAIS was found to be more consistent between states than KABCO.
Hu, Jingwen; Lee, Jong B.; Yang, King H.; King, Albert I.
2005-01-01
The objective of this study was to investigate the main injury patterns and sources of non-ejected occupants (i.e. no full/partial ejection) during trip-over crashes, using the NASS-CDS database. Specific injury types and sources of the head, chest, and neck were identified. Results from this study suggest that cerebrum injuries, especially subarachnoid hemorrhage, rib fractures, lung injuries, and cervical spine fractures need to be emphasized if cadaveric tests or numerical simulations are designed to study rollover injury mechanisms. The roof has been identified as the major source for head and neck injuries. However, changing the roof design alone is not likely to improve rollover safety. Instead, the belt restraint systems, passive airbags, roof structure, and new innovations need to be considered in a systematic manner to provide enhanced rollover occupant protection. PMID:16179144
Finite Element Modelling Full Vehicle Side Impact with Ultrahigh Strength Hot Stamped Steels
NASA Astrophysics Data System (ADS)
Taylor, T.; Fourlaris, G.; Cafolla, J.
2016-10-01
"Hot stamped boron steel" 22MnB5 has been imperative in meeting the automotive industry's demand for materials exhibiting higher tensile strength in the final component. In this paper, the crash performance of three experimental grades developed for automotive hot stamping technologies, exhibiting wider tensile property ranges than 22MnB5, was validated by finite element modelling full vehicle side impact with the experimental material data applied to the B-pillar reinforcement. The superior anti-intrusive crash performance of grade 38MnB5 was demonstrated, with 11 mm less intrusion of the B-pillar reinforcement compared to 22MnB5. Moreover, the superior "impact-energy absorptive" crash performance of grade 15MnCr5 was demonstrated, with 0.15 kJ greater impact-energy absorption by the B-pillar reinforcement compared to 22MnB5.
Williams, A F
1997-01-01
Teenage drivers in the United States have greatly elevated crash rates, primarily a result of qualities associated with immaturity and lack of driving experience. State licensing systems vary substantially, but most have allowed quick and easy access to driving with full privileges at a young age, contributing to the crash problem. Formal driver education has not been an effective crash prevention measure. Following the introduction of graduated licensing in New Zealand, Australia, and Canada, this system has been considered in many states and has been implemented in some. Graduated systems phase in full privilege driving, requiring initial experience to be gained under conditions of lower risk. The author describes the first five multistage graduated systems enacted in the United States in 1996 and 1997. Factors that will influence the acceptability and effectiveness of these new licensing systems are discussed. Images p[452]-a p454-a p456-a p457-a p460-a PMID:10822470
DOT National Transportation Integrated Search
2012-08-01
This report documents current State blood alcohol concentration (BAC) testing and reporting practices and results for drivers involved in fatal crashes. It summarizes known BAC results by State for the years 1997 to 2009 for both fatally injured and ...
49 CFR 572.150 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-Month-Old Infant, Alpha Version § 572.150 Incorporation by reference. (a) The following materials are... Drawings, Subpart R, CRABI 12-Month-Old Infant Crash Test Dummy (CRABI-12, Alpha version) August 2001” and... Infant Crash Test Dummy (CRABI-12, Alpha version) August 2001” incorporated by reference in § 572.155; (3...
49 CFR 572.150 - Incorporation by reference.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-Month-Old Infant, Alpha Version § 572.150 Incorporation by reference. (a) The following materials are... Drawings, Subpart R, CRABI 12-Month-Old Infant Crash Test Dummy (CRABI-12, Alpha version) August 2001” and... Infant Crash Test Dummy (CRABI-12, Alpha version) August 2001” incorporated by reference in § 572.155; (3...
49 CFR 572.150 - Incorporation by reference.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-Month-Old Infant, Alpha Version § 572.150 Incorporation by reference. (a) The following materials are... Drawings, Subpart R, CRABI 12-Month-Old Infant Crash Test Dummy (CRABI-12, Alpha version) August 2001” and... Infant Crash Test Dummy (CRABI-12, Alpha version) August 2001” incorporated by reference in § 572.155; (3...
DOT National Transportation Integrated Search
2004-03-01
The report provides the first two major task reports for a study to develop performance specifications and perform supporting objective tests for a planned field operational test (FOT) of a vehicle-based countermeasure to intersection crashes associa...
Database improvements for motor vehicle/bicycle crash analysis
Lusk, Anne C; Asgarzadeh, Morteza; Farvid, Maryam S
2015-01-01
Background Bicycling is healthy but needs to be safer for more to bike. Police crash templates are designed for reporting crashes between motor vehicles, but not between vehicles/bicycles. If written/drawn bicycle-crash-scene details exist, these are not entered into spreadsheets. Objective To assess which bicycle-crash-scene data might be added to spreadsheets for analysis. Methods Police crash templates from 50 states were analysed. Reports for 3350 motor vehicle/bicycle crashes (2011) were obtained for the New York City area and 300 cases selected (with drawings and on roads with sharrows, bike lanes, cycle tracks and no bike provisions). Crashes were redrawn and new bicycle-crash-scene details were coded and entered into the existing spreadsheet. The association between severity of injuries and bicycle-crash-scene codes was evaluated using multiple logistic regression. Results Police templates only consistently include pedal-cyclist and helmet. Bicycle-crash-scene coded variables for templates could include: 4 bicycle environments, 18 vehicle impact-points (opened-doors and mirrors), 4 bicycle impact-points, motor vehicle/bicycle crash patterns, in/out of the bicycle environment and bike/relevant motor vehicle categories. A test of including these variables suggested that, with bicyclists who had minor injuries as the control group, bicyclists on roads with bike lanes riding outside the lane had lower likelihood of severe injuries (OR, 0.40, 95% CI 0.16 to 0.98) compared with bicyclists riding on roads without bicycle facilities. Conclusions Police templates should include additional bicycle-crash-scene codes for entry into spreadsheets. Crash analysis, including with big data, could then be conducted on bicycle environments, motor vehicle potential impact points/doors/mirrors, bicycle potential impact points, motor vehicle characteristics, location and injury. PMID:25835304
Assessing the role of pavement macrotexture in preventing crashes on highways.
Pulugurtha, Srinivas S; Kusam, Prasanna R; Patel, Kuvleshay J
2010-02-01
The objective of this article is to assess the role of pavement macrotexture in preventing crashes on highways in the State of North Carolina. Laser profilometer data obtained from the North Carolina Department of Transportation (NCDOT) for highways comprising four corridors are processed to calculate pavement macrotexture at 100-m (approximately 330-ft) sections according to the American Society for Testing and Materials (ASTM) standards. Crash data collected over the same lengths of the corridors were integrated with the calculated pavement macrotexture for each section. Scatterplots were generated to assess the role of pavement macrotexture on crashes and logarithm of crashes. Regression analyses were conducted by considering predictor variables such as million vehicle miles of travel (as a function of traffic volume and length), the number of interchanges, the number of at-grade intersections, the number of grade-separated interchanges, and the number of bridges, culverts, and overhead signs along with pavement macrotexture to study the statistical significance of relationship between pavement macrotexture and crashes (both linear and log-linear) when compared to other predictor variables. Scatterplots and regression analysis conducted indicate a more statistically significant relationship between pavement macrotexture and logarithm of crashes than between pavement macrotexture and crashes. The coefficient for pavement macrotexture, in general, is negative, indicating that the number of crashes or logarithm of crashes decreases as it increases. The relation between pavement macrotexture and logarithm of crashes is generally stronger than between most other predictor variables and crashes or logarithm of crashes. Based on results obtained, it can be concluded that maintaining pavement macrotexture greater than or equal to 1.524 mm (0.06 in.) as a threshold limit would possibly reduce crashes and provide safe transportation to road users on highways.
Naimi, Timothy S; Xuan, Ziming; Sarda, Vishnudas; Hadland, Scott E; Lira, Marlene C; Swahn, Monica H; Voas, Robert B; Heeren, Timothy C
2018-05-29
Motor vehicle crashes are a leading cause of mortality. However, the association between the restrictiveness of the alcohol policy environment (ie, based on multiple existing policies) and alcohol-related crash fatalities has not been characterized previously to date. To examine the association between the restrictiveness of state alcohol policy environments and the likelihood of alcohol involvement among those dying in motor vehicle crashes in the United States. This investigation was a repeated cross-sectional study in which state alcohol policies (operationalized by the Alcohol Policy Scale [APS]) from 1999 to 2014 were related to motor vehicle crash fatalities from 2000 to 2015 using data from the Fatality Analysis Reporting System (1-year lag). Alternating logistic regression models and generalized estimating equations were used to account for clustering of multiple deaths within a crash and of multiple crashes occurring within states. The study also examined independent associations of mutually exclusive subgroups of policies, including consumption-oriented policies vs driving-oriented policies. The study setting was the 50 US states. Participants were 505 614 decedents aged at least 21 years from motor vehicle crashes from 2000 to 2015. Odds that a crash fatality was alcohol related (fatality stemmed from a crash in which ≥1 driver had a blood alcohol concentration [BAC] ≥0.08%). From 2000 to 2015, there were 505 614 adult motor vehicle crash fatalities in the United States, of which 178 795 (35.4%) were alcohol related. Each 10-percentage point increase in the APS score (corresponding to more restrictive state policies) was associated with reduced individual-level odds of alcohol involvement in a crash fatality (adjusted odds ratio [aOR], 0.90; 95% CI, 0.89-0.91); results were consistent among most demographic and crash-type strata. More restrictive policies also had protective associations with alcohol involvement among crash fatalities associated with BACs from greater than 0.00% to less than 0.08%. After accounting for driving-oriented policies, consumption-oriented policies were independently protective for alcohol-related crash fatalities (aOR, 0.97; 95% CI, 0.96-0.98 based on a 10-percentage point increased APS score). Strengthening alcohol policies, including those that do not specifically target impaired driving, could reduce alcohol-related crash fatalities. Policies may also protect against crash fatalities involving BAC levels below the current legal limit for driving in the United States.
NASA Astrophysics Data System (ADS)
Weber, Philipp; Wang, Fengzhong; Vodenska-Chitkushev, Irena; Havlin, Shlomo; Stanley, H. Eugene
2007-07-01
We analyze the memory in volatility by studying volatility return intervals, defined as the time between two consecutive fluctuations larger than a given threshold, in time periods following stock market crashes. Such an aftercrash period is characterized by the Omori law, which describes the decay in the rate of aftershocks of a given size with time t by a power law with exponent close to 1. A shock followed by such a power law decay in the rate is here called Omori process. We find self-similar features in the volatility. Specifically, within the aftercrash period there are smaller shocks that themselves constitute Omori processes on smaller scales, similar to the Omori process after the large crash. We call these smaller shocks subcrashes, which are followed by their own aftershocks. We also show that the Omori law holds not only after significant market crashes as shown by Lillo and Mantegna [Phys. Rev. E 68, 016119 (2003)], but also after “intermediate shocks.” By appropriate detrending we remove the influence of the crashes and subcrashes from the data, and find that this procedure significantly reduces the memory in the records. Moreover, when studying long-term correlated fractional Brownian motion and autoregressive fractionally integrated moving average artificial models for volatilities, we find Omori-type behavior after high volatilities. Thus, our results support the hypothesis that the memory in the volatility is related to the Omori processes present on different time scales.
Wu, Kun-Feng; Donnell, Eric T; Aguero-Valverde, Jonathan
2014-06-01
To approach the goal of "Toward Zero Deaths," there is a need to develop an analysis paradigm to better understand the effects of a countermeasure on reducing the number of severe crashes. One of the goals in traffic safety research is to search for an effective treatment to reduce fatal and major injury crashes, referred to as severe crashes. To achieve this goal, the selection of promising countermeasures is of utmost importance, and relies on the effectiveness of candidate countermeasures in reducing severe crashes. Although it is important to precisely evaluate the effectiveness of candidate countermeasures in reducing the number of severe crashes at a site, the current state-of-the-practice often leads to biased estimates. While there have been a few advanced statistical models developed to mitigate the problem in practice, these models are computationally difficult to estimate because severe crashes are dispersed spatially and temporally, and cannot be integrated into the Highway Safety Manual framework, which develops a series of safety performance functions and crash modification factors to predict the number of crashes. Crash severity outcomes are generally integrated into the Highway Safety Manual using deterministic distributions rather than statistical models. Accounting for the variability in crash severity as a function geometric design, traffic flow, and other roadway and roadside features is afforded by estimating statistical models. Therefore, there is a need to develop a new analysis paradigm to resolve the limitations in the current Highway Safety Manual methods. We propose an approach which decomposes the severe crash frequency into a function of the change in the total number of crashes and the probability of a crash becoming a severe crash before and after a countermeasure is implemented. We tested this approach by evaluating the effectiveness of shoulder rumble strips on reducing the number of severe crashes. A total of 310 segments that have had shoulder rumble strips installed during 2002-2009 are included in the analysis. It was found that shoulder rumble strips reduce the total number of crashes, but have no statistically significant effect on reducing the probability of a severe crash outcome. Copyright © 2014 Elsevier Ltd. All rights reserved.
Do Older Drivers At-Risk for Crashes Modify Their Driving Over Time?
Clay, Olivio J.; Edwards, Jerri D.; Ball, Karlene K.; Wadley, Virginia G.; Vance, David E.; Cissell, Gayla M.; Roenker, Daniel L.; Joyce, John J.
2009-01-01
Five-year driving habit trajectories among older adults (n = 645) at-risk for crashes were examined. Performance measures included Useful Field of View (UFOV). Motor-Free Visual Perception Test, Rapid Walk, and Foot Tap. Self-report measures included demographics and the Driving Habits Questionnaire. Longitudinal random-effects models revealed that drivers at-risk for subsequent crashes, based upon UFOV, regulated their driving more than the lower-risk participants. Restricted driving was present at baseline for the at-risk group and was observed in longitudinal trajectories that controlled for baseline differences. Results indicate that persons at-risk for subsequent crashes increasingly limit their driving over time. Despite this self-regulation, a larger sample of such older drivers was twice as likely to incur subsequent at-fault crashes. Results suggest that self-regulation among older drivers at-risk for crashes is an insufficient compensatory approach to eliminating increased crash risk. UFOV is a registered trademark of Visual Awareness, Inc. PMID:19196692
Locomotive crash energy management coupling tests
DOT National Transportation Integrated Search
2017-04-04
Research to develop new technologies for increasing the safety of passengers and crew in rail equipment is being directed by the Federal Railroad Administrations (FRAs) Office of Research, Development, and Technology. Crash energy management (C...
Injury analysis of patients according to impact patterns involved in pedestrian traffic crashes.
Lee, Hee Young; Youk, Hyun; Ii Lee, Jeong; Kang, Chan Young; Kong, Joon Seok; Sung, Sil; Kang, In Hye; Lee, Jung Hun; Kim, Oh Hyun; Jung, Woo Jin; Lee, Kang Hyun; Youn, Young Han; Park, Jong Chan
2018-02-28
In cases of car-to-person pedestrian traffic crashes (PTCs), the principal issue is determining at what point the car collided with the pedestrian. Accordingly, the objective of the present study was to use the medical records of patients injured in PTCs to investigate the characteristics of crash types and the areas and injury severity and to determine whether there are differences in injuries due to the angle, motion, and position at the point of impact. The present study examined 231 PTC patients admitted to the emergency room (ER) between January and December 2014. Electronic medical records from the hospital were used to divide the patient data according to Abbreviated Injury Scale (AIS) codes for injured areas based on sex, age, time of the crash, outcomes after ER treatment, and major symptoms. Among 231 patients, police reports on 67 crash cases, involving 70 people, were obtained with the help of local police departments, and these reports were used to reconstruct details of the actual crash. For statistical analysis, a chi-square test and a one-way analysis of variance calculation were used to compare the Injury Severity Score (ISS) based on groups and stages, with a statistical significance level set to P < .05. With respect to patients who were admitted for PTC, 52.4% were females and 47.6% were males. The frequency of crashes was high in middle-aged and elderly groups, as well as for youths between 10 and 19 years old. With respect to outcomes after ER treatment, discharge to home after symptom improvement was the most common outcome (24.6%). Admissions to the intensive care unit (25.1%) and to the general ward (23.8%) were also high. In terms of major symptoms, the most common injuries were to the head, resulting from a rotatory motion post impact (35.9%), and injuries to the legs, resulting from the impact of a direct collision with an object (25.1%). This study demonstrated that injuries to the chest and abdomen were the most severe in the fender vault group and head and neck injuries were the most severe in the roof vault group. In particular, the Injury Severity Score was highest in the roof vault group.
Traffic crash involvement: experiential driving knowledge and stressful contextual antecedents.
Legree, Peter J; Heffner, Tonia S; Psotka, Joseph; Martin, Daniel E; Medsker, Gina J
2003-02-01
Researchers have rarely examined stressful environments and psychological characteristics as predictors of driving behavior in the same study. The authors hypothesized that (a) safer drivers more accurately assess physical and emotional traffic hazards and (b) stress and emotional states elevate crash risk. The hypotheses were evaluated with procedural and declarative tacit driving knowledge tests requiring assessment of emotional and contextual hazards and with accident reports describing crash antecedents, including stressful events and environmental conditions. Analyses identified separate driving knowledge factors corresponding to emotional and contextual hazards that were significantly related to the crash criteria. Accident report analyses show that stress significantly elevates at-fault crash risk. The results demonstrate the importance of experiential knowledge acquired without instruction (procedural or tacit knowledge) and provide safety recommendations.
Vaca, Federico E; Anderson, Craig L
2011-01-01
The adolescent Latino male mortality profile is an anomaly when compared to an otherwise more favorable overall U.S. Latino population mortality profile. Motor vehicle crash fatalities bear a considerable proportion of mortality burden in this vulnerable population. Friend influence and relational connection are two contextual domains that may mediate crash injury risk behavior in these adolescents. Our study goal was to assess the role of friend influence over time and relational connections associated with crash injury risk behavior (CIRB) in adolescent Latino males. Waves I and II data from the National Longitudinal Study of Adolescent Health were used. Scale of CIRB, and three relational connections; school connectedness, parent connectedness, and expectation of academic success were developed and tested. Friend nomination data were available and the index student responses were linked to friend responses. Linear regression was used to assess the relationship of relational connections and friend CIRB on index student CIRB at wave I and II. Longitudinal analysis did not show significant evidence for friend influence among adolescent Latino males on CIRB. The best predictor of CIRB at wave II for adolescent Latino males was their CIRB at wave I. Relational connections were important yet exaggerated cross-sectionally but their effect was substantially attenuated longitudinally. The lack of friend influence on CIRB for adolescent Latino males may be specific to this demographic group or characteristic of the sample studied. Prevention strategies that focus on modulating friend influence in adolescent Latino males may not yield the desired prevention effects on CIRB.
Impact of a graduated driver's license law on crashes involving young drivers in New York State.
Cheng, Julius D; Schubmehl, Heidi; Kahn, Steven A; Gestring, Mark L; Sangosanya, Ayodele; Stassen, Nicole A; Bankey, Paul E
2012-08-01
Motor vehicle crashes constitute the greatest risk of injury for young adults. Graduated driver licensing (GDL) laws have been used to reduce the number of injuries and deaths in the young driver population. The New York State GDL law increased supervision of young driver and limited both time-of-day driven and number of passengers. This review examines the impact of a GDL enacted in New York in September 2003. A retrospective review of New York State administrative databases from 2001 to 2009 was performed. During this period, a state-wide GDL requirement was implemented. Database review included all reported crashes to the New York State Department of Motor Vehicles by cause and driver age as well as motor fuel tax receipts by the New York State Comptroller's Office. Motor fuel tax receipts and consumption information were used as a proxy for overall miles driven. Before 2003, drivers younger than 18 years were involved in 90 fatal crashes and 10,406 personal-injury (PI) crashes, constituting 4.49% and 3.38% of all fatal and PI crashes in New York State, respectively. By 2009, the number of fatal and PI crashes involving drivers who are younger than 18 years decreased to 44 (2.87%) and 5,246 (2.24%), respectively. Of note, the number of crashes experienced by the age group 18 years to 20 years during this period also declined, from 192 (9.59% of all fatal crashes) and 25,407 (8.24% of all PI crashes) to 135 (8.81%) and 18,114 (7.73%), respectively. Overall numbers of crashes reported remained relatively stable, between 549,000 in 2001 and 520,000 in 2009. Motor fuel use during this period also declined, but to a lesser degree ($552 million to $516 million or 6.6%). The use of a GDL law in New York State has shown a large decrease in the number of fatalities and PI crashes involving young drivers. The delay in full driver privileges from the GDL did not result in an increase in fatal or PI crashes in the next older age group.
Alcohol involvement in fatal traffic crashes 1996
DOT National Transportation Integrated Search
1998-01-01
This report presents estimates of alcohol involvement in fatal traffic crashes that occurred during 1996. The data represent a combination of actual blood alcohol concentration (BAC) test results recorded in the Fatal Accident Reporting System (FARS)...
Modeling left-turn crash occurrence at signalized intersections by conflicting patterns.
Wang, Xuesong; Abdel-Aty, Mohamed
2008-01-01
In order to better understand the underlying crash mechanisms, left-turn crashes occurring at 197 four-legged signalized intersections over 6 years were classified into nine patterns based on vehicle maneuvers and then were assigned to intersection approaches. Crash frequency of each pattern was modeled at the approach level by mainly using Generalized Estimating Equations (GEE) with the Negative Binomial as the link function to account for the correlation among the crash data. GEE with a binomial logit link function was also applied for patterns with fewer crashes. The Cumulative Residuals test shows that, for correlated left-turn crashes, GEE models usually outperformed basic Negative Binomial models. The estimation results show that there are obvious differences in the factors that cause the occurrence of different left-turn collision patterns. For example, for each pattern, the traffic flows to which the colliding vehicles belong are identified to be significant. The width of the crossing distance (represented by the number of through lanes on the opposing approach of the left-turning traffic) is associated with more left-turn traffic colliding with opposing through traffic (Pattern 5), but with less left-turning traffic colliding with near-side crossing through traffic (Pattern 8). The safety effectiveness of the left-turning signal is not consistent for different crash patterns; "protected" phasing is correlated with fewer Pattern 5 crashes, but with more Pattern 8 crashes. The study indicates that in order to develop efficient countermeasures for left-turn crashes and improve safety at signalized intersections, left-turn crashes should be considered in different patterns.
Yue, Lishengsa; Abdel-Aty, Mohamed; Wu, Yina; Wang, Ling
2018-08-01
The Connected Vehicle (CV) technologies together with other Driving Assistance (DA) technologies are believed to have great effects on traffic operation and safety, and they are expected to impact the future of our cities. However, few research has estimated the exact safety benefits when all vehicles are equipped with these technologies. This paper seeks to fill the gap by using a general crash avoidance effectiveness framework for major CV&DA technologies to make a comprehensive crash reduction estimation. Twenty technologies that were tested in recent studies are summarized and sensitivity analysis is used for estimating their total crash avoidance effectiveness. The results show that crash avoidance effectiveness of CV&DA technology is significantly affected by the vehicle type and the safety estimation methodology. A 70% crash avoidance rate seems to be the highest effectiveness for the CV&DA technologies operating in the real-world environment. Based on the 2005-2008 U.S. GES Crash Records, this research found that the CV&DA technologies could lead to the reduction of light vehicles' crashes and heavy trucks' crashes by at least 32.99% and 40.88%, respectively. The rear-end crashes for both light vehicles and heavy trucks have the most expected crash benefits from the technologies. The paper also studies the effectiveness of Forward Collision Warning technology (FCW) under fog conditions, and the results show that FCW could reduce 35% of the near-crash events under fog conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Temporal factors in motor-vehicle crash deaths: Ten years later.
Weast, Rebecca
2018-06-01
To assess trends in traffic fatalities on several temporal scales: year to year, by month, by day of week, and by time of day, to determine why some times correspond with higher rates of crash deaths, and to assess how these trends relate to age, the role of the deceased, and alcohol consumption. Traffic fatalities were identified using the Fatality Analysis Reporting System (FARS) for 1998 through 2014 and assessed for their time of occurrence. Three days that, on average, contained particularly high numbers of crash deaths were then assessed in greater detail, considering the age of the deceased, role of the deceased (vehicle occupant, bicyclist, motorcyclist, or pedestrian), and the blood alcohol content of either the driver (for passenger vehicle occupants) or the deceased. Annual crash fatality totals were much lower in 2014 than in 1998, but the decrease was not steady; a marked drop in crash deaths occurred after 2007 and continued until 2014. On average the most fatalities per day occurred in July and August (116 per day), followed closely by June, September, and October. During the week, the greatest number of fatalities on average occur on weekend days, and during the day the most fatalities tend to occur between the hours of 3p.m. and 7p.m. Holidays like Independence Day and New Year's Day show elevated crash fatalities, and a greater percentage of these crashes involved alcohol, when compared with adjacent days. Certain days and times of year stand out as posing an elevated crash risk, and even with the decrease in average daily fatalities over the past decade, these days and times of year have remained consistent. These results indicate focused areas for continued efforts to reduce fatal crashes. Copyright © 2018 National Safety Council and Elsevier Ltd. All rights reserved.
Analysis of work zone rear-end crash risk for different vehicle-following patterns.
Weng, Jinxian; Meng, Qiang; Yan, Xuedong
2014-11-01
This study evaluates rear-end crash risk associated with work zone operations for four different vehicle-following patterns: car-car, car-truck, truck-car and truck-truck. The deceleration rate to avoid the crash (DRAC) is adopted to measure work zone rear-end crash risk. Results show that the car-truck following pattern has the largest rear-end crash risk, followed by truck-truck, truck-car and car-car patterns. This implies that it is more likely for a car which is following a truck to be involved in a rear-end crash accident. The statistical test results further confirm that rear-end crash risk is statistically different between any two of the four patterns. We therefore develop a rear-end crash risk model for each vehicle-following pattern in order to examine the relationship between rear-end crash risk and its influencing factors, including lane position, the heavy vehicle percentage, lane traffic flow and work intensity which can be characterized by the number of lane reductions, the number of workers and the amount of equipment at the work zone site. The model results show that, for each pattern, there will be a greater rear-end crash risk in the following situations: (i) heavy work intensity; (ii) the lane adjacent to work zone; (iii) a higher proportion of heavy vehicles and (iv) greater traffic flow. However, the effects of these factors on rear-end crash risk are found to vary according to the vehicle-following patterns. Compared with the car-car pattern, lane position has less effect on rear-end crash risk in the car-truck pattern. The effect of work intensity on rear-end crash risk is also reduced in the truck-car pattern. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ponte, G; Ryan, G A; Anderson, R W G
2016-01-01
The aim of this study was to estimate the potential effectiveness of an in-vehicle automatic collision notification (ACN) system in reducing all road crash fatalities in South Australia (SA). For the years 2008 to 2009, traffic accident reporting system (TARS) data, emergency medical services (EMS) road crash dispatch data, and coroner's reports were matched and examined. This was done to initially determine the extent to which there were differences between the reported time of a fatal road crash in the mass crash data and the time EMS were notified and dispatched. In the subset of fatal crashes where there was a delay, injuries detailed by a forensic pathologist in individual coroner's reports were examined to determine the likelihood of survival had there not been a delay in emergency medical assistance. In 25% (N = 53) of fatalities in SA in the period 2008 to 2009, there was a delay in the notification of the crash event, and hence dispatch of EMS, that exceeded 10 min. In the 2-year crash period, 5 people were likely to have survived through more prompt crash notification enabling quicker emergency medical assistance. Additionally, 3 people potentially would have survived if surgical intervention (or emergency medical assistance to sustain life until surgery) occurred more promptly. The minimum effectiveness rate of an ACN system in SA with full deployment is likely to be in the range of 2.4 to 3.8% of all road crash fatalities involving all vehicle types and all vulnerable road users (pedestrians, cyclists, and motorcyclists) from 2008 to 2009. Considering only passenger vehicle occupants, the benefit is likely to be 2.6 to 4.6%. These fatality reductions could only have been achieved through earlier notification of each crash and their location to enable a quicker medical response. This might be achievable through a fully deployed in-vehicle ACN system.
Strayer, David L; Cooper, Joel M
2015-12-01
We address several themes that emerged in the commentaries related to our target article. First, we consider the relationship between cognitive distraction and crash risk. Second, we discuss the development of our cognitive distraction scale. Third, we weigh issues of self-regulation, appropriate baselines, and satisficing. Finally, we identify several areas where additional research is needed to refine our understanding of driver distraction and crash risk. © 2015, Human Factors and Ergonomics Society.
McDonnell FH-1 Phantom Destroyed for the NACA Crash Fire Program
1955-04-21
Researchers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory purposely wreck a McDonnell FH-1 Phantom as part of the laboratory’s Crash Fire Program. NACA Lewis researchers created the program in 1949 to investigate methods for improving survival rates for take-off and landing-type crashes. In these types of crashes, the passengers often survived the impact only to perish in the ensuing fire. Previously there had been little information on the nature of post-crash fires, and it was difficult to use analytical studies in this area. Irving Pinkel, Chief of the Lewis Flight Propulsion Division, was the primary researcher. He enlisted flight safety specialist and aeronautics researchers G. Merritt Preston and Gerard Pesman, mechanical engineer Dugald Black, and others. The tests were conducted at the nearby Ravenna Arsenal using decommissioned Air Force fighter and transport aircraft. The pilotless aircraft were accelerated down a rail on a 1700-foot track at take-off speeds and run into barriers to simulate a variety of different types of crashes. The first barrier stripped off the landing gears and another briefly sent the aircraft off the ground before it crashed into a dirt mound. Telemetry and high-speed cameras were crucial elements in these studies. NACA Lewis photographer Bill Wynne developed a method for inserting timekeeping devices on test film that were able to show time to one thousandth of a second.
Response of DP 600 products to dynamic impact loads
NASA Astrophysics Data System (ADS)
Clark, Deidra Darcell
The objective of this study was to compare the microstructural response of various DP 600 products subjected to low velocity, dynamic impact tests, typically encountered in a car crash. Since the response of steel is sensitive to its microstructure as controlled by the alloying elements, phase content, and processing; various DP 600 products may respond differently to crashes. The microstructure before and after dynamic impact deformation at 5 and 10 mph was characterized with regards to grain size, morphology, and phase content among vendors A, B, and C to evaluate efficiency in absorbing energy mechanisms during a crash simulated by dynamic impact testing in a drop tower.
Display and analysis of crash data
DOT National Transportation Integrated Search
2005-04-01
This report describes the development and testing of a new Geographic Information System (GIS) application for the display and analysis of crash data stored in the Critical Analysis Reporting Environment (CARE) system. The primary objective of this s...
Lyons, Terence J; Ercoline, William; O'Toole, Kevin; Grayson, Kevin
2006-07-01
Previous studies have determined that spatial disorientation (SD) causes 0.5-23% of aircraft crashes, but SD-related crash and fatality rates in different aircraft types have not been systematically studied. SD crashes for the fiscal years 1990 to 2004 and aircraft sortie numbers for all U.S. Air Force (USAF) aircraft were obtained from the USAF Safety Center. Contingency table analysis and Chi-squared tests were used to evaluate differences in SD rates. SD accounted for 11% of USAF crashes with an overall rate of 2.9 per million sorties and a crash fatality rate of 69%. The SD rate was higher in fighter/attack aircraft and helicopters than in training and transport aircraft. The risk of SD was increased at night with 23% of night crashes being caused by SD. But the SD rate and crash fatality rate were not higher in single-crewmember aircraft. SD risk is significantly increased in helicopters and fighter/attack aircraft and at night. The data suggest that a second crewmember does not protect against SD. Further study of specific SD scenarios could lead to focused interventions for SD prevention.
Compulsive cell phone use and history of motor vehicle crash.
O'Connor, Stephen S; Whitehill, Jennifer M; King, Kevin M; Kernic, Mary A; Boyle, Linda Ng; Bresnahan, Brian W; Mack, Christopher D; Ebel, Beth E
2013-10-01
Few studies have examined the psychological factors underlying the association between cell phone use and motor vehicle crash. We sought to examine the factor structure and convergent validity of a measure of problematic cell phone use, and to explore whether compulsive cell phone use is associated with a history of motor vehicle crash. We recruited a sample of 383 undergraduate college students to complete an online assessment that included cell phone use and driving history. We explored the dimensionality of the Cell Phone Overuse Scale (CPOS) using factor analytic methods. Ordinary least-squares regression models were used to examine associations between identified subscales and measures of impulsivity, alcohol use, and anxious relationship style, to establish convergent validity. We used negative binomial regression models to investigate associations between the CPOS and motor vehicle crash incidence. We found the CPOS to be composed of four subscales: anticipation, activity interfering, emotional reaction, and problem recognition. Each displayed significant associations with aspects of impulsivity, problematic alcohol use, and anxious relationship style characteristics. Only the anticipation subscale demonstrated statistically significant associations with reported motor vehicle crash incidence, controlling for clinical and demographic characteristics (relative ratio, 1.13; confidence interval, 1.01-1.26). For each 1-point increase on the 6-point anticipation subscale, risk for previous motor vehicle crash increased by 13%. Crash risk is strongly associated with heightened anticipation about incoming phone calls or messages. The mean score on the CPOS is associated with increased risk of motor vehicle crash but does not reach statistical significance. Copyright © 2013 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Compulsive Cell Phone Use and History of Motor Vehicle Crash
O’Connor, Stephen S.; Whitehill, Jennifer M.; King, Kevin M.; Kernic, Mary A.; Boyle, Linda Ng; Bresnahan, Brian; Mack, Christopher D.; Ebel, Beth E.
2013-01-01
Introduction Few studies have examined the psychological factors underlying the association between cell phone use and motor vehicle crash. We sought to examine the factor structure and convergent validity of a measure of problematic cell phone use and explore whether compulsive cell phone use is associated with a history of motor vehicle crash. Methods We recruited a sample of 383 undergraduate college students to complete an on-line assessment that included cell phone use and driving history. We explored the dimensionality of the Cell Phone Overuse Scale (CPOS) using factor analytic methods. Ordinary least squares regression models were used to examine associations between identified subscales and measures of impulsivity, alcohol use, and anxious relationship style to establish convergent validity. We used negative binomial regression models to investigate associations between the CPOS and motor vehicle crash incidence. Results We found the CPOS to be comprised of four subscales: anticipation, activity interfering, emotional reaction, and problem recognition. Each displayed significant associations with aspects of impulsivity, problematic alcohol use, and anxious relationship style characteristics. Only the anticipation subscale demonstrated statistically significant associations with reported motor vehicle crash incidence, controlling for clinical and demographic characteristics (RR 1.13, CI 1.01 to 1.26). For each one-point increase on the 6-point anticipation subscale, risk for previous motor vehicle crash increased by 13%. Conclusions Crash risk is strongly associated with heightened anticipation about incoming phone calls or messages. The mean score on the CPOS is associated with increased risk of motor vehicle crash but does not reach statistical significance. PMID:23910571
O'Connor, Stephen S; Shain, Lindsey M; Whitehill, Jennifer M; Ebel, Beth E
2017-02-01
Previous research suggests that anticipation of incoming phone calls or messages and impulsivity are significantly associated with motor vehicle crash. We took a more explanative approach to investigate a conceptual model regarding the direct and indirect effect of compulsive cell phone use and impulsive personality traits on crash risk. We recruited a sample of 307 undergraduate college students to complete an online survey that included measures of cell phone use, impulsivity, and history of motor vehicle crash. Using a structural equation model, we examined the direct and indirect relationships between factors of the Cell Phone Overuse Scale-II (CPOS-II), impulsivity, in-vehicle phone use, and severity and frequency of previous motor vehicle crash. Self-reported miles driven per week and year in college were included as covariates in the model. Our findings suggest that anticipation of incoming communication has a direct association with greater in-vehicle phone use, but was not directly or indirectly associated with increasing risk of previous motor vehicle crash. Of the three latent factors comprising the CPOS-II, only anticipation was significantly associated with elevated cell phone use while driving. Greater impulsivity and use of in-vehicle cell phone use while driving were directly and significantly associated with greater risk of motor vehicle crash. Anticipation of incoming cellular contacts (calls or texts) is associated with greater in-vehicle phone use, while greater in-vehicle cell phone use and impulsive traits are associated with elevated risk of motor vehicle crashes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hanna, Christian L; Laflamme, Lucie; Bingham, C Raymond
2012-03-01
This study assessed the association between county level material deprivation and urbanization with fatal road traffic crashes involving young unlicensed drivers in the United States (US). Road traffic crashes have been positively associated with area deprivation and low population density but thus far few studies have been concerned specifically with young drivers, especially those that are unlicensed. A county material deprivation index was derived from the Townsend Material Deprivation Index, with variables extracted from the US Census (2000). An urbanicity scale was adapted from the US Department of Agriculture's Rural-Urban Continuum Codes (2003). Data on fatal crashes involving a young unlicensed driver during a seven-year period (2000-2006; n=3059) were extracted from the Fatality Analysis Reporting System. The effect of deprivation and urbanicity on the odds of the occurrence of at least one fatal crash at the county level was modeled by conditional and unconditional logistic regression. The conditional model found a positive association between material deprivation and a fatal crash involving a young unlicensed driver (OR=1.19, 95% CI 1.17, 1.21). The interaction between urbanicity and material deprivation was negatively associated in suburban counties for fatal crashes (OR=0.92, 95% CI 0.90, 0.95). An association with material deprivation and the likelihood of a fatal crash involving a young unlicensed driver is a new finding. It can be used to inform specific county-level interventions and promote state licensing policies to provide equity in young people's mobility regardless of where they live. Copyright © 2011. Published by Elsevier Ltd.
Rajaratnam, Shantha M W; Landrigan, Christopher P; Wang, Wei; Kaprielian, Rachel; Moore, Richard T; Czeisler, Charles A
2015-06-01
In 2007, as part of the Massachusetts graduated driver-licensing program designed to allow junior operators (ages 16½-17 years) to gain experience before receiving full licensure, stringent penalties were introduced for violating a law prohibiting unsupervised driving at night; driver education, including drowsy driving education, became mandatory; and other new restrictions and penalties began. We evaluated the impact of these changes on police-reported vehicle crash records for one year before and five years after the law's implementation in drivers ages 16-17, inclusive, and two comparison groups. We found that crash rates for the youngest drivers fell 18.6 percent, from 16.24 to 13.22 per 100 licensed drivers. For drivers ages 18-19 the rates fell by 6.7 percent (from 9.59 to 8.95 per 100 drivers), and for those ages 20 and older, the rate remained relatively constant. The incidence rate ratio for drivers ages 16-17 relative to those ages 20 and older decreased 19.1 percent for all crashes, 39.8 percent for crashes causing a fatal or incapacitating injury, and 28.8 percent for night crashes. Other states should consider implementing strict penalties for violating graduated driver-licensing laws, including restrictions on unsupervised night driving, to reduce the risk of sleep-related crashes in young people. Project HOPE—The People-to-People Health Foundation, Inc.
Rail height effects on safety performance of Midwest Guardrail System.
Asadollahi Pajouh, Mojdeh; Julin, Ramen D; Stolle, Cody S; Reid, John D; Faller, Ronald K
2018-02-17
Guardrail heights play a crucial role in the way that errant vehicles interact with roadside barriers. Low rail heights increase the propensity of vehicle rollover and override, whereas excessively tall rails promote underride. Further, rail mounting heights and post embedment depths may be altered by variations in roadside terrain. An increased guardrail height may be desirable to accommodate construction tolerances, soil erosion, frost heave, and future roadway overlays. This study aimed to investigate and identify a maximum safe installation height for the Midwest Guardrail System that would be robust and remain crashworthy before and after pavement overlays. A research investigation was performed to evaluate the safety performance of increased mounting heights for the standard 787-mm (31-in.)-tall Midwest Guardrail System (MGS) through crash testing and computer simulation. Two full-scale crash tests with small passenger cars were performed on the MGS with top-rail mounting heights of 864 and 914 mm (34 and 36 in.). Test results were then used to calibrate computer simulation models. In the first test, a small car impacted the MGS with 864-mm (34-in.) rail height at 102 km/h (63.6 mph) and 25.0° and was successfully redirected. In the second test, another small car impacted the MGS with a 914-mm (36-in.) rail height at 103 km/h (64.1 mph) and 25.6° and was successful. Both system heights satisfied the Manual for Assessing Safety Hardware (MASH) Test Level 3 (TL-3) evaluation criteria. Test results were then used to calibrate computer simulation models. A mounting height of 36 in. was determined to be the maximum guardrail height that would safely contain and redirect small car vehicles. Simulations confirmed that taller guardrail heights (i.e., 37 in.) would likely result in small car underride. In addition, simulation results indicated that passenger vehicle models were successfully contained by the 34- and 36-in.-tall MGS installed on approach slopes as steep as 6:1. A mounting height of 914 mm (36 in.) was determined to be the maximum guardrail height that would safely contain and redirect 1100C vehicles and not allow underride or excessive vehicle snag on support posts. Recommendations were also provided regarding the safety performance of the MGS with increased height.
Sunnevång, Cecilia; Rosén, Erik; Boström, Ola; Lechelt, Ulf
2010-01-01
Side airbags reduce the risk of fatal injury by approximately 30%. Due to limited real-life data the risk reducing effect for serious injury has not yet been established. Since side airbags are mainly designed and validated for crash severities used in available test procedures little is known regarding the protective effect when severity increases. The objective of this study was to understand for which crash severities AIS3+ thorax occupant protection in car-to-car nearside collisions need to and can be improved. The aim was fulfilled by means of real life data, for older cars without side airbag, and a series of car-to-car tests performed with the WorldSID 50%-ile in modern and older cars at different impact speeds. The real life data showed that the risk of AIS3+ injury was highest for the thorax followed by the pelvis and head. For both non-senior and senior occupants, most thorax injuries were sustained at lateral delta-v from 20 km/h to 40 km/h. In this severity range, senior occupants were found to have approximately four times higher risk of thoracic injury than non-senior occupants. The crash tests at lateral impact speed 55 km/h (delta-v 32 km/h) confirmed the improved performance at severities represented in current legal and rating tests. The structural integrity of the modern car impacted at 70 km/h showed a potential for improved side impact protection by interior countermeasures. PMID:21050600
Sunnevång, Cecilia; Rosén, Erik; Boström, Ola; Lechelt, Ulf
2010-01-01
Side airbags reduce the risk of fatal injury by approximately 30%. Due to limited real-life data the risk reducing effect for serious injury has not yet been established. Since side airbags are mainly designed and validated for crash severities used in available test procedures little is known regarding the protective effect when severity increases.The objective of this study was to understand for which crash severities AIS3+ thorax occupant protection in car-to-car nearside collisions need to and can be improved. The aim was fulfilled by means of real life data, for older cars without side airbag, and a series of car-to-car tests performed with the WorldSID 50%-ile in modern and older cars at different impact speeds.The real life data showed that the risk of AIS3+ injury was highest for the thorax followed by the pelvis and head. For both non-senior and senior occupants, most thorax injuries were sustained at lateral delta-v from 20 km/h to 40 km/h. In this severity range, senior occupants were found to have approximately four times higher risk of thoracic injury than non-senior occupants. The crash tests at lateral impact speed 55 km/h (delta-v 32 km/h) confirmed the improved performance at severities represented in current legal and rating tests. The structural integrity of the modern car impacted at 70 km/h showed a potential for improved side impact protection by interior countermeasures.
A Portable Platform for Evaluation of Visual Performance in Glaucoma Patients
Rosen, Peter N.; Boer, Erwin R.; Gracitelli, Carolina P. B.; Abe, Ricardo Y.; Diniz-Filho, Alberto; Marvasti, Amir H.; Medeiros, Felipe A.
2015-01-01
Purpose To propose a new tablet-enabled test for evaluation of visual performance in glaucoma, the PERformance CEntered Portable Test (PERCEPT), and to evaluate its ability to predict history of falls and motor vehicle crashes. Design Cross-sectional study. Methods The study involved 71 patients with glaucomatous visual field defects on standard automated perimetry (SAP) and 59 control subjects. The PERCEPT was based on the concept of increasing visual task difficulty to improve detection of central visual field losses in glaucoma patients. Subjects had to perform a foveal 8-alternative-forced-choice orientation discrimination task, while detecting a simultaneously presented peripheral stimulus within a limited presentation time. Subjects also underwent testing with the Useful Field of View (UFOV) divided attention test. The ability to predict history of motor vehicle crashes and falls was investigated by odds ratios and incident-rate ratios, respectively. Results When adjusted for age, only the PERCEPT processing speed parameter showed significantly larger values in glaucoma compared to controls (difference: 243ms; P<0.001). PERCEPT results had a stronger association with history of motor vehicle crashes and falls than UFOV. Each 1 standard deviation increase in PERCEPT processing speed was associated with an odds ratio of 2.69 (P = 0.003) for predicting history of motor vehicle crashes and with an incident-rate ratio of 1.95 (P = 0.003) for predicting history of falls. Conclusion A portable platform for testing visual function was able to detect functional deficits in glaucoma, and its results were significantly associated with history of involvement in motor vehicle crashes and history of falls. PMID:26445501
Park, Si-Woon; Choi, Eun Seok; Lim, Mun Hee; Kim, Eun Joo; Hwang, Sung Il; Choi, Kyung-In; Yoo, Hyun-Chul; Lee, Kuem Ju; Jung, Hi-Eun
2011-03-01
To find an association between cognitive-perceptual problems of older drivers and unsafe driving performance during simulated automobile driving in a virtual environment. Cross-sectional study. A driver evaluation clinic in a rehabilitation hospital. Fifty-five drivers aged 65 years or older and 48 drivers in their late twenties to early forties. All participants underwent evaluation of cognitive-perceptual function and driving performance, and the results were compared between older and younger drivers. The association between cognitive-perceptual function and driving performance was analyzed. Cognitive-perceptual function was evaluated with the Cognitive Perceptual Assessment for Driving (CPAD), a computer-based assessment tool consisting of depth perception, sustained attention, divided attention, the Stroop test, the digit span test, field dependency, and trail-making test A and B. Driving performance was evaluated with use of a virtual reality-based driving simulator. During simulated driving, car crashes were recorded, and an occupational therapist observed unsafe performances in controlling speed, braking, steering, vehicle positioning, making lane changes, and making turns. Thirty-five older drivers did not pass the CPAD test, whereas all of the younger drivers passed the test. When using the driving simulator, a significantly greater number of older drivers experienced car crashes and demonstrated unsafe performance in controlling speed, steering, and making lane changes. CPAD results were associated with car crashes, steering, vehicle positioning, and making lane changes. Older drivers who did not pass the CPAD test are 4 times more likely to experience a car crash, 3.5 times more likely to make errors in steering, 2.8 times more likely to make errors in vehicle positioning, and 6.5 times more likely to make errors in lane changes than are drivers who passed the CPAD test. Unsafe driving performance and car crashes during simulated driving were more prevalent in older drivers than in younger drivers. Unsafe performance in steering, vehicle positioning, making lane changes, and car crashes were associated with cognitive-perceptual dysfunction. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Spatial relationships between alcohol-related road crashes and retail alcohol availability.
Morrison, Christopher; Ponicki, William R; Gruenewald, Paul J; Wiebe, Douglas J; Smith, Karen
2016-05-01
This study examines spatial relationships between alcohol outlet density and the incidence of alcohol-related crashes. The few prior studies conducted in this area used relatively large spatial units; here we use highly resolved units from Melbourne, Australia (Statistical Area level 1 [SA1] units: mean land area=0.5 km(2); SD=2.2 km(2)), in order to assess different micro-scale spatial relationships for on- and off-premise outlets. Bayesian conditional autoregressive Poisson models were used to assess cross-sectional relationships of three-year counts of alcohol-related crashes (2010-2012) attended by Ambulance Victoria paramedics to densities of bars, restaurants, and off-premise outlets controlling for other land use, demographic and roadway characteristics. Alcohol-related crashes were not related to bar density within local SA1 units, but were positively related to bar density in adjacent SA1 units. Alcohol-related crashes were negatively related to off-premise outlet density in local SA1 units. Examined in one metropolitan area using small spatial units, bar density is related to greater crash risk in surrounding areas. Observed negative relationships for off-premise outlets may be because the origins and destinations of alcohol-affected journeys are in distal locations relative to outlets. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Røe, Cecilie; Skandsen, Toril; Manskow, Unn; Ader, Tiina; Anke, Audny
2015-01-01
The aim of the present study was to evaluate mortality and functional outcome in old and very old patients with severe traumatic brain injury (TBI) and compare to the predicted outcome according to the internet based CRASH (Corticosteroid Randomization After Significant Head injury) model based prediction, from the Medical Research Council (MRC). Methods. Prospective, national multicenter study including patients with severe TBI ≥65 years. Predicted mortality and outcome were calculated based on clinical information (CRASH basic) (age, GCS score, and pupil reactivity to light), as well as with additional CT findings (CRASH CT). Observed 14-day mortality and favorable/unfavorable outcome according to the Glasgow Outcome Scale at one year was compared to the predicted outcome according to the CRASH models. Results. 97 patients, mean age 75 (SD 7) years, 64% men, were included. Two patients were lost to follow-up; 48 died within 14 days. The predicted versus the observed odds ratio (OR) for mortality was 2.65. Unfavorable outcome (GOSE < 5) was observed at one year follow-up in 72% of patients. The CRASH models predicted unfavorable outcome in all patients. Conclusion. The CRASH model overestimated mortality and unfavorable outcome in old and very old Norwegian patients with severe TBI. PMID:26688614
Optimization of vehicle deceleration to reduce occupant injury risks in frontal impact.
Mizuno, Koji; Itakura, Takuya; Hirabayashi, Satoko; Tanaka, Eiichi; Ito, Daisuke
2014-01-01
In vehicle frontal impacts, vehicle acceleration has a large effect on occupant loadings and injury risks. In this research, an optimal vehicle crash pulse was determined systematically to reduce injury measures of rear seat occupants by using mathematical simulations. The vehicle crash pulse was optimized based on a vehicle deceleration-deformation diagram under the conditions that the initial velocity and the maximum vehicle deformation were constant. Initially, a spring-mass model was used to understand the fundamental parameters for optimization. In order to investigate the optimization under a more realistic situation, the vehicle crash pulse was also optimized using a multibody model of a Hybrid III dummy seated in the rear seat for the objective functions of chest acceleration and chest deflection. A sled test using a Hybrid III dummy was carried out to confirm the simulation results. Finally, the optimal crash pulses determined from the multibody simulation were applied to a human finite element (FE) model. The optimized crash pulse to minimize the occupant deceleration had a concave shape: a high deceleration in the initial phase, low in the middle phase, and high again in the final phase. This crash pulse shape depended on the occupant restraint stiffness. The optimized crash pulse determined from the multibody simulation was comparable to that from the spring-mass model. From the sled test, it was demonstrated that the optimized crash pulse was effective for the reduction of chest acceleration. The crash pulse was also optimized for the objective function of chest deflection. The optimized crash pulse in the final phase was lower than that obtained for the minimization of chest acceleration. In the FE analysis of the human FE model, the optimized pulse for the objective function of the Hybrid III chest deflection was effective in reducing rib fracture risks. The optimized crash pulse has a concave shape and is dependent on the occupant restraint stiffness and maximum vehicle deformation. The shapes of the optimized crash pulse in the final phase were different for the objective functions of chest acceleration and chest deflection due to the inertial forces of the head and upper extremities. From the human FE model analysis it was found that the optimized crash pulse for the Hybrid III chest deflection can substantially reduce the risk of rib cage fractures. Supplemental materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention to view the supplemental file.
Gonçalves, M; Peralta, A R; Monteiro Ferreira, J; Guilleminault, Christian
2015-01-01
Sleepiness is considered to be a leading cause of crashes. Despite the huge amount of information collected in questionnaire studies, only some are based on representative samples of the population. Specifics of the populations studied hinder the generalization of these previous findings. For the Portuguese population, data from sleep-related car crashes/near misses and sleepiness while driving are missing. The objective of this study is to determine the prevalence of near-miss and nonfatal motor vehicle crashes related to sleepiness in a representative sample of Portuguese drivers. Structured phone interviews regarding sleepiness and sleep-related crashes and near misses, driving habits, demographic data, and sleep quality were conducted using the Pittsburgh Sleep Quality Index and sleep apnea risk using the Berlin questionnaire. A multivariate regression analysis was used to determine the associations with sleepy driving (feeling sleepy or falling asleep while driving) and sleep-related near misses and crashes. Nine hundred subjects, representing the Portuguese population of drivers, were included; 3.1% acknowledged falling asleep while driving during the previous year and 0.67% recalled sleepiness-related crashes. Higher education, driving more than 15,000 km/year, driving more frequently between 12:00 a.m. and 6 a.m., fewer years of having a driver's license, less total sleep time per night, and higher scores on the Epworth Sleepiness Scale (ESS) were all independently associated with sleepy driving. Sleepiness-related crashes and near misses were associated only with falling asleep at the wheel in the previous year. Sleep-related crashes occurred more frequently in drivers who had also had sleep-related near misses. Portugal has lower self-reported sleepiness at the wheel and sleep-related near misses than most other countries where epidemiological data are available. Different population characteristics and cultural, social, and road safety specificities may be involved in these discrepancies. Despite this, Portuguese drivers report sleep-related crashes in frequencies similar to those of drivers in other countries.
Multiscale Analysis of Open-Cell Aluminum Foam for Impact Energy Absorption
NASA Astrophysics Data System (ADS)
Kim, Ji Hoon; Kim, Daeyong; Lee, Myoung-Gyu; Lee, Jong Kook
2016-09-01
The energy-absorbing characteristics of crash members in automotive collision play an important role in controlling the amount of damage to the passenger compartment. Aluminum foams have high strength-to-weight ratio and high deformability, thus good crashworthiness is expected while maintaining or even saving weights when foams are implemented in crash members. In order to investigate the effect of the open-cell aluminum foam fillers on impact performance and weight saving, a multiscale framework for evaluating the crashworthiness of aluminum foam-filled members is used. To circumvent the difficulties of mechanical tests on foams, a micromechanical model of the aluminum foam is constructed using the x-ray micro tomography and virtual tests are conducted for the micromechanical model to characterize the behavior of the foam. In the macroscale, the aluminum foam is represented by the crushable foam constitutive model, which is then incorporated into the impact test simulation of the foam-filled crash member. The multiscale foam-filled crash member model was validated for the high-speed impact test, which confirms that the material model characterized by the micromechanical approach represents the behavior of the open-cell foam under impact loading well. Finally, the crash member design for maximizing the energy absorption is discussed by investigating various designs from the foam-only structure to the hollow tube structure. It was found that the foam structure absorbs more energy than the hollow tube or foam-filled structure with the same weight.
DOT National Transportation Integrated Search
2000-04-15
Article reports on vehicle crash tests with child restraints to determine the extent of damage, if any, in high speed impacts. A California law requiring insurers to cover the cost of replacing a restraint used by a child in any crash, regardless of ...
Ferguson, Susan A; Schneider, Lawrence W
2008-10-01
In the mid-1990s, evidence emerged that air bag deployments could result in deaths to vulnerable vehicle occupants who were very close to air bag modules when they deployed. In 1997, federal frontal crash test requirements were modified to allow crash testing with unbelted dummies to be performed using sled tests. As a result, vehicle manufacturers were able to redesign air bags to deploy with less force and energy, thereby reducing the toll of air bag-induced deaths. However, there was concern that depowered air bags may not provide the same level of protection to unbelted occupants in severe frontal crashes, particularly occupants of large stature and body mass. This paper provides a summary of recent studies addressing this issue. To expedite the accrual of data regarding air bag performance, the collection of additional crash data was funded by the Alliance of Automobile Manufacturers. A panel of experts was commissioned to oversee the process and evaluate the data. During the past 6 years, a series of studies has been undertaken by panel members and others to evaluate the performance of redesigned air bags and the data are summarized here. There is now convincing evidence that the combination of air bag redesign and public education have resulted in dramatic reductions in air bag-induced infant and child deaths. In addition, the frontal crash fatality risks among children sitting in front seats have been reduced by as much as half, with younger children showing the greatest benefits. Among adult drivers and right-front passengers, there is no evidence for the predicted overall loss of protection with sled-certified air bags and there are far fewer air bag-induced deaths among this population. However, despite exhaustive analyses of frontal-crash data, the possibility of a somewhat elevated fatality risk among a subset of unbelted drivers in sled-certified 1998-1999 model vehicles cannot be ruled out. There also is some evidence that the risks of serious chest injury may be higher among unbelted drivers in frontal crashes in sled-certified vehicles with redesigned air bags. Further research is warranted to determine whether these differences remain in newer model vehicles designed to the advanced air bag rule, which took effect in 2003.
Chen, Cong; Zhang, Guohui; Huang, Helai; Wang, Jiangfeng; Tarefder, Rafiqul A
2016-11-01
Rural non-interstate crashes induce a significant amount of severe injuries and fatalities. Examination of such injury patterns and the associated contributing factors is of practical importance. Taking into account the ordinal nature of injury severity levels and the hierarchical feature of crash data, this study employs a hierarchical ordered logit model to examine the significant factors in predicting driver injury severities in rural non-interstate crashes based on two-year New Mexico crash records. Bayesian inference is utilized in model estimation procedure and 95% Bayesian Credible Interval (BCI) is applied to testing variable significance. An ordinary ordered logit model omitting the between-crash variance effect is evaluated as well for model performance comparison. Results indicate that the model employed in this study outperforms ordinary ordered logit model in model fit and parameter estimation. Variables regarding crash features, environment conditions, and driver and vehicle characteristics are found to have significant influence on the predictions of driver injury severities in rural non-interstate crashes. Factors such as road segments far from intersection, wet road surface condition, collision with animals, heavy vehicle drivers, male drivers and driver seatbelt used tend to induce less severe driver injury outcomes than the factors such as multiple-vehicle crashes, severe vehicle damage in a crash, motorcyclists, females, senior drivers, driver with alcohol or drug impairment, and other major collision types. Research limitations regarding crash data and model assumptions are also discussed. Overall, this research provides reasonable results and insight in developing effective road safety measures for crash injury severity reduction and prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wrong-way driving crashes on French divided roads.
Kemel, Emmanuel
2015-02-01
The objective of divided roads is to increase users' safety by posting unidirectional traffic flows. It happens however that drivers proceed in the wrong direction, endangering themselves as well as other users. The crashes caused by wrong-way drivers are generally spotlighted by the media and call for public intervention. This paper proposes a characterization of wrong-way driving crashes occurring on French divided road on the 2008-2012 period. The objective is to identify the factors that delineate between wrong-way driving crashes and other crashes. Building on the national injury road crash database, 266 crashes involving a wrong-way driver were identified. Their characteristics (related to timing, location, vehicle and driver) are compared to those of the 22,120 other crashes that occurred on the same roads over the same period. The comparison relies on descriptive statistics, completed by a logistic regression. Wrong-way driving crashes are rare but severe. They are more likely to occur during night hours and on non-freeway roads than other crashes. Wrong-way drivers are older, more likely to be intoxicated, to be locals, to drive older vehicles, mainly passenger cars without passengers, than other drivers. The differences observed across networks can help prioritizing public intervention. Most of the identified WW-driving factors deal with cognitive impairment. Therefore, the specific countermeasures such as alternative road signs should be designed for and tested on cognitively impaired drivers. Nevertheless, WW-driving factors are also risk factors for other types of crashes (e.g. elderly driving, drunk driving and age of the vehicle). This suggests that, instead of (or in addition to) developing WW-driving specific countermeasures, managing these risk factors would help reducing a larger number of crashes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Patalak, John P; Stitzel, Joel D
2018-02-17
Since 2000, numerous improvements have been made to the National Association for Stock Car Auto Racing, Incorporated (NASCAR®) driver restraint system, resulting in improved crash protection for motorsports drivers. Advancements have included seats, head and neck restraints (HNRs), seat belt restraint systems, driver helmets, and others. These enhancements have increased protection for drivers from severe crash loading. Extending protection to the driver's extremities remains challenging. Though the drivers' legs are well contained for lateral and vertical crashes, they remain largely unrestrained in frontal and frontal oblique crashes. Sled testing was conducted for the evaluation of an energy-absorbing (EA) toe board material to be used as a countermeasure for leg and foot injuries. Testing included baseline rigid toe boards, tests with EA material-covered toe boards, and pretest positioning of the 50th percentile male frontal Hybrid III anthropomorphic test device (ATD) lower extremities. ATD leg and foot instrumentation included foot acceleration and tibia forces and moments. The sled test data were evaluated using established injury criteria for tibial plateau fractures, leg shaft fractures, and calcaneus, talus, ankle, and midfoot fractures. A polyurethane EA foam was found to be effective in limiting axial tibia force and foot accelerations when subjected to frontal impacts using the NASCAR motorsport restraint system.
Finite Element Analysis of an Energy Absorbing Sub-floor Structure
NASA Technical Reports Server (NTRS)
Moore, Scott C.
1995-01-01
As part of the Advanced General Aviation Transportation Experiments program, the National Aeronautics and Space Administration's Langley Research Center is conducting tests to design energy absorbing structures to improve occupant survivability in aircraft crashes. An effort is currently underway to design an Energy Absorbing (EA) sub-floor structure which will reduce occupant loads in an aircraft crash. However, a recent drop test of a fuselage specimen with a proposed EA sub-floor structure demonstrated that the effects of sectioning the fuselage on both the fuselage section's stiffness and the performance of the EA structure were not fully understood. Therefore, attempts are underway to model the proposed sub-floor structure on computers using the DYCAST finite element code to provide a better understanding of the structure's behavior in testing, and in an actual crash.
The Behavior of Conventional Airplanes in Situations Thought to Lead to Most Crashes
NASA Technical Reports Server (NTRS)
Weick, Fred E
1931-01-01
Simple flight tests were made on ten conventional airplanes for the purpose of determining their action in the following two situations, which are generally thought to precede and lead to a large proportion of airplane crashes.
Accuracy of AHOF400 with a moment-measuring load cell barrier.
DOT National Transportation Integrated Search
2011-06-13
Several performance measures derived from rigid : barrier crash testing have been proposed to assess : vehicle-to-vehicle crash compatibility. One such : measure, the Average Height of Force 400 (AHOF400) : [1], has been proposed to estimate the heig...
Woodford, Evangeline; Brown, Julie; Bilston, Lynne E
2018-05-19
Traffic crashes have high mortality and morbidity for young children. Though many specialized child restraint systems improve injury outcomes, no large-scale studies have investigated the cross-chest clip's role during a crash, despite concerns in some jurisdictions about the potential for neck contact injuries from the clips. This study aimed to investigate the relationship between cross-chest clip use and injury outcomes in children between 0 and 4 years of age. Child passengers between 0 and 4 years of age were selected from the NASS-CDS data sets (2003-2014). Multiple regression analysis was used to model injury outcomes while controlling for age, crash severity, crash direction, and restraint type. The primary outcomes were overall Abbreviated Injury Score (AIS) 2+ injury, and the presence of any neck injury. Across all children aged 0-4 years, correct chest clip use was associated with decreased Abbreviated Injury Scale (AIS) 2+ injury (odds ratio [OR] = 0.44, 95% confidence interval [CI], 0.21-0.91) and was not associated with neck injury. However, outcomes varied by age. In children <12 months old, chest clip use was associated with decreased AIS 2+ injury (OR = 0.09, 95% CI, 0.02-0.44). Neck injury (n = 7, all AIS 1) for this age group only occurred with correct cross-chest clip use. For 1- to 4-year-old children, cross-chest clip use had no association with AIS 2+ injury, and correct use significantly decreased the odds of neck injury (OR = 0.49; 95% CI, 0.27-0.87) compared to an incorrectly used or absent cross-chest clip. No serious injuries were directly caused by the chest clips. Correct cross-chest clip use appeared to reduce injury in crashes, and there was no evidence of serious clip-induced injury in children in 5-point harness restraints.
Changes in baseline concussion assessment scores following a school bus crash.
Poland, Kristin M; McKay, Mary Pat; Zonfrillo, Mark R; Barth, Thomas H; Kaminski, Ronald
2016-09-01
The objective of this article is to present concussion assessment data for 30 male athletes prior to and after being involved in a large school bus crash. The athletes on the bus, all male and aged 14-18 years, were participants in their school's concussion management program that included baseline and postinjury testing using Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT). This case study described changes in concussion assessment scores for 30 male athletes following a primarily frontal school bus crash. Data from the school's concussion management program, including baseline test data and postinjury assessment data, were reviewed. Athletes who required multiple postinjury assessments by the program were identified as having had significant cognitive changes as a result of the bus crash. Twenty-nine of 30 athletes were injured. One had lumbar compression fractures; others had various lacerations, abrasions, contusions, sprains, and nasal fractures. ImPACT data (postcrash) were available for all 30 athletes and 28 had available precrash baseline data. A total of 16 athletes (53.3%) had significant cognitive changes indicated by changes in their concussion assessment scores, some of which took months to improve. This case study highlights a unique opportunity to evaluate concussion assessment data from 30 male athletes involved in a high-speed school bus crash. Further, these data provide additional insight into assessing the effectiveness of current school bus occupant protection systems.
Iraeus, Johan; Lindquist, Mats
2014-01-01
In the widely used National Automotive Sampling System (NASS)-Crashworthiness Data System (CDS) database, summary metrics that describe crashes are available. Crash angle or principal direction of force (PDOF) is estimated by the crash examiner and velocity changes (ΔV) in the x- and y-directions are calculated by the WinSMASH computer program using PDOF and results from rigid barrier crash testing combined with deformations of the crashed car. In recent years, results from event data recorders (EDRs) have been added to the database. The aim of this study is to compare both PDOF and ΔV between EDR measurements and WinSMASH calculations. NASS-CDS inclusion criteria were model-year 2000 through 2010 automobiles, frontal crashes with ΔV higher than 16 km/h, and the pulse entirely recorded in the EDR module. This resulted in 649 cases. The subject vehicles were further examined and characterized with regard to frontal structure engagement (large or small overlap) as well as collision properties of the partner (impact location; front, side, or back) or object. The EDR crash angle was calculated as the angle between the lateral and longitudinal ΔV at the time of peak longitudinal ΔV. This angle was compared to the NASS-CDS investigator's estimated PDOF with regard to structural engagement and the collision partner or object. Multiple linear regression was used to establish adjustment factors on ΔV and crash angle between the results calculated based on EDR recorded data and that estimated in NASS-CDS. According to this study, simulation in the newest WinSMASH version (2008) underestimates EDR ΔV by 11 percent for large overlap crashes and 17 percent for small overlap impacts. The older WinSMASH version, used prior to 2008, underestimated each one of these two groups by an additional 7 percentage points. Another significant variable to enhance the prediction was whether the crash examiner had reported the WinSMASH estimated ΔV as low or high. In this study, none of the collision partner groups was significantly different compared to front-to-front impacts. However, with a larger data set a couple of configurations may very well be significantly different. In this study, the crash angle denoted by PDOF in the NASS database underestimates the crash angle calculated from recent EDR modules by 35 percent. On average the ΔV and crash angle are underestimated in NASS-CDS when analyzing the data based on collision partner/object and structural engagement. The largest difference is found in small overlap crashes and the least difference in collision scenarios similar to barrier tests. Supplemental materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention to view the supplemental file.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Amours, Guillaume; Rahem, Ahmed; Mayer, Robert
2007-05-17
The motivation to reduce overall vehicle weight within the automotive sector drives the substitution of lightweight materials such as aluminium alloys for structural components. Such a substitution requires a significant amount of development to manufacture structurally parts such that the energy absorption characteristics are not sacrificed in the event of crash. The effects of the manufacturing processes on the crash performance of automotive structural components must be better understood to ensure improved crashworthiness. This paper presents results of an experimental and numerical investigation of the crash response and energy absorption properties of impacted hydroformed aluminium alloy tubes. Crash experiments onmore » hydroformed tubes were performed using a deceleration sled test at the General Motors Technical Center. Results from axial crush testing showed that an important parameter that influences the energy absorption characteristics during crash was the thickness reduction caused by circumferential expansion of the tube during hydroforming. It was found that that the energy absorption decreased as the corner radius decreased, which results because of increased thinning. Sensitivity studies of end feeding parameters, such as end feed level and profile, were carried out to evaluate their impact on the energy absorption of the aluminium tubes.« less
NASA Astrophysics Data System (ADS)
D'Amours, Guillaume; Rahem, Ahmed; Mayer, Robert; Williams, Bruce; Worswick, Michael
2007-05-01
The motivation to reduce overall vehicle weight within the automotive sector drives the substitution of lightweight materials such as aluminium alloys for structural components. Such a substitution requires a significant amount of development to manufacture structurally parts such that the energy absorption characteristics are not sacrificed in the event of crash. The effects of the manufacturing processes on the crash performance of automotive structural components must be better understood to ensure improved crashworthiness. This paper presents results of an experimental and numerical investigation of the crash response and energy absorption properties of impacted hydroformed aluminium alloy tubes. Crash experiments on hydroformed tubes were performed using a deceleration sled test at the General Motors Technical Center. Results from axial crush testing showed that an important parameter that influences the energy absorption characteristics during crash was the thickness reduction caused by circumferential expansion of the tube during hydroforming. It was found that that the energy absorption decreased as the corner radius decreased, which results because of increased thinning. Sensitivity studies of end feeding parameters, such as end feed level and profile, were carried out to evaluate their impact on the energy absorption of the aluminium tubes.
Strandroth, Johan; Rizzi, Matteo; Sternlund, Simon; Lie, Anders; Tingvall, Claes
2011-12-01
The aim of the present study was to estimate the correlation between Euro NCAP pedestrian rating scores and injury outcome in real-life car-to-pedestrian crashes, with special focus on long-term disability. Another aim was to determine whether brake assist (BA) systems affect the injury outcome in real-life car-to-pedestrian crashes and to estimate the combined effects in injury reduction of a high Euro NCAP ranking score and BA. In the current study, the Euro NCAP pedestrian scoring was compared with the real-life outcome in pedestrian crashes that occurred in Sweden during 2003 to 2010. The real-life crash data were obtained from the data acquisition system Swedish Traffic Accident Data Acquisition (STRADA), which combines police records and hospital admission data. The medical data consisted of International Classification of Diseases (ICD) diagnoses and Abbreviated Injury Scale (AIS) scoring. In all, approximately 500 pedestrians submitted to hospital were included in the study. Each car model was coded according to Euro NCAP pedestrian scores. In addition, the presence or absence of BA was coded for each car involved. Cars were grouped according to their scoring. Injury outcomes were analyzed with AIS and, at the victim level, with permanent medical impairment. This was done by translating the injury scores for each individual to the risk of serious consequences (RSC) at 1, 5, and 10 percent risk of disability level. This indicates the total risk of a medical disability for each victim, given the severity and location of injuries. The mean RSC (mRSC) was then calculated for each car group and t-tests were conducted to falsify the null hypothesis at p ≤ .05 that the mRSC within the groups was equal. The results showed a significant reduction of injury severity for cars with better pedestrian scoring, although cars with a high score could not be studied due to lack of cases. The reduction in RSC for medium-performing cars in comparison with low-performing cars was 17, 26, and 38 percent for 1, 5, and 10 percent of medical impairment, respectively. These results applied to urban areas with speed limits up to 50 km/h, although no significant reduction was found in higher speed zones. Regarding cars with BA, the null hypothesis could not be rejected at p = .05; hence, no significant results of injury reduction were found. A significant correlation between Euro NCAP pedestrian score and injury outcome in real-life car-to-pedestrian crashes was found. Injury reduction was found to be higher with increasing severity and level of permanent medical impairment. The difference between 1- and 2-star cars is 17 percent in mean risk of permanent medical impairment (mRSC) 1%+, 26 percent in mRSC 5%+, and 38 percent in mRSC 10%+ for crashes in speed zones up to 50 km/h. Brake assist was not found to provide a statistically significant injury reduction.
The exposure of children to deploying side air bags: an initial field assessment.
Arbogast, Kristy B; Kallan, Michael J
2007-01-01
Tremendous effort has been invested in the laboratory to ensure side air bag (SAB) deployments minimize injury metrics in pediatric anthropometric test devices (ATDs). Little is known, however, about the experience of children exposed to this technology in real world crashes. Therefore, the objective of this study was to determine the prevalence of SAB exposure in children and provide estimates of injury risk among those exposed. This study utilized data from the Partners for Child Passenger Safety study, a large-scale child-focused crash surveillance system, to identify a probability sample of 348 child occupants, age 0-15 years, weighted to represent 6,600 children, in vehicles of model year 1998 and newer, equipped with SABs, in side impact crashes from three large U.S. regions between 1/1/05 and 12/31/06. In the study sample, 27 children per 1000 children in crashes were exposed to a deployed side air bag. Over 75% of these children were seated in the rear seat and 83% were exposed to a head curtain SAB. 65% of those exposed were less than 9 years of age. Of those exposed, 10.6% sustained an AIS2+ injury; all injuries were of the AIS 2 level and limited to the head or upper extremity. This paper provides the first population-based estimates of the exposure of children to SABs. Initial experience suggests that the risk of injury is fairly low with only one in ten sustaining injury - none of which were serious or life threatening. These findings offer assurance that efforts by regulators and the automotive industry to minimize negative consequences from SABs to vulnerable occupants appear to be effective and cause no change in the current recommendation of safe seating for children next to SABs.
The Exposure of Children to Deploying Side Air Bags: An Initial Field Assessment
Arbogast, Kristy B.; Kallan, Michael J.
2007-01-01
Tremendous effort has been invested in the laboratory to ensure side air bag (SAB) deployments minimize injury metrics in pediatric anthropometric test devices (ATDs). Little is known, however, about the experience of children exposed to this technology in real world crashes. Therefore, the objective of this study was to determine the prevalence of SAB exposure in children and provide estimates of injury risk among those exposed. This study utilized data from the Partners for Child Passenger Safety study, a large-scale child-focused crash surveillance system, to identify a probability sample of 348 child occupants, age 0–15 years, weighted to represent 6,600 children, in vehicles of model year 1998 and newer, equipped with SABs, in side impact crashes from three large U.S. regions between 1/1/05 and 12/31/06. In the study sample, 27 children per 1000 children in crashes were exposed to a deployed side airbag. Over 75% of these children were seated in the rear seat and 83% were exposed to a head curtain SAB. 65% of those exposed were less than 9 years of age. Of those exposed, 10.6% sustained an AIS2+ injury; all injuries were of the AIS 2 level and limited to the head or upper extremity. This paper provides the first population-based estimates of the exposure of children to SABs. Initial experience suggests that the risk of injury is fairly low with only one in ten sustaining injury – none of which were serious or life threatening. These findings offer assurance that efforts by regulators and the automotive industry to minimize negative consequences from SABs to vulnerable occupants appear to be effective and cause no change in the current recommendation of safe seating for children next to SABs. PMID:18184496
A model to identify high crash road segments with the dynamic segmentation method.
Boroujerdian, Amin Mirza; Saffarzadeh, Mahmoud; Yousefi, Hassan; Ghassemian, Hassan
2014-12-01
Currently, high social and economic costs in addition to physical and mental consequences put road safety among most important issues. This paper aims at presenting a novel approach, capable of identifying the location as well as the length of high crash road segments. It focuses on the location of accidents occurred along the road and their effective regions. In other words, due to applicability and budget limitations in improving safety of road segments, it is not possible to recognize all high crash road segments. Therefore, it is of utmost importance to identify high crash road segments and their real length to be able to prioritize the safety improvement in roads. In this paper, after evaluating deficiencies of the current road segmentation models, different kinds of errors caused by these methods are addressed. One of the main deficiencies of these models is that they can not identify the length of high crash road segments. In this paper, identifying the length of high crash road segments (corresponding to the arrangement of accidents along the road) is achieved by converting accident data to the road response signal of through traffic with a dynamic model based on the wavelet theory. The significant advantage of the presented method is multi-scale segmentation. In other words, this model identifies high crash road segments with different lengths and also it can recognize small segments within long segments. Applying the presented model into a real case for identifying 10-20 percent of high crash road segment showed an improvement of 25-38 percent in relative to the existing methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2006-01-01
This project entailed the design, development, testing, and evaluation of intersection decision support (IDS) systems to address straight crossing path (SCP) intersection crashes. This type of intersection crash is responsible for more than 100,000 c...
Meso-modeling of Carbon Fiber Composite for Crash Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Shih-Po; Chen, Yijung; Zeng, Danielle
2017-04-06
In the conventional approach, the material properties for crash safety simulations are typically obtained from standard coupon tests, where the test results only provide single layer material properties used in crash simulations. However, the lay-up effects for the failure behaviors of the real structure were not considered in numerical simulations. Hence, there was discrepancy between the crash simulations and experimental tests. Consequently, an intermediate stage is required for accurate predictions. Some component tests are required to correlate the material models in the intermediate stage. In this paper, a Mazda Tube under high-impact velocity is chosen as an example for themore » crash safety analysis. The tube consists of 24 layers of uni-directional (UD) carbon fiber composite materials, in which 4 layers are perpendicular to, while the other layers are parallel to the impact direction. An LS-DYNA meso-model was constructed with orthotropic material models counting for the single-layer material behaviors. Between layers, a node-based tie-break contact was used for modeling the delamination of the composite material. Since fiber directions are not single-oriented, the lay-up effects could be an important effect. From the first numerical trial, premature material failure occurred due to the use of material parameters obtained directly from the coupon tests. Some parametric studies were conducted to identify the cause of the numerical instability. The finding is that the material failure strength used in the numerical model needs to be enlarged to stabilize the numerical model. Some hypothesis was made to provide the foundation for enlarging the failure strength and the corresponding experiments will be conducted to validate the hypothesis.« less
Life-threatening motor vehicle crashes in bright sunlight
Redelmeier, Donald A.; Raza, Sheharyar
2017-01-01
Abstract Bright sunlight may create visual illusions that lead to driver error, including fallible distance judgment from aerial perspective. We tested whether the risk of a life-threatening motor vehicle crash was increased when driving in bright sunlight. This longitudinal, case-only, paired-comparison analysis evaluated patients hospitalized because of a motor vehicle crash between January 1, 1995 and December 31, 2014. The relative risk of a crash associated with bright sunlight was estimated by evaluating the prevailing weather at the time and place of the crash compared with the weather at the same hour and location on control days a week earlier and a week later. The majority of patients (n = 6962) were injured during daylight hours and bright sunlight was the most common weather condition at the time and place of the crash. The risk of a life-threatening crash was 16% higher during bright sunlight than normal weather (95% confidence interval: 9–24, P < 0.001). The increased risk was accentuated in the early afternoon, disappeared at night, extended to patients with different characteristics, involved crashes with diverse features, not apparent with cloudy weather, and contributed to about 5000 additional patient-days in hospital. The increased risk extended to patients with high crash severity as indicated by ambulance involvement, surgical procedures, length of hospital stay, intensive care unit admission, and patient mortality. The increased risk was not easily attributed to differences in alcohol consumption, driving distances, or anomalies of adverse weather. Bright sunlight is associated with an increased risk of a life-threatening motor vehicle crash. An awareness of this risk might inform driver education, trauma staffing, and safety warnings to prevent a life-threatening motor vehicle crash. Level of evidence: Epidemiologic Study, level III. PMID:28072708
Life-threatening motor vehicle crashes in bright sunlight.
Redelmeier, Donald A; Raza, Sheharyar
2017-01-01
Bright sunlight may create visual illusions that lead to driver error, including fallible distance judgment from aerial perspective. We tested whether the risk of a life-threatening motor vehicle crash was increased when driving in bright sunlight.This longitudinal, case-only, paired-comparison analysis evaluated patients hospitalized because of a motor vehicle crash between January 1, 1995 and December 31, 2014. The relative risk of a crash associated with bright sunlight was estimated by evaluating the prevailing weather at the time and place of the crash compared with the weather at the same hour and location on control days a week earlier and a week later.The majority of patients (n = 6962) were injured during daylight hours and bright sunlight was the most common weather condition at the time and place of the crash. The risk of a life-threatening crash was 16% higher during bright sunlight than normal weather (95% confidence interval: 9-24, P < 0.001). The increased risk was accentuated in the early afternoon, disappeared at night, extended to patients with different characteristics, involved crashes with diverse features, not apparent with cloudy weather, and contributed to about 5000 additional patient-days in hospital. The increased risk extended to patients with high crash severity as indicated by ambulance involvement, surgical procedures, length of hospital stay, intensive care unit admission, and patient mortality. The increased risk was not easily attributed to differences in alcohol consumption, driving distances, or anomalies of adverse weather.Bright sunlight is associated with an increased risk of a life-threatening motor vehicle crash. An awareness of this risk might inform driver education, trauma staffing, and safety warnings to prevent a life-threatening motor vehicle crash. Epidemiologic Study, level III.
Orzechowski, Kelly M; Edgerton, Elizabeth A; Bulas, Dorothy I; McLaughlin, Patrick M; Eichelberger, Martin R
2003-06-01
Injury patterns among children in frontal collisions have been well documented, but little information exists regarding injuries to children in side impact collisions. Restrained children 14-years-old or younger admitted to the hospital for crash injuries were analyzed. Data concerning injuries, medical treatment, and outcome were correlated with crash data. Case reviews achieved consensus regarding injury contact points. Side impacts were compared with frontal impacts. These results were then compared with data from the National Automotive Sampling System. There were no differences between the groups with respect to age, sex, restraint type, or seat position. Compared with frontal crashes, children in side impacts were more likely to have an Injury Severity Score > 15 (odds ratio [OR], 3.1; 95% confidence interval [CI], 1.7-5.8) and were more likely to have Abbreviated Injury Scale score 2+ injuries to the head (OR, 2.5; 95% CI, 1.4-4.4), chest (OR, 4.0; 95% CI, 2.0-8.0), and cervical spine (OR, 3.7; 95% CI, 1.2-11.3). When compared with National Automotive Sampling System data, similar trends were seen regarding Abbreviated Injury Scale score 2+ injuries to the head, chest, and extremities. In this study population, side impacts resulted in more injuries to the head, cervical spine, and chest. Knowledge of this pattern-the side impact syndrome-can help guide diagnosis, treatment, and prevention strategy.
Computed tomography and clinical outcome in patients with severe traumatic brain injury.
Stenberg, Maud; Koskinen, Lars-Owe D; Jonasson, Per; Levi, Richard; Stålnacke, Britt-Marie
2017-01-01
To study: (i) acute computed tomography (CT) characteristics and clinical outcome; (ii) clinical course and (iii) Corticosteroid Randomisation after Significant Head Injury acute calculator protocol (CRASH) model and clinical outcome in patients with severe traumatic brain injury (sTBI). Initial CT (CT i ) and CT 24 hours post-trauma (CT 24 ) were evaluated according to Marshall and Rotterdam classifications. Rancho Los Amigos Cognitive Scale-Revised (RLAS-R) and Glasgow Outcome Scale Extended (GOSE) were assessed at three months and one year post-trauma. The prognostic value of the CRASH model was evaluated. Thirty-seven patients were included. Marshall CT i and CT 24 were significantly correlated with RLAS-R at three months. Rotterdam CT 24 was significantly correlated with GOSE at three months. RLAS-R and the GOSE improved significantly from three months to one year. CRASH predicted unfavourable outcome at six months for 81% of patients with bad outcome and for 85% of patients with favourable outcome according to GOSE at one year. Neither CT nor CRASH yielded clinically useful predictions of outcome at one year post-injury. The study showed encouragingly many instances of significant recovery in this population of sTBI. The combination of lack of reliable prognostic indicators and favourable outcomes supports the case for intensive acute management and rehabilitation as the default protocol in the cases of sTBI.
Tylko, Suzanne; Bohman, Katarina; Bussières, Alain
2015-11-01
Passenger car side impact crash tests and sled tests were conducted to investigate the influence of booster seats, near-side occupant characteristics and vehicle interiors on the responses of the Q6/Q6s child ATD positioned in the rear, far-side seating location. Data from nine side impact sled tests simulating a EuroNCAP AEMD barrier test were analyzed with data obtained from 44 side impact crash tests. The crash tests included: FMVSS 214 and IIHS MDB, moving car-to-stationary car and moving car-to-moving car. A Q6 or prototype Q6s ATD was seated on the far-side, using a variety of low and high back booster seats. Head and chest responses were recorded and ATD motions were tracked with high-speed videos. The vehicle lateral accelerations resulting from MDB tests were characterized by a much earlier and more rapid rise to peak than in tests where the bullet was another car. The near-side seating position was occupied by a Hybrid III 10-year-old ATD in the sled tests, and a rear or front facing child restraint or a 5th percentile side impact ATD in the crash tests. Head impacts occurred more frequently in vehicles where a forward facing child restraint was present behind the driver seat for both the low and high back booster seats. Pretensioners were found to reduce lateral head displacements in all sled test configurations but the greatest reduction in lateral excursion was obtained with a high back booster seat secured with LATCH and tested in combination with pretensioners.
Source of released carbon fibers
NASA Technical Reports Server (NTRS)
Bell, V. L.
1979-01-01
The potential for the release of carbon fibers from aircraft crashes/fires is addressed. Simulation of the conditions of aircraft crash fires in order to predict the quantities and forms of fibrous materials which might be released from civilian aircraft crashes/fires is considered. Figures are presented which describe some typical fiber release test activities together with some very preliminary results of those activities. The state of the art of carbon fiber release is summarized as well as some of the uncertainties concerning accidental fiber release.
Impact Test of a NACA-Designed Pilot Seat and Harness
1955-02-21
This time-lapse photograph shows the test of a pilot seat and restraint designed by researchers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The laboratory had undertaken a multi-year investigation into the causes and preventative measures for fires resulting from low altitude aircraft crashes. The program was expanded in the mid-1950s to include the study of crash impact on passengers, new types of types of seat restraints, and better seat designs. The impact program began by purposely wrecking surplus transport Fairchild C-82 Packet and Piper Cub aircraft into barricades at the end of a test runway. Instrumented dummies and cameras were installed in the pilot and passenger areas. After determining the different loads experienced during a crash and the effects on the passengers, the NACA researchers began designing new types of seats and restraints. The result was an elastic seat that flexed upon impact, absorbing 75 percent of the loads before it slowly recoiled. This photograph shows the seats mounted on a pendulum with a large spring behind the platform to provide the jolt that mimicked the forces of a crash. The seat was constructed without any potentially damaging metal parts and included rubber-like material, an inflated back and arms, and a seat cushion. After the pendulum tests, the researchers compared the flexible seats to the rigid seats during a crash of a transport aircraft. They found the passengers in the rigid seats received 66 percent higher g-forces than the NACA-designed seats.
Zaloshnja, Eduard; Miller, Ted; Romano, Eduardo; Spicer, Rebecca
2004-05-01
This paper presents costs per US motor vehicle crash victim differentiated into many more diagnostic categories than prior estimates. These unit costs, which include the first keyed to the 1990 edition of Abbreviated Injury Scale (AIS) threat-to-life severity scores, are reported by body part, whether a fracture/dislocation was involved, and the maximum AIS score among the victim's injuries. This level of detail allows for a more accurate estimation of the social costs of motor vehicle crashes. It also allows for reliable analyses of interventions targeting narrow ranges of injuries. The paper updates the medical care data underlying the US crash costs from 1979 to 1986 to the mid 1990s and improves on prior productivity cost estimates. In addition to presenting the latest generation of crash victim costs, this paper analyzes the effects of applying injury costs classified by AIS code from the 1985 edition to injury incidence data coded with the 1990 edition of AIS. This long-standing practice results in inaccurate cost-benefit analyses that typically overestimate benefits. This problem is more acute when old published costs adjusted for inflation are used rather than the recent costs.
All-terrain vehicles (ATVs) on the road: a serious traffic safety and public health concern.
Denning, Gerene; Jennissen, Charles; Harland, Karisa; Ellis, David; Buresh, Christopher
2013-01-01
On-road all-terrain vehicle (ATV) crashes are frequent occurrences that disproportionately impact rural communities. These crashes occur despite most states having laws restricting on-road ATV use. A number of overall risk factors for ATV-related injuries have been identified (e.g., lack of helmet, carrying passengers). However, few studies have determined the relative contribution of these and other factors to on-road crashes and injuries. The objective of our study was to determine whether there were differences between on- and off-road ATV crashes in their demographics and/or mechanisms and outcomes of injuries. Data were derived from our statewide ATV injury surveillance database (2002-2009). Crash location and crash and injury mechanisms were coded using a modification of the Department of Transportation (DOT) coding system. Descriptive analyses and statistical comparisons (chi-square test) of variables were performed. Multivariate logistic regression analysis was used to determine relative risk. 976 records were included in the final analysis, with 38 percent of the injured individuals from on-road crashes. Demographics were similar for crashes at each location, with approximately 80 percent males, 30 percent under the age of 16, and 15 percent passengers. However, females and youths under 16 were over 4 times more likely to be passengers (P ≤ 0.0001), regardless of crash location. Compared to those off-road, on-road crash victims were approximately 10 times more likely to be involved in a vehicle-vehicle collision (P < 0.001), 3 times more likely to have a severe brain injury (P < 0.001), and twice as likely to have suffered major trauma (P < 0.001). Adult operators in on-road crashes were also twice as likely to test positive for alcohol as those off-road (P < 0.05). Helmet use significantly reduced the odds of sustaining a brain injury and on-road victims were only half as likely to be helmeted (P < 0.01). More than 1 in 3 on-road crashes involved a collision with another vehicle, suggesting that ATVs on the road represent a potential traffic safety concern. Of note, helmets were associated with reduced risk for the number and severity of brain injuries, providing further support for the importance of helmet use. Finally, even controlling for helmet use, on-road crash victims suffered more major trauma and severe brain injuries than those off-road. Overall, our data reinforce the importance of laws restricting ATV road use and the need for effective enforcement, as well as the need to increase user education about ATV road-use laws and the dangers of riding on the roads.
Grabowski, Jurek G; Curriero, Frank C; Baker, Susan P; Li, Guohua
2002-03-01
Geographic information systems and exploratory spatial analysis were used to describe the geographic characteristics of pilot fatality rates in 1983-1998 general aviation crashes within the continental United States. The authors plotted crash sites on a digital map; rates were computed at regular grid intersections and then interpolated by using geographic information systems. A test for significance was performed by using Monte Carlo simulations. Further analysis compared low-, medium-, and high-rate areas in relation to pilot characteristics, aircraft type, and crash circumstance. Of the 14,051 general aviation crashes studied, 31% were fatal. Seventy-four geographic areas were categorized as having low fatality rates and 53 as having high fatality rates. High-fatality-rate areas tended to be mountainous, such as the Rocky Mountains and the Appalachian region, whereas low-rate areas were relatively flat, such as the Great Plains. Further analysis comparing low-, medium-, and high-fatality-rate areas revealed that crashes in high-fatality-rate areas were more likely than crashes in other areas to have occurred under instrument meteorologic conditions and to involve aircraft fire. This study demonstrates that geographic information systems are a valuable tool for injury prevention and aviation safety research.
Honeybul, Stephen; Ho, Kwok M
2016-09-01
Predicting long-term neurological outcomes after severe traumatic brain (TBI) is important, but which prognostic model in the context of decompressive craniectomy has the best performance remains uncertain. This prospective observational cohort study included all patients who had severe TBI requiring decompressive craniectomy between 2004 and 2014, in the two neurosurgical centres in Perth, Western Australia. Severe disability, vegetative state, or death were defined as unfavourable neurological outcomes. Area under the receiver-operating-characteristic curve (AUROC) and slope and intercept of the calibration curve were used to assess discrimination and calibration of the CRASH (Corticosteroid-Randomisation-After-Significant-Head injury) and IMPACT (International-Mission-For-Prognosis-And-Clinical-Trial) models, respectively. Of the 319 patients included in the study, 119 (37%) had unfavourable neurological outcomes at 18-month after decompressive craniectomy for severe TBI. Both CRASH (AUROC 0.86, 95% confidence interval 0.81-0.90) and IMPACT full-model (AUROC 0.85, 95% CI 0.80-0.89) were similar in discriminating between favourable and unfavourable neurological outcome at 18-month after surgery (p=0.690 for the difference in AUROC derived from the two models). Although both models tended to over-predict the risks of long-term unfavourable outcome, the IMPACT model had a slightly better calibration than the CRASH model (intercept of the calibration curve=-4.1 vs. -5.7, and log likelihoods -159 vs. -360, respectively), especially when the predicted risks of unfavourable outcome were <80%. Both CRASH and IMPACT prognostic models were good in discriminating between favourable and unfavourable long-term neurological outcome for patients with severe TBI requiring decompressive craniectomy, but the calibration of the IMPACT full-model was better than the CRASH model. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Hauschild, Hans W; Humm, John R; Pintar, Frank A; Yoganandan, Narayan; Kaufman, Bruce; Kim, Jinyong; Maltese, Matthew R; Arbogast, Kristy B
2016-09-01
Testing was conducted to quantify the kinematics, potential for head impact, and influence on head injury metrics for a center-seated Q3s in a forward-facing child restraint system (FFCRS) in oblique impacts. The influences of a tether and intruded door on these measures were explored. Nine lateral oblique sled tests were conducted on a convertible forward-facing child restraint seat (FFCRS). The FFCRSs were secured to a bench seat from a popular production small SUV at the center seating position utilizing the lower anchor and tether for children (LATCH). The vehicle seat was fixed on the sled carriage at 60° and 80° from full frontal (30° and 10° forward rotation from pure lateral) providing an oblique lateral acceleration to the Q3s and FFCRS. A structure simulating an intruded door was mounted to the near (left) side of vehicle seat. The sled input acceleration was the proposed FMVSS 213 lateral pulse scaled to a 35 km/h delta-V. Tests were conducted with and without the tether attached to the FFCRS. Results indicate the influence of the tether on kinematics and injury measures in oblique side impact crashes for a center- or far-side-seated child occupant. All tests without a tether resulted in head contact with the simulated door, and 2 tests at the less oblique angle (80°) with a tether also resulted in head contact. No head-to-door contact was observed in 2 tests utilizing a tether. High-speed video analysis showed that the head moved beyond the CRS head side wings and made contact with the simulated intruded door. Head injury criterion (HIC) 15 median values were 589 without the tether vs. 332 with the tether attached. Tests utilizing a tether had less lateral head excursion than tests without a tether (median 400 vs. 442 mm). These tests demonstrate the important role of the tether in controlling head excursion for center- or far-side-seated child occupants in oblique side impact crashes and limiting the head injury potential with an intruded door. The tether may not influence the kinematics of a near-side-seated occupant as strongly where the vehicle door or side structure interacts with the CRS and influences its motion. The results indicate that there may be an opportunity to improve child head kinematics and head protection in oblique side impacts through different CRS attachment methods and/or alternative vehicle side structure protection or padding.
Risk of thoracic injury from direct steering wheel impact in frontal crashes.
Chen, Rong; Gabler, Hampton C
2014-06-01
The combination of airbag and seat belt is considered to be the most effective vehicle safety system. However, despite the widespread availability of airbags and a belt use rate of more than 85%, US drivers involved in crashes continue to be at risk of serious thoracic injury. The objective of this study was to determine the influence of steering wheel deformation on driver injury risk in frontal automobile crash. The analysis is based on cases extracted from the National Automotive Sampling System Crashworthiness Data System database for case years 1993 to 2011. The approach was to compare the adjusted odds of frontal crash injury experienced by drivers in vehicles with and without steering wheel deformation. Among frontal crash cases with belted drivers, observable steering wheel deformation occurred in less than 4% of all cases but accounted for 30% of belted drivers with serious (Abbreviated Injury Scale [AIS] score, 3+) thoracic injuries. Similarly, steering wheel deformation occurred in approximately 13% of unbelted drivers but accounted for 60% of unbelted drivers with serious thoracic injuries. Belted drivers in frontal crashes with steering wheel deformation were found to have two times greater odds of serious thoracic injury. Unbelted drivers were found to have four times greater odds of serious thoracic injury in crashes with steering wheel deformation. In frontal crashes, steering wheel deformation was more likely to occur in unbelted drivers than belted drivers, as well as higher severity crashes and with heavier drivers. The results of the present study show that airbag deployment and seat belt restraint do not completely eliminate the possibility of steering wheel contact. Even with the most advanced restraint systems, there remains an opportunity for further reduction in thoracic injury by continued enhancement to the seat belt and airbag systems. Furthermore, the results showed that steering wheel deformation is an indicator of potential serious thoracic injury and can be useful to prehospital personnel in improving the diagnosis of serious injuries. Prognostic study, level III.
Empirical calibration of a roadside hazardousness index for Spanish two-lane rural roads.
Pardillo-Mayora, José M; Domínguez-Lira, Carlos A; Jurado-Piña, Rafael
2010-11-01
Crash records and roadside data from Spanish two-lane rural roads were analyzed to study the effect of roadside configuration on safety. Four indicators were used to characterize the main roadside features that have an influence on the consequences of roadway departures: roadside slope, non-traversable obstacles distance from the roadway edge, safety barrier installation, and alignment. Based on the analysis of the effect of roadside configuration on the frequency and severity of run-off-road injury crashes, a categorical roadside hazardousness scale was defined. Cluster analysis was applied to group the combinations of the four indicators into categories with homogeneous effects on run-off-road injury crashes frequency and severity. As a result a 5-level Roadside Hazardousness Index (RHI) was defined. RHI can be used as reference to normalize the collection of roadside safety related information. The index can also be used as variable for inclusion of roadside condition information in multivariate crash prediction models. 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kamat, M. P.
1980-01-01
The formulation basis for establishing the static or dynamic equilibrium configurations of finite element models of structures which may behave in the nonlinear range are provided. With both geometric and time independent material nonlinearities included, the development is restricted to simple one and two dimensional finite elements which are regarded as being the basic elements for modeling full aircraft-like structures under crash conditions. Representations of a rigid link and an impenetrable contact plane are added to the deformation model so that any number of nodes of the finite element model may be connected by a rigid link or may contact the plane. Equilibrium configurations are derived as the stationary conditions of a potential function of the generalized nodal variables of the model. Minimization of the nonlinear potential function is achieved by using the best current variable metric update formula for use in unconstrained minimization. Powell's conjugate gradient algorithm, which offers very low storage requirements at some slight increase in the total number of calculations, is the other alternative algorithm to be used for extremely large scale problems.
Begg, Dorothy; Brookland, Rebecca; Connor, Jennie
2017-02-17
The objective of this study was to describe self-reported high alcohol use at each of the 3 licensing stages of graduated driver licensing and its relationship to drink-driving behaviors, intentional risky driving, aggressive driving, alcohol traffic offenses, non-alcohol traffic offenses, and traffic crashes. The New Zealand Drivers Study (NZDS) is a multistage, prospective cohort study of newly licensed drivers interviewed at all 3 stages of the graduated driver licensing system: learner (baseline), restricted (intermediate), and full license. At each stage, alcohol use was self-reported using the Alcohol Use Disorders Identification Test (AUDIT-C), with high alcohol use defined as a score of ≥4 for males and ≥3 for females. Sociodemographic and personality data were obtained at the baseline interview. Alcohol-related, intentional risky, and aggressive driving behaviors were self-reported following each license stage. Traffic crashes and offenses were identified from police records. Crashes were also self-reported. Twenty-six percent (n = 397) reported no high alcohol use, 22% at one license stage, 30% at 2 stages, and 22% at 3 stages. Poisson regression results (unadjusted and adjusted) showed that the number of stages where high alcohol use was reported was significantly associated with each of the outcomes. For most outcomes, and especially the alcohol-involved outcomes, the relative risk increased with the number of stages of high alcohol use. We found that high alcohol use was common among young newly licensed drivers and those who repeatedly reported high alcohol use were at a significantly higher risk of unsafe driving behaviors. Recently introduced zero blood alcohol concentration (BAC) should help to address this problem, but other strategies are required to target persistent offenders.
Uhrenholt, Lars; Schumacher, Bente; Freeman, Michael
2010-09-27
In some road traffic crashes with fatal outcome, the police investigations lead to charges against and prosecution of a person. The police can request a medico-legal autopsy as well as a toxicological examination, but the extent to which this is done, and the role here of in the legal setting is unknown. Information concerning traffic crashes with fatal outcome in the period 2000-2004 in Aarhus Police District was retrieved and compared. The information included comprised crash specific and legal information, as well as medical data concerning autopsy, examination for alcohol, drugs and/or medicine. In all, 81 traffic crashes had a fatal outcome for 92 persons, of whom 17 (18%) were autopsied, 55 (60%) were tested for alcohol, and five (5%) were examined for drugs/medicine. Twenty-six were charged with negligent homicide, of which 18 were convicted. Autopsy was performed in four of these cases, 19 were tested for alcohol and one was tested for drugs/medicine. This study shows that the police requests few medico-legal autopsies following road traffic fatalities, and that testing for alcohol as well as drugs/medicine is not conducted routinely. As a consequence, important information may not come to the knowledge of the police in cases of negligent homicide. We recommend that postmortem examination be conducted routinely in traffic-related homicide cases to secure the best possible conditions for a legal evaluation.
Pilot age and error in air taxi crashes.
Rebok, George W; Qiang, Yandong; Baker, Susan P; Li, Guohua
2009-07-01
The associations of pilot error with the type of flight operations and basic weather conditions are well documented. The correlation between pilot characteristics and error is less clear. This study aims to examine whether pilot age is associated with the prevalence and patterns of pilot error in air taxi crashes. Investigation reports from the National Transportation Safety Board for crashes involving non-scheduled Part 135 operations (i.e., air taxis) in the United States between 1983 and 2002 were reviewed to identify pilot error and other contributing factors. Crash circumstances and the presence and type of pilot error were analyzed in relation to pilot age using Chi-square tests. Of the 1751 air taxi crashes studied, 28% resulted from mechanical failure, 25% from loss of control at landing or takeoff, 7% from visual flight rule conditions into instrument meteorological conditions, 7% from fuel starvation, 5% from taxiing, and 28% from other causes. Crashes among older pilots were more likely to occur during the daytime rather than at night and off airport than on airport. The patterns of pilot error in air taxi crashes were similar across age groups. Of the errors identified, 27% were flawed decisions, 26% were inattentiveness, 23% mishandled aircraft kinetics, 15% mishandled wind and/or runway conditions, and 11% were others. Pilot age is associated with crash circumstances but not with the prevalence and patterns of pilot error in air taxi crashes. Lack of age-related differences in pilot error may be attributable to the "safe worker effect."
Isaksson-Hellman, Irene; Lindman, Magdalena
2016-09-01
The aim of the present study was to evaluate the crash mitigation performance of low-speed automated emergency braking collision avoidance technologies by examining crash rates, car damage, and personal injuries. Insurance claims data were used to identify rear-end frontal collisions, the specific situations where the low-speed automated emergency braking system intervenes. We compared cars of the same model (Volvo V70) with and without the low-speed automated emergency braking system (AEB and no AEB, respectively). Distributions of spare parts required for car repair were analyzed to identify car damage, and crash severity was estimated by comparing the results with laboratory crash tests. Repair costs and occupant injuries were investigated for both the striking and the struck vehicle. Rear-end frontal collisions were reduced by 27% for cars with low-speed AEB compared to cars without the system. Those of low severity were reduced by 37%, though more severe crashes were not reduced. Accordingly, the number of injured occupants in vehicles struck by low-speed AEB cars was reduced in low-severity crashes. In offset crash configurations, the system was found to be less effective. This study adds important information about the safety performance of collision avoidance technologies, beyond the number of crashes avoided. By combining insurance claims data and information from spare parts used, the study demonstrates a mitigating effect of low-speed AEB in real-world traffic.
Peterson, Alexis B; Sauber-Schatz, Erin K; Mack, Karin A
2018-06-01
As more states legalize medical/recreational marijuana use, it is important to determine if state motor-vehicle surveillance systems can effectively monitor and track driving under the influence (DUI) of marijuana. This study assessed Colorado's Department of Revenue motor-vehicle crash data system, Electronic Accident Reporting System (EARS), to monitor non-fatal crashes involving driving under the influence (DUI) of marijuana. Centers for Disease Control and Prevention guidelines on surveillance system evaluation were used to assess EARS' usefulness, flexibility, timeliness, simplicity, acceptability, and data quality. We assessed system components, interviewed key stakeholders, and analyzed completeness of Colorado statewide 2014 motor-vehicle crash records. EARS contains timely and complete data, but does not effectively monitor non-fatal motor-vehicle crashes related to DUI of marijuana. Information on biological sample type collected from drivers and toxicology results were not recorded into EARS; however, EARS is a flexible system that can incorporate new data without increasing surveillance system burden. States, including Colorado, could consider standardization of drug testing and mandatory reporting policies for drivers involved in motor-vehicle crashes and proactively address the narrow window of time for sample collection to improve DUI of marijuana surveillance. Practical applications: The evaluation of state motor-vehicle crash systems' ability to capture crashes involving drug impaired driving (DUID) is a critical first step for identifying frequency and risk factors for crashes related to DUID. Published by Elsevier Ltd.
How Common are Noise Sources on the Crash Arc of Malaysian Flight 370
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenimore, Edward E.; Kunkle, Thomas David; Stead, Richard J.
2014-10-21
Malaysian Flight 370 disappeared nearly without a trace. Besides some communication handshakes to the INMASAT satellite, the Comprehensive Test Ban Treaty monitoring system could have heard the aircraft crash into the southern Indian Ocean. One noise event from Cape Leeuwin has been suggested by Stead as the crash and occurs within the crash location suggested by Kunkle at el. We analyze the hydrophone data from Cape Leeuwin to understand how common such noise events are on the arc of possible locations where Malaysian Flight 370 might have crashed. Few other noise sources were found on the arc. The noise eventmore » found by Stead is the strongest. No noise events are seen within the Australian Transportation Safety Board (ATSB) new search location until the 10 th strongest event, an event which is very close to the noise level.« less
Antilock brakes and the risk of driver injury in a crash: a case-control study.
Cummings, Peter; Grossman, David C
2007-09-01
While antilock brakes can improve steering and reduce stopping distance in some test situations, there is little evidence that they reduce the risk of crash-related injury. We sought to estimate the association between presence of antilock brakes and the risk of driver injury. We conducted a case-control study using claims data from the Insurance Corporation of British Columbia, Canada, for passenger vehicles insured during July 1, 2003, to June 30, 2004. Cases were 5000 vehicles with a driver crash injury during the study period. Controls were 49,994 vehicles insured at the mid-point of the study interval. The adjusted risk ratio for a crash with driver injury in a vehicle with antilock brakes was 1.06 (95% confidence interval, 0.95-1.17), compared with a vehicle without antilock brakes. If this estimated association is causal, antilock brakes do not prevent crash-related driver injuries.
Severe injury in multiple impacts: Analysis of 1997-2015 NASS-CDS.
Viano, David C; Parenteau, Chantal S
2018-07-04
This is a descriptive study of the incidence and risk for severe injury in single-impact and multi-impact crashes by belt use and crash type using NASS-CDS. 1997-2015 NASS-CDS data were used to determine the distribution of crashes by the number of impacts and severe injury (Maximum Abbreviated Injury Score [MAIS] 4+F) to >15-year-old nonejected drivers by seat belt use in 1997+ MY vehicles. It compares the risk for severe injury in a single impact and in crashes involving 2, 3, or 4+ impacts in the collision with a focus on a frontal crash followed by other impacts. Most vehicle crashes involve a single impact (75.4% of 44,889,518 vehicles), followed by 2-impact crashes (19.6%), 3-impact crashes (5.0%) and 4+ impacts (2.6%). For lap-shoulder-belted drivers, the distribution of severe injury was 42.1% in a single impact, 29.3% in 2 impacts, 13.4% in 3 impacts, and 15.1% in 4+ impact crashes. The risk for a belted driver was 0.256 ± 0.031% in a single impact, 0.564 ± 0.079% in 2 impacts, 0.880 ± 0.125% in 3 impacts, and 2.121 ± 0.646% in 4+ impact. The increase in risk from a single crash to multi-impact collisions was statistically significant (P < .001). In a single impact, 53.8% of belted drivers were in a frontal crashes, 22.4% in side crashes, 20% in rear crashes, and 1.7% in rollover crashes. The risk for severe injury was highest in a rollover at 0.677 ± 0.250%, followed by near-side impact at 0.467 ± 0.084% and far-side impact at 0.237 ± 0.071%. Seat belt use was 82.4% effective in preventing severe injury (MAIS 4+F) in a rollover, 47.9% in a near-side impact, and 74.8% in a far-side impact. In 2-impact crashes with a belted driver, the most common sequence was a rear impact followed by a frontal crash at 1,843,506 (21.5%) with a risk for severe injury of 0.100 ± 0.058%. The second most common was a frontal impact followed by another frontal crash at 1,257,264 (14.7%) with a risk of 0.401 ± 0.057%. The risk was 0.658 ± 0.271% in a frontal impact followed by a rear impact. A near-side impact followed by a rear crash had the highest risk for severe injury at 2.073 ± 1.322%. Restraint systems are generally developed for a single crash or sled test. The risk for severe injury was significantly higher in 2-, 3-, and 4+-impact crashes than a single impact. The majority (57.9%) of severe injuries occurred in multi-impact crashes with belted drivers. The evaluation of restraint performance warrants additional study in multi-impact crashes.
Mandatory Physician Reporting of At-Risk Drivers: The Older Driver Example.
Agimi, Yll; Albert, Steven M; Youk, Ada O; Documet, Patricia I; Steiner, Claudia A
2018-05-08
In a number of states, physicians are mandated by state law to report at-risk drivers to licensing authorities. Often these patients are older adult drivers who may exhibit unsafe driving behaviors, have functional/cognitive impairments, or are diagnosed with conditions such as Alzheimer's disease and/or seizure disorders. The hypothesis that mandatory physician reporting laws reduce the rate of crash-related hospitalizations among older adult drivers was tested. Using retrospective data (2004-2009), this study identified 176,066 older driver crash-related hospitalizations, from the State Inpatient Databases. Three age-specific negative binomial generalized estimating equation models were used to estimate the effect of physician reporting laws on state's incidence rate of crash-related hospitalizations among older drivers. No evidence was found for an independent association between mandatory physician reporting laws and a lower crash hospitalization rate among any of the age groups examined. The main predictor of interest, mandatory physician reporting, failed to explain any significant variation in crash hospitalization rates, when adjusting for other state-specific laws and characteristics. Vision testing at in-person license renewal was a significant predictor of lower crash hospitalization rate, ranging from incidence rate ratio of 0.77 (95% confidence interval 0.62-0.94) among 60- to 64-year olds to 0.83 (95% confidence interval 0.67-0.97) among 80- to 84-year olds. Physician reporting laws and age-based licensing requirements are often at odds with older driver's need to maintain independence. This study examines this balance and finds no evidence of the benefits of mandatory physician reporting requirements on driver crash hospitalizations, suggesting that physician mandates do not yet yield significant older driver safety benefits, possibly to the detriment of older driver's well-being and independence.
Reguly, Paula; Dubois, Sacha; Bédard, Michel
2014-01-01
Commercial motor vehicle (CMV) drivers, particularly drivers of large trucks continue to be a population of concern regarding traffic safety despite the reduction in large truck crash rates over the past decade. Medication and drug use while driving is one important risk factor for large truck crashes. Work-related exposures, such as vibration, manual handling and poor ergonomics contribute to an increased risk for injuries and chronic conditions and are common reasons for opioid analgesic (OA) use by CMV truck drivers. The objectives of this study were to examine the role of OA use in CMV truck drivers involved in fatal crashes by: (a) generating prevalence estimates of OA use; (b) documenting the relationship between OA use and crash responsibility. Case-control study using logistic regression to compare Fatality Analysis Reporting System (1993-2008) record of one or more crash-related unsafe driver actions (UDAs--a proxy measure of responsibility) between drivers with a positive drug test and drivers with a negative drug test for OA, controlling for age, other drug use, and driving history. The annual prevalence of OA use among all CMV drivers of large trucks involved in fatal crashes did not exceed 0.46% for any year in the study period and mostly ranged between 0.1 and 0.2%. Male truck drivers using OA had greater odds of committing an UDA (OR: 2.80; 95% CI: 1.64; 4.81). Middle-aged users had greater odds than younger or older users. The results of our study indicate that the presence of OAs is associated with greater odds of committing an UDA. This association may have implications for the commercial transport industry and traffic safety. However, the limited prevalence of OA use is encouraging and further research is needed to address the limitations of the study. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Impact of a helmet law on two wheel motor vehicle crash mortality in a southern European urban area
Ferrando, J.; Plasencia, A.; Oros, M.; Borrell, C.; Kraus, J.
2000-01-01
Background—In Spain, a federal road safety law went into effect in the fall of 1992 extending to urban areas the unrestricted use of safety helmets by all two wheel motor vehicle occupants. Objectives—To assess the effect of the law in reducing fatal motorcycle crash injuries; to estimate the number of lives saved; and to determine changes in the distribution of severity and anatomical location of injuries. Methods—Pre-test/post-test design of all deaths of two wheel motor vehicle occupants from 1990–92 (pre-law period) and from 1993–95 (post-law period) detected by the Barcelona Forensic Institute and the city police department. Injuries were coded using the 1990 version of the abbreviated injury scale. Poisson regression methods were used to model trends in mortality ratios and to provide estimates of the number of lives saved. Results—Between 1993 and 1995, 35 lives of two wheel motor vehicle occupants were spared, representing a decrease of 25% in the observed motorcycle crash mortality in the post-law period when compared with what would be expected if no such law had gone into effect. The proportion of deaths with severe head injuries was also reduced from 76% to 67% in the post-law period. Conclusions—This study offers the first evaluation of a helmet law using combined forensic and police data in a large south European urban area where there is widespread use of motorcycles. Our results confirm the effectiveness of the helmet law, as measured by the reduction in the number of deaths and mortality ratios after the law implementation. The findings reinforce the public health benefits of mandatory non-restricted motorcycle and moped helmet use, even in urban areas with lower traffic speeds. PMID:11003182
Wilson, Suzanne J; Begg, Dorothy J; Samaranayaka, Ari
2012-11-01
Linking hospital discharge and police traffic crash records has been used to provide information on causes and outcomes for hospitalised traffic crash cases. Motorcyclists are particularly vulnerable to injury in a traffic crash, but no published linkage studies have reported in detail on this road user group. The present study examined motorcycle traffic crash injury cases in New Zealand in 2000-2004 by probabilistically linking national hospital discharge records with police traffic crash reports. Injury cases had to have spent at least one night in hospital before being discharged and were defined as serious or moderate based on their International Classification of Disease Injury Severity Scores (ICISS). Despite a robust linkage process, only 46% of cases could be linked to a police record; 60% of the serious injuries and 41% of the moderate. The low linkage was most likely due to under-reporting of crashes to or by the police. While moderate injury cases were expected to be under-reported, the level of under-reporting of cases with serious threat-to-life injuries is concerning. To assess whether the linked dataset could provide valid information on the crash circumstances and injury outcomes of hospitalised motorcycle crash cases, the characteristics of the linked and unlinked hospital discharge cases were compared using chi-square tests and multivariate logistic regression. Serious injury cases were less likely to be linked if only one vehicle was involved, or the injured riders and passengers were younger than 20 years or spent less than one week in hospital. For moderate injury cases, there were also differences in linkage by injured body region and crash month. While these discrepancies need to taken into consideration when interpreting results, the linked hospital-police dataset has the potential to provide insights into motorcycle crash circumstances and outcomes not otherwise obtainable. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2017-02-01
Crashes involving transit vehicles, bicyclists, and pedestrians are a concern in Texas, especially in urban areas. This research explored the potential of automated and connected vehicle (AV/CV) technology to reduce or eliminate these crashes. The pr...
a Study on Strain Rate Effect in Collision Analysis of Rolling STOCK
NASA Astrophysics Data System (ADS)
Kim, Seung Rok; Koo, Jeong Seo
In this paper, the strain rate effect of energy absorption members in rolling stock is studied using the virtual testing model (VTM) for Korean high speed train (KHST). The VTM of KHST was simulated for two different strain rate conditions. The VTM is composed of FE models for structures, and nonlinear spring/damper models for dynamic components. To simplify numerical model for the full rake KHST, the first three units consist of full flexible multi-body dynamic models, and the remainder does 1-D spring/damper/mass models. To evaluate the strain rate effect of KHST, the crash simulation was performed under the accident scenario for a collision with a rigid mass of 15 tons at 110kph. The numerical results show that the overall crash response of the train is not largely affected as much as expected, but individual components have some different deformations according to strain rate. The deformation of the front end structure without strain rate effect is larger than that with it. However, the deformation of the rear end structure without strain rate effect is smaller than that with it. Finally, the intrusion of the driver's cabin is overestimated for no strain rate effect when compared to the case with it.
Cost and benefit estimates of partially-automated vehicle collision avoidance technologies.
Harper, Corey D; Hendrickson, Chris T; Samaras, Constantine
2016-10-01
Many light-duty vehicle crashes occur due to human error and distracted driving. Partially-automated crash avoidance features offer the potential to reduce the frequency and severity of vehicle crashes that occur due to distracted driving and/or human error by assisting in maintaining control of the vehicle or issuing alerts if a potentially dangerous situation is detected. This paper evaluates the benefits and costs of fleet-wide deployment of blind spot monitoring, lane departure warning, and forward collision warning crash avoidance systems within the US light-duty vehicle fleet. The three crash avoidance technologies could collectively prevent or reduce the severity of as many as 1.3 million U.S. crashes a year including 133,000 injury crashes and 10,100 fatal crashes. For this paper we made two estimates of potential benefits in the United States: (1) the upper bound fleet-wide technology diffusion benefits by assuming all relevant crashes are avoided and (2) the lower bound fleet-wide benefits of the three technologies based on observed insurance data. The latter represents a lower bound as technology is improved over time and cost reduced with scale economies and technology improvement. All three technologies could collectively provide a lower bound annual benefit of about $18 billion if equipped on all light-duty vehicles. With 2015 pricing of safety options, the total annual costs to equip all light-duty vehicles with the three technologies would be about $13 billion, resulting in an annual net benefit of about $4 billion or a $20 per vehicle net benefit. By assuming all relevant crashes are avoided, the total upper bound annual net benefit from all three technologies combined is about $202 billion or an $861 per vehicle net benefit, at current technology costs. The technologies we are exploring in this paper represent an early form of vehicle automation and a positive net benefit suggests the fleet-wide adoption of these technologies would be beneficial from an economic and social perspective. Copyright © 2016 Elsevier Ltd. All rights reserved.
Newgard, Craig D; McConnell, K John
2008-10-01
There is concern that small stature occupants (particularly women) involved in motor vehicle crashes (MVCs) may be at risk of injury or death from frontal air bags, though evidence to substantiate this concern is lacking. We sought to assess how occupant body size (measured through height and weight) affects air bag effectiveness in mitigating the risk of serious injury, after adjusting for important crash factors. This was a retrospective cohort study using a national population-based cohort of adult front-seat occupants involved in MVCs as included in the National Automotive Sampling System Crashworthiness Data System database (NASS CDS) from 1995 to 2006. Drivers and front-seat passengers 15 years and older involved in MVCs involving passenger vehicles and light trucks were included in the analysis. The primary outcome was serious injury, defined as an Abbreviated Injury Scale (AIS) score >or=3 in any body region. Multivariable logistic regression models were used to test interaction terms (effect modification) between air bags, body size, and injury. The predicted probability of injury across body sizes was plotted to further illustrate potential differences. Sixty-nine thousand three hundred eighty-seven adult front-seat occupants during the 12-year period were included in the analysis, of which 9333 (2.3%) were seriously injured. There was no evidence that height or weight modified air bag effectiveness among all crashes (p > .40). In primary frontal collisions, there was some evidence for effect modification by weight (p = .04) but not by height (p = .59). When assessed using air bag deployment, height was a strong effect modifier (p = .0078), but not weight (p = .43). Predicted probability figures confirmed that occupant height modifies the effect of air bag deployment, but there was no similar visual evidence for body weight. In this sample, we found no consistent evidence that body size modifies the overall effectiveness of frontal air bags. However, among crashes involving air bag deployment, the effect of deployment on injury differs by occupant height, with a relative increase in the odds of serious injury among smaller occupants. In such crashes, the probability of injury with (versus without) deployment began to increase with occupant heights less than 155 cm (5'), reaching a level of statistical difference below 138 cm (4' 6'').
Fairchild C-82 Packet Destroyed in NACA Crash Fire Tests
1952-09-21
A Fairchild C-82 Packet is purposely destroyed by researchers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. In response to an escalating number of transport aircraft crashes in the mid-1940s, the NACA researchers undertook a decade-long investigation into a number of issues surrounding low-altitude aircraft crashes. The tests were conducted at the Ravenna Arsenal, approximately 60 miles south of the Lewis laboratory in Cleveland, Ohio. The aircraft were excess military transports from World War II. The aircraft was guided down the runway at speeds of 80 to 105 miles per hour. It came into contact with poles which tore open the 1500-gallon fuel tanks in the wings before reaching the barriers at the end of the runway. Fuel poured from the tanks and supply lines, resulting in the spread of both liquid fuel and a large cloud of spray. Solomon Weiss developed a method of dying the fuel red to improve its visibility during the crashes. This red fuel cloud trailed slightly behind the skidding aircraft, then rushed forward when the aircraft stopped. The nine-crash initial phase of testing used Lockheed C-56 Lodestar and C-82 transport aircraft to identify potential ignition sources and analyze the spread of flammable materials. The researchers were able to identify different classes of ignition sources, fuel disbursement patterns, the time when a particular ignition source might appear, rate of the fire spread, cabin survival times, and deceleration rates.
Hybrid composites that retain graphite fibers on burning
NASA Technical Reports Server (NTRS)
House, E. E.
1980-01-01
A laboratory scale program was conducted to determine fiber release tendencies of graphite reinforced/resinous matrix composites currently used or projected for use in civil aircraft. In the event of an aircraft crash and burn situation, there is concern that graphite fibers will be released from the composites once the resin matrix is thermally decomposed. Hybridizing concepts aimed at preventing fiber release on burning were postulated and their effectiveness evaluated under fire, impact, and air flow during an aircraft crash.
DOT National Transportation Integrated Search
2003-08-01
The objective of this report is to raise awareness among designers construction engineers, and managers of the applications and benefits of full road closure during rehabilitation and construction activities. Based on interviews with project personne...
Lin, Mau-Roung; Chu, Shu-Fen; Tsai, Shin-Han; Bai, Chyi-Huey; Chiu, Wen-Ta
2015-01-01
Introduction. The relationship between cervical spine injury (CSI) and helmet in head injury (HI) patients following motorcycle crashes is crucial. Controversy still exists; therefore we evaluated the effect of various types of helmets on CSI in HI patients following motorcycle crashes and researched the mechanism of this effect. Patients and Methods. A total of 5225 patients of motorcycle crashes between 2000 and 2009 were extracted from the Head Injury Registry in Taiwan. These patients were divided into case and control groups according to the presence of concomitant CSI. Helmet use and types were separately compared between the two groups and the odds ratio of CSI was obtained by using multiple logistic regression analysis. Results. We observed that 173 (3.3%) of the HI patients were associated with CSI. The HI patients using a helmet (odds ratio (OR) = 0.31, 95% confidence interval (CI) = 0.19−0.49), full-coverage helmet (0.19, 0.10−0.36), and partial-coverage helmet (0.35, 0.21−0.56) exhibited a significantly decreased rate of CSI compared with those without a helmet. Conclusion. Wearing full-coverage and partial-coverage helmets significantly reduced the risk of CSI among HI patients following motorcycle crashes. This effect may be due to the smooth surface and hard padding materials of helmet. PMID:25705663
Urban sprawl as a risk factor in motor vehicle crashes
Ewing, Reid; Hamidi, Shima; Grace, James B.
2016-01-01
A decade ago, compactness/sprawl indices were developed for metropolitan areas and counties which have been widely used in health and other research. In this study, we first update the original county index to 2010, then develop a refined index that accounts for more relevant factors, and finally seek to test the relationship between sprawl and traffic crash rates using structural equation modelling. Controlling for covariates, we find that sprawl is associated with significantly higher direct and indirect effects on fatal crash rates. The direct effect is likely due to the higher traffic speeds in sprawling areas, and the indirect effect is due to greater vehicle miles driven in such areas. Conversely, sprawl has negative direct relationships with total crashes and non-fatal injury crashes, and these offset (and sometimes overwhelm) the positive indirect effects of sprawl on both types of crashes through the mediating effect of increased vehicle miles driven. The most likely explanation is the greater prevalence of fender benders and other minor accidents in the low speed, high conflict traffic environments of compact areas, negating the lower vehicle miles travelled per capita in such areas.
Relationship of Near-Crash/Crash Risk to Time Spent on a Cell Phone While Driving.
Farmer, Charles M; Klauer, Sheila G; McClafferty, Julie A; Guo, Feng
2015-01-01
The objective of this study was to examine in a naturalistic driving setting the dose-response relationship between cell phone usage while driving and risk of a crash or near crash. How is the increasing use of cell phones by drivers associated with overall near-crash/crash risk (i.e., during driving times both on and off the phone)? Day-to-day driving behavior of 105 volunteer subjects was monitored over a period of 1 year. A random sample was selected comprised of 4 trips from each month that each driver was in the study, and in-vehicle video was used to classify driver behavior. The proportion of driving time spent using a cell phone was estimated for each 3-month period and correlated with overall crash and near-crash rates for each period. Thus, it was possible to test whether changes in an individual driver's cell phone use over time were associated with changes in overall near-crash/crash risk. Drivers in the study spent 11.7% of their driving time interacting with a cell phone, primarily talking on the phone (6.5%) or simply holding the phone in their hand or lap (3.7%). The risk of a near-crash/crash event was approximately 17% higher when the driver was interacting with a cell phone, due primarily to actions of reaching for/answering/dialing, which nearly triples risk (relative risk = 2.84). However, the amount of driving time spent interacting with a cell phone did not affect a driver's overall near-crash/crash risk. Vehicle speeds within 6 s of the beginning of each call on average were 5-6 mph lower than speeds at other times. Results of this naturalistic driving study are consistent with the observation that increasing cell phone use in the general driving population has not led to increased crash rates. Although cell phone use can be distracting and crashes have occurred during this distraction, overall crash rates appear unaffected by changes in the rate of cell phone use, even for individual drivers. Drivers compensate somewhat for the distraction by conducting some of the more demanding tasks, such as reaching for or dialing a cell phone, at lower speeds. It is also possible that cell phones and other electronic devices in cars are changing how drivers manage their attention to various tasks and/or changing the kinds of secondary tasks in which they engage.
Modelling the side impact of carbon fibre tubes
NASA Astrophysics Data System (ADS)
Sudharsan, Ms R.; Rolfe, B. F., Dr; Hodgson, P. D., Prof
2010-06-01
Metallic tubes have been extensively studied for their crashworthiness as they closely resemble automotive crash rails. Recently, the demand to improve fuel economy and reduce vehicle emissions has led automobile manufacturers to explore the crash properties of light weight materials such as fibre reinforced polymer composites, metallic foams and sandwich structures in order to use them as crash barriers. This paper discusses the response of carbon fibre reinforced polymer (CFRP) tubes and their failure mechanisms during side impact. The energy absorption of CFRP tubes is compared to similar Aluminium tubes. The response of the CFRP tubes during impact was modelled using Abaqus finite element software with a composite fabric material model. The material inputs were given based on standard tension and compression test results and the in-plane damage was defined based on cyclic shear tests. The failure modes and energy absorption observed during the tests were well represented by the finite element model.
Sacchi, Emanuele; Sayed, Tarek; El-Basyouny, Karim
2016-09-01
Recently, important advances in road safety statistics have been brought about by methods able to address issues other than the choice of the best error structure for modeling crash data. In particular, accounting for spatial and temporal interdependence, i.e., the notion that the collision occurrence of a site or unit times depend on those of others, has become an important issue that needs further research. Overall, autoregressive models can be used for this purpose as they can specify that the output variable depends on its own previous values and on a stochastic term. Spatial effects have been investigated and applied mostly in the context of developing safety performance functions (SPFs) to relate crash occurrence to highway characteristics. Hence, there is a need for studies that attempt to estimate the effectiveness of safety countermeasures by including the spatial interdependence of road sites within the context of an observational before-after (BA) study. Moreover, the combination of temporal dynamics and spatial effects on crash frequency has not been explored in depth for SPF development. Therefore, the main goal of this research was to carry out a BA study accounting for spatial effects and temporal dynamics in evaluating the effectiveness of a road safety treatment. The countermeasure analyzed was the installation of traffic signals at unsignalized urban/suburban intersections in British Columbia (Canada). The full Bayes approach was selected as the statistical framework to develop the models. The results demonstrated that zone variation was a major component of total crash variability and that spatial effects were alleviated by clustering intersections together. Finally, the methodology used also allowed estimation of the treatment's effectiveness in the form of crash modification factors and functions with time trends. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stigson, Helena; Hill, Julian
2009-10-01
The objective of this study was to evaluate a model for a safe road transport system, based on some safety performance indicators regarding the road user, the vehicle, and the road, by using crashes with fatally and seriously injured car occupants. The study also aimed to evaluate whether the model could be used to identify system weaknesses and components (road user, vehicles, and road) where improvements would yield the highest potential for further reductions in serious injuries. Real-life car crashes with serious injury outcomes (Maximum Abbreviated Injury Scale 2+) were classified according to the vehicle's safety rating by Euro NCAP (European New Car Assessment Programme) and whether the vehicle was fitted with ESC (Electronic Stability Control). For each crash, the road was also classified according to EuroRAP (European Road Assessment Programme) criteria, and human behavior in terms of speeding, seat belt use, and driving under the influence of alcohol/drugs. Each crash was compared and classified according to the model criteria. Crashes where the safety criteria were not met in more than one of the 3 components were reclassified to identify whether all the components were correlated to the injury outcome. In-depth crash injury data collected by the UK On The Spot (OTS) accident investigation project was used in this study. All crashes in the OTS database occurring between 2000 and 2005 with a car occupant with injury rated MAIS2+ were included, for a total of 101 crashes with 120 occupants. It was possible to classify 90 percent of the crashes according to the model. Eighty-six percent of the occupants were injured when more than one of the 3 components were noncompliant with the safety criteria. These cases were reclassified to identify whether all of the components were correlated to the injury outcome. In 39 of the total 108 cases, at least two components were still seen to interact. The remaining cases were only related to one of the safety criteria, namely, the road user (26), the vehicle (19), and the road (24). The criteria for the road and the vehicle did not address multiple event crashes, rear-end crashes, hitting stationary/parked vehicles, or trailers. The model for a safe road transport system was found useful to classify fatal and serious road vehicle crashes. It was possible to classify 90 percent of the crashes according to the safety road transport model. For all these cases it was possible to identify weaknesses and parts of the road transport system with the highest potential to prevent fatal and serious injuries. Injury outcomes were mostly related to an interaction between the 3 components: the road, the vehicle, and the road user.
Investigation of an alleged mechanism of finger injury in an automobile crash.
Stacey, Stephen; Kent, Richard
2006-07-01
This investigation centers on the case of an adult male whose finger was allegedly amputated by the steering wheel of his car during a crash. The subject claimed to have been driving with his left index finger inserted through a hole in the spoke of his steering wheel and was subsequently involved in an offset frontal collision with a tree. The finger was found to be cleanly severed at the mid-shaft of the proximal phalanx after the crash. This injury was alleged to have been caused by inertial loading from the rotation of the steering wheel during the crash. To determine whether this injury mechanism was plausible, three laboratory tests representing distinct loading scenarios were carried out with postmortem human surrogates loaded dynamically by the subject's steering wheel. It was found that the inertial loads generated in this loading scenario are insufficient to amputate the finger. Additionally, artificially constraining the finger to force an amputation to occur revealed that a separation at the proximal interphalangeal joint occurs rather than a bony fracture of the proximal phalanx. Based on these biomechanical tests, it can be concluded that the subject's injury did not occur during the automobile crash in question. Furthermore, it can be shown that the injury was self-inflicted to fraudulently claim on an insurance policy.
Bélanger, Alexandre; Gagnon, Sylvain; Stinchcombe, Arne
2015-09-01
We examined the crash avoidance behaviors of older and middle-aged drivers in reaction to six simulated challenging road events using two different driving simulator platforms. Thirty-five healthy adults aged 21-36 years old (M=28.9±3.96) and 35 healthy adults aged 65-83 years old (M=72.1±4.34) were tested using a mid-level simulator, and 27 adults aged 21-38 years old (M=28.6±6.63) and 27 healthy adults aged 65-83 years old (M=72.7±5.39) were tested on a low-cost desktop simulator. Participants completed a set of six challenging events varying in terms of the maneuvers required, avoiding space given, directional avoidance cues, and time pressure. Results indicated that older drivers showed higher crash risk when events required multiple synchronized reactions. In situations that required simultaneous use of steering and braking, older adults tended to crash significantly more frequently. As for middle-aged drivers, their crashes were attributable to faster driving speed. The same age-related driving patterns were observed across simulator platforms. Our findings support the hypothesis that older adults tend to react serially while engaging in cognitively challenging road maneuvers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Physiological, biochemical, and performance responses to a 24-hour crash diet.
DOT National Transportation Integrated Search
1981-04-01
Twelve overweight male subjects were evaluated once on a normal diet and once on a 24-h crash diet and (low calorie liquids only). Experiments were 1 wk apart. During 2 1/4-h complex performance tests given at the end of the diet period, subjects bre...
DOT National Transportation Integrated Search
2002-03-29
In 1998, the United States experienced nearly 400,000 crashes involving large trucks, resulting in approximately 5,000 deaths. Although new research (e.g., the Large Truck Crash Causation Project) is being planned by the Federal Motor Carrier Safety ...
Evidence of Human Induce Factors in Automotive Crashes in Nigeria
Abidemi, Awopeju K.
2013-01-01
Nigeria is one of the countries in Africa highly affected by automotive crashes which led to establishment of Federal Road Safety Corps (FRSC). The organization fought and is fighting against reckless driving in the country to prevent loss of life through automotive crashes. The record of the organization and the Statistical investigation of the researcher reveal that most of the crashes were due to human error such as alcoholism, inexperience and peer influence on the high-way. The data for the research was collected from published report of FRSC 2012 and analyzed using chi-square dependency test and charts due to the nature of the presentation. Ratios were used to determine Number of people killed per Road Total Crashes (RTC), Casualty per RTC and RTC severity Index from 2007 to 2010 in the country. Among the human induced factors, it was discovered that most of the drivers involved in road crashes were drunk during the period and the years of experience play major role in the automotive crashes as drivers with less than 2years of experience were more involved than the other groups. In the consideration of life style of drivers involve in road crashes, it was discovered that drivers with less than 30years of age are vulnerable to road crashes than drivers with ages higher than 30years. Among the findings, the most common automobile in Nigeria road crashes is commercial buses in the years considered. It was recommended that proper and adequate training should be given to drivers on the high-way to prevent injuries and loss of life. Alcoholism should be discouraged in totality and age of obtaining drivers license could be increased in developing countries such as Nigeria. PMID:24406969
Cannabis and crash responsibility while driving below the alcohol per se legal limit.
Romano, Eduardo; Voas, Robert B; Camp, Bayliss
2017-11-01
There is a growing interest in how extensively the use of marijuana by drivers relates to crash involvement. While cognitive, lab-based studies are consistent in showing that the use of cannabis impairs driving tasks, epidemiological, field-based studies have been inconclusive regarding whether cannabis use causes an increased risk of accidents. There is ample evidence that the presence of cannabis among drivers with a BAC≥0.08g/dL highly increases the likelihood of a motor vehicle crash. Less clear, however, is the contribution of cannabis to crash risk when drivers have consumed very little or no alcohol. This effort addresses this gap in knowledge. We took advantage of a unique database that merged fatal crashes in the California Statewide Integrated Traffic Records System (SWITRS) and the Fatality Analysis Reporting System (FARS), which allows for a precise identification of crash responsibility. To account for recent increase in lab testing, we restricted our sample to cover only the years 1993-2009. A total of 4294 drivers were included in the analyses. Descriptive analyses and logistic regressions were run to model the contribution of alcohol and drugs to the likelihood of being responsible in a fatal crash. We found evidence that compared with drivers negative for alcohol and cannabis, the presence of cannabis elevates crash responsibility in fatal crashes among drivers at zero BACs (OR=1.89) and with 0
B-29 Superfortress Engine in the Altitude Wind Tunnel
1944-07-21
The resolution of the Boeing B-29 Superfortress’ engine cooling problems was one of the Aircraft Engine Research Laboratory’s (AERL) key contributions to the World War II effort. The B-29 leapfrogged previous bombers in size, speed, and altitude capabilities. The B–29 was intended to soar above anti-aircraft fire and make pinpoint bomb drops onto strategic targets. Four Wright Aeronautical R-3350 engines powered the massive aircraft. The engines, however, frequently strained and overheated due to payload overloading. This resulted in a growing number of engine fires that often resulted in crashes. The military asked the NACA to tackle the overheating issue. Full-scale engine tests on a R–3350 engine in the Prop House demonstrated that a NACA-designed impeller increased the fuel injection system’s flow rate. Single-cylinder studies resolved a valve failure problem by a slight extension of the cylinder head, and researchers in the Engine Research Building combated uneven heating with a new fuel injection system. Investigations during the summer of 1944 in the Altitude Wind Tunnel, which could simulate flight conditions at high altitudes, led to reduction of drag and improved air flow by reshaping the cowling inlet and outlet. The NACA modifications were then flight tested on a B-29 bomber that was brought to the AERL.
Koopmans, Joy M; Friedman, Lee; Kwon, Soyang; Sheehan, Karen
2015-04-01
Describe age-based urban pedestrian versus auto crash characteristics and identify crash characteristics associated with injury severity. Secondary analysis of the 2004-2010 National Highway and Traffic Safety Administration database for Illinois. All persons in Chicago crashes with age data who were listed as pedestrians (n=7175 child age ≤19 yo, n=16,398 adult age ≥20 yo) were included. Incidence and crash characteristics were analyzed by age groups and year. Main outcome measures were incidence, crash setting, and injury severity. Multivariate logistic regression analysis was performed to estimate injury severity by crash characteristics. Overall incidence was higher for child (146.6 per 100,000) versus adult (117.3 per 100,000) pedestrians but case fatality rate was lower (0.7% for children, 1.7% for adults). Child but not adult pedestrian injury incidence declined over time (trend test p<0.0001 for <5 yo, 5-9 yo, and 10-14 yo; p<0.05 for 15-19 yo, p=0.96 for ≥20 yo). Most crashes for both children and adults took place during optimal driving conditions. Injuries were more frequent during warmer months for younger age groups compared to older (χ(2)p<0.001). Midblock crashes increased as age decreased (p<0.0001 for trend). Most crashes occurred at sites with sub-optimal traffic controls but varied by age (p<0.0001 for trend). Crashes were more likely to be during daylight on dry roads in clear weather conditions for younger age groups compared to older (χ(2)p<0.001). Daylight was associated with less severe injury (child OR 0.93, 95% CI 0.87-0.98; adult OR 0.90, 95% CI 0.87-0.93). The incidence of urban pedestrian crashes declined over time for child subgroups but not for adults. The setting of pedestrian crashes in Chicago today varies by age but is similar to that seen in other urban locales previously. Injuries for all age groups tend to be less severe during daylight conditions. Age-based prevention efforts may prove beneficial. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wall and corner fire tests on selected wood products
H. C. Tran; M. L. Janssens
1991-01-01
As part of a fire growth program to develop and validate a compartment fire model, several bench-scale and full-scale tests were conducted. This paper reports the full-scale wall and corner test results of step 2 of this study. A room fire test following the ASTM proposed standard specifications was used for these full-scale tests. In step 1, we investigated the...
Full scale tank car coupler impact tests
DOT National Transportation Integrated Search
2003-11-15
Full scale tests were performed to investigate various : aspects of tank car behavior during coupler impacts. A tank car : was equipped with 37 accelerometers and an instrumented : coupler. Two series of full scale coupler impact tests, : comprising ...
Investigation on local ductility of 6xxx-aluminium sheet alloys
NASA Astrophysics Data System (ADS)
Henn, P.; Liewald, M.; Sindel, M.
2017-09-01
Within the scope of this paper influence of localization of loading conditions on the ductility of two different 6xxx-aluminium sheet alloys is investigated. In order to improve the prediction of sheet material crash performance, material parameters based on uniaxial tensile and notched tensile tests are determined with varying consolidation areas. Especially evaluation methods based on the localized necking behaviour in tensile tests are investigated. The potential of local ductility characterisation is validated with results of Edge-Compression Tests (ECT) which applies load conditions that occur in actual crash events.
Crash Frequency Analysis Using Hurdle Models with Random Effects Considering Short-Term Panel Data
Chen, Feng; Ma, Xiaoxiang; Chen, Suren; Yang, Lin
2016-01-01
Random effect panel data hurdle models are established to research the daily crash frequency on a mountainous section of highway I-70 in Colorado. Road Weather Information System (RWIS) real-time traffic and weather and road surface conditions are merged into the models incorporating road characteristics. The random effect hurdle negative binomial (REHNB) model is developed to study the daily crash frequency along with three other competing models. The proposed model considers the serial correlation of observations, the unbalanced panel-data structure, and dominating zeroes. Based on several statistical tests, the REHNB model is identified as the most appropriate one among four candidate models for a typical mountainous highway. The results show that: (1) the presence of over-dispersion in the short-term crash frequency data is due to both excess zeros and unobserved heterogeneity in the crash data; and (2) the REHNB model is suitable for this type of data. Moreover, time-varying variables including weather conditions, road surface conditions and traffic conditions are found to play importation roles in crash frequency. Besides the methodological advancements, the proposed technology bears great potential for engineering applications to develop short-term crash frequency models by utilizing detailed data from field monitoring data such as RWIS, which is becoming more accessible around the world. PMID:27792209
Perception and biodynamics in unalerted precrash response.
McGehee, Daniel V; Carsten, Oliver M J
2010-01-01
This research seeks to better understand unalerted driver response just prior to a serious vehicle crash. Few studies have been able to view a crash from the inside-with a camera focused on the driver and occupants. Four studies are examined: 1) a high-fidelity simulator study with an unalerted intersection incursion crash among 107 drivers; 2) four crashes from the Virginia Tech Transportation Institute (VTTI) 100 car study; 3) 58 crashes from vehicles equipped with an event triggered video recorder; and 4) a custom-designed high-fidelity simulator experiment that examined unalerted driver response to a head-on crash with a heavy truck. Analyses concentrate on decomposing driver perception, action, facial and postural changes with a focus on describing the neurophysiologic mechanisms designed to respond to danger. Results indicate that drivers involved in severe crashes generally have preview that an impact is about to occur. They respond first with vehicle control inputs (accelerator pedal release) along with facial state changes and withdrawal of the head back towards the head restraint. These responses frequently occur almost simultaneously, providing safety system designers with a number of reliable driver performance measures to monitor. Understanding such mechanisms may assist future advanced driver assistance systems (ADAS), advanced restraints, model development of advanced anthropomorphic test dummies (ATDs), injury prediction and the integration of active and passive safety systems.
Jafari Anarkooli, A; Hadji Hosseinlou, M
2016-02-01
Many studies have examined different factors contributing to the injury severity of crashes; however, relatively few studies have focused on the crashes by considering the specific effects of lighting conditions. This research investigates lighting condition differences in the injury severity of crashes using 3-year (2009-2011) crash data of two-lane rural roads of the state of Washington. Separate ordered-probit models were developed to predict the effects of a set of factors expected to influence injury severity in three lighting conditions; daylight, dark, and dark with street lights. A series of likelihood ratio tests were conducted to determine if these lighting condition models were justified. The modeling results suggest that injury severity in specific lighting conditions are associated with contributing factors in different ways, and that such differences cannot be uncovered by focusing merely on one aggregate model. Key differences include crash location, speed limit, shoulder width, driver action, and three collision types (head-on, rear-end, and right-side impact collisions). This paper highlights the importance of deploying street lights at and near intersections (or access points) on two-lane rural roads because injury severity highly increases when crashes occur at these points in dark conditions. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.
Pilot Age and Error in Air-Taxi Crashes
Rebok, George W.; Qiang, Yandong; Baker, Susan P.; Li, Guohua
2010-01-01
Introduction The associations of pilot error with the type of flight operations and basic weather conditions are well documented. The correlation between pilot characteristics and error is less clear. This study aims to examine whether pilot age is associated with the prevalence and patterns of pilot error in air-taxi crashes. Methods Investigation reports from the National Transportation Safety Board for crashes involving non-scheduled Part 135 operations (i.e., air taxis) in the United States between 1983 and 2002 were reviewed to identify pilot error and other contributing factors. Crash circumstances and the presence and type of pilot error were analyzed in relation to pilot age using Chi-square tests. Results Of the 1751 air-taxi crashes studied, 28% resulted from mechanical failure, 25% from loss of control at landing or takeoff, 7% from visual flight rule conditions into instrument meteorological conditions, 7% from fuel starvation, 5% from taxiing, and 28% from other causes. Crashes among older pilots were more likely to occur during the daytime rather than at night and off airport than on airport. The patterns of pilot error in air-taxi crashes were similar across age groups. Of the errors identified, 27% were flawed decisions, 26% were inattentiveness, 23% mishandled aircraft kinetics, 15% mishandled wind and/or runway conditions, and 11% were others. Conclusions Pilot age is associated with crash circumstances but not with the prevalence and patterns of pilot error in air-taxi crashes. Lack of age-related differences in pilot error may be attributable to the “safe worker effect.” PMID:19601508
40 CFR 86.1372-2007 - Measuring smoke emissions within the NTE zone.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Zero and full-scale (100 percent opacity) span shall be adjusted prior to testing. (3) Post test zero...-test and post-test checks shall be less than two percent of full-scale. (4) Opacimeter calibration and... adjusted prior to testing. (3) Post-test zero and full scale span checks shall be performed. For valid...
40 CFR 86.1372 - Measuring smoke emissions within the NTE zone.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Zero and full-scale (100 percent opacity) span shall be adjusted prior to testing. (3) Post test zero...-test and post-test checks shall be less than two percent of full-scale. (4) Opacimeter calibration and... adjusted prior to testing. (3) Post-test zero and full scale span checks shall be performed. For valid...
40 CFR 86.1372-2007 - Measuring smoke emissions within the NTE zone.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Zero and full-scale (100 percent opacity) span shall be adjusted prior to testing. (3) Post test zero...-test and post-test checks shall be less than two percent of full-scale. (4) Opacimeter calibration and... adjusted prior to testing. (3) Post-test zero and full scale span checks shall be performed. For valid...
40 CFR 86.1372-2007 - Measuring smoke emissions within the NTE zone.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Zero and full-scale (100 percent opacity) span shall be adjusted prior to testing. (3) Post test zero...-test and post-test checks shall be less than two percent of full-scale. (4) Opacimeter calibration and... adjusted prior to testing. (3) Post-test zero and full scale span checks shall be performed. For valid...
40 CFR 86.1372-2007 - Measuring smoke emissions within the NTE zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Zero and full-scale (100 percent opacity) span shall be adjusted prior to testing. (3) Post test zero...-test and post-test checks shall be less than two percent of full-scale. (4) Opacimeter calibration and... adjusted prior to testing. (3) Post-test zero and full scale span checks shall be performed. For valid...
Langford, Jim; Fitzharris, Michael; Koppel, Sjaanie; Newstead, Stuart
2004-12-01
Most licensing jurisdictions in Australia maintain mandatory assessment programs targeting older drivers, whereby a driver reaching a specified age is required to prove his or her fitness to drive through medical assessment and/or on-road testing. Previous studies both in Australia and elsewhere have consistently failed to demonstrate that age-based mandatory assessment results in reduced crash involvement for older drivers. However studies that have based their results upon either per-population or per-driver crash rates fail to take into account possible differences in driving activity. Because some older people maintain their driving licenses but rarely if ever drive, the proportion of inactive license-holders might be higher in jurisdictions without mandatory assessment relative to jurisdictions with periodic license assessment, where inactive drivers may more readily either surrender or lose their licenses. The failure to control for possible differences in driving activity across jurisdictions may be disguising possible safety benefits associated with mandatory assessment. The current study compared the crash rates of drivers in Melbourne, Australia, where there is no mandatory assessment and Sydney, Australia, where there is regular mandatory assessment from 80 years of age onward. The crash rate comparisons were based on four exposure measures: per population, per licensed driver, per distance driven, and per time spent driving. Poisson regression analysis incorporating an offset to control for inter-jurisdictional road safety differences indicated that there was no difference in crash risk for older drivers based on population. However drivers aged 80 years and older in the Sydney region had statistically higher rates of casualty crash involvement than their Melbourne counterparts on a per license issued basis (RR: 1.15, 1.02-1.29, p=0.02) and time spent driving basis (RR: 1.19, 1.06-1.34, p=0.03). A similar trend was apparent based on distance travelled but was of borderline statistical significance (RR: 1.11, 0.99-1.25, p=0.07). Collectively, it can be inferred from these findings that mandatory license re-testing schemes of the type evaluated have no demonstrable road safety benefits overall. Further research to resolve this on-going policy debate is discussed and recommended.