Science.gov

Sample records for full-scale laboratory investigations

  1. Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations

    SciTech Connect

    Michael S. Bruno

    2005-12-31

    This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer

  2. Theoretical analysis of the kinetic performance of laboratory- and full-scale composting systems.

    PubMed

    Baptista, Marco; Silveira, Ana; Antunes, Fernando

    2012-07-01

    Composting research at laboratory-scale is critical for the development of optimized full-scale plants. Discrepancies between processes at laboratory-scale and full-scale systems have been investigated in terms of heat balances, but a kinetic analysis of this issue is still missing. In this study, the composting rate at laboratory-scale was, on average, between 1.9 and 5.7 times faster than in full-scale systems for a set of published studies using municipal solid waste, food waste or similar materials. Laboratory-scale performance and full-scale systems were limited to 71 and 46%, respectively, of their maximum potential due to poor management of environmental process conditions far from their optimum. The main limiting environmental factor was found to be moisture content, followed by temperature. Besides environmental factors, waste composition and particle size were identified as factors accounting for kinetic differences between laboratory- and full-scale systems. Overall, this study identifies those factors that affect the kinetics of the composting process most and revealed a significant margin for reducing process time in full-scale composting.

  3. Anaerobic Ammonium Oxidation: From Laboratory to Full-Scale Application

    PubMed Central

    Zhang, Jian

    2013-01-01

    From discovery in the early 1990s to completion of full-scale anammox reactor, it took almost two decades to uncover the secret veil of anammox bacteria. There were three milestones during the commercialization of anammox: the development of the first enrichment culture medium, the completion of the first commercial anammox reactor, and the fast start-up of full-scale anammox plant. Till now, the culture of anammox bacteria experienced a big progress through two general strategies: (a) to start up a reactor from scratch and (b) to seed the reactor with enriched anammox sludge. The first full-scale anammox reactor took 3.5 years to realize full operation using the first approach due to several reasons besides the lack of anammox sludge. On the other hand, the first Asian anammox reactor started up in two months, thanks to the availability of anammox seed. Along with the implementation of anammox plants, anammox eventually becomes the priority choice for ammonium wastewater treatment. PMID:23956985

  4. Investigation of a low NOx full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An atmospheric test program was conducted to evaluate a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the vortex air blast (VAB) concept, was tested as a 22.0-cm diameter model in the early development phases to arrive at basic design and performance criteria. Final demonstration testing was carried out on a full scale combustor of 0.66-m diameter. Variable geometry dilution ports were incorporated to allow operation of the combustor across the range of conditions between idle (T(in) = 422 K, T(out) = 917 K) and cruise (T(in) = 833 K, T(out) - 1778 K). Test results show that the design could meet the program NOx goal of 1.0 g NO2/kg fuel at a one-atmospheric simulated cruise condition.

  5. Facilities and Methods Used in Full-scale Airplane Crash-fire Investigation

    NASA Technical Reports Server (NTRS)

    Black, Dugald O.

    1952-01-01

    The facilities and the techniques employed in the conduct of full scale airplane crash-fire studies currently being conducted at the NACA Lewis laboratory are discussed herein. This investigation is part of a comprehensive study of the airplane crash-fire problem. The crash configuration chosen, the general physical layout of the crash site, the test methods, the instrumentation, the data-recording systems, and the post-crash examination procedure are described

  6. Biogas production from cheese whey wastewater: laboratory- and full-scale studies.

    PubMed

    Stamatelatou, K; Giantsiou, N; Diamantis, V; Alexandridis, C; Alexandridis, A; Aivasidis, A

    2014-01-01

    A two-phase system for biogas production from cheese whey wastewater (CWW) was designed, set up and operated at laboratory and full scale for a whole cheese production season (8-9 months). The high efficiency and stability of the laboratory-scale system was demonstrated under various organic loading rates (OLRs) reaching 13 g chemical oxygen demand (COD) L(-1)d(-1) and producing up to 9 L L(-1)d(-1) of biogas (approximately 55% in methane). The COD removal was above 95% and the pH was maintained above 6.3 without any chemical addition. The full-scale system was operated at lower OLRs than its normal capacity, following the good response and high stability in disturbances of the laboratory-scale unit.

  7. Potential of alternative sorbents for desulphurization: from laboratory tests to the full-scale combustion unit

    SciTech Connect

    Zbyszek Szeliga; Dagmar Juchelkova; Bohumir Cech; Pavel Kolat; Franz Winter; Adam J. Campen; Tomasz S. Wiltowski

    2008-09-15

    At present, natural limestone is used for the desulphurization of waste gases from the combustion of fossil fuels. However, it is important to save all primary resources, such as limestone, for the future. The researchers focused on finding alternative sorbents for the purpose of desulphurization in a dry additive method, which would become the alternative for natural limestone. This paper is primarily focused on desulphurization tests of selected substances. Tests were initially conducted on the laboratory scale, followed by pilot and full-scale combustion units. 15 refs., 9 figs., 5 tabs.

  8. Introducing sequential managed aquifer recharge technology (SMART) - From laboratory to full-scale application.

    PubMed

    Regnery, Julia; Wing, Alexandre D; Kautz, Jessica; Drewes, Jörg E

    2016-07-01

    Previous lab-scale studies demonstrated that stimulating the indigenous soil microbial community of groundwater recharge systems by manipulating the availability of biodegradable organic carbon (BDOC) and establishing sequential redox conditions in the subsurface resulted in enhanced removal of compounds with redox-dependent removal behavior such as trace organic chemicals. The aim of this study is to advance this concept from laboratory to full-scale application by introducing sequential managed aquifer recharge technology (SMART). To validate the concept of SMART, a full-scale managed aquifer recharge (MAR) facility in Colorado was studied for three years that featured the proposed sequential configuration: A short riverbank filtration passage followed by subsequent re-aeration and artificial recharge and recovery. Our findings demonstrate that sequential subsurface treatment zones characterized by carbon-rich (>3 mg/L BDOC) to carbon-depleted (≤1 mg/L BDOC) and predominant oxic redox conditions can be established at full-scale MAR facilities adopting the SMART concept. The sequential configuration resulted in substantially improved trace organic chemical removal (i.e. higher biodegradation rate coefficients) for moderately biodegradable compounds compared to conventional MAR systems with extended travel times in an anoxic aquifer. Furthermore, sorption batch experiments with clay materials dispersed in the subsurface implied that sorptive processes might also play a role in the attenuation and retardation of chlorinated flame retardants during MAR. Hence, understanding key factors controlling trace organic chemical removal performance during SMART allows for systems to be engineered for optimal efficiency, resulting in improved removal of constituents at shorter subsurface travel times and a potentially reduced physical footprint of MAR installations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes.

    PubMed

    Crocetti, Gregory R; Banfield, Jillian F; Keller, Jürg; Bond, Philip L; Blackall, Linda L

    2002-11-01

    Laboratory-scale sequencing batch reactors (SBRs) as models for wastewater treatment processes were used to identify glycogen-accumulating organisms (GAOs), which are thought to be responsible for the deterioration of enhanced biological phosphorus removal (EBPR). The SBRs (called Q and T), operated under alternating anaerobic-aerobic conditions typical for EBPR, generated mixed microbial communities (sludges) demonstrating the GAO phenotype. Intracellular glycogen and poly-beta-hydroxyalkanoate (PHA) transformations typical of efficient EBPR occurred but polyphosphate was not bioaccumulated and the sludges contained 1.8% P (sludge Q) and 1.5% P (sludge T). 16S rDNA clone libraries were prepared from DNA extracted from the Q and T sludges. Clone inserts were grouped into operational taxonomic units (OTUs) by restriction fragment length polymorphism banding profiles. OTU representatives were sequenced and phylogenetically analysed. The Q sludge library comprised four OTUs and all six determined sequences were 99.7% identical, forming a cluster in the gamma-Proteobacteria radiation. The T sludge library comprised eight OTUs and the majority of clones were Acidobacteria subphylum 4 (49% of the library) and candidate phylum OP10 (39% of the library). One OTU (two clones, of which one was sequenced) was in the gamma-Proteobacteria radiation with 95% sequence identity to the Q sludge clones. Oligonucleotide probes (called GAOQ431 and GAOQ989) were designed from the gamma-Proteobacteria clone sequences for use in fluorescence in situ hybridization (FISH); 92% of the Q sludge bacteria and 28% of the T sludge bacteria bound these probes in FISH. FISH and post-FISH chemical staining for PHA were used to determine that bacteria from a novel gamma-Proteobacteria cluster were phenotypically GAOs in one laboratory-scale SBR and two full-scale wastewater treatment plants. It is suggested that the GAOs from the novel cluster in the gamma-Proteobacteria radiation be named

  10. Characterisation of recycled mixed plastic solid wastes: Coupon and full-scale investigation.

    PubMed

    Bajracharya, Rohan Muni; Manalo, Allan C; Karunasena, Warna; Lau, Kin-Tak

    2016-02-01

    In Australia, the plastic solid waste (PSW) comprises 16% by weight of municipal solid waste but only about one-fourth are recycled. One of the best options to increase the recycling rate of mixed PSW is to convert them into products suitable for construction. However, a comprehensive understanding on the mechanical behaviour of mixed PSW under different loading conditions is important for their widespread use as a construction material. This study focuses on investigating the mechanical behaviour of recycled mixed PSW containing HDPE, LDPE and PP using coupon and full-scale specimens. From coupon test, the strength values were found to be 14.8, 19.8, 20, 5.6MPa in tension, compression, flexure and shear respectively, while the modulus of elasticity are 0.91, 1.03, 0.72GPa in tension, compression and flexure respectively. The coefficient of variance of the measured properties for coupon and fullscale specimens was less than 10% indicating that consistent material properties can be obtained for mixed PSW. More importantly, the strength properties of mixed PSW are comparable to softwood structural timber. The flexural behaviour of full-scale specimens was also predicted using fibre model analysis and finite element modelling. Comparison showed that using coupon specimen's properties, the flexural behaviour of the full-scale specimens can be predicted reliably which can eliminate the costly and time consuming arrangements for full-scale experimental tests. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Model Investigation of Technique for Full Scale Landing Impact Tests at Simulated Lunar Gravity

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Model Investigation of Technique for Full Scale Landing Impact Tests at Simulated Lunar Gravity. An investigation of a 1/6-scale dynamic model has been made to develop and evaluate a technique for conducting full-scale landing-impact tests at simulated lunar gravity. Landings were made at touchdown pitch attitudes of -15 degrees, 0 degrees, and 15 degrees. All landings were made with two gear pads forward and at a roll attitude of 0 degrees. Both roll and yaw attitudes were constrained. Vertical landing speed was varied from 5 to 15 feet per second (1.5 to 4.6 m/s) and horizontal speed was varied from 0 to 10 feet per second (0 to 3.0 m/s). Most of the landings were made at a vertical and horizontal speed of 10 feet per second or 3.0 m/s (45 degree flight-path angle) while pitch attitude and surface characteristics, friction and topography, were varied. These parameters were investigated with the free-body earth-gravity and the simulated lunar-gravity test techniques. The landings were made at a model mass corresponding to a full-scale lunar weight (force due to gravity) of 1,440 pounds (6.41 kN) or an earth weight of 8,640 pounds (38.4 kN). [Entire movie available on DVD from CASI as Doc ID 20070030977. Contact help@sti.nasa.gov

  12. Sand bar beach stability under river stage fluctuations, full-scale laboratory experiments

    NASA Astrophysics Data System (ADS)

    Alvarez, L.; Schmeeckle, M.

    2010-12-01

    This research examines slope failure and seepage erosion of sand bar beaches due to rapid fluctuations in river stage. River engineering structures sometimes produce rapid stage fluctuations, especially hydroelectric dams used to supply electricity at peak demand. During a rapid drawdown in river stage, the groundwater level in the banks and exposed bars becomes higher than the river stage. Thus, pore water pressures in the banks and bars becomes elevated, possibly causing failure of bar or bank faces. As well, exfiltrating groundwater can cause seepage erosion. In this study we are focused on simulating the fluctuating stages in sandbar beaches in Grand Canyon on the Colorado River downstream of Glen Canyon Dam. Maximal downramp and upramp rates have been imposed on Glen Canyon dam operations. However, little is known about whether these imposed rates are necessary or sufficient. A full-scale physical model of a two-dimensional beach face (8 m long, 2.5 m high and 0.5 m wide) was constructed for the experiments. River stage and groundwater fluctuations can be simulated in this beach stability slot. We present data from multiple laboratory experiments measuring: (1) soil characteristics, establishing similitude with sandbar parameters in the field, (2) differential mass soil failure at fine time resolution, estimated as bar displacement using string potentiometers, (3) topographic profile at initial and final conditions and (3) piezometric head along the beach profile. In the laboratory we replicate a range of stage and groundwater fluctuations which occur, or could occur, in Grand Canyon. These scenarios incorporate US Geological Survey field measurements of river discharge and stage, phreatic surface, and sandbar bathymetry. We also test synthetic stage fluctuation scenarios. Experiments conducted at low (12 degree) slopes have shown significant seepage erosion at elevated groundwater levels scenarios leading to the presence of gullies and rills at the bar face

  13. Model Investigation of Technique for Full Scale Landing Impact Tests at Simulated Lunar Gravity

    NASA Technical Reports Server (NTRS)

    Blanchard, Ulysse J.

    1965-01-01

    An investigation of a 1/6-scale dynamic model has been made to develop and evaluate a technique for conducting full-scale landing-impact tests at simulated lunar gravity. Landings were made at touchdown pitch attitudes of -15 degrees, 0 degrees, and 15 degrees. All landings were made with two gear pads forward and at a roll attitude of 0 degrees. Both roll and yaw attitudes were constrained. Vertical landing speed was varied from 5 to 15 feet per second (1.5 to 4.6 m/s) and horizontal speed was varied from 0 to 10 feet per second (0 to 3.0 m/s). Most of the landings were made at a vertical and horizontal speed of 10 feet per second or 3.0 m/s (45 degree flight-path angle) while pitch attitude and surface characteristics, friction and topography, were varied. These parameters were investigated with the free-body earth-gravity and the simulated lunar-gravity test techniques. The landings were made at a model mass corresponding to a full-scale lunar weight (force due to gravity) of 1,440 pounds (6.41 kN) or an earth weight of 8,640 pounds (38.4 kN).

  14. A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    NASA Technical Reports Server (NTRS)

    Greene, N.; Thesken, J. C.; Murthy, P. L. N.; Phoenix, S. L.; Palko, J.; Eldridge, J.; Sutter, J.; Saulsberry, R.; Beeson, H.

    2006-01-01

    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Agency's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar(TradeMark) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar(TradeMark) filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However, due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to the experimental investigation reported in [1] and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel's residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV

  15. A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.; Greene, N.; Palko, Joseph L.; Eldridge, Jeffrey; Sutter, James; Saulsberry, R.; Beeson, H.

    2009-01-01

    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Administration's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to a previously reported experimental investigation and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel s residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV

  16. Wind-Tunnel Investigation of a Full-Scale Canard-Configured General Aviation Airplane

    NASA Technical Reports Server (NTRS)

    Yip, L. P.

    1985-01-01

    An investigation was conducted in the Langley 30- by 60-Foot Tunnel to determine the aerodynamic characteristics of a powered, full-scale model of a general aviation airplane employing a canard. Although primary emphasis of the investigation was placed on evaluating the aerodynamic performance and the stability and control characteristics of the basic configuration, tests were also conducted to study the following effects of varying the basic configuration: effect of Reynolds number; effect of canard; effect of outboard wing leading-edge droop; effect of center-of-gravity location; effect of elevator trim; effect of landing gear; effect of lateral-directional control; effect of power; effect of fixed transition; effect of water spray; effects of canard incidence, canard airfoil section, and canard position; and effects of winglets and upper winglet size. Additional aspects of the study were to determine the boundary-layer transition characteristics of airfoil surfaces and the effect of fixing the boundary layer to be turbulent by means of a transition strip near the leading edge. The tests were conducted at Reynolds numbers from 0.60 x 10 to the 6th power to 2.25x10 to the 6th power, based on the wing mean aerodynamic chord, at angles of attack from -4.5 deg to 41.5 deg, and at angles of sideslip from -15 deg to 15 deg.

  17. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters.

    PubMed

    Haig, Sarah-Jane; Quince, Christopher; Davies, Robert L; Dorea, Caetano C; Collins, Gavin

    2014-09-15

    Previous laboratory-scale studies to characterise the functional microbial ecology of slow sand filters have suffered from methodological limitations that could compromise their relevance to full-scale systems. Therefore, to ascertain if laboratory-scale slow sand filters (L-SSFs) can replicate the microbial community and water quality production of industrially operated full-scale slow sand filters (I-SSFs), eight cylindrical L-SSFs were constructed and were used to treat water from the same source as the I-SSFs. Half of the L-SSFs sand beds were composed of sterilized sand (sterile) from the industrial filters and the other half with sand taken directly from the same industrial filter (non-sterile). All filters were operated for 10 weeks, with the microbial community and water quality parameters sampled and analysed weekly. To characterize the microbial community phyla-specific qPCR assays and 454 pyrosequencing of the 16S rRNA gene were used in conjunction with an array of statistical techniques. The results demonstrate that it is possible to mimic both the water quality production and the structure of the microbial community of full-scale filters in the laboratory - at all levels of taxonomic classification except OTU - thus allowing comparison of LSSF experiments with full-scale units. Further, it was found that the sand type composing the filter bed (non-sterile or sterile), the water quality produced, the age of the filters and the depth of sand samples were all significant factors in explaining observed differences in the structure of the microbial consortia. This study is the first to the authors' knowledge that demonstrates that scaled-down slow sand filters can accurately reproduce the water quality and microbial consortia of full-scale slow sand filters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Aeroelastic loads and stability investigation of a full-scale hingeless rotor

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; Johnson, Wayne

    1991-01-01

    An analytical investigation was conducted to study the influence of various parameters on predicting the aeroelastic loads and stability of a full-scale hingeless rotor in hover and forward flight. The CAMRAD/JA (Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics, Johnson Aeronautics) analysis code is used to obtain the analytical predictions. Data are presented for rotor blade bending and torsional moments as well as inplane damping data obtained for rotor operation in hover at a constant rotor rotational speed of 425 rpm and thrust coefficients between 0.0 and 0.12. Experimental data are presented from a test in the wind tunnel. Validation of the rotor system structural model with experimental rotor blade loads data shows excellent correlation with analytical results. Using this analysis, the influence of different aerodynamic inflow models, the number of generalized blade and body degrees of freedom, and the control-system stiffness at predicted stability levels are shown. Forward flight predictions of the BO-105 rotor system for 1-G thrust conditions at advance ratios of 0.0 to 0.35 are presented. The influence of different aerodynamic inflow models, dynamic inflow models and shaft angle variations on predicted stability levels are shown as a function of advance ratio.

  19. Performance Investigation of a Full-Scale Hybrid Composite Bull Gear

    NASA Technical Reports Server (NTRS)

    LaBerge, Kelsen; Handschuh, Robert; Roberts, Gary; Thorp, Scott

    2016-01-01

    Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite)configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp(2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Researchers continue to search for the cause of this orbit shift.

  20. Performance Investigation of a Full-Scale Hybrid Composite Bull Gear

    NASA Technical Reports Server (NTRS)

    Laberge, Kelsen E.; Handschuh, Robert F.; Roberts, Gary; Thorp, Scott

    2016-01-01

    Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program, allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite) configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp (2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Further studies are planned to determine the cause of this behavior.

  1. Assembly and maintenance of full scale NIF amplifiers in the amplifier module prototype laboratory (AMPLAB)

    SciTech Connect

    Horvath, J. A.

    1998-07-16

    Mechanical assembly and maintenance of the prototype National Ignition Facility amplifiers in the Amplifier Module Prototype Laboratory (AMPLAB) at Lawrence Livermore National Laboratory requires specialized equipment designed to manipulate large and delicate amplifier components in a safe and clean manner. Observations made during the operation of this assembly and maintenance equipment in AMPLAB provide design guidance for similar tools being built for the National Ignition Facility. Fixtures used for amplifier frame installation, laser slab and flashlamp cassette assembly, transport, and installation, and in-situ blastshield exchange are presented. Examples include a vacuum slab gripper, slab handling clean crane, slab cassette assembly fixture, sealed transport vehicle for slab cassette movement between the cleanroom and amplifier, slab cassette transfer fixture between the cleanroom and transport vehicle, and equipment needed for frame assembly unit, blastshield, an d flashlamp cassette installation and removal. The use of these tools for amplifier assembly, system reconfiguration, reflector replacement, and recovery from an abnormal occurrence such as a flashlamp explosion is described. Observations are made on the design and operation of these tools and their contribution to the final design.

  2. Low-Speed Wind Tunnel Investigation of a Full-Scale UH-60 Rotor System

    DTIC Science & Technology

    2002-06-01

    Patrick M. Shinoda Army/NASA Rotorcraft Division US Army Aeroflightdynamics Directorate (AMCOM) pshinoda@mail.arc.nasa.gov Cahit Kitaplioglu, Stephen A...Dr. Robert McKenzie and Mike Reinath, without whom the PDV flow-field measurements would not have been possible. Finally, we are grateful to NASA’s...Haber, A., deSimone, G, Norman, T.R., Kitaplioglu, C., Shinoda , P., �Full-Scale Wind Tunnel Test of an Individual Blade Control System for a UH-60

  3. Full-scale wind tunnel investigation of a helicopter individual blade control system

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Leyland, Jane A.; Blaas, Achim

    1993-01-01

    This paper discusses the preparations and plans to test an individual rotor blade pitch control system in the 40- by 80- Foot Wind Tunnel at the NASA Ames Research Center. The test will be performed on a full-scale BO-105 rotor system using a control system made by Henschel Flugzeug-Werke, GmbH, Germany. The Individual Blade Control (IBC) actuators have been designed to replace the pitchlinks of the rotor system. The paper presents a brief historical perspective on the development of the individual blade control system and then describes the present IBC actuators and the wind tunnel test hardware. A discussion of the intended test matrix, expected potential benefits of IBC, and simulation results are included.

  4. Full-Scale Investigation of Several Jet-Engine Noise-Reduction Nozzles

    NASA Technical Reports Server (NTRS)

    Coles, Willard D; Callaghan, Edmund E

    1958-01-01

    A number of noise-suppression nozzles were tested on full-scale engines. In general, these nozzles achieved noise reduction by the mixing interference of adjacent jets, that is, by using multiple-slot-nozzles. Several of the nozzles achieved reductions in sound power of approximately 5 decibels (nearly 70 percent) with small thrust losses (approx. 1 percent). The maximum sound-pressure level was reduced by as much as 18 decibels in particular frequency bands. Some of the nozzles showed considerable spatial asymmetry; that is, the sound field was not rotationally symmetrical. A method of calculating the limiting frequency effected by such nozzles is presented. Furthermore data are shown that appear to indicate that further reductions in sound power will not be easily achieved from nozzles using mixing interference as a means of noise suppression

  5. Full-scale wind tunnel-investigation of the Advanced Technology Light Twin-Engine airplane (ATLIT). [Langley full scale tunnel

    NASA Technical Reports Server (NTRS)

    Hassell, J. L., Jr.; Newsom, W. A., Jr.; Yip, L. P.

    1980-01-01

    An investigation was conducted to evaluate the aerodynamic performance, stability, and control characteristics of the Advanced Technology Light Twin Engine airplane (ATLIT). Data were measured over an angle of attack range from -4 deg to 20 deg for various angles of sideslip between -5 deg and 15 deg at Reynolds numbers of 0.0000023 and 0.0000035 for various settings of power and flap deflection. Measurements were also made by means of special thrust torque balances to determine the installed propeller characteristics. Part of the investigation was devoted to drag cleanup of the basic airplane and to the evaluation of the effect of winglets on drag and stability.

  6. Wind-Tunnel Investigation of a Full-Scale Model of the Hughes MX-904 Missile

    NASA Technical Reports Server (NTRS)

    1950-01-01

    A wind-tunnel investigation has been conducted to determine the stability and control characteristics of a full-size model of the Hughes MX-904 missile. Aerodynamic characteristics of the complete model through moderate ranges of angles of attack and yaw, with an additional test made through an angle of attack of 180 degrees, are presented. The effects of horizontal tail deflection are also included.

  7. Full-scale Investigation of Several Jet-engine Noise-reduction Nozzles

    NASA Technical Reports Server (NTRS)

    Coles, Willard D; Callaghan, Edmund E

    1957-01-01

    A number of nozzles which use the mixing interference of adjacent jets for noise suppression were investigated. Reductions in sound power of nearly 70 percent (5 db) with thrust losses of 1 percent were achieved. A method of calculating the limiting frequency affected by this type of suppression nozzle, that is , multiple-slot nozzles, is presented. Data are shown which indicate that further large reductions in sound power are not likely with mixing-interference nozzles.

  8. Flight Tests on U.S.S. Los Angeles. Part I : Full Scale Pressure Distribution Investigation

    NASA Technical Reports Server (NTRS)

    De France, S J

    1930-01-01

    The primary purpose of this investigation was to obtain simultaneous data on the loads and stress experience in flight by the U. S. S. Los Angeles which could be used in rigid airship structure design. A secondary object of the investigation was to determine the turning and drag characteristics of the airship. The aerodynamic loading was obtained by measuring the pressure at 95 locations on the tail surfaces, 54 on the hull, and 5 on the passenger car. These measurements were made during a series of maneuvers consisting of turns and reversals in smooth air and during a cruise in rough air which was just short of squall proportions. The results of the pressure measurements on the hull indicate that the forces on the forebody of an airship are relatively small. The tail surface measurements show conclusively that the forces caused by gusts are much greater than those caused by horizontal maneuvers. In this investigation the tail surface loadings caused by gusts closely approached the designed loads of the tail structure. The turning and drag characteristics will be reported in separate reports.

  9. Full-scale chamber investigation and simulation of air freshener emissions in the presence of ozone.

    PubMed

    Liu, Xiaoyu; Mason, Mark; Krebs, Kenneth; Sparks, Leslie

    2004-05-15

    Volatile organic compound (VOC) emissions from one electrical plug-in type of pine-scented air freshener and their reactions with O3 were investigated in the U.S. Environmental Protection Agency indoor air research large chamber facility. Ozone was generated from a device marketed as an ozone generator air cleaner. Ozone and oxides of nitrogen concentrations and chamber conditions such as temperature, relative humidity, pressure, and air exchange rate were controlled and/or monitored. VOC emissions and some of the reaction products were identified and quantified. Source emission models were developed to predict the time/concentration profiles of the major VOCs (limonene, alpha-pinene, beta-pinene, 3-carene, camphene, benzyl propionate, benzyl alcohol, bornyl acetate, isobornyl acetate, and benzaldehyde) emitted bythe air freshener. Gas-phase reactions of VOCs from the air freshener with O3 were simulated by a photochemical kinetics simulation system using VOC reaction mechanisms and rate constants adopted from the literature. The concentration-time predictions were in good agreement with the data for O3 and VOCs emitted from the air freshener and with some of the primary reaction products. Systematic differences between the predictions and the experimental results were found for some species. Poor understanding of secondary reactions and heterogeneous chemistry in the chamber is the likely cause of these differences. The method has the potential to provide data to predict the impact of O3/VOC interactions on indoor air quality.

  10. Sustainable treatment and reuse of diluted pig manure streams in Russia: from laboratory trials to full-scale implementation.

    PubMed

    Kalyuzhnyi, Sergey; Sklyar, Vladimir; Epov, Andrey; Arkhipchenko, Irina; Barboulina, Irina; Orlova, Olga; Kovalev, Alexander; Nozhevnikova, Alla; Klapwijk, Abraham

    2003-01-01

    This article summarizes the results obtained during the laboratory and pilot development of integrated biologic and physicochemical treatment and reuse of diluted pig manure streams. The application of a straw filter was an effective means to separate the solid and liquid fractions of raw wastewater and resulted in the removal of a significant part of the dry matter, total nitrogen, and phosphorus (65, 27, and 32%, respectively). From the filtrate generated, 60-80% of the total chemical oxygen demand (COD) was removed in an upflow anaerobic sludge bed reactor operating at 15-30 degrees C. Ammonia was efficiently eliminated (>99%) from the anaerobic effluents using Ural laumantite as an ion exchanger. However, the nitrogen-content of the zeolite was too low to consider this method of ammonia removal economically feasible. The phosphate precipitation block, consisting of stripper of CO2 and fluidized-bed crystallizator, was able to decrease the concentration of soluble phosphate in the anaerobic effluents up to 7-15 mg of phosphate/L. The application of aerobic/anoxic biofilter as a sole polishing step was acceptable from an aesthetic point of view (the effluents were transparent and almost colorless and odorless) and elimination of biochemical oxygen demand (the resting COD was hardly biodegradable). However, the effluent nutrient concentrations (especially nitrogen) were far from the current standards for direct discharge of treated wastewater. We discuss the approaches for further improvement of effluent quality. Finally, we provide an outline of a full-scale system that partially implements the laboratory- and pilotscale results obtained.

  11. A Full-scale Investigation of the Effect of Several Factors on the Shimmy of Cantering Wheels

    NASA Technical Reports Server (NTRS)

    Howard, Walter B , Jr

    1940-01-01

    A full-scale investigation has been conducted to determine the effect of various factors on the shimmy of castering wheels. The factors considered were the geometric arrangement, the tire types, the variations of load, the spindle moment of inertia, and the tire inflation. A comparison of the results of the present investigation with those calculated from existing theory was made. The constants needed in the calculations to determine the damping required for a castering wheel were measured. The results indicate that solid friction appears to be impracticable as the sole damping agent for castering nose wheels on large airplanes. Also it was concluded that the existing theory is adequate for calculating the damping required to prevent shimmy. The caster angle and the spindle moment of inertia were found to influence the solid friction required to prevent shimmy. The effect of variations in the type and the pressure of the tire was insignificant.

  12. Phosphorus, copper and zinc in solid and liquid fractions from full-scale and laboratory-separated pig slurry.

    PubMed

    Popovic, Olga; Hjorth, Maibritt; Jensen, Lars Stoumann

    2012-09-01

    Pig slurry separation is a slurry treatment technique that can reduce excess loads of P, Cu and Zn to the arable land. This study investigated the effects of different commercial and laboratory separation treatments for pig slurry on P, Cu and Zn distribution into solid and liquid fractions. Solid and liquid separation fractions were collected from two commercial separators installed on the farm. Five different separation treatments were performed (polymer flocculation and drainage; coagulation with iron sulphate addition and polymer flocculation and drainage; ozonation and centrifugation; centrifugation only; and natural sedimentation) on sow and suckling piglet raw slurry. Particle size fractionation was performed on raw slurry and all separation fractions by sequential wet sieving and P, Cu and Zn concentrations were then measured in the particle size classes. Dry matter and total P, Cu and Zn were separated with higher efficiency when chemical pretreatments with flocculants and coagulants were introduced before mechanical separation at both commercial and laboratory scale. When solid fractions are utilized as crop fertilizer (primarily as P fertilizer), the loads of Cu and Zn to the soils are not markedly different than the loads applied with raw slurry. When liquid fractions are used as crop fertilizer (primarily as N fertilizer), the loads of Cu and Zn are markedly lower than those supplied with raw slurry. The loads of Cu and Zn introduced to the soil were lowest on application of the liquid fraction produced by optimized separation treatments that included flocculation and coagulation.

  13. Full Scale Tunnel model

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Interior view of Full-Scale Tunnel (FST) model. (Small human figures have been added for scale.) On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel . 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. small included angle for the exit cone; 2. carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow.

  14. Experimental Investigation of a Hypersonic Glider Configuration at a Mach Number of 6 and at Full-Scale Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Seiff, Alvin; Wilkins, Max E.

    1961-01-01

    The aerodynamic characteristics of a hypersonic glider configuration, consisting of a slender ogive cylinder with three highly swept wings, spaced 120 apart, with the wing chord equal to the body length, were investigated experimentally at a Mach number of 6 and at Reynolds numbers from 6 to 16 million. The objectives were to evaluate the theoretical procedures which had been used to estimate the performance of the glider, and also to evaluate the characteristics of the glider itself. A principal question concerned the viscous drag at full-scale Reynolds number, there being a large difference between the total drags for laminar and turbulent boundary layers. It was found that the procedures which had been applied for estimating minimum drag, drag due to lift, lift curve slope, and center of pressure were generally accurate within 10 percent. An important exception was the non-linear contribution to the lift coefficient which had been represented by a Newtonian term. Experimentally, the lift curve was nearly linear within the angle-of-attack range up to 10 deg. This error affected the estimated lift-drag ratio. The minimum drag measurements indicated that substantial amounts of turbulent boundary layer were present on all models tested, over a range of surface roughness from 5 microinches maximum to 200 microinches maximum. In fact, the minimum drag coefficients were nearly independent of the surface smoothness and fell between the estimated values for turbulent and laminar boundary layers, but closer to the turbulent value. At the highest test Reynolds numbers and at large angles of attack, there was some indication that the skin friction of the rough models was being increased by the surface roughness. At full-scale Reynolds number, the maximum lift-drag ratio with a leading edge of practical diameter (from the standpoint of leading-edge heating) was 4.0. The configuration was statically and dynamically stable in pitch and yaw, and the center of pressure was less

  15. Full-Scale Wind-Tunnel Investigation of the Drag Characteristics of an HU2K Helicopter Fuselage

    NASA Technical Reports Server (NTRS)

    Scallion, William I.

    1963-01-01

    An investigation was conducted in the Langley full-scale tunnel to determine the drag characteristics of the HU2K helicopter fuselage. The effects of body shape, engine operation, appendages, and leakage on the model drag were determined. The results of the tests showed that the largest single contribution to the parasite drag was that of the rotor hub installation which produced about 80 percent of the drag of the sealed and faired production body. Fairings on the rotor hub and blade retentions, or a cleaned-up hub and retentions, appeared to be the most effective single modifications tested. The total drag of all protuberances and air leakage also contributed a major part of the drag - an 83-percent increase over the drag of the sealed and faired production body. An additional increment of drag was caused by the basic shape of the fuselage - 19 percent more than the drag obtained when the fuselage shape was extensively refaired. Another sizable increment of drag was caused by the engine oil-cooler exit which gave a drag of 8 percent of that of the sealed and faired production body.

  16. Wind-tunnel investigation of a full-scale general aviation airplane equipped with an advanced natural laminar flow wing

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Jordan, Frank L., Jr.

    1987-01-01

    An investigation was conducted in the Langley 30- by 60-Foot Wind Tunnel to evaluate the performance, stability, and control characteristics of a full-scale general aviation airplane equipped with an advanced laminar flow wing. The study focused on the effects of natural laminar flow and advanced boundary layer transition on performance, stability, and control, and also on the effects of several wing leading edge modifications on the stall/departure resistance of the configuration. Data were measured over an angle-of-attack range from -6 to 40 deg and an angle-of-sideslip range from -6 to 20 deg. The Reynolds number was varied from 1.4 to 2.4 x 10 to the 6th power based on the mean aerodynamic chord. Additional measurements were made using hot-film and sublimating chemical techniques to determine the condition of the wing boundary layer, and wool tufts were used to study the wing stall characteristics. The investigation showed that large regions of natural laminar flow existed on the wing which would significantly enhance cruise performance. Also, because of the characteristics of the airfoil section, artificially tripping the wing boundary layer to a turbulent condition did not significantly effect the lift, stability, and control characteristics. The addition of a leading-edge droop arrangement was found to increase the stall angle of attack at the wingtips and, therefore, was considered to be effective in improving the stall/departure resistance of the configuration. Also the addition of the droop arrangement resulted in only minor increases in drag.

  17. Closed-loop biomass co-firing in a laboratory reactor and in a full-scale boiler.

    SciTech Connect

    Jenkins, Bryan M.; Williams, Robert B.; Turn, Scott Q.; Jakeway, Lee A.; Blevins, Linda Gail

    2004-05-01

    Co-firing tests were conducted in a pilot-scale reactor at Sandia National Laboratories and in a boiler at the Hawaiian Commercial & Sugar factory at Puunene, Hawaii. Combustion tests were performed in the Sandia Multi-Fuel Combustor using Australian coal, whole fiber cane including tops and leaves processed at three different levels (milled only, milled and leached, and milled followed by leaching and subsequent milling), and fiber cane stripped of its tops and leaves and heavily processed through subsequent milling, leaching, and milling cycles. Testing was performed for pure fuels and for biomass co-firing with the coal at levels of 30% and 70% by mass. The laboratory tests revealed the following information: (1) The biomass fuels convert their native nitrogen into NO more efficiently than coal because of higher volatile content and more reactive nitrogen complexes. (2) Adding coal to whole fiber cane to reduce its tendency to form deposits should not adversely affect NO emissions. ( 3 ) Stripped cane does not offer a NO advantage over whole cane when co-fired with coal. During the field test, Sandia measured 0 2 , C02, CO, SO2, and NO concentrations in the stack and gas velocities near the superheater. Gas concentrations and velocities fluctuated more during biomass co-firing than during coal combustion. The mean 0 2 concentration was lower and the mean C02 concentration was higher during biomass co-firing than during coal combustion. When normalized to a constant exhaust 0 2 concentration, mean CO concentration was higher and mean NO concentration was lower for biomass co-firing than for coal. The SO2 concentration tracked the use of Bunker C fuel oil. When normalized by the amount of boiler energy input, the amounts of NO and SO2 formed were lower during biomass co-firing than during coal combustion. The difference between NOx trends in the lab and in the field are most likely a result of less effective heat and mass transfer in the boiler. Particles were

  18. Investigations of the boundary-layer control on a full scale swept wing with air bled off from the turbojet

    NASA Technical Reports Server (NTRS)

    Rebuffet, Pierre; Poisson-Quinton, PH

    1952-01-01

    The following account reviews the various stages of a research program relative to the high-lift devices on a swept wing by combined suction and blowing (jet action), with ejectors fed by air bled off (extracted) from the turbojet. After reviewing the essential principles of the boundary-layer control obtained by comparison with theory, the electric analogies and the wind-tunnel tests as well as the essential elements of ejector operations, the writers describe the tests made in the large tunnel at Chalais-Meudon on a full-scale model of the SO 6020 wing.

  19. Use of laboratory anaerobic digesters to simulate the increase of treatment rate in full-scale high nitrogen content sewage sludge and co-digestion biogas plants.

    PubMed

    Tampio, Elina; Ervasti, Satu; Paavola, Teija; Rintala, Jukka

    2016-11-01

    The aim of this study was to assess the effect of increasing feedstock treatment rate on the performance of full-scale anaerobic digestion using laboratory-scale reactors with digestate and feedstock from full-scale digesters. The studied nitrogen-containing feedstocks were i) a mixture of industrial by-products and pig slurry, and ii) municipal sewage sludge, which digestion was studied at 41 and 52°C, respectively. This study showed the successful reduction of hydraulic retention times from 25 and 20days to around 15days, which increased organic loading rates from 2 to 3.5kg volatile solids (VS)/m(3)d and 4 to 6kgVS/m(3)d. As a result, the optimum retention time in terms of methane production and VS removal was 10-15% lower than the initial in the full-scale digesters. Accumulation of acids during start-up of the co-digestion reactor was suggested to be connected to the high ammonium nitrogen concentration and intermediate temperature of 41°C.

  20. Numerical investigation of full scale coal combustion model of tangentially fired boiler with the effect of mill ducting

    NASA Astrophysics Data System (ADS)

    Achim, Daniela; Naser, J.; Morsi, Y. S.; Pascoe, S.

    2009-11-01

    In this paper a full scale combustion model incorporating upstream mill ducting of a large tangentially fired boiler with flue gas recirculation was examined numerically. Lagrangian particle tracking was used to determine the coal particle paths and the Eddy Dissipation Model for the analysis of the gas phase combustion. Moreover volatiles and gaseous char products, given off by the coal particles were modelled by Arrhenius single phase reactions and a transport equation was solved for each material given off by the particles. Thermal, prompt, fuel and reburn NO x models with presumed probability density functions were used to model NO x production and the discrete transfer radiation model was used to model radiation heat transfer. Generally, the findings indicated reasonable agreement with observed qualitative and quantitative data of incident heat flux on the walls. The model developed here could be used for a range of applications in furnace design and optimisation of gas emissions of coal fired boiler plants.

  1. Laboratory investigations

    NASA Technical Reports Server (NTRS)

    Russell, Ray W.

    1988-01-01

    Laboratory studies related to cometary grains and the nuclei of comets can be broken down into three areas which relate to understanding the spectral properties, the formation mechanisms, and the evolution of grains and nuclei: (1) Spectral studies to be used in the interpretation of cometary spectra; (2) Sample preparation experiments which may shed light on the physical nature and history of cometary grains and nuclei by exploring the effects on grain emissivities resulting from the ways in which the samples are created; and (3) Grain processing experiments which should provide insight on the interaction of cometary grains with the environment in the immediate vicinity of the cometary nucleus as the comet travels from the Oort cloud through perihelion, and perhaps even suggestions regarding the relationship between interstellar grains and cometary matter. A summary is presented with a different view of lab experiments than is found in the literature, concentrating on measurement techniques and sample preparations especially relevant to cometary dust.

  2. Laboratory Investigations

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The primary objectives were to examine the site-specific physical, chemical, and biological factors that impact construction, durability and performance of the proposed 5-MW (sub e) solar pond system at the Salton Sea. The interactions of the water, salt, and soil of the site and on material compatibility were examined. Potential interactions of the water/brine and soil are particularly important because the pond will utilize the naturally occurring clays as a bottom seal. Although there is a considerable and growing solar pond literature, little written information deals with the important site-specific investigations of water, salt, and soil. Therefore, technical effort was directed toward identifying the factors that should be investigated and determining methods of investigation. As a result, a by-product was the development of an approach for site-specific investigations and some specific methodologies. This development should continue in order to establish a generic approach for evaluating the suitability of any site for the construction of large-scale solar ponds.

  3. Investigation of the fire performance of building insulation in full-scale and laboratory fire tests

    SciTech Connect

    Kleinfelder, W.A.

    1984-04-01

    Twenty-two insulations are exposed to fire tests including the 25 ft Tunnel test, the Attic Floor Radiant Panel test and actual fire conditions of a simulated attic configuration. The insulations consisted of a number of cellulose fiber insulations, utilizing various chemical treatments, glass fiber and mineral fiber insulations. The fire performance characteristics of the insulations were measured in each of the three test scenarios and the report compares their results.

  4. Full Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Construction of motor fairing for the fan motors of the Full-Scale Tunnel (FST). The motors and their supporting structures were enclosed in aerodynamically smooth fairings to minimize resistance to the air flow. Close examination of this photograph reveals the complicated nature of constructing a wind tunnel. This motor fairing, like almost every other structure in the FST, represents a one-of-a-kind installation.

  5. Quantification method of N2O emission from full-scale biological nutrient removal wastewater treatment plant by laboratory batch reactor analysis.

    PubMed

    Lim, Yesul; Kim, Dong-Jin

    2014-08-01

    This study proposes a simplified method for the quantification of N2O emission from a biological nutrient removal wastewater treatment plant (WWTP). The method incorporates a laboratory-scale batch reactor which had almost the same operational (wastewater and sludge flow rates) condition of a unit operation/process of the WWTP. Cumulative N2O emissions from the batch reactor at the corresponding hydraulic retention times of the full-scale units (primary and secondary clarifiers, pre-anoxic, anaerobic, anoxic and aerobic basins) were used for the quantification of N2O emission. The analysis showed that the aerobic basin emitted 95% of the total emission and the emission factor (yield) reached 0.8% based on the influent nitrogen load. The method successfully estimated N2O emission from the WWTP and it has shown advantages in measurement time and cost over the direct field measurement (floating chamber) method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Full Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of Full Scale Tunnel (FST). In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; an fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293)

  7. Full Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of Full-Scale Tunnel (FST). In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; and fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293).

  8. Investigation of correlation between full-scale and fifth-scale wind tunnel tests of a Bell helicopter Textron Model 222

    NASA Technical Reports Server (NTRS)

    Squires, P. K.

    1982-01-01

    Reasons for lack of correlation between data from a fifth-scale wind tunnel test of the Bell Helicopter Textron Model 222 and a full-scale test of the model 222 prototype in the NASA Ames 40-by 80-foot tunnel were investigated. This investigation centered around a carefully designed fifth-scale wind tunnel test of an accurately contoured model of the Model 222 prototype mounted on a replica of the full-scale mounting system. The improvement in correlation for drag characteristics in pitch and yaw with the fifth-scale model mounted on the replica system is shown. Interference between the model and mounting system was identified as a significant effect and was concluded to be a primary cause of the lack of correlation in the earlier tests.

  9. Heat Transfer Due to Unsteady Effects as Investigated in a High-Speed, Full-Scale, Fully-Cooled Turbine Vane and Rotor Stage

    DTIC Science & Technology

    2008-06-01

    the turbine stages of these engines have been established. The predominant method of cooling vane and rotor airfoils , having been used for over...INVESTIGATED IN A HIGH-SPEED, FULL-SCALE, FULLY-COOLED TURBINE VANE AND ROTOR STAGE THESIS Presented to the Faculty Department of Aeronautics and...reduce the effectiveness of film cooling in the vane and rotor stages of turbine engines . Even today, fairly little experimentation has been

  10. Numerical investigation of Marine Hydrokinetic Turbines: methodology development for single turbine and small array simulation, and application to flume and full-scale reference models

    NASA Astrophysics Data System (ADS)

    Javaherchi Mozafari, Amir Teymour

    A hierarchy of numerical models, Single Rotating Reference Frame (SRF) and Blade Element Model (BEM), were used for numerical investigation of horizontal axis Marine Hydrokinetic (MHK) Turbines. In the initial stage the SRF and BEM were used to simulate the performance and turbulent wake of a flume- and a full-scale MHK turbine reference model. A significant level of understanding and confidence was developed in the implementation of numerical models for simulation of a MHK turbine. This was achieved by simulation of the flume-scale turbine experiments and comparison between numerical and experimental results. Then the developed numerical methodology was applied to simulate the performance and wake of the full-scale MHK reference model (DOE Reference Model 1). In the second stage the BEM was used to simulate the experimental study of two different MHK turbine array configurations (i.e. two and three coaxial turbines). After developing a numerical methodology using the experimental comparison to simulate the flow field of a turbine array, this methodology was applied toward array optimization study of a full-scale model with the goal of proposing an optimized MHK turbine configuration with minimal computational cost and time. In the last stage the BEM was used to investigate one of the potential environmental effects of MHK turbine. A general methodological approach was developed and experimentally validated to investigate the effect of MHK turbine wake on the sedimentation process of suspended particles in a tidal channel.

  11. Full Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Installation of Full Scale Tunnel (FST) power plant. Virginia Public Service Company could not supply adequate electricity to run the wind tunnels being built at Langley. (The Propeller Research Tunnel was powered by two submarine diesel engines.) This led to the consideration of a number of different ideas for generating electric power to drive the fan motors in the FST. The main proposition involved two 3000 hp and two 1000 hp diesel engines with directly connected generators. Another, proposition suggested 30 Liberty motors driving 600 hp DC generators in pairs. For a month, engineers at Langley were hopeful they could secure additional diesel engines from decommissioned Navy T-boats but the Navy could not offer a firm commitment regarding the future status of the submarines. By mid-December 1929, Virginia Public Service Company had agreed to supply service to the field at the north end of the King Street Bridge connecting Hampton and Langley Field. Thus, new plans for FST powerplant and motors were made. Smith DeFrance described the motors in NACA TR No. 459: 'The most commonly used power plant for operating a wind tunnel is a direct-current motor and motor-generator set with Ward Leonard control system. For the FST it was found that alternating current slip-ring induction motors, together with satisfactory control equipment, could be purchased for approximately 30 percent less than the direct-current equipment. Two 4000-horsepower slip-ring induction motors with 24 steps of speed between 75 and 300 r.p.m. were therefore installed.'

  12. Propulsion system tests on a full scale Centaur vehicle to investigate 3-burn mission capability of the D-lT configuration

    NASA Technical Reports Server (NTRS)

    Groesbeck, W. A.; Baud, K. M.; Lacovic, R. F.; Tabata, W. K.; Szabo, S. V., Jr.

    1974-01-01

    Propulsion system tests were conducted on a full scale Centaur vehicle to investigate system capability of the proposed D-lT configuration for a three-burn mission. This particular mission profile requires that the engines be capable of restarting and firing for a final maneuver after a 5-1/2-hour coast to synchronous orbit. The thermal conditioning requirements of the engine and propellant feed system components for engine start under these conditions were investigated. Performance data were also obtained on the D-lT type computer controlled propellant tank pressurization system. The test results demonstrated that the RL-10 engines on the Centaur vehicle could be started and run reliably after being thermally conditioned to predicted engine start conditions for a one, two and three burn mission. Investigation of the thermal margins also indicated that engine starts could be accomplished at the maximum predicted component temperature conditions with prestart durations less than planned for flight.

  13. A Wind-Tunnel Investigation of the Aerodynamic Characteristics of a Full-Scale Supersonic-Type Three-blade Propeller at Mach Numbers to 0.96

    NASA Technical Reports Server (NTRS)

    Evans, Albert J; Liner, George

    1958-01-01

    An investigation of the characteristics of a full-scale supersonic-type propeller has been made in the Langley 16-foot transonic tunnel with the 6000-horsepower propeller dynamometer. The tests covered a range of blade angles from 20.2 degrees to 60.2 degrees at forward Mach numbers up to 0.96. The results showed that envelope efficiency at an advance ratio of 2.8 decreased from 86 percent to 72 percent when the forward Mach number was increased from 0.70 to 0.96. A comparison of the experimental results with calculated results showed that maximum propeller efficiency can be calculated with good accuracy by using ordinary subsonic strip theory when the blade-section speeds are supersonic. The investigation also showed favorable power-absorption properties of the supersonic-type propeller at high speeds.

  14. Langley Full-scale-tunnel Investigation of the Factors Affecting the Static Lateral-stability Characteristics of a Typical Fighter-type Airplane

    NASA Technical Reports Server (NTRS)

    Lange, Roy H

    1947-01-01

    The factors that affect the rate of change of rolling moment with yaw of a typical fighter-type airplane were investigated in the Langley full-scale tunnel on a typical fighter-type airplane.Eight representative flight conditions were investigated in detail. The separate effects of propeller operation, of the wing-fuselage combination, and of the vertical tail to the effective dihedral of the airplane in each condition were determined. The results of the tests showed that for the airplane with the propeller removed, the wing-fuselage combination had positive dihedral effect which increased considerably with increasing angle of attack for all conditions. Flap deflection decreased the dihedral effect of the wing-fuselage combination slightly as compared with that with the flaps retracted. Flap deflection resulted in negative dihedral effect due to the vertical tail. Propeller operation decreased the lateral stability parameter of the airplane for all the conditions investigated with larger decreases being measured for the flaps deflected conditions.

  15. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Modified propeller and spinner in Full-Scale Tunnel (FST) model. On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel. 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. small included angle for the exit cone; 2. carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow. This model can be constructed in a comparatively short time, using 2 by 4 framing with matched sheathing inside, and where circular sections are desired they can be obtained by nailing sheet metal to wooden ribs, which can be cut on the band saw. It is estimated that three months will be required for the construction and testing of such a model and that the cost will be approximately three thousand dollars, one thousand dollars of which will be for the motors. No suitable location appears to exist in any of our present buildings, and it may be necessary to build it outside and cover it with a roof.' George Lewis responded immediately (June 27) granting the authority to proceed. He urged Langley to expedite construction and to employ extra carpenters if necessary. Funds for the model came from the FST project

  16. Removal of organic matter from surface water during coagulation with sludge flotation and rapid filtration - a full-scale technological investigation.

    PubMed

    Pruss, Alina

    2015-01-01

    Coagulation with sludge flotation and rapid filtration was selected as a surface water treatment technology to be optimised with a full-scale investigation, which was carried out in Poland between August and October 2013. The river water treated was characterized by low alkalinity, high-temperature variability and a high organic matter content. In the course of technological studies, the processes of coagulation with sludge flotation and rapid filtration were analysed. The studies were performed in the most adverse conditions for the applied technology i.e. during the period of algal bloom and subsequent decomposition of dead plankton. Throughout the study, the river water contained mainly dissolved organic matter, with occasional increases in the concentration of the undissolved fraction during algal bloom. The undissolved total organic carbon (TOC) fraction was effectively removed through coagulation while small doses of ClO₂added prior to coagulation enhanced the process. The process of coagulation using high-coagulant doses at pH = 6.5 did not provide a reduction in the TOC value below the level of 4 mg C/L required for treated water. The effect was achieved by adding powdered activated carbon (PAC) before the filters. The coagulation products were characterised by low-hydraulic resistance which should be taken into account at the stage of water delivery to the filters, after flotation.

  17. Investigation of microbial safety of a full-scale ozonation and biological activated carbon process under high humidity and temperature conditions.

    PubMed

    Qiao, Tiejun; Zhang, Xihui; Wu, Guangxue; Au, Doris W T

    2011-01-01

    Microbial safety of a full-scale ozonation and biological activated carbon (BAC) process was investigated by examining pathogens, microbial community and particle counts, with emphasis on the BAC effluent. The process is located at South China, where the average humidity and air temperature were 70-80% and 22-24 °C, respectively. A high diversity of microbial community existed on the BAC media. Three types of dominant bacteria were identified, including Chryseobacterium indologenes, Bacillus brevis and Pseudomonas stutzeri, accounting for 90-95% of total bacteria number. As to pathogenic bacteria and viruses, an opportunistic pathogen, Bacillus cereus, was detected on the BAC. Six types of invertebrates were also observed on the medium, including rotifer, cyclops, nematode, clodecera, nauplius and blood worm. Diversity and number of invertebrates in the BAC effluent were higher than those in the BAC influent. Particle counts were generally less than 50 CNT/mL, with the maximum of 500 CNT/mL during the initial filtration stage after backwashing.

  18. Langley Full-scale-tunnel Investigation of Maximum Lift and Stability Characteristics of an Airplane Having Approximately Triangular Plan Form (DM-1 Glider)

    NASA Technical Reports Server (NTRS)

    Lovell, J Calvin; Wilson, Herbert A JR

    1947-01-01

    An investigation of the DM-1 Glider, which had approximately triangular plan form, an aspect ratio of 1.8 and a 60 degree sweptback leading edge, has been conducted in the Langley full-scale tunnel. The investigation consisted of the determination of the separate effects of the following modifications made to the glider on its maximum lift and stability characteristics: (a) installation of sharp leading edges over the inboard semispan of the wing, (b) removal of the vertical fin, (c) sealing of the elevon control-balance slots, (d) installation of redesigned thin vertical surfaces, (e) installation of faired sharp leading edges, and (f) installation of canopy. The maximum lift coefficient of the DM-1 glider was increased from 0.61 to 1.01 by the installation of semispan sharp leading edges, and from 1.01 to 1.24 by the removal of the vertical fin and sealing of the elevon control-balance slots. The highest maximum lift coefficient (1.32) was obtained when the faired sharp leading edges and the thin vertical surfaces were attached to the glider. The original DM-1 glider was longitudinally stable. The semispan sharp leading edges shifted the neutral point forward approximately 3 percent of the root chord at moderate lift coefficients, and the glider configuration with these sharp leading edges attached was longitudinally unstable, for the assumed center-of-gravity location, at lift coefficients above 0.73. Sealing the elevon control-balance slots and installing the faired sharp leading edges, the thin vertical surfaces, and the canopy shifted the neutral point forward approximately 8 percent of the root chord.

  19. Langley Full-Scale Tunnel Investigation of a 1/3-Scale Model of the Chance Vought XF5U-1 Airplane

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.; Cocke, Bennie W., Jr.; Proterra, Anthony J.

    1946-01-01

    The results of an investigation of a 1/3-scale model of the Chance Vought XF5U-1 airplane in the Langley full-scale tunnel are presented in this report. The maximum lift and stalling characteristics of several model configurations, the longitudinal stability characteristics of the model, and the effectiveness of the control surfaces were determined with the propellers removed. The propulsive characteristics, the effect of propeller operation on the lift, and the static thrust of the model propellers were determined at several propeller-blade angles. The results with the propellers removed showed that the maximum lift coefficient of the complete model configuration was only 0.97 was compared with the value of 1.31 for the model configuration in which the engine-air ducts and canopy are removed. The model with the propellers removed (normal center-of-gravity position) has a positive static margin, stick fixed, varying from 5 to 13 percent of the mean aerodynamic chord throughout the unstalled range of lift coefficients. The unit horizontal tail is sufficiently powerful to trim the airplane with the propellers removed throughout the unstalled range of lift coefficients. The peak propulsive efficiencies for beta = 20 degrees and beta = 30 degrees were increased 7 percent at C(sub L) congruent to 0.67 and 20 percent at C(sub L) congruent to 0.74, respectively, with the propellers rotating upward in the center than with the propellers rotating downward in the center. Indications are that the minimum forward-flight speed of the airplane for full-power operation at sea level will be about 90 miles per hour. Decreasing the weight and increasing the power reduced this value of minimum speed and there were no indications from the results of a lower limit to the minimum speed.

  20. An Investigation of a Full-Scale Model of the Republic XF-91 Airplane in the Ames 40- By 80-Foot Wind Tunnel: Pressure Data

    NASA Technical Reports Server (NTRS)

    Hunton, Lynn W.; Dew, Joseph K.

    1949-01-01

    Wind-tunnel tests of a full-scale model of the Republic XF-91 airplane were conducted to determine the distribution of pressure over the external wing fuel tank installation and over the vee tail and ventral fin. The data were obtained for a range of angles of attack and sideslip and elerudder deflection angles; the presentation is in tabular form.

  1. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Steam pile driver for foundation of Full-Scale Tunnel (FST). In 1924, George Lewis, Max Munk and Fred Weick began to discuss an idea for a wind tunnel large enough to test a full-scale propeller. Munk sketched out a design for a tunnel with a 20-foot test section. The rough sketches were presented to engineers at Langley for comment. Elliott Reid was especially enthusiastic and he wrote a memorandum in support of the proposed 'Giant Wind Tunnel.' At the end of the memorandum, he appended the recommendation that the tunnel test section should be increased to 30-feet diameter so as to allow full-scale testing of entire airplanes (not just propellers). Reid's idea for a full-scale tunnel excited many at Langley but the funds and support were not available in 1924. Nonetheless, Elliot Reid's idea would eventually become reality. In 1928, NACA engineers began making plans for a full-scale wind tunnel. In February 1929, Congress approved of the idea and appropriated $900,000 for construction. Located just a few feet from the Back River, pilings to support the massive building's foundation had to be driven deep into the earth. This work began in the spring of 1929 and cost $11,293.22

  2. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Pile driving for foundation of Full-Scale Tunnel (FST). In 1924, George Lewis, Max Munk and Fred Weick began to discuss an idea for a wind tunnel large enough to test a full-scale propeller. Munk sketched out a design for a tunnel with a 20-foot test section. The rough sketches were presented to engineers at Langley for comment. Elliott Reid was especially enthusiastic and he wrote a memorandum in support of the proposed 'Giant Wind Tunnel.' At the end of the memorandum, he appended the recommendation that the tunnel test section should be increased to 30-feet diameter so as to allow full-scale testing of entire airplanes (not just propellers). Reid's idea for a full-scale tunnel excited many at Langley but the funds and support were not available in 1924. Nonetheless, Elliot Reid's idea would eventually become reality. In 1928, NACA engineers began making plans for a full-scale wind tunnel. In February 1929, Congress approved of the idea and appropriated $900,000 for construction. Located just a few feet from the Back River, pilings to support the massive building's foundation had to be driven deep into the earth. This work began in the spring of 1929 and cost $11,293.22.

  3. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    General view of concrete column base for Full-Scale Tunnel (FST). In 1924, George Lewis, Max Munk and Fred Weick began to discuss an idea for a wind tunnel large enough to test a full-scale propeller. Munk sketched out a design for a tunnel with a 20-foot test section. The rough sketches were presented to engineers at Langley for comment. Elliott Reid was especially enthusiastic and he wrote a memorandum in support of the proposed 'Giant Wind Tunnel.' At the end of the memorandum, he appended the recommendation that the tunnel test section should be increased to 30-feet diameter so as to allow full-scale testing of entire airplanes (not just propellers). Reid's idea for a full-scale tunnel excited many at Langley but the funds and support were not available in 1924. Nonetheless, Elliot Reid's idea would eventually become reality. In 1928, NACA engineers began making plans for a full-scale wind tunnel. In February 1929, Congress approved of the idea and appropriated $900,000 for construction. Work on the foundation began in the spring of 1929 and cost $11,293.22.

  4. W4E HYDROPOWER DIRECT DRIVE IN-LINE HYDROTURBINE GENERATOR FULL SCALE PROTOTYPE VALIDATION TESTING REPORT MAY 2013 ALDEN LABORATORIES

    SciTech Connect

    Cox, Chad W

    2013-09-24

    The W4E is a patent-pending, direct-drive, variable force turbine/generator. The equipment generates electricity through the water dependent engagement of a ring of rotating magnets with coils mounted on a stator ring. Validation testing of the W4e was performed at Alden Laboratories in the Spring of 2013. The testing was independently observed and validated by GZA GeoEnvironmental, Inc. The observations made during testing and the results of the testing are included in the Test Summary Report

  5. A Hypothetical Scenario for Full-Scale Deployment of Geological Carbon Sequestration: Investigating the Interaction Between Multiple CO2 Storage Sites in a Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Birkholzer, J.; Zhou, Q.; Jordan, P.; Tsang, C.; Leetaru, H.; Mehnert, E.; Frailey, S.; Finley, R.

    2008-12-01

    Most ongoing projects of geological carbon sequestration (GCS) are relatively small in size, with annual injection rates from a few thousand to less than a million tonnes. These projects help build the GCS technology with respect to modeling, monitoring, risk assessment, and mitigation, and have been successful so far in terms of CO2 containment and caprock geomechanical integrity. In the future, GCS will be implemented at full-scale, multiple industrial-size CO2 storage sites in large sedimentary basins to make full use of the potential storage capacity. Simultaneous injection into multiple not-too-distant storage sites will lead to interference between the individual regions of pressure build-up and possible interference between the individual CO2 plumes. The Illinois Basin is used to model the future impact of multiple injection sites in the thick, extensive Mount Simon Formation. The basin-scale model domain of 241,000 km2 covers a core injection area of 24,000 km2, a larger near-field area where significant pressure buildup is expected, and an even larger far-field area for investigating environmental impacts on groundwater resources. The model assumes that there are twenty sequestration sites (spaced 30 km apart) within the core injection area. Three injection scenarios are considered, featuring annual injection rates of 5, 10, and 15 million tonnes of CO2 at each site, respectively. These scenarios correspond to 33%, 67% and 100% of the current single-point large CO2 sources in the relevant states (Illinois, Indiana and Kentucky). The model adequately captures the characteristics of the Mount Simon Formation in the core injection area, which include (1) an overall thickness of 300 to 680 m, (2) an upper unit of sandstone and shale tidally influenced and deposited, (3) a thick middle unit of clean sandstone of relatively high permeability, and (4) a lower arkosic unit of higher permeability (one Darcy) with an average thickness of 90 m. At each site, CO2 is

  6. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Full-Scale Tunnel (FST). Construction of balance housing. Smith DeFrance noted the need for this housing in his NACA TR No. 459: 'The entire floating frame and scale assembly is enclosed in a room for protection from air currents and the supporting struts are shielded by streamlined fairings which are secured to the roof of the balance room and free from the balance.'

  7. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Modification of entrance cone Full-Scale Tunnel (FST). Smith DeFrance describes the entrance cone in NACA TR 459 as follows: 'The entrance cone is 75 feet in length and in this distance the cross section changes from a rectangle 72 by 110 feet to a 30 by 60 foot elliptic section. The area reduction in the entrance cone is slightly less than 5:1. The shape of the entrance cone was chosen to give as fas as possible a constant acceleration to the air stream and to retain a 9-foot length of nozzle for directing the flow.' (p. 293)

  8. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Wing and nacelle set-up in Full-Scale Tunnel (FST). The NACA conducted drag tests in 1931 on a P3M-1 nacelle which were presented in a special report to the Navy. Smith DeFrance described this work in the report's introduction: 'Tests were conducted in the full-scale wind tunnel on a five to four geared Pratt and Whitney Wasp engine mounted in a P3M-1 nacelle. In order to simulate the flight conditions the nacelle was assembled on a 15-foot span of wing from the same airplane. The purpose of the tests was to improve the cooling of the engine and to reduce the drag of the nacelle combination. Thermocouples were installed at various points on the cylinders and temperature readings were obtained from these by the power plants division. These results will be reported in a memorandum by that division. The drag results, which are covered by this memorandum, were obtained with the original nacelle condition as received from the Navy with the tail of the nacelle modified, with the nose section of the nacelle modified, with a Curtiss anti-drag ring attached to the engine, with a Type G ring developed by the N.A.C.A., and with a Type D cowling which was also developed by the N.A.C.A.' (p. 1)

  9. Investigation of total bacterial and ammonia-oxidizing bacterial community composition in a full-scale aerated submerged biofilm reactor for drinking water pretreatment in China.

    PubMed

    Qin, Ying-Ying; Li, Dao-Tang; Yang, Hong

    2007-03-01

    The community composition of total bacteria and ammonia-oxidizing bacteria in a full-scale aerated submerged biofilm reactor for drinking water pretreatment was characterized by analysis of 16S rRNA gene and the functional gene amoA, respectively. Sampling was performed in February and in July. 16S rRNA gene clone libraries revealed 13 bacterial divisions. At both sampling dates, the majority of clone sequences were related to the Alpha- and Betaproteobacteria. A minor proportion belonged to the following groups: Gammaproteobacteria, Deltaproteobacteria, Nitrospira, Firmicutes, Acidobacteria, Verrucomicrobia, Actinobacteria, Planctomycetes, Chloroflexi, Gemmatimonadetes and the Cytophaga-Flavobacterium-Bacteroides group. Some sequences related to bacteria owning high potential metabolic capacities were detected in both samples, such as Rhodobacter-like rRNA gene sequences. Surveys of cloned amoA genes from the two biofilm samples revealed ammonia-oxidizing bacterial sequences affiliated with the Nitrosomonas oligotropha lineage, Nitrosomonas communis lineage. An unknown Nitrosomonas group of amoA gene sequences was also detected.

  10. Laboratory investigation of hypercoagulability.

    PubMed

    Francis, J L

    1998-01-01

    For many years, the laboratory investigation of patients with thrombophilia has lagged behind that of patients with bleeding diathesis. Improved understanding of the mechanisms that control and regulate coagulation, and the resultant recognition of new defects, have greatly stimulated clinical laboratory interest in this area. Assays to detect resistance to activated protein C; deficiencies of antithrombin, protein C, and protein S; and the presence of antiphospholipid antibodies are widely available and should form part of the investigation of patients that present with idiopathic thrombosis. Such a work-up will likely provide an explanation for thrombosis in 40 to 60% of patients. Abnormalities of fibrinogen and fibrinolysis may explain still more, although such defects are currently considered rare. In addition, presently unrecognized defects almost certainly exist, and the identification of such individuals will undoubtedly improve our understanding of the hemostatic mechanism. Laboratory tests to define the hypercoagulable state are continually being developed. They include whole blood coagulation and platelet function tests and novel activation markers. However, acceptance of these approaches by clinical laboratories has been slow.

  11. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of Full-Scale Tunnel (FST): 120-Foot Truss hoisting, one and two point suspension. In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; and fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293)

  12. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of Full-Scale Tunnel (FST). In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; an fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293).

  13. Education, Wechler's Full Scale IQ and "g."

    ERIC Educational Resources Information Center

    Colom, Roberto; Abad, Francisco J.; Garcia, Luis F.; Juan-Espinosa, Manuel

    2002-01-01

    Investigated whether average Full Scale IQ (FSIQ) differences can be attributed to "g" using the Spanish standardization sample of the Wechsler Adult Intelligence Scale III (WAIS III) (n=703 females and 666 men). Results support the conclusion that WAIS III FSIQ does not directly or exclusively measure "g" across the full range…

  14. Investigation of the relationship between particulate-bound mercury and properties of fly ash in a full-scale 100 MWe pulverized coal combustion boiler

    SciTech Connect

    Sen Li; Chin-Min Cheng; Bobby Chen; Yan Cao; Jacob Vervynckt; Amanda Adebambo; Wei-Ping Pan

    2007-12-15

    The properties of fly ash in coal-fired boilers influence the emission of mercury from power plants into the environment. In this study, seven different bituminous coals were burned in a full-scale 100 MWe pulverized coal combustion boiler and the derived fly ash samples were collected from a mechanical hopper (MH) and an electrostatic precipitator hopper (ESP). The mercury content, specific surface area (SSA), unburned carbon, and elemental composition of the fly ash samples were analyzed to evaluate the correlation between the concentration of particulate-bound mercury and the properties of coal and fly ash. For a given coal, it was found that the mercury content in the fly ash collected from the ESP was greater than in the fly ash samples collected from the MHP. This phenomenon may be due to a lower temperature of flue gas at the ESP (about 135{sup o}C) compared to the temperature at the air preheater (about 350{sup o}C). Also, a significantly lower SSA observed in MH ash might also contribute to the observation. A comparison of the fly ash samples generated from seven different coals using statistical methods indicates that the mercury adsorbed on ESP fly ashes has a highly positive correlation with the unburned carbon content, manganese content, and SSA of the fly ash. Sulfur content in coal showed a significant negative correlation with the Hg adsorption. Manganese in fly ash is believed to participate in oxidizing volatile elemental mercury (Hg{sup 0}) to ionic mercury (Hg{sup 2+}). The oxidized mercury in flue gas can form a complex with the fly ash and then get removed before the flue gas leaves the stack of the boiler.

  15. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Modification of entrance cone of the Full-Scale Tunnel (FST). To the left are the FST guide vanes which Smith DeFrance described in NACA TR No. 459: 'The air is turned at the four corners of each return passage by guide vanes. The vanes are of the curved-airfoil type formed by two intersecting arcs with a rounded nose. The arcs were so chosen as to give a practically constant area through the vanes.' (p. 295) These vanes 'have chords of 3 feet 6 inches and are spaced at 0.41 of a chord length. By a proper adjustment of the angular setting of the vanes, a satisfactory velocity distribution has been obtained and no honeycomb has been found necessary.' (p. 295). Close inspection of the photograph will reveal a number of workers on the scaffolding. The heights were great and the work was quite dangerous. In October 1930, one construction worker working on the roof of the tunnel would die when he stepped off the planking to fetch a tool and fell through an unsupported piece of Careystone to the floor some 70 feet below.

  16. Full-Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Construction of Full-Scale Tunnel (FST) balance. Smith DeFrance described the 6-component type balance in NACA TR No. 459 (which also includes a schematic diagram of the balance and its various parts). 'Ball and socket fittings at the top of each of the struts hod the axles of the airplane to be tested; the tail is attached to the triangular frame. These struts are secured to the turntable, which is attached to the floating frame. This frame rests on the struts (next to the concrete piers on all four corners), which transmit the lift forces to the scales (partially visible on the left). The drag linkage is attached to the floating frame on the center line and, working against a known counterweight, transmits the drag force to the scale (center, face out). The cross-wind force linkages are attached to the floating frame on the front and rear sides at the center line. These linkages, working against known counterweights, transmit the cross-wind force to scales (two front scales, face in). In the above manner the forces in three directions are measured and by combining the forces and the proper lever arms, the pitching, rolling, and yawing moments can be computed. The scales are of the dial type and are provided with solenoid-operated printing devices. When the proper test condition is obtained, a push-button switch is momentarily closed and the readings on all seven scales are recorded simultaneously, eliminating the possibility of personal errors.'

  17. Static-thrust Investigation of Full-scale PV-2 Helicopter Rotors Having NACA 0012.6 and 23012.6 Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Lipson, Stanley

    1946-01-01

    An investigation was conducted to compare the performance of two 25-ft-diam rotors which had identical dimensions and were similar in construction but different in blade airfoil-sections. Tests were conducted at indicated blade pitch angles from 3 degrees to 11.5 degrees and rotor speeds of 200, 290, and 371 rpm. The 23012.6 rotor required 2 percent less power to hover than the 0012.6. At thrust coefficients above design, the performance of the 23012.6 became better than the 0012.6 rotor.

  18. Full scale wind tunnel investigation of a bearingless main helicopter rotor. [Ames 40 by 80 foot wind tunnel test using the BO-105 helicopter

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A stability test program was conducted to determine the effects of airspeed, collective pitch, rotor speed and shaft angle on stability and loads at speeds beyond that attained in the BMR/BO-105 flight test program. Loads and performance data were gathered at forward speeds up to 165 knots. The effect of cyclic pitch perturbations on rotor response was investigated at simulated level flight conditions. Two configuration variations were tested for their effect on stability. One variable was the control system stiffness. An axially softer pitch link was installed in place of the standard BO-105 pitch link. The second variation was the addition of elastomeric damper strips to increase the structural damping. The BMR was stable at all conditions tested. At fixed collective pitch, shaft angle and rotor speed, damping generally increased between hover and 60 knots, remained relatively constant from 60 to 90 knots, then decreased above 90 knots. Analytical predictions are in good agreement with test data up to 90 knots, but the trend of decreasing damping above 90 knots is contrary to the theory.

  19. Full-Scale Tests of NACA Cowlings

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Brevoort, M J; Stickle, George W

    1937-01-01

    A comprehensive investigation has been carried on with full-scale models in the NACA 20-foot wind tunnel, the general purpose of which is to furnish information in regard to the physical functioning of the composite propeller-nacelle unit under all conditions of take-off, taxiing, and normal flight. This report deals exclusively with the cowling characteristics under condition of normal flight and includes the results of tests of numerous combinations of more than a dozen nose cowlings, about a dozen skirts, two propellers, two sizes of nacelle, as well as various types of spinners and other devices.

  20. A full-scale STOVL ejector experiment

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy S.

    1993-01-01

    The design and development of thrust augmenting short take-off and vertical landing (STOVL) ejectors has typically been an iterative process. In this investigation, static performance tests of a full-scale vertical lift ejector were performed at primary flow temperatures up to 1560 R (1100 F). Flow visualization (smoke generators, yarn tufts and paint dots) was used to assess inlet flowfield characteristics, especially around the primary nozzle and end plates. Performance calculations are presented for ambient temperatures close to 480 R (20 F) and 535 R (75 F) which simulate 'seasonal' aircraft operating conditions. Resulting thrust augmentation ratios are presented as functions of nozzle pressure ratio and temperature. Full-scale experimental tests such as this are expensive, and difficult to implement at engine exhaust temperatures. For this reason the utility of using similarity principles -- in particular, the Munk and Prim similarity principle for isentropic flow -- was explored. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow parameter is then shown to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments. Under the assumption that an appropriate similarity principle can be established, then properly chosen performance parameters should be similar for both hot flow and cold flow model tests.

  1. Full scale upper surface blown flap noise

    NASA Technical Reports Server (NTRS)

    Heidelberg, L. J.; Homyak, L.; Jones, W. L.

    1975-01-01

    A highly noise suppressed TF 34 engine was used to investigate the noise of several powered lift configurations involving upper surface blown (USB) flaps. The configuration variables were nozzle type (i.e. slot and circular with deflector), flap chord length, and flap angle. The results of velocity surveys at both the nozzle exit and the flap trailing edge are also presented and used for correlation of the noise data. Configurations using a long flap design were 4 db quieter than a short flap typical of current trends in USB flap design. The lower noise for the long flap is attributed primarily to the greater velocity decay of the jet at the flap trailing edge. The full-scale data revealed substantially more quadrupole noise in the region near the deflected jet than observed in previous sub-scale tests.

  2. Full-Scale Tunnel (FST) model

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Model of Full-Scale Tunnel (FST) under construction. On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel . 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. Small included angle for the exit cone; 2. Carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. Tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow. This model can be constructed in a comparatively short time, using 2 by 4 framing with matched sheathing inside, and where circular sections are desired they can be obtained by nailing sheet metal to wooden ribs, which can be cut on the band saw. It is estimated that three months will be required for the construction and testing of such a model and that the cost will be approximately three thousand dollars, one thousand dollars of which will be for the motors. No suitable location appears to exist in any of our present buildings, and it may be necessary to build it outside and cover it with a roof.' George Lewis responded immediately (June 27) granting the authority to proceed. He urged Langley to expedite construction and to employ extra carpenters if necessary. Funds for the model came from the FST project. In a 1979

  3. Full-Scale Tunnel (FST) model

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Interior view of Full-Scale Tunnel (FST) model. On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel. 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. small included angle for the exit cone; 2. carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow. This model can be constructed in a comparatively short time, using 2 by 4 framing with matched sheathing inside, and where circular sections are desired they can be obtained by nailing sheet metal to wooden ribs, which can be cut on the band saw. It is estimated that three months will be required for the construction and testing of such a model and that the cost will be approximately three thousand dollars, one thousand dollars of which will be for the motors. No suitable location appears to exist in any of our present buildings, and it may be necessary to build it outside and cover it with a roof.' George Lewis responded immediately (June 27) granting the authority to proceed. He urged Langley to expedite construction and to employ extra carpenters if necessary. Funds for the model came from the FST project. In a 1979

  4. Why Online Education Will Attain Full Scale

    ERIC Educational Resources Information Center

    Sener, John

    2010-01-01

    Online higher education has attained scale and is poised to take the next step in its growth. Although significant obstacles to a full scale adoption of online education remain, we will see full scale adoption of online higher education within the next five to ten years. Practically all higher education students will experience online education in…

  5. Results of an investigation of the acoustic and vibrational environment of a full scale space shuttle orbiter structural test panel with simulated TPS in the Ames unitary plan wind tunnel, model 81-0, test OS8A and B

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.

    1977-01-01

    Results of tests OS8A and B and pertinent test and model information are presented. The test was conducted in two parts. Test OS8A was performed in the NASA/ARC unitary 11-foot section and OS8B was conducted in the NASA/ARC unitary 9 x 7 tunnel. Test objectives were to investigate thermal protection system (TPS) tile sensitivity to extreme pressure gradients and vibration and to define the TPS aerodynamic environment. The model utilized for OS8 was a full-scale representation of a portion of the space shuttle orbiter lower wing carry-through structure forward of the aft tank strut and propellant lines. Thermal protection tiles were simulated on the model. The model was instrumented with static pressure orifices, accelerometers, and dynamic pressure transducers (Kulites). A total rake was utilized to obtain boundary layer surveys.

  6. JWST Full Scale Model Being Built

    NASA Image and Video Library

    : The full-scale model of the James Webb Space Telescope is constructed for the 2010 World Science Festival in Battery Park, NY. The model takes about five days to construct. This video contains a ...

  7. Hypersonic Glider Model in Full Scale Tunnel 1957

    NASA Image and Video Library

    1957-09-07

    L57-1439 A model based on Langley s concept of a hypersonic glider was test flown on an umbilical cord inside the Full Scale Tunnel in 1957. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 374.

  8. Strontium Removal: Full-Scale Ohio Demonstrations

    EPA Science Inventory

    The objectives of this presentation are to present a brief overview of past bench-scale research to evaluate the impact lime softening on strontium removal from drinking water and present full-scale drinking water treatment studies to impact of lime softening and ion exchange sof...

  9. Strontium Removal: Full-Scale Ohio Demonstrations

    EPA Science Inventory

    The objectives of this presentation are to present a brief overview of past bench-scale research to evaluate the impact lime softening on strontium removal from drinking water and present full-scale drinking water treatment studies to impact of lime softening and ion exchange sof...

  10. Full-scale studies of alum recovery

    SciTech Connect

    1988-01-01

    Full-scale testing was conducted at the Williams Water Treatment Plant to evaluate alum recovery. Two tests were conducted, one in August and one is September. The objective was to determine the dewaterability of the solids remaining after alum recovery on sand drying beds and to evaluate the effectiveness of the recovered alum as a coagulant in the water plant and for phosphorus removal at the wastewater plant.

  11. IRAC Full-Scale Flight Testbed Capabilities

    NASA Technical Reports Server (NTRS)

    Lee, James A.; Pahle, Joseph; Cogan, Bruce R.; Hanson, Curtis E.; Bosworth, John T.

    2009-01-01

    Overview: Provide validation of adaptive control law concepts through full scale flight evaluation in a representative avionics architecture. Develop an understanding of aircraft dynamics of current vehicles in damaged and upset conditions Real-world conditions include: a) Turbulence, sensor noise, feedback biases; and b) Coupling between pilot and adaptive system. Simulated damage includes 1) "B" matrix (surface) failures; and 2) "A" matrix failures. Evaluate robustness of control systems to anticipated and unanticipated failures.

  12. X-38 Full Scale TPS Flight Qualification

    NASA Astrophysics Data System (ADS)

    Hilfer, G.

    2002-01-01

    The X-38 of NASA which is an experimental vehicle to prove crucial technologies of a future Crew Return Vehicle (CRV) for the International Space Station (ISS) will be equipped with a large number of newly developed components and systems. In particular, the thermal protection system of the most severely loaded surface areas such as the nose cap and the control surfaces represent a promising approach with respect to thermal endurance and re-usability aspects. The foremost nose section, the body flaps and a wing leading edge segment are all made from SiC-based fiber ceramics. Moreover, the body flap is an entire hot structure. The Nose Skirt Assembly and the Body Flap were developed and manufactured by German industry (MAN Technologie, DLR and ASTRIUM) within the frame of the national TETRA program. The Leading Edge Unit was developed and manufactured by MAN Technologie within the ESA-ARTP. As another effort within the TETRA program aimed at extending the national competence range, IABG developed and built a high-temperature test facility enabling full-scale flight qualification of thermal protection components. The main purpose of this facility was to allow application of all relevant load categories encountered during re-entry flight, i.e. thermal, mechanical and oxidative loads. The facility is in service since April 1999. Within the scope of the X-38 qualification tests the flexibility of the test facility could be demonstrated. Three full scale thermal protection components of X-38 which were very different in size, shape and test requirements were successfully flight qualified in the years 1999 - 2001. For all of the three components, namely the Leading Edge Unit, the Nose Skirt Assembly and the Body Flap, the time- dependent and locally variable temperature profiles of the re-entry flight had to be simulated in order to verify the structural integrity under thermal loads. Within these tests a superposition of the thermal loads with oxidative loads, with the

  13. A Laboratory Investigation of Groupthink.

    ERIC Educational Resources Information Center

    Courtright, John A.

    1978-01-01

    Examines the groupthink phenomenon under controlled, laboratory conditions. Results indicate that the presence or absence of disagreement (conflict, hostility) among members may be the best discriminator between groupthink and nongroupthink groups. (JMF)

  14. A Laboratory Investigation of Groupthink.

    ERIC Educational Resources Information Center

    Courtright, John A.

    1978-01-01

    Examines the groupthink phenomenon under controlled, laboratory conditions. Results indicate that the presence or absence of disagreement (conflict, hostility) among members may be the best discriminator between groupthink and nongroupthink groups. (JMF)

  15. Full-scale tilt rotor download reduction

    NASA Astrophysics Data System (ADS)

    Beck, Stephen

    A large-scale model of a tiltrotor wing and flap was built and tested to determine how the size and spacing of fluidic actuators for active flow control should be scaled up from laboratory size models to aircraft size. Flow control was provided by sweeping jet actuators mounted in the flap follower. Chordwise pressure data was collected through pressure taps located along the model centerline. The maximum flap deflection to which the flow could be attached with actuation was compared to previous experiments on a 10% 3D model. An ideal actuator spacing was found and the momentum coefficient was comparable between the various sized models. These results were used in the design of an industrial wind tunnel-scale model of a wing built for cruise and tiltrotor-like download testing. These tests have shown that actuators located in the flap follower are effective in both the hover and cruise phases of flight.

  16. From lab to full-scale ultrafiltration in microalgae harvesting

    NASA Astrophysics Data System (ADS)

    Wenten, I. G.; Steven, S.; Dwiputra, A.; Khoiruddin; Hakim, A. N.

    2017-07-01

    Ponding system is generally used for microalgae cultivation. However, selection of appropriate technology for the harvesting process is challenging due to the low cell density of cultivated microalgae from the ponding system and the large volume of water to be handled. One of the promising technologies for microalgae harvesting is ultrafiltration (UF). In this study, the performance of UF during harvesting of microalgae in a lab- and a full-scale test is investigated. The performances of both scales are compared and analyzed to provide an understanding of several aspects which affect the yield produced from lab and actual conditions. Furthermore, a unique self-standing non-modular UF is introduced in the full-scale test. The non-modular UF exhibits several advantages, such as simple piping and connection, single pump for filtration and backwashing, and smaller footprint. With those advantages, the non-modular UF could be a promising technology for microalgae harvesting in industrial-scale.

  17. ASRM full scale test case cooling system

    NASA Astrophysics Data System (ADS)

    Schuetz, Cary E.; Hollenbeck, Anne K.

    1993-07-01

    After an ASRM static firing, excessive motorcase heating resulting from Al2O3 accumulation could cause irrecoverable case loss if adequate cooling were not determined and provided. Cooling system performance parameters and design criteria were determined through this analysis. Comparisons were made with data from literature. Advances in the thermal analysis were accomplished as compared to previous investigators. Results were based on the analysis, comparisons to other investigators, and utilization of test data from literature.

  18. Microbial community analysis of a full-scale DEMON bioreactor.

    PubMed

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Muñoz-Palazon, Barbara; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; van Loosdrecht, Mark C M; Gonzalez-Lopez, Jesus

    2015-03-01

    Full-scale applications of autotrophic nitrogen removal technologies for the treatment of digested sludge liquor have proliferated during the last decade. Among these technologies, the aerobic/anoxic deammonification process (DEMON) is one of the major applied processes. This technology achieves nitrogen removal from wastewater through anammox metabolism inside a single bioreactor due to alternating cycles of aeration. To date, microbial community composition of full-scale DEMON bioreactors have never been reported. In this study, bacterial community structure of a full-scale DEMON bioreactor located at the Apeldoorn wastewater treatment plant was analyzed using pyrosequencing. This technique provided a higher-resolution study of the bacterial assemblage of the system compared to other techniques used in lab-scale DEMON bioreactors. Results showed that the DEMON bioreactor was a complex ecosystem where ammonium oxidizing bacteria, anammox bacteria and many other bacterial phylotypes coexist. The potential ecological role of all phylotypes found was discussed. Thus, metagenomic analysis through pyrosequencing offered new perspectives over the functioning of the DEMON bioreactor by exhaustive identification of microorganisms, which play a key role in the performance of bioreactors. In this way, pyrosequencing has been proven as a helpful tool for the in-depth investigation of the functioning of bioreactors at microbiological scale.

  19. Wind tunnel simulation of full scale vortices

    NASA Technical Reports Server (NTRS)

    Rorke, J. B.; Moffitt, R. C.

    1973-01-01

    An experimental investigation has been conducted to determine the important scaling parameters for the flow in the core region of a vortex generated by a rectangular wing tip. The effect of an unconventional planform, the ogee tip, on the tip vortex is also determined. For rectangular planform wings, the measured vortex core diameter to chord ratios, peak tangential velocity ratios, and axial velocity ratios are shown to be functions only of wing lift coefficient and elapsed time from vortex formation, and appear to be independent of both Mach number and Reynolds number. The peak tangential velocities in the diffuse vortex generated by the ogee tip are only 25 percent of those in the vortex generated by the rectangular wing.

  20. Polyethylene encapsulation full-scale technology demonstration. Final report

    SciTech Connect

    Kalb, P.D.; Lageraaen, P.R.

    1994-10-01

    A full-scale integrated technology demonstration of a polyethylene encapsulation process, sponsored by the US Department of Energy (DOE) Office of Technology Development (OTD), was conducted at the Environmental & Waste Technology Center at Brookhaven National Laboratory (BNL.) in September 1994. As part of the Polymer Solidification National Effort, polyethylene encapsulation has been developed and tested at BNL as an alternative solidification technology for improved, cost-effective treatment of low-level radioactive (LLW), hazardous and mixed wastes. A fully equipped production-scale system, capable of processing 900 kg/hr (2000 lb/hr), has been installed at BNL. The demonstration covered all facets of the integrated processing system including pre-treatment of aqueous wastes, precise feed metering, extrusion processing, on-line quality control monitoring, and process control.

  1. Full-Scale Wind-Tunnel Investigation of a Jet Flap in Conjunction with a Plain Flap with Blowing Boundary-Layer Control on a 35 deg Sweptback-Wing Airplane

    NASA Technical Reports Server (NTRS)

    Aoyagi, Kiyoshi; Hickey, David H.

    1959-01-01

    Previous investigations have shown that increased blowing at the hinge-line radius of a plain flap will give flap lift increases above that realized with boundary-layer control. Other experiments and theory have shown that blowing from a wing trailing edge, through the jet flap effect, produced lift increases. The present investigation was made to determine whether blowing simultaneously at the hinge-line radius and trailing edge would be more effective than blowing separately at either location. The tests were made at a Reynolds number of 4.5 x 10(exp 6) with a 35 deg sweptback-wing airplane. For this report, only the lift data are presented. Of the three flap blowing arrangements tested, blowing distributed between the trailing edge and the hinge-line radius of a plain flap was found to be superior to blowing at either location separately at the plain flap deflections of interest. Comparison of estimated and experimental jet flap effectiveness was fair.

  2. Full-scale hingeless rotor performance and loads

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.

    1995-01-01

    A full-scale BO-105 hingeless rotor system was tested in the NASA Ames 40- by 80-Foot Wind Tunnel on the rotor test apparatus. Rotor performance, rotor loads, and aeroelastic stability as functions of both collective and cyclic pitch, tunnel velocity, and shaft angle were investigated. This test was performed in support of the Rotor Data Correlation Task under the U.S. Army/German Memorandum of Understanding on Cooperative Research in the Field of Helicopter Aeromechanics. The primary objective of this test program was to create a data base for full-scale hingeless rotor performance and structural blade loads. A secondary objective was to investigate the ability to match flight test conditions in the wind tunnel. This data base can be used for the experimental and analytical studies of hingeless rotor systems over large variations in rotor thrust and tunnel velocity. Rotor performance and structural loads for tunnel velocities from hover to 170 knots and thrust coefficients (C(sub T)/sigma) from 0.0 to 0.12 are presented in this report. Thrust sweeps at tunnel velocities of 10, 20, and 30 knots are also included in this data set.

  3. Investigative Learning: A Plan for Laboratory Education.

    ERIC Educational Resources Information Center

    Kosinski, Robert J.

    This project originated with the desire to offer general biology students a laboratory experience which emphasizes scientific thinking rather than a review of lecture content. To create investigative laboratories without many of the practical problems of their implementation, this project uses a combination of "methods modules" for…

  4. Microbubble Swarms in a Full-Scale Water Model Tundish

    NASA Astrophysics Data System (ADS)

    Chang, Sheng; Cao, Xiangkun; Zou, Zongshu; Isac, Mihaiela; Guthrie, Roderick I. L.

    2016-10-01

    Water modeling, using microbubble swarms, was performed in a full-scale, four-strand, delta-shaped tundish, located at the McGill Metals Processing Centre (MMPC). The objective of the study was to investigate the effectiveness of microbubbles in removing inclusions smaller than 50 μm, applying the principles and conditions previously researched using a smaller scale arrangement. Air was injected into a full-scale model of a ladle shroud (the connecting tube through which liquid steel flows into the tundish below). The model ladle shroud was fitted with twelve, laser-drilled orifices, so as to create microbubbles. The bubbles generated using different gas injection protocols were recorded using a high-speed camera, and the bubble images were postprocessed using the commercial software, ImageJ. With this newly designed ladle shroud, bubble sizes could be reduced dramatically, to as small as a 675 µm average diameter. A three-dimensional, CFD model simulation was developed, using parameters obtained from the corresponding water model experiments, in order to predict the behavior of these microbubbles within the tundish and their potential influence on flow patterns and inclusion float-out capability.

  5. Acoustic measurements of a full-scale coaxial helicopter

    NASA Technical Reports Server (NTRS)

    Mosher, M.; Peterson, R. L.

    1983-01-01

    Acoustic data were obtained during a full-scale test of the XH-59A Advancing Blade Concept (ABC) Technology Demonstrator in the NASA Ames 40- by 80-Foot Wind Tunnel. The XH-59A is a research helicopter with two coaxial rotors and hingeless blades. Performance, vibration, noise at various forward speeds, rotor lift coefficients, and rotor shaft angles of attack were investigated. In general, the noise level is shown to increase with rotor lift coefficient except under certain operating conditions where it is increased by significant impulsive blade/vortex interactions. The impulsivity appears to depend upon how the lift is distributed between the two rotors. The noise levels measured are shown to be slightly higher than on a modern conventional rotor tested in the same facility.

  6. Full-scale Transport Controlled Impact Demonstration Program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Federal Aviation Administration (FAA) and NASA conducted a full-scale air-to-surface impact-survivable impact demonstration with a remotely piloted transport aircraft on 1 December 1984, at Edwards Air Force Base, California. The test article consisted of experiments, special equipment, and supporting systems, such as antimisting kerosene (AMK), crashworthiness structural/restraint, analytical modeling, cabin fire safety, flight data recorders, post-impact investigation, instrumentation/data acquisition systems, remotely piloted vehicle/flight control systems, range and flight safety provisions, etc. This report describes the aircraft, experiments, systems, activities, and events which lead up to the Controlled Impact Demonstration (CID). An overview of the final unmanned remote control flight and sequence of impact events are delineated. Preliminary post CID observations are presented.

  7. Model of Full-Scale Tunnel (FST) under construction

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Model of Full-Scale Tunnel (FST) under construction. On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel. 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. small included angle for the exit cone; 2. carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow. This model can be constructed in a comparatively short time, using 2 by 4 framing with matched sheathing inside, and where circular sections are desired they can be obtained by nailing sheet metal to wooden ribs, which can be cut on the band saw. It is estimated that three months will be required for the construction and testing of such a model and that the cost will be approximately three thousand dollars, one thousand dollars of which will be for the motors. No suitable location appears to exist in any of our present buildings, and it may be necessary to build it outside and cover it with a roof.' George Lewis responded immediately (June 27) granting the authority to proceed. He urged Langley to expedite construction and to employ extra carpenters if necessary. Funds for the model came from the FST project. In a 1979

  8. Regeneration of Exhausted Arsenic Adsorptive media of a Full Scale Treatment System

    EPA Science Inventory

    This presentation will describe the method and results of laboratory tests showing the feasibility of regenerating exhausted, iron-based, adsorptive media and the results of a follow up regeneration test at a full scale system in Twentynine Palms CA. The laboratory studies on se...

  9. Regeneration of Exhausted Arsenic Adsorptive media of a Full Scale Treatment System

    EPA Science Inventory

    This presentation will describe the method and results of laboratory tests showing the feasibility of regenerating exhausted, iron-based, adsorptive media and the results of a follow up regeneration test at a full scale system in Twentynine Palms CA. The laboratory studies on se...

  10. Mars 2020 MOXIE Laboratory and Principal Investigator

    NASA Image and Video Library

    2016-07-15

    One investigation on NASA's Mars 2020 rover will extract oxygen from the Martian atmosphere. It is called MOXIE, for Mars Oxygen In-Situ Resource Utilization Experiment. In this image, MOXIE Principal Investigator Michael Hecht, of the Massachusetts Institute of Technology, Cambridge, is in the MOXIE development laboratory at NASA's Jet Propulsion Laboratory, Pasadena, California. Mars' atmosphere is mostly carbon dioxide. Demonstration of the capability for extracting oxygen from it, under Martian environmental conditions, will be a pioneering step toward how humans on Mars will use the Red Planet's natural resources. Oxygen can be used in the rocket http://photojournal.jpl.nasa.gov/catalog/PIA20761

  11. Integrated Resilient Aircraft Control Project Full Scale Flight Validation

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2009-01-01

    Objective: Provide validation of adaptive control law concepts through full scale flight evaluation. Technical Approach: a) Engage failure mode - destabilizing or frozen surface. b) Perform formation flight and air-to-air tracking tasks. Evaluate adaptive algorithm: a) Stability metrics. b) Model following metrics. Full scale flight testing provides an ability to validate different adaptive flight control approaches. Full scale flight testing adds credence to NASA's research efforts. A sustained research effort is required to remove the road blocks and provide adaptive control as a viable design solution for increased aircraft resilience.

  12. Open-Ended Laboratory Investigations with Drosophila.

    ERIC Educational Resources Information Center

    Mertens, Thomas R.

    1983-01-01

    Background information, laboratory procedures (including matings performed), and results are presented for an open-ended investigation using the fruitfly Drosophila melanogaster. Once data are collected, students develop hypotheses to explain results as well as devise additional experiments to test their hypotheses. Calculation of chi-square for…

  13. Open-Ended Laboratory Investigations with Drosophila.

    ERIC Educational Resources Information Center

    Mertens, Thomas R.

    1983-01-01

    Background information, laboratory procedures (including matings performed), and results are presented for an open-ended investigation using the fruitfly Drosophila melanogaster. Once data are collected, students develop hypotheses to explain results as well as devise additional experiments to test their hypotheses. Calculation of chi-square for…

  14. The Laboratory: A Place to Investigate.

    ERIC Educational Resources Information Center

    Thornton, John W., Ed.

    The contributors to this volume take the position that the undergraduate biology laboratory should be a place where students conduct their own investigations rather than follow recipes supplied by the instructor. The first part of the collection discusses the need for this reform, with special consideration given to both majors and nonmajors. A…

  15. The Laboratory: A Place to Investigate.

    ERIC Educational Resources Information Center

    Thornton, John W., Ed.

    The contributors to this volume take the position that the undergraduate biology laboratory should be a place where students conduct their own investigations rather than follow recipes supplied by the instructor. The first part of the collection discusses the need for this reform, with special consideration given to both majors and nonmajors. A…

  16. Investigations for a Mobile Environmental Education Laboratory.

    ERIC Educational Resources Information Center

    Childress, Ronald B.

    Envirpnmental investigations in this compilation were developed in conjunction with the establishment of a mobile environmental education laboratory, a demonstration project of the Kingsport (Tennessee) City School System. The 50 activities are divided into five categories: basic resources, environmental problems, living organisms, community…

  17. SPF Full-scale emissions test method development status ...

    EPA Pesticide Factsheets

    This is a non-technical presentation that is intended to inform ASTM task group members about our intended approach to full-scale emissions testing that includes the application of spray foam in an environmental chamber. The presentation describes the approach to emissions characterization, types of measurement systems employed, and expected outcomes from the planned tests. Purpose of this presentation is to update the ASTM D22.05 work group regarding status of our full-scale emissions test method development.

  18. Full scale computer simulators in anesthesia training and evaluation.

    PubMed

    Wong, Anne K

    2004-05-01

    With the advent of competency-based curriculum, technology such as full scale computer simulators have acquired an increasingly important role in anesthesia both in training and evaluation. This article reviews the current role of full scale computer simulators in teaching and evaluation in anesthesia. This review draws from existing anesthesia and medical education literature in order to examine and assess the current role of full scale computer simulators in anesthesia education today. The last decade has witnessed a major increase in the use of full scale computer simulators in anesthesia. Many applications have been found for these simulators including teaching and training, evaluation and research. Despite the increasing use and application of full scale computers in anesthesia in the area of teaching and training, definitive studies evaluating its cost effectiveness, its efficacy compared to traditional training methods or its impact on patient outcome are still pending. Although there is some preliminary evidence of reliability and validity in using the simulator to evaluate clinical competence, development in this area has not progressed enough to justify its use in formal, summative evaluation of competence in anesthesia at this time. As technology acquires an increasingly important role in medical education, full scale computer simulators represent an exciting potential in anesthesia. However, the full potential and role of simulators in anesthesia is still in development and will require a dovetailing of clinical theory and practice with current research in medical education.

  19. TESTING OF A FULL-SCALE ROTARY MICROFILTER FOR THE ENHANCED PROCESS FOR RADIONUCLIDES REMOVAL

    SciTech Connect

    Herman, D; David Stefanko, D; Michael Poirier, M; Samuel Fink, S

    2009-01-01

    Savannah River National Laboratory (SRNL) researchers are investigating and developing a rotary microfilter for solid-liquid separation applications in the Department of Energy (DOE) complex. One application involves use in the Enhanced Processes for Radionuclide Removal (EPRR) at the Savannah River Site (SRS). To assess this application, the authors performed rotary filter testing with a full-scale, 25-disk unit manufactured by SpinTek Filtration with 0.5 micron filter media manufactured by Pall Corporation. The filter includes proprietary enhancements by SRNL. The most recent enhancement is replacement of the filter's main shaft seal with a John Crane Type 28LD gas-cooled seal. The feed material was SRS Tank 8F simulated sludge blended with monosodium titanate (MST). Testing examined total insoluble solids concentrations of 0.06 wt % (126 hours of testing) and 5 wt % (82 hours of testing). The following are conclusions from this testing.

  20. Membrane bioreactors for winery wastewater treatment: case-studies at full scale.

    PubMed

    Guglielmi, G; Andreottola, G; Foladori, P; Ziglio, G

    2009-01-01

    The membrane bioreactor technology (MBR) is nowadays a suitable alternative for winery wastewater treatment, thanks to low footprint, complete suspended solids removal, high efficiency in COD abatement and quick start-up. In this paper, data from two full-scale MBRs equipped with flat-sheet membranes (plant A and plant B) are presented and discussed. COD characterisation by respirometry pointed out the high biodegradability degree of both wastewater, with a strong prevalence of the readily biodegradable fraction. An extended version of Activated Sludge Model No. 3 was used to fit the experimental OUR profiles and to assess the maximum growth rate of heterotrophic biomass on sludge samples collected at both sites; the stoichiometric yield coefficients were also calculated. Sludge filterability and dewaterability were investigated with batch tests; laboratory results confirmed the field observations. Finally, some considerations are listed, aimed at defining possible key-issues for optimal process design and operation.

  1. Full Scale Tunnel (FST) and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Installation of Careystone covering at the Full-Scale Tunnel (FST) facility. The corrugated concrete and asbestos panels (1/4 inch thick; 42 inches wide; 62 inches long) which were used as siding and roofing for the Full-Scale Tunnel were manufactured by The Philip Carey Company. For the NACA, the choice of Careystone had been based on several factors. First and foremost was its low cost. NACA engineers had observed the very durable, low-maintenance and fireproof qualities of the concrete-asbestos covering of the airship hanger at Langley Field. Further, tests showed the material to be 3.8 times stronger than required (The maximum load the material was expected to withstand was 52 lbs. per square foot; the breaking load was 196 lbs. per sq. ft.). L4695 shows the interior view of construction of the Tow Tank. In the late 1920s, the NACA decided to investigate the aero/hydro dynamics of floats for seaplanes. A Hydrodynamics Branch was established in 1929 and special towing basin was authorized in March of that same year. Starr Truscott (the first head of the new division) described the tank in NACA TR 470: 'The N.A.C.A. tank is of the Froude type; that is, the model which is being tested is towed through still water at successive constant speeds from a carriage spanning the tank. At each constant speed the towing pull is measured, the trim and the rise, or change of draft, are recorded and, if the model is being towed at a fixed trim, the moment required to hold it there is measured and recorded.' 'The reinforced concrete basin containing the water has the following dimensions: (1) Length on water, extreme, 2,020 feet; (2) Normal width of water surface, 24 feet; (3) Normal depth of water, 12 feet; (4) Length of 12 foot depth, 1,980 feet.' This picture shows the tank before the coving was added. This brought the rails for the carriage closer together and helped suppress waves produced by the models. The finished tank would be filled with approximately 4 million

  2. Comparing field investigations with laboratory models to predict landfill leachate emissions

    SciTech Connect

    Fellner, Johann; Brunner, Paul H.

    2009-06-15

    Investigations into laboratory reactors and landfills are used for simulating and predicting emissions from municipal solid waste landfills. We examined water flow and solute transport through the same waste body for different volumetric scales (laboratory experiment: 0.08 m{sup 3}, landfill: 80,000 m{sup 3}), and assessed the differences in water flow and leachate emissions of chloride, total organic carbon and Kjeldahl nitrogen. The results indicate that, due to preferential pathways, the flow of water in field-scale landfills is less uniform than in laboratory reactors. Based on tracer experiments, it can be discerned that in laboratory-scale experiments around 40% of pore water participates in advective solute transport, whereas this fraction amounts to less than 0.2% in the investigated full-scale landfill. Consequences of the difference in water flow and moisture distribution are: (1) leachate emissions from full-scale landfills decrease faster than predicted by laboratory experiments, and (2) the stock of materials remaining in the landfill body, and thus the long-term emission potential, is likely to be underestimated by laboratory landfill simulations.

  3. Systems for animal exposure in full-scale fire tests

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.; Kourtides, D. A.; Parker, J. A.

    1977-01-01

    Two systems for exposing animals in full-scale fire tests are described. Both systems involve the simultaneous exposure of two animal species, mice and rats, in modular units; determination of mortality, morbidity, and behavioral response; and analysis of the blood for carboxyhemoglobin. The systems described represent two of many possible options for obtaining bioassay data from full-scale fire tests. In situations where the temperatures to which the test animals are exposed can not be controlled, analytical techniques may be more appropriate than bioassay techniques.

  4. Full-scale system impact analysis: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Digital Document Storage Full Scale System can provide cost effective electronic document storage, retrieval, hard copy reproduction, and remote access for users of NASA Technical Reports. The desired functionality of the DDS system is highly dependent on the assumed requirements for remote access used in this Impact Analysis. It is highly recommended that NASA proceed with a phased, communications requirement analysis to ensure that adequate communications service can be supplied at a reasonable cost in order to validate recent working assumptions upon which the success of the DDS Full Scale System is dependent.

  5. Operational experience from three full scale methane digesters

    SciTech Connect

    Coppinger, E.R.; Richter, M.

    1981-01-01

    Three full scale anaerobic digesters are described and operational experience is discussed. The digesters are located in Monroe, Washington on a 200 head dairy; in Bartow, Florida on a 10,000 head feedlot; and in Bedford, Virginia on a 100 head dairy. 11 refs.

  6. Full scale assessment of pansharpening methods and data products

    NASA Astrophysics Data System (ADS)

    Aiazzi, B.; Alparone, L.; Baronti, S.; Carlà, R.; Garzelli, A.; Santurri, L.

    2014-10-01

    Quality assessment of pansharpened images is traditionally carried out either at degraded spatial scale by checking the synthesis property ofWald's protocol or at the full spatial scale by separately checking the spectral and spatial consistencies. The spatial distortion of the QNR protocol and the spectral distortion of Khan's protocol may be combined into a unique quality index, referred to as hybrid QNR (HQNR), that is calculated at full scale. Alternatively, multiscale measurements of indices requiring a reference, like SAM, ERGAS and Q4, may be extrapolated to yield a quality measurement at the full scale of the fusion product, where a reference does not exist. Experiments on simulated Pĺeiades data, of which reference originals at full scale are available, highlight that quadratic polynomials having three-point support, i.e. fitting three measurements at as many progressively doubled scales, are adequate. Q4 is more suitable for extrapolation than ERGAS and SAM. The Q4 value predicted from multiscale measurements and the Q4 value measured at full scale thanks to the reference original, differ by very few percents for six different state-of-the-art methods that have been compared. HQNR is substantially comparable to the extrapolated Q4.

  7. Full Scale Wind Tunnel and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction progress, aerials of East Area. L5169: Langley's seaplane towing facility (right) and the Full Scale Tunnel (left) were photographed in November of 1930. Photograph published in Winds of Change, 75th Anniversary NASA publication (page 39), by James Schultz.

  8. Strontium Removal: Full-Scale Ohio Demonstrations | Science ...

    EPA Pesticide Factsheets

    The objectives of this presentation are to present a brief overview of past bench-scale research to evaluate the impact lime softening on strontium removal from drinking water and present full-scale drinking water treatment studies to impact of lime softening and ion exchange softening on strontium removal. To inform the public on strontium removal techniques

  9. Characterization of convective heating in full scale wildland fires

    Treesearch

    Bret Butler

    2010-01-01

    Data collected in the International Crown Fire modeling Experiment during 1999 are evaluated to characterize the magnitude and duration of convective energy heating in full scale crown fires. To accomplish this objective data on total and radiant incident heat flux, air temperature, and horizontal and vertical gas velocities were evaluated. Total and radiant energy...

  10. The requirements for a new full scale subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kelly, M. W.; Mckinney, M. O.; Luidens, R. W.

    1972-01-01

    Justification and requirements are presented for a large subsonic wind tunnel capable of testing full scale aircraft, rotor systems, and advanced V/STOL propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed.

  11. Laboratory Investigations of Stratospheric Halogen Chemistry

    NASA Technical Reports Server (NTRS)

    Wine, Paul H.; Nicovich, J. Michael; Stickel, Robert E.; Hynes, Anthony J.

    1997-01-01

    A final report for the NASA-supported project on laboratory investigations of stratospheric halogen chemistry is presented. In recent years, this project has focused on three areas of research: (1) kinetic, mechanistic, and thermochemical studies of reactions which produce weakly bound chemical species of atmospheric interest; (2) development of flash photolysis schemes for studying radical-radical reactions of stratospheric interest; and (3) photochemistry studies of interest for understanding stratospheric chemistry. The first section of this paper contains a discussion of work which has not yet been published. All subsequent chapters contain reprints of published papers that acknowledge support from this grant.

  12. Experimental investigation of laboratory fire whirls

    NASA Astrophysics Data System (ADS)

    Hartl, Katherine; Smits, Alexander

    2013-11-01

    A fire whirl is a swirling diffusion flame that may occur to great destructive effect in urban fires or wildfires. To study fire whirls in the laboratory, we use a burner flame, using DME as fuel, and induce the swirl by entraining air through a split cylinder surrounding the central flame. Stereo Particle Image Velocimetry (PIV) is used to obtain distributions of the three components of velocity outside the fire whirl core. The effects of fuel flow rate, gap width, and height along the flame are examined, and the scaling behavior is investigated.

  13. Summary report on close-coupled subsurface barrier technology: Initial field trials to full-scale demonstration

    SciTech Connect

    Heiser, J.H.; Dwyer, B.

    1997-09-01

    The primary objective of this project was to develop and demonstrate the installation and measure the performance of a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional, low-cost, cement-grout containment barrier followed by a thin lining of a polymer grout. The resultant barrier is a cement-polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. The technology has matured from a regulatory investigation of the issues concerning the use of polymers to laboratory compatibility and performance measurements of various polymer systems to a pilot-scale, single column injection at Sandia to full-scale demonstration. The feasibility of the close-coupled barrier concept was proven in a full-scale cold demonstration at Hanford, Washington and then moved to the final stage with a full-scale demonstration at an actual remediation site at Brookhaven National Laboratory (BNL). At the Hanford demonstration the composite barrier was emplaced around and beneath a 20,000 liter tank. The secondary cement layer was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a cone-shaped barrier. The primary barrier was placed by panel jet-grouting with a dual-wall drill stem using a two part polymer grout. The polymer chosen was a high molecular weight acrylic. At the BNL demonstration a V-trough barrier was installed using a conventional cement grout for the secondary layer and an acrylic-gel polymer for the primary layer. Construction techniques were identical to the Hanford installation. This report summarizes the technology development from pilot- to full-scale demonstrations and presents some of the performance and quality achievements attained.

  14. Correlation of full-scale helicopter rotor performance in air with model-scale Freon data

    NASA Technical Reports Server (NTRS)

    Yeager, W. T., Jr.; Mantay, W. R.

    1976-01-01

    An investigation was conducted in a transonic dynamics tunnel to measure the performance of a 1/5 scale model helicopter rotor in a Freon atmosphere. Comparisons were made between these data and full scale data obtained in air. Both the model and full scale tests were conducted at advance ratios between 0.30 and 0.40 and advancing tip Mach numbers between 0.79 and 0.95. Results show that correlation of model scale rotor performance data obtained in Freon with full scale rotor performance data in air is good with regard to data trends. Mach number effects were found to be essentially the same for the model rotor performance data obtained in Freon and the full scale rotor performance data obtained in air. It was determined that Reynolds number effects may be of the same magnitude or smaller than rotor solidity effects or blade elastic modeling in rotor aerodynamic performance testing.

  15. Approximate similarity principle for a full-scale STOVL ejector

    NASA Astrophysics Data System (ADS)

    Barankiewicz, Wendy S.; Perusek, Gail P.; Ibrahim, Mounir B.

    1994-03-01

    Full-scale ejector experiments are expensive and difficult to implement at engine exhaust temperatures. For this reason the utility of using similarity principles, in particular the Munk and prim principle for isentropic flow, was explored. Static performance test data for a full-scale thrust augmenting ejector were analyzed for primary flow temperature up to 1560 R. At different primary temperatures, exit pressure contours were compared for similarity. A nondimensional flow parameter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments. Under the assumption that an appropriate similarity principle can be established, properly chosen performance parameters were found to be similar for both flow and cold flow model tests.

  16. JWST Full-Scale Model on Display in Germany

    NASA Image and Video Library

    2017-09-27

    JWST Full-Scale Model on Display. A full-scale model of the James Webb Space Telescope was built by the prime contractor, Northrop Grumman, to provide a better understanding of the size, scale and complexity of this satellite. The model is constructed mainly of aluminum and steel, weighs 12,000 lb., and is approximately 80 feet long, 40 feet wide and 40 feet tall. The model requires 2 trucks to ship it and assembly takes a crew of 12 approximately four days. This model has travelled to a few sites since 2005. The photographs below were taken at some of its destinations. The model is pictured here in Munich, Germany Credit: EADS Astrium

  17. Full Scale Wind Tunnel and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction progress, Full Scale entrance cone looking north, exit cone looking south, wind vanes north end, wind vanes north end of east return passage, wind vanes south end of west exit cone looking north east, wind vanes at south end of east exit cone looking north west, entrance cone looking south from north end. Full-Scale Tunnel (FST) entrance cone under construction. Smith DeFrance describes the entrance cone in NACA TR 459 as follows: 'The entrance cone is 75 feet in length and in this distance the cross section changes from a rectangle 72 by 110 feet to a 30 by 60 foot elliptic section. The area reduction in the entrance cone is slightly less than 5:1. The shape of the entrance cone was chosen to give as fas as possible a constant acceleration to the air stream and to retain a 9-foot length of nozzle for directing the flow.' (p. 293)

  18. Full-Scale Flight Research Testbeds: Adaptive and Intelligent Control

    NASA Technical Reports Server (NTRS)

    Pahle, Joe W.

    2008-01-01

    This viewgraph presentation describes the adaptive and intelligent control methods used for aircraft survival. The contents include: 1) Motivation for Adaptive Control; 2) Integrated Resilient Aircraft Control Project; 3) Full-scale Flight Assets in Use for IRAC; 4) NASA NF-15B Tail Number 837; 5) Gen II Direct Adaptive Control Architecture; 6) Limited Authority System; and 7) 837 Flight Experiments. A simulated destabilization failure analysis along with experience and lessons learned are also presented.

  19. Full scale LANDSAT-D antenna pattern measurements

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design verification of the LANDSAT-D antenna subsystem is addressed. In particular, the analysis of the antenna radiation patterns utilizing a full scale mockup of the LANDSAT-D satellite is discussed. Test antennas included two S-Band shaped beam antennas, two S-Band omni unit radiators (to operate in array), a GPS antenna, an X-Band shaped beam antenna, and one S-Band high-gain parabolic antenna.

  20. Preliminary Design of a Full-Scale, Wearable, Exoskeletal Structure

    DTIC Science & Technology

    1963-02-01

    design of a wearable, full-scale exoskeleton is described. The proposed exoskeleton is intended (1) to follow the major movements of the wearer (except...for the fingers, toes, and neck), and (2) to be adjustable so that it can be worn by different subjects•. A feature of the proposed exoskeleton is that... exoskeleton have been specified on the basis that the resultant structure should be able to resist any combination of muscular forces caused by the wearer

  1. Full-scale results for TAM limestone injection

    SciTech Connect

    Baer, S.

    1996-12-31

    Information is outlined on the use of thermally active marble (TAM) sorbents in boilers. Data are presented on: the comparison of TAM to limestone; NOVACON process development history; CFB test history; CFB pilot scale test; full-scale CFB trial; August, 1996 CFB demonstration; Foster Wheeler Mount Carmel sorbent feed rate comparison and Ca:S comparison; unburned carbon is ash; and advantages and savings in CFB boilers.

  2. Full-scale validation of wireless hybrid sensor on an in-service highway bridge

    NASA Astrophysics Data System (ADS)

    Jang, Shinae; Dahal, Sushil; Li, Jingcheng

    2013-04-01

    With the rapid development of electrical circuits, Micro electromechanical system (MEMS) and network technology, wireless smart sensor networks (WSSN) have shown significant potential for replacing existing wired SHM systems due to their cost effectiveness and versatility. A few structural systems have been monitored using WSSN measuring acceleration, temperature, wind speed, humidity; however, a multi-scale sensing device which has the capability to measure the displacement has not been yet developed. In the previous paper, a new high-accuracy displacement sensing system was developed combining a high resolution analog displacement sensor and MEMS-based wireless microprocessor platform. Also, the wireless sensor was calibrated in the laboratory to get the high precision displacement data from analog sensor, and its performance was validated to measure simulated thermal expansion of a laboratory bridge structure. This paper expands the validation of the developed system on full-scale experiments to measure both static and dynamic displacement of expansion joints, temperature, and vibration of an in-service highway bridge. A brief visual investigation of bridges, comparison between theoretical and measured thermal expansion are also provided. The developed system showed the capability to measure the displacement with accuracy of 0.00027 in.

  3. Investigating Coccolithophorid Biology in the Sedimentary Laboratory

    NASA Astrophysics Data System (ADS)

    McClelland, H. L. O.; Barbarin, N.; Beaufort, L.; Hermoso, M.; Rickaby, R. E. M.

    2014-12-01

    Coccolithophores are the ocean's dominant calcifying phytoplankton; they play an important, but poorly understood, role in long-term biogeochemical climatic feedbacks. Calcite producing marine organisms are likely to calcify less in a future world where higher carbon dioxide concentrations will lead to ocean acidification (OA), but coccolithophores may be the exception. In coccolithophores calcification occurs in an intracellular vesicle, where the site of calcite precipitation is buffered from the external environment and is subject to a uniquely high degree of biological control. Culture manipulation experiments mimicking the effects of OA in the laboratory have yielded empirical evidence for phenotypic plasticity, competition and evolutionary adaptation in asexual populations. However, the extent to which these results are representative of natural populations, and of the response over timescales of greater than a few hundred generations, is unclear. Here we describe a new sediment-based proxy for the PIC:POC (particulate inorganic to particulate organic carbon ratio) of coccolithophore biomass, which is equivalent to the fractional energy contribution to calcification at constant pH, and a biologically meaningful measure of the organism's tendency to calcify. Employing the geological record as a laboratory, we apply this proxy to sedimentary material from the southern Pacific Ocean to investigate the integrated response of real ancient coccolithophore populations to environmental change over many thousands of years. Our results provide a new perspective on phenotypic change in real populations of coccolithophorid algae over long timescales.

  4. Full scale tests of all-steel buckling restrained braces

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Wu, Bin; Li, Hui; Ou, Jinping; Yang, Weibiao

    2009-03-01

    Buckling-restrained braces (BRBs) are widely used seismic response-controlling members with excellent energy dissipation capacity without buckling at design deformation. However, the property of all-steel BRBs with cruciform cross section encased in a square steel tube remains insufficiently studied. In this paper, the properties of this kind of BRBs, which were used in two office buildings in Beijing, were examined by full-scale test. First, initial design was done according to the client's requirement. Then, two full-scale specimens were tested under uniaxial quasi-static cyclic loading. The test results indicate that there should be no welding in yielding portion of the core. Finally, the full-scale subassemblage test was done with an improved BRB and gusset plates installed in a frame. The result shows that the brace exhibited high energy dissipation capacity and stable hysteretic characteristic. According to the results from above tests, some important issues are summarized to provide advices for practical applications.

  5. Freezable Radiator Coupon Testing and Full Scale Radiator Design

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean T.; Guinn, John; Cognata, Thomas; Navarro, Moses

    2009-01-01

    Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal loads during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. This paper summarizes tests on three test articles that were performed to further empirically quantify the behavior of a simple freezable radiator, and the culmination of those tests into a full scale design. Each test article explored the bounds of freezing and recovery behavior, as well as providing thermo-physical data of the working fluid, a 50-50 mixture of DowFrost HD and water. These results were then used as a tool for developing correlated thermal model in Thermal Desktop which could be used for modeling the behavior of a full scale thermal control system for a lunar mission. The final design of a thermal control system for a lunar mission is also documented in this paper.

  6. Full-scale validation of a model of algal productivity.

    PubMed

    Béchet, Quentin; Shilton, Andy; Guieysse, Benoit

    2014-12-02

    While modeling algal productivity outdoors is crucial to assess the economic and environmental performance of full-scale cultivation, most of the models hitherto developed for this purpose have not been validated under fully relevant conditions, especially with regard to temperature variations. The objective of this study was to independently validate a model of algal biomass productivity accounting for both light and temperature and constructed using parameters experimentally derived using short-term indoor experiments. To do this, the accuracy of a model developed for Chlorella vulgaris was assessed against data collected from photobioreactors operated outdoor (New Zealand) over different seasons, years, and operating conditions (temperature-control/no temperature-control, batch, and fed-batch regimes). The model accurately predicted experimental productivities under all conditions tested, yielding an overall accuracy of ±8.4% over 148 days of cultivation. For the purpose of assessing the feasibility of full-scale algal cultivation, the use of the productivity model was therefore shown to markedly reduce uncertainty in cost of biofuel production while also eliminating uncertainties in water demand, a critical element of environmental impact assessments. Simulations at five climatic locations demonstrated that temperature-control in outdoor photobioreactors would require tremendous amounts of energy without considerable increase of algal biomass. Prior assessments neglecting the impact of temperature variations on algal productivity in photobioreactors may therefore be erroneous.

  7. Computational Evaluation of Airframe Noise Reduction Concepts at Full Scale

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Duda, Benjamin; Hazir, Andreas; Fares, Ehab

    2016-01-01

    High-fidelity simulations focused on full-scale evaluation of new technologies for mitigating flap and landing gear noise are presented. These noise reduction concepts were selected because of their superior acoustic performance, as demonstrated during NASA wind tunnel tests of an 18%-scale, semi-span model of a Gulfstream aircraft. The full-scale, full-aircraft, time-accurate simulations were performed with the lattice Boltzmann PowerFLOW(Registered Trademark) solver for free air at a Mach number of 0.2. Three aircraft configurations (flaps deflected at 39? without and with main gear deployed, and 0? flaps with main gear extended) were used to determine the aero-acoustic performance of the concepts on component-level (individually) and system-level (concurrent applica-tion) bases. Farfield noise spectra were obtained using a Ffowcs-Williams and Hawkings acoustic analogy approach. Comparison of the predicted spectra without (baseline) and with the noise treatments applied showed that noise reduction benefits between 2-3 dB for the flap and 1.3-1.7 dB for the main landing gear are obtained. It was also found that the full extent of the benefits is being masked by the noise generated from the flap brackets and main gear cavities, which act as prominent secondary sources.

  8. Full-scale decentralized damage identification using wireless smart sensors

    NASA Astrophysics Data System (ADS)

    Jang, Shinae; Sim, Sung-Han; Jo, Hongki; Spencer, Billie F., Jr.

    2011-04-01

    Wireless Smart Sensor Networks (WSSN) facilitates a new paradigm to structural health monitoring (SHM) for civil infrastructure. Conventionally, SHM systems employing wired sensors and central data acquisition have been used to characterize the state of a structure; however, wide-spread implementation has been limited due to difficulties in cabling and data management, high equipment cost, and long setup time. WSSNs offer a unique opportunity to overcome such difficulties. Recent advances in sensor technology have realized low-cost, smart sensors with on-board computation and wireless communication capabilities, making deployment of a dense array of sensors on large civil structures both feasible and economical. Wireless smart sensors have shown their tremendous potential for SHM in recent full-scale bridge monitoring examples. However, structural damage identification in WSSNs, a primary objective of SHM, has yet to reach its full potential. This paper presents a full-scale validation of the decentralized damage identification application on the Imote2 sensor platform on a historic steel truss bridge. The SHM application for WSSN developed in the previous research is further combined with continuous and autonomous monitoring application. In total, 144 sensor channels and one base station have been deployed on the bridge for damage localization. The efficacy of the developed application has been demonstrated to compare the damage identification results with the traditional centralized processing.

  9. Full Scale Wind Tunnel and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction progress, Full Scale exit cone looking south from entrance cone, east switchboard, west switchboard, wind vanes at north end looking north through entrance cone, north end looking south through entrance cone, entrance cone looking north from exit cone, wind vanes south end of west exit cone, wind vanes south end of east exit cone, Tow Channel trolley lines looking north, east and west incline braces at north end. Full-Scale Tunnel (FST) exit cone construction and installation of fan motors. Smith DeFrance describes the entrance cone in NACA TR 459 as follows: 'Forward of the propellers and located on the center line of the tunnel is a smooth fairing which transforms the somewhat elliptic section of the single passage into two circular ones at the propellers. From the propellers aft, the exit cone is divided into two passages and each transforms in the length of 132 feet from a 35-foot 61/2-inch circular section to a 46-foot square. The included angle between the sides of each passage is 6 inches.' (p. 293)

  10. Full Scale Wind Tunnel and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction progress: Preparation for test of Careystone panels used to cover the exterior of the Full-Scale Tunnel (FST). The corrugated concrete and asbestos panels (1/4 inch thick; 42 inches wide; 62 inches long) which were used as siding and roofing for the Full-Scale Tunnel were manufactured by The Philip Carey Company. The NACA conducted seven different tests to determine the exact properties of the the substance which was called 'Careystone'. Three of these tests involved applying a load until the test panel ruptured. The results of these tests were supplied to the manufacturer but with the condition that the information remain confidential. The Philip Carey Company very much wanted to publicized the NACA test results (They had underbid the project in hopes of getting a strong return through an advertising campaign.) but the company's request was rejected out of hand as a violation of government policy. For the NACA, the choice of Careystone had been based on several factors. First and foremost was its low cost. NACA engineers had observed the very durable, low-maintenance and fireproof qualities of the concrete-asbestos covering of the airship hanger at Langley Field. Further, tests showed the material to be 3.8 times stronger than required (The maximum load the material was expected to withstand was 52 lbs. per square foot; the breaking load was 196 lbs. per sq. ft.).

  11. Cylindrical acoustical holography applied to full-scale jet noise.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; Krueger, David W; James, Michael M

    2014-09-01

    Near-field acoustical holography methods are used to predict sound radiation from an engine installed on a high-performance military fighter aircraft. Cylindrical holography techniques are an efficient approach to measure the large and complex sound fields produced by full-scale jets. It is shown that a ground-based, one-dimensional array of microphones can be used in conjunction with a cylindrical wave function field representation to provide a holographic reconstruction of the radiated sound field at low frequencies. In the current work, partial field decomposition methods and numerical extrapolation of data beyond the boundaries of the hologram aperture are required prior to holographic projection. Predicted jet noise source distributions and directionality are shown for four frequencies between 63 and 250 Hz. It is shown that the source distribution narrows and moves upstream, and that radiation directionality shifts toward the forward direction, with increasing frequency. A double-lobe feature of full-scale jet radiation is also demonstrated.

  12. Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility.

    PubMed

    Park, Donghee; Lee, Dae Sung; Kim, Young Mo; Park, Jong Moon

    2008-04-01

    To enhance biological removal efficiency of total cyanides, bioaugmentation was applied to a full-scale cokes wastewaters treatment process. After a laboratorial-scale cultivation (up to 1.2 m(3)) of a cyanide-degrading yeast (Cryptococcus humicolus) and unidentified cyanide-degrading microorganisms, the microbial consortium was inoculated into a fluidized-bed type process (1280 m(3)), and then enriched for two months with a huge supply of glucose, KCN and other nutrients. Target wastewater was effluent of a biological pre-denitrification process for treating cokes wastewater, and contained about 14 mg/L of total cyanides in the form of ferric cyanide. This may be a first or rare report on the full-scale bioaugmentation of specialized-microorganisms. However, continuous operation of the full-scale cyanides-degrading bioprocess showed poor removal efficiency than expected owing to poor settling performance of microbial flocs, slow biodegradation rate of ferric cyanide and lack of organic carbon sources within the wastewater. Therefore, there is a need for further studies on how to solve these operating problems in full-scale bioaugmentation approach.

  13. Model rotor high-speed impulsive noise - Parametric variations and full-scale comparisons

    NASA Astrophysics Data System (ADS)

    Splettstoesser, W. R.; Schultz, K. J.; Schmitz, F. H.; Boxwell, D. A.

    1983-05-01

    The results of a 1/7-scale model of the AH-1 series helicopter main rotor test in the German-Dutch anechoic wind tunnel are discussed, with emphasis given on exploring the important scaling parameters of helicopter-rotor high-speed impulsive noise. Nondimensional parameters are derived from the governing equations and employed to compare the model rotor measurements with full-scale investigations, using an equivalent in-flight technique. The peak acoustic pressure, impulsive noise directivity, and acoustic waveform of the model are found to scale well in shape and in amplitude with full-scale results. Parametric variations of the model-rotor acoustic measurements, such as the change of the high-speed impulsive noise level over a range of advancing-tip Mach numbers at constant advance ratio or constant velocity, are presented. It is concluded that model-scale rotors can be used to explore potential acoustic design innovations on full-scale helicopters.

  14. Fatigue life on a full scale test rig: Forged versus cast wind turbine rotor shafts

    NASA Astrophysics Data System (ADS)

    Herrmann, J.; Rauert, T.; Dalhoff, P.; Sander, M.

    2016-09-01

    To reduce uncertainties associated with the fatigue life of the highly safety relevant rotor shaft and also to review today's design practice, the fatigue behaviour will be tested on a full scale test rig. Until now tests on full scale wind turbine parts are not common. Therefore, a general lack of experience on how to perform accelerated life time tests for those components exists. To clarify how to transfer real conditions to the test environment, the arrangements and deviations for the upcoming experimental test are discussed in detail. In order to complete investigations of weight saving potentials, next to getting a better comprehension of the fatigue behaviour by executing a full scale test, a further outcome are suggestions for the usage of cast and forged materials regarding the fatigue and the remaining life of the rotor shaft. It is shown, that it is worthwhile to think about a material exchange for the forged rotor shaft.

  15. Full-Scale Field Test of Wake Steering

    DOE PAGES

    Fleming, Paul; Annoni, Jennifer; Scholbrock, Andrew; ...

    2017-06-13

    Wind farm control, in which turbine controllers are coordinated to improve farmwide performance, is an active field of research. One form of wind farm control is wake steering, in which a turbine is yawed to the inflow to redirect its wake away from downstream turbines. Wake steering has been studied in depth in simulations as well as in wind tunnels and scaled test facilities. This work performs a field test of wake steering on a full-scale turbine. In the campaign, the yaw controller of the turbine has been set to track different yaw misalignment set points while a nacelle-mounted lidarmore » scans the wake at several ranges downwind. The lidar measurements are combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast. In conclusion, these measurements are then compared to the predictions of a wind farm control-oriented model of wakes.« less

  16. Full-Scale Field Test of Wake Steering

    NASA Astrophysics Data System (ADS)

    Fleming, Paul; Annoni, Jennifer; Scholbrock, Andrew; Quon, Eliot; Dana, Scott; Schreck, Scott; Raach, Steffen; Haizmann, Florian; Schlipf, David

    2017-05-01

    Wind farm control, in which turbine controllers are coordinated to improve farmwide performance, is an active field of research. One form of wind farm control is wake steering, in which a turbine is yawed to the inflow to redirect its wake away from downstream turbines. Wake steering has been studied in depth in simulations as well as in wind tunnels and scaled test facilities. This work performs a field test of wake steering on a full-scale turbine. In the campaign, the yaw controller of the turbine has been set to track different yaw misalignment set points while a nacelle-mounted lidar scans the wake at several ranges downwind. The lidar measurements are combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast. These measurements are then compared to the predictions of a wind farm control-oriented model of wakes.

  17. Full-scale anaerobic bioremediation of trinitrotoluene (TNT) contaminated soil

    SciTech Connect

    Funk, S.B.; Crawford, D.L.; Crawford, R.L.

    1995-12-31

    An anaerobic bioremediation process for the degradation of nitroaromatic compounds in soil was demonstrated. This ex situ process was demonstrated full-scale at a 2,4,6-trinitrotoluene (TNT)-contaminated site near Weldon Spring, MO. A bioreactor was loaded with approx 23 m{sup 3} of TNT-contaminated soil in the form of a 50:50 soil: water slurry. This slurry was augmented with a starchy carbon source (1-2% w/v) and buffered with phosphate to near-neutral pH. Indigenous soil bacteria utilized the oxygen, making the slurry anaerobic within 1-2 d. Anaerobes then degraded the TNT (3000 mg/kg) in approx 11 wk. A relatively long treatment time for the bioremediation of the TNT-contaminated soil was necessary, possibly because of the cool ambient temperatures, high clay content of the soil, high level of contamination, and high level of recalcitrance of TNT in soils.

  18. Effects of aerodynamic fairing on full scale blade fatigue test

    NASA Astrophysics Data System (ADS)

    Pan, Zujin; Wu, Jianzhong; Sun, Yuanrong; Jian, Liu

    2017-06-01

    The reliability of large blades should be verified by means of full scale fatigue test. In order to solve the problem of lack of exciting force during fatigue test in the flap wise direction, the program that aerodynamic fairing is installed in the tip of blade to reduce the air resistance is proposed. The numerical model of blade vibration and damping ratio calculation is established. The relationship between damping ratio, exciting force and amplitude is constructed by finite element method respectively. The difference of the exciting bending moment of blade and the damping ratio before and after the installation of aerodynamic fairing is compared respectively. The results show that damping ratio decreased by 27.9%. When the vibration of the blade reaches the target bending moment, the exciting force of the equipment decreases by 45.4%. It is an effective way to reduce the exciting force.

  19. Defining Anaerobic Digestion Stability-Full Scale Study

    NASA Astrophysics Data System (ADS)

    Demitry, M. E., Sr.

    2014-12-01

    A full-scale anaerobic digester receiving a mixture of primary and secondary sludge was monitored for one hundred days. A chemical oxygen demand, COD, and a volatile solids, VS, mass balance was conducted to evaluate the stability of the digester and its capability of producing methane gas. The COD mass balance could account for nearly 90% of the methane gas produced while the VS mass balance showed that 91% of the organic matter removed resulted in biogas formation. Other parameters monitored included: pH, alkalinity, VFA, and propionic acid. The values of these parameters showed that steady state had occurred. Finally, at mesophilic temperature and at steady state performance, the anaerobic digester stability was defined as a constant ratio of methane produced per substrate of ΔVS (average ratio=0.404 l/g). This ratio can be used as universal metric to determine the anaerobic digester stability in an easy and inexpensive way.

  20. New Orleans full-scale trommel evaluation: interim test report

    SciTech Connect

    Campbell, J.

    1981-06-01

    This report presents the data from five tests of a full-scale trommel processing unsegregated municipal solid waste at throughtputs ranging from 58% to 175% of design capacity, or 32 to 98 Mg/h (36 to 109 tph). The tests were conducted between December 1980 and March 1981 at the Recovery 1 solid waste processing facility in New Orleans, La. Included in the report are a description of the equipment, discussion of the test procedures and primary summaries of data on the trommel mass balance and separation efficiency, and on the analysis of infeed and product samples for size, composition, density, and moisture. Heat content and ash values of the trommel oversize and recovery results on surrogate aluminum cans and flakes also are reported.

  1. Full-scale soil washing system remediates Superfund site

    SciTech Connect

    1993-11-01

    One of the first full-scale soil washing systems in the United States is currently being used to remediate the King of Prussia (KOP) Technical Corporation Superfund site (Winslow Township, New Jersey). The soil washing facility began operating at the site in June 1993. About 20,300 tons of soil require remediation, and operations were expected to be completed in October 1993. The soil washing process was supplied by Alternative Remedial Technologies, Inc. (ART) of Tampa, Florida, a 50-50 joint venture of Geraghty & Miller, Inc. and the Dutch company, Heidemij Realisatie. Heidemij developed the process and has been involved with hazardous soil washing in the Netherlands for about ten years. 1 tab., 1 fig.

  2. Full-Scale Prestress Loss Monitoring of Damaged RC Structures Using Distributed Optical Fiber Sensing Technology

    PubMed Central

    Lan, Chunguang; Zhou, Zhi; Ou, Jinping

    2012-01-01

    For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams. PMID:22778590

  3. Full-scale prestress loss monitoring of damaged RC structures using distributed optical fiber sensing technology.

    PubMed

    Lan, Chunguang; Zhou, Zhi; Ou, Jinping

    2012-01-01

    For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams.

  4. Full Scale Tunnel (FST) and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Aerial and ground views of the overall construction of Full-Scale Tunnel (FST) and the Seaplane Tow Channel. In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; an fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293). Ground shots of work in progress, aerials of east area.

  5. Full Scale Wind Tunnel and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Construction progress, studding in Tow Channel office area, Full Scale motor fairing in west exit cone, motor fairing in east exit cone. Propeller and motor fairing for west exit cone. Smith DeFrance described the propellers and motors in NACA TR No. 459. ' The propellers are located side by side and 48 feet aft of the throat of the exit-cone bell. The propellers are 35 feet 5 inches in diameter and each consists of four cast aluminum alloy blades screwed into a cast steel hub.' 'The most commonly used power plant for operating a wind tunnel is a direct-current motor and motor-generator set with Ward Leonard control system. For the full-scale wind tunnel it was found that alternating current slip-ring induction motors, together with satisfactory control equipment, could be purchased for approximately 30 percent less than the direct-current equipment. Two 4,000-horsepower slip-ring induction motors with 24 steps of speed between 75 and 300 r.p.m. were therefore installed. In order to obtain the range of speed one pole change was provided and the other variations are obtained by the introduction of resistance in the rotor circuit. This control permits a variation in air speed from 25 to 118 miles per hour. The two motors are connected through an automatic switchboard to one drum-type controller located in the test chamber. All the control equipment is interlocked and connected through time-limit relays, so that regardless of how fast the controller handle is moved the motors will increase in speed at regular intervals.' (p. 294-295)

  6. Full scale UASB reactor performance in the brewery industry.

    PubMed

    Ahn, Y H; Min, K S; Speece, R E

    2001-04-01

    In this paper the 7 year experience of the Oriental Breweries, located in Kumi, Korea utilizing a full-scale upflow anaerobic sludge blanket (UASB) reactor for the anaerobic pretreatment of brewery wastewater is presented. The anaerobic pretreatment system selected has successfully achieved the desired treatment efficiency for the brewery wastewater during that period and it has also continued operation even with low wastewater concentrations (average CODcr 1,400 mg l-1) and lower flow rates than specified by the design parameters. The CODcr removal of the UASB reactor averaged over 80% throughout the entire period, incurring normal running expenses of only $0.20-0.31 m-3 of treated water. In addition a further economical feature of the process was the utilization of the gas digester production as the municipal gas source, reducing total operating expenses around 30 to 45% and costing the plant only $0.1 m-3. Maintenance of good granule production, which is always a key issue in operating UASB systems, was not possible by this installation, however, so frequent expensive reseeding of the reactor was often necessary due to biomass washout. The full scale and lab scale research revealed that underloading can be as detrimental as overloading, due to excessively long retention time in the UASB system for the overall operating period and to excessive pre-acidification and/or incorrect reactor configuration of the completely mixed type. To enhance the sludge granulation, therefore, the installation of a pre-acidification reactor in the UASB system treating easily biodegradable substrates such as brewery wastewater is not necessary because adequate pre-acidification can occur in the equalization tank.

  7. Analysis of Unbound Aggregate Layer Deformation Behavior from Full Scale Aircraft Gear Loading with Wander

    ERIC Educational Resources Information Center

    Donovan, Phillip Raymond

    2009-01-01

    This study focuses on the analysis of the behavior of unbound aggregates to offset wheel loads. Test data from full-scale aircraft gear loading conducted at the National Airport Pavement Test Facility (NAPTF) by the Federal Aviation Administration (FAA) are used to investigate the effects of wander (offset loads) on the deformation behavior of…

  8. Analysis of Unbound Aggregate Layer Deformation Behavior from Full Scale Aircraft Gear Loading with Wander

    ERIC Educational Resources Information Center

    Donovan, Phillip Raymond

    2009-01-01

    This study focuses on the analysis of the behavior of unbound aggregates to offset wheel loads. Test data from full-scale aircraft gear loading conducted at the National Airport Pavement Test Facility (NAPTF) by the Federal Aviation Administration (FAA) are used to investigate the effects of wander (offset loads) on the deformation behavior of…

  9. Solar Laboratory Investigations for Introductory Astronomy Classes

    NASA Astrophysics Data System (ADS)

    Benge, Raymond

    2001-10-01

    Introductory astronomy courses introduce students to the Sun as a star. Frequently, however, laboratory exercises on the Sun are not part of the curriculum. The author will discuss several introductory astronomy exercises involving the Sun. These include naked eye observations, as well as multi-wavelength observations of the Sun, using white light telescopes, a hydrogen alpha filtered telescope, and a radio telescope. In addition, we use the CLEA computer based laboratory exercise that incorporates a simulation designed to acquaint students with the radiative zone within the Sun.

  10. Caustic-Side Solvent Extraction Full-Scale Test

    SciTech Connect

    Lentsch, R.D.; Stephens, A.B.; Bartling, K.E.; Singer, S.A.

    2008-07-01

    A Full-Scale Test (FST) program was performed by Parsons and its team members General Atomics and Energy Solutions to assess the performance of full-scale centrifugal contactors specified for the Department of Energy Salt Waste Processing Facility (SWPF). The SWPF, to be located at the Savannah River Site (SRS) in Aiken, South Carolina, will remove highly radioactive waste constituents, principally actinides, strontium (Sr), and cesium (Cs) radionuclides, from salt waste solutions currently stored in SRS high-level waste tanks. Caustic-side Solvent Extraction (CSSX) removes Cs from waste feed that has been treated upstream to remove actinides and Sr. CSSX uses a custom solvent to extract Cs from the salt solution in a series of single stage centrifugal contactors. The test system comprised (a) eleven 25.4 cm (10'') full-scale contactors (versus 36 in SWPF) for the extraction, scrub, strip, and wash stages; (b) two solvent recovery coalescers; and (c) the associated hardware and control system, packaged in four skid mounted modules. This paper describes the results of tests performed to define both hydraulic performance parameters (maximum hydraulic capacity and phase carryover) and solvent extraction performance parameters (Cs mass transfer efficiencies) using simulated SWPF waste and actual CSSX solvent. The test results confirmed key design features of the CSSX process and, as a consequence, the use of CSSX in the SWPF. In conclusion: Total throughput was initially limited to 85% of maximum flow during FST. Minor system modifications performed prior to mass transfer testing series resulted in the realization of 100% throughput. The 100% flow equates to slightly more than 35.6 x 10{sup 6} L/yr (9.4 Mgal/yr) of waste processed in SWPF which is anticipated to be the peak plant throughput. To achieve the best hydraulic performance in extraction, it is recommended that the extraction contactors be operated at the highest reasonable speed possible (>2100 rpm

  11. Investigating Evolutionary Biology in the Laboratory.

    ERIC Educational Resources Information Center

    McComas, William F., Ed.

    This document presents a collection of useful laboratory-based activities for teaching about evolution. Some of the activities in this monograph are previously unpublished exercises, some are new versions of well-known labs, a few make useful classroom demonstrations, and several require somewhat sophisticated equipment. As a group, the activities…

  12. A Meaningful Experience in Laboratory Investigation

    ERIC Educational Resources Information Center

    Szinai, S. S.; Szinai, N.

    1976-01-01

    The framework of the course "Problems in Pharmaceutical Chemistry" was used to give second- and third-year pharmacy students at the University of Florida an opportunity to obtain an insight into the workings of laboratories dealing with drug-related problems. Goals, outline, and an illustrative project for the course are described. (LBH)

  13. Investigating Optimal Foraging Theory in the Laboratory

    ERIC Educational Resources Information Center

    Harden, Siegfried; Grilliot, Matthew E.

    2014-01-01

    Optimal foraging theory is a principle that is often presented in the community ecology section of biology textbooks, but also can be demonstrated in the laboratory. We introduce a lab activity that uses an interactive strategy to teach high school and/or college students about this ecological concept. The activity is ideal because it engages…

  14. Impact of compost process conditions on organic micro pollutant degradation during full scale composting.

    PubMed

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2015-06-01

    Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions.

  15. Characterization of AGIPD1.0: The full scale chip

    NASA Astrophysics Data System (ADS)

    Mezza, D.; Allahgholi, A.; Arino-Estrada, G.; Bianco, L.; Delfs, A.; Dinapoli, R.; Goettlicher, P.; Graafsma, H.; Greiffenberg, D.; Hirsemann, H.; Jack, S.; Klanner, R.; Klyuev, A.; Krueger, H.; Marras, A.; Mozzanica, A.; Poehlsen, J.; Schmitt, B.; Schwandt, J.; Sheviakov, I.; Shi, X.; Trunk, U.; Xia, Q.; Zhang, J.; Zimmer, M.

    2016-12-01

    The AGIPD (adaptive gain integrating pixel detector) detector is a high frame rate (4.5 MHz) and high dynamic range (up to 104 ·12.4 keV photons) detector with single photon resolution (down to 4 keV taking 5σ as limit and lowest noise settings) developed for the European XFEL (XFEL.EU). This work is focused on the characterization of AGIPD1.0, which is the first full scale version of the chip. The chip is 64×64 pixels and each pixel has a size of 200×200 μm2. Each pixel can store up to 352 images at a rate of 4.5 MHz (corresponding to 220 ns). A detailed characterization of the AGIPD1.0 chip has been performed in order to assess the main performance of the ASIC in terms of gain, noise, speed and dynamic range. From the measurements presented in this paper a good uniformity of the gain, a noise around 320 e- (rms) in standard mode and around 240 e- (rms) in high gain mode has been measured. Furthermore a detailed discussion about the non-linear behavior after the gain switching is presented with both experimental results and simulations.

  16. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1982-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine.

  17. Freezable Radiator Model Correlation and Full Scale Design

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean T.; Navarro, Moses

    2010-01-01

    Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal loads during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. This paper summarizes efforts made to correlate a Thermal Desktop (TM) model with empirical testing data from two test articles. A 50-50 mixture of DowFrost HD and water is used as the working fluid. Efforts to scale this model to a full scale design, as well as efforts to characterize various thermal control fluids at low temperatures are also discussed.

  18. Evaluation of full-scale biofilter media performance

    SciTech Connect

    Cardenas-Gonzalez, B.; Ergas, S.J.; Switzenbaum, M.S.; Phillibert, N.

    1999-09-30

    The objective of this study was to characterize the key physical, chemical and biological properties of compost media from a full-scale biofiltration system used to control VOC emissions. Results of media characterization were used to assess the need for operational changes and media replacement. Biofilter media properties evaluated included: moisture content, pH, total organic carbon (TOC) and nitrogen content in water extracts and solid matrix, oxygen uptake rates, and microbial plate counts including total heterotrophs, oligotrophs, actinomycetes and fungi. Samples were taken from various locations and depths in the biofilter after three and five years of system operation. Media moisture content was highly variable, with samples from deeper in the bed dryer than surface samples. Low moisture contents were associated with low pH values and low oxygen uptake rates. Total organic carbon contents in water extracts were higher than typical biosolids compost in samples near the inlet to the biofilter, possibly due to extracellular polysaccharides. After five years of use, total nitrogen and organic carbon contents in the solid matrix did not significantly differ from initial levels or those in typical biosolids compost.

  19. Hover performance tests of full scale variable geometry rotors

    NASA Technical Reports Server (NTRS)

    Rorke, J. B.

    1976-01-01

    Full scale whirl tests were conducted to determine the effects of interblade spatial relationships and pitch variations on the hover performance and acoustic signature of a 6-blade main rotor system. The variable geometry rotor (VGR) variations from the conventional baseline were accomplished by: (1) shifting the axial position of alternate blades by one chord-length to form two tip path planes; and (2) varying the relative azimuthal spacing from the upper rotor to the lagging hover rotor in four increments from 25.2 degrees to 62.1 degrees. For each of these four configurations, the differential collective pitch between upper and lower rotors was set at + or - 1 deg, 0 deg and -1 deg. Hover performance data for all configurations were acquired at blade tip Mach numbers of 0.523 and 0.45. Acoustic data were recorded at all test conditions, but analyzed only at 0 deg differential pitch at the higher rotor speed. The VGR configurations tested demonstrated improvements in thrust at constant power as high as 6 percent. Reductions of 3 PNdb in perceived noise level and of 4 db in blade passage frequency noise level were achieved at the higher thrust levels. Consistent correlation exists between performance and acoustic improvements. For any given azimuth spacing, performance was consistently better for the differential pitch condition of + or - 1 degree, i.e. with the upper rotor pitch one degree higher than the lower rotor.

  20. Full-Scale Crash Test of an MD-500 Helicopter

    NASA Technical Reports Server (NTRS)

    Littell, Justin

    2011-01-01

    A full-scale crash test was successfully conducted in March 2010 of an MD-500 helicopter at NASA Langley Research Center s Landing and Impact Research Facility. The reasons for conducting this test were threefold: 1 To generate data to be used with finite element computer modeling efforts, 2 To study the crashworthiness features typically associated with a small representative helicopter, and 3 To compare aircraft response to data collected from a previously conducted MD-500 crash test, which included an externally deployable energy absorbing (DEA) concept. Instrumentation on the airframe included accelerometers on various structural components of the airframe; and strain gages on keel beams, skid gear and portions of the skin. Three Anthropomorphic Test Devices and a specialized Human Surrogate Torso Model were also onboard to collect occupant loads for evaluation with common injury risk criteria. This paper presents background and results from this crash test conducted without the DEA concept. These results showed accelerations of approximately 30 to 50 g on the airframe at various locations, little energy attenuation through the airframe, and moderate to high probability of occupant injury for a variety of injury criteria.

  1. Full Scale Tunnel (FST) and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    L4855: Full-Scale Tunnel (FST) circuit breaker panel prior to installation. In NACA TR No. 459, Smith DeFrance notes that the FST differed from other wind tunnels in is use of alternating current slip-ring induction motors rather than a direct-current motor and motor-generator set. 'Two 4,000-horsepower slip-ring induction motors with 24 steps of speed between 75 and 300 r.p.m. were ...installed. In order to obtain the range of speed one pole change was provided and the other variations are obtained by the introduction of resistance in the rotor circuit. This control permits a variation in air speed from 25 to 118 miles per hour. The two motors are connected through an automatic switchboard to one drum-type controller located in the test chamber. All the control equipment is interlocked and connected through time-limit relays, so that regardless of how fast the controller handle is moved the motors will increase in speed at regular intervals.' (p. 294-295)

  2. Model Wind Turbines Tested at Full-Scale Similarity

    NASA Astrophysics Data System (ADS)

    Miller, M. A.; Kiefer, J.; Westergaard, C.; Hultmark, M.

    2016-09-01

    The enormous length scales associated with modern wind turbines complicate any efforts to predict their mechanical loads and performance. Both experiments and numerical simulations are constrained by the large Reynolds numbers governing the full- scale aerodynamics. The limited fundamental understanding of Reynolds number effects in combination with the lack of empirical data affects our ability to predict, model, and design improved turbines and wind farms. A new experimental approach is presented, which utilizes a highly pressurized wind tunnel (up to 220 bar). It allows exact matching of the Reynolds numbers (no matter how it is defined), tip speed ratios, and Mach numbers on a geometrically similar, small-scale model. The design of a measurement and instrumentation stack to control the turbine and measure the loads in the pressurized environment is discussed. Results are then presented in the form of power coefficients as a function of Reynolds number and Tip Speed Ratio. Due to gearbox power loss, a preliminary study has also been completed to find the gearbox efficiency and the resulting correction has been applied to the data set.

  3. Full-Scale Schlieren Visualization of Commercial Kitchen Ventilation Aerodynamics

    NASA Astrophysics Data System (ADS)

    Miller, J. D.; Settles, G. S.

    1996-11-01

    The efficient removal of cooking effluents from commercial kitchens has been identified as the most pressing energy-related issue in the food service industry. A full-scale schlieren optical system with a 2.1x2.7m field-of-view, described at previous APS/DFD meetings, images the convective airflow associated with a typical gas-fired cooking griddle and ventilation hood. Previous attempts to visualize plumes from cooking equipment by smoke and neutrally-buoyant bubbles were not sufficiently keyed to thermal convection. Here, the point where the ventilation hood fails to capture the effluent plume is clearly visible, thus determining the boundary condition for a balanced ventilation system. Further, the strong influence of turbulent entrainment is seen in the behavior of the combustion products vented by the griddle and the interference caused by a makeup-air outlet located too close to the lip of the ventilation hood. Such applications of traditional fluid dynamics techniques and principles are believed to be important to the maturing of ventilation technology. (Research supported by EPRI and IFMA, Inc.)

  4. Lightweight alumina refractory aggregate: Phase 3, Full-scale demonstration

    SciTech Connect

    Swansiger, T.G.; Pearson, A.

    1996-07-16

    Technical problems (higher than target fired density, and poor intermediate strength after burnout but before sintering) were addressed and solved; solution involved use of large loading of CP-5 alumina (controlled pore, rehydratable), increased loading of one of the binders, and a steam aging step. Resistance of the lightweight aggregate in a brick formulation to steel slag penetration was assessed in a preliminary test and found to be almost as good as that of T-64. Pelletized process economic feasibility study was updated, based on production levels of 10,000 and 20,000 mt/year, the most up- to-date raw material costs, and the assumption of a retrofit into the Arkansas plant tabular production facility. For the 10,000 mt/y production level, the required selling price of 35% more than the T- 64 selling price exceeds the {le}25% objective. The market survey will determine whether to proceed with the full scale demonstration that will produce at least 54.4 mt (120,000 lb) of the aggregate for incorporation into products, followed by end-user testing and evaluation.

  5. Full scale biological treatment of heavy metal contaminated groundwater

    SciTech Connect

    Vegt, A.L. De; Buisman, C.J.N.

    1995-07-01

    Soil and groundwater beneath a zinc production plant in The Netherlands are contaminated with metals and sulfate. To avoid contamination of nearby drinking water aquifers, a hydro-geological containment system and a biological treatment plant for the extracted ground water have been installed. Currently about 5,000 M{sup 3}/day of groundwater is extracted from a combination of 12 shallow and deep wells. Heavy metals and sulfate have to be removed from the extracted water before it can be discharged into a river. Several water treatment methods have been studied and pilot tested at the site. The preferred and selected process is based on the activity of sulfate reducing bacteria (SRB) and combines sulfate removal and heavy metal removal in one single installation. Anaerobic bacteria reduce sulfate to sulfide resulting in the precipitation of metal sulfides. Excess sulfide is biologically converted to elemental sulfur. A full scale biological treatment system was started up in May 1992. Design, start-up, commissioning and operational experiences are reported in this paper. Concentrations of metals and sulfate in the SRB water treatment plant effluent are well within the limits set by the Dutch Authorities for discharge to surface water.

  6. Laboratory Investigation of Childhood Enteric Infections

    DTIC Science & Technology

    1989-01-01

    gnostic tests; (3) application of the techniques of molecular biology, in particular genetic analysis and the development of specific genetic probes for...performance of biochemical and serological assays are cumbersome, time.consuming, and expensive processes. Techniques of genetic analysis from the field...tests for E. coli virulence attributes are not widely available in routine laboratories. Molecular techniques have recently been applied to the diagnosis

  7. Engineering and Design: Laboratory Investigations and Testing

    DTIC Science & Technology

    2007-11-02

    Requirements for Hazardous, Toxic, and Radioactive Waste (HTRW) and Ordnance and Explosive Waste (OEW) Activities . b. ER 1110-1-261, Quality Assurance of...Laboratory Testing Procedures. c. ER 1110-1-263, Chemical Data Quality Management for Hazardous Waste Remedial Activities . d. ER 1110-1-2002, Cement...Slag, and Pozzolan Acceptance Testing. e. ER 1110-2-8154, Water Quality Management at Corps Civil Works Projects. f. ER 200-2-3, Environmental

  8. Full-scale Experiments for Roadbed Cavity Detection with GPR

    NASA Astrophysics Data System (ADS)

    Kim, C.; Kang, W.; Son, J.

    2015-12-01

    Past few decades, deterioration of the underground facilities such as sewage facilities has increased significantly with growing urban development in Korea. The old damaged sewage pipes or conduits have washed away the surrounding soils beneath the roadbed, causing underground cavities and eventual ground depressions or sinkholes in the urban areas. Therefore, the detection of the roadbed cavities is increasingly required to prevent property damage and loss of human lives for precautionary measures. 3-D GPR technique was applied to conduct the full-scale experiment for roadbed cavity detection. The physical experiment has employed the soil characteristics of silty sand soils. The experimental site is composed of physically simulated cavities (Styrofoam, ɛr = 1.03) with dome-shaped structure and concrete sewage conduit. The simulated cavities were installed at regular intervals in spatial distribution. The land surface of the site was not paved with asphalt concrete at the current stage of the experiments. The results of the GPR measurements over the experimental site show that the reflection patterns from the simulated cavities are hyperbolic returns typical to the point source in 2-D perspective. A closer inspection of 3-D GPR volume data has yielded more clear interpretation than 2-D GPR data regarding where the cavities are situated in space. However, in case sewage conduits adjacent to the cavities are present, they could mask the GPR signals from cavities, leading misinterpretations. Therefore, data processing procedures should be more appropriately applied compared to the data for linear target detections. It is strongly believed that 3-D high density GPR data could be usefully applied to the roadbed cavity detections in the experiments. This study is an ongoing project of KIGAM and more realistic environments of the underground conditions would be prepared for the future study.

  9. Submillimeter Laboratory Investigations: Spectroscopy and Collisions

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; DeLucia, Frank C.

    2002-01-01

    Currently, millimeter-wave and submillimeter-wave spectroscopy is conducted in our laboratory on several different types of spectrometers. Our standard spectrometer utilizes the output of a phase-locked klystron operating in the 40-60 GHz region, which is sent into a crossed-waveguide harmonic generator, or "multiplier". The high frequency millimeter-and submillimeter-wave radiation is transmitted via quasi-optical techniques through an absorption cell and then onto a detector, which is either an InSb hot electron bolometer cooled to 1.4 K or a Si bolometer cooled to 0.3 K. The detector response is sent to a computer for measurement and analysis. The frequency range produced and detected in this manner goes from 80 GHz to upwards of 1 THz. Spectra are normally taken with source modulation, with line frequencies typically measured to an accuracy of 50-100 kHz. Higher accuracy is available when needed. Recently, we developed a new, broad-band spectrometer in our laboratory based on a free-running backward wave oscillator (BWO) of Russian manufacture as the primary source of radiation. The so-called FASSST (fast-scan submillimeter spectroscopic technique) system uses fast-scan and optical calibration methods rather than the traditional locking techniques. The output power from the BWO is split such that 90% goes into the absorption cell while 10% is coupled to a 40-meter Fabry-Perot cavity, which yields fringe? for frequency measurement. Results from this spectrometer on the spectrum of nitric acid (HNO3) show that 100 GHz of spectral data can be obtained in 5 seconds with a measurement accuracy of 50 kHz. Currently, the frequency range of the FASSST system in our laboratory is roughly 100-700 GHz.

  10. Submillimeter Laboratory Investigations: Spectroscopy and Collisions

    NASA Astrophysics Data System (ADS)

    Herbst, Eric; DeLucia, Frank C.

    2002-10-01

    Currently, millimeter-wave and submillimeter-wave spectroscopy is conducted in our laboratory on several different types of spectrometers. Our standard spectrometer utilizes the output of a phase-locked klystron operating in the 40-60 GHz region, which is sent into a crossed-waveguide harmonic generator, or "multiplier". The high frequency millimeter-and submillimeter-wave radiation is transmitted via quasi-optical techniques through an absorption cell and then onto a detector, which is either an InSb hot electron bolometer cooled to 1.4 K or a Si bolometer cooled to 0.3 K. The detector response is sent to a computer for measurement and analysis. The frequency range produced and detected in this manner goes from 80 GHz to upwards of 1 THz. Spectra are normally taken with source modulation, with line frequencies typically measured to an accuracy of 50-100 kHz. Higher accuracy is available when needed. Recently, we developed a new, broad-band spectrometer in our laboratory based on a free-running backward wave oscillator (BWO) of Russian manufacture as the primary source of radiation. The so-called FASSST (fast-scan submillimeter spectroscopic technique) system uses fast-scan and optical calibration methods rather than the traditional locking techniques. The output power from the BWO is split such that 90% goes into the absorption cell while 10% is coupled to a 40-meter Fabry-Perot cavity, which yields fringe? for frequency measurement. Results from this spectrometer on the spectrum of nitric acid (HNO3) show that 100 GHz of spectral data can be obtained in 5 seconds with a measurement accuracy of 50 kHz. Currently, the frequency range of the FASSST system in our laboratory is roughly 100-700 GHz.

  11. Laboratory investigation on super-Earths atmospheres

    NASA Astrophysics Data System (ADS)

    Erculiani, M. S.; Claudi, R. U.; Lessio, L.; Farisato, G.; Giro, E.; Cocola, L.; Billi, D.; D'alessandro, M.; Pace, E.; Schierano, D.; Benatti, S.; Bonavita, M.; Galletta, G.

    2014-04-01

    In the framework of Atmosphere in a Test Tube, at the Astronomical Observatory of Padova (INAF) we are going to perform experiments aimed to understand the possible modification of the atmosphere by photosynthetic biota present on the planet surface. This goal can be achieved simulating M star planetary environmental conditions. The bacteria that are being studied are Acaryochloris marina, Chroococcidiopsis spp. and Halomicronema hingdechloris. Tests will be performed with LISA or MINI-LISA ambient simulator in the laboratory of the Padova Astronomic Observatory. In this paper we describe the whole road map to follow in order to perform experiments and to obtain useful data to be compared with the real ones that will be obtained by the future space missions. Starting by a fiducial experiment we will modify either environmental and thermodynamical properties in order to simulate both real irradiation by an M star and gas mixture mimicing super earths atmospheres. These laboratory tests could be used as a guideline in order to understand whether chemical disequilibrium of O2, CO2 and CH4 could be ascribed to biotic life forms.

  12. Autonomous smart sensor network for full-scale structural health monitoring

    NASA Astrophysics Data System (ADS)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  13. Acoustic Performance Of New Designs Of Traffic Noise Barriers: Full Scale Tests

    NASA Astrophysics Data System (ADS)

    Watts, G. R.; Crombie, D. H.; Hothersall, D. C.

    1994-10-01

    Full scale tests of acoustical performance are reported on a range of promising traffic noise barrier shapes which had previously been identified by mathematical and scale modelling work. The designs chosen for testing were T-shaped, multiple edge barriers and double barriers. A test facility was established at the Transport Research Laboratory (TRL) in order to examine effectiveness under full scale conditions. This consisted of a 20 m length of noise barrier with interchangeable barrier panels, a large flat asphalt surface and a transportable speaker system capable of sufficient output to represent typical traffic noise. Screening performance was measured up to 80 m behind the barriers over a flat grassland area and at heights above the ground of 1·5 and 4·5 m. It was concluded that the average increase in acoustic screening of 2 m high T-shaped, multiple edge and double barriers compared with a simple plane reflecting barrier of identical overall height ranged from 1·4 to 3·6dB(A) depending on detailed design. It was suggested that a full scale test of a promising design should be carried out at a suitable highway location in order to validate fully these test results.

  14. Full-Scale Spectrum of Boundary-Layer Winds

    NASA Astrophysics Data System (ADS)

    Larsén, Xiaoli G.; Larsen, Søren E.; Petersen, Erik L.

    2016-05-01

    Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr^{-1} to 10 Hz. 10-min cup anemometer data are used to estimate the spectrum from about 1 yr^{-1} to 0.05 min^{-1}; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day^{-1} to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various spectral ranges, including the spectral gap, are revisited. Following the seasonal peak at 1 yr^{-1}, the frequency spectrum fS( f) increases with f^{+1} and gradually reaches a peak at about 0.2 day^{-1}. From this peak to about 1 hr^{-1}, the spectrum fS( f) decreases with frequency with a -2 slope, followed by a -2/3 slope, which can be described by fS(f)=a_1f^{-2/3}+a_2f^{-2}, ending in the frequency range for which the debate on the spectral gap is ongoing. It is shown here that the spectral gap exists and can be modelled. The linear composition of the horizontal wind variation from the mesoscale and microscale gives the observed spectrum in the gap range, leading to a suggestion that mesoscale and microscale processes are uncorrelated. Depending on the relative strength of the two processes, the gap may be deep or shallow, visible or invisible. Generally, the depth of the gap decreases with height. In the low frequency region of the gap, the mesoscale spectrum shows a two-dimensional isotropic nature; in the high frequency region, the classical three-dimensional boundary-layer turbulence is evident. We also provide the cospectrum of the horizontal and vertical components, and the power spectra of the three velocity components over a wide range from 1 day^{-1} to 10 Hz, which is useful in determining the necessary sample duration when measuring turbulence

  15. The Locust Jump: An Integrated Laboratory Investigation

    ERIC Educational Resources Information Center

    Scott, Jon

    2005-01-01

    The locust is well known for its ability to jump large distances to avoid predation. This class sets out a series of investigations into the mechanisms underlying the jump enabling students to bring together information from biomechanics, muscle physiology, and anatomy. The nature of the investigation allows it to be undertaken at a number of…

  16. The Locust Jump: An Integrated Laboratory Investigation

    ERIC Educational Resources Information Center

    Scott, Jon

    2005-01-01

    The locust is well known for its ability to jump large distances to avoid predation. This class sets out a series of investigations into the mechanisms underlying the jump enabling students to bring together information from biomechanics, muscle physiology, and anatomy. The nature of the investigation allows it to be undertaken at a number of…

  17. Laboratory investigation of visible shuttle glow mechanisms

    NASA Technical Reports Server (NTRS)

    Leone, A.; Swenson, G. R.; Caledonia, G. E.; Holtzclaw, K. W.

    1991-01-01

    Laboratory experiments designed to uncover mechanistic information about the spectral and spatial characteristics of shuttle glow were conducted. The luminescence was created when a pulse of O atoms traveling at orbital velocities was directed toward NO molecules previously adsorbed to aluminum, nickel, and Z306 Chemglaz (a common baffle black) coated surfaces held at various temperatures. Spectral and spatial measurements were made using a CCD imaging spectrometer. Corroborative spectral information was recorded in separate measurements using a scanning monochromator and gated photomultiplier arrangement. The e-folding distance at several temperatures was calculated from images of the surface glow using the photometrics image processing capability of the imaging spectrometer. The e-folding distance was not altered as a function of incoming O beam velocity. The results are presented and the observations provide direct evidence that the visible shuttle glow results from recombination of oxygen atoms and surface bound NO.

  18. Field and laboratory investigations of selenium transformation

    SciTech Connect

    Atalay, A.; Koll, K.J.

    1990-12-01

    This quarterly report discusses the preparation and results of a field investigation of a selected coal mine site in Oklahoma. The field investigation has been on-going since July 1990. An analysis of this data would be useful in providing information for potential Se mobility from a coal mine site and the distribution of Se in a soil profile of reclaimed land. Also, included is the investigation and preliminary results of SeO{sub 3}{sup 2{minus}} adsorption and desorption using different soil media, including coal mine spoils (overburden).

  19. StreamLab: Full-scale Experiments in River Science (Invited)

    NASA Astrophysics Data System (ADS)

    Wilcock, P.

    2009-12-01

    Experimental studies of river processes can provide control of essential variables and support detailed technical measurements. Practical constraints often drive experiments toward a reduced scale, but essential features of natural systems are difficult or impossible to scale. These include processes involving aquatic organisms and their interactions with their physical surroundings, as well as features such bed forms and channel pattern that arise from interactions among processes operating across a range of spatial scales. A sound understanding of both local mechanisms and broader interactions is needed to develop predictive models in river science. The solution is to conduct experiments at full scale while maintaining experimental control and using instrumentation that can resolve both local and full-scale processes. Important advances in automated measurement technology play a key role in making such an approach feasible, but considerable conceptual, technical, and organizational challenges remain to be addressed. This paper reports on some of these challenges and opportunities based on experience with StreamLab: a program of full-scale experiments on linked physical/chemical/biological processes initiated by The National Center for Earth-surface Dynamics (NCED) and the St. Anthony Falls Laboratory (SAFL). The essential features of StreamLab are an explicit multi-disciplinary focus, experimental control at the field scale, and the use of advanced technology to support detailed observations typical of small-scale lab experiments. StreamLab has three elements: Indoor StreamLab (ISL), Outdoor StreamLab (OSL), and Virtual StreamLab (VSL). ISL is based on a large rectangular laboratory channel and includes smaller facilities that can be used to isolate individual mechanisms. OSL includes two basins in which full-scale channels can develop with natural riparian vegetation and in-stream biota. VSL extends the StreamLab concept to full-scale, turbulence

  20. A Method for Estimating Noise from Full-Scale Distributed Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin W.; Schein, David B.

    2004-01-01

    A method to estimate the full-scale noise suppression from a scale model distributed exhaust nozzle (DEN) is presented. For a conventional scale model exhaust nozzle, Strouhal number scaling using a scale factor related to the nozzle exit area is typically applied that shifts model scale frequency in proportion to the geometric scale factor. However, model scale DEN designs have two inherent length scales. One is associated with the mini-nozzles, whose size do not change in going from model scale to full scale. The other is associated with the overall nozzle exit area which is much smaller than full size. Consequently, lower frequency energy that is generated by the coalesced jet plume should scale to lower frequency, but higher frequency energy generated by individual mini-jets does not shift frequency. In addition, jet-jet acoustic shielding by the array of mini-nozzles is a significant noise reduction effect that may change with DEN model size. A technique has been developed to scale laboratory model spectral data based on the premise that high and low frequency content must be treated differently during the scaling process. The model-scale distributed exhaust spectra are divided into low and high frequency regions that are then adjusted to full scale separately based on different physics-based scaling laws. The regions are then recombined to create an estimate of the full-scale acoustic spectra. These spectra can then be converted to perceived noise levels (PNL). The paper presents the details of this methodology and provides an example of the estimated noise suppression by a distributed exhaust nozzle compared to a round conic nozzle.

  1. Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks.

    PubMed

    Hedegaard, Mathilde J; Arvin, Erik; Corfitzen, Charlotte B; Albrechtsen, Hans-Jørgen

    2014-11-15

    Contamination by the herbicide mecoprop (MCPP) was detected in groundwater abstraction wells at Kerteminde Waterworks in concentrations up to 0.08μg/L. MCPP was removed to below detection limit in a simple treatment line where anaerobic groundwater was aerated and subsequently filtered by primary and secondary rapid sand filters. Water quality parameters were measured throughout the waterworks, and they behaved as designed for. MCPP was removed in secondary rapid sand filters--removal was the greatest in the sand filters in the filter line with the highest contact time (63 min). In these secondary sand filters, MCPP concentration decreased from 0.037 μg/L to below the detection limit of 0.01 μg/L. MCPP was removed continuously at different filter depths (0.80 m). Additionally, biodegradation, mineralisation and adsorption were investigated in the laboratory in order to elucidate removal mechanisms in the full-scale system. Therefore, microcosms were set up with filter sand, water and (14)C-labelled MCPP at an initial concentration of 0.2 μg/L. After 24 h, 79-86% of the initial concentration of MCPP was removed. Sorption removed 11-15%, while the remaining part was removed by microbial processes, leading to a complete mineralisation of 13-18%. Microbial removal in the filter sand was similar at different depths of the rapid sand filter, while the amount of MCPP which adsorbed to the filter sand after 48 h decreased with depth from 21% of the initial MCPP in the top layer to 7% in the bottom layer. It was concluded that MCPP was removed in secondary rapid sand filters at Kerteminde Waterworks, to which both adsorption and microbial degradation contributed.

  2. Implementation of In-Situ Impedance Techniques on a Full Scale Aero-Engine System

    NASA Technical Reports Server (NTRS)

    Gaeta, R. J.; Mendoza, J. M.; Jones, M. G.

    2007-01-01

    Determination of acoustic liner impedance for jet engine applications remains a challenge for the designer. Although suitable models have been developed that take account of source amplitude and the local flow environment experienced by the liner, experimental validation of these models has been difficult. This is primarily due to the inability of researchers to faithfully mimic the environment in jet engine nacelles in the laboratory. An in-situ measurement technique, one that can be implemented in an actual engine, is desirable so an accurate impedance can be determined for future modeling and quality control. This paper documents the implementation of such a local acoustic impedance measurement technique that is used under controlled laboratory conditions as well as on full scale turbine engine liner test article. The objective for these series of in-situ measurements is to substantiate treatment design, provide understanding of flow effects on installed liner performance, and provide modeling input for fan noise propagation computations. A series of acoustic liner evaluation tests are performed that includes normal incidence tube, grazing incidence tube, and finally testing on a full scale engine on a static test stand. Lab tests were intended to provide insight and guidance for accurately measuring the impedance of the liner housed in the inlet of a Honeywell Tech7000 turbofan. Results have shown that one can acquire very reasonable liner impedance data for a full scale engine under realistic test conditions. Furthermore, higher fidelity results can be obtained by using a three-microphone coherence technique that can enhance signal-to-noise ratio at high engine power settings. This research has also confirmed the limitations of this particular type of in-situ measurement. This is most evident in the installation of instrumentation and its effect on what is being measured.

  3. UV/chlorine control of drinking water taste and odour at pilot and full-scale.

    PubMed

    Wang, Ding; Bolton, James R; Andrews, Susan A; Hofmann, Ron

    2015-10-01

    Advanced oxidation processes (AOPs) can be used to destroy taste and odour-causing compounds in drinking water. This work investigated both pilot- and full-scale performance of the novel ultraviolet (UV)/chlorine AOP for the destruction of geosmin, 2-methylisoborneol (MIB) and caffeine (as a surrogate) in two different surface waters. The efficiency of the UV/chlorine process at pH 7.5 and 8.5 was comparable to that of the UV/hydrogen peroxide (UV/H2O2) process under parallel conditions, and was superior at pH 6.5. Caffeine was found to be a suitable surrogate for geosmin and MIB, and could be used as a more economical alternative to geosmin or MIB spiking for site-specific full-scale testing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing.

    PubMed

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; van Loosdrecht, M C M; Gonzalez-Lopez, Jesus; Vahala, Riku

    2016-12-01

    The nitrogen cycle has been expanded with the recent discovery of Nitrospira strains that can conduct complete ammonium oxidation (commamox). Their importance in the nitrogen cycle within engineered ecosystems has not yet been analyzed. In this research, the community structure of the Bacteria domain of six full-scale activated sludge systems and three autotrophic nitrogen removal systems in the Netherlands and China has been investigated through tag-454-pyrosequencing. The phylogenetic analyses conducted in the present study showed that just a few of the Nitrospira sequences found in the bioreactors were comammox. Multivariate redundancy analysis of nitrifying genera showed an outcompetition of Nitrosomonas and non-comammox Nitrospira. Operational data from the bioreactors suggested that comammox could be favored at low temperature, low nitrogen substrate, and high dissolved oxygen. The non-ubiquity and low relative abundance of comammox in full-scale bioreactors suggested that this phylotype is not very relevant in the nitrogen cycle in wastewater treatment plants.

  5. Chemical and toxicological assessment of a full-scale biosolid compost.

    PubMed

    Patureau, Dominique; Delgenes, Nadine; Muller, Mathieu; Dagnino, Sonia; Lhoutellier, Claire; Delgenes, Jean-Philippe; Balaguer, Patrick; Hernandez-Raquet, Guillermina

    2012-12-01

    The impact of a full-scale biosolid composting plant on the fate of a broad range of priority organic pollutants was investigated. Chemical analysis was performed at different steps of the process during two seasons. Simultaneously, the toxicological quality was assessed using estrogen α-, dioxin-, and pregnane X-receptor reporter cell lines. Mass-balance calculation highlighted the removal of easily degradable pollutants during composting. The important variations observed for each compound and for the two seasons might be explained by pollutant-fate dependency on process parameters like temperature. The final compost displayed low pregnane X activity but high estrogenic activity. The dioxin-like activity stayed constant through the process. The chemical and toxicological results highlight the importance of combining both approaches to accurately assess the compost quality. Such compilation of data on full-scale processes may be also very helpful for the environmental risk assessment of new organic waste disposal practices. Copyright © 2012 SETAC.

  6. Laboratory investigations in cell biology. Second edition

    SciTech Connect

    Bregman, A.A.

    1987-01-01

    This text contains 18 lab projects that explore the structural, biochemical, and physiological nature of eukaryotic cells. Topics are largely traditional, however, several investigations employ new methodologies. Offers extended coverage of biochemistry. Materials have been selected for availability and ease of handling: e.g. Project 4 - extraction of DNA and RNA done with calf liver, Project 9 - succinate dehydrogenase activity studied in mitochondria isolated from cauliflower. There is more procedural detail than found in most lab manuals, negating the need for constant instructional details. And a variety of methodologies is introduced, such as Cytochemistry, Spectrophotometry, Electrophoresis, Cell Fractionation, silver staining of active sites of RNA transcription, and many more. Pages are perforated for collecting and grading.

  7. Component Testing for Modular Pier Replacement at McMurdo Station, Antarctica: Inflatable Pontoons, Gelbo Flex and Full-Scale Cold Storage/Fold Tests

    DTIC Science & Technology

    2014-08-01

    Replacement at McMurdo Station, Antarctica: Inflatable Pontoons Gelbo Flex and Full-Scale Cold Storage /Fold Tests Co ld R eg io ns R es ea rc h an...Pontoons Gelbo Flex and Full-Scale Cold Storage /Fold Tests Jason C. Weale and Margaret A. Knuth Cold Regions Research and Engineering Laboratory (CRREL...4 4 Full-Scale Pontoon Cold Storage and Inflation Tests

  8. PREDICTING FULL-SCALE TOC REMOVAL. (R822462)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. Mars Science Laboratory Mission and Science Investigation

    NASA Astrophysics Data System (ADS)

    Grotzinger, John P.; Crisp, Joy; Vasavada, Ashwin R.; Anderson, Robert C.; Baker, Charles J.; Barry, Robert; Blake, David F.; Conrad, Pamela; Edgett, Kenneth S.; Ferdowski, Bobak; Gellert, Ralf; Gilbert, John B.; Golombek, Matt; Gómez-Elvira, Javier; Hassler, Donald M.; Jandura, Louise; Litvak, Maxim; Mahaffy, Paul; Maki, Justin; Meyer, Michael; Malin, Michael C.; Mitrofanov, Igor; Simmonds, John J.; Vaniman, David; Welch, Richard V.; Wiens, Roger C.

    2012-09-01

    Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (˜23 months), and drive capability of at least 20 km. Curiosity's science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity's field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate

  10. Monitoring of Wind Turbine Gearbox Condition through Oil and Wear Debris Analysis: A Full-Scale Testing Perspective

    SciTech Connect

    Sheng, Shuangwen

    2016-10-01

    Despite the wind industry's dramatic development during the past decade, it is still challenged by premature turbine subsystem/component failures, especially for turbines rated above 1 MW. Because a crane is needed for each replacement, gearboxes have been a focal point for improvement in reliability and availability. Condition monitoring (CM) is a technique that can help improve these factors, leading to reduced turbine operation and maintenance costs and, subsequently, lower cost of energy for wind power. Although technical benefits of CM for the wind industry are normally recognized, there is a lack of published information on the advantages and limitations of each CM technique confirmed by objective data from full-scale tests. This article presents first-hand oil and wear debris analysis results obtained through tests that were based on full-scale wind turbine gearboxes rated at 750 kW. The tests were conducted at the 2.5-MW dynamometer test facility at the National Wind Technology Center at the National Renewable Energy Laboratory. The gearboxes were tested in three conditions: run-in, healthy, and damaged. The investigated CM techniques include real-time oil condition and wear debris monitoring, both inline and online sensors, and offline oil sample and wear debris analysis, both onsite and offsite laboratories. The reported results and observations help increase wind industry awareness of the benefits and limitations of oil and debris analysis technologies and highlight the challenges in these technologies and other tribological fields for the Society of Tribologists and Lubrication Engineers and other organizations to help address, leading to extended gearbox service life.

  11. Laboratory investigation of nonlinear whistler wave processes

    NASA Astrophysics Data System (ADS)

    Amatucci, Bill; Tejero, Erik; Crabtree, Chris; Enloe, Lon; Blackwell, Dave; Ganguli, Guru

    2015-11-01

    Nonlinear interactions involving whistler wave turbulence result from processes such as wave-particle interactions in the radiation belts and instability generation in sharp magnetospheric boundary layers. Nonlinear scattering of large amplitude waves off thermal electrons substantially changes the wave vector direction and energy flux, while inducing a small frequency shift [Crabtree, Phys. Plasmas 19, 032903 (2012)]. This nonlinear scattering of primarily electrostatic lower hybrid waves into electromagnetic whistler modes is being investigated in the NRL Space Chamber under conditions scaled to match the respective environments. Lower hybrid waves are generated directly by antennas or self-consistently from sheared cross-magnetic field flows with scale length less than an ion gyroradius via the Electron-Ion Hybrid Instability [Ganguli, Phys. Fluids 31, 2753 (1988)), Amatucci, Phys. Plasmas 10, 1963 (2003)]. Sufficiently large amplitude lower hybrid waves have been observed to convert into whistler modes by scattering from thermal electrons. The plasma response as a function of transmitted lower hybrid wave amplitude is monitored with magnetic loop antennas. Details of the observed wave spectra and mode characteristics will be presented. This work supported by the NRL Base Program.

  12. Laboratory investigation of nonlinear whistler wave processes

    NASA Astrophysics Data System (ADS)

    Amatucci, B.; Tejero, E. M.; Crabtree, C. E.; Blackwell, D. D.; Mithaiwala, M.; Rudakov, L.; Ganguli, G.

    2014-12-01

    Nonlinear interactions involving whistler wave turbulence can result from wave-particle interactions and instabilities in sharp boundary layers. Given sufficient whistler energy density, nonlinear scattering off thermal electrons substantially changes the wave vector direction and energy flux, while inducing a small frequency shift (see Crabtree, Phys. Plasmas 19, 032903 (2012)). In the magnetosphere, boundary layers containing highly sheared plasma flows drive lower hybrid waves, leading to the formation of quasi-static structures in the nonlinearly saturated state. Such processes are being investigated in the NRL Space Physics Simulation Chamber (SPSC) in conditions scaled to match the respective environments. The specific nonlinear process being examined is the scattering of a transversely propagating, primarily electrostatic, lower hybrid wave into a more parallel propagating electromagnetic whistler mode. Sufficiently large amplitude lower hybrid waves have been observed to scatter into whistler modes by scattering from thermal electrons. The plasma response as a function of transmitted lower hybrid wave amplitude is monitored with magnetic antennas. The experiments have demonstrated large changes in wave propagation angle and small frequency downshifts consistent with nonlinear Landau damping when pump wave amplitudes exceed the small threshold value (dB/B0 ~ 4×10-7). *This work supported by the NRL Base Program.

  13. Case study of a full-scale evapotranspiration cover

    USGS Publications Warehouse

    McGuire, P.E.; Andraski, B.J.; Archibald, R.E.

    2009-01-01

    The design, construction, and performance analyses of a 6.1 ha evapotranspiration (ET) landfill cover at the semiarid U.S. Army Fort Carson site, near Colorado Springs, Colo. are presented. Initial water-balance model simulations, using literature reported soil hydraulic data, aided selection of borrow-source soil type(s) that resulted in predictions of negligible annual drainage (???1 mm/year). Final construction design was based on refined water-balance simulations using laboratory determined soil hydraulic values from borrow area natural soil horizons that were described with USDA soil classification methods. Cover design components included a 122 cm thick clay loam (USDA), compaction ???80% of the standard Proctor maximum dry density (dry bulk density ???1.3 Mg/m3), erosion control measures, top soil amended with biosolids, and seeding with native grasses. Favorable hydrologic performance for a 5 year period was documented by lysimeter-measured and Richards'-based calculations of annual drainage that were all <0.4 mm/year. Water potential data suggest that ET removed water that infiltrated the cover and contributed to a persistent driving force for upward flow and removal of water from below the base of the cover. ?? 2009 ASCE.

  14. Laboratory Investigations of Lava Flow Heat Transfer

    NASA Astrophysics Data System (ADS)

    Fagents, S. A.; Rumpf, M. E.; Hamilton, C. W.

    2011-12-01

    To investigate the effectiveness with which lava can heat substrates of different types, we conducted a suite of experiments in which molten basalt was poured onto solid or particulate materials, and the downward propagation of the heat pulse was measured. The motivation for this work lies in seeking to understand how lava flows on the Moon would have heated the underlying regolith, and thus to determine the depths at which solar wind particles implanted in the regolith would have been protected from the heat of the overlying flow. Extraction and analysis of ancient solar wind samples would provide a wealth of information on the evolution and fate of the Sun. Our experimental device consists of a box constructed from 1"-thick calcium silicate sheeting with interior dimensions of 20 x 20 x 25 cm. The substrate material (a particulate lunar regolith simulant or solid basalt) occupies the lower 15 cm of the box, which is embedded with an array of 8 thermocouples. Up to 6 kg of crushed basalt collected from the 2010 Kilauea lava flows is heated to supraliquidus temperatures and poured directly onto the substrate. The evolution of the temperature profile within the lava flow and substrate is recorded as the basalt cools, and the surface temperature distribution is recorded using a Forward Looking Infrared Radiometer (FLIR) video camera. We have been using the experimental data sets to validate a numerical model of substrate heating. If the physics is appropriately formulated, the model will accurately predict both surface and internal temperature distribution as a function of time. A key issue has been incorporation of valid temperature-dependent thermophysical properties, because particulate materials are not well characterized at elevated temperatures. Regolith thermal conductivity in particular exerts a strong control over the depth of penetration of the thermal wave, so its accurate description is essential for a robust model. Comparison of experimental vs. modeled

  15. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion

    SciTech Connect

    Hrad, Marlies; Gamperling, Oliver; Huber-Humer, Marion

    2013-10-15

    Highlights: ► Current data on in situ aeration effects from the first Austrian full-scale case study. ► Data on lasting waste stabilisation after aeration completion. ► Information on the transferability of results from lab- to full-scale aeration. - Abstract: Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfully applied in Europe, North America and Asia, all pursuing different objectives and strategies. In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6 ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21 days (GP{sub 21}) and respiration activity over 4 days (RA{sub 4}), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75 weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below the

  16. Full-scale leachate-recirculating MSW landfill bioreactor assessments

    SciTech Connect

    Carson, D.A.

    1995-10-01

    The integrated waste management hierarchy philosophy continues to develop as a useful tool to solve solid waste issues in an environmentally responsible manner. Recent statistics indicate that approximately two thirds of municipal solid waste in the United States is disposed in landfills. Current landfill operational technique involves the preparation of a waste containment facility, the filling of the waste unit, installation of the final cover, and the maintenance of the unit. This method of operation has proven to be reasonably effective in waste disposal, effectively minimizing risk by collecting the liquid that percolates through the waste, called leachates, at the bottom of the landfill, and controlling landfill gas with collection systems. Concerns over the longevity of containment systems components present questions that cannot be answered without substantial performance data. Landfills, as currently operated, serve to entomb dry waste. Therefore, the facility must be maintained in perpetuity, consuming funds and ultimately driving up waste collection costs. This presentation will describe a new form of solid waste landfill operation, it is a technique that involves controlled natural processes to break down landfilled waste, and further minimize risk to human health and the environment. A landfill operated in an active manner will encourage and control natural decomposition of landfilled waste. This can be accomplished by collecting leachate, and reinjecting it into the landfilled waste mass. Keeping the waste mass moist will lead to a largely anaerobic system with the capacity to rapidly stabilize the landfilled waste mass via physical, chemical and biological methods. The system has proven the ability to breakdown portions of the waste mass, and to degrade toxic materials at the laboratory scale.

  17. Sink characteristics of a full-scale environmental chamber and their impact on material emission testing

    SciTech Connect

    Zhang, J.S.; Nong, G.; Shaw, C.Y.

    1999-07-01

    In this study, a method was developed and used to measure the adsorption/desorption characteristics (i.e., the so-called sink effect) of a full-scale environmental chamber (5m x 4m x 2.75m high). Unrecovered and reversible sink parameters were measured for five volatile organic compounds (VOCs): ethylbenzene, decane, 1,2-dichlorobenzene, octanol, and dodecane. It was found that for the five compounds tested, the full-scale chamber had noticeable reversible sink effect but negligible unrecovered sink effect. The reversible sink strength increased in the order of ethylbenzene, decane, 1,2-dichlorobenzene, dodecane, and octanol. A first-order reversible sink model appeared to be adequate for describing the adsorption/desorption characteristics of the chamber. It was also found that when the return air was recirculated through heating and cooling coils and HEPA filter, the sink strength increased significantly. The reversible sink effect was more noticeable in testing wet coating materials rather than dry materials. The results of this study would be useful for developing standard test methods and procedures for evaluating the performance of full-scale environmental chambers and for using such chambers to test and investigate VOC emissions from building materials and furnishings.

  18. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.

  19. Inquiry, Investigation, and Communication in the Student-Directed Laboratory.

    ERIC Educational Resources Information Center

    Janners, Martha Y.

    1988-01-01

    Describes how to organize a student-directed laboratory investigation which is based on amphibian metamorphosis, lasts for nearly a term, and involves extensive group effort. Explains the assignment, student response and opinion, formal paper, and instructor responsibilities. (RT)

  20. Inquiry, Investigation, and Communication in the Student-Directed Laboratory.

    ERIC Educational Resources Information Center

    Janners, Martha Y.

    1988-01-01

    Describes how to organize a student-directed laboratory investigation which is based on amphibian metamorphosis, lasts for nearly a term, and involves extensive group effort. Explains the assignment, student response and opinion, formal paper, and instructor responsibilities. (RT)

  1. Full scale co-digestion of organic waste.

    PubMed

    Kübler, H; Hoppenheidt, K; Hirsch, P; Kottmair, A; Nimmrichter, R; Nordsieck, H; Mücke, W; Swerev, M

    2000-01-01

    Operational results of a co-digestion facility were assessed over a period of 18 months. The organic fraction of municipal solid waste (OFMSW) contains a considerable amount of contaminants and grit (up to 6% w/w). A BTA-Pulper efficiently treated the different waste streams and converted a high amount of volatile solids (VS) into the digester feedstock. The seasonal fluctuations of the waste composition significantly influenced the biogas production. The impact of this seasonally variant degradability of VS had to be considered by evaluating the operation results. The waste streams investigated did not show any negative impact on digester performance. The hydraulic retention time (HRT) in the digester considerably affected the VS-reduction. Despite a considerable decrease of VS-degradation a reduction of HRT from 14 to 8 days slightly improves the gas production rate (GPR). An activated sludge system efficiently reduced the pollution of the effluent. The nutrient content of the anaerobic compost was favourable and the content of pollutants was low. The facility produced surplus electrical power up to 290 MJ/t. An overall energy balance shows that the facility substitutes primary energy.

  2. Full-scale physical model of landslide triggering

    NASA Astrophysics Data System (ADS)

    Lora, M.; Camporese, M.; Salandin, P.

    2013-12-01

    Landslide triggering induced by high-intensity rainfall infiltration in hillslopes is a complex phenomenon that involves hydrological processes operating at different spatio-temporal scales. Empirical methods give rough information about landslide-prone areas, without investigating the theoretical framework needed to achieve an in-depth understanding of the involved physical processes. In this study, we tackle this issue through physical experiments developed in an artificial hillslope realized in the Department of Civil, Environmental and Architectural Engineering of the University of Padua. The structure consists of a reinforced concrete box containing a soil prism with the following maximum dimensions: 3.5 m high, 6 m long, and 2 m wide. In order to analyze and examine the triggered failure state, the experiments are carried out with intensive monitoring of pore water pressure and moisture content response. Subsurface monitoring instruments are installed at several locations and depths to measure downward infiltration and/or a rising groundwater table. We measure the unsaturated soil water pressure as well as positive pore pressures preceding failure in each experiments with six tensiometers. The volumetric water content is determined through six Time Domain Reflectometry probes. Two pressure transducers are located in observation wells to determine the position of the water table in time. Two stream gauges are positioned at the toeslope, for measuring both runoff and subsurface outflow. All data are collected and recorded by an acquisition data system from Campbell Scientific. The artificial hillslope is characterized by well-known and controlled conditions, which are designed to reproduce an ideal set-up susceptible to heavy rainfall landslide. The hydrologic forcing is generated by a rainfall simulator realized with nozzles from Sprying System and. specifically designed to produce a spatially uniform rainfall of intensity ranging from 50 to 150 mm/h. The aim

  3. Development of a full scale selective oil agglomeration plant

    SciTech Connect

    Donnelly, J.C.; Cooney, B.; Hoare, I.; Waugh, B.; Robinson, R.

    1998-12-31

    A research and development program managed by Australian Mining Investments Limited (AMI) on behalf of an investment syndicate was conducted with the objective of improving the efficiency and economy of the Selective Oil Agglomeration Process (SOAP), and developing viable commercial sized operating plants. Fewer than half the coal preparation plants in Australia beneficiate fine coal by froth flotation, the only viable alternative to SOAP for the recovery of low ash, fine and ultra fine coal. Those plants without flotation generally dispose of the ultra fine material, approximately {minus}100{micro}m in size, as tailings to waste. In the majority of cases this ultra fine waste contains more than 50% relatively low ash coal of saleable quality. It is believed that this coal constitutes a loss of 8--10 million tonnes per annum and that the coal mining industry would welcome a recovery process which has low capital and operating costs and will function automatically with minimal operator attention. The authors carried out a comprehensive literature study of selective oil agglomeration in order to gain a full understanding of the process and to plan the research program. Extensive studies were then undertaken on oil dispersion in the water phase, formation of oil water emulsions with surfactants and the optimization of surfactant selection. Oil and emulsion properties were investigated including stability, viscosity, temperature, concentration of components, time of formation, and cost. This work was followed by characterization studies on coals from the Gunnedah Basin and agglomeration test work on these coals. These agglomeration studies were performed firstly at bench level and then by using a small, 200 kg/hr continuous process development unit. The results were sufficiently encouraging to justify the design and construction of a fully instrumented, PLC controlled, 2 tph pilot plant at Gunnedah Colliery Coal Preparation Plant. Extensive trials were carried out on

  4. Effects of compressibility on the performance of two full-scale helicopter rotors

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul J

    1952-01-01

    Report presents the results of an investigation conducted on the Langley helicopter test tower to determine experimentally the effects of compressibility on the performance and blade pitching moments of two full-scale helicopter rotors. Two sets of rotor blades were tested which differed only in that the blades of one set incorporated -8 degrees of linear twist, whereas the blades of the other set were untwisted. The tests covered a range of tip speeds from 350 to 770 feet per second and a range of pitch angles from 0 degrees to the limit imposed by extreme vibration.

  5. FULL SCALE REGENERABLE HEPA FILTER DESIGN USING SINTERED METAL FILTER ELEMENTS

    SciTech Connect

    Gil Ramos; Kenneth Rubow; Ronald Sekellick

    2002-11-27

    A Department of Energy funded contract involved the development of porous metal as a HEPA filter, and the subsequent design of a full-scale regenerable HEPA filtration system (RHFS). This RHFS could replace the glass fiber HEPA filters currently being used on the high level waste (HLW) tank ventilation system with a system that would be moisture tolerant, durable, and cleanable in place. The origins of the contract are a 1996 investigation at the Savannah River Technology Center (SRTC) regarding the use of porous metal as a HEPA filter material. This contract was divided into Phases I, IIA and IIB. Phase I of the contract evaluated simple filter cylinders in a simulated High Level Waste (HLW) environment and the ability to clean and regenerate the filter media after fouling. Upon the successful completion of Phase I, Phase IIA was conducted, which included lab scale prototype testing and design of a full-scale system. The work completed under Phase IIA included development of a full-scale system design, development of a filter media meeting the HEPA filtration efficiency that would also be regenerable using prescribed cleaning procedures, and the testing of a single element system prototype at Savannah River. All contract objectives were met. The filter media selected was a nickel material already under development at Mott, which met the HEPA filtration efficiency standard. The Mott nickel media met and exceeded the HEPA requirement, providing 99.99% removal against a requirement of 99.97%. Double open-ended elements of this media were provided to the Savannah River Test Center for HLW simulation testing in the single element prototype filter. These elements performed well and further demonstrated the practicality of a metallic media regenerable HEPA filter system. An evaluation of the manufacturing method on many elements demonstrated the reproducibility to meet the HEPA filtration requirement. The full-scale design of the Mott RHFS incorporated several important

  6. Numerical field model simulation of full scale fire tests in a closed spherical/cylindrical vessel

    NASA Astrophysics Data System (ADS)

    Raycraft, Janet K.

    1987-12-01

    Most of the casualties incurred during a fire are due to the smoke generated. An understanding of the way smoke and fire spread during a fire would provide a valuable tool to save lives and minimize damage. The Naval Research Laboratory maintains a full scale test facility called Fire-1. The computer model developed in this thesis is based on the actual geometry of Fire-1 and uses field modeling. It is a three dimensional, finite difference model using primitive variables. The model includes local and global pressure corrections, surface radiation, turbulence, strong buoyancy, and conjugate boundary conditions. Given heat input data, the computer code produces pressure, temperature, density, and velocity fields. Experimental fire tests conducted in Fire-1 are used to validate the computer code. Reasonable agreement in the results has been found. Because of the model's ability to account for pressure, temperature and smoke buildup, its envisioned use is to predict fires aboard ships and submarines.

  7. Properties important to mixing and simulant recommendations for WTP full-scale vessel testing

    SciTech Connect

    Poirier, M. R.; Martino, C. J.

    2015-12-01

    Full Scale Vessel Testing (FSVT) is being planned by Bechtel National, Inc., to demonstrate the ability of the standard high solids vessel design (SHSVD) to meet mixing requirements over the range of fluid properties planned for processing in the Pretreatment Facility (PTF) of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. WTP personnel requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in FSVT. Among the tasks assigned to SRNL was to develop a list of waste properties that are important to pulse-jet mixer (PJM) performance in WTP vessels with elevated concentrations of solids.

  8. Experiences from the full-scale implementation of a new two-stage vertical flow constructed wetland design.

    PubMed

    Langergraber, Guenter; Pressl, Alexander; Haberl, Raimund

    2014-01-01

    This paper describes the results of the first full-scale implementation of a two-stage vertical flow constructed wetland (CW) system developed to increase nitrogen removal. The full-scale system was constructed for the Bärenkogelhaus, which is located in Styria at the top of a mountain, 1,168 m above sea level. The Bärenkogelhaus has a restaurant with 70 seats, 16 rooms for overnight guests and is a popular site for day visits, especially during weekends and public holidays. The CW treatment system was designed for a hydraulic load of 2,500 L.d(-1) with a specific surface area requirement of 2.7 m(2) per person equivalent (PE). It was built in fall 2009 and started operation in April 2010 when the restaurant was re-opened. Samples were taken between July 2010 and June 2013 and were analysed in the laboratory of the Institute of Sanitary Engineering at BOKU University using standard methods. During 2010 the restaurant at Bärenkogelhaus was open 5 days a week whereas from 2011 the Bärenkogelhaus was open only on demand for events. This resulted in decreased organic loads of the system in the later period. In general, the measured effluent concentrations were low and the removal efficiencies high. During the whole period the ammonia nitrogen effluent concentration was below 1 mg/L even at effluent water temperatures below 3 °C. Investigations during high-load periods, i.e. events like weddings and festivals at weekends, with more than 100 visitors, showed a very robust treatment performance of the two-stage CW system. Effluent concentrations of chemical oxygen demand and NH4-N were not affected by these events with high hydraulic loads.

  9. N-nitrosamine rejection by reverse osmosis membranes: a full-scale study.

    PubMed

    Fujioka, Takahiro; Khan, Stuart J; McDonald, James A; Roux, Annalie; Poussade, Yvan; Drewes, Jörg E; Nghiem, Long D

    2013-10-15

    This study aims to provide longitudinal and spatial insights to the rejection of N-nitrosamines by reverse osmosis (RO) membranes during sampling campaigns at three full-scale water recycling plants. Samples were collected at all individual filtration stages as well as at a cool and a warm weather period to elucidate the impact of recovery and feed temperature on the rejection of N-nitrosamines. N-nitrosodimethylamine (NDMA) was detected in all RO feed samples varying between 7 and 32 ng/L. Concentrations of most other N-nitrosamines in the feed solutions were determined to be lower than their detection limits (3-5 ng/L) but higher concentrations were detected in the feed after each filtration stage. As a notable exception, in one plant, N-nitrosomorpholine (NMOR) was observed at high concentrations in RO feed (177-475 ng/L) and permeate (34-76 ng/L). Overall rejection of NDMA among the three RO systems varied widely from 4 to 47%. Data presented here suggest that the feed temperature can influence rejection of NDMA. A considerable variation in NDMA rejection across the three RO stages (14-78%) was also observed. Overall NMOR rejections were consistently high ranging from 81 to 84%. On the other hand, overall rejection of N-nitrosodiethylamine (NDEA) varied from negligible to 53%, which was considerably lower than values reported in previous laboratory-scale studies. A comparison between results reported here and the literature indicates that there can be some discrepancy in N-nitrosamine rejection data between laboratory- and full-scale studies probably due to differences in water recoveries and operating conditions (e.g. temperature, membrane fouling, and hydraulic conditions).

  10. CLOSURE OF HLW TANKS PHASE 2 FULL SCALE COOLING COILS GROUT FILL DEMONSTATIONS

    SciTech Connect

    Hansen, E; Alex Cozzi, A

    2008-06-19

    This report documents the Savannah River National Laboratory (SRNL) support for the Tank Closure and Technology Development (TCTD) group's strategy for closing high level radioactive waste (HLW) tanks at the Savannah River Site (SRS). Specifically, this task addresses the ability to successfully fill intact cooling coils, presently within the HLW tanks, with grout that satisfies the fresh and cured grout requirements [1] under simulated field conditions. The overall task was divided into two phases. The first phase was the development of a grout formulation that satisfies the processing requirements for filling the HLW tank cooling coils [5]. The second phase of the task, which is documented in this report, was the filling of full scale cooling coils under simulated field conditions using the grout formulation developed in the first phase. SRS Type I tank cooling coil assembly design drawings and pressure drop calculations were provided by the Liquid Waste (LW) customer to be used as the basis for configuring the test assemblies. The current concept for closing tanks equipped with internal cooling coils is to pump grout into the coils to inhibit pathways for infiltrating water. Access to the cooling coil assemblies is through the existing supply/return manifold headers located on top of the Type I tanks. The objectives for the second phase of the testing, as stated in the Task Technical and Quality Assurance plan (TTQAP) [2], were to: (1) Perform a demonstration test to assess cooling coil grout performance in simulated field conditions, and (2) Measure relevant properties of samples prepared under simulated field conditions. SRNL led the actual work of designing, fabricating and filling two full-scale cooling coil assemblies which were performed at Clemson Engineering Technologies Laboratory (CETL) using the South Carolina University Research and Education Foundation (SCUREF) program. A statement of work (SOW) was issued to CETL [6] to perform this work.

  11. 5 CFR 532.233 - Preparation for full-scale wage surveys.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Preparation for full-scale wage surveys... REGULATIONS PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.233 Preparation for full-scale wage surveys. (a) The local wage survey committee, prior to each full-scale survey: (1) Shall hold a public...

  12. 48 CFR 34.005-5 - Full-scale development contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Full-scale development... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION General 34.005-5 Full-scale development contracts. Whenever practicable, the full-scale development contracts should provide for the contractors to...

  13. 5 CFR 532.235 - Conduct of full-scale wage survey.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Conduct of full-scale wage survey. 532... PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.235 Conduct of full-scale wage survey. (a) Wage... collection for a full-scale wage survey shall be accomplished by personal visit to the establishment. The...

  14. 5 CFR 532.235 - Conduct of full-scale wage survey.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Conduct of full-scale wage survey. 532... PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.235 Conduct of full-scale wage survey. (a) Wage... collection for a full-scale wage survey shall be accomplished by personal visit to the establishment. The...

  15. 5 CFR 532.235 - Conduct of full-scale wage survey.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Conduct of full-scale wage survey. 532... PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.235 Conduct of full-scale wage survey. (a) Wage... collection for a full-scale wage survey shall be accomplished by personal visit to the establishment. The...

  16. 48 CFR 34.005-5 - Full-scale development contracts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Full-scale development... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION General 34.005-5 Full-scale development contracts. Whenever practicable, the full-scale development contracts should provide for the contractors to...

  17. 5 CFR 532.233 - Preparation for full-scale wage surveys.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Preparation for full-scale wage surveys... REGULATIONS PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.233 Preparation for full-scale wage surveys. (a) The local wage survey committee, prior to each full-scale survey: (1) Shall hold a public...

  18. 5 CFR 532.233 - Preparation for full-scale wage surveys.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Preparation for full-scale wage surveys... REGULATIONS PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.233 Preparation for full-scale wage surveys. (a) The local wage survey committee, prior to each full-scale survey: (1) Shall hold a public...

  19. 5 CFR 532.235 - Conduct of full-scale wage survey.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Conduct of full-scale wage survey. 532... PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.235 Conduct of full-scale wage survey. (a) Wage... collection for a full-scale wage survey shall be accomplished by personal visit to the establishment. The...

  20. 48 CFR 34.005-5 - Full-scale development contracts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Full-scale development... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION General 34.005-5 Full-scale development contracts. Whenever practicable, the full-scale development contracts should provide for the contractors to...

  1. 48 CFR 34.005-5 - Full-scale development contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Full-scale development... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION General 34.005-5 Full-scale development contracts. Whenever practicable, the full-scale development contracts should provide for the contractors to...

  2. 48 CFR 34.005-5 - Full-scale development contracts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Full-scale development... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION General 34.005-5 Full-scale development contracts. Whenever practicable, the full-scale development contracts should provide for the contractors to...

  3. 5 CFR 532.235 - Conduct of full-scale wage survey.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Conduct of full-scale wage survey. 532... PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.235 Conduct of full-scale wage survey. (a) Wage... collection for a full-scale wage survey shall be accomplished by personal visit to the establishment. The...

  4. An Investigative, Cooperative Learning Approach to the General Microbiology Laboratory

    ERIC Educational Resources Information Center

    Seifert, Kyle; Fenster, Amy; Dilts, Judith A.; Temple, Louise

    2009-01-01

    Investigative- and cooperative-based learning strategies have been used effectively in a variety of classrooms to enhance student learning and engagement. In the General Microbiology laboratory for juniors and seniors at James Madison University, these strategies were combined to make a semester-long, investigative, cooperative learning experience…

  5. An Investigative, Cooperative Learning Approach to the General Microbiology Laboratory

    ERIC Educational Resources Information Center

    Seifert, Kyle; Fenster, Amy; Dilts, Judith A.; Temple, Louise

    2009-01-01

    Investigative- and cooperative-based learning strategies have been used effectively in a variety of classrooms to enhance student learning and engagement. In the General Microbiology laboratory for juniors and seniors at James Madison University, these strategies were combined to make a semester-long, investigative, cooperative learning experience…

  6. Report on full-scale horizontal cable tray fire tests, FY 1988

    SciTech Connect

    Riches, W.M.

    1988-09-01

    In recent years, there has been much discussion throughout industry and various governmental and fire protection agencies relative to the flammability and fire propagation characteristics of electrical cables in open cable trays. It has been acknowledged that under actual fire conditions, in the presence of other combustibles, electrical cable insulation can contribute to combustible fire loading and toxicity of smoke generation. Considerable research has been conducted on vertical cable tray fire propagation, mostly under small scale laboratory conditions. In July 1987, the Fermi National Accelerator Laboratory initiated a program of full scale, horizontal cable tray fire tests, in the absence of other building combustible loading, to determine the flammability and rate of horizontal fire propagation in cable tray configurations and cable mixes typical of those existing in underground tunnel enclosures and support buildings at the Laboratory. The series of tests addressed the effects of ventilation rates and cable tray fill, fire fighting techniques, and effectiveness and value of automatic sprinklers, smoke detection and cable coating fire barriers in detecting, controlling or extinguishing a cable tray fire. This report includes a description of the series of fire tests completed in June 1988, as well as conclusions reached from the test results.

  7. Application of inverse fluidization in wastewater treatment: From laboratory to full-scale bioreactors

    SciTech Connect

    Karamanev, D.G.; Nikolov, L.N.

    1996-12-31

    The inverse fluidization is a new multiphase gas-liquid or gas-liquid-solid system. The first studies of two phase (liquid-solid) inverse fluidization were originally published independently by Shimodaira et al. [6], Nikolov et al. [5] and Fan et al. [2]. The main difference between the classic and inverse fluidization is that the solid particle density in the inverse fluidized bed is less than the density of the continuous fluid and therefore the bed is fluidized by a downflow of the fluid. Schematic illustration of both classic and inverse fluidized beds is shown in Figure 1. One of the most important recent applications of fluidized beds is in the field of bioreactor engineering. It is well known that almost all types of microorganisms spontaneously attach themselves to any inert solid surface in contact with the liquid growth media. The microorganisms use exopolysaccharide {open_quotes}bridges{close_quotes} to attach themselves to the solid support and to each other. This structure of microorganisms and exopolysaccharides is known as biofilm. The fluidized bed bioreactors are used primarily for processes in which the fluidized particles are used as an inert solid support. There is a problem when the biofilm microorganisms multiply and the biofilm thickness increase. This limits diffusion of oxygen and/or the organic substrate to the deeper layers of the biofilm. Starvation of the microorganisms at the base of the biofilm causes pieces of the biofilm to detach (Figure 2) and leads to ineffective bioreactor operation. The maximal biofilm thickness at which no diffusional limitation is observed (phase 3 in Figure 2), is usually around 100 {mu}m. Therefore, to operate the bioreactor efficiently, the biofilm thickness should be approximately 100 {mu}m. The use of inverse fluidization can solve this problem. 6 refs., 10 figs.

  8. Removing Full-scale Testing Barriers: Energetic Material Detonation Characterization at the Laboratory Scale

    DTIC Science & Technology

    2012-03-01

    5a. CONTRACT NUMBER 5b. GRANT NUMBER 4. TITLE AND SUBTITLE 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 6. AUTHOR(S) 5f. WORK...Army Research Laboratory’s Lethality Division Innovation Program and the National Research Council Postdoctoral Fellowship Program for funding of this...DIRECTOR US ARMY RESERACH LAB RDRL D 2800 POWDER MILL RD ADELPHI MD 20783-1197 21 NO. OF NO. OF COPIES ORGANIZATION COPIES ORGANIZATION 3 US ARMY RSRCH OFC

  9. Full-Scale Structural and NDI Validation Tests of Bonded Composite Doublers for Commercial Aircraft Applications

    SciTech Connect

    Roach, D.; Walkington, P.

    1999-02-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conducted on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that the

  10. Metabolic modelling of full-scale enhanced biological phosphorus removal sludge.

    PubMed

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2014-12-01

    This study investigates, for the first time, the application of metabolic models incorporating polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) towards describing the biochemical transformations of full-scale enhanced biological phosphorus removal (EBPR) activated sludge from wastewater treatment plants (WWTPs). For this purpose, it was required to modify previous metabolic models applied to lab-scale systems by incorporating the anaerobic utilisation of the TCA cycle and the aerobic maintenance processes based on sequential utilisation of polyhydroxyalkanoates, followed by glycogen and polyphosphate. The abundance of the PAO and GAO populations quantified by fluorescence in situ hybridisation served as the initial conditions of each biomass fraction, whereby the models were able to describe accurately the experimental data. The kinetic rates were found to change among the four different WWTPs studied or even in the same plant during different seasons, either suggesting the presence of additional PAO or GAO organisms, or varying microbial activities for the same organisms. Nevertheless, these variations in kinetic rates were largely found to be proportional to the difference in acetate uptake rate, suggesting a viable means of calibrating the metabolic model. The application of the metabolic model to full-scale sludge also revealed that different Accumulibacter clades likely possess different acetate uptake mechanisms, as a correlation was observed between the energetic requirement for acetate transport across the cell membrane with the diversity of Accumulibacter present. Using the model as a predictive tool, it was shown that lower acetate concentrations in the feed as well as longer aerobic retention times favour the dominance of the TCA metabolism over glycolysis, which could explain why the anaerobic TCA pathway seems to be more relevant in full-scale WWTPs than in lab-scale systems. Copyright © 2014 Elsevier Ltd. All

  11. Simulation-Based Airframe Noise Prediction of a Full-Scale, Full Aircraft

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Fares, Ehab

    2016-01-01

    A previously validated computational approach applied to an 18%-scale, semi-span Gulfstream aircraft model was extended to the full-scale, full-span aircraft in the present investigation. The full-scale flap and main landing gear geometries used in the simulations are nearly identical to those flown on the actual aircraft. The lattice Boltzmann solver PowerFLOW® was used to perform time-accurate predictions of the flow field associated with this aircraft. The simulations were performed at a Mach number of 0.2 with the flap deflected 39 deg. and main landing gear deployed (landing configuration). Special attention was paid to the accurate prediction of major sources of flap tip and main landing gear noise. Computed farfield noise spectra for three selected baseline configurations (flap deflected 39 deg. with and without main gear extended, and flap deflected 0 deg. with gear deployed) are presented. The flap brackets are shown to be important contributors to the farfield noise spectra in the mid- to high-frequency range. Simulated farfield noise spectra for the baseline configurations, obtained using a Ffowcs Williams and Hawkings acoustic analogy approach, were found to be in close agreement with acoustic measurements acquired during the 2006 NASA-Gulfstream joint flight test of the same aircraft.

  12. Full-scale testing of an Ogee tip rotor. [in the Langley whirl tower

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Campbell, R. L.; Shidler, P. A.

    1978-01-01

    Full scale tests were utilized to investigate the effect of the ogee tip on helicopter rotor acoustics, performance, and loads. Two facilities were used: the Langley whirl tower and a UH-1H helicopter. The text matrix for hover on the whirl tower involved thrust values from 0 to 44 480 N (10,000 lb) at several tip Mach numbers for both standard and Ogee rotors. The full scale testing on the UH-1H encompassed the major portion of the flight envelope for that aircraft. Both near field acoustic measurements and far field flyover data were obtained for both the ogee and standard rotors. Data analysis of the whirl tower test shows that the ogee tip does significantly diffuse the tip vortex while providing some improvement in hover performance at low and moderate thrust coefficients. Flight testing of both rotors indicates that the strong impulsive noise signature of the standard rotor can be reduced with the ogee rotor. Analysis of the spectra indicates a reduction in energy in the 250 Hz and 1000 Hz range for the ogee rotor. Forward flight performance was significantly improved with the ogee configuration for a large number of flight conditions. Further, rotor control loads were reduced through use of this advanced tip rotor.

  13. Regional synchrony in full-scale activated sludge bioreactors due to deterministic microbial community assembly.

    PubMed

    Griffin, James S; Wells, George F

    2017-02-01

    Seasonal community structure and regionally synchronous population dynamics have been observed in natural microbial ecosystems, but have not been well documented in wastewater treatment bioreactors. Few studies of community dynamics in full-scale activated sludge systems facing similar meteorological conditions have been done to compare the importance of deterministic and neutral community assembly mechanisms. We subjected weekly activated sludge samples from six regional full-scale bioreactors at four wastewater treatment plants obtained over 1 year to Illumina sequencing of 16S ribosomal RNA genes, resulting in a library of over 17 million sequences. All samples derived from reactors treating primarily municipal wastewater. Despite variation in operational characteristics and location, communities displayed temporal synchrony at the individual operational taxonomic unit (OTU), broad phylogenetic affiliation and community-wide scale. Bioreactor communities were dominated by 134 abundant and highly regionally synchronized OTU populations that accounted for over 50% of the total reads. Non-core OTUs displayed abundance-dependent population synchrony. Alpha diversity varied by reactor, but showed a highly reproducible and synchronous seasonal fluctuation. Community similarity was dominated by seasonal changes, but individual reactors maintained minor stable differences after 1 year. Finally, the impacts of mass migration driven by direct biomass transfers between reactors was investigated, but had no significant effect on community similarity or diversity in the sink community. Our results show that population dynamics in activated sludge bioreactors are consistent with niche-driven assembly guided by seasonal temperature fluctuations.

  14. Surface runoff from full-scale coal combustion product pavements during accelerated loading

    SciTech Connect

    Cheng, C.M.; Taerakul, P.; Tu, W.; Zand, B.; Butalia, T.; Wolfe, W.; Walker, H.

    2008-08-15

    In this study, the release of metals and metalloids from full-scale portland cement concrete pavements containing coal combustion products (CCPs) was evaluated by laboratory leaching tests and accelerated loading of full-scale pavement sections under well-controlled conditions. An equivalent of 20 years of highway traffic loading was simulated at the OSU/OU Accelerated Pavement Load Facility (APLF). Three types of portland cement concrete driving surface layers were tested, including a control section (i.e., ordinary portland cement (PC) concrete) containing no fly ash and two sections in which fly ash was substituted for a fraction of the cement; i.e., 30% fly ash (FA30) and 50% fly ash (FA50). In general, the concentrations of minor and trace elements were higher in the toxicity characteristic leaching procedure (TCLP) leachates than in the leachates obtained from synthetic precipitation leaching procedure and ASTM leaching procedures. Importantly, none of the leachate concentrations exceeded the TCLP limits or primary drinking water standards. Surface runoff monitoring results showed the highest release rates of inorganic elements from the FA50 concrete pavement, whereas there were little differences in release rates between PC and FA30 concretes. The release of elements generally decreased with increasing pavement loading. Except for Cr, elements were released as particulates (>0.45 {mu} m) rather than dissolved constituents. The incorporation of fly ash in the PC cement concrete pavements examined in this study resulted in little or no deleterious environmental impact from the leaching of inorganic elements over the lifetime of the pavement system.

  15. Laboratory Investigation of Space and Planetary Dust Grains

    NASA Technical Reports Server (NTRS)

    Spann, James

    2005-01-01

    Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.

  16. A road pavement full-scale test track containing stabilized bottom ashes.

    PubMed

    Toraldo, E; Saponaro, S

    2015-01-01

    This paper reports the results of a road pavement full-scale test track built by using stabilized bottom ash (SBA) from an Italian municipal solid waste incinerator as the aggregate in granular foundation, cement-bound mixes and asphalt concretes. The investigation focused on both the performance and the environmental compatibility of such mixes, especially with regard to the effects of mixing, laying and compaction. From the road construction point of view, the performance related to the effects of mixing, laying and compaction on constructability was assessed, as well as the volumetric and the mechanical properties. Environmental aspects were investigated by leaching tests. The results suggested that SBA meets the environmental Italian law for the reuse of non-hazardous waste and could be used as road material with the procedures, plants and equipment currently used for road construction.

  17. Acoustical characteristics of the NASA Langley full scale wind tunnel test section

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.; Kasper, P. K.; Pappa, R. S.

    1975-01-01

    The full-scale wind tunnel at NASA-Langley Research Center was designed for low-speed aerodynamic testing of aircraft. Sound absorbing treatment has been added to the ceiling and walls of the tunnel test section to create a more anechoic condition for taking acoustical measurements during aerodynamic tests. The results of an experimental investigation of the present acoustical characteristics of the tunnel test section are presented. The experimental program included measurements of ambient nosie levels existing during various tunnel operating conditions, investigation of the sound field produced by an omnidirectional source, and determination of sound field decay rates for impulsive noise excitation. A comparison of the current results with previous measurements shows that the added sound treatment has improved the acoustical condition of the tunnel test section. An analysis of the data indicate that sound reflections from the tunnel ground-board platform could create difficulties in the interpretation of actual test results.

  18. A Research-Inspired Laboratory Sequence Investigating Acquired Drug Resistance

    ERIC Educational Resources Information Center

    Taylor, Elizabeth Vogel; Fortune, Jennifer A.; Drennan, Catherine L.

    2010-01-01

    Here, we present a six-session laboratory exercise designed to introduce students to standard biochemical techniques in the context of investigating a high impact research topic, acquired resistance to the cancer drug Gleevec. Students express a Gleevec-resistant mutant of the Abelson tyrosine kinase domain, the active domain of an oncogenic…

  19. Restructuring a General Microbiology Laboratory into an Investigative Experience.

    ERIC Educational Resources Information Center

    Deutch, Charles E.

    1994-01-01

    Describes an investigative laboratory sequence based upon the isolation and characterization of soil bacteria to aid microbiology teachers in providing students with activities that expose them to basic techniques of microbiology as well as demonstrates the scientific process and the experimental analysis of microorganisms. (ZWH)

  20. A Research-Inspired Laboratory Sequence Investigating Acquired Drug Resistance

    ERIC Educational Resources Information Center

    Taylor, Elizabeth Vogel; Fortune, Jennifer A.; Drennan, Catherine L.

    2010-01-01

    Here, we present a six-session laboratory exercise designed to introduce students to standard biochemical techniques in the context of investigating a high impact research topic, acquired resistance to the cancer drug Gleevec. Students express a Gleevec-resistant mutant of the Abelson tyrosine kinase domain, the active domain of an oncogenic…

  1. Restructuring a General Microbiology Laboratory into an Investigative Experience.

    ERIC Educational Resources Information Center

    Deutch, Charles E.

    1994-01-01

    Describes an investigative laboratory sequence based upon the isolation and characterization of soil bacteria to aid microbiology teachers in providing students with activities that expose them to basic techniques of microbiology as well as demonstrates the scientific process and the experimental analysis of microorganisms. (ZWH)

  2. An Investigative, Cooperative Learning Approach for General Chemistry Laboratories

    ERIC Educational Resources Information Center

    Díaz-Vázquez, Liz M.; Montes, Barbara Casañas; Echevarría Vargas, Ileabett M.; Hernandez-Cancel, Griselle; Gonzalez, Fernando; Molina, Anna M.; Morales-Cruz, Moraima; Torres-Díaz, Carlos M.; Griebenow, Kai

    2012-01-01

    The integration of research and education is an essential component of our university's teaching philosophy. Recently, we made a curricular revision to facilitate such an approach in the General Chemistry Laboratory, to teach students that investigative approaches are at the core of sciences. The curriculum revision included new interdisciplinary…

  3. Investigation of specification measures for the Software Engineering Laboratory (SEL)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Requirements specification measures are investigated for potential application in the Software Engineering Laboratory. Eighty-seven candidate measures are defined; sixteen are recommended for use. Most measures are derived from a new representation, the Composite Specification Model, which is introduced. The results of extracting the specification measures from the requirements of a real system are described.

  4. Design and performance of a full-scale spray calciner for nonradioactive high-level-waste-vitrification studies

    SciTech Connect

    Miller, F.A.

    1981-06-01

    In the spray calcination process, liquid waste is spray-dried in a heated-wall spray dryer (termed a spray calciner), and then it may be combined in solid form with a glass-forming frit. This mixture is then melted in a continuous ceramic melter or in an in-can melter. Several sizes of spray calciners have been tested at PNL- laboratory scale, pilot scale and full scale. Summarized here is the experience gained during the operation of PNL's full-scale spray calciner, which has solidified approx. 38,000 L of simulated acid wastes and approx. 352,000 L of simulated neutralized wastes in 1830 h of processing time. Operating principles, operating experience, design aspects, and system descriptions of a full-scale spray calciner are discussed. Individual test run summaries are given in Appendix A. Appendices B and C are studies made by Bechtel Inc., under contract by PNL. These studies concern, respectively, feed systems for the spray calciner process and a spray calciner vibration analysis. Appendix D is a detailed structural analysis made at PNL of the spray calciner. These appendices are included in the report to provide a complete description of the spray calciner and to include all major studies made concerning PNL's full-scale spray calciner.

  5. Full-Scale Transport Controlled Impact Demonstration Program Photographic/Video Coverage.

    DTIC Science & Technology

    1986-04-01

    AD-Al71 ?19 FULL-SCALE TRANSPORT CONTROLLED INPRCT DENONSTRTIOU I/5 IPROGRAM PNOTOOGRAPIIC..(U) JET PROPULSION LAS PASM" -5 I CA J D GREGOIRE APR 86...435 _ _-_ _ 4. Ttle and Subtitle S. Report D le Full-Scale Transport Controlled April 1986 Impact Demonstration Program 6. Performing 0,gon .a...Abstract The Full-Scale Transport Controlled Impact Demonstration Program was recorded on both film and video tape by the Photo-Duplication Section

  6. Assessment of the degradation efficiency of full-scale biogas plants: A comparative study of degradation indicators.

    PubMed

    Li, Chao; Nges, Ivo Achu; Lu, Wenjing; Wang, Haoyu

    2017-07-29

    Increasing popularity and applications of the anaerobic digestion (AD) process has necessitated the development and identification of tools for obtaining reliable indicators of organic matter degradation rate and hence evaluate the process efficiency especially in full-scale, commercial biogas plants. In this study, four biogas plants (A1, A2, B and C) based on different feedstock, process configuration, scale and operational performance were selected and investigated. Results showed that the biochemical methane potential (BMP) based degradation rate could be use in incisively gauging process efficiency in lieu of the traditional degradation rate indicators. The BMP degradation rates ranged from 70 to 90% wherein plants A2 and C showed the highest throughput. This study, therefore, corroborates the feasibility of using the BMP degradation rate as a practical tool for evaluating process performance in full-scale biogas processes and spots light on the microbial diversity in full-scale biogas processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Remedial experiences in the application of full-scale soil washing

    SciTech Connect

    Groenendijk, E.; Corden, F.L.; Mann, M.J.

    1996-12-31

    This paper will discuss the experience and lessons learned on the evaluation, design and operational aspects of full-scale soil washing. Although soil washing is becoming more accepted as a treatment technology in the U.S., limited experience in its full-scale application still appears to be a barrier to more widespread implementation. The purpose of this paper is to overcome this barrier by demonstrating actual field experience in the development and use of full-scale soil washing. Three case studies involving full-scale soil washing are presented here.

  8. Hydrodynamic parameters estimation from self-potential data in a controlled full scale site

    NASA Astrophysics Data System (ADS)

    Chidichimo, Francesco; De Biase, Michele; Rizzo, Enzo; Masi, Salvatore; Straface, Salvatore

    2015-03-01

    A multi-physical approach developed for the hydrodynamic characterization of porous media using hydrogeophysical information is presented. Several pumping tests were performed in the Hydrogeosite Laboratory, a controlled full-scale site designed and constructed at the CNR-IMAA (Consiglio Nazionale delle Ricerche - Istituto di Metodologia per l'Analisi Ambientale), in Marsico Nuovo (Basilicata Region, Southern Italy), in order to obtain an intermediate stage between laboratory experiments and field survey. The facility consists of a pool, used to study water infiltration processes, to simulate the space and time dynamics of subsurface contamination phenomena, to improve and to find new relationship between geophysical and hydrogeological parameters, to test and to calibrate new geophysical techniques and instruments. Therefore, the Hydrogeosite Laboratory has the advantage of carrying out controlled experiments, like in a flow cell or sandbox, but at field comparable scale. The data collected during the experiments have been used to estimate the saturated hydraulic conductivity ks [ms-1] using a coupled inversion model working in transient conditions, made up of the modified Richards equation describing the water flow in a variably saturated porous medium and the Poisson equation providing the self-potential ϕ [V], which naturally occurs at points of the soil surface owing to the presence of an electric field produced by the motion of underground electrolytic fluids through porous systems. The result obtained by this multi-physical numerical approach, which removes all the approximations adopted in previous works, makes a useful instrument for real heterogeneous aquifer characterization and for predictive analysis of its behavior.

  9. Tests of Wing Machine-Gun and Cannon Installations in the NACA Full-Scale Wind Tunnel, Special Report

    NASA Technical Reports Server (NTRS)

    Czarnecki, K. R.; Guryansky, Eugene R.

    1941-01-01

    At the request of the Bureau of Aeronautics, an investigation was conducted in the full-scale wind tunnel of wing installations of .50-caliber machine guns and 20-millimeter cannons. The tests were made to determine the effect of various gun installations on the maximum lift and the high-speed drag of the airplane.

  10. Wind Tunnel Visualization of the Flow Over a Full-Scale F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lanser, Wendy R.; Botha, Gavin J.; James, Kevin D.; Crowder, James P.; Schmitz, Fredric H. (Technical Monitor)

    1994-01-01

    The proposed paper presents flow visualization performed during experiments conducted on a full-scale F/A-18 aircraft in the 80- by 120-Foot Wind-Tunnel at NASA Ames Research Center. This investigation used both surface and off-surface flow visualization techniques to examine the flow field on the forebody, canopy, leading edge extensions (LEXs), and wings. The various techniques used to visualize the flow field were fluorescent tufts, flow cones treated with reflective material, smoke in combination with a laser light sheet, and a video imaging system. The flow visualization experiments were conducted over an angle of attack range from 20deg to 45deg and over a sideslip range from -10deg to 10deg. The results show regions of attached and separated flow on the forebody, canopy, and wings. Additionally, the vortical flow is clearly visible over the leading-edge extensions, canopy, and wings.

  11. Anaerobic digestion foaming in full-scale biogas plants: a survey on causes and solutions.

    PubMed

    Kougias, P G; Boe, K; O-Thong, S; Kristensen, L A; Angelidaki, I

    2014-01-01

    Anaerobic digestion foaming is a common operation problem in biogas plants with negative impacts on the biogas plants economy and environment. A survey of 16 Danish full-scale biogas plants on foaming problems revealed that most of them had experienced foaming in their processes up to three times per year. Foaming incidents often lasted from one day to three weeks, causing 20-50% biogas production loss. One foaming case at Lemvig biogas plant has been investigated and the results indicated that the combination of feedstock composition and mixing pattern of the reactor was the main cause of foaming in this case. Moreover, no difference in bacterial communities between the foaming and non-foaming reactors was observed, showing that filamentous bacteria were not the main reason for foaming in this case.

  12. Inflight source noise of an advanced full-scale single-rotation propeller

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loeffler, Irvin J.

    1991-01-01

    Flight tests to define the far field tone source at cruise conditions were completed on the full scale SR-7L advanced turboprop which was installed on the left wing of a Gulfstream II aircraft. This program, designated Propfan Test Assessment (PTA), involved aeroacoustic testing of the propeller over a range of test conditions. These measurements defined source levels for input into long distance propagation models to predict en route noise. Inflight data were taken for 7 test cases. The sideline directivities measured by the Learjet showed expected maximum levels near 105 degrees from the propeller upstream axis. However, azimuthal directivities based on the maximum observed sideline tone levels showed highest levels below the aircraft. An investigation of the effect of propeller tip speed showed that the tone level of reduction associated with reductions in propeller tip speed is more significant in the horizontal plane than below the aircraft.

  13. Full-scale upper-surface-blown flap noise. [for short haul STOL aircraft

    NASA Technical Reports Server (NTRS)

    Heidelberg, L. J.; Homyak, L.; Jones, W. L.

    1975-01-01

    A highly noise-suppressed TF 34 engine was used to investigate the noise of several powered lift configurations involving upper-surface-blown (USB) flaps. The configuration variables were nozzle type (i.e. slot and circular with deflector), flap chord-length, and flap angle. The results of velocity surveys at both the nozzle exit and the flap trailing edge are used for correlation of the noise data. Configurations using a long flap design were 4 dB quieter than a short flap typical of current trends in USB flap design. The lower noise for the long flap is attributed primarily to the greater velocity decay of the jet at the flap trailing edge. The full-scale data revealed substantially more quadrupole noise in the region near the deflected jet than observed in previous sub-scale tests.

  14. Molecular analysis of methanogens involved in methanogenic degradation of tetramethylammonium hydroxide in full-scale bioreactors.

    PubMed

    Whang, Liang-Ming; Hu, Tai-Ho; Liu, Pao-Wen Grace; Hung, Yu-Ching; Fukushima, Toshikazu; Wu, Yi-Ju; Chang, Shao-Hsiung

    2015-02-01

    This study investigated methanogenic communities involved in degradation of tetramethylammonium hydroxide (TMAH) in three full-scale bioreactors treating TMAH-containing wastewater. Based on the results of terminal-restriction fragment-length polymorphism (T-RFLP) and quantitative PCR analyses targeting the methyl-coenzyme M reductase alpha subunit (mcrA) genes retrieved from three bioreactors, Methanomethylovorans and Methanosarcina were the dominant methanogens involved in the methanogenic degradation of TMAH in the bioreactors. Furthermore, batch experiments were conducted to evaluate mcrA messenger RNA (mRNA) expression during methanogenic TMAH degradation, and the results indicated that a higher level of TMAH favored mcrA mRNA expression by Methansarcina, while Methanomethylovorans could only express considerable amount of mcrA mRNA at a lower level of TMAH. These results suggest that Methansarcina is responsible for methanogenic TMAH degradation at higher TMAH concentrations, while Methanomethylovorans may be important at a lower TMAH condition.

  15. Water balance comparison between a dry and a wet landfill — a full-scale experiment

    NASA Astrophysics Data System (ADS)

    Yuen, S. T. S.; Wang, Q. J.; Styles, J. R.; McMahon, T. A.

    2001-09-01

    This paper describes a water balance study conducted in a full-scale experimental municipal solid waste landfill in Melbourne, Australia. The investigation identified the significance of various hydrological components of a 'dry' landfill (represented by half of the experimental cell as a control section) and a 'wet' landfill (represented by other half of the cell allowing leachate recirculation and working as a bioreactor). The information obtained is important and useful in terms of leachate management for both dry and wet cell operations, especially for landfills located in a similar climate region. The study also determined the in situ field capacity of the waste and compared it to published data. The implication of using this field capacity value in water balance study is discussed.

  16. Modeling and Design of a Full-Scale Rotor Blade with Embedded Piezocomposite Actuators

    NASA Astrophysics Data System (ADS)

    Kovalovs, A.; Barkanov, E.; Ruchevskis, S.; Wesolowski, M.

    2017-05-01

    An optimization methodology for the design of a full-scale rotor blade with an active twist in order to enhance its ability to reduce vibrations and noise is presented. It is based on a 3D finite-element model, the planning of experiments, and the response surface technique to obtain high piezoelectric actuation forces and displacements with a minimum actuator weight and energy applied. To investigate an active twist of the helicopter rotor blade, a structural static analysis using a 3D finite-element model was carried out. Optimum results were obtained at two possible applications of macrofiber composite actuators. The torsion angle found from the finite-element simulation of helicopter rotor blades was successfully validated by its experimental values, which confirmed the modeling accuracy.

  17. Gaseous nitrogen and carbon emissions from a full-scale deammonification plant.

    PubMed

    Weissenbacher, Norbert; Takacs, Imre; Murthy, Sudhir; Fuerhacker, Maria; Wett, Bernhard

    2010-02-01

    The aim of this work was to give a quantitative description of the gaseous nitrogen and carbon emissions of a full-scale deammonification plant (DEMON system). Deammonification accounted for the net carbon sequestration of 0.16 g CO2/g NO2-N. Both nitrogen dioxide (NO2) and nitric oxide (NO) were minor trace gases (<0.1% nitrogen output). However, in comparison, the nitrous oxide (N2O) emission (1.3% nitrogen output) was significant. The global warming potential of the N2O emissions from the DEMON were similar to those found in conventional simultaneous nitrification/denitrification systems; however, CO2 emissions in the investigated system were significantly lower, thereby lessening the overall environmental effect. This was the first time such an analysis has been performed on a DEMON system.

  18. Geoengineering characterization of welded tuffs from laboratory and field investigations

    SciTech Connect

    Zimmerman, R.M.; Nimick, F.B.; Board, M.P.

    1984-12-31

    Welded tuff beneath Yucca Mountain adjacent to the Nevada Test Site (NTS) is being considered for development as a high-level radioactive waste repository by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Because access into Yucca Mountain has been limited to borehole explorations, early geoengineering materials characterizations have been derived from laboratory tests on cores from Yucca Mountain and from laboratory and field tests on welded tuffs located in G-Tunnel on the NTS. G-Tunnel contains welded tuffs that have similar properties and stress states to those at Yucca Mountain and has been the location for in situ rock mechanics testing. The purpose of this paper is to summarize the geoengineering material property data obtained to date and to compare appropriate laboratory and field data from G-Tunnel to findings from Yucca Mountain. Geomechanical and thermal data are provided and are augmented by limited geological and hydrological data. A comparison of results of laboratory measurements on tuffs from Yucca Mountain and G-Tunnel indicates good agreement between the bulk densities, saturations, moduli of elasticity, Poisson`s ratios, and P-wave velocities. The G-Tunnel tuff has slightly lower thermal conductivity, tensile strength, compressive strength and slightly higher matrix permeability than does the welded tuff near the proposed repository horizon at Yucca Mountain. From a laboratory-to-field scaling perspective, the modulus of deformation shows the most sensitivity to field conditions because of the presence of joints found in the field. 14 refs., 1 tab.

  19. Geoengineering characterization of welded tuffs from laboratory and field investigations

    SciTech Connect

    Zimmerman, R.M.; Nimick, F.B.; Board, M.P.

    1984-12-31

    Welded tuff beneath Yucca Mountain adjacent to the Nevada Test Site (NTS) is being considered for development as a high-level radioactive waste repository by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Because access into Yucca Mountain has been limited to borehole explorations, early geoengineering materials characterizations have been derived from laboratory tests on cores from Yucca Mountain and from laboratory and field tests on welded tuffs located in G-Tunnel on the NTS. G-Tunnel contains welded tuffs that have similar properties and stress states to those at Yucca Mountain and has been the location for in situ rock mechanics testing. The purpose of this paper is to summarize the geoengineering material property data obtained to date and to compare appropriate laboratory and field data from G-Tunnel to findings from Yucca Mountain. Geomechanical and thermal data are provided and are augmented by limited geological and hydrological data. A comparison of results of laboratory measurements on tuffs from Yucca Mountain and G-Tunnel indicates good agreement between the bulk densities, saturations, moduli of elasticity, Poisson`s ratios, and P-wave velocities. The G-Tunnel tuff has slightly lower thermal conductivity, tensile strength, compressive strength and slightly higher matrix permeability than does the welded tuff near the proposed repository horizon at Yucca Mountain. From a laboratory-to-field scaling perspective, the modulus of deformation shows the most sensitivity to field conditions because of the presence of the joints found in the field. 14 references, 1 table.

  20. Inserting an Investigative Dimension into Introductory Laboratory Courses

    NASA Astrophysics Data System (ADS)

    Herman, Carolyn

    1998-01-01

    Investigative laboratories in the introductory curriculum engage students as active learners and more accurately represent the true nature of the scientific enterprise. Requiring students to design their own experiments is one strategy for enhancing the investigative component of introductory laboratories. Guidelines are provided for redesigning traditional laboratory exercises so that students plan the details of the experiment within parameters prescribed by the instructor. The following considerations are useful in identifying what labs can be easily reconfigured to this format, and in determining exactly how to accomplish that restructuring. 1) Which concepts that the laboratory exercise teaches are most important? Can these concepts be rephrased as questions that can be answered experimentally, without turning the lab into a mere verification of known information? 2) Can freshmen be expected to understand the experimental goal well enough to design a reasonable experiment? 3) What knowledge is essential before students can collect meaningful data? Can this information be provided as stand-alone background material? Types of lab activities that do not work well in this format are also discussed.

  1. Full-scale testing and progressive damage modeling of sandwich composite aircraft fuselage structure

    NASA Astrophysics Data System (ADS)

    Leone, Frank A., Jr.

    A comprehensive experimental and computational investigation was conducted to characterize the fracture behavior and structural response of large sandwich composite aircraft fuselage panels containing artificial damage in the form of holes and notches. Full-scale tests were conducted where panels were subjected to quasi-static combined pressure, hoop, and axial loading up to failure. The panels were constructed using plain-weave carbon/epoxy prepreg face sheets and a Nomex honeycomb core. Panel deformation and notch tip damage development were monitored during the tests using several techniques, including optical observations, strain gages, digital image correlation (DIC), acoustic emission (AE), and frequency response (FR). Additional pretest and posttest inspections were performed via thermography, computer-aided tap tests, ultrasound, x-radiography, and scanning electron microscopy. The framework to simulate damage progression and to predict residual strength through use of the finite element (FE) method was developed. The DIC provided local and full-field strain fields corresponding to changes in the state-of-damage and identified the strain components driving damage progression. AE was monitored during loading of all panels and data analysis methodologies were developed to enable real-time determination of damage initiation, progression, and severity in large composite structures. The FR technique has been developed, evaluating its potential as a real-time nondestructive inspection technique applicable to large composite structures. Due to the large disparity in scale between the fuselage panels and the artificial damage, a global/local analysis was performed. The global FE models fully represented the specific geometries, composite lay-ups, and loading mechanisms of the full-scale tests. A progressive damage model was implemented in the local FE models, allowing the gradual failure of elements in the vicinity of the artificial damage. A set of modifications

  2. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion.

    PubMed

    Hrad, Marlies; Gamperling, Oliver; Huber-Humer, Marion

    2013-10-01

    Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfully applied in Europe, North America and Asia, all pursuing different objectives and strategies. In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21days (GP21) and respiration activity over 4days (RA4), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below the authorised Austrian discharge limits. However, the application of in situ aeration at the investigated landfill is a factor 10 behind the lab-based predictions after 3years of operation, mainly due to technical limitations in the full-scale operation (e.g. high air flow resistivity due

  3. Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multi-based Logging.

    ERIC Educational Resources Information Center

    Cleveland, William S.

    Experimentation with graphical methods for data presentation is important for improving graphical communication in science. Several graphical methods are discussed including full scale breaks, dot charts, and multibased logging. Full scale breaks are suggested as replacements for partial scale breaks since partial scale breaks can fail to provide…

  4. Luxury uptake of phosphorus by microalgae in full-scale waste stabilisation ponds.

    PubMed

    Powell, N; Shilton, A; Pratt, S; Chisti, Y

    2011-01-01

    Biological phosphorus removal was studied in two full-scale waste stabilisation ponds (WSP). Luxury uptake by microalgae was confirmed to occur and in one pond the biomass contained almost four times the phosphorus required by microalgae for normal metabolism. However, the phosphorus content within the biomass was variable. This finding means that assumptions made in prior publications on modelling of phosphorus removal in WSP are questionable. While fluctuations in microalgal growth causes variation in many water quality parameters, this further variation in luxury uptake explains the high degree of variability in phosphorus removal commonly reported in the literature. To achieve effective biological phosphorus removal high levels of both luxury uptake and microalgal concentration are needed. The findings of this work show that while high levels of these parameters did occur at times in the WSP monitored, they did not occur simultaneously. This is explained because accumulated phosphorus is subsequently consumed during rapid growth of biomass resulting in a high biomass concentration with a low phosphorus content. Previous laboratory research has allowed a number of key considerations to be proposed to optimise both luxury uptake and biomass concentration. Now that is has been shown that high levels of biomass concentration and luxury uptake can occur in the field it may be possible to redesign WSP to optimise these parameters.

  5. End-effects-regime in full scale and lab scale rocket nozzles

    NASA Astrophysics Data System (ADS)

    Rojo, Raymundo; Tinney, Charles; Baars, Woutijn; Ruf, Joseph

    2014-11-01

    Modern rockets utilize a thrust-optimized parabolic-contour design for their nozzles for its high performance and reliability. However, the evolving internal flow structures within these high area ratio rocket nozzles during start up generate a powerful amount of vibro-acoustic loads that act on the launch vehicle. Modern rockets must be designed to accommodate for these heavy loads or else risk a catastrophic failure. This study quantifies a particular moment referred to as the ``end-effects regime,'' or the largest source of vibro-acoustic loading during start-up [Nave & Coffey, AIAA Paper 1973-1284]. Measurements from full scale ignitions are compared with aerodynamically scaled representations in a fully anechoic chamber. Laboratory scale data is then matched with both static and dynamic wall pressure measurements to capture the associating shock structures within the nozzle. The event generated during the ``end-effects regime'' was successfully reproduced in the both the lab-scale models, and was characterized in terms of its mean, variance and skewness, as well as the spectral properties of the signal obtained by way of time-frequency analyses.

  6. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    SciTech Connect

    Nelson, E; John Gladden, J

    2007-03-22

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments.

  7. Evolving desiderata for validating engineered-physics systems without full-scale testing

    SciTech Connect

    Langenbrunner, James R; Booker, Jane M; Hemez, Francois M; Ross, Timothy J

    2010-01-01

    Theory and principles of engineered-physics designs do not change over time, but the actual engineered product does evolve. Engineered components are prescient to the physics and change with time. Parts are never produced exactly as designed, assembled as designed, or remain unperturbed over time. For this reason, validation of performance may be regarded as evolving over time. Desired use of products evolves with time. These pragmatic realities require flexibility, understanding, and robustness-to-ignorance. Validation without full-scale testing involves engineering, small-scale experiments, physics theory and full-scale computer-simulation validation. We have previously published an approach to validation without full-scale testing using information integration, small-scale tests, theory and full-scale simulations [Langenbrunner et al. 2008]. This approach adds value, but also adds complexity and uncertainty due to inference. We illustrate a validation example that manages evolving desiderata without full-scale testing.

  8. Bacterial community shift during the startup of a full-scale oxidation ditch treating sewage.

    PubMed

    Chen, Yajun; Ye, Lin; Zhao, Fuzheng; Xiao, Lin; Cheng, Shupei; Zhang, Xu-Xiang

    2016-10-06

    Oxidation ditch (OD) is one of the most widely used processes for treating municipal wastewater. However, the microbial communities in the OD systems have not been well characterized and little information about the shift of bacterial community during the startup process of the OD systems is available. In this study, we investigated the bacterial community changes during the startup period (over 100 days) of a full-scale OD. The results showed that the bacterial community dramatically changed during the startup period. Similar to the activated sludge samples in other studies, Proteobacteria (accounting for 26.3%~48.4%) was the most dominant bacterial phylum in the OD system but its relative abundance declined nearly 40% during the startup process. It was also found that Planctomycetes proliferated greatly (from 4.79% to 13.5%) and finally replaced Bacteroidetes as the second abundant phylum in the OD system. Specifically, some bacteria affiliated with Flavobacterium genus of exhibited remarkable decreasing trends, while bacterial species belonging to OD1 candidate division and Saprospiraceae family were found to increase during the startup process. Despite of the bacterial community shift, the organic matter, nitrogen and phosphorus in the effluent were always in low concentrations, suggesting the functional redundancy of the bacterial community. Moreover, by comparing with the bacterial community in other municipal wastewater treatment bioreactors, some potentially novel bacterial species were found to be present in the OD system. Collectively, this study improved our understandings of bacterial community structure and the microbial ecology during the startup of full-scale wastewater treatment bioreactor.

  9. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal

    PubMed Central

    Albertsen, Mads; Hansen, Lea Benedicte Skov; Saunders, Aaron Marc; Nielsen, Per Halkjær; Nielsen, Kåre Lehmann

    2012-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes, underlining the need for more reference genomes of key EBPR species. Only the genome of ‘Candidatus Accumulibacter', a genus of phosphorus-removing organisms, was closely enough related to the species present in the metagenome to allow for detailed investigations. Accumulibacter accounted for only 4.8% of all bacteria by qFISH, but the depth of sequencing enabled detailed insight into their microdiversity in the full-scale plant. Only 15% of the reads matching Accumulibacter had a high similarity (>95%) to the sequenced Accumulibacter clade IIA strain UW-1 genome, indicating the presence of some microdiversity. The differences in gene complement between the Accumulibacter clades were limited to genes for extracellular polymeric substances and phage-related genes, suggesting a selective pressure from phages on the Accumulibacter diversity. PMID:22170425

  10. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal.

    PubMed

    Albertsen, Mads; Hansen, Lea Benedicte Skov; Saunders, Aaron Marc; Nielsen, Per Halkjær; Nielsen, Kåre Lehmann

    2012-06-01

    Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes, underlining the need for more reference genomes of key EBPR species. Only the genome of 'Candidatus Accumulibacter', a genus of phosphorus-removing organisms, was closely enough related to the species present in the metagenome to allow for detailed investigations. Accumulibacter accounted for only 4.8% of all bacteria by qFISH, but the depth of sequencing enabled detailed insight into their microdiversity in the full-scale plant. Only 15% of the reads matching Accumulibacter had a high similarity (>95%) to the sequenced Accumulibacter clade IIA strain UW-1 genome, indicating the presence of some microdiversity. The differences in gene complement between the Accumulibacter clades were limited to genes for extracellular polymeric substances and phage-related genes, suggesting a selective pressure from phages on the Accumulibacter diversity.

  11. A study on the effect of flat plate friction resistance on speed performance prediction of full scale

    NASA Astrophysics Data System (ADS)

    Park, Dong-Woo

    2015-01-01

    Flat plate friction lines hare been used in the process to estimate speed performance of full-scale ships in model tests. The results of the previous studies showed considerable differences in determining form factors depending on changes in plate friction lines and Reynolds numbers. These differences had a great influence on estimation of speed performance of full-scale ships. This study- was conducted in two parts. In the first part, the scale effect of the form factor depending on change in the Reynolds number was studied based on CFD, in connection with three kinds of friction resistance curves: the ITTC-1957, the curve proposed by Grigson (1993; 1996), and the curve developed by Katsui et al (2005). In the second part, change in the form factor by three kinds of friction resistance curves was investigated based on model tests, and then the brake power and the revolution that were finally determined by expansion processes of full-scale ships. When three kinds of friction resistance curves were applied to each kind of ships, these were investigated: differences between resistance and self-propulsion components induced in the expansion processes of full-scale ships, correlation of effects between these components, and tendency of each kind of ships. Finally, what friction resistance curve was well consistent with results of test operation was examined per each kind of ships.

  12. Fusion of Laboratory and Textual Data for Investigative Bioforensics

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Corley, Courtney D.; McCue, Lee Ann; Wahl, Karen L.; Kreuzer, Helen W.

    2013-03-10

    Chemical and biological forensic programs focus on the identification of a threat and acquisition of laboratory measurements to determine how a threat agent may have been produced. However, to generate investigative leads, it might also be useful to identify institutions where the same agent has been produced by the same or a very similar process, since the producer of the agent may have learned methods at a university or similar institution. We have developed a Bayesian network framework that fuses hard and soft data sources to assign probability to production practices. It combines the results of laboratory measurements with an automatic text reader to scan scientific literature and rank institutions that had published papers on the agent of interest in order of the probability that the institution has the capability to generate the sample of interest based on laboratory data. We demonstrate the Bayesian network on an example case from microbial forensics, predicting the methods used to produce Bacillus anthracis spores based on mass spectrometric measurements and identifying institutions that have a history of growing Bacillus spores using the same or highly similar methods. We illustrate that the network model can assign a higher posterior probability than expected by random chance to appropriate institutions when trained using only a small set of manually analyzed documents. This is the first example of an automated methodology to integrate experimental and textual data for the purpose of investigative forensics.

  13. Full-Scale Cask Testing and Public Acceptance of Spent Nuclear Fuel Shipments - 12254

    SciTech Connect

    Dilger, Fred; Halstead, Robert J.; Ballard, James D.

    2012-07-01

    Full-scale physical testing of spent fuel shipping casks has been proposed by the National Academy of Sciences (NAS) 2006 report on spent nuclear fuel transportation, and by the Presidential Blue Ribbon Commission (BRC) on America's Nuclear Future 2011 draft report. The U.S. Nuclear Regulatory Commission (NRC) in 2005 proposed full-scale testing of a rail cask, and considered 'regulatory limits' testing of both rail and truck casks (SRM SECY-05-0051). The recent U.S. Department of Energy (DOE) cancellation of the Yucca Mountain project, NRC evaluation of extended spent fuel storage (possibly beyond 60-120 years) before transportation, nuclear industry adoption of very large dual-purpose canisters for spent fuel storage and transport, and the deliberations of the BRC, will fundamentally change assumptions about the future spent fuel transportation system, and reopen the debate over shipping cask performance in severe accidents and acts of sabotage. This paper examines possible approaches to full-scale testing for enhancing public confidence in risk analyses, perception of risk, and acceptance of spent fuel shipments. The paper reviews the literature on public perception of spent nuclear fuel and nuclear waste transportation risks. We review and summarize opinion surveys sponsored by the State of Nevada over the past two decades, which show consistent patterns of concern among Nevada residents about health and safety impacts, and socioeconomic impacts such as reduced property values along likely transportation routes. We also review and summarize the large body of public opinion survey research on transportation concerns at regional and national levels. The paper reviews three past cask testing programs, the way in which these cask testing program results were portrayed in films and videos, and examines public and official responses to these three programs: the 1970's impact and fire testing of spent fuel truck casks at Sandia National Laboratories, the 1980's

  14. Bench and full-scale studies for odor control from lime stabilized biosolids: the effect of mixing on odor generation.

    PubMed

    Krach, Kenneth R; Li, Baikun; Burns, Benjamin R; Mangus, Jessica; Butler, Howard G; Cole, Charles

    2008-09-01

    Lime stabilization is a means to raise the pH of biosolids to meet specific pathogen requirements. Along with controlling the microbial growth, lime stabilization reduces the potential for offensive odors. Lime stabilized biosolids can be beneficially used as a soil amendment and also for land reclamation. However, if biosolids are not properly incorporated with the lime, there is a potential for microbial growth, which consequently leads to the emanation of offensive odors and growth of pathogens. Proper mixing was found to be an important factor for the reduction of offensive odors in biosolids treatment. To better understand the effects of mixing on odorous products, bench-scale and full-scale tests were conducted to assess the lime stabilization process and investigate mixing quality at a wastewater treatment plant to help reduce odors associated with known odorants. The results of 4-week laboratory bench-scale tests showed that mixing had the largest effect on odor. The hedonic tone test of the control samples with poor mixing showed a hedonic tone of -2.9 initially and then dropped to -7.3 on Day 29. The hedonic tone of the 3.5%, 7%, and 10% lime mixed biosolids had similar hedonic tones (-2.8 to -2.5) on Day 1 and slightly fluctuated over time and ended at -1.6 to -2.7 on Day 29, which was less odorous than the controls. The control sample with poor mixing showed a rapid pH drop from 12.1 on Day 1 to 8.4 on Day 7. The pH of the control sample was considerably lower than the mixed samples and ended up on Day 28 with a pH of 8.0. The pH of the 7% and 10% samples were relatively stable throughout the 4-week period with a pH still higher than 12 on Day 28. The biosolids with better mixing had a less offensive odor and weaker odor strength than the controls collected at the plant with poor mixing. The lime stabilization process in the wastewater treatment plant was modified in a full-scale study by prolonging the mixing time. The samples collected from the

  15. An Investigative, Cooperative Learning Approach to the General Microbiology Laboratory

    PubMed Central

    Seifert, Kyle; Fenster, Amy; Dilts, Judith A.

    2009-01-01

    Investigative- and cooperative-based learning strategies have been used effectively in a variety of classrooms to enhance student learning and engagement. In the General Microbiology laboratory for juniors and seniors at James Madison University, these strategies were combined to make a semester-long, investigative, cooperative learning experience involving culture and identification of microbial isolates that the students obtained from various environments. To assess whether this strategy was successful, students were asked to complete a survey at the beginning and at the end of the semester regarding their comfort level with a variety of topics. For most of the topics queried, the students reported that their comfort had increased significantly during the semester. Furthermore, this group of students thought that the quality of this investigative lab experience was much better than that of any of their previous lab experiences. PMID:19487504

  16. An investigative, cooperative learning approach to the general microbiology laboratory.

    PubMed

    Seifert, Kyle; Fenster, Amy; Dilts, Judith A; Temple, Louise

    2009-01-01

    Investigative- and cooperative-based learning strategies have been used effectively in a variety of classrooms to enhance student learning and engagement. In the General Microbiology laboratory for juniors and seniors at James Madison University, these strategies were combined to make a semester-long, investigative, cooperative learning experience involving culture and identification of microbial isolates that the students obtained from various environments. To assess whether this strategy was successful, students were asked to complete a survey at the beginning and at the end of the semester regarding their comfort level with a variety of topics. For most of the topics queried, the students reported that their comfort had increased significantly during the semester. Furthermore, this group of students thought that the quality of this investigative lab experience was much better than that of any of their previous lab experiences.

  17. Full-scale semispan tests of a business-jet wing with a natural laminar flow airfoil

    NASA Technical Reports Server (NTRS)

    Hahne, David E.; Jordan, Frank L., Jr.

    1991-01-01

    A full-scale semispan model was investigated to evaluate and document the low-speed, high-lift characteristics of a business-jet class wing that utilized the HSNLF(1)-0213 airfoil section and a single-slotted flap system. Also, boundary-layer transition effects were examined, a segmented leading-edge droop for improved stall/spin resistance was studied, and two roll-controlled devices were evaluated. The wind-tunnel investigation showed that deployment of single-slotted, trailing-edge flap was effective in providing substantial increments in lift required for takeoff and landing performance. Fixed-transition studies to investigate premature tripping of the boundary layer indicated no adverse effects in lift and pitching-moment characteristics for either the cruise or landing configuration. The full-scale results also suggested the need to further optimize the leading-edge droop design that was developed in the subscale tests.

  18. Evaluation of debris-flow model parameterization through laboratory investigations

    NASA Astrophysics Data System (ADS)

    Kaitna, Roland; Rickenmann, Dieter; Huebl, Johannes

    2017-04-01

    In engineering practice simulation tools for predicting the flow and deposition behavior of debris flows are often based on of simple rheologic equations describing bulk flow resistance. Model parameterization and validation is often connected to large uncertainties due to the lack of field data. Moreover it has been shown that debris flow simulation models are generally limited in representing actual flow mechanics of most natural flows. In this contribution we test the possibility to parameterize simple flow models by laboratory investigations at different scales. We estimate parameters for the Bingham model from a suite of laboratory experiments in different setups, including a standard viscometer, a tilt board, a conveyor belt, and a rotating drum. Material samples were taken from fresh deposits of a muddy debris flow and analyzed over a range of volumetric sediment concentrations and maximum grain sizes. Our results are relatively consistent between most setups. Estimated rheologic parameters show an exponential dependence on volumetric sediment concentration and a systematic variation for mixtures of different maximum grain sizes. Our data shows that a rheologic interpretation of bulk flow behavior seems feasible at the laboratory scale, but the possibility of extrapolation of rheologic parameters for the prototype flow to be directly used in numerical simulation tools is expected to be limited.

  19. FULL-SCALE CHAMBER INVESTIGATION AND SIMULATION OF AIR FRESHENER EMISSIONS IN THE PRESENCE OF OZONE

    EPA Science Inventory

    The paper discusses results of tests, conducted in the EPA large chamber facility, determining emissions and chemical degradation of volatile organic compounds (VOCs) from one electrical plug-in type pine-scented air freshener in the presence of ozone supplied by a device markete...

  20. Monitoring the oxygen transfer efficiency of full-scale aeration systems: investigation method and experimental results.

    PubMed

    Gori, Riccardo; Balducci, Alice; Caretti, Cecilia; Lubello, Claudio

    2014-01-01

    This paper reports the results of a series of off-gas tests aimed at monitoring the evolution of the oxygen transfer efficiency in an urban wastewater treatment plant (3,500 population equivalent) located in Tuscany (Italy). The tests were conducted over a 2-year period starting with the testing of the aeration system. It was found that in the absence of membrane-panel cleaning operations, the oxygen transfer efficiency under standard conditions in process water (αSOTE) dropped from 18 to 9.5% in 2 years. This gives rise to a 40% increase in the wastewater treatment plant annual energy costs. The on-site chemical cleaning of the diffusers allowed for an almost total recovery of the transfer efficiency (αSOTE equal to 16%). The use of the off-gas method for monitoring the oxygen transfer efficiency over time is therefore essential for enabling correct planning of the cleaning operations of the diffusers and for cutting the energy consumption and operating costs of the aeration system.

  1. FULL-SCALE CHAMBER INVESTIGATION AND SIMULATION OF AIR FRESHENER EMISSIONS IN THE PRESENCE OF OZONE

    EPA Science Inventory

    The paper discusses results of tests, conducted in the EPA large chamber facility, determining emissions and chemical degradation of volatile organic compounds (VOCs) from one electrical plug-in type pine-scented air freshener in the presence of ozone supplied by a device markete...

  2. SUBSURFACE DRAINAGE INVESTIGATION 1945-1946. APPENDIX 4. REPORT ON FULL SCALE FIELD DRAINAGE TESTS.

    DTIC Science & Technology

    HYDROLOGY, DRAINAGE ), (* DRAINAGE , TESTS), (*LANDING FIELDS, DRAINAGE ), SOIL MECHANICS, PARTICLE SIZE, POROSITY, PAVEMENTS, RUNWAYS, SIMULATION, CONSTRUCTION MATERIALS, DESIGN, THICKNESS, PERMEABILITY, LAMINAR FLOW

  3. Investigation of a Full-scale, Cascade-type Thrust Reverser

    NASA Technical Reports Server (NTRS)

    Kohl, Robert C; Algranti, Joseph S

    1957-01-01

    A double set of turning vanes was carried inside the jet tailpipe. To produce reverse thrust, the tailpipe opens into two side sections and the turning vanes move outward to form a V-shaped cascade, which deflects the exhaust-gas flow. Forward and reverse net thrust were measured over a range of engine speeds with the airplane stationary. Taxi tests were made to determine the comparative stopping distances using wheel braking and reverse thrust separately, and a combination of both. The effect of turning-vane spacing on thrust-reverser performance was determined by scale-model tests using unheated air.

  4. Laboratory Investigation of Water-Lubricated Elastomeric Bearings.

    DTIC Science & Technology

    1981-01-01

    AD-A097 109 SHIAKER RESEARCH CORP BALLSTON LAKE N Y F/G 13/9 LABORATORY INVESTIGATION OF WATER-LUBRICATEO ELASTOMERIC BEARIN-ETC(U) JAN 81 R L SMITH...ADDRESS 10 PROGRAM ELEMENT, PROJECT. TASK Shaker Research Corporation AREA II WORK UNIT NUMBERS Northway 10 Executive Park Ballston Lake, N. Y. 12019...ICONTROLLING OFFICE NAME AND ADDRESS 12. RIEPTDT Office of Naval Research as ~8 Arlington, Virginia 22217 F13.NUME FlAE 14 MONITORING AGENCY NAME AI

  5. Blade-Vortex Interaction of an Isolated Full-Scale XV-15 Tilt-Rotor

    NASA Technical Reports Server (NTRS)

    Kitaplioglu, C.; Betzina, M.; Johnson, W.

    2000-01-01

    Blade-vortex interaction noise of an isolated full-scale XV-15 tilt-rotor was investigated in the NASA Ames 80- by 120-Foot Wind Tunnel. The objective was to establish the baseline BVI noise signature of a fullscale tilt-rotor and to investigate several noise reduction concepts, including blade-tip subwings, reduced tip Mach number, and the addition of a fourth blade to the rotor system. At the nominal tip Mach number of 0.691, the peak BVI levels were found to occur at a tip-path-plane angle of 4-deg and at the highest advance ratio tested of 0.2. The BVI noise levels were found to be weakly dependent on CT/s. As would be expected, reducing tip Mach number, either of the baseline 3-blade rotor, or in conjunction with a 4-blade rotor, was found to be an effective way to significantly reduce noise. The addition of the tested subwings did not seem to be an effective strategy for noise reduction, and they incurred a performance penalty.

  6. Full-scale semi-span tests of an advanced NLF business jet wing

    NASA Technical Reports Server (NTRS)

    Hahne, David E.; Jordan, Frank L., Jr.; Davis, Patrick J.; Muchmore, C. Byram

    1987-01-01

    An investigation has been conducted in the NASA Langley Research Center's 30- by 60-Foot Wind Tunnel on a full-scale semispan model to evaluate and document the low-speed, high-lift characteristics of a business-jet class wing utilizing the HSNLF(1)-0213 airfoil section and a single slotted flap system. In addition to the high-lift studies, evaluations of boundary layer transition effects, the effectiveness of a segmented leading-edge droop for improved stall/spin resistance, and roll control effectiveness with and without flap deflection were made. The wind-tunnel investigation showed that deployment of a single-slotted trailing-edge flap provided substantial increments in lift. Fixed transition studies indicated no adverse effects on lift and pitching-moment characteristics for either the cruise or landing configuration. Subscale roll damping tests also indicated that stall/spin resistance could be enhanced through the use of a properly designed leading-edge droop.

  7. Full-scale semi-span tests of an advanced NLF business jet wing

    NASA Technical Reports Server (NTRS)

    Hahne, David E.; Jordan, Frank L., Jr.; Davis, Patrick J.; Muchmore, C. Byram

    1987-01-01

    An investigation has been conducted in the NASA Langley Research Center's 30- by 60-Foot Wind Tunnel on a full-scale semispan model to evaluate and document the low-speed, high-lift characteristics of a business-jet class wing utilizing the HSNLF(1)-0213 airfoil section and a single slotted flap system. In addition to the high-lift studies, evaluations of boundary layer transition effects, the effectiveness of a segmented leading-edge droop for improved stall/spin resistance, and roll control effectiveness with and without flap deflection were made. The wind-tunnel investigation showed that deployment of a single-slotted trailing-edge flap provided substantial increments in lift. Fixed transition studies indicated no adverse effects on lift and pitching-moment characteristics for either the cruise or landing configuration. Subscale roll damping tests also indicated that stall/spin resistance could be enhanced through the use of a properly designed leading-edge droop.

  8. CFD study of temperature distribution in full scale boiler adopting in-furnace coal blending

    NASA Astrophysics Data System (ADS)

    Fadhil, S. S. A.; Hasini, H.; Shuaib, N. H.

    2013-06-01

    This paper describes the investigation of temperature characteristics of an in-furnace combustion using different coals in a 700 MW full scale boiler. Single mixture fraction approach is adopted for combustion model of both primary and secondary coals. The primary coal was based on the properties of Adaro which has been used as the design coal for the boiler under investigation. The secondary blend coal was selected based on sub-bituminous coal with higher calorific value. Both coals are simultaneously injected into the furnace at alternate coal burner elevations. The general prediction of the temperature contours at primary combustion zone shows identical pattern compared with conventional single coal combustion in similar furnace. Reasonable agreement was achieved by the prediction of the average temperature at furnace exit. The temperature distribution is at different furnace elevation is non-uniform with higher temperature predicted at circumferential "ring-like" region at lower burner levels for both cases. The maximum flame temperature is higher at the elevation where coal of higher calorific value is injected. The temperature magnitude is within the accepTable limit and the variations does not differ much compared to the conventional single coal combustion.

  9. The use of model-test data for predicting full-scale ACV resistance

    NASA Astrophysics Data System (ADS)

    Forstell, B. G.; Harry, C. W.

    The paper summarizes the analysis of test data obtained with a 1/12-scale model of the Amphibious Assault Landing Craft (AALC) JEFF(B). The analysis was conducted with the objective of improving the accuracy of drag predictions for a JEFF(B)-type air-cushion vehicle (ACV). Model test results, scaled to full-scale, are compared with full-scale drag obtained in various sea states during JEFF(B) trials. From the results of this comparison, it is found that the Froude-scale model rough-water drag data is consistently greater than full-scale derived drag, and is a function of both wave height and craft forward speed. Results are presented indicating that Froude scaling model data obtained in calm water also causes an over-prediction of calm-water drag at full-scale. An empirical correction that was developed for use on a JEFF(B)-type craft is discussed.

  10. Membrane biofilm communities in full-scale membrane bioreactors are not randomly assembled and consist of a core microbiome.

    PubMed

    Matar, Gerald K; Bagchi, Samik; Zhang, Kai; Oerther, Daniel B; Saikaly, Pascal E

    2017-10-15

    Finding efficient biofouling control strategies requires a better understanding of the microbial ecology of membrane biofilm communities in membrane bioreactors (MBRs). Studies that characterized the membrane biofilm communities in lab-and pilot-scale MBRs are numerous, yet similar studies in full-scale MBRs are limited. Also, most of these studies have characterized the mature biofilm communities with very few studies addressing early biofilm communities. In this study, five full-scale MBRs located in Seattle (Washington, U.S.A.) were selected to address two questions concerning membrane biofilm communities (early and mature): (i) Is the assembly of biofilm communities (early and mature) the result of random immigration of species from the source community (i.e. activated sludge)? and (ii) Is there a core membrane biofilm community in full-scale MBRs? Membrane biofilm (early and mature) and activated sludge (AS) samples were collected from the five MBRs, and 16S rRNA gene sequencing was applied to investigate the bacterial communities of AS and membrane biofilms (early and mature). Alpha and beta diversity measures revealed clear differences in the bacterial community structure between the AS and biofilm (early and mature) samples in the five full-scale MBRs. These differences were mainly due to the presence of large number of unique but rare operational taxonomic units (∼13% of total reads in each MBR) in each sample. In contrast, a high percentage (∼87% of total reads in each MBR) of sequence reads was shared between AS and biofilm samples in each MBR, and these shared sequence reads mainly belong to the dominant taxa in these samples. Despite the large fraction of shared sequence reads between AS and biofilm samples, simulated biofilm communities from random sampling of the respective AS community revealed that biofilm communities differed significantly from the random assemblages (P < 0.001 for each MBR), indicating that the biofilm communities (early

  11. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  12. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  13. Implementation of in-line infrared monitor in full-scale anaerobic digestion process.

    PubMed

    Spanjers, H; Bouvier, J C; Steenweg, P; Bisschops, I; van Gils, W; Versprille, B

    2006-01-01

    During start up but also during normal operation, anaerobic reactor systems should be run and monitored carefully to secure trouble-free operation, because the process is vulnerable to disturbances such as temporary overloading, biomass wash out and influent toxicity. The present method of monitoring is usually by manual sampling and subsequent laboratory analysis. Data collection, processing and feedback to system operation is manual and ad hoc, and involves high-level operator skills and attention. As a result, systems tend to be designed at relatively conservative design loading rates resulting in significant over-sizing of reactors and thus increased systems cost. It is therefore desirable to have on-line and continuous access to performance data on influent and effluent quality. Relevant variables to indicate process performance include VFA, COD, alkalinity, sulphate, and, if aerobic post-treatment is considered, total nitrogen, ammonia and nitrate. Recently, mid-IR spectrometry was demonstrated on a pilot scale to be suitable for in-line simultaneous measurement of these variables. This paper describes a full-scale application of the technique to test its ability to monitor continuously and without human intervention the above variables simultaneously in two process streams. For VFA, COD, sulphate, ammonium and TKN good agreement was obtained between in-line and manual measurements. During a period of six months the in-line measurements had to be interrupted several times because of clogging. It appeared that the sample pre-treatment unit was not able to cope with high solids concentrations all the time.

  14. Application of numerical modelling in the design of a full-scale heated Tunnel Sealing Experiment

    NASA Astrophysics Data System (ADS)

    Guo, R.; Chandler, N.; Martino, J.; Dixon, D.

    2005-10-01

    The Tunnel Sealing Experiment (TSX) was a full-scale in situ demonstration of technology for constructing nearly water tight-seals in excavations through crystalline rock deep below the surface of the earth. The experiment has been carried out at Atomic Energy of Canada Limited's (AECL's) Underground Research Laboratory near Lac du Bonnet, Canada, in support of international programs for geologic disposal of radioactive waste. The TSX, with partners from Canada, Japan, France and the United States, was carried under conditions of high pressure (up to 4 MPa) and elevated temperature (up to 85°C). Comparing numerical model predictions with eight years of data collected from approximately 900 sensors was an important component of this experiment. Model of Transport In Fractured/porous Media (MOTIF), a finite element computer program developed by AECL for simulating fully coupled or uncoupled fluid flow, solute transport and heat transport, was used to model both the ambient temperature and heated phases of the TSX. The plan to heat the water in the TSX to 85°C was developed using model predictions and a comparison of simulated results with measurements during heating of the water in the TSX to about 50°C. The three-dimensional MOTIF simulations were conducted in parallel with axisymmetric modelling using Fast Lagrangian Analysis of Continua (FLAC), which computed the heat loss from pipes that carried the heated water through the rock to and from the experiment. The numerical model was initially used to develop a plan for operation of the experiment heaters, and then subsequently used to predict temperatures and hydraulic heads in the TSX bulkhead seals and surrounding rock. Copyright

  15. Operation of a full-scale pumped flow biofilm reactor (PFBR) under two aeration regimes.

    PubMed

    O'Reilly, E; Rodgers, M; Clifford, E

    2011-01-01

    A novel technology suitable for centralised and decentralised wastewater treatment has been developed, extensively tested at laboratory-scale, and trialled at a number of sites for populations ranging from 15 to 400 population equivalents (PE). The two-reactor-tank pumped flow biofilm reactor (PFBR) is characterised by: (i) its simple construction; (ii) its ease of operation and maintenance; (iii) low operating costs; (iv) low sludge production; and (v) comprising no moving parts or compressors, other than hydraulic pumps. By operating the system in a sequencing batch biofilm reactor (SBBR) mode, the following treatment can be achieved: 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total suspended solids (TSS) reduction; nitrification and denitrification. During a 100-day full-scale plant study treating municipal wastewater and operating at 165 PE and 200 PE (Experiments 1 and 2, respectively), maximum average removals of 94% BOD5, 86% TSS and 80% ammonium-nitrogen (NH4-N) were achieved. During the latter part of Experiment 2, effluent concentrations averaged: 14 mg BOD5/l; 32 mg COD(filtered)/l; 14 mg TSS/l; 4.4 mg NH4-N/l; and 4.0 mg NO3-N/l (nitrate-nitrogen). The average energy consumption was 0.46-0.63 kWh/m3(treated) or 1.25-1.76 kWh/kg BOD5 removed. No maintenance was required during these experiments. The PFBR technology offers a low energy, minimal maintenance technology for the treatment of municipal wastewater.

  16. Optimization of Preprocessing and Densification of Sorghum Stover at Full-scale Operation

    SciTech Connect

    Neal A. Yancey; Jaya Shankar Tumuluru; Craig C. Conner; Christopher T. Wright

    2011-08-01

    Transportation costs can be a prohibitive step in bringing biomass to a preprocessing location or biofuel refinery. One alternative to transporting biomass in baled or loose format to a preprocessing location, is to utilize a mobile preprocessing system that can be relocated to various locations where biomass is stored, preprocess and densify the biomass, then ship it to the refinery as needed. The Idaho National Laboratory has a full scale 'Process Demonstration Unit' PDU which includes a stage 1 grinder, hammer mill, drier, pellet mill, and cooler with the associated conveyance system components. Testing at bench and pilot scale has been conducted to determine effects of moisture on preprocessing, crop varieties on preprocessing efficiency and product quality. The INLs PDU provides an opportunity to test the conclusions made at the bench and pilot scale on full industrial scale systems. Each component of the PDU is operated from a central operating station where data is collected to determine power consumption rates for each step in the process. The power for each electrical motor in the system is monitored from the control station to monitor for problems and determine optimal conditions for the system performance. The data can then be viewed to observe how changes in biomass input parameters (moisture and crop type for example), mechanical changes (screen size, biomass drying, pellet size, grinding speed, etc.,), or other variations effect the power consumption of the system. Sorgum in four foot round bales was tested in the system using a series of 6 different screen sizes including: 3/16 in., 1 in., 2 in., 3 in., 4 in., and 6 in. The effect on power consumption, product quality, and production rate were measured to determine optimal conditions.

  17. FULL-SCALE TESTING OF ENHANCED MERCURY CONTROL TECHNOLOGIES FOR WET FGD SYSTEMS

    SciTech Connect

    D.K. McDonald; G.T. Amrhein; G.A. Kudlac; D. Madden Yurchison

    2003-05-07

    Wet flue gas desulfurization (wet FGD) systems are currently installed on about 25% of the coal-fired utility generating capacity in the U.S., representing about 15% of the number of coal-fired units. Depending on the effect of operating parameters such as mercury content of the coal, form of mercury (elemental or oxidized) in the flue gas, scrubber spray tower configuration, liquid-to-gas ratio, and slurry chemistry, FGD systems can provide cost-effective, near-term mercury emissions control options with a proven history of commercial operation. For boilers already equipped with FGD systems, the incremental cost of any vapor phase mercury removal achieved is minimal. To be widely accepted and implemented, technical approaches that improve mercury removal performance for wet FGD systems should also have low incremental costs and have little or no impact on operation and SO{sub 2} removal performance. The ultimate goal of the Full-scale Testing of Enhanced Mercury Control for Wet FGD Systems Program was to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The program was funded by the U.S. Department of Energy's National Energy Technology Laboratory, the Ohio Coal Development Office within the Ohio Department of Development, and Babcock & Wilcox. Host sites and associated support were provided by Michigan South Central Power Agency (MSCPA) and Cinergy. Field-testing was completed at two commercial coal-fired utilities with wet FGD systems: (1) MSCPA's 55 MW{sub e} Endicott Station and (2) Cinergy's 1300 MW{sub e} Zimmer Station. Testing was conducted at these two locations because of the large differences in size and wet scrubber chemistry. Endicott employs a limestone, forced oxidation (LSFO) wet FGD system, whereas Zimmer uses Thiosorbic{reg_sign} Lime (magnesium enhanced lime) and ex situ oxidation. Both locations burn Ohio bituminous coal.

  18. Full Scale Field Trial of the Low Temperature Mercury Capture Process

    SciTech Connect

    Locke, James; Winschel, Richard

    2012-05-21

    CONSOL Energy Inc., with partial funding from the Department of Energy (DOE) National Energy Technology Laboratory, designed a full-scale installation for a field trial of the Low-Temperature Mercury Control (LTMC) process, which has the ability to reduce mercury emissions from coal-fired power plants by over 90 percent, by cooling flue gas temperatures to approximately 230°F and absorbing the mercury on the native carbon in the fly ash, as was recently demonstrated by CONSOL R&D on a slip-stream pilot plant at the Allegheny Energy Mitchell Station with partial support by DOE. LTMC has the potential to remove over 90 percent of the flue gas mercury at a cost at least an order of magnitude lower (on a $/lb mercury removed basis) than activated carbon injection. The technology is suitable for retrofitting to existing and new plants, and, although it is best suited to bituminous coal-fired plants, it may have some applicability to the full range of coal types. Installation plans were altered and moved from the original project host site, PPL Martins Creek plant, to a second host site at Allegheny Energy's R. Paul Smith plant, before installation actually occurred at the Jamestown (New York) Board of Public Utilities (BPU) Samuel A. Carlson (Carlson) Municipal Generating Station Unit 12, where the LTMC system was operated on a limited basis. At Carlson, over 60% mercury removal was demonstrated by cooling the flue gas to 220-230°F at the ESP inlet via humidification. The host unit ESP operation was unaffected by the humidification and performed satisfactorily at low temperature conditions.

  19. Test of P3M-1 nacelle in Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Test of P3M-1 nacelle in Full-Scale Tunnel (FST). The NACA conducted drag tests on P3M-1 nacelle in 1931 which were presented in a special report to the Navy. Smith DeFrance described this work in the report's introduction: 'Tests were conducted in the full-scale wind tunnel on a five to four geared Pratt and Whitney Wasp engine mounted in a P3M-1 nacelle. In order to simulate the flight conditions the nacelle was assembled on a 15-foot span of wing from the same airplane. The purpose of the tests was to improve the cooling of the engine and to reduce the drag of the nacelle combination. Thermocouples were installed at various points on the cylinders and temperature readings were obtained from these by the power plants division. These results will be reported in a memorandum by that division. The drag results, which are covered by this memorandum, were obtained with the original nacelle condition as received from the Navy with the tail of the nacelle modified, with the nose section of the nacelle modified, with a Curtiss anti-drag ring attached to the engine, with a Type G ring developed by the N.A.C.A., and with a Type D cowling which was also developed by the N.A.C.A.' (p. 1) This picture shows the engine with a Curtiss anti-drag ring attached. The NACA tested several different modifications and cowlings as noted above. The Navy did not want to make any major structural alterations to the original wing and nacelle installation. Thus, the NACA did not conduct a full investigation of the aerodynamics of this particular configuration. DeFrance concludes his report with this note: 'in view of the limitations of the test, the drag data for the combinations tested may be summarized, and considering the necessity of temperature control and accessibility to the engine it is apparent that the best combination tested was with the large nose piece, the Curtiss anti-drag ring, and the modified tail section.'

  20. Design study and full scale MBS-CFD simulation of the IDEOL floating offshore wind turbine foundation

    NASA Astrophysics Data System (ADS)

    Borisade, F.; Choisnet, T.; Cheng, P. W.

    2016-09-01

    A two MW floating offshore wind turbine is developed within the EU-FP7 project FLOATGEN. The focus of this paper is to perform design studies of the mooring foundation at the hull and to investigate the full scale floater concept in a coupled MBS-CFD environment at regular waves. Measurements from wave tank model tests are used for validation. The results show the potential of CFD methods to be used as virtual test bed during the design process.

  1. Influence of sludge properties and hydraulic loading on the performance of secondary settling tanks--full-scale operational results.

    PubMed

    Vestner, R J; Günthert, F Wolfgang

    2004-01-01

    Full-scale investigations at a WWTP with a two-stage secondary settling tank process revealed relationships between significant operating parameters and performance in terms of effluent suspended solids concentration. Besides common parameters (e.g. surface overflow rate and sludge volume loading rate) feed SS concentration and flocculation time must be considered. Concentration of the return activated sludge may help to estimate the performance of existing secondary settling tanks.

  2. Shake Table Testing of an Elevator System in a Full-Scale Five-Story Building.

    PubMed

    Wang, Xiang; Hutchinson, Tara C; Astroza, Rodrigo; Conte, Joel P; Restrepo, José I; Hoehler, Matthew S; Ribeiro, Waldir

    2017-03-01

    This paper investigates the seismic performance of a functional traction elevator as part of a full-scale five-story building shake table test program. The test building was subjected to a suite of earthquake input motions of increasing intensity, first while the building was isolated at its base, and subsequently while it was fixed to the shake table platen. In addition, low-amplitude white noise base excitation tests were conducted while the elevator system was placed in three different configurations, namely, by varying the vertical location of its cabin and counterweight, to study the acceleration amplifications of the elevator components due to dynamic excitations. During the earthquake tests, detailed observation of the physical damage and operability of the elevator as well as its measured response are reported. Although the cabin and counterweight sustained large accelerations due to impact during these tests, the use of well-restrained guide shoes demonstrated its effectiveness in preventing the cabin and counterweight from derailment during high-intensity earthquake shaking. However, differential displacements induced by the building imposed undesirable distortion of the elevator components and their surrounding support structure, which caused damage and inoperability of the elevator doors. It is recommended that these aspects be explicitly considered in elevator seismic design.

  3. Fate of natural organic matter at a full-scale Drinking Water Treatment Plant in Greece.

    PubMed

    Papageorgiou, A; Papadakis, N; Voutsa, D

    2016-01-01

    The aim of this study was to investigate the fate of natural organic matter (NOM) and subsequent changes during the various treatment processes at a full-scale Drinking Water Treatment Plant (DWTP). Monthly sampling campaigns were conducted for 1 year at six sites along DWTP of Thessaloniki, Northern Greece including raw water from the Aliakmonas River that supplies DWTP and samples from various treatment processes (pre-ozonation, coagulation, sand filtration, ozonation, and granular activated carbon (GAC) filtration). The concentration of NOM and its characteristics as well as the removal efficiency of various treatment processes on the basis of dissolved organic carbon, UV absorbance, specific ultra-violet absorbance, fluorescence intensity, hydrophobicity, biodegradable dissolved organic carbon, and formation potential of chlorination by-products trihalomethanes (THMs) and haloacetic acids (HAAs) were studied. The concentration of dissolved organic carbon (DOC) in reservoir of the Aliakmonas River ranged from 1.46 to 1.84 mg/L, exhibiting variations regarding UV, fluorescence, and hydrophobic character through the year. Along DWTP, a significant reduction of aromatic, fluorophoric, and hydrophobic character of NOM was observed resulting in significant elimination of THM (63%) and HAAs (75%) precursors.

  4. Comparison of WAIS-III short forms for measuring index and full-scale scores.

    PubMed

    Girard, Todd A; Axelrod, Bradley N; Wilkins, Leanne K

    2010-09-01

    This investigation assessed the ability of the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) short forms to estimate both index and IQ scores in a large, mixed clinical sample (N = 809). More specifically, a commonly used modification of Ward's seven-subtest short form (SF7-A), a recently proposed index-based SF7-C and eight-subtest short form (SF8) were evaluated. All three SFs proved adequate for estimating verbal comprehension, perceptual organization, and full-scale intelligence within considerably less time relative to an SF11 that provides full measurement of WAIS index scores. The SF7-A provided the best combination overall in terms of psychometric performance and estimated time savings. However, SF8 best represents all four factors and allows measurement of processing speed. The SF7-C was most hampered by inclusion of the Block Design subtest in the current assessment, but may prove advantageous in future extensions to the WAIS-IV.

  5. Real time control for reduced aeration and chemical consumption: a full scale study.

    PubMed

    Thornton, A; Sunner, N; Haeck, M

    2010-01-01

    The use of the activated sludge process (ASP) for the nitrification/denitrification of wastewaters is commonplace throughout the UK and many other parts of the industrial world. Associated with this process are significant costs arising from aeration requirements and for selected sites, the need to provide an external carbon source. These costs can constitute up to of 50% of the total running cost of the whole plant and as such, any effort to reduce them could realise significant benefits. This paper investigates the use of real time control (RTC) using online sensors and control algorithms to optimise the operation of the ASP, leading to greater efficiency and sustainability. Trials were undertaken at full scale to assess the benefit of such a system at a 250,000 population equivalent (PE) works on the south coast of the UK, using Activated sludge model No.1 (ASM 1) as a basis for the control system. Initial results indicate that it is possible to significantly reduce both aeration and chemical consumption costs whilst still delivering the required effluent quality. Over the trial period the aeration requirements were consistently reduced by 20% whereas, a reduction in methanol consumption of in excess of 50% was observed.

  6. Nitrogen loss and oxygen paradox in full-scale biofiltration for drinking water treatment.

    PubMed

    Yu, Xin; Qi, Zhihua; Zhang, Xiaojian; Yu, Ping; Liu, Bo; Zhang, Limin; Fu, Liang

    2007-04-01

    The nitrogen loss and DO paradox in full-scale biofiltration for drinking water treatment and the possible pathway responsible for them were investigated. A highly contaminated source water was treated at Pinghu Surface Water Plant using four biofilters, which resulted in a steady removal of NH(4)(+)-N (2.67mg/L), a great DO consumption (8.86 mg/L) and an increase in the concentration of NO(3)(-)-N (1.77mg/L). The nitrogen and DO balances indicated that about 13 NH(4)(+)-N was lost and the actual DO consumption was about 30% lower than the theoretical DO demand if nitrification was regarded as the only pathway to remove NH(4)(+)-N. The analysis of correlation coefficients analysis between several factors and the nitrogen loss suggested that "Aerobic deammonification", the coupling of shortcut nitrification and the anaerobic ammonia oxidation (Anammox) in an aerobic environment, might be the most probable pathways to explain the occurrence of these phenomena. According to this mechanism, about 57% NH(4)(+)-N was removed through complete nitrification and about 21.5% NH(4)(+)-N was incompletely nitrified into NO(2)(-)-N. The latter then involved in Anammox as the electron acceptor with the remaining NH(4)(+)-N as the electron donor. Since the Anammox reaction is anaerobic, the nitrogen loss and DO paradox can be justified.

  7. Tests of NACA 0009, 0012, and 0018 Airfoils in the Full-Scale Tunnel

    NASA Technical Reports Server (NTRS)

    Goett, Harry J; Bullivant, W Kenneth

    1939-01-01

    An investigation was conducted in the NACA full-scale wind tunnel to determine the aerodynamic characteristics of the NACA 0009, 0012, and 0018 airfoils, with the ultimate purpose of providing data to be used as a basis for comparison with other wind-tunnel data, mainly in the study of scale and turbulence effects. Three symmetrical 6 by 36-foot rectangular airfoils were used. The Reynolds number range for minimum drag was form 1,800,000 to 7,000,000 and for maximum lift, from 1,700,000 to 4,500,000. The effect of rounded tips was determined for each of the airfoils. Tests were also made of the NACA 0012 airfoil equipped with a 0.20c full-span split flap hinged at 0.80c. Tuft surveys were included to show the progressive breakdown of flow near maximum lift. Momentum surveys were made in conjunction with force measurements at zero lift as an aid in converting force-test data to section coefficients.

  8. Acoustic measurements of a full-scale coaxial hingeless rotor helicopter

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.; Mosher, M.

    1983-01-01

    Acoustic data were obtained during a full-scale test of the XH-59A Advancing Blade Concept Technology Demonstrator in the 40- by 80-Foot Wind Tunnel. The XH-59A is a research helicopter with two coaxial rotors and hingeless blades. Performance, vibration, and noise at various forward speeds, rotor lift coefficients and rotor shaft angles of attack were investigated. The noise data were acquired over an isolated rotor lift coefficient range of 0.024 to 0.162, an advance ratio range of 0.23 to 0.45 corresponding to tunnel wind speeds of 89 to 160 knots, and angles of attack from 0 deg to 10 deg. Acoustic data are presented for seven microphone locations for all run conditions where the model noise is above the background noise. Model test configuration and performance information are also listed. Acoustic waveforms, dBA, and 1/3-octave spectra as functions of operating condition for selected data points and microphones are presented. In general, the noise level is shown to increase with rotor lift coefficient except under certain operating conditions where significant impulsive blade/vortex interactions increase noise levels.

  9. [Microbial biomass and activity in a full-scale O3-BAC filter].

    PubMed

    Wu, Zhi-lin; Yu, Xin; Zhu, Liang; Liu, Bing; Shen, Biao; Fu, Liang

    2010-05-01

    The microbial biomass and activity in a full-scale drinking water O-BAC filter was investigated using the methods of lipid-P and SOUR. Because of the effect of O3 residue on TOC distribution and the formation of biofilm in biofilters could be inhibited by O3 residue in influent, the biomass in filter showed an "increase-reduce" pattern along vertical section and had a peak at the depth of 10 em. The SOUR per unit biomass fluctuated at the magnitude of 10(-4) mg/(nmol x h) with an adverse distribution to the biomass itself. The SOUR per unit volume media was around 10(-2) mg/(cm3 x h) and presented same tendency with biomass distribution at the media depth of 0-20 cm. The deeper distribution of SOURs per unit volume media had the same tendency with SOURs per unit biomass. All biomass demonstrated a certain increase of activity potential and the biomass attached to deeper media had a higher increase, which suggested the increase of metabolic activity provided a possible pathway for resistance of the reactors to shock load.

  10. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants.

    PubMed

    Siripong, Slil; Rittmann, Bruce E

    2007-03-01

    We hypothesize that activated-sludge processes having stable and complete nitrification have significant and similar diversity and functional redundancy among its ammonia- and nitrite-oxidizing bacteria, despite differences in temperature, solids retention time (SRT), and other operating conditions. To evaluate this hypothesis, we examined the diversity of nitrifying bacterial communities in all seven water-reclamation plants (WRPs) operated by Metropolitan Water Reclamation District of Greater Chicago (MWRDGC). These plants vary in types of influent waste stream, plant size, water temperature, and SRT. We used terminal restriction fragment length polymorphism (T-RFLP) targeting the 16S rRNA gene and group-specific ammonia-monooxygenase functional gene (amoA) to investigate these hard-to-culture nitrifying bacteria in the full-scale WRPs. We demonstrate that nitrifying bacteria carrying out the same metabolism coexist in all WRPs studied. We found ammonia-oxidizing bacteria (AOB) belonging to the Nitrosomonas europaea/eutropha, Nitrosomonas oligotropha, Nitrosomonas communis, and Nitrosospira lineages in all plants. We also observed coexisting Nitrobacter and Nitrospira genera for nitrite-oxidizing bacteria (NOB). Among the factors that varied among the WRPs, only the seasonal temperature variation seemed to change the nitrifying community, especially the balance between Nitrosospira and Nitrosomonas, although both coexisted in winter and summer samples. The coexistence of various nitrifiers in all WRPs is evidence of functional redundancy, a feature that may help maintain the stability of the system for nitrification.

  11. Combustion modeling and performance evaluation in a full-scale rotary kiln incinerator.

    PubMed

    Chen, K S; Hsu, W T; Lin, Y C; Ho, Y T; Wu, C H

    2001-06-01

    This work summarizes the results of numerical investigations and in situ measurements for turbulent combustion in a full-scale rotary kiln incinerator (RKI). The three-dimensional (3D) governing equations for mass, momentum, energy, and species, together with the kappa - epsilon turbulence model, are formulated and solved using a finite volume method. Volatile gases from solid waste were simulated by gaseous CH4 distributed nonuniformly along the kiln bed. The combustion process was considered to be a two-step stoichiometric reaction for primary air mixed with CH4 gas in the combustion chamber. The mixing-controlled eddy-dissipation model (EDM) was employed to predict the conversion rates of CH4, O2, CO2, and CO. The results of the prediction show that reverse flows occur near the entrance of the first combustion chamber (FCC) and the turning point at the entrance to the second combustion chamber (SCC). Temperature and species are nonuniform and are vertically stratified. Meanwhile, additional mixing in the SCC enhances postflame oxidation. A combustion efficiency of up to 99.96% can be achieved at approximately 150% excess air and 20-30% secondary air. Reasonable agreement is achieved between numerical predictions and in situ measurements.

  12. Distribution and activity of ammonia oxidizing bacteria in a large full-scale trickling filter.

    PubMed

    Persson, Frank; Wik, Torsten; Sörensson, Fred; Hermansso, Malte

    2002-03-01

    The biofilm in a full-scale nitrifying trickling filter (NTF) treating municipal wastewater has been investigated with microbiological methods using fluorescence in situ hybridization (FISH) with 16S rRNA oligonucleotide probes in combination with confocal laser scanning microscopy (CLSM) and mathematical modeling using a dynamic multi-species biofilm reactor model. Ammonia oxidizing bacteria (AOB) were found to belong to the genus Nitrosomonas at different depths in the NTF at every sampling occasion, corresponding to different long-term operational conditions for the NTF. Both the measurements and the corresponding simulated predictions showed the same general trend of a decrease with filter depth of the amount of biofilm, the proportion of AOB to all bacteria and the total amount of AOB. The latter decreased by several times from top to bottom of the NTF. Measurements and simulations of potential ammonium oxidizing activity in the biofilm also showed a decreasing activity with depth in the NTF, which generally was operating at close to complete nitrification. However, no difference was observed when the activity was normalized to the amount of biofilm, despite decreasing proportions of AOB to all bacteria with depth in the NTF. This could be explained by diffusion limitations in the biofilm from the upper parts of the NTF according to the biofilm reactor model. The relatively good agreement between the simulations and the measurements shows that the kind of biofilm reactor model used can qualitatively describe an averaged behavior and averaged composition of the biofilm in the reactor.

  13. Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Xu, Jinlong; Dong, Yongkang; Zhang, Zhaohui; Li, Shunlong; He, Shaoyang; Li, Hui

    2016-12-01

    This paper investigated field monitoring of a 1108 m suspension bridge during an assessment load test, using integrated distributed fibre-optic sensors (DFOSs). In addition to the conventional Brillouin time domain analysis system, a high spatial resolution Brillouin system using the differential pulse-width pair (DPP) technique was adopted. Temperature compensation was achieved using a Raman distributed temperature sensing system. This is the first full scale field application of DFOSs using the Brillouin time domain analysis technique in a thousand-meter-scale suspension bridge. Measured strain distributions along the whole length of the bridge were presented. The interaction between the main cables and the steel-box-girder was highlighted. The Brillouin fibre-optic monitoring systems exhibited great facility for the purposes of long distance distributed strain monitoring, with up to 0.05 m spatial resolution, and 0.01 m/point sampling interval. The performance of the Brillouin system using DPP technique was discussed. The measured data was also employed for assessing bridge design and for the assessment of structural condition. The results show that the symmetrical design assumptions were consistent with the actual bridge, and that the strain values along the whole bridge were within the safety range. This trial field study serves as an example, demonstrating the feasibility of highly dense strain and temperature measurement for large scale civil infrastructures using integrated DFOSs.

  14. Heavy metals mobility in full-scale bioreactor landfill: initial stage.

    PubMed

    Qu, Xian; He, Pin-Jing; Shao, Li-Ming; Lee, Duu-Jong

    2008-01-01

    Selected heavy metals (HMs) including Cd, Cr, Cu, Ni, Pb and Zn initially released from a full-scale bioreactor landfill were monitored over the first 20 months of operation. At the initial landfill stage, the leachate exhibited high HMs release, high organic matter content (27000-43000gl(-1) of TOC) and low pH (5-6). By the fifth month of landfilling, the methanogenic stage had been established, and HMs release was reduced below the Chinese National Standards. Total released HMs accounted for less than 1% of landfill deposited during the investigated period. Most landfill HMs were inorganic. Fourier-transform infrared (FT-IR) spectra data and model calculations using Visual MINTEQ indicated that humic substances strongly affected the mobility of organic fractions of HMs in the methanogenic landfill. The initial rates of HMs release could be enhanced by recycling the leachate back to bioreactor landfill, but the total quantity released may be reduced by early establishment of methanogenic stage in bioreactor landfill.

  15. Loads Correlation of a Full-Scale UH-60A Airloads Rotor in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo; Romander, Ethan A.

    2012-01-01

    Wind tunnel measurements of the rotor trim, blade airloads, and structural loads of a full-scale UH-60A Black Hawk main rotor are compared with calculations obtained using the comprehensive rotorcraft analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. A speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed into deep stall are investigated. The coupled analysis shows significant improvement over comprehensive analysis. Normal force phase is better captured and pitching moment magnitudes are better predicted including the magnitude and phase of the two stall events in the fourth quadrant at the deeply stalled condition. Structural loads are, in general, improved with the coupled analysis, but the magnitude of chord bending moment is still significantly underpredicted. As there are three modes around 4 and 5/rev frequencies, the structural responses to the 5/rev airloads due to dynamic stall are magnified and thus care must be taken in the analysis of the deeply stalled condition.

  16. Test and simulation of full-scale self-centering beam-to-column connection

    NASA Astrophysics Data System (ADS)

    Deng, Kailai; Pan, Peng; Lam, Alexandre; Pan, Zhenhua; Ye, Lieping

    2013-12-01

    A new type of beam-to-column connection for steel moment frames, designated as a "self-centering connection," is studied. In this connection, bolted top-and-seat angles, and post-tensioned (PT) high-strength steel strands running along the beam are used. The PT strands tie the beam flanges on the column flange to resist moment and provide self-centering force. After an earthquake, the connections have zero deformation, and can be restored to their original status by simply replacing the angles. Four full-scale connections were tested under cyclic loading. The strength, energy-dissipation capacity, hysteresis curve, as well as angles and PT strands behavior of the connections are investigated. A general FEM analysis program called ABAQUS 6.9 is adopted to model the four test specimens. The numerical and test results match very well. Both the test and analysis results suggest that: (1) the columns and beams remain elastic while the angles sustain plastic deformations for energy dissipation when the rotation of the beam related to the column equals 0.05 rad, (2) the energy dissipation capacity is enhanced when the thickness of the angle is increased, and (3) the number of PT strands has a significant influence on the behavior of the connections, whereas the distance between the strands is not as important to the performance of the connection.

  17. Implications of the Baltimore Rail Tunnel Fire for Full-Scale Testing of Shipping Casks

    SciTech Connect

    Halstead, R. J.; Dilger, F.

    2003-02-25

    The U.S. Nuclear Regulatory Commission (NRC) does not currently require full-scale physical testing of shipping casks as part of its certification process. Stakeholders have long urged NRC to require full-scale testing as part of certification. NRC is currently preparing a full-scale casktesting proposal as part of the Package Performance Study (PPS) that grew out of the NRC reexamination of the Modal Study. The State of Nevada and Clark County remain committed to the position that demonstration testing would not be an acceptable substitute for a combination of full-scale testing, scale-model tests, and computer simulation of each new cask design prior to certification. Based on previous analyses of cask testing issues, and on preliminary findings regarding the July 2001 Baltimore rail tunnel fire, the authors recommend that NRC prioritize extra-regulatory thermal testing of a large rail cask and the GA-4 truck cask under the PPS. The specific fire conditions and other aspects of the full-scale extra-regulatory tests recommended for the PPS are yet to be determined. NRC, in consultation with stakeholders, must consider past real-world accidents and computer simulations to establish temperature failure thresholds for cask containment and fuel cladding. The cost of extra-regulatory thermal testing is yet to be determined. The minimum cost for regulatory thermal testing of a legal-weight truck cask would likely be $3.3-3.8 million.

  18. Significant factor score variability and the validity of the WISC-III Full Scale IQ in predicting later academic achievement.

    PubMed

    Freberg, Miranda E; Vandiver, Beverly J; Watkins, Marley W; Canivez, Gary L

    2008-01-01

    The purpose of this study was to investigate the validity of the WISC-III (Wechsler, 1991) Full Scale IQ (FSIQ) scores in predicting later academic achievement given significant variability among any of the four WISC-III factor scores. Taken from an archival data set, the sample was composed of 6- to 13-year-old students who were twice evaluated for special education eligibility over approximately a 3-year retest interval. Participants were separated into two groups based on the presence or absence of significant factor score variability and then matched across groups on disability, FSIQ, age, sex, and ethnicity. The results of hierarchical multiple regression analyses indicated that the Full Scale IQ was a valid predictor of academic achievement scores even in the presence of significant factor score variability.

  19. Investigation into stutter ratio variability between different laboratories.

    PubMed

    Bright, Jo-Anne; Curran, James M

    2014-11-01

    The determination of parameters such as stutter ratio is important to inform a laboratory's forensic DNA profile interpretation strategy. As part of a large data analysis project to implement a continuous model of DNA profile interpretation we analysed stutter ratio data from eight different forensic laboratories for the Promega PowerPlex(®) 21 multiplex. This allowed a comparison of inter laboratory variation. The maximum difference for any one laboratory from the average of the best fit determined by the model was 0.31%. These results indicate that stutter ratios calculated from samples analysed using the same profiling kit are not expected to differ between laboratories, even those using different capillary electrophoresis platforms. A common set of laboratory parameters are able to be generated and used for profile interpretation at all laboratories using the same multiplex and cycle number, potentially reducing the need for individual laboratories to determine stutter ratios.

  20. 33 CFR 209.340 - Laboratory investigations and materials testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Engineers and District Engineers operating hydraulic laboratories or hydraulic model laboratories are... (DAEN-CWE-DC) Washington, DC 20314. Copies of reports of scientific or technical activities will be...

  1. Blade Motion Correlation for the Full-Scale UH-60A Airloads Rotor

    NASA Technical Reports Server (NTRS)

    Romander, Ethan A.; Meyn, Larry A.; Barrows, Danny; Burner, Alpheus

    2014-01-01

    Testing was successfully completed in May 2010 on a full-scale UH-60A rotor system in the USAF's National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel.[1] The primary objective of this NASA Army sponsored test program was to acquire a comprehensive set of validation-quality measurements ona full-scale pressure-instrumented rotor system at conditions that challenge the most sophisticated modeling andsimulation tools. The test hardware included the same rotor blades used during the UH-60A Airloads flight test.[2] Key measurements included rotor performance, blade loads, blade pressures, blade displacements, and rotorwake measurements using large-field Particle Image Velocimetry (PIV) and Retro-reflective Background Oriented Schlieren (RBOS).

  2. Full Scale Rotor Aeroacoustic Predictions and the Link to Model Scale Rotor Data

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Burley, Casey L.; Conner, David A.

    2004-01-01

    The NASA Aeroacoustic Prediction System (NAPS) is used to establish a link between model-scale and full-scale rotor predictions and is partially validated against measured wind tunnel and flight aeroacoustic data. The prediction approach of NAPS couples a comprehensive rotorcraft analysis with acoustic source noise and propagation codes. The comprehensive analysis selected for this study is CAMRAD-II, which provides the performance/trim/wake solution for a given rotor or flight condition. The post-trim capabilities of CAMRAD-II are used to compute high-resolution sectional airloads for the acoustic tone noise analysis, WOPMOD. The tone noise is propagated to observers on the ground with the propagation code, RNM (Rotor Noise Model). Aeroacoustic predictions are made with NAPS for an isolated rotor and compared to results of the second Harmonic Aeroacoustic Rotor Test (HART-II) program, which tested a 40% dynamically and Mach-scaled BO-105 main rotor at the DNW. The NAPS is validated with comparisons for three rotor conditions: a baseline condition and two Higher Harmonic Control (HHC) conditions. To establish a link between model and full-scale rotor predictions, a full-scale BO-105 main rotor input deck for NAPS is created from the 40% scale rotor input deck. The full-scale isolated rotor predictions are then compared to the model predictions. The comparisons include aerodynamic loading, acoustic levels, and acoustic pressure time histories for each of the three conditions. With this link established, full-scale predictions are made for a range of descent flight conditions and compared with measured trends from the recent Rotorcraft Operational Noise Abatement Procedures (RONAP) flight test conducted by DLR and ONERA. Additionally, the effectiveness of two HHC conditions from the HART-II program is demonstrated for the full-scale rotor in flight.

  3. Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR).

    PubMed

    Jacquin, Céline; Lesage, Geoffroy; Traber, Jacqueline; Pronk, Wouter; Heran, Marc

    2017-07-01

    The goal of this study is to help filling the research gaps linked to the on-line application of fluorescence spectroscopy in wastewater treatment and data processing tools suitable for rapid correction and extraction of data contained in three-dimensional fluorescence excitation-emission matrix (3DEEM) for real-time studies. 3DEEM was evaluated for direct quantification of Effluent Organic Matter (EfOM) fractions in full-scale MBR bulk supernatant and permeate samples. Principal Component Analysis (PCA) was used to investigate possible correlations between conventional Lowry and Dubois methods, Liquid Chromatography coupled to Organic Carbon and Organic Nitrogen Detection (LC-OCD-OND) and 3DEEM. 3DEEM data were analyzed using the volume of fluorescence (Φ) parameter from the Fluorescence Regional Integration (FRI) method. Two mathematical correlations were established between LC-OCD-OND and 3DEEM data to quantify protein-like and humic-like substances. These correlations were validated with supplementary data from the initial full-scale MBR, and were checked with samples from other systems (a second full-scale MBR, a full-scale conventional activated sludge (CAS) and a laboratory-scale MBR). While humic-like correlation showed satisfactory prediction for a second full-scale MBR and a CAS system, further studies are required for protein-like estimation in other systems. This new approach offers interesting perspectives for the on-line application of 3DEEM for EfOM quantification (protein-like and humic-like substances), fouling prediction and MBR process control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Prototype repository: A full scale experiment at Äspö HRL

    NASA Astrophysics Data System (ADS)

    Johannesson, Lars-Erik; Börgesson, Lennart; Goudarzi, Reza; Sandén, Torbjörn; Gunnarsson, David; Svemar, Christer

    At Äspö Hard Rock Laboratory a full scale test of the Swedish concept for disposal of nuclear waste (KBS-3V) is in progress. The Prototype Repository project consists of two sections. The installation of the first section was made during summer and autumn 2001 and the second section during spring and summer 2003. Section 1 consists of four full-scale deposition holes, copper canisters equipped with electrical heaters, bentonite buffer consisting of blocks and pellets and a deposition tunnel backfilled with a mixture of bentonite and crushed rock, ending with a concrete plug. Section 2 consists of two full-scale deposition holes with a backfilled tunnel section and ends also with a concrete plug. Altogether 84 large bentonite blocks, with a total weight of about 130 tons, were installed and more than 2000 tons of backfill material were mixed and compacted in situ. Earlier developed techniques for both manufacturing and installing the buffer and the backfill were used in the project. Measurements and data from the installation allow calculations of the expected density in the buffer and in different parts of the backfill. The bentonite buffer in deposition holes 1, 3, 5 and 6, the backfill and the surrounding rock are instrumented with gauges for measuring temperature, water pressure, total pressure, relative humidity, resistivity, canister displacement and rock stresses. The instruments are connected to data acquisition systems by cables protected by tubes. These tubes are led through the rock in watertight lead-throughs to a nearby tunnel where the data acquisition systems are situated. More than 1100 transducers have been installed in the rock, buffer and the backfill. The technique for protecting the transducers from high water and swelling pressure was developed in this and preceding projects and furthermore different designs of transducers are used for the same type of measurement in order to compare their behaviour. The deposition holes have different water

  5. Propeller propulsion integration, phase 1. [conducted in langley 30 by 60 foot full scale wind tunnel

    NASA Technical Reports Server (NTRS)

    Bennett, G.; Koenig, K.; Miley, S. J.; Mcwhorter, J.; Wells, G.

    1981-01-01

    A bibliography was compiled of all readily available sources of propeller analytical and experimental studies conducted during the 1930 through 1960 period. A propeller test stand was developed for the measurement of thrust and torque characteristics of full scale general aviation propellers and installed in the LaRC 30 x 60 foot full scale wind tunnel. A tunnel entry was made during the January through February 1980 period. Several propellers were tested, but unforseen difficulties with the shaft thrust torque balance severely degraded the data quality.

  6. Lessons learnt from evaluating full-scale ammonium feedback control in three large wastewater treatment plants.

    PubMed

    Åmand, L; Laurell, C; Stark-Fujii, K; Thunberg, A; Carlsson, B

    2014-01-01

    Three large wastewater treatment plants in Sweden participate in a project evaluating different types of ammonium feedback controllers in full-scale operation. The goal is to improve process monitoring, maintain effluent water quality and save energy. The paper presents the outcome of the long-term evaluation of controllers. Based on the experiences gained from the full-scale implementations, a discussion is provided about energy assessment for the purpose of comparing control strategies. The most important conclusions are the importance of long-term experiments and the difficulty of comparing energy consumption based on air flow rate measurements.

  7. Full-scale and bench-scale testing of a coal-fueled gas turbine system

    SciTech Connect

    Roberts, P.B.; LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1992-01-01

    Components for a coal-fueled industrial gas turbine were developed and tested at both benchscale and full-scale. The components included a two stage slagging combustor, a particulate rejection impact separator (PRIS), and a secondary particulate filter. The Integrated Bench Scale Test Facility (IBSTF) was used for the filter tests ana some of the PRIS testing. Full-scale combustor testing has been carried-out both with and without the PRIS. Bench-scale testing has included evaluating the feasibility of on-site CWM preparation, developing a water-cooled impactor and an extended run with new secondary candle filters.

  8. Full-scale and bench-scale testing of a coal-fueled gas turbine system

    SciTech Connect

    Roberts, P.B.; LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1992-12-31

    Components for a coal-fueled industrial gas turbine were developed and tested at both benchscale and full-scale. The components included a two stage slagging combustor, a particulate rejection impact separator (PRIS), and a secondary particulate filter. The Integrated Bench Scale Test Facility (IBSTF) was used for the filter tests ana some of the PRIS testing. Full-scale combustor testing has been carried-out both with and without the PRIS. Bench-scale testing has included evaluating the feasibility of on-site CWM preparation, developing a water-cooled impactor and an extended run with new secondary candle filters.

  9. A review of pilot- and full-scale bioventing system performance

    SciTech Connect

    Downey, D.C.

    1996-12-31

    Results from over 140 pilot- and full-scale bioventing projects are summarized in this paper. In situ respiration results and biodegradation rates are presented for a variety of contaminant and soil conditions. The impact of site specific variables such as soil type, temperature, and natural nutrient and moisture conditions on the bioventing process are discussed. The performance of long-term bioventing systems, including soil sampling results and full-scale costs are also provided. The objective of this paper is to describe both the success and limitations of this innovative, low-cost technology.

  10. Seismic response of a full-scale wind turbine tower using experimental and numerical modal analysis

    NASA Astrophysics Data System (ADS)

    Kandil, Kamel Sayed Ahmad; Saudi, Ghada N.; Eltaly, Boshra Aboul-Anen; El-khier, Mostafa Mahmoud Abo

    2016-12-01

    Wind turbine technology has developed tremendously over the past years. In Egypt, the Zafarana wind farm is currently generating at a capacity of 517 MW, making it one of the largest onshore wind farms in the world. It is located in an active seismic zone along the west side of the Gulf of Suez. Accordingly, seismic risk assessment is demanded for studying the structural integrity of wind towers under expected seismic hazard events. In the context of ongoing joint Egypt-US research project "Seismic Risk Assessment of Wind Turbine Towers in Zafarana wind Farm Egypt" (Project ID: 4588), this paper describes the dynamic performance investigation of an existing Nordex N43 wind turbine tower. Both experimental and numerical work are illustrated explaining the methodology adopted to investigate the dynamic behavior of the tower under seismic load. Field dynamic testing of the full-scale tower was performed using ambient vibration techniques (AVT). Both frequency domain and time domain methods were utilized to identify the actual dynamic properties of the tower as built in the site. Mainly, the natural frequencies, their corresponding mode shapes and damping ratios of the tower were successfully identified using AVT. A vibration-based finite element model (FEM) was constructed using ANSYS V.12 software. The numerical and experimental results of modal analysis were both compared for matching purpose. Using different simulation considerations, the initial FEM was updated to finally match the experimental results with good agreement. Using the final updated FEM, the response of the tower under the AQABA earthquake excitation was investigated. Time history analysis was conducted to define the seismic response of the tower in terms of the structural stresses and displacements. This work is considered as one of the pioneer structural studies of the wind turbine towers in Egypt. Identification of the actual dynamic properties of the existing tower was successfully performed

  11. Laboratory investigation of longitudinal dispersion in anisotropic porous media

    USGS Publications Warehouse

    Silliman, S.E.; Konikow, L.F.; Voss, C.I.

    1987-01-01

    In this study, laboratory experiments were used to investigate mechanisms that may cause anisotropy in the dispersion coefficient and to investigate the relation between anisotropy in hydraulic conductivity and anisotropy in longitudinal dispersion. Measurements of sodium chloride concentration (used as a tracer) were made at 105 in situ sampling locations in a new type of sand box designed to allow flow in either of two perpendicular directions. Two types of hydraulic anisotropy were examined. The first consisted of structured zones of increased hydraulic conductivity within a lower-conductivity medium. The second type involved low-conductivity platelike inclusions within a homogeneous, isotropic medium. The plates were aligned such that the tortuosity was increased only in one principal direction of permeability. Results using two examples of the first type of media showed that the apparent longitudinal dispersivities for flow parallel to the high-conductivity direction were greater than those perpendicular to this direction. Two examples of the second type of media produced smaller apparent longitudinal dispersivities for flow parallel to the high-conductivity direction. The results suggest that the mechanisms causing dispersive anisotropy can be related, conceptually, to the factors causing hydraulic anisotropy.

  12. Airframe Noise Prediction of a Full Aircraft in Model and Full Scale Using a Lattice Boltzmann Approach

    NASA Technical Reports Server (NTRS)

    Fares, Ehab; Duda, Benjamin; Khorrami, Mehdi R.

    2016-01-01

    Unsteady flow computations are presented for a Gulfstream aircraft model in landing configuration, i.e., flap deflected 39deg and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW(Trademark) to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. Two geometry representations of the same aircraft are analyzed: an 18% scale, high-fidelity, semi-span model at wind tunnel Reynolds number and a full-scale, full-span model at half-flight Reynolds number. Previously published and newly generated model-scale results are presented; all full-scale data are disclosed here for the first time. Reynolds number and geometrical fidelity effects are carefully examined to discern aerodynamic and aeroacoustic trends with a special focus on the scaling of surface pressure fluctuations and farfield noise. An additional study of the effects of geometrical detail on farfield noise is also documented. The present investigation reveals that, overall, the model-scale and full-scale aeroacoustic results compare rather well. Nevertheless, the study also highlights that finer geometrical details that are typically not captured at model scales can have a non-negligible contribution to the farfield noise signature.

  13. Sudden failure of biological nitrogen and carbon removal in the full-scale pre-denitrification process treating cokes wastewater.

    PubMed

    Kim, Young Mo; Park, Donghee; Lee, Dae Sung; Jung, Kyung A; Park, Jong Moon

    2009-10-01

    A full-scale pre-denitrification process treating cokes wastewater containing toxic compounds such as phenols, cyanides and thiocyanate has shown good performance in carbon and nitrogen removal. However, field operators have been having trouble with its instability without being able to identify the causes. To clarify the main cause of these sudden failures of the process, comprehensive studies were conducted on the pre-denitrification process using a lab-scale reactor system with real cokes wastewater. First, the shock loading effects of three major pollutants were investigated individually. As the loading amount of phenol increased to 600 mg/L, more COD, TOC and phenol itself were flowed into the aerobic reactor, but phenol itself did not inhibit nitrification and denitrification, owing to the effect of dilution and its rapid biodegradation. Higher loading of ammonia or thiocyanate slightly enhanced the removal efficiency of organic matter, but caused the final discharge concentration of total nitrogen to be above its legal limit of 60 mg-N/L. Meanwhile, continuous inflow of abnormal wastewater collected during unstable operation of the full-scale pre-denitrification process, caused a sudden failure of nitrogen removal in the lab-scale process, like the removal pattern of the full-scale one. This was discovered to be due to the lack of inorganic carbon in the aerobic reactor where autotrophic nitrification occurs.

  14. Microbial community composition of polyhydroxyalkanoate-accumulating organisms in full-scale wastewater treatment plants operated in fully aerobic mode.

    PubMed

    Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2013-01-01

    The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11-18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5-38.2 mg-C g-VSS(-1) h(-1)). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode.

  15. Characterization of bacterial community dynamics in a full-scale drinking water treatment plant.

    PubMed

    Li, Cuiping; Ling, Fangqiong; Zhang, Minglu; Liu, Wen-Tso; Li, Yuxian; Liu, Wenjun

    2017-01-01

    Understanding the spatial and temporal dynamics of microbial communities in drinking water systems is vital to securing the microbial safety of drinking water. The objective of this study was to comprehensively characterize the dynamics of microbial biomass and bacterial communities at each step of a full-scale drinking water treatment plant in Beijing, China. Both bulk water and biofilm samples on granular activated carbon (GAC) were collected over 9months. The proportion of cultivable cells decreased during the treatment processes, and this proportion was higher in warm season than cool season, suggesting that treatment processes and water temperature probably had considerable impact on the R2A cultivability of total bacteria. 16s rRNA gene based 454 pyrosequencing analysis of the bacterial community revealed that Proteobacteria predominated in all samples. The GAC biofilm harbored a distinct population with a much higher relative abundance of Acidobacteria than water samples. Principle coordinate analysis and one-way analysis of similarity indicated that the dynamics of the microbial communities in bulk water and biofilm samples were better explained by the treatment processes rather than by sampling time, and distinctive changes of the microbial communities in water occurred after GAC filtration. Furthermore, 20 distinct OTUs contributing most to the dissimilarity among samples of different sampling locations and 6 persistent OTUs present in the entire treatment process flow were identified. Overall, our findings demonstrate the significant effects that treatment processes have on the microbial biomass and community fluctuation and provide implications for further targeted investigation on particular bacteria populations. Copyright © 2016. Published by Elsevier B.V.

  16. Assessment of a full-scale duckweed pond system for septage treatment.

    PubMed

    Papadopoulos, F H; Tsihrintzis, V A

    2011-01-01

    Environmental conditions and wastewater treatment performance in a full-scale duckweed pond system are presented. The treatment system consisted of three stabilization ponds in series and was fed with septage. Vacuum trucks pumped the septage from residential holding tanks and discharged it to the system daily. The inflow rates averaged 36 m3 d(-1) in the cold season and 60 m3 d(-1) in the warm season. Duckweed (Lemna minor) colonized the ponds in the warm months and survived during the cold season. Because of the difficult process for harvesting the duckweed biomass, the investigation of the treatment efficiency was carried out without plant harvesting. Samples were collected from the vacuum trucks and from the exit of each pond and were analysed for physicochemical and microbiological parameters over a period of 12 months. The results showed that the duckweed mat suppressed algal biomass, which in turn led to anoxic and neutral pond conditions. On an annual basis, the duckweed system sufficiently removed BOD5 (94%), NH4+ (72%) and E. coli (99.65%), with lower removal of TSS (63%) and Enterococci (91.76%). A slight increase (1.1%) was recorded for o-PO4(3-). Between the two sampling seasons, BOD5 and TSS removal efficiencies were higher in the cold season with the longer retention time. Similar removal values in the warm and the cold season were found for nutrients and bacteria. These findings indicate that BOD5 and TSS removals are less temperature-dependent at higher retention times, while ammonia nitrogen and bacterial removals are substantially influenced by temperature as well as retention time.

  17. Full scale modeling of an antenna in offshore environment for electromagnetic enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Kashif, Muhammad; Yahya, Noorhana; Nasir, Nadeem; Akhtar, Majid Niaz; Zaid, Hasnah Mohd; Shafie, Afza

    2012-09-01

    In enhanced oil recovery, high frequency electromagnetic waves are used to heat the oil reservoir and for this purpose an antenna is inserted in a borehole close to the production well. It requires a large numbers of boreholes for the antenna to get uniform heating. In case of offshore these problem can be avoided if a horizontal antenna is towed close to the seabed which maximize the electromagnetic energy transferred from the overburden to reservoir. For this purpose new twin collinear dipole antenna with a total length equal to one wavelength is designed and full scale modeling in offshore environment was done by using computer simulation technology (CST) software. Electromagnetic response of oil reservoir by using new antenna is studied for a model consisting of a 100 m thick oil reservoir having resistivity of 100 ohm-m, buried at a depth of 1000m in overburden with 1000m seawater. It was observed that new antenna gave 365% higher electric field than half wavelength dipole antenna at the far source receiver offset. At the target depth of 2500m new antenna gave 336% more electric field magnitude as compared to half wavelength antenna. In the response of different frequencies of new antenna, electric field value 8.18E-07 V/m at low frequency (0.125Hz) is more than 5.79E-42 V/m at frequency (10KHz). Magnetic field value 5.81E-05 A/m at low frequency (0.125Hz) is more than 1.74E-39 A/m at frequency (10KHz). It was investigated twin collinear dipole antenna produced stronger electric and magnetic fields as compared to half wavelength dipole antenna in offshore environment.

  18. Characteristics of greenhouse gas emission in three full-scale wastewater treatment processes.

    PubMed

    Yan, Xu; Li, Lin; Liu, Junxin

    2014-02-01

    Three full-scale wastewater treatment processes, Orbal oxidation ditch, anoxic/anaerobic/aerobic (reversed A2O) and anaerobic/anoxic/aerobic (A2O), were selected to investigate the emission characteristics of greenhouse gases (GHG), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Results showed that although the processes were different, the units presenting high GHG emission fluxes were remarkably similar, namely the highest CO2 and N2O emission fluxes occurred in the aerobic areas, and the highest CH4 emission fluxes occurred in the grit tanks. The GHG emission amount of each unit can be calculated from its area and GHG emission flux. The calculation results revealed that the maximum emission amounts of CO2, CH4 and N2O in the three wastewater treatment processes appeared in the aerobic areas in all cases. Theoretically, CH4 should be produced in anaerobic conditions, rather than aerobic conditions. However, results in this study showed that the CH4 emission fluxes in the forepart of the aerobic area were distinctly higher than in the anaerobic area. The situation for N2O was similar to that of CH4: the N2O emission flux in the aerobic area was also higher than that in the anoxic area. Through analysis of the GHG mass balance, it was found that the flow of dissolved GHG in the wastewater treatment processes and aerators may be the main reason for this phenomenon. Based on the monitoring and calculation results, GHG emission factors for the three wastewater treatment processes were determined. The A2O process had the highest CO2 emission factor of 319.3 g CO2/kg COD(removed), and the highest CH4 and N2O emission factors of 3.3 g CH4/kg COD(removed) and 3.6 g N2O/kg TN(removed) were observed in the Orbal oxidation ditch process.

  19. A method for testing railway wheel sets on a full-scale roller rig

    NASA Astrophysics Data System (ADS)

    Liu, Binbin; Bruni, Stefano

    2015-09-01

    Full-scale roller rigs for tests on a single axle enable the investigation of several dynamics and durability problems related with the design and operation of the railway rolling stock. In order to exploit the best potential of this test equipment, appropriate test procedures need to be defined, particularly in terms of actuators' references, to make sure that meaningful wheel -rail contact conditions can be reproduced. The aim of this paper is to propose a new methodology to define the forces to be generated by the actuators in the rig in order to best reproduce the behaviour of a wheel set and especially the wheel -rail contact forces in a running condition of interest as obtained either from multi-body system (MBS) simulation or from on-track measurements. The method is supported by the use of a mathematical model of the roller rig and uses an iterative correction scheme, comparing the time histories of the contact force components from the roller rig test as predicted by the mathematical model to a set of target contact force time histories. Two methods are introduced, the first one considering a standard arrangement of the roller rig, the second one assuming that a differential gear is introduced in the rig, allowing different rolling speeds of the two rollers. Results are presented showing that the deviation of the roller rig test results from the considered targets can be kept within low tolerances (1% approximately) as far as the vertical and lateral contact forces on both wheels are concerned. For the longitudinal forces, larger deviations are obtained except in the case where a differential gear is introduced.

  20. Bacterial community structures are unique and resilient in full-scale bioenergy systems

    PubMed Central

    Werner, Jeffrey J.; Knights, Dan; Garcia, Marcelo L.; Scalfone, Nicholas B.; Smith, Samual; Yarasheski, Kevin; Cummings, Theresa A.; Beers, Allen R.; Knight, Rob; Angenent, Largus T.

    2011-01-01

    Anaerobic digestion is the most successful bioenergy technology worldwide with, at its core, undefined microbial communities that have poorly understood dynamics. Here, we investigated the relationships of bacterial community structure (>400,000 16S rRNA gene sequences for 112 samples) with function (i.e., bioreactor performance) and environment (i.e., operating conditions) in a yearlong monthly time series of nine full-scale bioreactor facilities treating brewery wastewater (>20,000 measurements). Each of the nine facilities had a unique community structure with an unprecedented level of stability. Using machine learning, we identified a small subset of operational taxonomic units (OTUs; 145 out of 4,962), which predicted the location of the facility of origin for almost every sample (96.4% accuracy). Of these 145 OTUs, syntrophic bacteria were systematically overrepresented, demonstrating that syntrophs rebounded following disturbances. This indicates that resilience, rather than dynamic competition, played an important role in maintaining the necessary syntrophic populations. In addition, we explained the observed phylogenetic differences between all samples on the basis of a subset of environmental gradients (using constrained ordination) and found stronger relationships between community structure and its function rather than its environment. These relationships were strongest for two performance variables—methanogenic activity and substrate removal efficiency—both of which were also affected by microbial ecology because these variables were correlated with community evenness (at any given time) and variability in phylogenetic structure (over time), respectively. Thus, we quantified relationships between community structure and function, which opens the door to engineer communities with superior functions. PMID:21368115

  1. Reducing swine farm ammonia emission with a full-scale manure treatment system

    USDA-ARS?s Scientific Manuscript database

    A new full-scale treatment system in its second-generation was implemented at a 5000-head finishing swine farm in North Carolina to improve treatment lagoon water quality and reduce ammonia emissions. The system combined high-rate solid-liquid separation with nitrogen and phosphorus removal process...

  2. Fate of geosmin and 2-methylisoborneol in full-scale water treatment plants.

    PubMed

    Zamyadi, Arash; Henderson, Rita; Stuetz, Richard; Hofmann, Ron; Ho, Lionel; Newcombe, Gayle

    2015-10-15

    The increasing frequency and intensity of taste and odour (T&O) producing cyanobacteria in water sources is a growing global issue. Geosmin and 2-methylisoborneol (MIB) are the main cyanobacterial T&O compounds and can cause complaints from consumers at levels as low as 10 ng/L. However, literature concerning the performance of full-scale treatment processes for geosmin and MIB removal is rare. Hence, the objectives of this study were to: 1) estimate the accumulation and breakthrough of geosmin and MIB inside full-scale water treatment plants; 2) verify the potential impact of sludge recycling practice on performance of plants; and, 3) assess the effectiveness of aged GAC for the removal of these compounds. Sampling after full-scale treatment processes and GAC pilot assays were conducted to achieve these goals. Geosmin and MIB monitoring in full-scale plants provided the opportunity to rank the performance of studied treatment processes with filtration and granular activated carbon providing the best barriers for removal of total and extracellular compounds, correspondingly. Geosmin was removed to a greater extent than MIB using GAC. Geosmin and MIB residuals in water post GAC contactors after two years of operation was 20% and 40% of initial concentrations, correspondingly. Biological activity on the GAC surface enhanced the removal of T&O compounds. These observations demonstrated that a multi-barrier treatment approach is required to ensure cyanobacteria and their T&O compounds are effectively removed from drinking water.

  3. Hydrologic and Pollutant Removal Performance of a Full-Scale, Fully Functional Permeable Pavement Parking Lot

    EPA Science Inventory

    In accordance with the need for full-scale, replicated studies of permeable pavement systems used in their intended application (parking lot, roadway, etc.) across a range of climatic events, daily usage conditions, and maintenance regimes to evaluate these systems, the EPA’s Urb...

  4. REVIEW OF BENCH-, PILOT-, AND FULL-SCALE ORIMULSION (R) COMBUSTION TESTS

    EPA Science Inventory

    The paper gives results of a review of bench-, pilot-, and full-scale Orimulsion combustion tests. A fossil fuel marketed by its producer, Petroleos de Venezuela, S.A. (PdVSA), since the late 1980s as an alternative to coal and heavy fuel oil, Orimulsion is a bitumen-in-water em...

  5. URANIUM REMOVAL FROM DRINKING WATER USING A SMALL FULL-SCALE SYSTEM

    EPA Science Inventory

    This report presents background and history of water quality, the basis for design and nine months of actual operating data for a small, full-scale strong-base ion exchange system that is used to remove uranium from a water supply serving a school in Jefferson County, CO. Informa...

  6. Cyanobacteria, Toxins and Indicators: Full-Scale Monitoring & Bench-Scale Treatment Studies

    EPA Science Inventory

    Summary of: 1) Lake Erie 2014 bloom season full-scale treatment plant monitoring data for cyanobacteria and cyanobacteria toxins; 2) Follow-up work to examine the impact of pre-oxidation on suspensions of intact toxin-producing cyanobacterial cells.

  7. Microbial Survey of a Full-Scale, Biologically Active Filter for Treatment of Drinking Water

    PubMed Central

    DeBry, Ronald W.; Lytle, Darren A.

    2012-01-01

    The microbial community of a full-scale, biologically active drinking water filter was surveyed using molecular techniques. Nitrosomonas, Nitrospira, Sphingomonadales, and Rhizobiales dominated the clone libraries. The results elucidate the microbial ecology of biological filters and demonstrate that biological treatment of drinking water should be considered a viable alternative to physicochemical methods. PMID:22752177

  8. REVIEW OF BENCH-, PILOT-, AND FULL-SCALE ORIMULSION (R) COMBUSTION TESTS

    EPA Science Inventory

    The paper gives results of a review of bench-, pilot-, and full-scale Orimulsion combustion tests. A fossil fuel marketed by its producer, Petroleos de Venezuela, S.A. (PdVSA), since the late 1980s as an alternative to coal and heavy fuel oil, Orimulsion is a bitumen-in-water em...

  9. Predictive Ability of the General Ability Index (GAI) versus the Full Scale IQ among Gifted Referrals

    ERIC Educational Resources Information Center

    Rowe, Ellen W.; Kingsley, Jessica M.; Thompson, Dawna F.

    2010-01-01

    The General Ability Index (GAI) is a composite ability score for the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) that minimizes the impact of tasks involving working memory and processing speed. The goal of the current study was to compare the degree to which the Full Scale IQ (FSIQ) and the GAI predict academic achievement…

  10. Design and fabrication of the NASA HL-20 full scale research model

    NASA Technical Reports Server (NTRS)

    Driver, K. Dean; Vess, Robert J.

    1991-01-01

    A full-scale engineering model of the HL-20 Personnel Launch System (PLS) was constructed for systems and human factors evaluation. Construction techniques were developed to enable the vehicle to be constructed with a minimum of time and cost. The design and construction of the vehicle are described.

  11. Microbial survey of a full-scale, biologically active filter for treatment of drinking water.

    PubMed

    White, Colin P; Debry, Ronald W; Lytle, Darren A

    2012-09-01

    The microbial community of a full-scale, biologically active drinking water filter was surveyed using molecular techniques. Nitrosomonas, Nitrospira, Sphingomonadales, and Rhizobiales dominated the clone libraries. The results elucidate the microbial ecology of biological filters and demonstrate that biological treatment of drinking water should be considered a viable alternative to physicochemical methods.

  12. Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta,Lucas G.

    2011-01-01

    Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.

  13. Optimization of a full-scale dewatering operation based on the rheological characteristics of wastewater sludge.

    PubMed

    Ormeci, Banu

    2007-03-01

    Rheology is the science that deals with the flow and deformation of materials, and it has become an important tool in optimizing sludge dewatering. This study presents torque rheology data to illustrate two different methods for polymer optimization. The methods can be used to optimize the polymer dose and mixing intensity, as well as to select the best performing product among a number of candidate polymers. The first method is used for unconditioned sludges, and utilizes the peaks observed after the polymer injection. The second method is used for conditioned sludges and utilizes the entire torque-time rheograms. Both methods were tested at the lab- and full-scale at the Plum Island Water Reclamation Facility (Charleston, SC) using three different polymers. The methods were able to optimize the polymer dose and full-scale mixing, and reduce the polymer consumption by 50% at the treatment plant. This translates into major savings for the utility. Furthermore, the results indicate that the total shear intensity imparted to sludge during full-scale conditioning can be determined using torque rheology, and the jar-tester shear can be matched to the total shear based on the rheological characteristics of sludge. This information is essential to be able to simulate the full-scale mixing using a jar-tester and to precisely determine the optimum polymer dose. The results of this study indicate that well-defined rheological properties of sludge provide a reliable tool for the optimization of conditioning and dewatering operations at wastewater treatment plants.

  14. ASSESSING THE PERFORMANCE OF FULL-SCALE ENVIRONMENTAL CHAMBERS USING AN INDEPENDENTLY MEASURED EMISSION SOURCE

    EPA Science Inventory

    The paper discusses the assessment of the performance of full-scale environmental chambers using an independently measured emission source. To assess the overall performance of an environmental test chamber, it is necessary to subject the chamber to a test with a reference sourc...

  15. Hydrologic and Pollutant Removal Performance of a Full-Scale, Fully Functional Permeable Pavement Parking Lot

    EPA Science Inventory

    In accordance with the need for full-scale, replicated studies of permeable pavement systems used in their intended application (parking lot, roadway, etc.) across a range of climatic events, daily usage conditions, and maintenance regimes to evaluate these systems, the EPA’s Urb...

  16. URANIUM REMOVAL FROM DRINKING WATER USING A SMALL FULL-SCALE SYSTEM

    EPA Science Inventory

    This report presents background and history of water quality, the basis for design and nine months of actual operating data for a small, full-scale strong-base ion exchange system that is used to remove uranium from a water supply serving a school in Jefferson County, CO. Informa...

  17. Predictive Ability of the General Ability Index (GAI) versus the Full Scale IQ among Gifted Referrals

    ERIC Educational Resources Information Center

    Rowe, Ellen W.; Kingsley, Jessica M.; Thompson, Dawna F.

    2010-01-01

    The General Ability Index (GAI) is a composite ability score for the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) that minimizes the impact of tasks involving working memory and processing speed. The goal of the current study was to compare the degree to which the Full Scale IQ (FSIQ) and the GAI predict academic achievement…

  18. Cyanobacteria, Toxins and Indicators: Full-Scale Monitoring & Bench-Scale Treatment Studies

    EPA Science Inventory

    Summary of: 1) Lake Erie 2014 bloom season full-scale treatment plant monitoring data for cyanobacteria and cyanobacteria toxins; 2) Follow-up work to examine the impact of pre-oxidation on suspensions of intact toxin-producing cyanobacterial cells.

  19. Investigating Student Perceptions of the Chemistry Laboratory and Their Approaches to Learning in the Laboratory

    NASA Astrophysics Data System (ADS)

    Berger, Spencer Granett

    This dissertation explores student perceptions of the instructional chemistry laboratory and the approaches students take when learning in the laboratory environment. To measure student perceptions of the chemistry laboratory, a survey instrument was developed. 413 students responded to the survey during the Fall 2011 semester. Students' perception of the usefulness of the laboratory in helping them learn chemistry in high school was related to several factors regarding their experiences in high school chemistry. Students' perception of the usefulness of the laboratory in helping them learn chemistry in college was also measured. Reasons students provided for the usefulness of the laboratory were categorized. To characterize approaches to learning in the laboratory, students were interviewed midway through semester (N=18). The interviews were used to create a framework describing learning approaches that students use in the laboratory environment. Students were categorized into three levels: students who view the laboratory as a requirement, students who believe that the laboratory augments their understanding, and students who view the laboratory as an important part of science. These categories describe the types of strategies students used when conducting experiments. To further explore the relationship between students' perception of the laboratory and their approaches to learning, two case studies are described. These case studies involve interviews in the beginning and end of the semester. In the interviews, students reflect on what they have learned in the laboratory and describe their perceptions of the laboratory environment. In order to encourage students to adopt higher-level approaches to learning in the laboratory, a metacognitive intervention was created. The intervention involved supplementary questions that students would answer while completing laboratory experiments. The questions were designed to encourage students to think critically about the

  20. Full Scale Advanced Systems Testbed (FAST): Capabilities and Recent Flight Research

    NASA Technical Reports Server (NTRS)

    Miller, Christopher

    2014-01-01

    At the NASA Armstrong Flight Research Center research is being conducted into flight control technologies that will enable the next generation of air and space vehicles. The Full Scale Advanced Systems Testbed (FAST) aircraft provides a laboratory for flight exploration of these technologies. In recent years novel but simple adaptive architectures for aircraft and rockets have been researched along with control technologies for improving aircraft fuel efficiency and control structural interaction. This presentation outlines the FAST capabilities and provides a snapshot of the research accomplishments to date. Flight experimentation allows a researcher to substantiate or invalidate their assumptions and intuition about a new technology or innovative approach Data early in a development cycle is invaluable for determining which technology barriers are real and which ones are imagined Data for a technology at a low TRL can be used to steer and focus the exploration and fuel rapid advances based on real world lessons learned It is important to identify technologies that are mature enough to benefit from flight research data and not be tempted to wait until we have solved all the potential issues prior to getting some data Sometimes a stagnated technology just needs a little real world data to get it going One trick to getting data for low TRL technologies is finding an environment where it is okay to take risks, where occasional failure is an expected outcome Learning how things fail is often as valuable as showing that they work FAST has been architected to facilitate this type of testing for control system technologies, specifically novel algorithms and sensors Rapid prototyping with a quick turnaround in a fly-fix-fly paradigm Sometimes it's easier and cheaper to just go fly it than to analyze the problem to death The goal is to find and test control technologies that would benefit from flight data and find solutions to the real barriers to innovation. The FAST

  1. Laboratory investigation of antenna signals from dust impacts on spacecraft

    NASA Astrophysics Data System (ADS)

    Collette, A.; Meyer, G.; Malaspina, D.; Sternovsky, Z.

    2015-07-01

    We describe laboratory experiments which reproduce characteristic signals observed on spacecraft, believed to be caused by dust impact. A simulated spacecraft, including an antenna system using a facsimile of the preamplifier electronics from the STEREO/WAVES instrument, was bombarded by 10 km/s submicron-sized dust at the University of Colorado Institute for Modeling Plasma, Atmospheres, and Cosmic Dust accelerator facility. Signal variation was investigated as a function of the DC potentials of both the spacecraft and the antennas. We observed (1) signals corresponding to modification of the spacecraft body potential, an important process believed to be responsible for the so-called "triple hit" antenna signals on STEREO, (2) a few-eV energy distribution for the electrons and ions released in the impact leading to (3) signals corresponding to direct recollection of a substantial fraction of the impact charge by the spacecraft antennas, even at modest antenna bias potentials. We also observe (4) an unexpected class of fast antenna signals, which do not appear to be caused by charge recollection by either the spacecraft or the antennas and may be induced by charge separation in the expanding plasma cloud. Similar signals are also commonly observed by the STEREO/WAVES instrument but have not previously been analyzed.

  2. Laboratory investigation of steam adsorption in geothermal reservoir rocks

    SciTech Connect

    Luetkehans, J.

    1988-02-01

    Some vapor-dominated geothermal reservoirs and low-permeability gas reservoirs exhibit anomalous behavior that may be caused by surface adsorption. For example, geothermal reservoirs in the Larderello are of Italy and reservoirs in the Geysers Geothermal Field, California produce little, if any, liquid. Yet to satisfy material balance constraints, another phase besides steam must be present. If steam adsorption occurring in significant amounts is not accounted for, the reserves will be grossly under-estimated. In addition, well tests may be misinterpreted because the pressure response is delayed owing to be adsorbed material leaving or entering the gaseous phase. In the present research the role of adsorption in geothermal reservoirs in investigated. Two sets of laboratory equipment were constructed to measure adsorption isotherms of cores from Berea sandstone, Larderello, and The Geysers. Seven experimental runs were completed using nitrogen on the low temperature apparatus at -196/sup 0/C. Eight runs were conducted using steam on the high temperature apparatus at temperatures ranging from 150 C to 207/sup 0/C. The largest specific surface area and the greatest nitrogen adsorption isotherm were measured on the Berea sandstone, followed by a core from Larderello and then The Geysers. Difficulties in determining whether a system had reached equilibrium at the end of each step lead to questions regarding the magnitude of adsorption measured by the steam runs. Nevertheless, adsorption was observed and the difficulties themselves were useful indicators of needed future research.

  3. Photochemistry of Mercury and Organics in Sea Ice - Laboratory Investigations

    NASA Astrophysics Data System (ADS)

    Bartels-Rausch, Thorsten; Krysztofiak, Giséle; Bernhard, Andreas; Schläppi, Manuel; Schwikowski, Margit; Ammann, Markus

    2010-05-01

    Sea-Ice may trap toxic pollutants such as mercury from the atmosphere and foster their discharge to the aquatic environment during melting periods. Once released to the ocean, the toxics can enter the food web. Here we present experiments on the chemical reactivity of mercury in the ice matrix that result in a re-emission of mercury to the atmosphere. Better knowledge of this process might help to improve global budgets of mercury. We describe a set of laboratory experiments where we quantified the light-driven mercury reduction in ice and its subsequent release from the ice matrix. The experiments focused on the effect of organic matter, such as benzophenone, oxalic acid, and humic acid on the reaction kinetics. The influence of halogen ions, pH and temperature was also investigated. This - to our knowledge- first description of the light-driven mercury reduction in ice showed that organic matter significantly enhances the reactivity. Reaction pathways are proposed to explain the observation. The results also indicate that the photolysis rate is significantly reduced in the presence of halogens at typical concentrations of sea water.

  4. Development of Laboratory Investigations in Disorders of Sex Development.

    PubMed

    Audí, Laura; Camats, Núria; Fernández-Cancio, Mónica; Granada, María L

    2017-09-13

    Scientific knowledge to understand the biological basis of sex development was prompted by the observation of variants different from the 2 most frequent body types, and this became one of the fields first studied by modern pediatric endocrinology. The clinical observation was supported by professionals working in different areas of laboratory sciences which led to the description of adrenal and gonadal steroidogenesis, the enzymes involved, and the different deficiencies. Steroid hormone measurements evolved from colorimetry to radioimmunoassay (RIA) and automated immunoassays, although gas and liquid chromatography coupled to mass spectrometry are now the gold standard techniques for steroid measurements. Peptide hormones and growth factors were purified, and their measurement evolved from RIA to automated immunoassays. Hormone action mechanisms were described, and their specific receptors were characterized and assayed in experimental materials and in patient tissues and cell cultures. The discovery of the genetic basis for variant sex developments began with the description of the sex chromosomes. Molecular technology allowed cloning of genes coding for the different proteins involved in sex determination and development. Experimental animal models aided in verifying the roles of proteins and also suggested new genes to be investigated. New candidate genes continue to be described based on experimental models and on next-generation sequencing of patient DNAs. © 2017 S. Karger AG, Basel.

  5. A Low Cost Microcomputer Laboratory for Investigating Computer Architecture.

    ERIC Educational Resources Information Center

    Mitchell, Eugene E., Ed.

    1980-01-01

    Described is a microcomputer laboratory at the United States Military Academy at West Point, New York, which provides easy access to non-volatile memory and a single input/output file system for 16 microcomputer laboratory positions. A microcomputer network that has a centralized data base is implemented using the concepts of computer network…

  6. 33 CFR 209.340 - Laboratory investigations and materials testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... laboratory facilities capable of performing such work are not available, or because of location or for other reasons it is clearly impractical to utilize such private commerical laboratory services. The requesting entity must further certify that such services cannot be procured reasonably and expeditiously...

  7. 33 CFR 209.340 - Laboratory investigations and materials testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... laboratory facilities capable of performing such work are not available, or because of location or for other reasons it is clearly impractical to utilize such private commerical laboratory services. The requesting entity must further certify that such services cannot be procured reasonably and expeditiously...

  8. Characterization of full-scale carbon contactors for siloxane removal from biogas using online Fourier transform infrared spectroscopy.

    PubMed

    Hepburn, C A; Martin, B D; Simms, N; McAdam, E J

    2015-01-01

    In this study, online Fourier transform infrared (FTIR) spectroscopy has been used to generate the first comprehensive characterization of full-scale carbon contactors for siloxane removal from biogas. Using FTIR, two clear operational regions within the exhaustion cycle were evidenced: an initial period of pseudo-steady state where the outlet siloxane concentration was consistently below the proposed siloxane limits; and a second period characterized by a progressive rise in outlet siloxane concentration during and after breakthrough. Due to the sharp breakthrough front identified, existing detection methods (which comprise field sampling coupled with laboratory-based chromatographic determination) are insufficiently responsive to define breakthrough, thus carbon contactors currently remain in service while providing limited protection to the combined heat and power engine. Integration of the exhaustion cycle to breakthrough identified average specific media capacities of 8.5-21.5 gsiloxane kg(-1)GAC, which are lower than that has been reported for vapour phase granular activated carbon (GAC). Further speciation of the biogas phase identified co-separation of organic compounds (alkanes and aromatics), which will inevitably reduce siloxane capacity. However, comparison of the five full-scale contactors identified that greater media capacity was accessible through operating contactors at velocities sufficient to diminish axial dispersion effects. In addition to enabling significant insight into gas phase GAC contactors, the use of FTIR for online control of GAC for siloxane removal is also presented.

  9. Ice Accretions and Full-Scale Iced Aerodynamic Performance Data for a Two-Dimensional NACA 23012 Airfoil

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Guffond, Didier; Montreuil, Emmanuel; Moens, Frederic

    2016-01-01

    This report documents the data collected during the large wind tunnel campaigns conducted as part of the SUNSET project (StUdies oN Scaling EffecTs due to ice) also known as the Ice-Accretion Aerodynamics Simulation study: a joint effort by NASA, the Office National d'Etudes et Recherches Aérospatiales (ONERA), and the University of Illinois. These data form a benchmark database of full-scale ice accretions and corresponding ice-contaminated aerodynamic performance data for a two-dimensional (2D) NACA 23012 airfoil. The wider research effort also included an analysis of ice-contaminated aerodynamics that categorized ice accretions by aerodynamic effects and an investigation of subscale, low- Reynolds-number ice-contaminated aerodynamics for the NACA 23012 airfoil. The low-Reynolds-number investigation included an analysis of the geometric fidelity needed to reliably assess aerodynamic effects of airfoil icing using artificial ice shapes. Included herein are records of the ice accreted during campaigns in NASA Glenn Research Center's Icing Research Tunnel (IRT). Two different 2D NACA 23012 airfoil models were used during these campaigns; an 18-in. (45.7-cm) chord (subscale) model and a 72-in. (182.9-cm) chord (full-scale) model. The aircraft icing conditions used during these campaigns were selected from the Federal Aviation Administration's (FAA's) Code of Federal Regulations (CFR) Part 25 Appendix C icing envelopes. The records include the test conditions, photographs of the ice accreted, tracings of the ice, and ice depth measurements. Model coordinates and pressure tap locations are also presented. Also included herein are the data recorded during a wind tunnel campaign conducted in the F1 Subsonic Pressurized Wind Tunnel of ONERA. The F1 tunnel is a pressured, high- Reynolds-number facility that could accommodate the full-scale (72-in. (182.9-cm) chord) 2D NACA 23012 model. Molds were made of the ice accreted during selected test runs of the full-scale model

  10. Laboratory investigation of crushed salt consolidation and fracture healing

    SciTech Connect

    Not Available

    1987-01-01

    A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from <10/sup -5/ md to 110 md, respectively. The lowest final porosity (0.05) and permeability (<10/sup -5/ md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing.

  11. An Investigation into Prospective Science Teachers' Attitudes towards Laboratory Course and Self-Efficacy Beliefs in Laboratory Use

    ERIC Educational Resources Information Center

    Aka, Elvan Ince

    2016-01-01

    The aim of the current study is to identify the attitudes towards the laboratory course and self-efficacy beliefs in the laboratory use of prospective teachers who are attending Gazi University Gazi Education Faculty Primary Education Science Teaching program, and to investigate the relationship between the attitudes and self-efficacy beliefs.…

  12. 33 CFR 209.340 - Laboratory investigations and materials testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applies to Corps of Engineers Divisions and Districts operating soils, concrete, water quality and... will directly contribute to a specific planning, design, or construction activity which derives its... Project, St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota. The District...

  13. Investigating Electromagnetic Induction through a Microcomputer-Based Laboratory.

    ERIC Educational Resources Information Center

    Trumper, Ricardo; Gelbman, Moshe

    2000-01-01

    Describes a microcomputer-based laboratory experiment designed for high school students that very accurately analyzes Faraday's law of electromagnetic induction, addressing each variable separately while the others are kept constant. (Author/CCM)

  14. Investigating Electromagnetic Induction through a Microcomputer-Based Laboratory.

    ERIC Educational Resources Information Center

    Trumper, Ricardo; Gelbman, Moshe

    2000-01-01

    Describes a microcomputer-based laboratory experiment designed for high school students that very accurately analyzes Faraday's law of electromagnetic induction, addressing each variable separately while the others are kept constant. (Author/CCM)

  15. Critical Mass Laboratory Solutions Precipitation, Calcination, and Moisture Uptake Investigations

    SciTech Connect

    Delegard, Calvin H.; Sinkov, Sergey I.; McNamara, Bruce K.; Jones, Susan A.; Barney, Gary S.; Schmidt, Andrew J.; Sell, Rachel L.

    2002-06-03

    Laboratory work was conducted at Pacific Northwest National Laboratory and the Plutonium Process Support Laboratory of the Plutonium Finishing Plant (PFP) to study flowsheet conditions to selectively precipitate plutonium oxalate from uranium-bearing Critical Mass Laboratory (CML) solutions in the PFP precipitation apparatus and to dry and calcine the resulting filtercake to generate a stable plutonium oxide bearing powder (as judged by loss-on-ignition measurements) in the ambient humidity of the remote mechanical C (RMC) line in the PFP. Based on these studies with simulated and genuine CML solutions and various constituent materials, process conditions were recommended to the PFP under which the product powders can reasonably be expected to pass the DOE-STD-3013 moisture criterion when packaged in the RMC line at relative humidity up to 80%.

  16. A New Investigative Sophomore Organic Laboratory Involving Individual Research Projects

    NASA Astrophysics Data System (ADS)

    Kharas, Gregory B.

    1997-07-01

    The problem-solving approach calls for a laboratory curriculum that provides a greater intellectual challenge and the resemblance to a research experience. A curriculum was designed which involves individual research projects for the nine laboratories of the spring quarter of a three-quarter introductory organic chemistry course. These projects integrate the instructor's research and learning experiences for the students via interdisciplinary approaches of classical organic chemistry and polymer chemistry. The foundations for the individual research projects are laid out during the first and second quarters of laboratory instruction when students are introduced to classic synthetic, separation and purification techniques. In the third quarter of lab sequence, in carrying out the individual research projects, the emphasis is shifted towards obtaining and interpreting data for compounds that are not described in the laboratory manual rather than making representative compounds. The research is an open end laboratory project that includes an on-line and printed Chemical Abstracts literature search, molecular computer modeling, a microscale monomer synthesis and characterization, scale-up synthesis, polymer synthesis and characterization. By changing functional groups on the vinyl monomer molecule, the class can explore reactivity of one "family" of compounds and consequently polymers. This approach is based on the integration of genuine research experience with laboratory instruction in accessible but non-trivial manner.

  17. Field and Laboratory Investigations of Organic Photochemistry on Urban Surfaces

    NASA Astrophysics Data System (ADS)

    Styler, S. A.; Baergen, A.; van Pinxteren, D.; Donaldson, D. J.; Herrmann, H.

    2014-12-01

    In polluted urban environments, windows and building surfaces rapidly become coated with a complex film of chemicals, which enhances the dry deposition of particles and the partitioning of semi-volatile organic species to the surface. Despite its high surface-to-volume ratio and direct exposure to sunlight, few studies have directly investigated the role that this "urban film" may play in promoting the photooxidative processing of semi-volatile organics contained within it. The present study represents a comprehensive field- and laboratory-based investigation of the film-phase photochemistry of polycyclic aromatic hydrocarbons (PAH), here used as proxies for light-absorbing semi-volatile organics present within the film. Urban film sampling was conducted using a custom-built three-stage sampler housing, which was deployed in a central, high-traffic area in Leipzig, Germany. The sampler itself employs small glass beads as surrogate window surfaces and is designed such that only its uppermost stage is exposed to sunlight. Each stage is subdivided into 16 compartments, which allows for the study of film formation and evolution. In the first phase of the study, the role of urban film as a photochemical sink for reactive organic species was determined by measuring total film PAH content and PAH abundance ratios as a function of atmospheric exposure time under both light and dark conditions. In the second, more general, phase of the study, the organic and inorganic composition of collected film samples was compared to that of co-located PM10 samples, and differences between the two sample types were used to gain insight into the relative importance of heterogeneous photochemical oxidation within the particle and film phases. In the third phase of the study, film samples grown under dark conditions were exposed to gas-phase ozone in an atmospheric-pressure flat-bed reactor, and the kinetics of ozone-induced PAH loss were studied under both dark and illuminated conditions

  18. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    PubMed Central

    Prest, E. I.; Weissbrodt, D. G.; Hammes, F.; van Loosdrecht, M. C. M.; Vrouwenvelder, J. S.

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  19. In situ distributions and characteristics of heavy metals in full-scale landfill layers.

    PubMed

    He, Pin-Jing; Xiao, Zheng; Shao, Li-Ming; Yu, Ji-Yu; Lee, Duu-Jong

    2006-10-11

    The leachate from methanogenic landfill normally contains low concentrations of heavy metals. Little samples had ever been collected from the full-scale landfill piles owing to technical difficulty for well drilling. We drilled two wells in Hangzhou Tianziling landfill, 20 m and 32 m in depth each, and collected solid samples of waste age of 1-4 years from both wells. The total amounts, the sequentially extracted amounts, and the chemical binding forms of heavy metals of the samples collected at different depths were measured. With the correlation between leachate production amount and the yearly rainfall amount, the leached ratio of the heavy metals were estimated only 0.13%, 1.8%, 0.15%, and 0.19% of Cu, Cd, Pb, and Zn, respectively. The heavy metals amounts in the main compositions of MSW, like glass, food waste, paper, coal cinders, were measured using fresh MSW samples. Afterward, the contents of heavy metals initially landfilled were estimated. A positive correlation was noted between the measured and the estimated initial contents of heavy metals, indicating that the low migration of heavy metals in landfill layers. However, among the metals investigated, Zn has shown better mobility inside landfill layers. Acid volatile sulfide (AVS) and the simultaneously extracted metals (SEM) were measured for all collected samples with optimal reaction conditions identified to yield nearly perfect sulfide recovery as follows: 100 g wet samples, 80 mL min(-1) N(2) flow rate, reaction time of 150 min. The SEM/AVS ratios ranged 25-45, indicating that the AVS was insufficient to immobilize the SEM. Sequential extraction using six-fraction scheme revealed that the sum of exchangeable and the avid soluble fractions of heavy metals follow: Zn>Cd>Cu, Ni, Pb>Cr. The insoluble fraction of heavy metals in MSW was high, for instance, over 80% for Cr and Pb high insoluble fractions of heavy metals in the landfilled MSW and the sorption capability of the methanogenic landfill layers

  20. Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation

    NASA Astrophysics Data System (ADS)

    Elsaka, Basem; Raimondo, Jean-Claude; Brieden, Phillip; Reubelt, Tilo; Kusche, Jürgen; Flechtner, Frank; Iran Pour, Siavash; Sneeuw, Nico; Müller, Jürgen

    2014-01-01

    The goal of this contribution is to focus on improving the quality of gravity field models in the form of spherical harmonic representation via alternative configuration scenarios applied in future gravimetric satellite missions. We performed full-scale simulations of various mission scenarios within the frame work of the German joint research project "Concepts for future gravity field satellite missions" as part of the Geotechnologies Program, funded by the German Federal Ministry of Education and Research and the German Research Foundation. In contrast to most previous simulation studies including our own previous work, we extended the simulated time span from one to three consecutive months to improve the robustness of the assessed performance. New is that we performed simulations for seven dedicated satellite configurations in addition to the GRACE scenario, serving as a reference baseline. These scenarios include a "GRACE Follow-on" mission (with some modifications to the currently implemented GRACE-FO mission), and an in-line "Bender" mission, in addition to five mission scenarios that include additional cross-track and radial information. Our results clearly confirm the benefit of radial and cross-track measurement information compared to the GRACE along-track observable: the gravity fields recovered from the related alternative mission scenarios are superior in terms of error level and error isotropy. In fact, one of our main findings is that although the noise levels achievable with the particular configurations do vary between the simulated months, their order of performance remains the same. Our findings show also that the advanced pendulums provide the best performance of the investigated single formations, however an accuracy reduced by about 2-4 times in the important long-wavelength part of the spectrum (for spherical harmonic degrees ), compared to the Bender mission, can be observed. Concerning state-of-the-art mission constraints, in particular

  1. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    PubMed

    Prest, E I; Weissbrodt, D G; Hammes, F; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1-3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  2. Technical Assessment of the National Full Scale Aerodynamic Complex Fan Blades Repair

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Dixon, Peter G.; St.Clair, Terry L.; Johns, William E.

    1998-01-01

    This report describes the principal activities of a technical review team formed to address National Full Scale Aerodynamic Complex (NFAC) blade repair problems. In particular, the problem of lack of good adhesive bonding of the composite overwrap to the Hyduliginum wood blade material was studied extensively. Description of action plans and technical elements of the plans are provided. Results of experiments designed to optimize the bonding process and bonding strengths obtained on a full scale blade using a two-step cure process with adhesive primers are presented. Consensus recommendations developed by the review team in conjunction with the NASA Ames Fan Blade Repair Project Team are provided along with lessons learned on this program. Implementation of recommendations resulted in achieving good adhesive bonds between the composite materials and wooden blades, thereby providing assurance that the repaired fan blades will meet or exceed operational life requirements.

  3. RecoPhos: full-scale fertilizer production from sewage sludge ash.

    PubMed

    Weigand, Harald; Bertau, Martin; Hübner, Wilfried; Bohndick, Fred; Bruckert, Axel

    2013-03-01

    The substitution potential of sewage sludge for German primary phosphate imports has been estimated as 40%. Yet, a marketable option for the full scale recovery has been lacking. This study focuses on a full-scale process for the manufacture of a P-fertilizer from sewage sludge ash (SSA) adapted from the production of Triple Superphosphate. Given (i) conformity of the input with phosphate ores mined from sedimentary deposits, (ii) comparability of the product with a commercially available P-fertilizer regarding contaminant levels, P-fractionation and yield effects, and (iii) compliance of the output with the German Fertilizer Ordinance the RecoPhos P 38 fertilizer was discharged from the waste legislation regime. The fertilizer is currently being produced at a rate of 1000 tonnes per month and sold at a competitive price. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Blade Displacement Measurements of the Full-Scale UH-60A Airloads Rotor

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Burner, Alpheus W.; Abrego, Anita I.; Olson, Lawrence E.

    2011-01-01

    Blade displacement measurements were acquired during a wind tunnel test of the full-scale UH-60A Airloads rotor. The test was conducted in the 40- by 80-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at NASA Ames Research Center. Multi-camera photogrammetry was used to measure the blade displacements of the four-bladed rotor. These measurements encompass a range of test conditions that include advance ratios from 0.15 to unique slowed-rotor simulations as high as 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective of these measurements is to provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft computational tools. The methodology, system development, measurement techniques, and preliminary sample blade displacement measurements are presented.

  5. The practical influence of rapid mixing on coagulation in a full-scale water treatment plant.

    PubMed

    Allerdings, Demitri; Förster, Gerrit; Vasyukova, Ekaterina; Uhl, Wolfgang

    2015-01-01

    This study focuses on the effect of rapid mixing on the coagulation efficiency in a full-scale drinking-water treatment plant and discusses the mechanisms involved in the floc-formation process. The results refer to three periods of operation of the waterworks when no mechanical mixing was provided in the tanks for coagulant dosing due to mechanical failure of the rapid mixers. Although a certain deterioration of the subsequent flocculation process was observed, as assessed using the data for suspended solids, turbidity, and chemical oxygen demand, the overall water treatment performance was not affected. This suggests an insignificant role for intense rapid mixing in sweep flocculation during full-scale water treatment and reveals the potential to reduce the required energy costs for mechanical mixers.

  6. Comparison of bacterial diversity in full scale anammox bioreactors operated under different conditions.

    PubMed

    Gonzalez-Martinez, Alejandro; Osorio, Francisco; Morillo, Jose A; Rodriguez-Sanchez, Alejandro; Gonzalez-Lopez, Jesus; Abbas, Ben A; van Loosdrecht, Mark C M

    2015-01-01

    Bacterial community structure of full-scale anammox bioreactor is still mainly unknown. It has never been analyzed whether different anammox bioreactor configurations might result in the development of different bacterial community structures among these systems. In this work, the bacterial community structure of six full-scale autotrophic nitrogen removal bioreactors located in The Netherlands and China operating under three different technologies and with different influent wastewater characteristics was studied by the means of pyrotag sequencing evaluation of the bacterial assemblage yielded a great diversity in all systems. The most represented phyla were the Bacteroidetes and the Proteobacteria, followed by the Planctomycetes. 14 OTUs were shared by all bioreactors, but none of them belonged to the Brocadiales order. Statistical analysis at OTU level showed that differences in the microbial communities were high, and that the main driver of the bacterial assemblage composition was different for the distinct phyla identified in the six bioreactors, depending on bioreactor technology or influent wastewater characteristics.

  7. Some aspects of the comparison of model and full-scale tests

    NASA Technical Reports Server (NTRS)

    Taylor, D W

    1926-01-01

    This paper was delivered before the Royal Aeronautical Society as the 1925 Wilbur Wright Memorial lecture. It treats the subject of scale effect from the standpoint of the engineer rather than the physicist, in that it shows what compromises are necessary to secure satisfactory engineering model test data and how these test data compare with full scale or with theoretical values. The paper consists essentially of three parts: (1) a brief exposition of the theory of dynamic similarity, (2) application of the theory to airplane model tests, illustrated by test data on airfoils from the National Advisory Committee for Aeronautics variable-density wind tunnel, and (3) application of the theory to propeller testing, illustrated by comparisons of model and full-scale results.

  8. Performance Enhancement of a Full-Scale Vertical Tail Model Equipped with Active Flow Control

    NASA Technical Reports Server (NTRS)

    Whalen, Edward A.; Lacy, Douglas; Lin, John C.; Andino, Marlyn Y.; Washburn, Anthony E.; Graff, Emilio; Wygnanski, Israel J.

    2015-01-01

    This paper describes wind tunnel test results from a joint NASA/Boeing research effort to advance active flow control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jet actuators was tested at the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel (40x80) at NASA Ames Research Center. The model was tested at a nominal airspeed of 100 knots and across rudder deflections and sideslip angles that covered the vertical tail flight envelope. A successful demonstration of AFC-enhanced vertical tail technology was achieved. A 31- actuator configuration significantly increased side force (by greater than 20%) at a maximum rudder deflection of 30deg. The successful demonstration of this application has cleared the way for a flight demonstration on the Boeing 757 ecoDemonstrator in 2015.

  9. Full-scale demonstration Low-NO sub x Cell trademark Burner retrofit

    SciTech Connect

    Not Available

    1992-05-11

    The Low-NO{sub x} Cell{trademark} Burner operates on the principle of staged combustion. The lower burner of each two-nozzle cell is modified to accommodate all the fuel input previously handled by two nozzles. Secondary air, less than theoretically required for complete combustion, is introduced to the lower burner. The remainder of secondary air is directed to the upper port'' of each cell to complete the combustion process. B W/EPRI have thoroughly tested the LNCB{trademark} at two pilot scales (6 million Btu per hour and 100 million Btu per hour), and tested a single full-scale burner in a utility boiler. Combustion tests at two scales have confirmed NO{sub x} reduction with the low-NO{sub x} cell on the order of 50% relative to the standard cell burner at optimum operating conditions. The technology is now ready for full unit, full-scale demonstration.

  10. Rain events and their effect on effluent quality studied at a full scale activated sludge treatment plant.

    PubMed

    Wilén, B M; Lumley, D; Mattsson, A; Mino, T

    2006-01-01

    The effect of rain events on effluent quality dynamics was studied at a full scale activated sludge wastewater treatment plant which has a process solution incorporating pre-denitrification in activated sludge with post-nitrification in trickling filters. The incoming wastewater flow varies significantly due to a combined sewer system. Changed flow conditions have an impact on the whole treatment process since the recirculation to the trickling filters is set by the hydraulic limitations of the secondary settlers. Apart from causing different hydraulic conditions in the plant, increased flow due to rain or snow-melting, changes the properties of the incoming wastewater which affects process performance and effluent quality, especially the particle removal efficiency. A comprehensive set of on-line and laboratory data were collected and analysed to assess the impact of rain events on the plant performance.

  11. Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.

    SciTech Connect

    Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.; Sorenson, Ken B.

    2014-09-01

    The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPS eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.

  12. Static Thrust and Power Characteristics of Six Full-Scale Propellers

    NASA Technical Reports Server (NTRS)

    Hartman, Erwin P; Biermann, David

    1940-01-01

    Static thrust and power measurements were made of six full-scale propellers. The propellers were mounted in front of a liquid-cooled-engine nacelle and were tested at 15 different blade angles in the range from -7 1/2 degrees to 35 degrees at 0.75r. The test rig was located outdoors and the tests were made under conditions of approximately zero wind velocity.

  13. Performance and loads data from a hover test of a full-scale XV-15 rotor

    NASA Technical Reports Server (NTRS)

    Felker, F. F.; Betzina, M. D.; Signor, D. B.

    1985-01-01

    A hover test of a full-scale XV-15 rotor was conducted at the Outdoor Aerodynamic Research Facility at Ames Research Center. The primary objective of the test was to obtain accurate measurements of the hover performance of the original, metal-blade XV-15 rotor system. Data were acquired for rotor tip Mach numbers ranging from 0.60 to 0.73. This report presents data on rotor performance, rotor wake downwash velocities, and rotor loads.

  14. Ultrastiff and Strong Graphene Fibers via Full-Scale Synergetic Defect Engineering.

    PubMed

    Xu, Zhen; Liu, Yingjun; Zhao, Xiaoli; Peng, Li; Sun, Haiyan; Xu, Yang; Ren, Xibiao; Jin, Chuanhong; Xu, Peng; Wang, Miao; Gao, Chao

    2016-08-01

    Kilometer-scale continuous graphene fibers (GFs) with outstanding mechanical properties and excellent electrical conductivity are produced by high-throughput wet-spinning of graphene oxide liquid crystals followed by graphitization through a full-scale synergetic defect-engineering strategy. GFs with superior performances promise wide applications in functional textiles, lightweight motors, microelectronic devices, and so on. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.

    2010-01-01

    A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.

  16. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    PubMed Central

    Li, Jun; Ding, Li-Bin; Cai, Ang; Huang, Guo-Xian; Horn, Harald

    2014-01-01

    Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m3 d−1 for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation. PMID:24822190

  17. An Analysis of Model Scale Data Transformation to Full Scale Flight Using Chevron Nozzles

    NASA Technical Reports Server (NTRS)

    Brown, Clifford; Bridges, James

    2003-01-01

    Ground-based model scale aeroacoustic data is frequently used to predict the results of flight tests while saving time and money. The value of a model scale test is therefore dependent on how well the data can be transformed to the full scale conditions. In the spring of 2000, a model scale test was conducted to prove the value of chevron nozzles as a noise reduction device for turbojet applications. The chevron nozzle reduced noise by 2 EPNdB at an engine pressure ratio of 2.3 compared to that of the standard conic nozzle. This result led to a full scale flyover test in the spring of 2001 to verify these results. The flyover test confirmed the 2 EPNdB reduction predicted by the model scale test one year earlier. However, further analysis of the data revealed that the spectra and directivity, both on an OASPL and PNL basis, do not agree in either shape or absolute level. This paper explores these differences in an effort to improve the data transformation from model scale to full scale.

  18. Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise

    2016-01-01

    A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.

  19. Flow Separation Control on A Full-Scale Vertical Tail Model Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Andino, Marlyn Y.; Lin, John C.; Washburn, Anthony E.; Whalen, Edward A.; Graff, Emilio C.; Wygnanski, Israel J.

    2015-01-01

    This paper describes test results of a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jets AFC was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The flow separation control optimization was performed at 100 knots, a maximum rudder deflection of 30deg, and sideslip angles of 0deg and -7.5deg. Greater than 20% increments in side force were achieved at the two sideslip angles with a 31-actuator AFC configuration. Flow physics and flow separation control associated with the AFC are presented in detail. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. The momentum coefficient (C sub mu) is shown to be a useful parameter to use for scaling-up sweeping jet AFC from sub-scale tests to full-scale applications. Reducing the number of actuators at a constant total C(sub mu) of approximately 0.5% and tripling the actuator spacing did not significantly affect the flow separation control effectiveness.

  20. Enhancing post anaerobic digestion of full-scale anaerobically digested sludge using free nitrous acid treatment.

    PubMed

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Yuan, Zhiguo

    2016-05-01

    In some wastewater treatment plants (WWTPs), the ever increasing production of sludge with the expanding population overloaded the anaerobic digestion which compromises the sludge reduction efficiency. Post anaerobic digestion of anaerobically digested sludge (ADS) has been applied to enhance sludge reduction, however, to a very limited extent. This study verified the effectiveness of free nitrous acid (FNA i.e. HNO2) pre-treatment on enhancing full-scale ADS degradation in post anaerobic digestion. The ADS collected from a full-scale WWTP was subject to FNA treatment at concentrations of 0.77, 1.54, 2.31, 3.08, and 3.85 mg N/L for 24 h followed by biochemical methane potential tests. The FNA treatment at all concentrations resulted in an increase (from 1.5-3.1 % compared to the control) in sludge reduction with the highest improvement achieved at 0.77 mg HNO2-N/L. The FNA treatment at this concentration also resulted in the highest increase in methane production (40 %) compared to the control. The economic analysis indicates that FNA treatment is economically attractive for enhancing post anaerobic digestion of full-scale ADS.

  1. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 2; Full-Scale Impact Testing

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Annett, Martin S.; Jackson, Karen E.; Polanco, Michael A.

    2012-01-01

    NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test.

  2. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    SciTech Connect

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  3. Flow field prediction in full-scale Carrousel oxidation ditch by using computational fluid dynamics.

    PubMed

    Yang, Yin; Wu, Yingying; Yang, Xiao; Zhang, Kai; Yang, Jiakuan

    2010-01-01

    In order to optimize the flow field in a full-scale Carrousel oxidation ditch with many sets of disc aerators operating simultaneously, an experimentally validated numerical tool, based on computational fluid dynamics (CFD), was proposed. A full-scale, closed-loop bioreactor (Carrousel oxidation ditch) in Ping Dingshan Sewage Treatment Plant in Ping Dingshan City, a medium-sized city in Henan Province of China, was evaluated using CFD. Moving wall model was created to simulate many sets of disc aerators which created fluid motion in the ditch. The simulated results were acceptable compared with the experimental data and the following results were obtained: (1) a new method called moving wall model could simulate the flow field in Carrousel oxidation ditch with many sets of disc aerators operating simultaneously. The whole number of cells of grids decreased significantly, thus the calculation amount decreased, and (2) CFD modeling generally characterized the flow pattern in the full-scale tank. 3D simulation could be a good supplement for improving the hydrodynamic performance in oxidation ditch designs.

  4. Full-scale high angle-of-attack tests of an F/A-18

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.; Lanser, Wendy R.; James, Kevin D.

    1992-01-01

    This paper presents an overview of high angle-of-attack tests of a full-scale F/A-18 in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center at Moffett Field, California. A production aircraft was tested over an angle-of-attack range of 18 to 50 deg and at wind speeds of up to 100 knots. These tests had three primary test objectives. Pneumatic and mechanical forebody flow control devices were tested at full-scale and shown to produce significant yawing moments for lateral control of the aircraft at high angles of attack. Mass flow requirements for the pneumatic system were found to scale with freestream density and speed rather than freestream dynamic pressure. Detailed measurements of the pressures buffeting the vertical tail were made and spatial variations in the buffeting frequency were found. The LEX fence was found to have a significant effect on the frequency distribution on the outboard surface of the vertical fin. In addition to the above measurements, an extensive set of data was acquired for the validation of computational fluid dynamics codes and for comparison with flight test and small-scale wind tunnel test results.

  5. Aerobic sludge granulation in a full-scale sequencing batch reactor.

    PubMed

    Li, Jun; Ding, Li-Bin; Cai, Ang; Huang, Guo-Xian; Horn, Harald

    2014-01-01

    Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m(3) d(-1) for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g(-1), diameter of 0.5 mm, and settling velocity of 42 m h(-1) were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation.

  6. Rotorcraft research testing in the National Full-Scale Aerodynamics Complex at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Smith, C. A.; Johnson, W.

    1985-01-01

    The unique capabilities of the National Full-Scale Aerodynamics Complex (NFAC) for testing rotorcraft systems are described. The test facilities include the 40- by 80-Foot Wind Tunnel, the 80- by 120-Foot Wind Tunnel, and the Outdoor Aerodynamic Research Facility. The Ames 7- by 10-Foot Subsonic Wind Tunnel is also used in support of the rotor research programs conducted in the NFAC. Detailed descriptions of each of the facilities, with an emphasis on helicopter rotor test capability, are presented. The special purpose rotor test equipment used in conducting helicopter research is reviewed. Test rigs to operate full-scale helicopter main rotors, helicopter tail rotors, and tilting prop-rotors are available, as well as full-scale and small-scale rotor systems for use in various research programs. The test procedures used in conducting rotor experiments are discussed together with representative data obtained from previous test programs. Specific examples are given for rotor performance, loads, acoustics, system interactions, dynamic and aeroelastic stability, and advanced technology and prototype demonstration models.

  7. Finite Element Simulation of Three Full-Scale Crash Tests for Cessna 172 Aircraft

    NASA Technical Reports Server (NTRS)

    Mason, Brian H.; Warren, Jerry E., Jr.

    2017-01-01

    The NASA Emergency Locator Transmitter Survivability and Reliability (ELT-SAR) project was initiated in 2013 to assess the crash performance standards for the next generation of emergency locator transmitter (ELT) systems. Three Cessna 172 aircraft were acquired to perform crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Full-scale crash tests were conducted in the summer of 2015 and each test article was subjected to severe, but survivable, impact conditions including a flare-to-stall during emergency landing, and two controlled-flight-into-terrain scenarios. Full-scale finite element analyses were performed using a commercial explicit solver, ABAQUS. The first test simulated impacting a concrete surface represented analytically by a rigid plane. Tests 2 and 3 simulated impacting a dirt surface represented analytically by an Eulerian grid of brick elements using a Mohr-Coulomb material model. The objective of this paper is to summarize the test and analysis results for the three full-scale crash tests. Simulation models of the airframe which correlate well with the tests are needed for future studies of alternate ELT mounting configurations.

  8. Microbial Community Composition of Polyhydroxyalkanoate-Accumulating Organisms in Full-Scale Wastewater Treatment Plants Operated in Fully Aerobic Mode

    PubMed Central

    Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2013-01-01

    The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11–18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5–38.2 mg-C g-VSS−1 h−1). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912

  9. Ribose 5-Phosphate Isomerase Investigations for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Jewett, Kathy; Sandwick, Roger K.

    2011-01-01

    The enzyme ribose 5-phosphate isomerase (RpiA) has many features that make it attractive as a focal point of a semester-long, advanced biochemistry laboratory for undergraduate students. The protein can easily and inexpensively be isolated from spinach using traditional purification techniques. Characterization of RpiA enzyme activity can be…

  10. Laboratory investigation of fire radiative energy and smoke aerosol emissions

    Treesearch

    Charles Ichoku; J. Vanderlei Martins; Yoram J. Kaufman; Martin J. Wooster; Patrick H. Freeborn; Wei Min Hao; Stephen Baker; Cecily A. Ryan; Bryce L. Nordgren

    2008-01-01

    Fuel biomass samples from southern Africa and the United States were burned in a laboratory combustion chamber while measuring the biomass consumption rate, the fire radiative energy (FRE) release rate (Rfre), and the smoke concentrations of carbon monoxide (CO), carbon dioxide (CO2), and particulate matter (PM). The PM mass emission rate (RPM) was quantified from...

  11. A Collaborative, Investigative Recombinant DNA Technology Course with Laboratory

    ERIC Educational Resources Information Center

    Pezzementi, Leo; Johnson, Joy F.

    2002-01-01

    A recombinant DNA technology course was designed to promote contextual, collaborative, inquiry-based learning of science where students learn from one another and have a sense of ownership of their education. The class stressed group presentations and critical reading and discussion of scientific articles. The laboratory consisted of two research…

  12. Vectors and Fomites: An Investigative Laboratory for Undergraduates.

    ERIC Educational Resources Information Center

    Adamo, Joseph A.; Gealt, Michael A.

    1996-01-01

    Presents a laboratory model system for introductory microbiology students that involves hands-on studies of bacteria vectored in soil nematodes. Describes a series of experiments designed to demonstrate vector-fomite transmission, bacterial survival, and disinfectant activity. Introduces the concept of genetically engineered microorganisms and the…

  13. Laboratory and field investigations of marsh edge erosion

    USDA-ARS?s Scientific Manuscript database

    This chapter presents the laboratory experiments and field observations of marsh edge erosion. The marsh retreat rate in a field study site in Terrebonne Bay, Louisiana, was measured using GPS systems and aerial photographs. The wave environment was also measured in order to correlate the marsh edge...

  14. Students' Written Arguments in General Chemistry Laboratory Investigations

    ERIC Educational Resources Information Center

    Choi, Aeran; Hand, Brian; Greenbowe, Thomas

    2013-01-01

    This study aimed to examine the written arguments developed by college freshman students using the Science Writing Heuristic approach in inquiry-based general chemistry laboratory classrooms and its relationships with students' achievement in chemistry courses. Fourteen freshman students participated in the first year of the study while 19…

  15. 33 CFR 209.340 - Laboratory investigations and materials testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydraulic laboratories, and to the Inter-Agency Sedimentation Project. (c) References. (1) AR 37-20. (2) AR... units of government, foreign governments and private firms under the following conditions: (1) The work will be performed on a cost reimbursable basis. (2) Work may be performed for State and local units...

  16. An Adaptable Investigative Graduate Laboratory Course for Teaching Protein Purification

    ERIC Educational Resources Information Center

    Carroll, Christopher W.; Keller, Lani C.

    2014-01-01

    This adaptable graduate laboratory course on protein purification offers students the opportunity to explore a wide range of techniques while allowing the instructor the freedom to incorporate their own personal research interests. The course design involves two sequential purification schemes performed in a single semester. The first part…

  17. An Adaptable Investigative Graduate Laboratory Course for Teaching Protein Purification

    ERIC Educational Resources Information Center

    Carroll, Christopher W.; Keller, Lani C.

    2014-01-01

    This adaptable graduate laboratory course on protein purification offers students the opportunity to explore a wide range of techniques while allowing the instructor the freedom to incorporate their own personal research interests. The course design involves two sequential purification schemes performed in a single semester. The first part…

  18. Vectors and Fomites: An Investigative Laboratory for Undergraduates.

    ERIC Educational Resources Information Center

    Adamo, Joseph A.; Gealt, Michael A.

    1996-01-01

    Presents a laboratory model system for introductory microbiology students that involves hands-on studies of bacteria vectored in soil nematodes. Describes a series of experiments designed to demonstrate vector-fomite transmission, bacterial survival, and disinfectant activity. Introduces the concept of genetically engineered microorganisms and the…

  19. A Collaborative, Investigative Recombinant DNA Technology Course with Laboratory

    ERIC Educational Resources Information Center

    Pezzementi, Leo; Johnson, Joy F.

    2002-01-01

    A recombinant DNA technology course was designed to promote contextual, collaborative, inquiry-based learning of science where students learn from one another and have a sense of ownership of their education. The class stressed group presentations and critical reading and discussion of scientific articles. The laboratory consisted of two research…

  20. Ribose 5-Phosphate Isomerase Investigations for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Jewett, Kathy; Sandwick, Roger K.

    2011-01-01

    The enzyme ribose 5-phosphate isomerase (RpiA) has many features that make it attractive as a focal point of a semester-long, advanced biochemistry laboratory for undergraduate students. The protein can easily and inexpensively be isolated from spinach using traditional purification techniques. Characterization of RpiA enzyme activity can be…

  1. An investigative graduate laboratory course for teaching modern DNA techniques.

    PubMed

    de Lencastre, Alexandre; Thomas Torello, A; Keller, Lani C

    2017-07-08

    This graduate-level DNA methods laboratory course is designed to model a discovery-based research project and engages students in both traditional DNA analysis methods and modern recombinant DNA cloning techniques. In the first part of the course, students clone the Drosophila ortholog of a human disease gene of their choosing using Gateway(®) cloning. In the second part of the course, students examine the expression of their gene of interest in human cell lines by reverse transcription PCR and learn how to analyze data from quantitative reverse transcription PCR (qRT-PCR) experiments. The adaptability of the Gateway(®) cloning system is ideally suited for students to design and create different types of expression constructs to achieve a particular experimental goal (e.g., protein purification, expression in cell culture, and/or subcellular localization), and the genes chosen can be aligned to the research interests of the instructor and/or ongoing research in a department. Student evaluations indicate that the course fostered a genuine excitement for research and in depth knowledge of both the techniques performed and the theory behind them. Our long-term goal is to incorporate this DNA methods laboratory as the foundation for an integrated laboratory sequence for the Master of Science degree program in Molecular and Cellular Biology at Quinnipiac University, where students use the reagents and concepts they developed in this course in subsequent laboratory courses, including a protein methods and cell culture laboratory. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):351-359, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  2. CYMIC{reg_sign} -- Boiler scale-up and full scale demonstration experiences

    SciTech Connect

    Kokko, A.; Karvinen, R.; Ahlstedt, H.

    1995-12-31

    This paper describes the CYMIC boiler scale-up principles, first full scale experiences from demonstration plant and results from mathematical modelling of the cyclones. CYMIC pilot testing was successfully completed with very positive results, the next step was a CYMIC scale-up and full scale demonstration. The 30 MWth demonstration plant was commissioned during the fall of 1994. The plant is owned by VAPO Oy and it is in the city of Lieksa, eastern Finland. The CYMIC has been scaled up by developing six different cyclones and the multiplication system to cover the capacity range from 30 to 600 MWth. The design of this CYMIC series and the first sold industrial scale CYMIC are presented in the paper. The scale-up of the cyclone was mathematically modelled by Professor Karvinen and his group at Tampere University of Technology. The model which uses Sflow-code was tested and the parameters were set using the pilot test results. The model operated well, so three bigger cyclones were calculated. The first was the cyclone for the Lieksa plant and the other two were bigger standard cyclones. Particles were also included in the model. The variables in the calculations were the cyclone diameter, inlet vane shape and position. Commissioning of the Lieksa plant began in August 1994. The process including operation of the cyclone and the gaslock were then verified at full scale. Flue gas emissions, the combustion efficiency and the performance of the cyclone were also measured. This paper discuss the most interesting results of the measurements.

  3. The effect of primary sedimentation on full-scale WWTP nutrient removal performance.

    PubMed

    Puig, S; van Loosdrecht, M C M; Flameling, A G; Colprim, J; Meijer, S C F

    2010-06-01

    Traditionally, the performance of full-scale wastewater treatment plants (WWTPs) is measured based on influent and/or effluent and waste sludge flows and concentrations. Full-scale WWTP data typically have a high variance which often contains (large) measurement errors. A good process engineering evaluation of the WWTP performance is therefore difficult. This also makes it usually difficult to evaluate effect of process changes in a plant or compare plants to each other. In this paper we used a case study of a full-scale nutrient removing WWTP. The plant normally uses presettled wastewater, as a means to increase the nutrient removal the plant was operated for a period by-passing raw wastewater (27% of the influent flow). The effect of raw wastewater addition has been evaluated by different approaches: (i) influent characteristics, (ii) design retrofit, (iii) effluent quality, (iv) removal efficiencies, (v) activated sludge characteristics, (vi) microbial activity tests and FISH analysis and, (vii) performance assessment based on mass balance evaluation. This paper demonstrates that mass balance evaluation approach helps the WWTP engineers to distinguish and quantify between different strategies, where others could not. In the studied case, by-passing raw wastewater (27% of the influent flow) directly to the biological reactor did not improve the effluent quality and the nutrient removal efficiency of the WWTP. The increase of the influent C/N and C/P ratios was associated to particulate compounds with low COD/VSS ratio and a high non-biodegradable COD fraction. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Laboratory Investigation of Relaxation Pathways for Vibrationally Excited OH

    NASA Astrophysics Data System (ADS)

    Kalogerakis, K. S.; Thiebaud, J.; Matsiev, D.; Copeland, R. A.

    2012-04-01

    The hydroxyl radical is a key species in the energy budget of the terrestrial atmospheres. In the Earth's upper atmosphere, vibrationally excited OH radicals (v ≤ 9) are formed by the H + O3 reaction. The non-thermal vibrational energy is either emitted as an infrared (IR) or visible photon, or converted into translational and internal energy via collisions with ambient gases. OH emission was recently reported for the first time in the nightglow of Venus [1]. Model calculations of the Mars airglow have also shown that the predicted intensity of the OH emission is extremely sensitive to the pathway of vibrational relaxation [2]. Accurate rate constant and mechanistic pathway information for the deactivation of the OH(v) states is essential in the modeling of both the atmospheric OH emission and the heating efficiency of the H + O3 reaction, as exemplified in our studies of vibrational relaxation for OH(v = 7, 9) by O, O2, N2, and CO2 [3,4]. We have initiated a research program to investigate the key pathways involved in OH(v) vibrational relaxation and their dependence on the collider species and temperature. In the laboratory experiments, we probe the fraction of collisions that lead to single-quantum relaxation of OH(v = 8) to OH(v = 7) for different atmospheric colliders. We developed a three-laser approach using the following steps: (1) generation of OH(v ≤ 4) by the O(1D) + H2 reaction following ozone photolysis at 248 nm by an KrF excimer laser in a mixture containing nitrogen and hydrogen; (2) infrared overtone excitation of the OH(v = 4) radicals to v = 7 at 938 nm using a pulsed optical parametric oscillator system triggered when the v = 4 population is near maximum and; (3) detection of the OH(v = 7) population by laser-induced fluorescence using the B - X (0,7) band at 213 nm with a pulsed tunable dye laser timed in order to scan the delay with respect to the IR pump laser. We will present the experimental methodology and measurements on the

  5. Recent "Ground Testing" Experiences in the National Full-Scale Aerodynamics Complex

    NASA Technical Reports Server (NTRS)

    Zell, Peter; Stich, Phil; Sverdrup, Jacobs; George, M. W. (Technical Monitor)

    2002-01-01

    The large test sections of the National Full-scale Aerodynamics Complex (NFAC) wind tunnels provide ideal controlled wind environments to test ground-based objects and vehicles. Though this facility was designed and provisioned primarily for aeronautical testing requirements, several experiments have been designed to utilize existing model mount structures to support "non-flying" systems. This presentation will discuss some of the ground-based testing capabilities of the facility and provide examples of groundbased tests conducted in the facility to date. It will also address some future work envisioned and solicit input from the SATA membership on ways to improve the service that NASA makes available to customers.

  6. Particle Density Using Deposition Filters at the Full Scale RDD Experiments.

    PubMed

    Berg, Rodney; Gilhuly, Colleen; Korpach, Ed; Ungar, Kurt

    2016-05-01

    During the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials carried out in Suffield, Alberta, Canada, several suites of detection equipment and software models were used to measure and characterize the ground deposition. The FSRDD Field Trials were designed to disperse radioactive lanthanum of known activity to better understand such an event. This paper focuses on one means of measuring both concentration and the particle size distribution of the deposition using electrostatic filters placed around the trial site to collect deposited particles for analysis. The measurements made from ground deposition filters provided a basis to guide modeling and validate results by giving insight on how particles are distributed by a plume.

  7. The selection of materials technologies for full-scale development. [aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Aronstamm, G. A.

    1979-01-01

    Candidate material technologies offering the largest application payoff for the least development costs and the least risk should be selected for full-scale development funding. A cost/benefit methodology is developed to rate candidate material and process opportunities for future aircraft engine applications. A development cost estimate and risk analysis is compared with the economic benefit to establish a ranking of the candidate advanced technologies. Also included are examples of this methodology as applied to high-strength HIP turbine disks, advanced oxide dispersion strengthened burner liners, and ceramic first-stage high-pressure turbine vanes.

  8. Method of Harmonic Balance in Full-Scale-Model Tests of Electrical Devices

    NASA Astrophysics Data System (ADS)

    Gorbatenko, N. I.; Lankin, A. M.; Lankin, M. V.

    2017-01-01

    Methods for determining the weber-ampere characteristics of electrical devices, one of which is based on solution of direct problem of harmonic balance and the other on solution of inverse problem of harmonic balance by the method of full-scale-model tests, are suggested. The mathematical model of the device is constructed using the describing function and simplex optimization methods. The presented results of experimental applications of the method show its efficiency. The advantage of the method is the possibility of application for nondestructive inspection of electrical devices in the processes of their production and operation.

  9. Development of a full-scale training simulator for an 800-MW power unit

    NASA Astrophysics Data System (ADS)

    Zhuravlev, S. K.; Andreev, A. M.

    2013-07-01

    Stages of work involving preparation of requirements specification, development, and subsequent implementation of a project for constructing a full-scale training simulator of an 800-MW power unit are considered. The training simulator is constructed using the Kosmotronika-Venets computerized automation system developed by PIK Progress (Moscow). The entire personnel training system, the arrangement of drills, and the concept of structuring the entire personnel education system at the Surgut GRES-2 district power station, a branch of E.ON Rossiya, had to be touched in drawing up the requirements specification for elaborating the training simulator. The article describes how these problems were solved.

  10. Unsteady aerodynamic load estimates on turning vanes in the national full-scale aerodynamic complex

    NASA Technical Reports Server (NTRS)

    Norman, Thomas R.

    1986-01-01

    Unsteady aerodynamic design loads have been estimated for each of the vane sets in the National Full-Scale Aerodynamic Complex (NFAC). These loads include estimates of local loads over one vane section and global loads over an entire vane set. The analytical methods and computer programs used to estimate these loads are discussed. In addition, the important computer input parameters are defined and the rationale used to estimate them is discussed. Finally, numerical values are presented for both the computer input parameters and the calculated design loads for each vane set.

  11. National full-scale aerodynamic complex integrated systems test data system

    NASA Technical Reports Server (NTRS)

    Jung, Oscar; Maynard, Everett

    1988-01-01

    The data acquisition system of the 80 by 120 foot wind tunnel of the National Full-Scale Aerodynamic Facility (NFAC) is described. How the various satellite data stations are connected to the data acquisition system is shown. As an illustrative example, a strain gage signal is traced from one of the satellite data locations to its final destination in the data system where the signal is processed, observed in real time on various parallel graphic displays, and stored on magnetic disks for postrun data reduction.

  12. The selection of materials technologies for full-scale development. [aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Aronstamm, G. A.

    1979-01-01

    Candidate material technologies offering the largest application payoff for the least development costs and the least risk should be selected for full-scale development funding. A cost/benefit methodology is developed to rate candidate material and process opportunities for future aircraft engine applications. A development cost estimate and risk analysis is compared with the economic benefit to establish a ranking of the candidate advanced technologies. Also included are examples of this methodology as applied to high-strength HIP turbine disks, advanced oxide dispersion strengthened burner liners, and ceramic first-stage high-pressure turbine vanes.

  13. Crash response data system for the controlled impact demonstration (CID) of a full scale transport aircraft

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Knight, Vernie H., Jr.

    1986-01-01

    NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.

  14. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    SciTech Connect

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P.

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  15. The optimization of aircraft seat cushion fire-blocking layers. Full Scale: Test description and results

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Duskin, F. E.

    1982-01-01

    Full-scale burn tests were conducted on thirteen different seat cushion configurations in a cabin fire simulator. The fire source used was a quartz lamp radiant energy panel with a propane pilot flame. During each test, data were recorded for cushion temperatures, radiant heat flux, rate of weight loss of test specimens, and cabin temperatures. When compared to existing passenger aircraft seat cushions, the test specimens incorporating a fire barrier and those fabricated from advance materials, using improved construction methods, exhibited significantly greater fire resistance.

  16. Finding the ideal strategy: Full-scale fatigue testing of wind turbine rotor shafts

    NASA Astrophysics Data System (ADS)

    Rauert, T.; Herrmann, J.; Dalhoff, P.; Sander, M.

    2016-09-01

    For the purpose of a light weight design of rotor shafts, fatigue testing is necessary. Since full-scale fatigue tests of these large components are time consuming, costly and have not been done before, much effort has to be put into the implementation of a suitable test strategy. The paper presents the boundary conditions that have to be considered to determine the finite life regime of the component S/N-curve. A statistical simulation shows how much the derived S/N-curve is influenced by the specific test procedure.

  17. The development of a facility for full-scale testing of airfoil performance in simulated rain

    NASA Technical Reports Server (NTRS)

    Taylor, John T.; Moore, Cadd T., III; Campbell, Bryan A.; Melson, W. EDWARD., Jr.

    1988-01-01

    NASA Langley's Aircraft Landing Dynamics Facility has been adapted in order to test the performance of airfoils in a simulated rain environment, at rainfall rates of 2, 10, 30, and 40 inches/hour, and thereby derive the scaling laws associated with simulated rain in wind tunnel testing. A full-scale prototype of the rain-generation system has been constructed and tested for suitable rain intensity, uniformity, effects of crosswinds on uniformity, and drop size range. The results of a wind tunnel test aimed at ascertaining the minimum length of the simulated rain field required to yield an airfoil performance change due to the rain environment are presented.

  18. Characterization of the Boundary Layers on Full-Scale Bluefin Tuna

    DTIC Science & Technology

    2014-09-30

    Although the typical swimming speeds of bluefin tuna are 1 – 2 m/s, they can be higher during strong accelerations. The goal of the work...speeds. The question is whether laminar flow or an advanced propulsion mechanism (or both) allows them to swim at high speeds. A full-scale model...and drag reduction on the body. The typical swimming speed of bluefin tuna is 1 – 2 m/s, but it can be higher during strong accelerations. The

  19. Recent "Ground Testing" Experiences in the National Full-Scale Aerodynamics Complex

    NASA Technical Reports Server (NTRS)

    Zell, Peter; Stich, Phil; Sverdrup, Jacobs; George, M. W. (Technical Monitor)

    2002-01-01

    The large test sections of the National Full-scale Aerodynamics Complex (NFAC) wind tunnels provide ideal controlled wind environments to test ground-based objects and vehicles. Though this facility was designed and provisioned primarily for aeronautical testing requirements, several experiments have been designed to utilize existing model mount structures to support "non-flying" systems. This presentation will discuss some of the ground-based testing capabilities of the facility and provide examples of groundbased tests conducted in the facility to date. It will also address some future work envisioned and solicit input from the SATA membership on ways to improve the service that NASA makes available to customers.

  20. Use of Boundary Layer Transition Detection to Validate Full-Scale Flight Performance Predictions

    NASA Technical Reports Server (NTRS)

    Hamner, Marvine; Owens, L. R., Jr.; Wahls, R. A.; Yeh, David

    1999-01-01

    Full-scale flight performance predictions can be made using CFD or a combination of CFD and analytical skin-friction predictions. However, no matter what method is used to obtain full-scale flight performance predictions knowledge of the boundary layer state is critical. The implementation of CFD codes solving the Navier-Stokes equations to obtain these predictions is still a time consuming, expensive process. In addition, to ultimately obtain accurate performance predictions the transition location must be fixed in the CFD model. An example, using the M2.4-7A geometry, of the change in Navier-Stokes solution with changes in transition and in turbulence model will be shown. Oil flow visualization using the M2.4-7A 4.0% scale model in the 14'x22' wind tunnel shows that fixing transition at 10% x/c in the CFD model best captures the flow physics of the wing flow field. A less costly method of obtaining full-scale performance predictions is the use of non-linear Euler codes or linear CFD codes, such as panel methods, combined with analytical skin-friction predictions. Again, knowledge of the boundary layer state is critical to the accurate determination of full-scale flight performance. Boundary layer transition detection has been performed at 0.3 and 0.9 Mach numbers over an extensive Reynolds number range using the 2.2% scale Reference H model in the NTF. A temperature sensitive paint system was used to determine the boundary layer state for these conditions. Data was obtained for three configurations: the baseline, undeflected flaps configuration; the transonic cruise configuration; and, the high-lift configuration. It was determined that at low Reynolds number conditions, in the 8 to 10 million Reynolds number range, the baseline configuration has extensive regions of laminar flow, in fact significantly more than analytical skin-friction methods predict. This configuration is fully turbulent at about 30 million Reynolds number for both 0.3 and 0.9, Mach numbers

  1. Report for Full-Scale Mulch Wall Treatment of Chlorinated Hydrocarbon-Impacted Groundwater

    DTIC Science & Technology

    2006-05-31

    MW-33S MW-34S MW-31S MW-32S B301-MP5S ND B301- MP6S 1.2 SB9 SB7 SB3 SB5 SB2 HP4 SB1 HP1 A’ A MW-30S MW-27S 4/13/04 FULL-SCALE MULCH WALL Site B... MP6S 1.2 SB9 SB7 SB3 SB5 SB2 HP4 SB1 HP1 A’ A MW-30S MW-27S INSET MAP N Inset Scale (ft) 500 10000 Groundwater Flow 4 in steel gas main 24 in CMP

  2. Crash response data system for the controlled impact demonstration (CID) of a full scale transport aircraft

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Knight, Vernie H., Jr.

    1986-01-01

    NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.

  3. Full-Scale Tests of Metal Propellers at High Tip Speeds

    NASA Technical Reports Server (NTRS)

    Wood, Donald H

    1932-01-01

    This report describes tests of 10 full-scale metal propellers of several thickness ratios at various tip speeds up to 1,350 feet per second. The results indicate no loss of efficiency up to tip speeds of approximately 1,000 feet per second. Above this tip speed the loss is at a rate of about 10 per cent per 100 feet per second increase relative to the efficiency at the lower speeds for propellers of pitch diameter ratios 0.3 to 0.4. Propellers having sections of small thickness ratio can be run at slightly higher speeds than thick ones before beginning to lose efficiency.

  4. APOLLO SOYUZ TEST PROJECT [ASTP] CREW POSE IN FRONT OF FULL- SCALE MOCKUP

    NASA Technical Reports Server (NTRS)

    1975-01-01

    American and Soviet crewmen for the Apollo Soyuz Test Project visited KSC today as part of a familiarization tour for the Soviet cosmonauts. During their tour, they inspected a full- scale mockup of the Apollo and Soyuz spacecraft in a docked configuration in the transfer aisle of the Vehicle Assembly Building. From left are Astronauts Vance Brand and Thomas P. Stafford, Cosmonauts Aleksey Leonov and Valeriy Kubasov, and Astronaut Donald K. Slayton. Launch of history's first international manned space mission is scheduled for July 15, 1975.

  5. Investigation of Nonlinear Whistler Wave Processes in the Laboratory

    NASA Astrophysics Data System (ADS)

    Tejero, E. M.; Blackwell, D. D.; Amatucci, B.; Crabtree, C. E.; Ganguli, G.; Rudakov, L.

    2015-12-01

    Nonlinear interactions involving whistler wave turbulence can strongly effect the dynamics of the radiation belts. The building blocks of whistler wave turbulence are currently being studied in the NRL Space Physics Simulation Chamber (SPSC) under scaled magnetospheric conditions. These processes include parametric three-wave decay and a nonlinear wave-particle scattering off of thermal electrons that can substantially change the wave vector direction and energy flux. In the laboratory experiments, both of these processes have been observed and characterized. The results are consistent with theoretical predictions. Results from continuing laboratory experiments demonstrating triggered emissions and chorus-like emissions via nonlinear whistler wave-energetic particle interactions will be discussed. These chirped whistler waves are also observed to exhibit three-wave decay/coalescence and wave-particle scattering.

  6. X-15 #3 pedestal-mounted full-scale replica covered in snow

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The full scale mock-up of X-15 #3 was installed September 1995 at the NASA Dryden Flight Research Center, Edwards, California. The original X-15 #3, serial number 56-6672, was destroyed on 15 November 1967, in a crash that also fatally injured pilot Maj. Michael J. Adams. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph

  7. Installation of X-15 full-scale mock-up at Dryden

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This photo shows workers installing the full-scale mock-up of X-15 #3 at the NASA Dryden Flight Research Center, Edwards, California, in September 1995. The mock-up is now on a pedestal outside the main gate at the center. The original X-15 #3, serial number 56-6672, was destroyed 15 November 1967, in a crash that also fatally injured pilot Maj. Michael J. Adams. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of

  8. Testing of Full Scale Flight Qualified Kevlar Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Thesken, John; Phoenix, Leigh

    2007-01-01

    Many decades ago NASA identified a need for low-mass pressure vessels for carrying various fluids aboard rockets, spacecraft, and satellites. A pressure vessel design known as the composite overwrapped pressure vessel (COPV) was identified to provide a weight savings over traditional single-material pressure vessels typically made of metal and this technology has been in use for space flight applications since the 1970's. A typical vessel design consisted of a thin liner material, typically a metal, overwrapped with a continuous fiber yarn impregnated with epoxy. Most designs were such that the overwrapped fiber would carry a majority of load at normal operating pressures. The weight advantage for a COPV versus a traditional singlematerial pressure vessel contributed to widespread use of COPVs by NASA, the military, and industry. This technology is currently used for personal breathing supply storage, fuel storage for auto and mass transport vehicles and for various space flight and aircraft applications. The NASA Engineering and Safety Center (NESC) was recently asked to review the operation of Kevlar 2 and carbon COPVs to ensure they are safely operated on NASA space flight vehicles. A request was made to evaluate the life remaining on the Kevlar COPVs used on the Space Shuttle for helium and nitrogen storage. This paper provides a review of Kevlar COPV testing relevant to the NESC assessment. Also discussed are some key findings, observations, and recommendations that may be applicable to the COPV user community. Questions raised during the investigations have revealed the need for testing to better understand the stress rupture life and age life of COPVs. The focus of this paper is to describe burst testing of Kevlar COPVs that has been completed as a part of an the effort to evaluate the effects of ageing and shelf life on full scale COPVs. The test articles evaluated in this discussion had a diameter of 22 inches for S/N 014 and 40 inches for S/N 011. The

  9. X-15A-2 with full scale ablative coating (pink X-15) on NASA ramp

    NASA Technical Reports Server (NTRS)

    1967-01-01

    In June 1967, the X-15A-2 rocket powered research aircraft received a full-scale ablative coating to protect the craft from the high temperatures associated with supersonic flight. This pink eraser-like substance, applied to the #2 aircraft (56-6671), was then covered with a white sealant coat before flight. This coating would help the #2 aircraft reach the record speed of 4,520 mph (Mach 6.7). The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. However, the X-15A-2 had been elongated to 52 ft 5 in. Like the other two X-15s, it was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of

  10. X-15A-2 with full-scale ablative coating (pink X-15) in Building 4821

    NASA Technical Reports Server (NTRS)

    1967-01-01

    In June 1967, the X-15A-2 rocket-powered research aircraft received a full-scale ablative coating to protect the craft from the high temperatures associated with hypersonic flight (above Mach 5). This pink eraser-like substance, applied to the X-15A-2 aircraft (56-6671), was then covered with a white sealant coat before flight. This coating would help the #2 aircraft reach the record speed of 4,520 mph (Mach 6.7). The basic X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. However, the X-15A-2 had been elongated to 52 ft 5 in. Like the other two X-15s, it was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft

  11. Dilution of exhaust from rooftop stacks -- comparison of wind tunnel data with full-scale measurements

    SciTech Connect

    Saathoff, P.; Wu, H.; Stathopoulos, T.

    1996-12-31

    A wind tunnel study was performed to evaluate the accuracy of concentration estimates obtained near rooftop stacks. Results were compared to field data obtained at a large university laboratory. Wind tunnel concentrations generally compared well with the field data. Values of C obtained at rooftop and ground-level receptors were usually within a factor of two of the field measurements. Larger discrepancies occurred at some receptors, however. The results provide evidence that the wind tunnel accurately simulates nearfield dispersion of exhaust from rooftop sources for near neutral conditions. In the present study, the exhaust momentum was relatively low (V{sub e}/U{sub h} < 2). Further work is required to investigate cases which have larger values of V{sub e}/U{sub h}.

  12. Temporal variation in methanogen communities of four different full-scale anaerobic digesters treating food waste-recycling wastewater.

    PubMed

    Lee, Joonyeob; Hwang, Byungchul; Koo, Taewoan; Shin, Seung Gu; Kim, Woong; Hwang, Seokhwan

    2014-09-01

    Methanogen communities were investigated using 454 pyrosequencing in four different full-scale anaerobic digesters treating food waste-recycling wastewater. Seasonal samples were collected for 2 years, and 24 samples were available for microbial analysis from a plug flow thermophilic (PT) digester, a continuously-stirred tank thermophilic (CT) digester, an upflow anerobic sludge blanket mesophilic (UM) digester, and a continuously-stirred tank mesophilic (CM) digester. Methanoculleus, Methanobacterium, Methanothermobacter, and Methanosaeta were revealed to be key methanogens in full-scale anaerobic digestion process treating food waste-recycling wastewater. In the PT digester, Methanoculleus was dominant (96.8%). In the CT digester, Methanoculleus was dominant (95.4%) during the first year of operation, but the dominant genus was shifted to Methanothermobacter (98.5%) due to pH increase. In the UM digester, Methanosaeta was dominant (87.2%). In the CM digester, Methanoculleus was constantly dominant (74.8%) except during CM5 when Methanosaeta was dominant (62.6%) due to the low residual acetate concentration (0.1 g/L). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The HyperV Full-Scale Contoured-Gap Coaxial Plasma Railgun

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel; Case, Andrew; Messer, Sarah; Bomgardner, Richard; Elton, Raymond; Wu, Linchun; Witherspoon, F. Douglas

    2009-11-01

    HyperV has been developing pulsed plasma injected coaxial railguns with a contoured gap profile designed to mitigate the blowby instability. Previous work using half-scale guns has been successful in launching 150 μg plasmas at 90 km/s [1]. In order to meet the original goal of 200 μg at 200 km/s the full-scale coaxial plasma gun has been constructed, and initial testing is beginning. This new plasma gun consists of two machined aluminum electrodes and a UHMW polyethylene breech insulator. The gun is breech fed by 64 ablative polyethylene capillary discharge units identical to the half-scale gun units. Maximum accelerator energy storage has also been increased 50%. Refractory coatings may be necessary to allow full current (˜800 kA) operation. The outer electrode includes 24 small diagnostic ports for optical and magnetic probe access to the plasma inside the gun to allow direct measurement of the plasma armature dynamics. Initial test data from the full-scale coax gun will be presented along with plans for future testing. Work supported by the U.S. DOE Office of Fusion Energy Sciences.[4pt] [1] F. D. Witherspoon, A. Case, S. Messer, R. Bomgardner, M. Phillips, S. Brockington, R. Elton, ``Contoured Gap Coaxial Plasma Gun with Injected Plasma Armature'' Rev. Sci. Instr. submitted (2009)

  14. Full-scale control of Mycolata foam by FEX-120 addition.

    PubMed

    Kragelund, C; Nilsson, B; Eskilsson, K; Bøgh, A M; Nielsen, P H

    2010-01-01

    Foaming incidents in activated sludge treatment plants are a worldwide problem and occur on a regular basis in both municipal and industrial activated sludge treatment plants. Foaming is most often caused by excessive growth of filamentous bacteria, especially the gram-positive ones affiliated within the Actinobacteria, e.g. the branched Mycolata or Candidatus Microthrix parvicella. Previous studies have shown that populations of Microthrix can be controlled by addition of certain polyaluminium compounds, but until now no effective chemicals have been identified to control other important foam formers such as the Mycolata. A new chemical (FilamentEx, FEX-120) was tested in full-scale in a Swedish wastewater treatment plant (WWTP) with immense foaming problems. In total, three different dosing events were carried out for more than 1 year. After only 8-17 weeks in each period, all foam had disappeared, and dosing of FEX-120 was stopped. Another 11 full-scale WWTPs in different countries were treated with FEX-120 because of severe Mycolata foaming on process tanks. In nine out of 11 plants, where the causative organisms were Gordonia or Skermania, a significant reduction of foam up to 100% was observed after treatment for approx. 10 weeks. In two WWTPs with unknown Mycolata organisms, no reduction was observed.

  15. Telemetry system for evaluation of burn protection in full-scale fuel fire manikin exposures

    NASA Astrophysics Data System (ADS)

    Piergallini, J. R.; Stoll, A. M.

    1980-05-01

    An eighteen channel PAM/FM (Pulse Amplitude Modulated/Frequency Modulated) telemetry system was developed for measuring temperature rise on the surface of a manikin beneath protective clothing for full-scale fuel fire exposures in completely enveloping flames. Thermistors are used as temperature sensors at various locations on a manikin surface and backed by material of known thermal properties in order to correlate temperature rise with skin burn damage. The transmitted signals are recorded on analog magnetic tape and converted to a digital format for computer analysis. The clothed manikin is passed through an aviation gasoline fire for three seconds with the telemetry system recording data during this period. Temperatures are analyzed at 0, 1, 2 and 3-second intervals with voltage outputs from the thermistors being converted to resistance readings and temperature readings by equations developed from curves of thermistor characteristics. Experimental results with respect to burn prediction are in agreement with data obtained by analysis of vesicant papers calibrated radiometrically to correlate with temperature-time effects productive of burns in living tissue. To date, 12 full-scale fuel fire tests have been conducted using the telemetry system and the performance of this system has exceeded original expectations in many respects such as sensitivity, accuracy and freedom from interference by ionizing gases within the flames.

  16. Destruction and formation of dioxin-like PCBs in dedicated full scale waste incinerators.

    PubMed

    Van Caneghem, Jo; Block, Chantal; Vandecasteele, Carlo

    2014-01-01

    Destruction and formation of dioxin-like PCBs in full scale waste incinerators is studied by analysing input waste streams and boiler and fly ash of a grate furnace incinerator (GFI) incinerating MSW, of a Fluidised Bed Combustor (FBC) incinerating a mix of 50% sludge, 25% refuse derived fuel (RDF) and 25% automotive shredder residue (ASR) and of a rotary kiln incinerator (RKI) incinerating hazardous waste. The dioxin-like PCB fingerprints of the waste inputs show that PCB oils Aroclor 1242 and Aroclor 1254 late are the major dioxin-like PCB contamination source of sludge, RDF and ASR. The dioxin-like PCB fingerprints of the waste inputs are clearly different from the fingerprints of the outputs, i.e. boiler and fly ash, indicating that in full scale waste incinerators dioxin-like PCBs in the input waste are destroyed and other dioxin-like PCBs are newly formed in the post combustion zone. The dioxin-like PCB fingerprint of boiler and fly ash of all three incinerators corresponds well to the fly ash fingerprint obtained in lab scale de novo synthesis experiments, indicating that dioxin-like PCBs are mainly formed through this mechanism. The high PCB concentration in the input waste mix of the RKI does not promote the formation of dioxin-like PCBs through precursor condensation.

  17. Non-machinery dialysis that achieves blood purification therapy without using full-scale dialysis machines.

    PubMed

    Abe, Takaya; Onoda, Mistutaka; Matsuura, Tomohiko; Sugimura, Jun; Obara, Wataru; Sato, Toshiya; Takahashi, Mihoko; Chiba, Kenta; Abe, Tomiya

    2017-03-29

    An electrical or water supply and a blood purification machine are required for renal replacement therapy. There is a possibility that acute kidney injury can occur in large numbers and on a wide scale in the case of a massive earthquake, and there is the potential risk that the current supply will be unable to cope with acute kidney injury cases. However, non-machinery dialysis requires exclusive circuits and has the characteristic of not requiring the full-scale dialysis machines. We performed perfusion experiments that used non-machinery dialysis and recent blood purification machines in 30-min intervals, and the effectiveness of non-machinery dialysis was evaluated by the assessing the removal efficiency of potassium, which causes lethal arrhythmia during acute kidney injury. The non-machinery dialysis potassium removal rate was at the same level as continuous blood purification machines with a dialysate flow rate of 5 L/h after 15 min and continuous blood purification machines with a dialysate flow rate of 3 L/h after 30 min. Non-machinery dialysis required an exclusive dialysate circuit, the frequent need to replace bags, and new dialysate exchanged once every 30 min. However, it can be seen as an effective renal replacement therapy for crush-related acute kidney injury patients, even in locations or facilities not having the full-scale dialysis machines.

  18. Full-Scale Wind-Tunnel Studies of F/A-18 Tail Buffet

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.; James, Kevin D.

    1996-01-01

    Tail buffet studies were conducted on a full-scale, production F/A-18 fighter aircraft in the 80 by 120 ft Wind Tunnel at NASA Ames Research Center. The F/A-18 was tested over an angle-of-attack range of 18-50 deg, and at wind speeds of up to 168 ft/s, corresponding to a Reynolds number of 12.3x10(exp 6) based on mean aerodynamic chord and a Mach number of 0.15. The port, vertical tail fin was instrumented and the aircraft was equipped with a removable leading-edge extension (LEX) fence. Time-averaged, power-spectral analysis results are presented for the tail fin bending moment derived from the integrated pressure field, for the zero side-slip condition, both with and without the LEX fence. The LEX fence significantly reduces the magnitude of the rms pressures and bending moments. Scaling issues are addressed by comparing full-scale results for pressures at the 60%-span and 45%-chord location with small-scale, F/A-18 tail-buffet data. The comparison shows that the tail buffet frequency scales very well with length and velocity. Root-mean-square pressures and power spectra do not scale as well. The LEX fence is shown to reduce tail buffet loads at all model scales.

  19. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    NASA Astrophysics Data System (ADS)

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-05-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.

  20. Mitigation of tank 241-SY-101 by pump mixing: Results of full-scale testing

    SciTech Connect

    Stewart, C.W.; Hudson, J.D.; Friley, J.R.; Panisko, F.E.; Antoniak, Z.I.; Irwin, J.J.; Fadeff, J.G.; Efferding, L.F.; Michener, T.E.; Kirch, N.W.

    1994-06-01

    The Full-Scale Mixer Pump Test Program was performed in Hanford Tank 241-SY-101 from February 4 to April 13, 1994, to confirm the long-term operational strategy for flammable gas mitigation and to demonstrate that mixing can control the gas release and waste level. Since its installation on July 3, 1993, the current pump, operating only a few hours per week, has proved capable of mixing the waste sufficiently to release gas continuously instead of in large episodic events. The results of Full-Scale Testing demonstrated that the pump can control gas release and waste level for long-term mitigation, and the four test sequences formed the basis for the long-term operating schedule. The last test sequence, jet penetration tests, showed that the current pump jet creates flow near the tank wall and that it can excavate portions of the bottom sludge layer if run at maximum power. Pump mixing has altered the {open_quote}normal{close_quote} configuration of the waste; most of the original nonconvective sludge has been mixed with the supernatant liquid into a mobile convective slurry that has since been maintained by gentle pump operation and does not readily return to sludge.

  1. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions.

    PubMed

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B H

    2016-05-19

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.

  2. Optimization of a full-scale Unitank wastewater treatment plant for biological phosphorus removal.

    PubMed

    Zhou, Zhen; Xing, Can; Wu, Zhichao; Tong, Fei; Wang, Junru

    2014-01-01

    The Unitank process combines the advantages of traditional continuous-flow activated sludge processes and sequencing batch reactors, and has been extensively employed in many wastewater treatment plants (WWTPs) in China. Biological phosphorus removal (BPR) of a full-scale Unitank WWTP was optimized by increasing anaerobic time from 80 to 120 min in an operation cycle of 360 min and reducing solid retention time (SRT) from 21.3 to 13.1 d. The BPR efficiency of the full-scale Unitank system increased from 63.8% (SRT of 21.3 d) to 83.2% for a SRT of 13.1 d. When the anaerobic time increased from 80 to 120 min, the net anaerobic phosphorus release amount increased from 0.25 to 1.06 mg L(-1), and sludge phosphorus content rose from 13.8 to 15.0 mgP x (gSS)(-1). During half an operation cycle, the average specific phosphorus release rate increased from 0.097mgP x (gVSS x h)(-1) in 0-40 min to 0.825 mgP x (gVSS x h)(-1) in 40-60 min. Reducing SRT and increasing anaerobic time account for 84.6% and 15.4% in the total increment of phosphorus removal of 1.15 mgL(-1).

  3. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    PubMed Central

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-01-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions. PMID:27193869

  4. Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal.

    PubMed

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2013-12-01

    This study analysed the enhanced biological phosphorus removal (EBPR) microbial community and metabolic performance of five full-scale EBPR systems by using fluorescence in situ hybridisation combined with off-line batch tests fed with acetate under anaerobic-aerobic conditions. The phosphorus accumulating organisms (PAOs) in all systems were stable and showed little variability between each plant, while glycogen accumulating organisms (GAOs) were present in two of the plants. The metabolic activity of each sludge showed the frequent involvement of the anaerobic tricarboxylic acid cycle (TCA) in PAO metabolism for the anaerobic generation of reducing equivalents, in addition to the more frequently reported glycolysis pathway. Metabolic variability in the use of the two pathways was also observed, between different systems and in the same system over time. The metabolic dynamics was linked to the availability of glycogen, where a higher utilisation of the glycolysis pathway was observed in the two systems employing side-stream hydrolysis, and the TCA cycle was more active in the A(2)O systems. Full-scale plants that showed higher glycolysis activity also exhibited superior P removal performance, suggesting that promotion of the glycolysis pathway over the TCA cycle could be beneficial towards the optimisation of EBPR systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Full-scale monitoring system for structural prestress loss based on distributed brillouin sensing technique

    NASA Astrophysics Data System (ADS)

    Chunguang, Lan; Liguang, Zhou; Zhiyu, Huo

    2017-08-01

    Prestress loss is critical to impact the safety of prestressed structures. Unfortunately, up to date, there are no qualified techniques to handle this issue due to the fact that it is too hard for sensors to survive the harsh construction environments and the time-dependent service life of the large-span prestressed structures. This paper proposes a novel technique to monitor prestress loss in prestressed beams using Brillouin optical fiber sensors. A novel smart steel strand based on the sensing technique of full-scale Brillouin optical fiber sensors was introduced. Two kinds of prestressed structure were used to verify the concept of monitoring prestress loss using smart steel strands. The prestress loss data have been taken by Brillouin optical fiber sensors. And the monitoring results agree well with those from the conventional sensors. The monitoring data can reveal both the full-scale distribution and the time history of prestress loss during the construction stage and also in-service phrase.

  6. An assessment of the checkpoint bioassay concept for full scale wastewater UV reactor validation.

    PubMed

    Maka, P P; Lawryshyn, Y A

    2011-01-01

    In an effort to help policy makers and manufacturers understand the impact of parameter uncertainties on UV reactor performance, a numerical bioassay model was developed by integrating a UV reactor model based on computational fluid dynamics with a Monte Carlo model developed to account for parameter uncertainty. For the model implemented, it was determined that reactor performance uncertainty was less than 6%. The integrated model was used to evaluate several checkpoint bioassay criteria including one currently used by the California Department of Public Health. The model showed that these criteria failed to take into account the fact that in an ideal case, a full scale reactor will pass a single checkpoint test 50% of the time. In reality, differences in equipment measurement errors between the system validation and checkpoint bioassay, and limitations of the power law form of the dose monitoring equation in accurately representing system validation data will result in poorer than expected performance. It was suggested that such checkpoint criteria be modified by crediting the inherent over-sizing of full scale reactors.

  7. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds

    PubMed Central

    Hong, A. J.; Li, L.; He, R.; Gong, J. J.; Yan, Z. B.; Wang, K. F.; Liu, J. -M.; Ren, Z. F.

    2016-01-01

    The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half-Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k code and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley’s deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens’ equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Ti-doped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. The present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials. PMID:26947395

  8. Simulating the Impact Response of Three Full-Scale Crash Tests of Cessna 172 Aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.; Annett, Martin S.; Stimson, Chad M.

    2017-01-01

    During the summer of 2015, a series of three full-scale crash tests were performed at the Landing and Impact Research Facility located at NASA Langley Research Center of Cessna 172 aircraft. The first test (Test 1) represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test (Test 2) represented a controlled-flight- into-terrain (CFIT) with a nose down pitch attitude of the aircraft, which impacted onto soft soil. The third test (Test 3) also represented a CFIT with a nose up pitch attitude of the aircraft, which resulted in a tail strike condition. Test 3 was also conducted onto soft soil. These crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters and to generate impact test data for model calibration. Finite element models were generated and impact analyses were conducted to simulate the three impact conditions using the commercial nonlinear, transient dynamic finite element code, LS-DYNA®. The objective of this paper is to summarize test-analysis results for the three full-scale crash tests.

  9. Considerations on the design and financial feasibility of full-scale membrane bioreactors for municipal applications.

    PubMed

    Brepols, Ch; Schäfer, H; Engelhardt, N

    2010-01-01

    Based on the practical experience in design and operation of three full-scale membrane bioreactors (MBR) for municipal wastewater treatment that were commissioned since 1999, an overview on the different design concepts that were applied to the three MBR plants is given. The investment costs and the energy consumption of the MBRs and conventional activated sludge (CAS) plants (with and without tertiary treatment) in the Erft river region are compared. It is found that the specific investment costs of the MBR plants are lower than those of comparable CAS with tertiary treatment. A comparison of the specific energy demand of MBRs and conventional WWTPs is given. The structure of the MBRs actual operational costs is analysed. It can be seen that energy consumption is only responsible for one quarter to one third of all operational expenses. Based on a rough design and empirical cost data, a cost comparison of a full-scale MBR and a CAS is carried out. In this example the CAS employs a sand filtration and a disinfection in order to achieve comparable effluent quality. The influence of membrane lifetime on life cycle cost is assessed.

  10. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds

    DOE PAGES

    Hong, A. J.; Li, L.; He, R.; ...

    2016-03-07

    The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half- Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k codemore » and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley’s deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens’ equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Tidoped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. Lastly, the present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials.« less

  11. Full-scale tests of wind effects on a long span roof structure

    NASA Astrophysics Data System (ADS)

    Fu, Jiyang; Zheng, Qingxing; Wu, Jiurong; Xu, An

    2015-06-01

    Full-scale measurements are regarded as the most reliable method to evaluate wind effects on large buildings and structures. Some selected results are presented in this paper from the full-scale measurement of wind effects on a long-span steel roof structure during the passage of Typhoon Fanapi. Some field data, including wind speed and direction, acceleration responses, etc., were continuously and simultaneously recorded during the passage of the typhoon. Comprehensive analysis of the measured data is conducted to evaluate the typhoon-generated wind characteristics and its effects on a long-span steel roof. The first four natural frequencies and their vibration mode shapes of the Guangzhou International Sports Arena (GISA) roof are evaluated by the stochastic subspace identification (SSI) method and comparisons with those from finite element (FE) analysis are made. Meanwhile, damping ratios of the roof are also identified by the SSI method and compared with those identified by the random decrement method; the amplitude-dependent damping behaviors are also discussed. The fullscale measurement results are further compared with the corresponding wind tunnel test results to evaluate its reliability. The results obtained from this study are valuable for academic and professional engineers involved in the design of large-span roof structures.

  12. Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation.

    PubMed

    Brannock, M; Wang, Y; Leslie, G

    2010-05-01

    Membrane Bioreactors (MBRs) have been successfully used in aerobic biological wastewater treatment to solve the perennial problem of effective solids-liquid separation. The optimisation of MBRs requires knowledge of the membrane fouling, biokinetics and mixing. However, research has mainly concentrated on the fouling and biokinetics (Ng and Kim, 2007). Current methods of design for a desired flow regime within MBRs are largely based on assumptions (e.g. complete mixing of tanks) and empirical techniques (e.g. specific mixing energy). However, it is difficult to predict how sludge rheology and vessel design in full-scale installations affects hydrodynamics, hence overall performance. Computational Fluid Dynamics (CFD) provides a method for prediction of how vessel features and mixing energy usage affect the hydrodynamics. In this study, a CFD model was developed which accounts for aeration, sludge rheology and geometry (i.e. bioreactor and membrane module). This MBR CFD model was then applied to two full-scale MBRs and was successfully validated against experimental results. The effect of sludge settling and rheology was found to have a minimal impact on the bulk mixing (i.e. the residence time distribution).

  13. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds

    SciTech Connect

    Hong, A. J.; Li, L.; He, R.; Gong, J. J.; Yan, Z. B.; Wang, K. F.; Liu, J. -M.; Ren, Z. F.

    2016-03-07

    The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half- Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k code and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley’s deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens’ equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Tidoped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. Lastly, the present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials.

  14. Novel cost effective full scale mussel shell bioreactors for metal removal and acid neutralization.

    PubMed

    DiLoreto, Z A; Weber, P A; Olds, W; Pope, J; Trumm, D; Chaganti, S R; Heath, D D; Weisener, C G

    2016-12-01

    Acid mine drainage (AMD) impacted waters are a worldwide concern for the mining industry and countries dealing with this issue; both active and passive technologies are employed for the treatment of such waters. Mussel shell bioreactors (MSB) represent a passive technology that utilizes waste from the shellfish industry as a novel substrate. The aim of this study is to provide insight into the biogeochemical dynamics of a novel full scale MSB for AMD treatment. A combination of water quality data, targeted geochemical extractions, and metagenomic analyses were used to evaluate MSB performance. The MSB raised the effluent pH from 3.4 to 8.3 while removing up to ∼99% of the dissolved Al, and Fe and >90% Ni, Tl, and Zn. A geochemical gradient was observed progressing from oxidized to reduced conditions with depth. The redox conditions helped define the microbial consortium that consists of a specialized niche of organisms that influence elemental cycling (i.e. complex Fe and S cycling). MSB technology represents an economic and effective means of full scale, passive AMD treatment that is an attractive alternative for developing economies due to its low cost and ease of implementation.

  15. Application of full-scale fire tests to characterize and improve the aircraft postcrash fire environment.

    PubMed

    Sarkos, C P

    1996-12-31

    The Federal Aviation Administration (FAA) has conducted numerous full-scale fire tests for the purpose of characterizing the postcrash cabin fire environment and developing improved fire test criteria for cabin materials. The tests consistently demonstrated the importance of cabin flashover on occupant survivability. Flashover is basically a sudden, very rapid spread of fire, generating large quantities of heat, smoke, and toxic gases that quickly fill the cabin. Before flashover, the cabin environment is largely survivable; after flashover, occupant survival becomes highly unlikely. Thermal incapacitation is more important near the fire origin and at higher elevations, whereas toxic gas incapacitation is predominant away from the fire origin and at lower elevations. The FAA has developed and adopted improved fire test methods for seat cushions (fire blocking layers) and interior panels (low heat release). In both cases, the fire test methods are consistent with full-scale test results and serve to improve occupant survivability by delaying the onset of flashover, thereby providing substantially greater available time for occupant evacuation.

  16. Summary of Full-Scale Blade Displacement Measurements of the UH- 60A Airloads Rotor

    NASA Technical Reports Server (NTRS)

    Abrego, Anita I.; Meyn, Larry; Burner, Alpheus W.; Barrows, Danny A.

    2016-01-01

    Blade displacement measurements using multi-camera photogrammetry techniques were acquired for a full-scale UH-60A rotor, tested in the National Full-Scale Aerodynamic Complex 40-Foot by 80-Foot Wind Tunnel. The measurements, acquired over the full rotor azimuth, encompass a range of test conditions that include advance ratios from 0.15 to 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective was to measure the blade displacements and deformations of the four rotor blades and provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft prediction techniques. An overview of the blade displacement measurement methodology, system development, and data analysis techniques are presented. Sample results based on the final set of camera calibrations, data reduction procedures and estimated corrections that account for registration errors due to blade elasticity are shown. Differences in blade root pitch, flap and lag between the previously reported results and the current results are small. However, even small changes in estimated root flap and pitch can lead to significant differences in the blade elasticity values.

  17. Blade Displacement Measurement Technique Applied to a Full-Scale Rotor Test

    NASA Technical Reports Server (NTRS)

    Abrego, Anita I.; Olson, Lawrence E.; Romander, Ethan A.; Barrows, Danny A.; Burner, Alpheus W.

    2012-01-01

    Blade displacement measurements using multi-camera photogrammetry were acquired during the full-scale wind tunnel test of the UH-60A Airloads rotor, conducted in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The objectives were to measure the blade displacement and deformation of the four rotor blades as they rotated through the entire rotor azimuth. These measurements are expected to provide a unique dataset to aid in the development and validation of rotorcraft prediction techniques. They are used to resolve the blade shape and position, including pitch, flap, lag and elastic deformation. Photogrammetric data encompass advance ratios from 0.15 to slowed rotor simulations of 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. An overview of the blade displacement measurement methodology and system development, descriptions of image processing, uncertainty considerations, preliminary results covering static and moderate advance ratio test conditions and future considerations are presented. Comparisons of experimental and computational results for a moderate advance ratio forward flight condition show good trend agreements, but also indicate significant mean discrepancies in lag and elastic twist. Blade displacement pitch measurements agree well with both the wind tunnel commanded and measured values.

  18. Full-scale experimental validation of decentralized damage identification using wireless smart sensors

    NASA Astrophysics Data System (ADS)

    Jang, Shinae; Sim, Sung-Han; Jo, Hongki; Spencer, Billie F., Jr.

    2012-11-01

    Wireless smart sensor networks (WSSN) facilitate a new paradigm for structural health monitoring (SHM) of civil infrastructure. Conventionally, SHM systems employing wired sensors and centralized data acquisition have been used to characterize the state of a structure; however, widespread implementation has been limited due to high costs and difficulties in installation. WSSN offer a unique opportunity to overcome such difficulties. Recent developments have realized low-cost, smart sensors with on-board computation and wireless communication capabilities, making deployment of a dense array of sensors on large civil structures both economical and feasible. Wireless smart sensors (WSS) have shown their tremendous potential for SHM in recent full-scale bridge monitoring examples. However, structural damage identification using on-board computation capability in a WSSN, a primary objective of SHM, has yet to reach its full potential. This paper presents full-scale validation of a damage identification strategy using a decentralized network of Imote2 nodes on a historic steel truss bridge. A total of 24 WSS nodes with 144 sensor channels are deployed on the bridge to validate the developed damage identification software. The performance of this decentralized damage identification strategy is demonstrated on the WSSN by comparing its results with those from the traditional centralized approach, as well as visual inspection.

  19. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds.

    PubMed

    Hong, A J; Li, L; He, R; Gong, J J; Yan, Z B; Wang, K F; Liu, J-M; Ren, Z F

    2016-03-07

    The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half-Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k code and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley's deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens' equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Ti-doped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. The present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials.

  20. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds

    NASA Astrophysics Data System (ADS)

    Hong, A. J.; Li, L.; He, R.; Gong, J. J.; Yan, Z. B.; Wang, K. F.; Liu, J.-M.; Ren, Z. F.

    2016-03-01

    The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half-Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k code and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley’s deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens’ equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Ti-doped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. The present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials.