Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.
2001-01-01
Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.
Full-scale monitoring of wind and suspension bridge response
NASA Astrophysics Data System (ADS)
Snæbjörnsson, J. T.; Jakobsen, J. B.; Cheynet, E.; Wang, J.
2017-12-01
Monitoring of real structures is important for many reasons. For structures susceptible to environmental actions, full-scale observations can provide valuable information about the environmental conditions at the site, as well as the characteristics of the excitation acting on the structure. The recorded data, if properly analyzed, can be used to validate and/or update experiments and models used in the design of new structures, such as the load description and modelling of the structural response. Various aspects of full-scale monitoring are discussed in the paper and the full-scale wind engineering laboratory at the Lysefjord suspension bridge introduced. The natural excitation of the bridge comes from wind and traffic. The surrounding terrain is complex and its effect on the wind flow can only be fully studied on site, in full-scale. The monitoring program and associated data analysis are described. These include various studies of the relevant turbulence characteristics, identification of dynamic properties and estimation of wind- and traffic-induced response parameters. The overall monitoring activity also included a novel application of the remote optical sensing in bridge engineering, which is found to have an important potential to complement traditional “single-point” wind observations by sonic anemometers.
NASA/FAA general aviation crash dynamics program
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Hayduk, R. J.; Carden, H. D.
1981-01-01
The program involves controlled full scale crash testing, nonlinear structural analyses to predict large deflection elastoplastic response, and load attenuating concepts for use in improved seat and subfloor structure. Both analytical and experimental methods are used to develop expertise in these areas. Analyses include simplified procedures for estimating energy dissipating capabilities and comprehensive computerized procedures for predicting airframe response. These analyses are developed to provide designers with methods for predicting accelerations, loads, and displacements on collapsing structure. Tests on typical full scale aircraft and on full and subscale structural components are performed to verify the analyses and to demonstrate load attenuating concepts. A special apparatus was built to test emergency locator transmitters when attached to representative aircraft structure. The apparatus is shown to provide a good simulation of the longitudinal crash pulse observed in full scale aircraft crash tests.
NASA Astrophysics Data System (ADS)
Leone, Frank A., Jr.; Ozevin, Didem; Mosinyi, Bao; Bakuckas, John G., Jr.; Awerbuch, Jonathan; Lau, Alan; Tan, Tein-Min
2008-03-01
Preliminary tests were conducted using frequency response (FR) characteristics to determine damage initiation and growth in a honeycomb sandwich graphite/epoxy curved panel. This investigation was part of a more general study investigating the damage tolerance characteristics of several such panels subjected to quasi-static internal pressurization combined with hoop and axial loading. The panels were tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center in Atlantic City, NJ. The overall program objective was to investigate the damage tolerance characteristics of full-scale composite curved aircraft fuselage panels and the evolution of damage under quasi-static loading up to failure. This paper focuses on one aspect of this comprehensive investigation: the effect of state-of-damage on the characteristics of the frequency response of the subject material. The results presented herein show that recording the frequency response could be used for real-time monitoring of damage growth and in determining damage severity in full-scale composites fuselage aircraft structures.
Scaling effects in the impact response of graphite-epoxy composite beams
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.
1989-01-01
In support of crashworthiness studies on composite airframes and substructure, an experimental and analytical study was conducted to characterize size effects in the large deflection response of scale model graphite-epoxy beams subjected to impact. Scale model beams of 1/2, 2/3, 3/4, 5/6, and full scale were constructed of four different laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic. The beam specimens were subjected to eccentric axial impact loads which were scaled to provide homologous beam responses. Comparisons of the load and strain time histories between the scale model beams and the prototype should verify the scale law and demonstrate the use of scale model testing for determining impact behavior of composite structures. The nonlinear structural analysis finite element program DYCAST (DYnamic Crash Analysis of STructures) was used to model the beam response. DYCAST analysis predictions of beam strain response are compared to experimental data and the results are presented.
Autonomous smart sensor network for full-scale structural health monitoring
NASA Astrophysics Data System (ADS)
Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.
2010-04-01
The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.
2003-01-01
A 25-fps vertical drop test of a 1/5-scale model composite fuselage section was conducted to replicate a previous test of a full-scale fuselage section. The purpose of the test was to obtain experimental data characterizing the impact response of the 1/5-scale model fuselage section for comparison with the corresponding full-scale data. This comparison is performed to assess the scaling procedures and to determine if scaling effects are present. For the drop test, the 1/5-scale model fuselage section was configured in a similar manner as the full-scale section, with lead masses attached to the floor through simulated seat rails. Scaled acceleration and velocity responses are compared and a general assessment of structural damage is made. To further quantify the data correlation, comparisons of the average acceleration data are made as a function of floor location and longitudinal position. Also, the percentage differences in the velocity change (area under the acceleration curve) and the velocity change squared (proportional to kinetic energy) are compared as a function of floor location. Finally, correlation coefficients are calculated for corresponding 1/5- and full-scale data channels and these values are plotted versus floor location. From a scaling perspective, the differences between the 1/5- and full-scale tests are relatively small, indicating that appropriate scaling procedures were used in fabricating the test specimens and in conducting the experiments. The small differences in the scaled test data are attributed to minor scaling anomalies in mass, potential energy, and impact attitude.
NASA Astrophysics Data System (ADS)
Dizaji, Mehrdad S.; Harris, Devin K.; Alipour, Mohamad; Ozbulut, Osman E.
2018-03-01
Structural health monitoring (SHM) describes a decision-making framework that is fundamentally guided by state change detection of structural systems. This framework typically relies on the use of continuous or semi-continuous monitoring of measured response to quantify this state change in structural system behavior, which is often related to the initiation of some form of damage. Measurement approaches used for traditional SHM are numerous, but most are limited to either describing localized or global phenomena, making it challenging to characterize operational structural systems which exhibit both. In addition to these limitations in sensing, SHM has also suffered from the inherent robustness inherent to most full-scale structural systems, making it challenging to identify local damage. These challenges highlight the opportunity for alternative strategies for SHM, strategies that are able to provide data suitable to translate into rich information. This paper describes preliminary results from a refined structural identification (St-ID) approach using fullfield measurements derived from high-speed 3D Digital Image Correlation (HSDIC) to characterize uncertain parameters (i.e. boundary and constitutive properties) of a laboratory scale structural component. The St-ID approach builds from prior work by supplementing full-field deflection and strain response with vibration response derived from HSDIC. Inclusion of the modal characteristics within a hybrid-genetic algorithm optimization scheme allowed for simultaneous integration of mechanical and modal response, thus enabling a more robust St-ID strategy than could be achieved with traditional sensing techniques. The use of full-field data is shown to provide a more comprehensive representation of the global and local behavior, which in turn increases the robustness of the St-Id framework. This work serves as the foundation for a new paradigm in SHM that emphasizes characterizing structural performance using a smaller number, but richer set of measurements.
Molina-Viedma, Ángel Jesús; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A; Rodríguez-Ahlquist, Javier; Iglesias-Vallejo, Manuel
2018-02-02
In real aircraft structures the comfort and the occupational performance of crewmembers and passengers are affected by the presence of noise. In this sense, special attention is focused on mechanical and material design for isolation and vibration control. Experimental characterization and, in particular, experimental modal analysis, provides information for adequate cabin noise control. Traditional sensors employed in the aircraft industry for this purpose are invasive and provide a low spatial resolution. This paper presents a methodology for experimental modal characterization of a front fuselage full-scale demonstrator using high-speed 3D digital image correlation, which is non-invasive, ensuring that the structural response is unperturbed by the instrumentation mass. Specifically, full-field measurements on the passenger window area were conducted when the structure was excited using an electrodynamic shaker. The spectral analysis of the measured time-domain displacements made it possible to identify natural frequencies and full-field operational deflection shapes. Changes in the modal parameters due to cabin pressurization and the behavior of different local structural modifications were assessed using this methodology. The proposed full-field methodology allowed the characterization of relevant dynamic response patterns, complementing the capabilities provided by accelerometers.
López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.; Rodríguez-Ahlquist, Javier; Iglesias-Vallejo, Manuel
2018-01-01
In real aircraft structures the comfort and the occupational performance of crewmembers and passengers are affected by the presence of noise. In this sense, special attention is focused on mechanical and material design for isolation and vibration control. Experimental characterization and, in particular, experimental modal analysis, provides information for adequate cabin noise control. Traditional sensors employed in the aircraft industry for this purpose are invasive and provide a low spatial resolution. This paper presents a methodology for experimental modal characterization of a front fuselage full-scale demonstrator using high-speed 3D digital image correlation, which is non-invasive, ensuring that the structural response is unperturbed by the instrumentation mass. Specifically, full-field measurements on the passenger window area were conducted when the structure was excited using an electrodynamic shaker. The spectral analysis of the measured time-domain displacements made it possible to identify natural frequencies and full-field operational deflection shapes. Changes in the modal parameters due to cabin pressurization and the behavior of different local structural modifications were assessed using this methodology. The proposed full-field methodology allowed the characterization of relevant dynamic response patterns, complementing the capabilities provided by accelerometers. PMID:29393897
Wang, Hao; Tao, Tianyou; Guo, Tong; Li, Jian; Li, Aiqun
2014-01-01
The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges.
Tao, Tianyou; Li, Aiqun
2014-01-01
The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges. PMID:24995367
NASA Astrophysics Data System (ADS)
Calloway, Raymond S.; Knight, Vernie H., Jr.
NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.
NASA Technical Reports Server (NTRS)
Hoh, R. H.; Weir, D. H.
1973-01-01
Driver/vehicle response and performance of a variety of vehicles in the presence of aerodynamic disturbances are discussed. Steering control is emphasized. The vehicles include full size station wagon, sedan, compact sedan, van, pickup truck/camper, and wagon towing trailer. Driver/vehicle analyses are used to estimate response and performance. These estimates are correlated with full scale data with test drivers and the results are used to refine the driver/vehicle models, control structure, and loop closure criteria. The analyses and data indicate that the driver adjusts his steering control properties (when he can) to achieve roughly the same level of performance despite vehicle variations. For the more disturbance susceptible vehicles, such as the van, the driver tightens up his control. Other vehicles have handling dynamics which cause him to loosen his control response, even though performance degrades.
Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Lovejoy, Andrew E.; Bush, Harold G.
2001-01-01
Analytical and experimental results of the test for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Up-bending down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.
Evaluation of the Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing
NASA Astrophysics Data System (ADS)
Jegley, Dawn C.; Bush, Harold G.; Lovejoy, Andrew E.
2001-01-01
Analytical and experimental results for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Upbending, down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.
General aviation crash safety program at Langley Research Center
NASA Technical Reports Server (NTRS)
Thomson, R. G.
1976-01-01
The purpose of the crash safety program is to support development of the technology to define and demonstrate new structural concepts for improved crash safety and occupant survivability in general aviation aircraft. The program involves three basic areas of research: full-scale crash simulation testing, nonlinear structural analyses necessary to predict failure modes and collapse mechanisms of the vehicle, and evaluation of energy absorption concepts for specific component design. Both analytical and experimental methods are being used to develop expertise in these areas. Analyses include both simplified procedures for estimating energy absorption capabilities and more complex computer programs for analysis of general airframe response. Full-scale tests of typical structures as well as tests on structural components are being used to verify the analyses and to demonstrate improved design concepts.
About the bears and the bees: Adaptive responses to asymmetric warfare
NASA Astrophysics Data System (ADS)
Ryan, Alex
Conventional military forces are organised to generate large scale effects against similarly structured adversaries. Asymmetric warfare is a 'game' between a conventional military force and a weaker adversary that is unable to match the scale of effects of the conventional force. In asymmetric warfare, an insurgents' strategy can be understood using a multi-scale perspective: by generating and exploiting fine scale complexity, insurgents prevent the conventional force from acting at the scale they are designed for. This paper presents a complex systems approach to the problem of asymmetric warfare, which shows how future force structures can be designed to adapt to environmental complexity at multiple scales and achieve full spectrum dominance.
About the bears and the bees: Adaptive responses to asymmetric warfare
NASA Astrophysics Data System (ADS)
Ryan, Alex
Conventional military forces are organised to generate large scale effects against similarly structured adversaries. Asymmetric warfare is a `game' between a conventional military force and a weaker adversary that is unable to match the scale of effects of the conventional force. In asymmetric warfare, an insurgents' strategy can be understood using a multi-scale perspective: by generating and exploiting fine scale complexity, insurgents prevent the conventional force from acting at the scale they are designed for. This paper presents a complex systems approach to the problem of asymmetric warfare, which shows how future force structures can be designed to adapt to environmental complexity at multiple scales and achieve full spectrum dominance.
Full-scale testing and progressive damage modeling of sandwich composite aircraft fuselage structure
NASA Astrophysics Data System (ADS)
Leone, Frank A., Jr.
A comprehensive experimental and computational investigation was conducted to characterize the fracture behavior and structural response of large sandwich composite aircraft fuselage panels containing artificial damage in the form of holes and notches. Full-scale tests were conducted where panels were subjected to quasi-static combined pressure, hoop, and axial loading up to failure. The panels were constructed using plain-weave carbon/epoxy prepreg face sheets and a Nomex honeycomb core. Panel deformation and notch tip damage development were monitored during the tests using several techniques, including optical observations, strain gages, digital image correlation (DIC), acoustic emission (AE), and frequency response (FR). Additional pretest and posttest inspections were performed via thermography, computer-aided tap tests, ultrasound, x-radiography, and scanning electron microscopy. The framework to simulate damage progression and to predict residual strength through use of the finite element (FE) method was developed. The DIC provided local and full-field strain fields corresponding to changes in the state-of-damage and identified the strain components driving damage progression. AE was monitored during loading of all panels and data analysis methodologies were developed to enable real-time determination of damage initiation, progression, and severity in large composite structures. The FR technique has been developed, evaluating its potential as a real-time nondestructive inspection technique applicable to large composite structures. Due to the large disparity in scale between the fuselage panels and the artificial damage, a global/local analysis was performed. The global FE models fully represented the specific geometries, composite lay-ups, and loading mechanisms of the full-scale tests. A progressive damage model was implemented in the local FE models, allowing the gradual failure of elements in the vicinity of the artificial damage. A set of modifications to the definitions of the local FE model boundary conditions is proposed and developed to address several issues related to the scalability of progressive damage modeling concepts, especially in regards to full-scale fuselage structures. Notable improvements were observed in the ability of the FE models to predict the strength of damaged composite fuselage structures. Excellent agreement has been established between the FE model predictions and the experimental results recorded by DIC, AE, FR, and visual observations.
Structural similitude and design of scaled down laminated models
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Rezaeepazhand, J.
1993-01-01
The excellent mechanical properties of laminated composite structures make them prime candidates for wide variety of applications in aerospace, mechanical and other branches of engineering. The enormous design flexibility of advanced composites is obtained at the cost of large number of design parameters. Due to complexity of the systems and lack of complete design based informations, designers tend to be conservative in their design. Furthermore, any new design is extensively evaluated experimentally until it achieves the necessary reliability, performance and safety. However, the experimental evaluation of composite structures are costly and time consuming. Consequently, it is extremely useful if a full-scale structure can be replaced by a similar scaled-down model which is much easier to work with. Furthermore, a dramatic reduction in cost and time can be achieved, if available experimental data of a specific structure can be used to predict the behavior of a group of similar systems. This study investigates problems associated with the design of scaled models. Such study is important since it provides the necessary scaling laws, and the factors which affect the accuracy of the scale models. Similitude theory is employed to develop the necessary similarity conditions (scaling laws). Scaling laws provide relationship between a full-scale structure and its scale model, and can be used to extrapolate the experimental data of a small, inexpensive, and testable model into design information for a large prototype. Due to large number of design parameters, the identification of the principal scaling laws by conventional method (dimensional analysis) is tedious. Similitude theory based on governing equations of the structural system is more direct and simpler in execution. The difficulty of making completely similar scale models often leads to accept certain type of distortion from exact duplication of the prototype (partial similarity). Both complete and partial similarity are discussed. The procedure consists of systematically observing the effect of each parameter and corresponding scaling laws. Then acceptable intervals and limitations for these parameters and scaling laws are discussed. In each case, a set of valid scaling factors and corresponding response scaling laws that accurately predict the response of prototypes from experimental models is introduced. The examples used include rectangular laminated plates under destabilizing loads, applied individually, vibrational characteristics of same plates, as well as cylindrical bending of beam-plates.
The role of planetary waves in the tropospheric jet response to stratospheric cooling
NASA Astrophysics Data System (ADS)
Smith, Karen L.; Scott, Richard K.
2016-03-01
An idealized general circulation model is used to assess the importance of planetary-scale waves in determining the position of the tropospheric jet, specifically its tendency to shift poleward as winter stratospheric cooling is increased. Full model integrations are compared against integrations in which planetary waves are truncated in the zonal direction, and only synoptic-scale waves are retained. Two series of truncated integrations are considered, using (i) a modified radiative equilibrium temperature or (ii) a nudged-bias correction technique. Both produce tropospheric climatologies that are similar to the full model when stratospheric cooling is weak. When stratospheric cooling is increased, the results indicate that the interaction between planetary- and synoptic-scale waves plays an important role in determining the structure of the tropospheric mean flow and rule out the possibility that the jet shift occurs purely as a response to changes in the planetary- or synoptic-scale wave fields alone.
Crash Testing of Helicopter Airframe Fittings
NASA Technical Reports Server (NTRS)
Clarke, Charles W.; Townsend, William; Boitnott, Richard
2004-01-01
As part of the Rotary Wing Structures Technology Demonstration (RWSTD) program, a surrogate RAH-66 seat attachment fitting was dynamically tested to assess its response to transient, crash impact loads. The dynamic response of this composite material fitting was compared to the performance of an identical fitting subjected to quasi-static loads of similar magnitude. Static and dynamic tests were conducted of both smaller bench level and larger full-scale test articles. At the bench level, the seat fitting was supported in a steel fixture, and in the full-scale tests, the fitting was integrated into a surrogate RAH-66 forward fuselage. Based upon the lessons learned, an improved method to design, analyze, and test similar composite material fittings is proposed.
NASA Technical Reports Server (NTRS)
Gould, Kevin E.; Satyanarayana, Arunkumar; Bogert, Philip B.
2016-01-01
Analysis performed in this study substantiates the need for high fidelity vehicle level progressive damage analyses (PDA) structural models for use in the verification and validation of proposed sub-scale structural models and to support required full-scale vehicle level testing. PDA results are presented that capture and correlate the responses of sub-scale 3-stringer and 7-stringer panel models and an idealized 8-ft diameter fuselage model, which provides a vehicle level environment for the 7-stringer sub-scale panel model. Two unique skin-stringer attachment assumptions are considered and correlated in the models analyzed: the TIE constraint interface versus the cohesive element (COH3D8) interface. Evaluating different interfaces allows for assessing a range of predicted damage modes, including delamination and crack propagation responses. Damage models considered in this study are the ABAQUS built-in Hashin procedure and the COmplete STress Reduction (COSTR) damage procedure implemented through a VUMAT user subroutine using the ABAQUS/Explicit code.
O'Donnell, Andrew P.; Kurama, Yahya C.; Kalkan, Erol; Taflanidis, Alexandros A.
2017-01-01
This paper experimentally evaluates four methods to scale earthquake ground-motions within an ensemble of records to minimize the statistical dispersion and maximize the accuracy in the dynamic peak roof drift demand and peak inter-story drift demand estimates from response-history analyses of nonlinear building structures. The scaling methods that are investigated are based on: (1) ASCE/SEI 7–10 guidelines; (2) spectral acceleration at the fundamental (first mode) period of the structure, Sa(T1); (3) maximum incremental velocity, MIV; and (4) modal pushover analysis. A total of 720 shake-table tests of four small-scale nonlinear building frame specimens with different static and dynamic characteristics are conducted. The peak displacement demands from full suites of 36 near-fault ground-motion records as well as from smaller “unbiased” and “biased” design subsets (bins) of ground-motions are included. Out of the four scaling methods, ground-motions scaled to the median MIV of the ensemble resulted in the smallest dispersion in the peak roof and inter-story drift demands. Scaling based on MIValso provided the most accurate median demands as compared with the “benchmark” demands for structures with greater nonlinearity; however, this accuracy was reduced for structures exhibiting reduced nonlinearity. The modal pushover-based scaling (MPS) procedure was the only method to conservatively overestimate the median drift demands.
Improving the Factor Structure of Psychological Scales
Zhang, Xijuan; Savalei, Victoria
2015-01-01
Many psychological scales written in the Likert format include reverse worded (RW) items in order to control acquiescence bias. However, studies have shown that RW items often contaminate the factor structure of the scale by creating one or more method factors. The present study examines an alternative scale format, called the Expanded format, which replaces each response option in the Likert scale with a full sentence. We hypothesized that this format would result in a cleaner factor structure as compared with the Likert format. We tested this hypothesis on three popular psychological scales: the Rosenberg Self-Esteem scale, the Conscientiousness subscale of the Big Five Inventory, and the Beck Depression Inventory II. Scales in both formats showed comparable reliabilities. However, scales in the Expanded format had better (i.e., lower and more theoretically defensible) dimensionalities than scales in the Likert format, as assessed by both exploratory factor analyses and confirmatory factor analyses. We encourage further study and wider use of the Expanded format, particularly when a scale’s dimensionality is of theoretical interest. PMID:27182074
NASA Technical Reports Server (NTRS)
Krishnamurthy, Thiagarajan
2010-01-01
Equivalent plate analysis is often used to replace the computationally expensive finite element analysis in initial design stages or in conceptual design of aircraft wing structures. The equivalent plate model can also be used to design a wind tunnel model to match the stiffness characteristics of the wing box of a full-scale aircraft wing model while satisfying strength-based requirements An equivalent plate analysis technique is presented to predict the static and dynamic response of an aircraft wing with or without damage. First, a geometric scale factor and a dynamic pressure scale factor are defined to relate the stiffness, load and deformation of the equivalent plate to the aircraft wing. A procedure using an optimization technique is presented to create scaled equivalent plate models from the full scale aircraft wing using geometric and dynamic pressure scale factors. The scaled models are constructed by matching the stiffness of the scaled equivalent plate with the scaled aircraft wing stiffness. It is demonstrated that the scaled equivalent plate model can be used to predict the deformation of the aircraft wing accurately. Once the full equivalent plate geometry is obtained, any other scaled equivalent plate geometry can be obtained using the geometric scale factor. Next, an average frequency scale factor is defined as the average ratio of the frequencies of the aircraft wing to the frequencies of the full-scaled equivalent plate. The average frequency scale factor combined with the geometric scale factor is used to predict the frequency response of the aircraft wing from the scaled equivalent plate analysis. A procedure is outlined to estimate the frequency response and the flutter speed of an aircraft wing from the equivalent plate analysis using the frequency scale factor and geometric scale factor. The equivalent plate analysis is demonstrated using an aircraft wing without damage and another with damage. Both of the problems show that the scaled equivalent plate analysis can be successfully used to predict the frequencies and flutter speed of a typical aircraft wing.
Structural Similitude and Scaling Laws
NASA Technical Reports Server (NTRS)
Simitses, George J.
1998-01-01
Aircraft and spacecraft comprise the class of aerospace structures that require efficiency and wisdom in design, sophistication and accuracy in analysis and numerous and careful experimental evaluations of components and prototype, in order to achieve the necessary system reliability, performance and safety. Preliminary and/or concept design entails the assemblage of system mission requirements, system expected performance and identification of components and their connections as well as of manufacturing and system assembly techniques. This is accomplished through experience based on previous similar designs, and through the possible use of models to simulate the entire system characteristics. Detail design is heavily dependent on information and concepts derived from the previous steps. This information identifies critical design areas which need sophisticated analyses, and design and redesign procedures to achieve the expected component performance. This step may require several independent analysis models, which, in many instances, require component testing. The last step in the design process, before going to production, is the verification of the design. This step necessitates the production of large components and prototypes in order to test component and system analytical predictions and verify strength and performance requirements under the worst loading conditions that the system is expected to encounter in service. Clearly then, full-scale testing is in many cases necessary and always very expensive. In the aircraft industry, in addition to full-scale tests, certification and safety necessitate large component static and dynamic testing. Such tests are extremely difficult, time consuming and definitely absolutely necessary. Clearly, one should not expect that prototype testing will be totally eliminated in the aircraft industry. It is hoped, though, that we can reduce full-scale testing to a minimum. Full-scale large component testing is necessary in other industries as well, Ship building, automobile and railway car construction all rely heavily on testing. Regardless of the application, a scaled-down (by a large factor) model (scale model) which closely represents the structural behavior of the full-scale system (prototype) can prove to be an extremely beneficial tool. This possible development must be based on the existence of certain structural parameters that control the behavior of a structural system when acted upon by static and/or dynamic loads. If such structural parameters exist, a scaled-down replica can be built, which will duplicate the response of the full-scale system. The two systems are then said to be structurally similar. The term, then, that best describes this similarity is structural similitude. Similarity of systems requires that the relevant system parameters be identical and these systems be governed by a unique set of characteristic equations. Thus, if a relation or equation of variables is written for a system, it is valid for all systems which are similar to it. Each variable in a model is proportional to the corresponding variable of the prototype. This ratio, which plays an essential role in predicting the relationship between the model and its prototype, is called the scale factor.
Flexible Twist for Pitch Control in a High Altitude Long Endurance Aircraft with Nonlinear Response
2008-12-01
Information dominance is the key motivator for employing high-altitude long-endurance (HALE) aircraft to provide continuous coverage in the theaters of operation A joined-wing configuration of such a craft gives the advantage of a platform for higher resolution sensors. Design challenges emerge with structural flexibility that arise from a long-endurance aircraft design. The goal was to demonstrate that scaling the nonlinear response of a full-scale finite element model of a high-altitude long-endurance (HALE) aircraft was possible if the model was aeroelastically and
Structural dynamics payload loads estimates
NASA Technical Reports Server (NTRS)
Engels, R. C.
1982-01-01
Methods for the prediction of loads on large space structures are discussed. Existing approaches to the problem of loads calculation are surveyed. A full scale version of an alternate numerical integration technique to solve the response part of a load cycle is presented, and a set of short cut versions of the algorithm developed. The implementation of these techniques using the software package developed is discussed.
NASA Technical Reports Server (NTRS)
Carden, H. D.
1984-01-01
Three six-place, low wing, twin-engine general aviation airplane test specimens were crash tested at the langley Impact Dynamics research Facility under controlled free-flight conditions. One structurally unmodified airplane was the baseline airplane specimen for the test series. The other airplanes were structurally modified to incorporate load-limiting (energy-absorbing) subfloor concepts into the structure for full scale crash test evaluation and comparison to the unmodified airplane test results. Typically, the lowest floor accelerations and anthropomorphic dummy occupant responses, and the least seat crushing of standard and load-limiting seats, occurred in the modified load-limiting subfloor airplanes wherein the greatest structural crushing of the subfloor took place. The better performing of the two load-limiting subfloor concepts reduced the peak airplane floor accelerations at the pilot and four seat/occupant locations to -25 to -30 g's as compared to approximately -50 to -55 g's acceleration magnitude for the unmodified airplane structure.
The Structure of Conscious Bodily Self-Perception during Full-Body Illusions
Dobricki, Martin; de la Rosa, Stephan
2013-01-01
Previous research suggests that bodily self-identification, bodily self-localization, agency, and the sense of being present in space are critical aspects of conscious full-body self-perception. However, none of the existing studies have investigated the relationship of these aspects to each other, i.e., whether they can be identified to be distinguishable components of the structure of conscious full-body self-perception. Therefore, the objective of the present investigation is to elucidate the structure of conscious full-body self-perception. We performed two studies in which we stroked the back of healthy individuals for three minutes while they watched the back of a distant virtual body being synchronously stroked with a virtual stick. After visuo-tactile stimulation, participants assessed changes in their bodily self-perception with a custom made self-report questionnaire. In the first study, we investigated the structure of conscious full-body self-perception by analyzing the responses to the questionnaire by means of multidimensional scaling combined with cluster analysis. In the second study, we then extended the questionnaire and validated the stability of the structure of conscious full-body self-perception found in the first study within a larger sample of individuals by performing a principle components analysis of the questionnaire responses. The results of the two studies converge in suggesting that the structure of conscious full-body self-perception consists of the following three distinct components: bodily self-identification, space-related self-perception (spatial presence), and agency. PMID:24376765
The structure of conscious bodily self-perception during full-body illusions.
Dobricki, Martin; de la Rosa, Stephan
2013-01-01
Previous research suggests that bodily self-identification, bodily self-localization, agency, and the sense of being present in space are critical aspects of conscious full-body self-perception. However, none of the existing studies have investigated the relationship of these aspects to each other, i.e., whether they can be identified to be distinguishable components of the structure of conscious full-body self-perception. Therefore, the objective of the present investigation is to elucidate the structure of conscious full-body self-perception. We performed two studies in which we stroked the back of healthy individuals for three minutes while they watched the back of a distant virtual body being synchronously stroked with a virtual stick. After visuo-tactile stimulation, participants assessed changes in their bodily self-perception with a custom made self-report questionnaire. In the first study, we investigated the structure of conscious full-body self-perception by analyzing the responses to the questionnaire by means of multidimensional scaling combined with cluster analysis. In the second study, we then extended the questionnaire and validated the stability of the structure of conscious full-body self-perception found in the first study within a larger sample of individuals by performing a principle components analysis of the questionnaire responses. The results of the two studies converge in suggesting that the structure of conscious full-body self-perception consists of the following three distinct components: bodily self-identification, space-related self-perception (spatial presence), and agency.
Wijdicks, Eelco F M; Kramer, Andrew A; Rohs, Thomas; Hanna, Susan; Sadaka, Farid; O'Brien, Jacklyn; Bible, Shonna; Dickess, Stacy M; Foss, Michelle
2015-02-01
Impaired consciousness has been incorporated in prediction models that are used in the ICU. The Glasgow Coma Scale has value but is incomplete and cannot be assessed in intubated patients accurately. The Full Outline of UnResponsiveness score may be a better predictor of mortality in critically ill patients. Thirteen ICUs at five U.S. hospitals. One thousand six hundred ninety-five consecutive unselected ICU admissions during a six-month period in 2012. Glasgow Coma Scale and Full Outline of UnResponsiveness score were recorded within 1 hour of admission. Baseline characteristics and physiologic components of the Acute Physiology and Chronic Health Evaluation system, as well as mortality were linked to Glasgow Coma Scale/Full Outline of UnResponsiveness score information. None. We recruited 1,695 critically ill patients, of which 1,645 with complete data could be linked to data in the Acute Physiology and Chronic Health Evaluation system. The area under the receiver operating characteristic curve of predicting ICU mortality using the Glasgow Coma Scale was 0.715 (95% CI, 0.663-0.768) and using the Full Outline of UnResponsiveness score was 0.742 (95% CI, 0.694-0.790), statistically different (p = 0.001). A similar but nonsignificant difference was found for predicting hospital mortality (p = 0.078). The respiratory and brainstem reflex components of the Full Outline of UnResponsiveness score showed a much wider range of mortality than the verbal component of Glasgow Coma Scale. In multivariable models, the Full Outline of UnResponsiveness score was more useful than the Glasgow Coma Scale for predicting mortality. The Full Outline of UnResponsiveness score might be a better prognostic tool of ICU mortality than the Glasgow Coma Scale in critically ill patients, most likely a result of incorporating brainstem reflexes and respiration into the Full Outline of UnResponsiveness score.
DOT National Transportation Integrated Search
2009-03-01
The thirteenth full-scale Accelerated Pavement Test (APT) experiment at the Civil Infrastructure Laboratory (CISL) : of Kansas State University aimed to determine the response and the failure mode of thin concrete overlays. Four : pavement structures...
Structural tailoring of advanced turboprops
NASA Technical Reports Server (NTRS)
Brown, K. W.; Hopkins, Dale A.
1988-01-01
The Structural Tailoring of Advanced Turboprops (STAT) computer program was developed to perform numerical optimization on highly swept propfan blades. The optimization procedure seeks to minimize an objective function defined as either: (1) direct operating cost of full scale blade or, (2) aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints. The STAT analysis system includes an aerodynamic efficiency evaluation, a finite element stress and vibration analysis, an acoustic analysis, a flutter analysis, and a once-per-revolution forced response life prediction capability. STAT includes all relevant propfan design constraints.
Dynamic Behavior of Sand: Annual Report FY 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoun, T; Herbold, E; Johnson, S
2012-03-15
Currently, design of earth-penetrating munitions relies heavily on empirical relationships to estimate behavior, making it difficult to design novel munitions or address novel target situations without expensive and time-consuming full-scale testing with relevant system and target characteristics. Enhancing design through numerical studies and modeling could help reduce the extent and duration of full-scale testing if the models have enough fidelity to capture all of the relevant parameters. This can be separated into three distinct problems: that of the penetrator structural and component response, that of the target response, and that of the coupling between the two. This project focuses onmore » enhancing understanding of the target response, specifically granular geomaterials, where the temporal and spatial multi-scale nature of the material controls its response. As part of the overarching goal of developing computational capabilities to predict the performance of conventional earth-penetrating weapons, this project focuses specifically on developing new models and numerical capabilities for modeling sand response in ALE3D. There is general recognition that granular materials behave in a manner that defies conventional continuum approaches which rely on response locality and which degrade in the presence of strong response nonlinearities, localization, and phase gradients. There are many numerical tools available to address parts of the problem. However, to enhance modeling capability, this project is pursuing a bottom-up approach of building constitutive models from higher fidelity, smaller spatial scale simulations (rather than from macro-scale observations of physical behavior as is traditionally employed) that are being augmented to address the unique challenges of mesoscale modeling of dynamically loaded granular materials. Through understanding response and sensitivity at the grain-scale, it is expected that better reduced order representations of response can be formulated at the continuum scale as illustrated in Figure 1 and Figure 2. The final result of this project is to implement such reduced order models in the ALE3D material library for general use.« less
VEGA Launch Vehicle Vibro-Acoustic Approach for Multi Payload Configuration Qualification
NASA Astrophysics Data System (ADS)
Bartoccini, D.; Di Trapani, C.; Fotino, D.; Bonnet, M.
2014-06-01
Acoustic loads are one of the principal source of structural vibration and internal noise during a launch vehicle flight but do not generally present a critical design condition for the main load-carrying structure. However, acoustic loads may be critical to the proper functioning of vehicle components and their supporting structures, which are otherwise lightly loaded. Concerning the VEGA program, in order to demonstrate VEGA Launch Vehicle (LV) on-ground qualification, prior to flight, to the acoustic load, the following tests have been performed: small-scale acoustic test intended for the determination of the acoustic loading of the LV and its nature and full-scale acoustic chamber test to determine the vibro-acoustic response of the structures as well as of the acoustic cavities.
Sonic-boom-induced building structure responses including damage.
NASA Technical Reports Server (NTRS)
Clarkson, B. L.; Mayes, W. H.
1972-01-01
Concepts of sonic-boom pressure loading of building structures and the associated responses are reviewed, and results of pertinent theoretical and experimental research programs are summarized. The significance of sonic-boom load time histories, including waveshape effects, are illustrated with the aid of simple structural elements such as beams and plates. Also included are discussions of the significance of such other phenomena as three-dimensional loading effects, air cavity coupling, multimodal responses, and structural nonlinearities. Measured deflection, acceleration, and strain data from laboratory models and full-scale building tests are summarized, and these data are compared, where possible, with predicted values. Damage complaint and claim experience due both to controlled and uncontrolled supersonic flights over communities are summarized with particular reference to residential, commercial, and historic buildings. Sonic-boom-induced building responses are compared with those from other impulsive loadings due to natural and cultural events and from laboratory simulation tests.
40 CFR 86.338-79 - Exhaust measurement accuracy.
Code of Federal Regulations, 2010 CFR
2010-07-01
... percent of full-scale chart deflection during the measurement of the emissions for each mode. The... percent of full-scale if the full-scale value is 155 ppm (or ppm C) or less. (2) Option. For CO analysis the analyzer's response may be less than 15 percent of full scale if the full-scale value is 5500 ppm...
NASA Astrophysics Data System (ADS)
Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram
2018-06-01
The application of energy harvesting technology for monitoring civil infrastructure is a bourgeoning topic of interest. The ability of kinetic energy harvesters to scavenge ambient vibration energy can be useful for large civil infrastructure under operational conditions, particularly for bridge structures. The experimental integration of such harvesters with full scale structures and the subsequent use of the harvested energy directly for the purposes of structural health monitoring shows promise. This paper presents the first experimental deployment of piezoelectric vibration energy harvesting devices for monitoring a full-scale bridge undergoing forced dynamic vibrations under operational conditions using energy harvesting signatures against time. The calibration of the harvesters is presented, along with details of the host bridge structure and the dynamic assessment procedures. The measured responses of the harvesters from the tests are presented and the use the harvesters for the purposes of structural health monitoring (SHM) is investigated using empirical mode decomposition analysis, following a bespoke data cleaning approach. Finally, the use of sequential Karhunen Loeve transforms to detect train passages during the dynamic assessment is presented. This study is expected to further develop interest in energy-harvesting based monitoring of large infrastructure for both research and commercial purposes.
Design of scaled down structural models
NASA Technical Reports Server (NTRS)
Simitses, George J.
1994-01-01
In the aircraft industry, full scale and large component testing is a very necessary, time consuming, and expensive process. It is essential to find ways by which this process can be minimized without loss of reliability. One possible alternative is the use of scaled down models in testing and use of the model test results in order to predict the behavior of the larger system, referred to herein as prototype. This viewgraph presentation provides justifications and motivation for the research study, and it describes the necessary conditions (similarity conditions) for two structural systems to be structurally similar with similar behavioral response. Similarity conditions provide the relationship between a scaled down model and its prototype. Thus, scaled down models can be used to predict the behavior of the prototype by extrapolating their experimental data. Since satisfying all similarity conditions simultaneously is in most cases impractical, distorted models with partial similarity can be employed. Establishment of similarity conditions, based on the direct use of the governing equations, is discussed and their use in the design of models is presented. Examples include the use of models for the analysis of cylindrical bending of orthotropic laminated beam plates, of buckling of symmetric laminated rectangular plates subjected to uniform uniaxial compression and shear, applied individually, and of vibrational response of the same rectangular plates. Extensions and future tasks are also described.
Design of scaled down structural models
NASA Astrophysics Data System (ADS)
Simitses, George J.
1994-07-01
In the aircraft industry, full scale and large component testing is a very necessary, time consuming, and expensive process. It is essential to find ways by which this process can be minimized without loss of reliability. One possible alternative is the use of scaled down models in testing and use of the model test results in order to predict the behavior of the larger system, referred to herein as prototype. This viewgraph presentation provides justifications and motivation for the research study, and it describes the necessary conditions (similarity conditions) for two structural systems to be structurally similar with similar behavioral response. Similarity conditions provide the relationship between a scaled down model and its prototype. Thus, scaled down models can be used to predict the behavior of the prototype by extrapolating their experimental data. Since satisfying all similarity conditions simultaneously is in most cases impractical, distorted models with partial similarity can be employed. Establishment of similarity conditions, based on the direct use of the governing equations, is discussed and their use in the design of models is presented. Examples include the use of models for the analysis of cylindrical bending of orthotropic laminated beam plates, of buckling of symmetric laminated rectangular plates subjected to uniform uniaxial compression and shear, applied individually, and of vibrational response of the same rectangular plates. Extensions and future tasks are also described.
NASA Technical Reports Server (NTRS)
Sreekantamurthy, Tham; Gaspar, James L.; Mann, Troy; Behun, Vaughn; Pearson, James C., Jr.; Scarborough, Stephen
2007-01-01
Ultra-light weight and ultra-thin membrane inflatable antenna concepts are fast evolving to become the state-of-the-art antenna concepts for deep-space applications. NASA Langley Research Center has been involved in the structural dynamics research on antenna structures. One of the goals of the research is to develop structural analysis methodology for prediction of the static and dynamic response characteristics of the inflatable antenna concepts. This research is focused on the computational studies to use nonlinear large deformation finite element analysis to characterize the ultra-thin membrane responses of the antennas. Recently, structural analyses have been performed on a few parabolic reflector antennas of varying size and shape, which are referred in the paper as 0.3 meters subscale, 2 meters half-scale, and 4 meters full-scale antenna. The various aspects studied included nonlinear analysis methodology and solution techniques, ways to speed convergence in iterative methods, the sensitivities of responses with respect to structural loads, such as inflation pressure, gravity, and pretension loads in the ground and in-space conditions, and the ultra-thin membrane wrinkling characteristics. Several such intrinsic aspects studied have provided valuable insight into evaluation of structural characteristics of such antennas. While analyzing these structural characteristics, a quick study was also made to assess the applicability of dynamics scaling of the half-scale antenna. This paper presents the details of the nonlinear structural analysis results, and discusses the insight gained from the studies on the various intrinsic aspects of the analysis methodology. The predicted reflector surface characteristics of the three inflatable ultra-thin membrane parabolic reflector antenna concepts are presented as easily observable displacement fringe patterns with associated maximum values, and normal mode shapes and associated frequencies. Wrinkling patterns are presented to show how surface wrinkle progress with increasing tension loads. Antenna reflector surface accuracies were found to be very much dependent on the type and size of the antenna, the reflector surface curvature, reflector membrane supports in terms of spacing of catenaries, as well as the amount of applied load.
NASA Technical Reports Server (NTRS)
Jones, R.; Molent, L.; Paul, J.; Saunders, T.; Chiu, W. K.
1994-01-01
This paper presents an overview of the structural aspects of the design and development of a local reinforcement designed to lower the stresses in a region of the F-111C wing fitting which is prone to cracking. The stress analysis, with particular emphasis on the use of a unified constitutive model for the cyclic inelastic response of the structure, representative specimen testing, thermal analysis and full scale static testing of this design are summarized.
Small Scales Structure of MHD Turbulence, Tubes or Ribbons?
NASA Astrophysics Data System (ADS)
Verdini, A.; Grappin, R.; Alexandrova, O.; Lion, S.
2017-12-01
Observations in the solar wind indicate that turbulent eddies change their anisotropy with scales [1]. At large scales eddies are elongated in direction perpendicular to the mean-field axis. This is the result of solar wind expansion that affects both the anisotropy and single-spacecraft measurments [2,3]. At small scales one recovers the anisotropy expected in strong MHD turbulence and constrained by the so-called critical balance: eddies are elongated along the mean-field axis. However, the actual eddy shape is intermediate between tubes and ribbons, preventing us to discriminate between two concurrent theories that predict 2D axysimmetric anisotropy [4] or full 3D anisotropy [5]. We analyse 10 years of WIND data and apply a numerically-derived criterion to select intervals in which solar wind expansion is expected to be negligible. By computing the anisotropy of structure functions with respect to the local mean field we obtain for the first time scaling relations that are in agreement with full 3D anisotropy, i.e. ribbons-like structures. However, we cannot obtain the expected scaling relations for the alignment angle which, according to the theory, is physically responsible for the departure from axisymmetry. In addition, a further change of anisotropy occurs well above the proton scales. We discuss the implication of our findings and how numerical simulations can help interpreting the observed spectral anisotropy. [1] Chen et al., ApJ, 768:120, 2012 [2] Verdini & Grappin, ApJL, 808:L34, 2015 [3] Vech & Chen, ApJL, 832:L16, 2016 [4] Goldreich & Shridar, ApJ, 438:763, 1995 [5] Boldyrev, ApJL, 626:L37, 2005
1990-02-15
electrical activity mapping procedures. It is necessary to employ approximately 20 electrodes to conduct full- scale brain mapping procedures, using a...animal groups, likewise, showed no observable differences in the animal’s exploratory behavior, nuzzle response, lid-corneal and ear reflexes, pain ...SPECIFICATIONS FOR THE ENVIRONICS SERIES 100 GAS STANDARDS GENERATOR Accuracy of Flow 0.15 % of Full Scale Linearity 0.15 % of Full Scale Repeatability 0.10
Structural Solutions for Low-Cost Bamboo Frames: Experimental Tests and Constructive Assessments
Sassu, Mauro; De Falco, Anna; Giresini, Linda; Puppio, Mario Lucio
2016-01-01
Experimental tests and constructive assessments are presented for a simple bamboo framed structure with innovative low-cost and low technology joints, specifically conceived for small buildings in developing countries. Two full scale one-storey bamboo frames have been designed by using the simplest joints solution among three different tested typologies. The entire building process is based on low-technology and natural materials: bamboo canes, wooden cylinders, plywood plates and canapé rods. The first full scale specimen (Unit A) is a one-storey single deck truss structure subjected to monotonic collapse test; the second full scale specimen (Unit B) is a one-storey double deck truss structure used to evaluate the construction time throughout assembling tests. The first full scale specimen showed ductility in collapse and ease in strengthening; the second one showed remarkable ease and speed in assembling structural elements. Finally several constructive solutions are suggested for the design of simple one-storey buildings; they are addressed to four purposes (housing, school, chapel, health center) by the composition of the proposed full scale bamboo frames. Ease of use and maintenance with a low level of technology contribute to application in developing countries although not exclusively. PMID:28773472
Mercier, Catherine; Roche, Sylvain; Gaillard, Ségolène; Kassai, Behrouz; Arzimanoglou, Alexis; Herbillon, Vania; Roy, Pascal; Rheims, Sylvain
2016-05-01
Attention deficit hyperactivity disorder (ADHD) is a well-known comorbidity in children with epilepsy. In English-speaking countries, the scores of the original ADHD-rating scale IV are currently used as main outcomes in various clinical trials in children with epilepsy. In French-speaking countries, several French versions are in use though none has been fully validated yet. We sought here for a partial validation of a French version of the ADHD-RS IV regarding construct validity, internal consistency (i.e., scale reliability), item reliability, and responsiveness in a group of French children with ADHD and epilepsy. The study involved 167 children aged 6-15years in 10 French neuropediatric units. The factorial structure and item reliability were assessed with a confirmatory factorial analysis for ordered categorical variables. The dimensions' internal consistency was assessed with Guttman's lambda 6 coefficient. The responsiveness was assessed by the change in score under methylphenidate and in comparison with a control group. The results confirmed the original two-dimensional factorial structure (inattention, hyperactivity/impulsivity) and showed a satisfactory reliability of most items, a good dimension internal consistency, and a good responsiveness of the total score and the two subscores. The studied French version of the ADHD-RS IV is thus validated regarding construct validity, reliability, and responsiveness. It can now be used in French-speaking countries in clinical trials of treatments involving children with ADHD and epilepsy. The full validation requires further investigations. Copyright © 2016 Elsevier Inc. All rights reserved.
Rapid estimation of frequency response functions by close-range photogrammetry
NASA Technical Reports Server (NTRS)
Tripp, J. S.
1985-01-01
The accuracy of a rapid method which estimates the frequency response function from stereoscopic dynamic data is computed. It is shown that reversal of the order of the operations of coordinate transformation and Fourier transformation, which provides a significant increase in computational speed, introduces error. A portion of the error, proportional to the perturbation components normal to the camera focal planes, cannot be eliminated. The remaining error may be eliminated by proper scaling of frequency data prior to coordinate transformation. Methods are developed for least squares estimation of the full 3x3 frequency response matrix for a three dimensional structure.
Loads Correlation of a Full-Scale UH-60A Airloads Rotor in a Wind Tunnel
NASA Technical Reports Server (NTRS)
Yeo, Hyeonsoo; Romander, Ethan A.
2012-01-01
Wind tunnel measurements of the rotor trim, blade airloads, and structural loads of a full-scale UH-60A Black Hawk main rotor are compared with calculations obtained using the comprehensive rotorcraft analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. A speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed into deep stall are investigated. The coupled analysis shows significant improvement over comprehensive analysis. Normal force phase is better captured and pitching moment magnitudes are better predicted including the magnitude and phase of the two stall events in the fourth quadrant at the deeply stalled condition. Structural loads are, in general, improved with the coupled analysis, but the magnitude of chord bending moment is still significantly underpredicted. As there are three modes around 4 and 5/rev frequencies, the structural responses to the 5/rev airloads due to dynamic stall are magnified and thus care must be taken in the analysis of the deeply stalled condition.
Simulating the Impact Response of Full-Scale Composite Airframe Structures
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Littell, Justin D.; Seal, Michael D.
2012-01-01
NASA Langley Research Center obtained a composite helicopter cabin structure in 2010 from the US Army's Survivable Affordable Repairable Airframe Program (SARAP) that was fabricated by Sikorsky Aircraft Corporation. The cabin had been subjected to a vertical drop test in 2008 to evaluate a tilting roof concept to limit the intrusion of overhead masses into the fuselage cabin. Damage to the cabin test article was limited primarily to the roof. Consequently, the roof area was removed and the remaining structure was cut into test specimens including a large subfloor section and a forward framed fuselage section. In 2011, NASA and Sikorsky entered into a cooperative research agreement to study the impact responses of composite airframe structures and to evaluate the capabilities of the explicit transient dynamic finite element code, LS-DYNA®, to simulate these responses including damage initiation and progressive failure. Most of the test articles were manufactured of graphite unidirectional tape composite with a thermoplastic resin system. However, the framed fuselage section was constructed primarily of a plain weave graphite fabric material with a thermoset resin system. Test data were collected from accelerometers and full-field photogrammetry. The focus of this paper will be to document impact testing and simulation results for the longitudinal impact of the subfloor section and the vertical drop test of the forward framed fuselage section.
Simultaneous dynamic characterization of charge and structural motion during ferroelectric switching
NASA Astrophysics Data System (ADS)
Kwamen, C.; Rössle, M.; Reinhardt, M.; Leitenberger, W.; Zamponi, F.; Alexe, M.; Bargheer, M.
2017-10-01
Monitoring structural changes in ferroelectric thin films during electric field induced polarization switching is important for a full microscopic understanding of the coupled motion of charges, atoms, and domain walls in ferroelectric nanostructures. We combine standard ferroelectric test sequences of switching and nonswitching electrical pulses with time-resolved x-ray diffraction to investigate the structural response of a nanoscale Pb (Zr0.2Ti0.8) O3 ferroelectric oxide capacitor upon charging, discharging, and polarization reversal. We observe that a nonlinear piezoelectric response of the ferroelectric layer develops on a much longer time scale than the R C time constant of the device. The complex atomic motion during the ferroelectric polarization reversal starts with a contraction of the lattice, whereas the expansive piezoelectric response sets in after considerable charge flow due to the applied voltage pulses on the electrodes of the capacitor. Our simultaneous measurements on a working device elucidate and visualize the complex interplay of charge flow and structural motion and challenges theoretical modeling.
Hamilton Standard Q-fan demonstrator dynamic pitch change test program, volume 1
NASA Technical Reports Server (NTRS)
Demers, W. J.; Nelson, D. J.; Wainauski, H. S.
1975-01-01
Tests of a full scale variable pitch fan engine to obtain data on the structural characteristics, response times, and fan/core engine compatibility during transient changes in blade angle, fan rpm, and engine power is reported. Steady state reverse thrust tests with a take off nozzle configuration were also conducted. The 1.4 meter diameter, 13 bladed controllable pitch fan was driven by a T55 L 11A engine with power and blade angle coordinated by a digital computer. The tests demonstrated an ability to change from full forward thrust to reverse thrust in less than one (1) second. Reverse thrust was effected through feather and through flat pitch; structural characteristics and engine/fan compatibility were within satisfactory limits.
Modeling and Design of a Full-Scale Rotor Blade with Embedded Piezocomposite Actuators
NASA Astrophysics Data System (ADS)
Kovalovs, A.; Barkanov, E.; Ruchevskis, S.; Wesolowski, M.
2017-05-01
An optimization methodology for the design of a full-scale rotor blade with an active twist in order to enhance its ability to reduce vibrations and noise is presented. It is based on a 3D finite-element model, the planning of experiments, and the response surface technique to obtain high piezoelectric actuation forces and displacements with a minimum actuator weight and energy applied. To investigate an active twist of the helicopter rotor blade, a structural static analysis using a 3D finite-element model was carried out. Optimum results were obtained at two possible applications of macrofiber composite actuators. The torsion angle found from the finite-element simulation of helicopter rotor blades was successfully validated by its experimental values, which confirmed the modeling accuracy.
Flexible twist for pitch control in a high altitude long endurance aircraft with nonlinear response
NASA Astrophysics Data System (ADS)
Bond, Vanessa L.
Information dominance is the key motivator for employing high-altitude long-endurance (HALE) aircraft to provide continuous coverage in the theaters of operation. A joined-wing configuration of such a craft gives the advantage of a platform for higher resolution sensors. Design challenges emerge with structural flexibility that arise from a long-endurance aircraft design. The goal of this research was to demonstrate that scaling the nonlinear response of a full-scale finite element model was possible if the model was aeroelastically and "nonlinearly" scaled. The research within this dissertation showed that using the first three modes and the first bucking modes was not sufficient for proper scaling. In addition to analytical scaling several experiments were accomplished to understand and overcome design challenges of HALE aircraft. One such challenge is combated by eliminating pitch control surfaces and replacing them with an aft-wing twist concept. This design option was physically realized through wind tunnel measurement of forces, moments and pressures on a subscale experimental model. This design and experiment demonstrated that pitch control with aft-wing twist is feasible. Another challenge is predicting the nonlinear response of long-endurance aircraft. This was addressed by experimental validation of modeling nonlinear response on a subscale experimental model. It is important to be able to scale nonlinear behavior in this type of craft due to its highly flexible nature. The validation accomplished during this experiment on a subscale model will reduce technical risk for full-scale development of such pioneering craft. It is also important to experimentally reproduce the air loads following the wing as it deforms. Nonlinearities can be attributed to these follower forces that might otherwise be overlooked. This was found to be a significant influence in HALE aircraft to include the case study of the FEM and experimental models herein.
NASA Astrophysics Data System (ADS)
Lu, Tao; Zhu, Shenmin; Chen, Zhixin; Wang, Wanlin; Zhang, Wang; Zhang, Di
2016-05-01
Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures.Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01875k
Yang, Wenhui; Xiong, Ge; Garrido, Luis Eduardo; Zhang, John X; Wang, Meng-Cheng; Wang, Chong
2018-04-16
We systematically examined the factor structure and criterion validity across the full scale and 10 short forms of the Center for Epidemiological Studies Depression Scale (CES-D) with Chinese youth. Participants were 5,434 Chinese adolescents in Grades 7 to 12 who completed the full CES-D; 612 of them further completed a structured diagnostic interview with the major depressive disorder (MDD) module of the Kiddie Schedule for Affective Disorder and Schizophrenia for School-age Children. Using a split-sample approach, a series of 4-, 3-, 2-, and 1-factor models were tested using exploratory structural equation modeling and cross-validated using confirmatory factor analysis; the dimensionality was also evaluated by parallel analysis in conjunction with the scree test and aided by factor mixture analysis. The results indicated that a single-factor model of depression with a wording method factor fitted the data well, and was the optimal structure underlying the scores of the full and shortened CES-D. Additionally, receiver operating characteristic curve analyses for MDD case detection showed that the CES-D full-scale scores accurately detected MDD youth (area under the curve [AUC] = .84). Furthermore, the short-form scores produced comparable AUCs with the full scale (.82 to .85), as well as similar levels of sensitivity and specificity when using optimal cutoffs. These findings suggest that depression among Chinese adolescents can be adequately measured and screened for by a single-factor structure underlying the CES-D scores, and that the short forms provide a viable alternative to the full instrument. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Kunicki, Zachary J; Schick, Melissa R; Spillane, Nichea S; Harlow, Lisa L
2018-06-01
Those who binge drink are at increased risk for alcohol-related consequences when compared to non-binge drinkers. Research shows individuals may face barriers to reducing their drinking behavior, but few measures exist to assess these barriers. This study created and validated the Barriers to Alcohol Reduction (BAR) scale. Participants were college students ( n = 230) who endorsed at least one instance of past-month binge drinking (4+ drinks for women or 5+ drinks for men). Using classical test theory, exploratory structural equation modeling found a two-factor structure of personal/psychosocial barriers and perceived program barriers. The sub-factors, and full scale had reasonable internal consistency (i.e., coefficient omega = 0.78 (personal/psychosocial), 0.82 (program barriers), and 0.83 (full measure)). The BAR also showed evidence for convergent validity with the Brief Young Adult Alcohol Consequences Questionnaire ( r = 0.39, p < .001) and discriminant validity with Barriers to Physical Activity ( r = -0.02, p = .81). Item Response Theory (IRT) analysis showed the two factors separately met the unidimensionality assumption, and provided further evidence for severity of the items on the two factors. Results suggest that the BAR measure appears reliable and valid for use in an undergraduate student population of binge drinkers. Future studies may want to re-examine this measure in a more diverse sample.
Full-Scale Crash Test and Finite Element Simulation of a Composite Prototype Helicopter
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; Lyle, Karen H.
2003-01-01
A full-scale crash test of a prototype composite helicopter was performed at the Impact Dynamics Research Facility at NASA Langley Research Center in 1999 to obtain data for validation of a finite element crash simulation. The helicopter was the flight test article built by Sikorsky Aircraft during the Advanced Composite Airframe Program (ACAP). The composite helicopter was designed to meet the stringent Military Standard (MIL-STD-1290A) crashworthiness criteria and was outfitted with two crew and two troop seats and four anthropomorphic dummies. The test was performed at 38-ft/s vertical and 32.5-ft/s horizontal velocity onto a rigid surface. An existing modal-vibration model of the Sikorsky ACAP helicopter was converted into a model suitable for crash simulation. A two-stage modeling approach was implemented and an external user-defined subroutine was developed to represent the complex landing gear response. The crash simulation was executed with a nonlinear, explicit transient dynamic finite element code. Predictions of structural deformation and failure, the sequence of events, and the dynamic response of the airframe structure were generated and the numerical results were correlated with the experimental data to validate the simulation. The test results, the model development, and the test-analysis correlation are described.
Herdic, Peter C; Houston, Brian H; Marcus, Martin H; Williams, Earl G; Baz, Amr M
2005-06-01
The surface and interior response of a Cessna Citation fuselage section under three different forcing functions (10-1000 Hz) is evaluated through spatially dense scanning measurements. Spatial Fourier analysis reveals that a point force applied to the stiffener grid provides a rich wavenumber response over a broad frequency range. The surface motion data show global structural modes (approximately < 150 Hz), superposition of global and local intrapanel responses (approximately 150-450 Hz), and intrapanel motion alone (approximately > 450 Hz). Some evidence of Bloch wave motion is observed, revealing classical stop/pass bands associated with stiffener periodicity. The interior response (approximately < 150 Hz) is dominated by global structural modes that force the interior cavity. Local intrapanel responses (approximately > 150 Hz) of the fuselage provide a broadband volume velocity source that strongly excites a high density of interior modes. Mode coupling between the structural response and the interior modes appears to be negligible due to a lack of frequency proximity and mismatches in the spatial distribution. A high degree-of-freedom finite element model of the fuselage section was developed as a predictive tool. The calculated response is in good agreement with the experimental result, yielding a general model development methodology for accurate prediction of structures with moderate to high complexity.
DOT National Transportation Integrated Search
2016-05-01
Full-scale rollover crash tests were performed on three non-pressure tank carbodies to validate previous analytical work and : determine the effectiveness of two different types of protective structures in protecting the top fittings. The tests were ...
Khodabandeloo, Babak; Melvin, Dyan; Jo, Hongki
2017-01-01
Direct measurements of external forces acting on a structure are infeasible in many cases. The Augmented Kalman Filter (AKF) has several attractive features that can be utilized to solve the inverse problem of identifying applied forces, as it requires the dynamic model and the measured responses of structure at only a few locations. But, the AKF intrinsically suffers from numerical instabilities when accelerations, which are the most common response measurements in structural dynamics, are the only measured responses. Although displacement measurements can be used to overcome the instability issue, the absolute displacement measurements are challenging and expensive for full-scale dynamic structures. In this paper, a reliable model-based data fusion approach to reconstruct dynamic forces applied to structures using heterogeneous structural measurements (i.e., strains and accelerations) in combination with AKF is investigated. The way of incorporating multi-sensor measurements in the AKF is formulated. Then the formulation is implemented and validated through numerical examples considering possible uncertainties in numerical modeling and sensor measurement. A planar truss example was chosen to clearly explain the formulation, while the method and formulation are applicable to other structures as well. PMID:29149088
NASA Astrophysics Data System (ADS)
Catinari, Federico; Pierdicca, Alessio; Clementi, Francesco; Lenci, Stefano
2017-11-01
The results of an ambient-vibration based investigation conducted on the "Palazzo del Podesta" in Montelupone (Italy) is presented. The case study was damaged during the 20I6 Italian earthquakes that stroke the central part of the Italy. The assessment procedure includes full-scale ambient vibration testing, modal identification from ambient vibration responses, finite element modeling and dynamic-based identification of the uncertain structural parameters of the model. A very good match between theoretical and experimental modal parameters was reached and the model updating has been performed identifying some structural parameters.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-20
... (M2R) Full-Scale Exercise for a Mass Rescue Incident (MRI) AGENCY: Coast Guard, DHS. ACTION: Temporary... simulate a mass rescue incident (MRI) and will involve an abandon ship scenario with multiple response... full scale exercise which will simulate a MRI to provide training in specific emergency response...
The high velocity impact loading on symmetrical and woven hybrid composite laminates
NASA Astrophysics Data System (ADS)
Jin, Martin; Richardson, Mel; Zhang, Zhong Yi
2007-07-01
Space structures use fibre composite materials, due to their lightweight. This paper examines the impact response of symmetrical and hybrid composite laminates. Special attention is given to the stacking sequences used. The experimental study of structures has always provided a major contribution to our understanding. Even with the formidable growth in the use and capacity of computing power the need for experimental measurement is as compelling as ever. The design of hybrid composite structures is complicated by the number of design variables and the interaction of the constituents is the composite system. Since it is desirable to experimentally test the design and it is not practical to test a full scale model, the structural/material similitude concept is used to create a small scale model with a similar structural response. In the current study, experimental investigations were carried out to determine the response of four different combinations of hybrid laminates to low-velocity impact loading using an instrumented impact testing machine. Hybrid laminates were fabricated with twill weave carbon fabric and plain weave S2-glass fabric using vacuum assisted resin molding process with SC-15 epoxy resin system. Response of carbon/epoxy and glass/epoxy laminates was also investigated to compare with that of hybrid samples. Square laminates of size 100 mm and nominal thickness of 3 mm were subjected to low-velocity impact loading at four energy levels of 10, 20, 30 and 40 J. Results of the study indicate that there is considerable improvement in the load carrying capability of hybrid composites as compared to carbon/epoxy laminates with slight reduction in stiffness.
2010-08-18
Spectral domain response calculated • Time domain response obtained through inverse transform Approach 4: WASABI Wavelet Analysis of Structural Anomalies...differences at unity scale! Time Function Transform Apply Spectral Domain Transfer Function Time Function Inverse Transform Transform Transform mtP
NASA Astrophysics Data System (ADS)
Lin, Y. Q.; Ren, W. X.; Fang, S. E.
2011-11-01
Although most vibration-based damage detection methods can acquire satisfactory verification on analytical or numerical structures, most of them may encounter problems when applied to real-world structures under varying environments. The damage detection methods that directly extract damage features from the periodically sampled dynamic time history response measurements are desirable but relevant research and field application verification are still lacking. In this second part of a two-part paper, the robustness and performance of the statistics-based damage index using the forward innovation model by stochastic subspace identification of a vibrating structure proposed in the first part have been investigated against two prestressed reinforced concrete (RC) beams tested in the laboratory and a full-scale RC arch bridge tested in the field under varying environments. Experimental verification is focused on temperature effects. It is demonstrated that the proposed statistics-based damage index is insensitive to temperature variations but sensitive to the structural deterioration or state alteration. This makes it possible to detect the structural damage for the real-scale structures experiencing ambient excitations and varying environmental conditions.
Development of a wireless displacement measurement system using acceleration responses.
Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F
2013-07-01
Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system.
Development of a Wireless Displacement Measurement System Using Acceleration Responses
Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F.
2013-01-01
Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system. PMID:23881123
Scaling the Non-linear Impact Response of Flat and Curved Composite Panels
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Chunchu, Prasad B.; Rose, Cheryl A.; Feraboli, Paolo; Jackson, Wade C.
2005-01-01
The application of scaling laws to thin flat and curved composite panels exhibiting nonlinear response when subjected to low-velocity transverse impact is investigated. Previous research has shown that the elastic impact response of structural configurations exhibiting geometrically linear response can be effectively scaled. In the present paper, a preliminary experimental study is presented to assess the applicability of the scaling laws to structural configurations exhibiting geometrically nonlinear deformations. The effect of damage on the scalability of the structural response characteristics, and the effect of scale on damage development are also investigated. Damage is evaluated using conventional methods including C-scan, specimen de-plying and visual inspection of the impacted panels. Coefficient of restitution and normalized contact duration are also used to assess the extent of damage. The results confirm the validity of the scaling parameters for elastic impacts. However, for the panels considered in the study, the extent and manifestation of damage do not scale according to the scaling laws. Furthermore, the results indicate that even though the damage does not scale, the overall panel response characteristics, as indicated by contact force profiles, do scale for some levels of damage.
Vertical drop test of a transport fuselage center section including the wheel wells
NASA Technical Reports Server (NTRS)
Williams, M. S.; Hayduk, R. J.
1983-01-01
A Boeing 707 fuselage section was drop tested to measure structural, seat, and anthropomorphic dummy response to vertical crash loads. The specimen had nominally zero pitch, roll and yaw at impact with a sink speed of 20 ft/sec. Results from this drop test and other drop tests of different transport sections will be used to prepare for a full-scale crash test of a B-720.
A review of the analytical simulation of aircraft crash dynamics
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Carden, Huey D.; Boitnott, Richard L.; Hayduk, Robert J.
1990-01-01
A large number of full scale tests of general aviation aircraft, helicopters, and one unique air-to-ground controlled impact of a transport aircraft were performed. Additionally, research was also conducted on seat dynamic performance, load-limiting seats, load limiting subfloor designs, and emergency-locator-transmitters (ELTs). Computer programs were developed to provide designers with methods for predicting accelerations, velocities, and displacements of collapsing structure and for estimating the human response to crash loads. The results of full scale aircraft and component tests were used to verify and guide the development of analytical simulation tools and to demonstrate impact load attenuating concepts. Analytical simulation of metal and composite aircraft crash dynamics are addressed. Finite element models are examined to determine their degree of corroboration by experimental data and to reveal deficiencies requiring further development.
Utilization of the Building-Block Approach in Structural Mechanics Research
NASA Technical Reports Server (NTRS)
Rouse, Marshall; Jegley, Dawn C.; McGowan, David M.; Bush, Harold G.; Waters, W. Allen
2005-01-01
In the last 20 years NASA has worked in collaboration with industry to develop enabling technologies needed to make aircraft safer and more affordable, extend their lifetime, improve their reliability, better understand their behavior, and reduce their weight. To support these efforts, research programs starting with ideas and culminating in full-scale structural testing were conducted at the NASA Langley Research Center. Each program contained development efforts that (a) started with selecting the material system and manufacturing approach; (b) moved on to experimentation and analysis of small samples to characterize the system and quantify behavior in the presence of defects like damage and imperfections; (c) progressed on to examining larger structures to examine buckling behavior, combined loadings, and built-up structures; and (d) finally moved to complicated subcomponents and full-scale components. Each step along the way was supported by detailed analysis, including tool development, to prove that the behavior of these structures was well-understood and predictable. This approach for developing technology became known as the "building-block" approach. In the Advanced Composites Technology Program and the High Speed Research Program the building-block approach was used to develop a true understanding of the response of the structures involved through experimentation and analysis. The philosophy that if the structural response couldn't be accurately predicted, it wasn't really understood, was critical to the progression of these programs. To this end, analytical techniques including closed-form and finite elements were employed and experimentation used to verify assumptions at each step along the way. This paper presents a discussion of the utilization of the building-block approach described previously in structural mechanics research and development programs at NASA Langley Research Center. Specific examples that illustrate the use of this approach are included from recent research and development programs for both subsonic and supersonic transports.
Turbulence effects on a full-scale 2.5 MW horizontal axis wind turbine
NASA Astrophysics Data System (ADS)
Chamorro, Leonardo; Lee, Seung-Jae; Olsen, David; Milliren, Chris; Marr, Jeff; Arndt, Roger; Sotiropoulos, Fotis
2012-11-01
Power fluctuations and fatigue loads are among the most significant problems that wind turbines face throughout their lifetime. Turbulence is the common driving mechanism that triggers instabilities on these quantities. We investigate the complex response of a full-scale 2.5 MW wind turbine under nearly neutral thermal stratification. The study is performed in the EOLOS Wind Energy Research Field Station of the University of Minnesota. An instrumented 130 meter meteorological tower located upstream of a Clipper Liberty C96 wind turbine is used to characterize the turbulent flow and atmospheric conditions right upstream of the wind turbine. High resolution and synchronous measurements of the wind velocity, turbine power and strain at the tower foundation are used to determine the scale-to-scale interaction between flow and the wind turbine. The structure of the fluctuating turbine power and instantaneous stresses are studied in detail. Important insights about the role of turbulent and coherent motions as well as strong intermittent gusts will be discussed. Funding was provided by Department of Energy DOE (DE-EE0002980) and Xcel Energy through the Renewable Development Fund (grant RD3-42).
Bacterial communities in full-scale wastewater treatment systems.
Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena
2016-04-01
Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.
Nonlinear Tollmien-Schlichting/vortex interaction in boundary layers
NASA Technical Reports Server (NTRS)
Hall, P.; Smith, F. T.
1988-01-01
The nonlinear reaction between two oblique 3-D Tollmein-Schlichting (TS) waves and their induced streamwise-vortex flow is considered theoretically for an imcompressible boundary layer. The same theory applies to the destabilization of an incident vortex motion by subharmonic TS waves, followed by interaction. The scales and flow structure involved are addressed for high Reynolds numbers. The nonlionear interaction is powerful, starting at quite low amplitudes with a triple-deck structure for the TS waves but a large-scale structure for the induced vortex, after which strong nonlinear amplification occurs. This includes nonparallel-flow effects. The nonlinear interaction is governed by a partial differential system for the vortex flow coupled with an ordinary-differential one for the TS pressure. The solution properties found sometimes produce a breakup within a finite distance and sometimes further downstream, depending on the input amplitudes upstream and on the wave angles, and that then leads to the second stages of interaction associated with higher amplitudes, the main second stages giving either long-scale phenomena significantly affected by nonparallelism or shorter quasi-parallel ones governed by the full nonlinear triple-deck response.
AST Composite Wing Program: Executive Summary
NASA Technical Reports Server (NTRS)
Karal, Michael
2001-01-01
The Boeing Company demonstrated the application of stitched/resin infused (S/RFI) composite materials on commercial transport aircraft primary wing structures under the Advanced Subsonic technology (AST) Composite Wing contract. This report describes a weight trade study utilizing a wing torque box design applicable to a 220-passenger commercial aircraft and was used to verify the weight savings a S/RFI structure would offer compared to an identical aluminum wing box design. This trade study was performed in the AST Composite Wing program, and the overall weight savings are reported. Previous program work involved the design of a S/RFI-base-line wing box structural test component and its associated testing hardware. This detail structural design effort which is known as the "semi-span" in this report, was completed under a previous NASA contract. The full-scale wing design was based on a configuration for a MD-90-40X airplane, and the objective of this structural test component was to demonstrate the maturity of the S/RFI technology through the evaluation of a full-scale wing box/fuselage section structural test. However, scope reductions of the AST Composite Wing Program pre-vented the fabrication and evaluation of this wing box structure. Results obtained from the weight trade study, the full-scale test component design effort, fabrication, design development testing, and full-scale testing of the semi-span wing box are reported.
Molecular mechanics of mineralized collagen fibrils in bone
Nair, Arun K.; Gautieri, Alfonso; Chang, Shu-Wei; Buehler, Markus J.
2013-01-01
Bone is a natural composite of collagen protein and the mineral hydroxyapatite. The structure of bone is known to be important to its load-bearing characteristics, but relatively little is known about this structure or the mechanism that govern deformation at the molecular scale. Here we perform full-atomistic calculations of the three-dimensional molecular structure of a mineralized collagen protein matrix to try to better understand its mechanical characteristics under tensile loading at various mineral densities. We find that as the mineral density increases, the tensile modulus of the network increases monotonically and well beyond that of pure collagen fibrils. Our results suggest that the mineral crystals within this network bears up to four times the stress of the collagen fibrils, whereas the collagen is predominantly responsible for the material’s deformation response. These findings reveal the mechanism by which bone is able to achieve superior energy dissipation and fracture resistance characteristics beyond its individual constituents. PMID:23591891
NASA Technical Reports Server (NTRS)
Gibson, Frederick W
1956-01-01
Results of an experimental investigation of the structural damping of six full-scale helicopter rotor blades, made to determine the variation of structural damping with materials and methods of construction, are presented. The damping of the blades was determined for the first three flapwise bending modes, first chordwise bending mode, and first torsion mode. The contribution of structural damping to the total damping of the blades is discussed for several aerodynamic conditions in order to point out situations where structural damping is significant.
Scleral anisotropy and its effects on the mechanical response of the optic nerve head
Coudrillier, Baptiste; Boote, Craig; Quigley, Harry A.
2012-01-01
This paper presents a computational modeling study of the effects of the collagen fiber structure on the mechanical response of the sclera and the adjacent optic nerve head (ONH). A specimen-specific inverse finite element method was developed to determine the material properties of two human sclera subjected to full-field inflation experiments. A distributed fiber model was applied to describe the anisotropic elastic behavior of the sclera. The model directly incorporated wide angle x-ray scattering measurements of the anisotropic collagen structure. The converged solution of the inverse method was used in micromechanical studies of the mechanical anisotropy of the sclera at different scales. The effects of the scleral collagen fiber structure on the ONH deformation were evaluated by progressively filtering out local anisotropic features. It was found that the majority of the midposterior sclera could be described as isotropic without significantly affecting the mechanical response of the tissues of the ONH. In contrast, removing local anisotropic features in the peripapillary sclera produced significant changes in scleral canal expansion, and lamina cribrosa deformation. Local variations in the collagen structure of the peripapillary sclera significantly influenced the mechanical response of the ONH. PMID:23188256
Preventing Data Ambiguity in Infectious Diseases with Four-Dimensional and Personalized Evaluations
Iandiorio, Michelle J.; Fair, Jeanne M.; Chatzipanagiotou, Stylianos; Ioannidis, Anastasios; Trikka-Graphakos, Eleftheria; Charalampaki, Nikoletta; Sereti, Christina; Tegos, George P.; Hoogesteijn, Almira L.; Rivas, Ariel L.
2016-01-01
Background Diagnostic errors can occur, in infectious diseases, when anti-microbial immune responses involve several temporal scales. When responses span from nanosecond to week and larger temporal scales, any pre-selected temporal scale is likely to miss some (faster or slower) responses. Hoping to prevent diagnostic errors, a pilot study was conducted to evaluate a four-dimensional (4D) method that captures the complexity and dynamics of infectious diseases. Methods Leukocyte-microbial-temporal data were explored in canine and human (bacterial and/or viral) infections, with: (i) a non-structured approach, which measures leukocytes or microbes in isolation; and (ii) a structured method that assesses numerous combinations of interacting variables. Four alternatives of the structured method were tested: (i) a noise-reduction oriented version, which generates a single (one data point-wide) line of observations; (ii) a version that measures complex, three-dimensional (3D) data interactions; (iii) a non-numerical version that displays temporal data directionality (arrows that connect pairs of consecutive observations); and (iv) a full 4D (single line-, complexity-, directionality-based) version. Results In all studies, the non-structured approach revealed non-interpretable (ambiguous) data: observations numerically similar expressed different biological conditions, such as recovery and lack of recovery from infections. Ambiguity was also found when the data were structured as single lines. In contrast, two or more data subsets were distinguished and ambiguity was avoided when the data were structured as complex, 3D, single lines and, in addition, temporal data directionality was determined. The 4D method detected, even within one day, changes in immune profiles that occurred after antibiotics were prescribed. Conclusions Infectious disease data may be ambiguous. Four-dimensional methods may prevent ambiguity, providing earlier, in vivo, dynamic, complex, and personalized information that facilitates both diagnostics and selection or evaluation of anti-microbial therapies. PMID:27411058
Kilianski, Andy; O'Rourke, Amy T; Carlson, Crystal L; Parikh, Shannon M; Shipman-Amuwo, Frankie
2014-01-01
Increasing threats of bioterrorism and the emergence of novel disease agents, including the recent international outbreaks of H7N9 influenza and MERS-CoV, have stressed the importance and highlighted the need for public health preparedness at local, regional, and national levels. To test plans that were developed for mass prophylaxis scenarios, in April 2013 the Cook Country Department of Public Health (CCDPH) and the Triple Community (TripCom) Medical Reserve Corps (MRC) executed a full-scale mass prophylaxis exercise in response to a simulated anthrax bioterrorism attack. The exercise took place over 2 days and included the TripCom Point-of-Dispensing (POD) Management Team, volunteers from the TripCom MRC, and neighboring public health departments and MRCs. Individuals from the community volunteered as actors during the exercise, while local municipal, police, and fire personnel coordinated their responses to create the most realistic simulation possible. The exercise was designed to test the capacity of TripCom and CCDPH to implement plans for organizing municipal staff and volunteers to efficiently distribute prophylaxis to the community. Based on results from POD clinic flow, accuracy of prophylaxis distribution, and observations from evaluators, the exercise was successful in demonstrating areas that were operationally efficient as well as identifying areas that can be improved on. These include improvements to the just-in-time training for POD staff, the health screening and consent forms handed out to patients, the physical setup of the POD, and the command structure and communication for the management of POD operations. This article demonstrates the need for full-scale exercises and identifies gaps in POD planning that can be integrated into future plans, exercises, and emergency response.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.
1990-01-01
Scale model technology represents one method of investigating the behavior of advanced, weight-efficient composite structures under a variety of loading conditions. It is necessary, however, to understand the limitations involved in testing scale model structures before the technique can be fully utilized. These limitations, or scaling effects, are characterized. in the large deflection response and failure of composite beams. Scale model beams were loaded with an eccentric axial compressive load designed to produce large bending deflections and global failure. A dimensional analysis was performed on the composite beam-column loading configuration to determine a model law governing the system response. An experimental program was developed to validate the model law under both static and dynamic loading conditions. Laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic were tested to examine a diversity of composite response and failure modes. The model beams were loaded under scaled test conditions until catastrophic failure. A large deflection beam solution was developed to compare with the static experimental results and to analyze beam failure. Also, the finite element code DYCAST (DYnamic Crash Analysis of STructure) was used to model both the static and impulsive beam response. Static test results indicate that the unidirectional and cross ply beam responses scale as predicted by the model law, even under severe deformations. In general, failure modes were consistent between scale models within a laminate family; however, a significant scale effect was observed in strength. The scale effect in strength which was evident in the static tests was also observed in the dynamic tests. Scaling of load and strain time histories between the scale model beams and the prototypes was excellent for the unidirectional beams, but inconsistent results were obtained for the angle ply, cross ply, and quasi-isotropic beams. Results show that valuable information can be obtained from testing on scale model composite structures, especially in the linear elastic response region. However, due to scaling effects in the strength behavior of composite laminates, caution must be used in extrapolating data taken from a scale model test when that test involves failure of the structure.
Brepols, Ch; Schäfer, H; Engelhardt, N
2010-01-01
Based on the practical experience in design and operation of three full-scale membrane bioreactors (MBR) for municipal wastewater treatment that were commissioned since 1999, an overview on the different design concepts that were applied to the three MBR plants is given. The investment costs and the energy consumption of the MBRs and conventional activated sludge (CAS) plants (with and without tertiary treatment) in the Erft river region are compared. It is found that the specific investment costs of the MBR plants are lower than those of comparable CAS with tertiary treatment. A comparison of the specific energy demand of MBRs and conventional WWTPs is given. The structure of the MBRs actual operational costs is analysed. It can be seen that energy consumption is only responsible for one quarter to one third of all operational expenses. Based on a rough design and empirical cost data, a cost comparison of a full-scale MBR and a CAS is carried out. In this example the CAS employs a sand filtration and a disinfection in order to achieve comparable effluent quality. The influence of membrane lifetime on life cycle cost is assessed.
Luco, N.; Bazzurro, P.
2007-01-01
Limitations of the existing earthquake ground motion database lead to scaling of records to obtain seismograms consistent with a ground motion target for structural design and evaluation. In the engineering seismology community, acceptable limits for 'legitimate' scaling vary from one (no scaling allowed) to 10 or more. The concerns expressed by detractors of scaling are mostly based on the knowledge of, for example, differences in ground motion characteristics for different earthquake magnitude-distance (Mw-Rclose) scenarios, and much less on their effects on structures. At the other end of the spectrum, proponents have demonstrated that scaling is not only legitimate but also useful for assessing structural response statistics for Mw-Rclose scenarios. Their studies, however, have not investigated more recent purposes of scaling and have not always drawn conclusions for a wide spectrum of structural vibration periods and strengths. This article investigates whether scaling of records randomly selected from an Mw-Rclose bin (or range) to a target fundamental-mode spectral acceleration (Sa) level introduces bias in the expected nonlinear structural drift response of both single-degree-of-freedom oscillators and one multi-degree-of-freedom building. The bias is quantified relative to unscaled records from the target Mw-Rclose bin that are 'naturally' at the target Sa level. We consider scaling of records from the target Mw-Rclose bin and from other Mw-Rclose bins. The results demonstrate that scaling can indeed introduce a bias that, for the most part, ca be explained by differences between the elastic response spectra of the scaled versus unscaled records. Copyright ?? 2007 John Wiley & Sons, Ltd.
Bio-inspired wooden actuators for large scale applications.
Rüggeberg, Markus; Burgert, Ingo
2015-01-01
Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules.
Bio-Inspired Wooden Actuators for Large Scale Applications
Rüggeberg, Markus; Burgert, Ingo
2015-01-01
Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules. PMID:25835386
Dynamic X-ray diffraction imaging of the ferroelectric response in bismuth ferrite
Laanait, Nouamane; Saenrang, Wittawat; Zhou, Hua; ...
2017-03-21
In this study, X-ray diffraction imaging is rapidly emerging as a powerful technique by which one can capture the local structure of crystalline materials at the nano- and meso-scale. Here, we present investigations of the dynamic structure of epitaxial monodomain BiFeO 3 thin-films using a novel full-field Bragg diffraction imaging modality. By taking advantage of the depth penetration of hard X-rays and their exquisite sensitivity to the atomic structure, we imaged in situ and in operando, the electric field-driven structural responses of buried BiFeO 3 epitaxial thin-films in micro-capacitor devices, with sub-100 nm lateral resolution. These imaging investigations were carriedmore » out at acquisition frame rates that reached up to 20 Hz and data transfer rates of 40 MB/s, while accessing diffraction contrast that is sensitive to the entire three-dimensional unit cell configuration. We mined these large datasets for material responses by employing matrix decomposition techniques, such as independent component analysis. We found that this statistical approach allows the extraction of the salient physical properties of the ferroelectric response of the material, such as coercive fields and transient spatiotemporal modulations in their piezoelectric response, and also facilitates their decoupling from extrinsic sources that are instrument specific.« less
Community structure of aquatic insects in the Esparza River, Costa Rica.
Herrera-Vásquez, Jonathan
2009-01-01
This study focused on the structure of the aquatic insect community in spatial and temporal scales in the Esparza River. The river was sampled for one full year throughout 2007. During the dry season low flow months, five sampling points were selected in two different habitats (currents and pools), with five replicates per sample site. During the wet season with peak rain, only the data in the "current habitat" were sampled at each site. Specimens present in the different substrates were collected and preserved in situ. A nested ANOVA was then applied to the data to determine richness and density as the response variables. The variations in temporal and spatial scales were analyzed using width, depth and discharge of the river, and then analyzed using a nested ANOVA. Only a correlation of 51% similarity in richness was found, while in spatial scale, richness showed significant variation between sampling sites, but not between habitats. However, the temporal scale showed significant differences between habitats. Density showed differences between sites and habitats during the dry season in the spatial scale, while in the temporal scale significant variation was found between sampling sites. Width varied between habitats during the dry season, but not between sampling points. Depth showed differences between sampling sites and season. This work studies the importance of community structure of aquatic insects in rivers, and its relevance for the quality of water in rivers and streams.
Crash Simulation of a Boeing 737 Fuselage Section Vertical Drop Test
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Jones, Yvonne T.; Frings, Gary; Vu, Tong
2004-01-01
A 30-ft/s vertical drop test of a fuselage section of a Boeing 737 aircraft was conducted in October of 1999 at the FAA Technical Center in Atlantic City, NJ. This test was performed to evaluate the structural integrity of a conformable auxiliary fuel tank mounted beneath the floor and to determine its effect on the impact response of the airframe structure and the occupants. The test data were used to compare with a finite element simulation of the fuselage structure and to gain a better understanding of the impact physics through analytical/experimental correlation. To perform this simulation, a full-scale 3-dimensional finite element model of the fuselage section was developed using the explicit, nonlinear transient-dynamic finite element code, MSC.Dytran. The emphasis of the simulation was to predict the structural deformation and floor-level acceleration responses obtained from the drop test of the B737 fuselage section with the auxiliary fuel tank.
Overview of the Transport Rotorcraft Airframe Crash Testbed (TRACT) Full Scale Crash Tests
NASA Technical Reports Server (NTRS)
Annett, Martin; Littell, Justin
2015-01-01
The Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate Anthropomorphic Test Devices (ATD) responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 ATDs were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the horizontal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.
Patient Litter System Response in a Full-Scale CH-46 Crash Test.
Weisenbach, Charles A; Rooks, Tyler; Bowman, Troy; Fralish, Vince; McEntire, B Joseph
2017-03-01
U.S. Military aeromedical patient litter systems are currently required to meet minimal static strength performance requirements at the component level. Operationally, these components must function as a system and are subjected to the dynamics of turbulent flight and potentially crash events. The first of two full-scale CH-46 crash tests was conducted at NASA's Langley Research Center and included an experiment to assess patient and litter system response during a severe but survivable crash event. A three-tiered strap and pole litter system was mounted into the airframe and occupied by three anthropomorphic test devices (ATDs). During the crash event, the litter system failed to maintain structural integrity and collapsed. Component structural failures were recorded from the litter support system and the litters. The upper ATD was displaced laterally into the cabin, while the middle ATD was displaced longitudinally into the cabin. Acceleration, force, and bending moment data from the instrumented middle ATD were analyzed using available injury criteria. Results indicated that a patient might sustain a neck injury. The current test illustrates that a litter system, with components designed and tested to static requirements only, experiences multiple component structural failures during a dynamic crash event and does not maintain restraint control of its patients. It is unknown if a modern litter system, with components tested to the same static criteria, would perform differently. A systems level dynamic performance requirement needs to be developed so that patients can be provided with protection levels equivalent to that provided to seated aircraft occupants. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Application of Probabilistic Analysis to Aircraft Impact Dynamics
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Padula, Sharon L.; Stockwell, Alan E.
2003-01-01
Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stressstrain behaviors, laminated composites, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the uncertainty in the simulated responses. Several criteria are used to determine that a response surface method is the most appropriate probabilistic approach. The work is extended to compare optimization results with and without probabilistic constraints.
Next Generation Active Buffet Suppression System
NASA Technical Reports Server (NTRS)
Galea, Stephen C.; Ryall, Thomas G.; Henderson, Douglas A.; Moses, Robert W.; White, Edward V.; Zimcik, David G.
2003-01-01
Buffeting is an aeroelastic phenomenon that is common to high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. This paper describes an international collaborative research activity among Australia, Canada and the United States involving the use of active structural control to alleviate the damaging structural response to these loads. The research program is being co-ordinated by the Air Force Research Laboratory (AFRL) and is being conducted under the auspices of The Technical Cooperative Program (TTCP). This truly unique collaborative program has been developed to enable each participating country to contribute resources toward a program that coalesces a broad range of technical knowledge and expertise into a single investigation. This collaborative program is directed toward a full-scale test of an F/A-18 empennage, which is an extension of an earlier initial test. The current program aims at applying advanced directional piezoactuators, the aircraft rudder, switch mode amplifiers and advanced control strategies on a full-scale structure to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration.
Optimal lattice-structured materials
Messner, Mark C.
2016-07-09
This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describingmore » the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.« less
Application of damage tolerance methodology in certification of the Piaggio P-180 Avanti
NASA Technical Reports Server (NTRS)
Johnson, Jerry
1992-01-01
The Piaggio P-180 Avanti, a twin pusher-prop engine nine-passenger business aircraft was certified in 1990, to the requirements of FAR Part 23 and Associated Special Conditions for Composite Structure. Certification included the application of a damage tolerant methodology to the design of the composite forward wing and empennage (vertical fin, horizontal stabilizer, tailcone, and rudder) structure. This methodology included an extensive analytical evaluation coupled with sub-component and full-scale testing of the structure. The work from the Damage Tolerance Analysis Assessment was incorporated into the full-scale testing. Damage representing hazards such as dropped tools, ground equipment, handling, and runway debris, was applied to the test articles. Additional substantiation included allowing manufacturing discrepancies to exist unrepaired on the full-scale articles and simulated bondline failures in critical elements. The importance of full-scale testing in the critical environmental conditions and the application of critical damage are addressed. The implication of damage tolerance on static and fatigue testing is discussed. Good correlation between finite element solutions and experimental test data was observed.
Seismic response of a full-scale wind turbine tower using experimental and numerical modal analysis
NASA Astrophysics Data System (ADS)
Kandil, Kamel Sayed Ahmad; Saudi, Ghada N.; Eltaly, Boshra Aboul-Anen; El-khier, Mostafa Mahmoud Abo
2016-12-01
Wind turbine technology has developed tremendously over the past years. In Egypt, the Zafarana wind farm is currently generating at a capacity of 517 MW, making it one of the largest onshore wind farms in the world. It is located in an active seismic zone along the west side of the Gulf of Suez. Accordingly, seismic risk assessment is demanded for studying the structural integrity of wind towers under expected seismic hazard events. In the context of ongoing joint Egypt-US research project "Seismic Risk Assessment of Wind Turbine Towers in Zafarana wind Farm Egypt" (Project ID: 4588), this paper describes the dynamic performance investigation of an existing Nordex N43 wind turbine tower. Both experimental and numerical work are illustrated explaining the methodology adopted to investigate the dynamic behavior of the tower under seismic load. Field dynamic testing of the full-scale tower was performed using ambient vibration techniques (AVT). Both frequency domain and time domain methods were utilized to identify the actual dynamic properties of the tower as built in the site. Mainly, the natural frequencies, their corresponding mode shapes and damping ratios of the tower were successfully identified using AVT. A vibration-based finite element model (FEM) was constructed using ANSYS V.12 software. The numerical and experimental results of modal analysis were both compared for matching purpose. Using different simulation considerations, the initial FEM was updated to finally match the experimental results with good agreement. Using the final updated FEM, the response of the tower under the AQABA earthquake excitation was investigated. Time history analysis was conducted to define the seismic response of the tower in terms of the structural stresses and displacements. This work is considered as one of the pioneer structural studies of the wind turbine towers in Egypt. Identification of the actual dynamic properties of the existing tower was successfully performed based on AVT. Using advanced techniques in both the field testing and the numerical investigations produced reliable FEM specific for the tested tower, which can be further used in more advanced structural investigations for improving the design of such special structures.
NASA Astrophysics Data System (ADS)
Ubertini, Filippo; Venanzi, Ilaria; Comanducci, Gabriele
2015-06-01
The current trend in full-scale applications of active mass drivers for mitigating buildings' vibrations is to rely on the use of electric servomotors and low friction transmission devices. While similar full-scale applications have been recently documented, there is still the need for deepening the understanding of the behavior of such active mass drivers, especially as it concerns their reliability in the case of extreme loading events. This paper presents some considerations arisen in the physical implementation of a prototype active mass driver system, fabricated by coupling an electric torsional servomotor with a ball screw transmission device, using state-of-the-art electronics and a high speed digital communication protocol between controller and servomotor drive. The prototype actuator is mounted on top of a scaled-down five-story frame structure, subjected to base excitation provided by a sliding table actuated by an electrodynamic shaker. The equations of motion are rigorously derived, at first, by considering the torque of the servomotor as the control input, in agreement with other literature work. Then, they are extended to the case where the servomotor operates under kinematic control, that is, by commanding its angular velocity instead of its torque, including control-structure-interaction effects. Experiments are carried out by employing an inherently stable collocated skyhook control algorithm, proving, on the one hand, the control effectiveness of the device but also revealing, on the other hand, the possibility of closed-loop system instability at high gains. Theoretical interpretation of the results clarifies that the dynamic behavior of the actuator plays a central role in determining its control effectiveness and is responsible for the observed stability issues, operating similarly to time delay effects. Numerical extension to the case of earthquake excitation confirms the control effectiveness of the device and highlights that different controllers essentially provide similar performances in the mitigation of the structural response.
The Multidimensional Aggression Scale for the Structured Doll Play Interview
ERIC Educational Resources Information Center
Abramson, Paul R.; And Others
1974-01-01
A multidimensional aggression scoring system for preschool children's responses to the structured doll play interview is described. The system, which incorporates previous investigator's findings, scales doll play responses along three dimensions of aggression: intensity, agent, and directionality. (Author)
Kuok, Sin-Chi; Yuen, Ka-Veng
2013-01-01
The goal of this study is to investigate the structural performance of reinforced concrete building under the influence of severe typhoon. For this purpose, full-scale monitoring of a 22-story reinforced concrete building was conducted during the entire passage process of a severe typhoon "Vicente." Vicente was the eighth tropical storm developed in the Western North Pacific Ocean and the South China Sea in 2012. Moreover, it was the strongest and most devastating typhoon that struck Macao since 1999. The overall duration of the typhoon affected period that lasted more than 70 hours and the typhoon eye region covered Macao for around one hour. The wind and structural response measurements were acquired throughout the entire typhoon affected period. The wind characteristics were analyzed using the measured wind data including the wind speed and wind direction time histories. Besides, the structural response measurements of the monitored building were utilized for modal identification using the Bayesian spectral density approach. Detailed analysis of the field data and the typhoon generated effects on the structural performance are discussed.
A comparison of methods for evaluating structure during ship collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammerman, D.J.; Daidola, J.C.
1996-10-01
A comparison is provided of the results of various methods for evaluating structure during a ship-to-ship collision. The baseline vessel utilized in the analyses is a 67.4 meter in length displacement hull struck by an identical vessel traveling at speeds ranging from 10 to 30 knots. The structural response of the struck vessel and motion of both the struck and striking vessels are assessed by finite element analysis. These same results are then compared to predictions utilizing the {open_quotes}Tanker Structural Analysis for Minor Collisions{close_quotes} (TSAMC) Method, the Minorsky Method, the Haywood Collision Process, and comparison to full-scale tests. Consideration ismore » given to the nature of structural deformation, absorbed energy, penetration, rigid body motion, and virtual mass affecting the hydrodynamic response. Insights are provided with regard to the calibration of the finite element model which was achievable through utilizing the more empirical analyses and the extent to which the finite element analysis is able to simulate the entire collision event. 7 refs., 8 figs., 4 tabs.« less
Thermo-mechanical evaluation of carbon-carbon primary structure for SSTO vehicles
NASA Astrophysics Data System (ADS)
Croop, Harold C.; Lowndes, Holland B.; Hahn, Steven E.; Barthel, Chris A.
1998-01-01
An advanced development program to demonstrate carbon-carbon composite structure for use as primary load carrying structure has entered the experimental validation phase. The component being evaluated is a wing torque box section for a single-stage-to-orbit (SSTO) vehicle. The validation or demonstration component features an advanced carbon-carbon design incorporating 3D woven graphite preforms, integral spars, oxidation inhibited matrix, chemical vapor deposited (CVD) oxidation protection coating, and ceramic matrix composite fasteners. The validation component represents the culmination of a four phase design and fabrication development effort. Extensive developmental testing was performed to verify material properties and integrity of basic design features before committing to fabrication of the full scale box. The wing box component is now being set up for testing in the Air Force Research Laboratory Structural Test Facility at Wright-Patterson Air Force Base, Ohio. One of the important developmental tests performed in support of the design and planned testing of the full scale box was the fabrication and test of a skin/spar trial subcomponent. The trial subcomponent incorporated critical features of the full scale wing box design. This paper discusses the results of the trial subcomponent test which served as a pathfinder for the upcoming full scale box test.
NASA Astrophysics Data System (ADS)
Codina, R.; Ambrosini, D.
2018-03-01
For the last few decades, the effects of blast loading on structures have been studied by many researchers around the world. Explosions can be caused by events such as industrial accidents, military conflicts or terrorist attacks. Urban centers have been prone to various threats including car bombs, suicide attacks, and improvised explosive devices. Partially vented constructions subjected to external blast loading represent an important topic in protective engineering. The assessment of blast survivability inside structures and the development of design provisions with respect to internal elements require the study of the propagation and leakage of blast waves inside buildings. In this paper, full-scale tests are performed to study the effects of the leakage of blast waves inside a partially vented room that is subjected to different external blast loadings. The results obtained may be useful for proving the validity of different methods of calculation, both empirical and numerical. Moreover, the experimental results are compared with those computed using the empirical curves of the US Defense report/manual UFC 3-340. Finally, results of the dynamic response of the front masonry wall are presented in terms of accelerations and an iso-damage diagram.
Xiao, Li; Isner, Austin; Waldrop, Krysta; Saad, Anthony; Takigawa, Doreen; Bhattacharyya, Dibakar
2014-01-01
Temperature and pH responsive polymers (poly(N-isopropylacrylamide) (PNIPAAm), and polyacrylic acid, PAA) were synthesized in one common macrofiltration PVDF membrane platform by pore-filling method. The microstructure and morphology of the PNIPAAm-PVDF, and PNIPAAm-FPAA-PVDF membranes were studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The membrane pore size was controlled by the swelling and shrinking of the PNIPAAm at the temperature around lower critical solution temperature (LCST). The composite membrane demonstrated a rapid and reversible swelling and deswelling change within a small temperature range. The controllable flux makes it possible to utilize this temperature responsive membrane as a valve to regulate filtration properties by temperature change. Dextran solution (Mw=2,000,000g/mol, 26 nm diameter) was used to evaluate the separation performance of the temperature responsive membranes. The ranges of dextran rejection are from 4% to 95% depending on the temperature, monomer amount and pressure. The full-scale membrane was also developed to confirm the feasibility of our bench-scale experimental results. The full-scale membrane also exhibited both temperature and pH responsivity. This system was also used for controlled nanoparticles synthesis and for dechlorination reaction. PMID:24944434
Self-folding and aggregation of amyloid nanofibrils
NASA Astrophysics Data System (ADS)
Paparcone, Raffaella; Cranford, Steven W.; Buehler, Markus J.
2011-04-01
Amyloids are highly organized protein filaments, rich in β-sheet secondary structures that self-assemble to form dense plaques in brain tissues affected by severe neurodegenerative disorders (e.g. Alzheimer's Disease). Identified as natural functional materials in bacteria, in addition to their remarkable mechanical properties, amyloids have also been proposed as a platform for novel biomaterials in nanotechnology applications including nanowires, liquid crystals, scaffolds and thin films. Despite recent progress in understanding amyloid structure and behavior, the latent self-assembly mechanism and the underlying adhesion forces that drive the aggregation process remain poorly understood. On the basis of previous full atomistic simulations, here we report a simple coarse-grain model to analyze the competition between adhesive forces and elastic deformation of amyloid fibrils. We use simple model system to investigate self-assembly mechanisms of fibrils, focused on the formation of self-folded nanorackets and nanorings, and thereby address a critical issue in linking the biochemical (Angstrom) to micrometre scales relevant for larger-scale states of functional amyloid materials. We investigate the effect of varying the interfibril adhesion energy on the structure and stability of self-folded nanorackets and nanorings and demonstrate that these aggregated amyloid fibrils are stable in such states even when the fibril-fibril interaction is relatively weak, given that the constituting amyloid fibril length exceeds a critical fibril length-scale of several hundred nanometres. We further present a simple approach to directly determine the interfibril adhesion strength from geometric measures. In addition to providing insight into the physics of aggregation of amyloid fibrils our model enables the analysis of large-scale amyloid plaques and presents a new method for the estimation and engineering of the adhesive forces responsible of the self-assembly process of amyloidnanostructures, filling a gap that previously existed between full atomistic simulations of primarily ultra-short fibrils and much larger micrometre-scale amyloid aggregates. Via direct simulation of large-scale amyloid aggregates consisting of hundreds of fibrils we demonstrate that the fibril length has a profound impact on their structure and mechanical properties, where the critical fibril length-scale derived from our analysis of self-folded nanorackets and nanorings defines the structure of amyloid aggregates. A multi-scale modeling approach as used here, bridging the scales from Angstroms to micrometres, opens a wide range of possible nanotechnology applications by presenting a holistic framework that balances mechanical properties of individual fibrils, hierarchical self-assembly, and the adhesive forces determining their stability to facilitate the design of de novoamyloid materials.
Pangolin armor: Overlapping, structure, and mechanical properties of the keratinous scales.
Wang, Bin; Yang, Wen; Sherman, Vincent R; Meyers, Marc A
2016-09-01
The pangolin has a flexible dermal armor consisting of overlapping keratinous scales. Although they show potential for bioinspired flexible armor, the design principles of pangolin armor are barely known. Here we report on the overlapping organization, hierarchical structure (from the nano to the mesolevel), and mechanical response of scales from ground (Chinese) and arboreal (African tree) pangolins. Both scales exhibit the same overlapping organization, with each scale at the center of neighboring scales arranged in a hexagonal pattern. The scales have a cuticle of several layers of loosely attached flattened keratinized cells, while the interior structure exhibits three regions distinguished by the geometry and orientations of the keratinized cells, which form densely packed lamellae; each one corresponds to one layer of cells. Unlike most other keratinous materials, the scales show a crossed-lamellar structure (∼5μm) and crossed fibers (∼50μm). A nano-scale suture structure, observed for the first time, outlines cell membranes and leads to an interlocking interface between lamellae, thus enhancing the bonding and shear resistance. The tensile response of the scales shows an elastic limit followed by a short plateau prior to failure, with Young's modulus ∼1 GPa and tensile strength 60-100MPa. The mechanical response is transversely isotropic, a result of the cross lamellar structure. The strain rate sensitivity in the range of 10(-5)-10(-1)s(-1) region is found to be equal to 0.07-0.08, typical of other keratins and polymers. The mechanical response is highly dependent on the degree of hydration, a characteristic of keratins. Although many fish and reptiles have protective scales and carapaces, mammals are characteristically fast and light. The pangolin is one of the few mammal possessing a flexible dermal armor for protection from predators, such as lions. Here we study the arrangement of the scales as well as their hierarchical structure from the nano to the mesolevel and correlate it to the mechanical properties. The study reveals a unique structure consisting of crossed lamellae and interlocking sutures that provide exceptional performance and in-plane isotropy. Copyright © 2016. Published by Elsevier Ltd.
Scaling of energy absorbing composite plates
NASA Technical Reports Server (NTRS)
Jackson, Karen; Morton, John; Traffanstedt, Catherine; Boitnott, Richard
1992-01-01
The energy absorption response and crushing characteristics of geometrically scaled graphite-Kevlar epoxy composite plates were investigated. Three different trigger mechanisms including chamfer, notch, and steeple geometries were incorporated into the plate specimens to initiate crushing. Sustained crushing was achieved with a simple test fixture which provided lateral support to prevent global buckling. Values of specific sustained crushing stress (SSCS) were obtained which were comparable to values reported for tube specimens from previously published data. Two sizes of hybrid plates were fabricated; a baseline or model plate, and a full-scale plate with in-plane dimensions scaled by a factor of two. The thickness dimension of the full-scale plates was increased using two different techniques; the ply-level method in which each ply orientation in the baseline laminate stacking sequence is doubled, and the sublaminate technique in which the baseline laminate stacking sequence is repeated as a group. Results indicated that the SSCS is independent of trigger mechanism geometry. However, a reduction in the SSCS of 10-25 percent was observed for the full-scale plates as compared with the baseline specimens, indicating a scaling effect in the crushing response.
Scaling of energy absorbing composite plates
NASA Technical Reports Server (NTRS)
Jackson, Karen; Lavoie, J. Andre; Morton, John
1994-01-01
The energy absorption response and crushing characteristics of geometrically scaled graphite-Kevlar epoxy composite plates were investigated. Two different trigger mechanisms including notch, and steeple geometries were incorporated into the plate specimens to initiate crushing. Sustained crushing was achieved with a new test fixture which provided lateral support to prevent global buckling. Values of specific sustained crushing stress (SSCS) were obtained which were lower than values reported for tube specimens from previously published data. Two sizes of hybrid plates were fabricated; a baseline or model plate, and a full-scale plate with inplane dimensions scaled by a factor of two. The thickness dimension of the full-scale plates was increased using two different techniques: the ply-level method in which each ply orientation in the baseline laminate stacking sequence is doubled, and the sublaminate technique in which the baseline laminate stacking sequence is repeated as a group. Results indicated that the SSCS has a small dependence on trigger mechanism geometry. However, a reduction in the SSCS of 10-25% was observed for the full-scale plates as compared with the baseline specimens, indicating a scaling effect in the crushing response.
Scaling of energy absorbing composite plates
NASA Astrophysics Data System (ADS)
Jackson, Karen; Morton, John; Traffanstedt, Catherine; Boitnott, Richard
The energy absorption response and crushing characteristics of geometrically scaled graphite-Kevlar epoxy composite plates were investigated. Three different trigger mechanisms including chamfer, notch, and steeple geometries were incorporated into the plate specimens to initiate crushing. Sustained crushing was achieved with a simple test fixture which provided lateral support to prevent global buckling. Values of specific sustained crushing stress (SSCS) were obtained which were comparable to values reported for tube specimens from previously published data. Two sizes of hybrid plates were fabricated; a baseline or model plate, and a full-scale plate with in-plane dimensions scaled by a factor of two. The thickness dimension of the full-scale plates was increased using two different techniques; the ply-level method in which each ply orientation in the baseline laminate stacking sequence is doubled, and the sublaminate technique in which the baseline laminate stacking sequence is repeated as a group. Results indicated that the SSCS is independent of trigger mechanism geometry. However, a reduction in the SSCS of 10-25 percent was observed for the full-scale plates as compared with the baseline specimens, indicating a scaling effect in the crushing response.
Noise of the Harrier in vertical landing and takeoff
NASA Technical Reports Server (NTRS)
Soderman, Paul T.; Foster, John D.
1988-01-01
The noise of the Harrier AV8C aircraft in vertical takeoff and landing was measured 100 feet to the side of the aircraft where jet noise dominates. The noise levels were quite high - up to 125 dB overall sound level at 100 feet. The increased noise due to jet impingement on the ground is presented as a function of jet height to diameter ratio. The impingement noise with the aircraft close to the ground was 14 to 17 dB greater than noise from a free jet. Results are compared with small-scale jet impingement data acquired elsewhere. The agreement between small-scale and full-scale noise increase in ground effect is fairly good except with the jet close to the ground. It is proposed that differences in the jet Reynolds numbers and the resultant character of the jets may be partially responsible for the disparity in the full-scale and small-scale jet impingement noise. The difference between single-jet impingement and multiple-jet impingement may also have been responsible for the small-scale and full-scale disagreement.
Temperature-dependent body size effects determine population responses to climate warming.
Lindmark, Max; Huss, Magnus; Ohlberger, Jan; Gårdmark, Anna
2018-02-01
Current understanding of animal population responses to rising temperatures is based on the assumption that biological rates such as metabolism, which governs fundamental ecological processes, scale independently with body size and temperature, despite empirical evidence for interactive effects. Here, we investigate the consequences of interactive temperature- and size scaling of vital rates for the dynamics of populations experiencing warming using a stage-structured consumer-resource model. We show that interactive scaling alters population and stage-specific responses to rising temperatures, such that warming can induce shifts in population regulation and stage-structure, influence community structure and govern population responses to mortality. Analysing experimental data for 20 fish species, we found size-temperature interactions in intraspecific scaling of metabolic rate to be common. Given the evidence for size-temperature interactions and the ubiquity of size structure in animal populations, we argue that accounting for size-specific temperature effects is pivotal for understanding how warming affects animal populations and communities. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
2007-12-01
system can only be precisely determined by examining all the materials used in the mat, their structure , orientation, dimensions, etc. and determining...ER D C/ G SL T R- 07 -3 3 Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways Chad...ERDC/GSL TR-07-33 December 2007 Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways Chad A
Systems for animal exposure in full-scale fire tests
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Cumming, H. J.; Kourtides, D. A.; Parker, J. A.
1977-01-01
Two systems for exposing animals in full-scale fire tests are described. Both systems involve the simultaneous exposure of two animal species, mice and rats, in modular units; determination of mortality, morbidity, and behavioral response; and analysis of the blood for carboxyhemoglobin. The systems described represent two of many possible options for obtaining bioassay data from full-scale fire tests. In situations where the temperatures to which the test animals are exposed can not be controlled, analytical techniques may be more appropriate than bioassay techniques.
Evaluation of the Second Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full Scale Crash Test
NASA Technical Reports Server (NTRS)
Annett, Martin; Littell, Justin
2015-01-01
Two Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate ATD responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 Anthropomorphic Test Devices (ATDs) were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the longitudinal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.
Haig, Sarah-Jane; Quince, Christopher; Davies, Robert L; Dorea, Caetano C; Collins, Gavin
2014-09-15
Previous laboratory-scale studies to characterise the functional microbial ecology of slow sand filters have suffered from methodological limitations that could compromise their relevance to full-scale systems. Therefore, to ascertain if laboratory-scale slow sand filters (L-SSFs) can replicate the microbial community and water quality production of industrially operated full-scale slow sand filters (I-SSFs), eight cylindrical L-SSFs were constructed and were used to treat water from the same source as the I-SSFs. Half of the L-SSFs sand beds were composed of sterilized sand (sterile) from the industrial filters and the other half with sand taken directly from the same industrial filter (non-sterile). All filters were operated for 10 weeks, with the microbial community and water quality parameters sampled and analysed weekly. To characterize the microbial community phyla-specific qPCR assays and 454 pyrosequencing of the 16S rRNA gene were used in conjunction with an array of statistical techniques. The results demonstrate that it is possible to mimic both the water quality production and the structure of the microbial community of full-scale filters in the laboratory - at all levels of taxonomic classification except OTU - thus allowing comparison of LSSF experiments with full-scale units. Further, it was found that the sand type composing the filter bed (non-sterile or sterile), the water quality produced, the age of the filters and the depth of sand samples were all significant factors in explaining observed differences in the structure of the microbial consortia. This study is the first to the authors' knowledge that demonstrates that scaled-down slow sand filters can accurately reproduce the water quality and microbial consortia of full-scale slow sand filters. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of conventional passenger cab car end structure designs for full scale testing
DOT National Transportation Integrated Search
2006-12-01
The Volpe Center is supporting the Federal Railroad Administration's full-scale testing program to understand and improve rail vehicle cashworthiness. The objectie of one of the sets of tests in this program is determining the behavior of cab car end...
Feletto, Eleonora; Wilson, Laura Kate; Roberts, Alison Sarah; Benrimoj, Shalom Isaac
2011-03-01
Community pharmacy is undergoing transformation with increasing pressure to build its capacity to deliver cognitive pharmaceutical services ("services"). The theoretical framework of organizational flexibility (OF) may be used to assess the capacity of community pharmacy to implement change programs and guide capacity-building initiatives. To test the applicability of an existing scale measuring OF to the industry of community pharmacy in Australia. A mail survey was used to test a preexisting scale measuring OF amended from 28 items to 20 items testing 3 underlying factors of operational, structural, and strategic flexibility in the Australian community pharmacy context. The sample was 2006 randomly-stratified community pharmacies. A confirmatory factor analysis was conducted to assess the validity and reliability of the 1-factor models for each underlying construct and the full measurement model. Responses were received from a total of 395 (19.7%) community pharmacies. The 1-factor models of operational, structural, and strategic flexibility fit the data with appropriate respecification. Overall, the favorable fit of the individual factor constructs suggested that the multiple-factor measurement model should be tested. However, this model did not yield an interpretable response. Operational flexibility covaried negatively to the other factors, whereas structural and strategic flexibility shared covariance. Despite this, the results highlighting the individual factor fit suggest the constructs have application to pharmacy. The individual OF constructs were useful in the development and initial testing of a scale adapted for community pharmacy. When further developed and validated, the scale could be used to identify group of pharmacies that require individualized assistance to build capacity and integrate services and other new endeavors. Copyright © 2011 Elsevier Inc. All rights reserved.
Vegetable parenting practices scale. Item response modeling analyses
Chen, Tzu-An; O’Connor, Teresia; Hughes, Sheryl; Beltran, Alicia; Baranowski, Janice; Diep, Cassandra; Baranowski, Tom
2015-01-01
Objective To evaluate the psychometric properties of a vegetable parenting practices scale using multidimensional polytomous item response modeling which enables assessing item fit to latent variables and the distributional characteristics of the items in comparison to the respondents. We also tested for differences in the ways item function (called differential item functioning) across child’s gender, ethnicity, age, and household income groups. Method Parents of 3–5 year old children completed a self-reported vegetable parenting practices scale online. Vegetable parenting practices consisted of 14 effective vegetable parenting practices and 12 ineffective vegetable parenting practices items, each with three subscales (responsiveness, structure, and control). Multidimensional polytomous item response modeling was conducted separately on effective vegetable parenting practices and ineffective vegetable parenting practices. Results One effective vegetable parenting practice item did not fit the model well in the full sample or across demographic groups, and another was a misfit in differential item functioning analyses across child’s gender. Significant differential item functioning was detected across children’s age and ethnicity groups, and more among effective vegetable parenting practices than ineffective vegetable parenting practices items. Wright maps showed items only covered parts of the latent trait distribution. The harder- and easier-to-respond ends of the construct were not covered by items for effective vegetable parenting practices and ineffective vegetable parenting practices, respectively. Conclusions Several effective vegetable parenting practices and ineffective vegetable parenting practices scale items functioned differently on the basis of child’s demographic characteristics; therefore, researchers should use these vegetable parenting practices scales with caution. Item response modeling should be incorporated in analyses of parenting practice questionnaires to better assess differences across demographic characteristics. PMID:25895694
Liu, Jianghong; Lynn, Richard
2011-08-01
This study presents data on the factor structure of the Wechsler Preschool and Primary Scale of Intelligence (WPPSI) and sex and cultural differences in WPPSI test scores among 5- and 6-year-olds from China, Japan, and the United States. Results show the presence of a verbal and nonverbal factor structure across all three countries. Sex differences on the 10 subtests were generally consistent, with a male advantage on a subtest of spatial abilities (Mazes). Males in the Chinese sample obtained significantly higher Full Scale IQ scores than females and had lower variability in their test scores. These observations were not present in the Japan and United States samples. Mean Full Scale IQ score in the Chinese sample was 104.1, representing a 4-point increase from 1988 to 2004.
Experimental and analytical studies of advanced air cushion landing systems
NASA Technical Reports Server (NTRS)
Lee, E. G. S.; Boghani, A. B.; Captain, K. M.; Rutishauser, H. J.; Farley, H. L.; Fish, R. B.; Jeffcoat, R. L.
1981-01-01
Several concepts are developed for air cushion landing systems (ACLS) which have the potential for improving performance characteristics (roll stiffness, heave damping, and trunk flutter), and reducing fabrication cost and complexity. After an initial screening, the following five concepts were evaluated in detail: damped trunk, filled trunk, compartmented trunk, segmented trunk, and roll feedback control. The evaluation was based on tests performed on scale models. An ACLS dynamic simulation developed earlier is updated so that it can be used to predict the performance of full-scale ACLS incorporating these refinements. The simulation was validated through scale-model tests. A full-scale ACLS based on the segmented trunk concept was fabricated and installed on the NASA ACLS test vehicle, where it is used to support advanced system development. A geometrically-scaled model (one third full scale) of the NASA test vehicle was fabricated and tested. This model, evaluated by means of a series of static and dynamic tests, is used to investigate scaling relationships between reduced and full-scale models. The analytical model developed earlier is applied to simulate both the one third scale and the full scale response.
Fabrication and evaluation of advanced titanium structural panels for supersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Payne, L.
1977-01-01
Flightworthy primary structural panels were designed, fabricated, and tested to investigate two advanced fabrication methods for titanium alloys. Skin-stringer panels fabricated using the weldbraze process, and honeycomb-core sandwich panels fabricated using a diffusion bonding process, were designed to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 research aircraft. The investigation included ground testing and Mach 3 flight testing of full-scale panels, and laboratory testing of representative structural element specimens. Test results obtained on full-scale panels and structural element specimens indicate that both of the fabrication methods investigated are suitable for primary structural applications on future civil and military supersonic cruise aircraft.
Thermal-Acoustic Analysis of a Metallic Integrated Thermal Protection System Structure
NASA Technical Reports Server (NTRS)
Behnke, Marlana N.; Sharma, Anurag; Przekop, Adam; Rizzi, Stephen A.
2010-01-01
A study is undertaken to investigate the response of a representative integrated thermal protection system structure under combined thermal, aerodynamic pressure, and acoustic loadings. A two-step procedure is offered and consists of a heat transfer analysis followed by a nonlinear dynamic analysis under a combined loading environment. Both analyses are carried out in physical degrees-of-freedom using implicit and explicit solution techniques available in the Abaqus commercial finite-element code. The initial study is conducted on a reduced-size structure to keep the computational effort contained while validating the procedure and exploring the effects of individual loadings. An analysis of a full size integrated thermal protection system structure, which is of ultimate interest, is subsequently presented. The procedure is demonstrated to be a viable approach for analysis of spacecraft and hypersonic vehicle structures under a typical mission cycle with combined loadings characterized by largely different time-scales.
Advanced composite vertical fin for L-1011 aircraft
NASA Technical Reports Server (NTRS)
Jackson, A. C.
1984-01-01
The structural box of the L-1011 vertical fin was redesigned using advanced composite materials. The box was fabricated and ground tested to verify the structural integrity. This report summarizes the complete program starting with the design and analysis and proceeds through the process development ancillary test program production readiness verification testing, fabrication of the full-scale fin boxes and the full-scale ground testing. The program showed that advanced composites can economically and effectively be used in the design and fabrication of medium primary structures for commercial aircraft. Static-strength variability was demonstrated to be comparable to metal structures and the long term durability of advanced composite components was demonstrated.
Wave propagation in equivalent continuums representing truss lattice materials
Messner, Mark C.; Barham, Matthew I.; Kumar, Mukul; ...
2015-07-29
Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures from lattice materials, but the design of such structures will require accurate, efficient simulation methods. Equivalent continuum models have several advantages over discrete truss models of stretch dominated lattices, including computational efficiency and ease of model construction. However, the development an equivalent model suitable for representing the dynamic response of a periodic truss in the small deformation regime is complicated by microinertial effects. This study derives a dynamic equivalent continuum model for periodic trussmore » structures suitable for representing long-wavelength wave propagation and verifies it against the full Bloch wave theory and detailed finite element simulations. The model must incorporate microinertial effects to accurately reproduce long wavelength characteristics of the response such as anisotropic elastic soundspeeds. Finally, the formulation presented here also improves upon previous work by preserving equilibrium at truss joints for simple lattices and by improving numerical stability by eliminating vertices in the effective yield surface.« less
Overview of LIDS Docking Seals Development
NASA Technical Reports Server (NTRS)
Dunlap, Pat; Steinetz, Bruce; Daniels, Chris
2008-01-01
NASA is developing a new docking system to support future space exploration missions to low-Earth orbit, the Moon, and Mars. This mechanism, called the Low Impact Docking System (LIDS), is designed to connect pressurized space vehicles and structures including the Crew Exploration Vehicle, International Space Station, and lunar lander. NASA Glenn Research Center (GRC) is playing a key role in developing the main interface seal for this new docking system. These seals will be approximately 147 cm (58 in.) in diameter. GRC is evaluating the performance of candidate seal designs under simulated operating conditions at both sub-scale and full-scale levels. GRC is ultimately responsible for delivering flight hardware seals to NASA Johnson Space Center around 2013 for integration into LIDS flight units.
NASA Technical Reports Server (NTRS)
Johnston, Patrick H.; Juarez, Peter D.
2016-01-01
The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. The HWB has long been a focus of NASA's environmentally responsible aviation (ERA) project, following a building block approach to structures development, culminating with the testing of a nearly full-scale multi-bay box (MBB), representing a segment of the pressurized, non-circular fuselage portion of the HWB. PRSEUS is an integral structural concept wherein skins, frames, stringers and tear straps made of variable number of layers of dry warp-knit carbon-fiber stacks are stitched together, then resin-infused and cured in an out-of-autoclave process. The PRSEUS concept has the potential for reducing the weight and cost and increasing the structural efficiency of transport aircraft structures. A key feature of PRSEUS is the damage-arresting nature of the stitches, which enables the use of fail-safe design principles. During the load testing of the MBB, ultrasonic nondestructive evaluation (NDE) was used to monitor several sites of intentional barely-visible impact damage (BVID) as well as to survey the areas surrounding the failure cracks after final loading to catastrophic failure. The damage-arresting ability of PRSEUS was confirmed by the results of NDE. In parallel with the large-scale structural testing of the MBB, mechanical tests were conducted of the PRSEUS rod-to-overwrap bonds, as measured by pushing the rod axially from a short length of stringer.
DOT National Transportation Integrated Search
2011-09-01
This report presents the test results and finite element correlations of a full-scale dynamic collision test with rail vehicles as part of the Federal Railroad Administrations research program on improved crashworthiness of locomotive structures. ...
NASA Astrophysics Data System (ADS)
Gao, Dongyue; Wang, Yishou; Wu, Zhanjun; Rahim, Gorgin; Bai, Shengbao
2014-05-01
The detection capability of a given structural health monitoring (SHM) system strongly depends on its sensor network placement. In order to minimize the number of sensors while maximizing the detection capability, optimal design of the PZT sensor network placement is necessary for structural health monitoring (SHM) of a full-scale composite horizontal tail. In this study, the sensor network optimization was simplified as a problem of determining the sensor array placement between stiffeners to achieve the desired the coverage rate. First, an analysis of the structural layout and load distribution of a composite horizontal tail was performed. The constraint conditions of the optimal design were presented. Then, the SHM algorithm of the composite horizontal tail under static load was proposed. Based on the given SHM algorithm, a sensor network was designed for the full-scale composite horizontal tail structure. Effective profiles of cross-stiffener paths (CRPs) and uncross-stiffener paths (URPs) were estimated by a Lamb wave propagation experiment in a multi-stiffener composite specimen. Based on the coverage rate and the redundancy requirements, a seven-sensor array-network was chosen as the optimal sensor network for each airfoil. Finally, a preliminary SHM experiment was performed on a typical composite aircraft structure component. The reliability of the SHM result for a composite horizontal tail structure under static load was validated. In the result, the red zone represented the delamination damage. The detection capability of the optimized sensor network was verified by SHM of a full-scale composite horizontal tail; all the diagnosis results were obtained in two minutes. The result showed that all the damage in the monitoring region was covered by the sensor network.
The role of collagen on the structural response of dermal layers in mammals and fish
NASA Astrophysics Data System (ADS)
Sherman, Vincent Robert
We study in depth the role of collagen in the protective layers of mammals (skin) and fish (scales) in depth to reveal its contribution to their mechanical performance. In order to gain an understanding of the structure property relations, we investigate its hierarchical arrangement and how it results in a specialized response. For rabbit skin, chosen as a model material for the dermis of vertebrates, deformation is expressed in terms of four mechanisms of collagen fibril activity that virtually eliminate the possibility of tearing in notched samples: fibril straightening, fibril reorientation towards the tensile direction, elastic stretching, and interfibrillar sliding. A model reflecting the in vivo shape of collagen is derived. The model incorporates the effects of its elasticity, viscoelasticity, and orientation. For arapaima and alligator gar scales, we investigate their protective function and identify key features which result in their resistance to failure. For the elasmoid scales of the arapaima, we show that the scale has a Bouligand-like arrangement of collagen layers which stretch, rotate, and delaminate to dissipate energy and arrest cracking prior to catastrophic failure. Atop the foundation are mineral ridges; this arrangement provides high toughness and resistance to penetration by predator teeth. We show that the ganoid scales of the alligator gar have a boney composite foundation of collagen and hydroxyapatite as well as an external surface of pure hydroxyapatite. Failure averting features of the gar scale include: crack inhibiting mineral decussation in the external ganoine layer; mineral crystals and tubules which deflect cracks in the bony region; and saw-tooth ridges along the interface between the two scale layers which direct cracks away from the weak interface. Furthermore, the scale's geometry is optimized to provide full coverage while accommodating physiological motion. Key features of the scale morphology are replicated in a bioinspired model which retains protection and flexibility.
NASA Astrophysics Data System (ADS)
Tian, Jingjing
Low-rise woodframe buildings with disproportionately flexible ground stories represent a significant percentage of the building stock in seismically vulnerable communities in the Western United States. These structures have a readily identifiable structural weakness at the ground level due to an asymmetric distribution of large openings in the perimeter wall lines and to a lack of interior partition walls, resulting in a soft story condition that makes the structure highly susceptible to severe damage or collapse under design-level earthquakes. The conventional approach to retrofitting such structures is to increase the ground story stiffness. An alternate approach is to increase the energy dissipation capacity of the structure via the incorporation of supplemental energy dissipation devices (dampers), thereby relieving the energy dissipation demands on the framing system. Such a retrofit approach is consistent with a Performance-Based Seismic Retrofit (PBSR) philosophy through which multiple performance levels may be targeted. The effectiveness of such a retrofit is presented via examination of the seismic response of a full-scale four-story building that was tested on the outdoor shake table at NEES-UCSD and a full-scale three-story building that was tested using slow pseudo-dynamic hybrid testing at NEES-UB. In addition, a Direct Displacement Design (DDD) methodology was developed as an improvement over current DDD methods by considering torsion, with or without the implementation of damping devices, in an attempt to avoid the computational expense of nonlinear time-history analysis (NLTHA) and thus facilitating widespread application of PBSR in engineering practice.
2009-01-01
Background Despite a growing body of research from the United States and other industrialized countries on the inverse association between supportive social relationships in the school and youth risk behavior engagement, research on the measurement of supportive school social relationships in Central America is limited. We examined the psychometric properties of the Student Perceptions of School Cohesion (SPSC) scale, a 10-item scale that asks students to rate with a 5-point Likert-type response scale their perceptions of the school social environment, in a sample of public secondary school students (mean age = 15 years) living in central El Salvador. Methods Students (n = 982) completed a self-administered questionnaire that included the SPSC scale along with measures of youth health risk behaviors based on the Center for Disease Control and Prevention's Youth Risk Behavior Survey. Exploratory factor analysis was used to assess the factor structure of the scale, and two internal consistency estimates of reliability were computed. Construct validity was assessed by examining whether students who reported low school cohesion were significantly more likely to report physical fighting and illicit drug use. Results Results indicated that the SPSC scale has three latent factors, which explained 61.6% of the variance: supportive school relationships, student-school connectedness, and student-teacher connectedness. The full scale and three subscales had good internal consistency (rs = .87 and α = .84 for the full scale; rs and α between .71 and .75 for the three subscales). Significant associations were found between the full scale and all three subscales with physical fighting (p ≤ .001) and illicit drug use (p < .05). Conclusion Findings provide evidence of reliability and validity of the SPSC for the measurement of supportive school relationships in Latino adolescents living in El Salvador. These findings provide a foundation for further research on school cohesion and health risk behavior in Latino adolescents living in the U.S. and other Latin American countries. PMID:19939259
DOT National Transportation Integrated Search
2008-12-01
PROBLEM: The full-scale accelerated pavement testing (APT) provides a unique tool for pavement : engineers to directly collect pavement performance and failure data under heavy : wheel loading. However, running a full-scale APT experiment is very exp...
12. Photocopy of photograph (original in Langley Research Center Archives, ...
12. Photocopy of photograph (original in Langley Research Center Archives, Hampton, VA LaRC) (L4496) AERIAL VIEW OF FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION; c. 1930. NOTE SEAPLANE TOWING CHANNEL STRUCTURE IN BACKGROUND. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA
Validation of the Personal Need for Structure Scale in Chinese.
Shi, Junqi; Wang, Lei; Chen, Yang
2009-08-01
To validate the Chinese version of the Personal Need for Structure Scale, questionnaires were administered to 1,418 individuals in three samples. Item-total correlations and internal consistency of the scale were acceptable. The test-retest reliability was .79. Confirmatory factor analysis indicated that the Chinese version comprised two dimensions, as did the original version; Desire for Structure and Response to Lack of Structure. Correlation coefficients between the Personal Need for Structure Scale and other related measures indicated that the scale has acceptable discriminant validity and convergent validity.
Mesoscale mechanics of twisting carbon nanotube yarns.
Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J
2015-03-12
Fabricating continuous macroscopic carbon nanotube (CNT) yarns with mechanical properties close to individual CNTs remains a major challenge. Spinning CNT fibers and ribbons for enhancing the weak interactions between the nanotubes is a simple and efficient method for fabricating high-strength and tough continuous yarns. Here we investigate the mesoscale mechanics of twisting CNT yarns using full atomistic and coarse grained molecular dynamics simulations, considering concurrent mechanisms at multiple length-scales. To investigate the mechanical response of such a complex structure without losing insights into the molecular mechanism, we applied a multiscale strategy. The full atomistic results are used for training a coarse grained model for studying larger systems consisting of several CNTs. The mesoscopic model parameters are updated as a function of the twist angle, based on the full atomistic results, in order to incorporate the atomistic scale deformation mechanisms in larger scale simulations. By bridging across two length scales, our model is capable of accurately predicting the mechanical behavior of twisted yarns while the atomistic level deformations in individual nanotubes are integrated into the model by updating the parameters. Our results focused on studying a bundle of close packed nanotubes provide novel mechanistic insights into the spinning of CNTs. Our simulations reveal how twisting a bundle of CNTs improves the shear interaction between the nanotubes up to a certain level due to increasing the interaction surface. Furthermore, twisting the bundle weakens the intertube interactions due to excessive deformation in the cross sections of individual CNTs in the bundle.
NASA Astrophysics Data System (ADS)
Jackisch, Conrad; Angermann, Lisa; Allroggen, Niklas; Sprenger, Matthias; Blume, Theresa; Tronicke, Jens; Zehe, Erwin
2017-07-01
The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches
. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue).
Multivariate analysis of scale-dependent associations between bats and landscape structure
Gorresen, P.M.; Willig, M.R.; Strauss, R.E.
2005-01-01
The assessment of biotic responses to habitat disturbance and fragmentation generally has been limited to analyses at a single spatial scale. Furthermore, methods to compare responses between scales have lacked the ability to discriminate among patterns related to the identity, strength, or direction of associations of biotic variables with landscape attributes. We present an examination of the relationship of population- and community-level characteristics of phyllostomid bats with habitat features that were measured at multiple spatial scales in Atlantic rain forest of eastern Paraguay. We used a matrix of partial correlations between each biotic response variable (i.e., species abundance, species richness, and evenness) and a suite of landscape characteristics to represent the multifaceted associations of bats with spatial structure. Correlation matrices can correspond based on either the strength (i.e., magnitude) or direction (i.e., sign) of association. Therefore, a simulation model independently evaluated correspondence in the magnitude and sign of correlations among scales, and results were combined via a meta-analysis to provide an overall test of significance. Our approach detected both species-specific differences in response to landscape structure and scale dependence in those responses. This matrix-simulation approach has broad applicability to ecological situations in which multiple intercorrelated factors contribute to patterns in space or time. ?? 2005 by the Ecological Society of America.
Advances and trends in computational structural mechanics
NASA Technical Reports Server (NTRS)
Noor, A. K.
1986-01-01
Recent developments in computational structural mechanics are reviewed with reference to computational needs for future structures technology, advances in computational models for material behavior, discrete element technology, assessment and control of numerical simulations of structural response, hybrid analysis, and techniques for large-scale optimization. Research areas in computational structural mechanics which have high potential for meeting future technological needs are identified. These include prediction and analysis of the failure of structural components made of new materials, development of computational strategies and solution methodologies for large-scale structural calculations, and assessment of reliability and adaptive improvement of response predictions.
Review of sonic-boom simulation devices and techniques.
NASA Technical Reports Server (NTRS)
Edge, P. M., Jr.; Hubbard, H. H.
1972-01-01
Research on aircraft-generated sonic booms has led to the development of special techniques to generate controlled sonic-boom-type disturbances without the complications and expense of supersonic flight operations. This paper contains brief descriptions of several of these techniques along with the significant hardware items involved and indicates the advantages and disadvantages of each in research applications. Included are wind tunnels, ballistic ranges, spark discharges, piston phones, shock tubes, high-speed valve systems, and shaped explosive charges. Specialized applications include sonic-boom generation and propagation studies and the responses of structures, terrain, people, and animals. Situations for which simulators are applicable are shown to include both small-scale and large-scale laboratory tests and full-scale field tests. Although no one approach to simulation is ideal, the various techniques available generally complement each other to provide desired capability for a broad range of sonic-boom studies.
Oi, Manabu
2010-09-01
The present study compared 12 Japanese children with high-functioning autism spectrum disorder (HFASD), ranging in age from 7.3-14.8 years, with 12 typically developing (TD) children matched for age, gender, and vocabulary. The means of full-scale IQ and verbal-IQ of the children with HFASD were 95.92 (SD = 15.30) and 98.00 (SD = 18.44), respectively. Children responded to questions from their mothers in conversations collected under a semi-structured setting, and the responses of both groups were examined from the viewpoint of adequacy. Compared to TD children, HFASD children produced more inadequate responses to Wh-questions than to Yes/No questions. To both types of questions, HFASD children produced more inappropriate responses than TD children. The findings suggest that parents of HFASD children should consider the influence of the question format on these children's response inadequacies.
Discrete crack growth analysis methodology for through cracks in pressurized fuselage structures
NASA Technical Reports Server (NTRS)
Potyondy, David O.; Wawrzynek, Paul A.; Ingraffea, Anthony R.
1994-01-01
A methodology for simulating the growth of long through cracks in the skin of pressurized aircraft fuselage structures is described. Crack trajectories are allowed to be arbitrary and are computed as part of the simulation. The interaction between the mechanical loads acting on the superstructure and the local structural response near the crack tips is accounted for by employing a hierarchical modeling strategy. The structural response for each cracked configuration is obtained using a geometrically nonlinear shell finite element analysis procedure. Four stress intensity factors, two for membrane behavior and two for bending using Kirchhoff plate theory, are computed using an extension of the modified crack closure integral method. Crack trajectories are determined by applying the maximum tangential stress criterion. Crack growth results in localized mesh deletion, and the deletion regions are remeshed automatically using a newly developed all-quadrilateral meshing algorithm. The effectiveness of the methodology and its applicability to performing practical analyses of realistic structures is demonstrated by simulating curvilinear crack growth in a fuselage panel that is representative of a typical narrow-body aircraft. The predicted crack trajectory and fatigue life compare well with measurements of these same quantities from a full-scale pressurized panel test.
NASA Astrophysics Data System (ADS)
Chen, Yong; Viresh, Wickramasinghe; Zimcik, David
2006-03-01
Twin-tail fighter aircraft such as the F/A-18 may experience intense buffet loads at high angles of attack flight conditions and the broadband buffet loads primarily excite the first bending and torsional modes of the vertical fin that results in severe vibration and dynamic stresses on the vertical fin structures. To reduce the premature fatigue failure of the structure and to increase mission availability, a novel hybrid actuation system was developed to actively alleviate the buffet response of a full-scale F/A-18 vertical fin. A hydraulic rudder actuator was used to control the bending mode of the fin by engaging the rudder inertial force. Multiple Macro Fiber Composites actuators were surface mounted to provide induced strain actuation authority to control the torsional mode. Experimental system identification approach was selected to obtain a state-space model of the system using open-loop test data. An LQG controller was developed to minimize the dynamic response of the vertical fin at critical locations. Extensive simulations were conducted to evaluate the control authority of the actuators and the performance of the controller under various buffet load cases and levels. Closed-loop tests were performed on a full-scale F/A-18 empennage and the results validated the effectiveness of the real-time controller as well as the development methodology. In addition, the ground vibration test demonstrated that the hybrid actuation system is a feasible solution to alleviate the vertical tail buffet loads in high performance fighter aircraft.
NASA Astrophysics Data System (ADS)
Kenward, D. R.; Lessard, M.; Lynch, K. A.; Hysell, D. L.; Hampton, D. L.; Michell, R.; Samara, M.; Varney, R. H.; Oksavik, K.; Clausen, L. B. N.; Hecht, J. H.; Clemmons, J. H.; Fritz, B.
2017-12-01
The RENU2 sounding rocket (launched from Andoya rocket range on December 13th, 2015) observed Poleward Moving Auroral Forms within the dayside cusp. The ISINGLASS rockets (launched from Poker Flat rocket range on February 22, 2017 and March 2, 2017) both observed aurora during a substorm event. Despite observing very different events, both campaigns witnessed a high degree of small scale structuring within the larger auroral boundary, including Alfvenic signatures. These observations suggest a method of coupling large-scale energy input to fine scale structures within aurorae. During RENU2, small (sub-km) scale drivers persist for long (10s of minutes) time scales and result in large scale ionospheric (thermal electron) and thermospheric response (neutral upwelling). ISINGLASS observations show small scale drivers, but with short (minute) time scales, with ionospheric response characterized by the flight's thermal electron instrument (ERPA). The comparison of the two flights provides an excellent opportunity to examine ionospheric and thermospheric response to small scale drivers over different integration times.
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Newman, James C., Jr.; Harris, Charles E.; Piascik, Robert S.; Young, Richard D.; Rose, Cheryl A.
2003-01-01
Analysis methodologies for predicting fatigue-crack growth from rivet holes in panels subjected to cyclic loads and for predicting the residual strength of aluminum fuselage structures with cracks and subjected to combined internal pressure and mechanical loads are described. The fatigue-crack growth analysis methodology is based on small-crack theory and a plasticity induced crack-closure model, and the effect of a corrosive environment on crack-growth rate is included. The residual strength analysis methodology is based on the critical crack-tip-opening-angle fracture criterion that characterizes the fracture behavior of a material of interest, and a geometric and material nonlinear finite element shell analysis code that performs the structural analysis of the fuselage structure of interest. The methodologies have been verified experimentally for structures ranging from laboratory coupons to full-scale structural components. Analytical and experimental results based on these methodologies are described and compared for laboratory coupons and flat panels, small-scale pressurized shells, and full-scale curved stiffened panels. The residual strength analysis methodology is sufficiently general to include the effects of multiple-site damage on structural behavior.
NASA Technical Reports Server (NTRS)
Parsons, David S.; Ordway, David; Johnson, Kenneth
2013-01-01
This experimental study seeks to quantify the impact various composite parameters have on the structural response of a composite structure in a pyroshock environment. The prediction of an aerospace structure's response to pyroshock induced loading is largely dependent on empirical databases created from collections of development and flight test data. While there is significant structural response data due to pyroshock induced loading for metallic structures, there is much less data available for composite structures. One challenge of developing a composite pyroshock response database as well as empirical prediction methods for composite structures is the large number of parameters associated with composite materials. This experimental study uses data from a test series planned using design of experiments (DOE) methods. Statistical analysis methods are then used to identify which composite material parameters most greatly influence a flat composite panel's structural response to pyroshock induced loading. The parameters considered are panel thickness, type of ply, ply orientation, and pyroshock level induced into the panel. The results of this test will aid in future large scale testing by eliminating insignificant parameters as well as aid in the development of empirical scaling methods for composite structures' response to pyroshock induced loading.
NASA Technical Reports Server (NTRS)
Parsons, David S.; Ordway, David O.; Johnson, Kenneth L.
2013-01-01
This experimental study seeks to quantify the impact various composite parameters have on the structural response of a composite structure in a pyroshock environment. The prediction of an aerospace structure's response to pyroshock induced loading is largely dependent on empirical databases created from collections of development and flight test data. While there is significant structural response data due to pyroshock induced loading for metallic structures, there is much less data available for composite structures. One challenge of developing a composite pyroshock response database as well as empirical prediction methods for composite structures is the large number of parameters associated with composite materials. This experimental study uses data from a test series planned using design of experiments (DOE) methods. Statistical analysis methods are then used to identify which composite material parameters most greatly influence a flat composite panel's structural response to pyroshock induced loading. The parameters considered are panel thickness, type of ply, ply orientation, and pyroshock level induced into the panel. The results of this test will aid in future large scale testing by eliminating insignificant parameters as well as aid in the development of empirical scaling methods for composite structures' response to pyroshock induced loading.
Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Y., E-mail: ybao@sjtu.edu.cn; Department of Aeronautics, Imperial College London, South Kensington Campus, London; Palacios, R., E-mail: r.palacios@imperial.ac.uk
2016-09-15
We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural modelmore » of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip–structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-01
... condition as: During ERJ 170 airplane full scale fatigue test, cracks were found in some structural... intervals, could prevent a timely detection of fatigue cracks. Undetected fatigue cracks in these areas... unsafe condition for the specified products. The MCAI states: During ERJ 170 airplane full scale fatigue...
Experimental Methodology for Measuring Combustion and Injection-Coupled Responses
NASA Technical Reports Server (NTRS)
Cavitt, Ryan C.; Frederick, Robert A.; Bazarov, Vladimir G.
2006-01-01
A Russian scaling methodology for liquid rocket engines utilizing a single, full scale element is reviewed. The scaling methodology exploits the supercritical phase of the full scale propellants to simplify scaling requirements. Many assumptions are utilized in the derivation of the scaling criteria. A test apparatus design is presented to implement the Russian methodology and consequently verify the assumptions. This test apparatus will allow researchers to assess the usefulness of the scaling procedures and possibly enhance the methodology. A matrix of the apparatus capabilities for a RD-170 injector is also presented. Several methods to enhance the methodology have been generated through the design process.
40 CFR 90.314 - Analyzer accuracy and specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... zero and calibration or span gases over any 10-second period must not exceed two percent of full-scale chart deflection on all ranges used. (3) Zero drift. The analyzer zero-response drift during a one-hour period must be less than two percent of full-scale chart deflection on the lowest range used. The zero...
Development and Validation of a Spanish Version of the Grit-S Scale
Arco-Tirado, Jose L.; Fernández-Martín, Francisco D.; Hoyle, Rick H.
2018-01-01
This paper describes the development and initial validation of a Spanish version of the Short Grit (Grit-S) Scale. The Grit-S Scale was adapted and translated into Spanish using the Translation, Review, Adjudication, Pre-testing, and Documentation model and responses to a preliminary set of items from a large sample of university students (N = 1,129). The resultant measure was validated using data from a large stratified random sample of young adults (N = 1,826). Initial validation involved evaluating the internal consistency of the adapted scale and its subscales and comparing the factor structure of the adapted version to that of the original scale. The results were comparable to results from similar analyses of the English version of the scale. Although the internal consistency of the subscales was low, the internal consistency of the full scale was well-within the acceptable range. A two-factor model offered an acceptable account of the data; however, when a single correlated error involving two highly similar items was included, a single factor model fit the data very well. The results support the use of overall scores from the Spanish Grit-S Scale in future research. PMID:29467705
NASA Technical Reports Server (NTRS)
Stubbs, Sandy M.
1967-01-01
An experimental investigation was made to determine impact water pressures, accelerations, and landing dynamics of a 1/4-scale dynamic model of the command module of the Apollo spacecraft. A scaled-stiffness aft heat shield was used on the model to simulate the structural deflections of the full-scale heat shield. Tests were made on water to obtain impact pressure data at a simulated parachute letdown (vertical) velocity component of approximately 30 ft/sec (9.1 m/sec) full scale. Additional tests were made on water, sand, and hard clay-gravel landing surfaces at simulated vertical velocity components of 23 ft/sec (7.0 m/sec) full scale. Horizontal velocity components investigated ranged from 0 to 50 ft/sec (15 m/sec) full scale and the pitch attitudes ranged from -40 degrees to 29 degrees. Roll attitudes were O degrees, 90 degrees, and 180 degrees, and the yaw attitude was 0 degrees.
Obeidat, Hala M; Shuriquie, Mona A
2015-01-01
This randomized clinical trial was conducted to determine the efficacy of breast-feeding with maternal holding as compared with maternal holding without breast-feeding in relieving painful responses during heel lance blood drawing in full-term neonates. A convenience sample of 128 full-term newborn infants, in their fourth to sixth days of life, undergoing heel lance blood drawing for screening of hypothyroidism were included in the study. The neonates were randomly assigned into 2 equivalent groups. During heel lance blood drawing for infants, they either breast-fed with maternal holding (group I) or were held in their mother's lap without breast-feeding (group II). The painful responses were assessed simultaneously by 2 neonatal nurses blinded to the purpose of the study. Outcome measures for painful responses of the full-term neonates were evaluated with the Premature Infant Pain Profile scale. Independent t test showed significant differences in Premature Infant Pain Profile scale scores among the 2 groups (t = -8.447, P = .000). Pain scores were significantly lower among infants who were breast-fed in addition to maternal holding. Evidence from this study indicates that the combination of breast-feeding with maternal holding reduces painful responses of full-term infants during heel lance blood drawing.
Bai, Ling; Mai, Van Cuong; Lim, Yun; Hou, Shuai; Möhwald, Helmuth; Duan, Hongwei
2018-03-01
Structural colors originating from interaction of light with intricately arranged micro-/nanostructures have stimulated considerable interest because of their inherent photostability and energy efficiency. In particular, noniridescent structural color with wide viewing angle has been receiving increasing attention recently. However, no method is yet available for rapid and large-scale fabrication of full-spectrum structural color patterns with wide viewing angles. Here, infiltration-driven nonequilibrium assembly of colloidal particles on liquid-permeable and particle-excluding substrates is demonstrated to direct the particles to form amorphous colloidal arrays (ACAs) within milliseconds. The infiltration-assisted (IFAST) colloidal assembly opens new possibilities for rapid manufacture of noniridescent structural colors of ACAs and straightforward structural color mixing. Full-spectrum noniridescent structural colors are successfully produced by mixing primary structural colors of red, blue, and yellow using a commercial office inkjet printer. Rapid fabrication of large-scale structural color patterns with sophisticated color combination/layout by IFAST printing is realized. The IFAST technology is versatile for developing structural color patterns with wide viewing angles, as colloidal particles, inks, and substrates are flexibly designable for diverse applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Impaired consciousness in partial seizures is bimodally distributed.
Cunningham, Courtney; Chen, William C; Shorten, Andrew; McClurkin, Michael; Choezom, Tenzin; Schmidt, Christian P; Chu, Victoria; Bozik, Anne; Best, Cameron; Chapman, Melissa; Furman, Moran; Detyniecki, Kamil; Giacino, Joseph T; Blumenfeld, Hal
2014-05-13
To investigate whether impaired consciousness in partial seizures can usually be attributed to specific deficits in the content of consciousness or to a more general decrease in the overall level of consciousness. Prospective testing during partial seizures was performed in patients with epilepsy using the Responsiveness in Epilepsy Scale (n = 83 partial seizures, 30 patients). Results were compared with responsiveness scores in a cohort of patients with severe traumatic brain injury evaluated with the JFK Coma Recovery Scale-Revised (n = 552 test administrations, 184 patients). Standardized testing during partial seizures reveals a bimodal scoring distribution, such that most patients were either fully impaired or relatively spared in their ability to respond on multiple cognitive tests. Seizures with impaired performance on initial test items remained consistently impaired on subsequent items, while other seizures showed spared performance throughout. In the comparison group, we found that scores of patients with brain injury were more evenly distributed across the full range in severity of impairment. Partial seizures can often be cleanly separated into those with vs without overall impaired responsiveness. Results from similar testing in a comparison group of patients with brain injury suggest that the bimodal nature of Responsiveness in Epilepsy Scale scores is not a result of scale bias but may be a finding unique to partial seizures. These findings support a model in which seizures either propagate or do not propagate to key structures that regulate overall arousal and thalamocortical function. Future investigations are needed to relate these behavioral findings to the physiology underlying impaired consciousness in partial seizures.
Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements
NASA Technical Reports Server (NTRS)
Vargas, Magda B.; Counter, Douglas
2011-01-01
Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements
Kalkan, Erol; Kwong, Neal S.
2010-01-01
The earthquake engineering profession is increasingly utilizing nonlinear response history analyses (RHA) to evaluate seismic performance of existing structures and proposed designs of new structures. One of the main ingredients of nonlinear RHA is a set of ground-motion records representing the expected hazard environment for the structure. When recorded motions do not exist (as is the case for the central United States), or when high-intensity records are needed (as is the case for San Francisco and Los Angeles), ground motions from other tectonically similar regions need to be selected and scaled. The modal-pushover-based scaling (MPS) procedure recently was developed to determine scale factors for a small number of records, such that the scaled records provide accurate and efficient estimates of 'true' median structural responses. The adjective 'accurate' refers to the discrepancy between the benchmark responses and those computed from the MPS procedure. The adjective 'efficient' refers to the record-to-record variability of responses. Herein, the accuracy and efficiency of the MPS procedure are evaluated by applying it to four types of existing 'ordinary standard' bridges typical of reinforced-concrete bridge construction in California. These bridges are the single-bent overpass, multi span bridge, curved-bridge, and skew-bridge. As compared to benchmark analyses of unscaled records using a larger catalog of ground motions, it is demonstrated that the MPS procedure provided an accurate estimate of the engineering demand parameters (EDPs) accompanied by significantly reduced record-to-record variability of the responses. Thus, the MPS procedure is a useful tool for scaling ground motions as input to nonlinear RHAs of 'ordinary standard' bridges.
Forced Gravity Waves and the Tropospheric Response to Convection
NASA Astrophysics Data System (ADS)
Halliday, O. J.; Griffiths, S. D.; Parker, D. J.; Stirling, A.
2017-12-01
It has been known for some time that gravity waves facilitate atmospheric adjustment to convective heating. Further, convectively forced gravity waves condition the neighboring atmosphere for the initiation and / or suppression of convection. Despite this, the radiation of gravity waves in macro-scale models (which are typically forced at the grid-scale, by existing parameterization schemes) is not well understood. We present here theoretical and numerical work directed toward improving our understanding of convectively forced gravity wave effects at the mesoscale. Using the linear hydrostatic equations of motion for an incompressible (but non-Boussinesq) fluid with vertically varying buoyancy frequency, we find a radiating solution to prescribed sensible heating. We then interrogate the spatial and temporal sensitivity of the vertical velocity and potential temperature response to different heating functions, considering the remote and near-field forced response both to steady and pulsed heating. We find that the meso-scale tropospheric response to convection is significantly dependent on the upward radiation characteristics of the gravity waves, which are in turn dependent upon the temporal and spatial structure of the source, and stratification of the domain. Moving from a trapped to upwardly-radiating solution there is a 50% reduction in tropospherically averaged vertical velocity, but significant perturbations persist for up to 4 hours in the far-field. We find the tropospheric adjustment to be sensitive to the horizontal length scale which characterizes the heating, observing a 20% reduction in vertical velocity when comparing the response from a 10 km to a 100 km heat source. We assess the implications for parameterization of convection in coarse-grained models in the light of these findings. We show that an idealized `full-physics' nonlinear simulation of deep convection in the UK Met Office Unified Model is qualitatively described by the linear solution: departures are quantified and explored.
Highly efficient model updating for structural condition assessment of large-scale bridges.
DOT National Transportation Integrated Search
2015-02-01
For eciently updating models of large-scale structures, the response surface (RS) method based on radial basis : functions (RBFs) is proposed to model the input-output relationship of structures. The key issues for applying : the proposed method a...
The Skin Picking Impact Scale: Factor structure, validity and development of a short version.
Snorrason, Ivar; Olafsson, Ragnar P; Flessner, Christopher A; Keuthen, Nancy J; Franklin, Martin E; Woods, Douglas W
2013-08-01
In the present study, we examined the psychometric properties of the Skin Picking Impact Scale (SPIS; Keuthen, Deckersbach, Wilhelm et al., 2001), a 10 item self-report questionnaire designed to assess the psychosocial impact of skin picking disorder (SPD). Participants were 650 individuals who met criteria for SPD in an online survey. Exploratory and confirmatory factor analyses demonstrated a unitary factor structure with high internal consistency (α = 0.94). Consequently, we constructed an abbreviated 4-item version that retained good internal consistency (α = 0.87) and a robust factor structure. Both the short and the full versions demonstrated discriminant and convergent/concurrent validity. In conclusion, the findings indicate that both versions are psychometrically sound measures of SPD related psychosocial impact; however, some potential limitations of the full scale are discussed. © 2013 The Scandinavian Psychological Associations.
NASA Astrophysics Data System (ADS)
Humble, R. A.; Peltier, S. J.; Bowersox, R. D. W.
2012-10-01
The effects of convex curvature on the outer structure of a Mach 4.9 turbulent boundary layer (Reθ = 4.7 × 104) are investigated using condensate Rayleigh scattering and analyzed using spatial correlations, intermittency, and fractal theory. It is found that the post-expansion boundary layer structure morphology appears subtle, but certain features exhibit a more obvious response. The large-scale flow structures survive the initial expansion, appearing to maintain the same physical size. However, due to the nature of the expansion fan, a differential acceleration effect takes place across the flow structures, causing them to be reoriented, leaning farther away from the wall. The onset of intermittency moves closer towards the boundary layer edge and the region of intermittent flow decreases. It is likely that this reflects the less frequent penetration of outer irrotational fluid into the boundary layer, consistent with a boundary layer that is losing its ability to entrain freestream fluid. The fractal dimension of the turbulent/nonturbulent interface decreases with increasing favorable pressure gradient, indicating that the interface's irregularity decreases. Because fractal scale similarity does not encompass the largest scales, this suggests that the change in fractal dimension is due to the action of the smaller-scales, consistent with the idea that the small-scale flow structures are quenched during the expansion in response to bulk dilatation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schraad, Mark William; Luscher, Darby Jon
Additive Manufacturing techniques are presenting the Department of Energy and the NNSA Laboratories with new opportunities to consider novel component production and repair processes, and to manufacture materials with tailored response and optimized performance characteristics. Additive Manufacturing technologies already are being applied to primary NNSA mission areas, including Nuclear Weapons. These mission areas are adapting to these new manufacturing methods, because of potential advantages, such as smaller manufacturing footprints, reduced needs for specialized tooling, an ability to embed sensing, novel part repair options, an ability to accommodate complex geometries, and lighter weight materials. To realize the full potential of Additivemore » Manufacturing as a game-changing technology for the NNSA’s national security missions; however, significant progress must be made in several key technical areas. In addition to advances in engineering design, process optimization and automation, and accelerated feedstock design and manufacture, significant progress must be made in modeling and simulation. First and foremost, a more mature understanding of the process-structure-property-performance relationships must be developed. Because Additive Manufacturing processes change the nature of a material’s structure below the engineering scale, new models are required to predict materials response across the spectrum of relevant length scales, from the atomistic to the continuum. New diagnostics will be required to characterize materials response across these scales. And not just models, but advanced algorithms, next-generation codes, and advanced computer architectures will be required to complement the associated modeling activities. Based on preliminary work in each of these areas, a strong argument for the need for Exascale computing architectures can be made, if a legitimate predictive capability is to be developed.« less
Impact force as a scaling parameter
NASA Technical Reports Server (NTRS)
Poe, Clarence C., Jr.; Jackson, Wade C.
1994-01-01
The Federal Aviation Administration (FAR PART 25) requires that a structure carry ultimate load with nonvisible impact damage and carry 70 percent of limit flight loads with discrete damage. The Air Force has similar criteria (MIL-STD-1530A). Both civilian and military structures are designed by a building block approach. First, critical areas of the structure are determined, and potential failure modes are identified. Then, a series of representative specimens are tested that will fail in those modes. The series begins with tests of simple coupons, progresses through larger and more complex subcomponents, and ends with a test on a full-scale component, hence the term 'building block.' In order to minimize testing, analytical models are needed to scale impact damage and residual strength from the simple coupons to the full-scale component. Using experiments and analysis, the present paper illustrates that impact damage can be better understood and scaled using impact force than just kinetic energy. The plate parameters considered are size and thickness, boundary conditions, and material, and the impact parameters are mass, shape, and velocity.
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Polis, Daniel L.
2014-01-01
Damage tolerance performance is critical to composite structures because surface impacts at relatively low energies may result in a significant strength loss. For certification, damage tolerance criteria require aerospace vehicles to meet design loads while containing damage at critical locations. Data from standard small coupon testing are difficult to apply to larger more complex structures. Due to the complexity of predicting both the impact damage and the residual properties, damage tolerance is demonstrated primarily by testing. A portable, spring-propelled, impact device was developed which allows the impact damage response to be investigated on large specimens, full-scale components, or entire vehicles. During impact, both the force history and projectile velocity are captured. The device was successfully used to demonstrate the damage tolerance performance of the NASA Composite Crew Module. The impactor was used to impact 18 different design features at impact energies up to 35 J. Detailed examples of these results are presented, showing impact force histories, damage inspection results, and response to loading.
The Reliability and Validity of the Social Responsiveness Scale in a UK General Child Population
ERIC Educational Resources Information Center
Wigham, Sarah; McConachie, Helen; Tandos, Jonathan; Le Couteur, Ann S.
2012-01-01
This is the first UK study to report the reliability, validity, and factor structure of the Social Responsiveness Scale (SRS) in a general population sample. Parents of 500 children (aged 5-8 years) in North East England completed the SRS. Profiles of scores were similar to USA norms, and a single factor structure was identified. Good construct…
Joanne M. Sharpe; Aaron B. Shiels
2014-01-01
Ferns are abundant in most rainforest understories yet their responses to hurricanes have not been well studied. Fern community structure, growth and spore production were monitored for two years before and five years after a large-scale experiment that simulated two key components of severe hurricane disturbance: canopy openness and debris deposition. The canopy was...
NASA Technical Reports Server (NTRS)
Kenigsberg, I. J.; Dean, M. W.; Malatino, R.
1974-01-01
The correlation achieved with each program provides the material for a discussion of modeling techniques developed for general application to finite-element dynamic analyses of helicopter airframes. Included are the selection of static and dynamic degrees of freedom, cockpit structural modeling, and the extent of flexible-frame modeling in the transmission support region and in the vicinity of large cut-outs. The sensitivity of predicted results to these modeling assumptions are discussed. Both the Sikorsky Finite-Element Airframe Vibration analysis Program (FRAN/Vibration Analysis) and the NASA Structural Analysis Program (NASTRAN) have been correlated with data taken in full-scale vibration tests of a modified CH-53A helicopter.
Osman, Augustine; Lamis, Dorian A; Bagge, Courtney L; Freedenthal, Stacey; Barnes, Sean M
2016-01-01
We examined the factor structure and psychometric properties of the Mindful Attention Awareness Scale (MAAS) in a sample of 810 undergraduate students. Using common exploratory factor analysis (EFA), we obtained evidence for a 1-factor solution (41.84% common variance). To confirm unidimensionality of the 15-item MAAS, we conducted a 1-factor confirmatory factor analysis (CFA). Results of the EFA and CFA, respectively, provided support for a unidimensional model. Using differential item functioning analysis methods within item response theory modeling (IRT-based DIF), we found that individuals with high and low levels of nonattachment responded similarly to the MAAS items. Following a detailed item analysis, we proposed a 5-item short version of the instrument and present descriptive statistics and composite score reliability for the short and full versions of the MAAS. Finally, correlation analyses showed that scores on the full and short versions of the MAAS were associated with measures assessing related constructs. The 5-item MAAS is as useful as the original MAAS in enhancing our understanding of the mindfulness construct.
Full-Scale Crash Test of an MD-500 Helicopter
NASA Technical Reports Server (NTRS)
Littell, Justin
2011-01-01
A full-scale crash test was successfully conducted in March 2010 of an MD-500 helicopter at NASA Langley Research Center s Landing and Impact Research Facility. The reasons for conducting this test were threefold: 1 To generate data to be used with finite element computer modeling efforts, 2 To study the crashworthiness features typically associated with a small representative helicopter, and 3 To compare aircraft response to data collected from a previously conducted MD-500 crash test, which included an externally deployable energy absorbing (DEA) concept. Instrumentation on the airframe included accelerometers on various structural components of the airframe; and strain gages on keel beams, skid gear and portions of the skin. Three Anthropomorphic Test Devices and a specialized Human Surrogate Torso Model were also onboard to collect occupant loads for evaluation with common injury risk criteria. This paper presents background and results from this crash test conducted without the DEA concept. These results showed accelerations of approximately 30 to 50 g on the airframe at various locations, little energy attenuation through the airframe, and moderate to high probability of occupant injury for a variety of injury criteria.
How many records should be used in ASCE/SEI-7 ground motion scaling procedure?
Reyes, Juan C.; Kalkan, Erol
2012-01-01
U.S. national building codes refer to the ASCE/SEI-7 provisions for selecting and scaling ground motions for use in nonlinear response history analysis of structures. Because the limiting values for the number of records in the ASCE/SEI-7 are based on engineering experience, this study examines the required number of records statistically, such that the scaled records provide accurate, efficient, and consistent estimates of “true” structural responses. Based on elastic–perfectly plastic and bilinear single-degree-of-freedom systems, the ASCE/SEI-7 scaling procedure is applied to 480 sets of ground motions; the number of records in these sets varies from three to ten. As compared to benchmark responses, it is demonstrated that the ASCE/SEI-7 scaling procedure is conservative if fewer than seven ground motions are employed. Utilizing seven or more randomly selected records provides more accurate estimate of the responses. Selecting records based on their spectral shape and design spectral acceleration increases the accuracy and efficiency of the procedure.
NASA Technical Reports Server (NTRS)
Bergan, Andrew; Bakuckas, John G., Jr.; Lovejoy, Andrew; Jegley, Dawn; Linton, Kim; Neal, Bert; Korkosz, Gregory; Awerbuch, Jonathan; Tan, Tein-Min
2012-01-01
Integrally stitched composite technology is an area that shows promise in enhancing the structural integrity of aircraft and aerospace structures. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. The goal of the PRSEUS concept relevant to this test is to provide damage containment capability for composite structures while reducing overall structural weight. The National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), and The Boeing Company have partnered in an effort to assess the damage containment features of a full-scale curved PRSEUS panel using the FAA Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility. A single PRSEUS test panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure loads. The test results showed excellent performance of the PRSEUS concept. No growth of Barely Visible Impact Damage (BVID) was observed after ultimate loads were applied. With a two-bay notch severing the central stringer, damage was contained within the two-bay region well above the required limit load conditions. Catastrophic failure was well above the ultimate load level. Information describing the test panel and procedure has been previously presented, so this paper focuses on the experimental procedure, test results, nondestructive inspection results, and preliminary test and analysis correlation.
Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise
2016-01-01
A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.
NASA Technical Reports Server (NTRS)
Quinlan, Jesse R.; Gern, Frank H.
2016-01-01
Simultaneously achieving the fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project requires innovative and unconventional aircraft concepts. In response, advanced hybrid wing body (HWB) aircraft concepts have been proposed and analyzed as a means of meeting these objectives. For the current study, several HWB concepts were analyzed using the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) analysis code. HCDstruct is a medium-fidelity finite element based conceptual design and structural optimization tool developed to fill the critical analysis gap existing between lower order structural sizing approaches and detailed, often finite element based sizing methods for HWB aircraft concepts. Whereas prior versions of the tool used a half-model approach in building the representative finite element model, a full wing-tip-to-wing-tip modeling capability was recently added to HCDstruct, which alleviated the symmetry constraints at the model centerline in place of a free-flying model and allowed for more realistic center body, aft body, and wing loading and trim response. The latest version of HCDstruct was applied to two ERA reference cases, including the Boeing Open Rotor Engine Integration On an HWB (OREIO) concept and the Boeing ERA-0009H1 concept, and results agreed favorably with detailed Boeing design data and related Flight Optimization System (FLOPS) analyses. Following these benchmark cases, HCDstruct was used to size NASA's ERA HWB concepts and to perform a related scaling study.
Discontinuities, cross-scale patterns, and the organizationof ecosystems
Ecological structures and processes occur at specific spatiotemporal scales, and interactions that occur across multiple scales mediate scale-specific (e.g., individual,community, local, or regional) responses to disturbance. Despite the importance of scale,explicitly incorporat...
The response of plasma density to breaking inertial gravity wave in the lower regions of ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Wenbo, E-mail: Wenbo.Tang@asu.edu; Mahalov, Alex, E-mail: Alex.Mahalov@asu.edu
2014-04-15
We present a three-dimensional numerical study for the E and lower F region ionosphere coupled with the neutral atmosphere dynamics. This model is developed based on a previous ionospheric model that examines the transport patterns of plasma density given a prescribed neutral atmospheric flow. Inclusion of neutral dynamics in the model allows us to examine the charge-neutral interactions over the full evolution cycle of an inertial gravity wave when the background flow spins up from rest, saturates and eventually breaks. Using Lagrangian analyses, we show the mixing patterns of the ionospheric responses and the formation of ionospheric layers. The correspondingmore » plasma density in this flow develops complex wave structures and small-scale patches during the gravity wave breaking event.« less
Full-scale regional exercises: closing the gaps in disaster preparedness.
Klima, David A; Seiler, Sarah H; Peterson, Jeff B; Christmas, A Britton; Green, John M; Fleming, Greg; Thomason, Michael H; Sing, Ronald F
2012-09-01
Man-made (9/11) and natural (Hurricane Katrina) disasters have enlightened the medical community regarding the importance of disaster preparedness. In response to Joint Commission requirements, medical centers should have established protocols in place to respond to such events. We examined a full-scale regional exercise (FSRE) to identify gaps in logistics and operations during a simulated mass casualty incident. A multiagency, multijurisdictional, multidisciplinary exercise (FSRE) included 16 area hospitals and one American College of Surgeons-verified Level I trauma center (TC). The scenario simulated a train derailment and chemical spill 20 miles from the TC using 281 moulaged volunteers. Third-party contracted evaluators assessed each hospital in five areas: communications, command structure, decontamination, staffing, and patient tracking. Further analysis examined logistic and operational deficiencies. None of the 16 hospitals were compliant in all five areas. Mean hospital compliance was 1.9 (± 0.9 SD) areas. One hospital, unable to participate because of an air conditioner outage, was deemed 0% compliant. The most common deficiency was communications (15 of 16 hospitals [94%]; State Medical Asset Resource Tracking Tool system deficiencies, lack of working knowledge of Voice Interoperability Plan for Emergency Responders radio system) followed by deficient decontamination in 12 (75%). Other deficiencies included inadequate staffing based on predetermined protocols in 10 hospitals (63%), suboptimal command structure in 9 (56%), and patient tracking deficiencies in 5 (31%). An additional 11 operational and 5 logistic failures were identified. The TC showed an appropriate command structure but was deficient in four of five categories, with understaffing and a decontamination leak into the emergency department, which required diversion of 70 patients. Communication remains a significant gap in the mass casualty scenario 10 years after 9/11. Our findings demonstrate that tabletop exercises are inadequate to expose operational and logistic gaps in disaster response. FSREs should be routinely performed to adequately prepare for catastrophic events.
NASA Astrophysics Data System (ADS)
Luczak, M. M.; Mucchi, E.; Telega, J.
2016-09-01
The goal of the research is to develop a vibration-based procedure for the identification of structural failures in a laboratory scale model of a tripod supporting structure of an offshore wind turbine. In particular, this paper presents an experimental campaign on the scale model tested in two stages. Stage one encompassed the model tripod structure tested in air. The second stage was done in water. The tripod model structure allows to investigate the propagation of a circumferential representative crack of a cylindrical upper brace. The in-water test configuration included the tower with three bladed rotor. The response of the structure to the different waves loads were measured with accelerometers. Experimental and operational modal analysis was applied to identify the dynamic properties of the investigated scale model for intact and damaged state with different excitations and wave patterns. A comprehensive test matrix allows to assess the differences in estimated modal parameters due to damage or as potentially introduced by nonlinear structural response. The presented technique proves to be effective for detecting and assessing the presence of representative cracks.
Crow, Claire; van Riper, Charles
2011-01-01
We also studied responses of breeding birds to mechanical reduction of pinyon-juniper woodlands scattered across sagebrush steppe in 11 control and 9 treatment plots at Grand Staircase-Escalante National Monument, Utah, in 2005 and 2006. We surveyed birds in 3.1-ha (7.6-acre) plots during the breeding season before and following treatment. Thinning in April 2006 removed a mean of 92 percent (standard error = 6.4 percent) of the live trees from treatment plots. Two of 14 species, Gray Vireo (Vireo vicinior) and Brown-headed Cowbird (Molothrus ater), were not detected after thinning. Shrub-nesting birds, including sagebrush specialist Brewer's Sparrow (Spizella breweri), increased in relative abundance in treatment areas compared to controls. However, some species may exhibit a time lag in response, and further changes in community composition and abundance could result. Our findings lend support to the concept that multiple small-scale fuels-reduction treatments, applied over the landscape, may provide the variety of successional stages needed to support a full assemblage of avian species in pinyon-juniper woodlands on the Colorado Plateau. Limiting scale and increasing precision of fuels-reduction projects in pinyon-juniper vegetation communities may maximize the benefits of management to both the pinyon-juniper and sagebrush steppe avian communities. We conclude that small-scale fuels-reduction treatments can benefit many bird species while reducing fire risk and restoring an ecological balance.
Development and Validation of the Multidimensional State Boredom Scale
ERIC Educational Resources Information Center
Fahlman, Shelley A.; Mercer-Lynn, Kimberley B.; Flora, David B.; Eastwood, John D.
2013-01-01
This article describes the development and validation of the Multidimensional State Boredom Scale (MSBS)--the first and only full-scale measure of state boredom. It was developed based on a theoretically and empirically grounded definition of boredom. A five-factor structure of the scale (Disengagement, High Arousal, Low Arousal, Inattention, and…
[Development of an Atypical Response Scale.
ERIC Educational Resources Information Center
Mendelsohn, Mark; Linden, James
The development of an objective diagnostic scale to measure atypical behavior is discussed. The Atypical Response Scale (ARS) is a structured projective test consisting of 17 items, each weighted 1, 2, or 3, that were tested for convergence and reliability. ARS may be individually or group administered in 10-15 minutes; hand scoring requires 90…
Kalkan, E.; Kwong, N.
2012-01-01
The earthquake engineering profession is increasingly utilizing nonlinear response history analyses (RHA) to evaluate seismic performance of existing structures and proposed designs of new structures. One of the main ingredients of nonlinear RHA is a set of ground motion records representing the expected hazard environment for the structure. When recorded motions do not exist (as is the case in the central United States) or when high-intensity records are needed (as is the case in San Francisco and Los Angeles), ground motions from other tectonically similar regions need to be selected and scaled. The modal-pushover-based scaling (MPS) procedure was recently developed to determine scale factors for a small number of records such that the scaled records provide accurate and efficient estimates of “true” median structural responses. The adjective “accurate” refers to the discrepancy between the benchmark responses and those computed from the MPS procedure. The adjective “efficient” refers to the record-to-record variability of responses. In this paper, the accuracy and efficiency of the MPS procedure are evaluated by applying it to four types of existing Ordinary Standard bridges typical of reinforced concrete bridge construction in California. These bridges are the single-bent overpass, multi-span bridge, curved bridge, and skew bridge. As compared with benchmark analyses of unscaled records using a larger catalog of ground motions, it is demonstrated that the MPS procedure provided an accurate estimate of the engineering demand parameters (EDPs) accompanied by significantly reduced record-to-record variability of the EDPs. Thus, it is a useful tool for scaling ground motions as input to nonlinear RHAs of Ordinary Standard bridges.
Hygroscopic motions of fossil conifer cones
NASA Astrophysics Data System (ADS)
Poppinga, Simon; Nestle, Nikolaus; Šandor, Andrea; Reible, Bruno; Masselter, Tom; Bruchmann, Bernd; Speck, Thomas
2017-01-01
Conifer cones represent natural, woody compliant structures which move their scales as passive responses to changes in environmental humidity. Here we report on water-driven opening and closing motions in coalified conifer cones from the Eemian Interglacial (approx. 126,000-113,000 years BP) and from the Middle Miocene (approx. 16.5 to 11.5 million years BP). These cones represent by far the oldest documented evidence of plant parts showing full functionality of such passive hydraulically actuated motion. The functional resilience of these structures is far beyond the biological purpose of seed dispersal and protection and is because of a low level of mineralization of the fossils. Our analysis emphasizes the functional-morphological integrity of these biological compliant mechanisms which, in addition to their biological fascination, are potentially also role models for resilient and maintenance-free biomimetic applications (e.g., adaptive and autonomously moving structures including passive hydraulic actuators).
Stochastic analysis of epidemics on adaptive time varying networks
NASA Astrophysics Data System (ADS)
Kotnis, Bhushan; Kuri, Joy
2013-06-01
Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an “adaptive threshold,” i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.
Scaling earthquake ground motions for performance-based assessment of buildings
Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.
2011-01-01
The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.
Multi-Scale Sizing of Lightweight Multifunctional Spacecraft Structural Components
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.
2005-01-01
This document is the final report for the project entitled, "Multi-Scale Sizing of Lightweight Multifunctional Spacecraft Structural Components," funded under the NRA entitled "Cross-Enterprise Technology Development Program" issued by the NASA Office of Space Science in 2000. The project was funded in 2001, and spanned a four year period from March, 2001 to February, 2005. Through enhancements to and synthesis of unique, state of the art structural mechanics and micromechanics analysis software, a new multi-scale tool has been developed that enables design, analysis, and sizing of advance lightweight composite and smart materials and structures from the full vehicle, to the stiffened structure, to the micro (fiber and matrix) scales. The new software tool has broad, cross-cutting value to current and future NASA missions that will rely on advanced composite and smart materials and structures.
Tsubakita, Takashi; Shimazaki, Kazuyo; Ito, Hiroshi; Kawazoe, Nobuo
2017-10-30
The Utrecht Work Engagement Scale for Students has been used internationally to assess students' academic engagement, but it has not been analyzed via item response theory. The purpose of this study was to conduct an item response theory analysis of the Japanese version of the Utrecht Work Engagement Scale for Students translated by authors. Using a two-parameter model and Samejima's graded response model, difficulty and discrimination parameters were estimated after confirming the factor structure of the scale. The 14 items on the scale were analyzed with a sample of 3214 university and college students majoring medical science, nursing, or natural science in Japan. The preliminary parameter estimation was conducted with the two parameter model, and indicated that three items should be removed because there were outlier parameters. Final parameter estimation was conducted using the survived 11 items, and indicated that all difficulty and discrimination parameters were acceptable. The test information curve suggested that the scale better assesses higher engagement than average engagement. The estimated parameters provide a basis for future comparative studies. The results also suggested that a 7-point Likert scale is too broad; thus, the scaling should be modified to fewer graded scaling structure.
Development and initial evaluation of the SCI-FI/AT
Jette, Alan M.; Slavin, Mary D.; Ni, Pengsheng; Kisala, Pamela A.; Tulsky, David S.; Heinemann, Allen W.; Charlifue, Susie; Tate, Denise G.; Fyffe, Denise; Morse, Leslie; Marino, Ralph; Smith, Ian; Williams, Steve
2015-01-01
Objectives To describe the domain structure and calibration of the Spinal Cord Injury Functional Index for samples using Assistive Technology (SCI-FI/AT) and report the initial psychometric properties of each domain. Design Cross sectional survey followed by computerized adaptive test (CAT) simulations. Setting Inpatient and community settings. Participants A sample of 460 adults with traumatic spinal cord injury (SCI) stratified by level of injury, completeness of injury, and time since injury. Interventions None Main outcome measure SCI-FI/AT Results Confirmatory factor analysis (CFA) and Item response theory (IRT) analyses identified 4 unidimensional SCI-FI/AT domains: Basic Mobility (41 items) Self-care (71 items), Fine Motor Function (35 items), and Ambulation (29 items). High correlations of full item banks with 10-item simulated CATs indicated high accuracy of each CAT in estimating a person's function, and there was high measurement reliability for the simulated CAT scales compared with the full item bank. SCI-FI/AT item difficulties in the domains of Self-care, Fine Motor Function, and Ambulation were less difficult than the same items in the original SCI-FI item banks. Conclusion With the development of the SCI-FI/AT, clinicians and investigators have available multidimensional assessment scales that evaluate function for users of AT to complement the scales available in the original SCI-FI. PMID:26010975
Development and initial evaluation of the SCI-FI/AT.
Jette, Alan M; Slavin, Mary D; Ni, Pengsheng; Kisala, Pamela A; Tulsky, David S; Heinemann, Allen W; Charlifue, Susie; Tate, Denise G; Fyffe, Denise; Morse, Leslie; Marino, Ralph; Smith, Ian; Williams, Steve
2015-05-01
To describe the domain structure and calibration of the Spinal Cord Injury Functional Index for samples using Assistive Technology (SCI-FI/AT) and report the initial psychometric properties of each domain. Cross sectional survey followed by computerized adaptive test (CAT) simulations. Inpatient and community settings. A sample of 460 adults with traumatic spinal cord injury (SCI) stratified by level of injury, completeness of injury, and time since injury. None SCI-FI/AT RESULTS: Confirmatory factor analysis (CFA) and Item response theory (IRT) analyses identified 4 unidimensional SCI-FI/AT domains: Basic Mobility (41 items) Self-care (71 items), Fine Motor Function (35 items), and Ambulation (29 items). High correlations of full item banks with 10-item simulated CATs indicated high accuracy of each CAT in estimating a person's function, and there was high measurement reliability for the simulated CAT scales compared with the full item bank. SCI-FI/AT item difficulties in the domains of Self-care, Fine Motor Function, and Ambulation were less difficult than the same items in the original SCI-FI item banks. With the development of the SCI-FI/AT, clinicians and investigators have available multidimensional assessment scales that evaluate function for users of AT to complement the scales available in the original SCI-FI.
Evidence of ghost suppression in gluon mass scale dynamics
NASA Astrophysics Data System (ADS)
Aguilar, A. C.; Binosi, D.; Figueiredo, C. T.; Papavassiliou, J.
2018-03-01
In this work we study the impact that the ghost sector of pure Yang-Mills theories may have on the generation of a dynamical gauge boson mass scale, which hinges on the appearance of massless poles in the fundamental vertices of the theory, and the subsequent realization of the well-known Schwinger mechanism. The process responsible for the formation of such structures is itself dynamical in nature, and is governed by a set of Bethe-Salpeter type of integral equations. While in previous studies the presence of massless poles was assumed to be exclusively associated with the background-gauge three-gluon vertex, in the present analysis we allow them to appear also in the corresponding ghost-gluon vertex. The full analysis of the resulting Bethe-Salpeter system reveals that the contribution of the poles associated with the ghost-gluon vertex are particularly suppressed, their sole discernible effect being a slight modification in the running of the gluon mass scale, for momenta larger than a few GeV. In addition, we examine the behavior of the (background-gauge) ghost-gluon vertex in the limit of vanishing ghost momentum, and derive the corresponding version of Taylor's theorem. These considerations, together with a suitable Ansatz, permit us the full reconstruction of the pole sector of the two vertices involved.
NASA Technical Reports Server (NTRS)
Miller, Christopher J.; Goodrick, Dan
2017-01-01
The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads to specified values. This technique has been implemented and flown on the National Aeronautics and Space Administration Full-scale Advanced Systems Testbed aircraft. The flight tests illustrate that the approach achieves the desired performance and show promising potential benefits. The flights also uncovered some important issues that will need to be addressed for production application.
NASA Astrophysics Data System (ADS)
Petersen, Ø. W.; Øiseth, O.; Nord, T. S.; Lourens, E.
2018-07-01
Numerical predictions of the dynamic response of complex structures are often uncertain due to uncertainties inherited from the assumed load effects. Inverse methods can estimate the true dynamic response of a structure through system inversion, combining measured acceleration data with a system model. This article presents a case study of full-field dynamic response estimation of a long-span floating bridge: the Bergøysund Bridge in Norway. This bridge is instrumented with a network of 14 triaxial accelerometers. The system model consists of 27 vibration modes with natural frequencies below 2 Hz, obtained from a tuned finite element model that takes the fluid-structure interaction with the surrounding water into account. Two methods, a joint input-state estimation algorithm and a dual Kalman filter, are applied to estimate the full-field response of the bridge. The results demonstrate that the displacements and the accelerations can be estimated at unmeasured locations with reasonable accuracy when the wave loads are the dominant source of excitation.
Calibration of aero-structural reduced order models using full-field experimental measurements
NASA Astrophysics Data System (ADS)
Perez, R.; Bartram, G.; Beberniss, T.; Wiebe, R.; Spottswood, S. M.
2017-03-01
The structural response of hypersonic aircraft panels is a multi-disciplinary problem, where the nonlinear structural dynamics, aerodynamics, and heat transfer models are coupled. A clear understanding of the impact of high-speed flow effects on the structural response, and the potential influence of the structure on the local environment, is needed in order to prevent the design of overly-conservative structures, a common problem in past hypersonic programs. The current work investigates these challenges from a structures perspective. To this end, the first part of this investigation looks at the modeling of the response of a rectangular panel to an external heating source (thermo-structural coupling) where the temperature effect on the structure is obtained from forward looking infrared (FLIR) measurements and the displacement via 3D-digital image correlation (DIC). The second part of the study uses data from a previous series of wind-tunnel experiments, performed to investigate the response of a compliant panel to the effects of high-speed flow, to train a pressure surrogate model. In this case, the panel aero-loading is obtained from fast-response pressure sensitive paint (PSP) measurements, both directly and from the pressure surrogate model. The result of this investigation is the use of full-field experimental measurements to update the structural model and train a computational efficient model of the loading environment. The use of reduced order models, informed by these full-field physical measurements, is a significant step toward the development of accurate simulation models of complex structures that are computationally tractable.
NASA Technical Reports Server (NTRS)
Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parsons, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.
1983-01-01
The full scale ground test, ground vibration test, and flight tests conducted to demonstrate a composite structure stabilizer for the Boeing 737 aircraft and obtain FAA certification are described. Detail tools, assembly tools, and overall production are discussed. Cost analyses aspects covered include production costs, composite material usage factors, and cost comparisons.
Impact Forces from Tsunami-Driven Debris
NASA Astrophysics Data System (ADS)
Ko, H.; Cox, D. T.; Riggs, H.; Naito, C. J.; Kobayashi, M. H.; Piran Aghl, P.
2012-12-01
Debris driven by tsunami inundation flow has been known to be a significant threat to structures, yet we lack the constitutive equations necessary to predict debris impact force. The objective of this research project is to improve our understanding of, and predictive capabilities for, tsunami-driven debris impact forces on structures. Of special interest are shipping containers, which are virtually everywhere and which will float even when fully loaded. The forces from such debris hitting structures, for example evacuation shelters and critical port facilities such as fuel storage tanks, are currently not known. This research project focuses on the impact by flexible shipping containers on rigid columns and investigated using large-scale laboratory testing. Full-scale in-air collision experiments were conducted at Lehigh University with 20 ft shipping containers to experimentally quantify the nonlinear behavior of full scale shipping containers as they collide into structural elements. The results from the full scale experiments were used to calibrate computer models and used to design a series of simpler, 1:5 scale wave flume experiments at Oregon State University. Scaled in-air collision tests were conducted using 1:5 scale idealized containers to mimic the container behavior observed in the full scale tests and to provide a direct comparison to the hydraulic model tests. Two specimens were constructed using different materials (aluminum, acrylic) to vary the stiffness. The collision tests showed that at higher speeds, the collision became inelastic as the slope of maximum impact force/velocity decreased with increasing velocity. Hydraulic model tests were conducted using the 1:5 scaled shipping containers to measure the impact load by the containers on a rigid column. The column was instrumented with a load cell to measure impact forces, strain gages to measure the column deflection, and a video camera was used to provide the debris orientation and speed. The tsunami was modeled as a transient pulse command signal to the wavemaker to provide a low amplitude long wave. Results are expected to show the effect of the water on the debris collision by comparing water tests with the in-air tests. It is anticipated that the water will provide some combination of added mass and cushioning of the collision. Results will be compared with proposed equations for the new ASCE-7 standard and with numerical models at the University of Hawaii.
Kalkan, Erol; Chopra, Anil K.
2010-01-01
Earthquake engineering practice is increasingly using nonlinear response history analysis (RHA) to demonstrate performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. Presented herein is a modal-pushover-based scaling (MPS) method to scale ground motions for use in nonlinear RHA of buildings and bridges. In the MPS method, the ground motions are scaled to match (to a specified tolerance) a target value of the inelastic deformation of the first-'mode' inelastic single-degree-of-freedom (SDF) system whose properties are determined by first-'mode' pushover analysis. Appropriate for first-?mode? dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-'mode' SDF system in selecting a subset of the scaled ground motions. Based on results presented for two bridges, covering single- and multi-span 'ordinary standard' bridge types, and six buildings, covering low-, mid-, and tall building types in California, the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.
Armenta, Brian E; Whitbeck, Les B; Habecker, Patrick N
2016-01-01
Thoughts of historical loss (i.e., the loss of culture, land, and people as a result of colonization) are conceptualized as a contributor to the contemporary distress experienced by North American Indigenous populations. Although discussions of historical loss and related constructs (e.g., historical trauma) are widespread within the Indigenous literature, empirical efforts to understand the consequence of historical loss are limited, partially because of the lack of valid assessments. In this study we evaluated the longitudinal measurement properties of the Historical Loss Scale (HLS)-a standardized measure that was developed to systematically examine the frequency with which Indigenous individuals think about historical loss-among a sample of North American Indigenous adolescents. We also test the hypothesis that thoughts of historical loss can be psychologically distressing. Via face-to-face interviews, 636 Indigenous adolescents from a single cultural group completed the HLS and a measure of anxiety at 4 time-points, which were separated by 1- to 2-year intervals (Mage = 12.09 years, SD = .86, 50.0% girls at baseline). Responses to the HLS were explained well by 3-factor (i.e., cultural loss, loss of people, and cultural mistreatment) and second-order factor structures. Both of these factor structures held full longitudinal metric (i.e., factor loadings) and scalar (i.e., intercepts) equivalence. In addition, using the second-order factor structure, more frequent thoughts of historical loss were associated with increased anxiety. The identified 3-factor and second-order HLS structures held full longitudinal measurement equivalence. Moreover, as predicted, our results suggest that historical loss can be psychologically distressing for Indigenous adolescents. (c) 2016 APA, all rights reserved).
Fatal Attraction? Intraguild Facilitation and Suppression among Predators.
Sivy, Kelly J; Pozzanghera, Casey B; Grace, James B; Prugh, Laura R
2017-11-01
Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.
Fatal attraction? Intraguild facilitation and suppression among predators
Sivy, Kelly J.; Pozzanghera, Casey B.; Grace, James B.; Prugh, Laura R.
2017-01-01
Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.
Foundations for a multiscale collaborative Earth model
NASA Astrophysics Data System (ADS)
Afanasiev, Michael; Peter, Daniel; Sager, Korbinian; Simutė, Saulė; Ermert, Laura; Krischer, Lion; Fichtner, Andreas
2016-01-01
We present a computational framework for the assimilation of local to global seismic data into a consistent model describing Earth structure on all seismically accessible scales. This Collaborative Seismic Earth Model (CSEM) is designed to meet the following requirements: (i) Flexible geometric parametrization, capable of capturing topography and bathymetry, as well as all aspects of potentially resolvable structure, including small-scale heterogeneities and deformations of internal discontinuities. (ii) Independence of any particular wave equation solver, in order to enable the combination of inversion techniques suitable for different types of seismic data. (iii) Physical parametrization that allows for full anisotropy and for variations in attenuation and density. While not all of these parameters are always resolvable, the assimilation of data that constrain any parameter subset should be possible. (iv) Ability to accommodate successive refinements through the incorporation of updates on any scale as new data or inversion techniques become available. (v) Enable collaborative Earth model construction. The structure of the initial CSEM is represented on a variable-resolution tetrahedral mesh. It is assembled from a long-wavelength 3-D global model into which several regional-scale tomographies are embedded. We illustrate the CSEM workflow of successive updating with two examples from Japan and the Western Mediterranean, where we constrain smaller scale structure using full-waveform inversion. Furthermore, we demonstrate the ability of the CSEM to act as a vehicle for the combination of different tomographic techniques with a joint full-waveform and traveltime ray tomography of Europe. This combination broadens the exploitable frequency range of the individual techniques, thereby improving resolution. We perform two iterations of a whole-Earth full-waveform inversion using a long-period reference data set from 225 globally recorded earthquakes. At this early stage of the CSEM development, the broad global updates mostly act to remove artefacts from the assembly of the initial CSEM. During the future evolution of the CSEM, the reference data set will be used to account for the influence of small-scale refinements on large-scale global structure. The CSEM as a computational framework is intended to help bridging the gap between local, regional and global tomography, and to contribute to the development of a global multiscale Earth model. While the current construction serves as a first proof of concept, future refinements and additions will require community involvement, which is welcome at this stage already.
Sub-ply level scaling approach investigated for graphite-epoxy composite beam columns
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Kellas, Sotiris
1994-01-01
Scale model graphite-epoxy composite specimens were fabricated using the 'sub-ply level' approach and tested as beam-columns under an eccentric axial load to determine the effect of specimen size on flexural response and failure. In the current research project, although the fiber diameters are not scaled, the thickness of the pre-preg material itself has been scaled by adjusting the number of fibers through the thickness of a single ply. Three different grades of graphite-epoxy composite material (AS4/3502) were obtained from Hercules, Inc., in which the number of fibers through the thickness of a single ply was reduced (Grade 190 with 12 to 16 fibers, Grade 95 with 6 to 8 fibers, and Grade 48 with 3 to 4 fibers). Thus, using the sub-ply level approach, a baseline eight ply quasi-isotropic laminate could be fabricated using either the Grade 48 or Grade 95 material and the corresponding full-scale laminate would be constructed from Grade 95 or standard Grade 190 material, respectively. Note that in the sub-ply level approach, the number of ply interfaces is constant for the baseline and full-scale laminates. This is not true for the ply level and sublaminate level scaled specimens. The three grades of graphite-epoxy composite material were used to fabricate scale model beam-column specimens with in-plane dimensions of 0.5*n x 5.75*n, where n=1,2,4 corresponsing to 1/4, 1/2, and full-scale factors. Angle ply, cross ply, and quasi-isotropic laminate stacking sequences were chosen for the investigation and the test matrices for each laminate type are given. Specimens in each laminate family with the same in-plane dimensions but different thicknesses were tested to isolate the influence of the thickness dimension on the flexural response and failure. Also, specific lay-ups were chosen with blocked plies and dispersed plies for each laminate type. Specimens were subjected to an eccentric axial load until failure. The load offset was introduced through a set of hinges which were attached to the platens of a standard load test machine. Three sets of geometrically scaled hinges were used to ensure that scaled loading conditions were applied. This loading condition was chosen because it promotes large flexural deformations and specimens fail at the center of the beam, away from the grip supports. Five channels of data including applied vertical load, end shortening displacement, strain from gages applied back-to-back at the midspan of the beam, and rotation of the hinge from a bubble inclinometer were recorded for each specimen. The beam-column test configuration was used previously to study size effects in ply level scaled composite specimens of the same material system, sizes, and stacking sequences. Thus, a direct comparison between the two scaling approaches is possible. Ply level scaled beam-columns with angle ply, cross ply, and quasi-isotropic lay-ups exhibited no size dependencies in the flexural response, but significant size effects in strength. The reduction in strength with increasing specimen size was not predicted successfully by analysis techniques. It is anticipated that results from this investigation will lead to a better understanding of the strength scale effect in composite structures.
Non-contact tensile viscoelastic characterization of microscale biological materials
NASA Astrophysics Data System (ADS)
Li, Yuhui; Hong, Yuan; Xu, Guang-Kui; Liu, Shaobao; Shi, Qiang; Tang, Deding; Yang, Hui; Genin, Guy M.; Lu, Tian Jian; Xu, Feng
2018-06-01
Many structures and materials in nature and physiology have important "meso-scale" structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.
Non-contact tensile viscoelastic characterization of microscale biological materials
NASA Astrophysics Data System (ADS)
Li, Yuhui; Hong, Yuan; Xu, Guang-Kui; Liu, Shaobao; Shi, Qiang; Tang, Deding; Yang, Hui; Genin, Guy M.; Lu, Tian Jian; Xu, Feng
2018-01-01
Many structures and materials in nature and physiology have important "meso-scale" structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.
Skin and scales of teleost fish: Simple structure but high performance and multiple functions
NASA Astrophysics Data System (ADS)
Vernerey, Franck J.; Barthelat, Francois
2014-08-01
Natural and man-made structural materials perform similar functions such as structural support or protection. Therefore they rely on the same types of properties: strength, robustness, lightweight. Nature can therefore provide a significant source of inspiration for new and alternative engineering designs. We report here some results regarding a very common, yet largely unknown, type of biological material: fish skin. Within a thin, flexible and lightweight layer, fish skins display a variety of strain stiffening and stabilizing mechanisms which promote multiple functions such as protection, robustness and swimming efficiency. We particularly discuss four important features pertaining to scaled skins: (a) a strongly elastic tensile behavior that is independent from the presence of rigid scales, (b) a compressive response that prevents buckling and wrinkling instabilities, which are usually predominant for thin membranes, (c) a bending response that displays nonlinear stiffening mechanisms arising from geometric constraints between neighboring scales and (d) a robust structure that preserves the above characteristics upon the loss or damage of structural elements. These important properties make fish skin an attractive model for the development of very thin and flexible armors and protective layers, especially when combined with the high penetration resistance of individual scales. Scaled structures inspired by fish skin could find applications in ultra-light and flexible armor systems, flexible electronics or the design of smart and adaptive morphing structures for aerospace vehicles.
Groundwater level responses to precipitation variability in Mediterranean insular aquifers
NASA Astrophysics Data System (ADS)
Lorenzo-Lacruz, Jorge; Garcia, Celso; Morán-Tejeda, Enrique
2017-09-01
Groundwater is one of the largest and most important sources of fresh water on many regions under Mediterranean climate conditions, which are exposed to large precipitation variability that includes frequent meteorological drought episodes, and present high evapotranspiration rates and water demand during the dry season. The dependence on groundwater increases in those areas with predominant permeable lithologies, contributing to aquifer recharge and the abundance of ephemeral streams. The increasing pressure of tourism on water resources in many Mediterranean coastal areas, and uncertainty related to future precipitation and water availability, make it urgent to understand the spatio-temporal response of groundwater bodies to precipitation variability, if sustainable use of the resource is to be achieved. We present an assessment of the response of aquifers to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) at various time scales and the Standardized Groundwater Index (SGI) across a Mediterranean island. We detected three main responses of aquifers to accumulated precipitation anomalies: (i) at short time scales of the SPI (<6 months); (ii) at medium time scales (6-24 months); and at long time scales (>24 months). The differing responses were mainly explained by differences in lithology and the percentage of highly permeable rock strata in the aquifer recharge areas. We also identified differences in the months and seasons when aquifer storages are more dependent on precipitation; these were related to climate seasonality and the degree of aquifer exploitation or underground water extraction. The recharge of some aquifers, especially in mountainous areas, is related to precipitation variability within a limited spatial extent, whereas for aquifers located in the plains, precipitation variability influence much larger areas; the topography and geological structure of the island explain these differences. Results indicate large spatial variability in the response of aquifers to precipitation in a very small area, highlighting the importance of having high spatial resolution hydro-climatic databases available to enable full understanding of the effects of climate variability on scarce water resources.
NASA Technical Reports Server (NTRS)
Burrows, Leroy T.
1993-01-01
During the 1960's over 30 full-scale aircraft crash tests were conducted by the Flight Safety Foundation under contract to the Aviation Applied Technology Directorate (AATD) of the U.S. Army Aviation Systems Command (AVSCOM). The purpose of these tests were to conduct crash injury investigations that would provide a basis for the formulation of sound crash resistance design criteria for light fixed-wing and rotary wing aircraft. This resulted in the Crash Survival Design Criteria Designer's Guide which was first published in 1967 and has been revised numerous times, the last being in 1989. Full-scale aircraft crash testing is an expensive way to investigate structural deformations of occupied spaces and to determine the decelerative loadings experienced by occupants in a crash. This gave initial impetus to the U.S. Army to develop analytical methods to predict the dynamic response of aircraft structures in a crash. It was believed that such analytical tools could be very useful in the preliminary design stage of a new helicopter system which is required to demonstrate a level of crash resistance and had to be more cost effective than full-scale crash tests or numerous component design support tests. From an economic point of view, it is more efficient to optimize for the incorporation of crash resistance features early in the design stage. However, during preliminary design it is doubtful if sufficient design details, which influence the exact plastic deformation shape of structural elements, will be available. The availability of simple procedures to predict energy absorption and load-deformation characteristics will allow the designer to initiate valuable cost, weight, and geometry tradeoff studies. The development of these procedures will require some testing of typical specimens. This testing should, as a minimum, verify the validity of proposed procedures for providing pertinent nonlinear load-deformation data. It was hoped that through the use of these analytical models, the designer could optimize aircraft design for crash resistance from both a weight and cost increment standpoint, thus enhancing the acceptance of the design criteria for crash resistance.
Integrating technologies for oil spill response in the SW Iberian coast
NASA Astrophysics Data System (ADS)
Janeiro, J.; Neves, A.; Martins, F.; Relvas, P.
2017-09-01
An operational oil spill modelling system developed for the SW Iberia Coast is used to investigate the relative importance of the different components and technologies integrating an oil spill monitoring and response structure. A backtrack of a CleanSeaNet oil detection in the region is used to demonstrate the concept. Taking advantage of regional operational products available, the system provides the necessary resolution to go from regional to coastal scales using a downscalling approach, while a multi-grid methodology allows the based oil spill model to span across model domains taking full advantage of the increasing resolution between the model grids. An extensive validation procedure using a multiplicity of sensors, with good spatial and temporal coverage, strengthens the operational system ability to accurately solve coastal scale processes. The model is validated using available trajectories from satellite-tracked drifters. Finally, a methodology is proposed to identifying potential origins for the CleanSeaNet oil detection, by combining model backtrack results with ship trajectories supplied by AIS was developed, including the error estimations found in the backtrack validation.
Discontinuities, cross-scale patterns, and the organization of ecosystems
Nash, Kirsty L.; Allen, Craig R.; Angeler, David G.; Barichievy, Chris; Eason, Tarsha; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Knutson, Melinda; Nelson, R. John; Nystrom, Magnus; Stow, Craig A.; Sandstrom, Shana M.
2014-01-01
Ecological structures and processes occur at specific spatiotemporal scales, and interactions that occur across multiple scales mediate scale-specific (e.g., individual, community, local, or regional) responses to disturbance. Despite the importance of scale, explicitly incorporating a multi-scale perspective into research and management actions remains a challenge. The discontinuity hypothesis provides a fertile avenue for addressing this problem by linking measureable proxies to inherent scales of structure within ecosystems. Here we outline the conceptual framework underlying discontinuities and review the evidence supporting the discontinuity hypothesis in ecological systems. Next we explore the utility of this approach for understanding cross-scale patterns and the organization of ecosystems by describing recent advances for examining nonlinear responses to disturbance and phenomena such as extinctions, invasions, and resilience. To stimulate new research, we present methods for performing discontinuity analysis, detail outstanding knowledge gaps, and discuss potential approaches for addressing these gaps.
Fabrication methods for YF-12 wing panels for the Supersonic Cruise Aircraft Research Program
NASA Technical Reports Server (NTRS)
Hoffman, E. L.; Payne, L.; Carter, A. L.
1975-01-01
Advanced fabrication and joining processes for titanium and composite materials are being investigated by NASA to develop technology for the Supersonic Cruise Aircraft Research (SCAR) Program. With Lockheed-ADP as the prime contractor, full-scale structural panels are being designed and fabricated to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 aircraft. The program involves ground testing and Mach 3 flight testing of full-scale structural panels and laboratory testing of representative structural element specimens. Fabrication methods and test results for weldbrazed and Rohrbond titanium panels are discussed. The fabrication methods being developed for boron/aluminum, Borsic/aluminum, and graphite/polyimide panels are also presented.
Factorial Structure of Rosenberg's Self-Esteem Scale among Crack-Cocaine Drug Users.
ERIC Educational Resources Information Center
Wang, Jichuan; Siegal, Harvey A.; Falck, Russell S.; Carlson, Robert G.
2001-01-01
Used nine different confirmatory factor analysis models to test the factorial structure of Rosenberg's (M. Rosenberg, 1965) self-esteem scale with a sample of 430 crack-cocaine users. Results partly support earlier research to show a single global self-esteem factor underlying responses to the Rosenberg scale, method effects associated with item…
Structural Analysis and Testing of the Inflatable Re-entry Vehicle Experiment (IRVE)
NASA Technical Reports Server (NTRS)
Lindell, Michael C.; Hughes, Stephen J.; Dixon, Megan; Wiley, Cliff E.
2006-01-01
The Inflatable Re-entry Vehicle Experiment (IRVE) is a 3.0 meter, 60 degree half-angle sphere cone, inflatable aeroshell experiment designed to demonstrate various aspects of inflatable technology during Earth re-entry. IRVE will be launched on a Terrier-Improved Orion sounding rocket from NASA s Wallops Flight Facility in the fall of 2006 to an altitude of approximately 164 kilometers and re-enter the Earth s atmosphere. The experiment will demonstrate exo-atmospheric inflation, inflatable structure leak performance throughout the flight regime, structural integrity under aerodynamic pressure and associated deceleration loads, thermal protection system performance, and aerodynamic stability. Structural integrity and dynamic response of the inflatable will be monitored with photogrammetric measurements of the leeward side of the aeroshell during flight. Aerodynamic stability and drag performance will be verified with on-board inertial measurements and radar tracking from multiple ground radar stations. In addition to demonstrating inflatable technology, IRVE will help validate structural, aerothermal, and trajectory modeling and analysis techniques for the inflatable aeroshell system. This paper discusses the structural analysis and testing of the IRVE inflatable structure. Equations are presented for calculating fabric loads in sphere cone aeroshells, and finite element results are presented which validate the equations. Fabric material properties and testing are discussed along with aeroshell fabrication techniques. Stiffness and dynamics tests conducted on a small-scale development unit and a full-scale prototype unit are presented along with correlated finite element models to predict the in-flight fundamental mod
Status of DSMT research program
NASA Technical Reports Server (NTRS)
Mcgowan, Paul E.; Javeed, Mehzad; Edighoffer, Harold H.
1991-01-01
The status of the Dynamic Scale Model Technology (DSMT) research program is presented. DSMT is developing scale model technology for large space structures as part of the Control Structure Interaction (CSI) program at NASA Langley Research Center (LaRC). Under DSMT a hybrid-scale structural dynamics model of Space Station Freedom was developed. Space Station Freedom was selected as the focus structure for DSMT since the station represents the first opportunity to obtain flight data on a complex, three-dimensional space structure. Included is an overview of DSMT including the development of the space station scale model and the resulting hardware. Scaling technology was developed for this model to achieve a ground test article which existing test facilities can accommodate while employing realistically scaled hardware. The model was designed and fabricated by the Lockheed Missile and Space Co., and is assembled at LaRc for dynamic testing. Also, results from ground tests and analyses of the various model components are presented along with plans for future subassembly and matted model tests. Finally, utilization of the scale model for enhancing analysis verification of the full-scale space station is also considered.
Structural health monitoring of civil infrastructure.
Brownjohn, J M W
2007-02-15
Structural health monitoring (SHM) is a term increasingly used in the last decade to describe a range of systems implemented on full-scale civil infrastructures and whose purposes are to assist and inform operators about continued 'fitness for purpose' of structures under gradual or sudden changes to their state, to learn about either or both of the load and response mechanisms. Arguably, various forms of SHM have been employed in civil infrastructure for at least half a century, but it is only in the last decade or two that computer-based systems are being designed for the purpose of assisting owners/operators of ageing infrastructure with timely information for their continued safe and economic operation. This paper describes the motivations for and recent history of SHM applications to various forms of civil infrastructure and provides case studies on specific types of structure. It ends with a discussion of the present state-of-the-art and future developments in terms of instrumentation, data acquisition, communication systems and data mining and presentation procedures for diagnosis of infrastructural 'health'.
Shock Wave Propagation in Functionally Graded Mineralized Tissue
NASA Astrophysics Data System (ADS)
Nelms, Matthew; Hodo, Wayne; Livi, Ken; Browning, Alyssa; Crawford, Bryan; Rajendran, A. M.
2017-06-01
In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile ganoid bone. Previous experimentations has shown significant softening under compressive loading and an asymmetrical stress-strain response for analogous mineralized tissues. The structural features, porosity, and elastic modulus were determined from high-resolution scanning electron microscopy, 3D micro-tomography, and dynamic nanoindentation experiments to develop an idealized computational model for FE simulations. The numerical analysis employed Gurson's yield criterion to determine the influence of porosity and pressure on material strength. Functional gradation of elastic moduli and certain structural features, such as the sawtooth interface, are explicitly modeled to study the plate impact shock profile for a full 3-D analysis using ABAQUS finite element software.
Structural Element Testing in Support of the Design of the NASA Composite Crew Module
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jackson, Wade C.; Thesken, John C.; Schleicher, Eric; Wagner, Perry; Kirsch, Michael T.
2012-01-01
In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). For the design and manufacturing of the CCM, the team adopted the building block approach where design and manufacturing risks were mitigated through manufacturing trials and structural testing at various levels of complexity. Following NASA's Structural Design Verification Requirements, a further objective was the verification of design analysis methods and the provision of design data for critical structural features. Test articles increasing in complexity from basic material characterization coupons through structural feature elements and large structural components, to full-scale structures were evaluated. This paper discusses only four elements tests three of which include joints and one that includes a tapering honeycomb core detail. For each test series included are specimen details, instrumentation, test results, a brief analysis description, test analysis correlation and conclusions.
Development of Medical Technology for Contingency Response to Marrow Toxic Agents
2014-07-11
the transplant community about the critical importance of establishing a nationwide contingency response plan. 2. Rapid Identification of Matched...to rapidly identify the best available donor or cord blood unit for each patient utilizing its state-of-the-art communication infrastructure, sample...York City (NYC)-NY State Radiological Disaster - tabletop exercise 2. Minneapolis-full scale exercise 3. Dana Farber Cancer Institute – full
NASA/FAA general aviation crash dynamics program - An update
NASA Technical Reports Server (NTRS)
Hayduk, R. J.; Thomson, R. G.; Carden, H. D.
1979-01-01
Work in progress in the NASA/FAA General Aviation Crash Dynamics Program for the development of technology for increased crash-worthiness and occupant survivability of general aviation aircraft is presented. Full-scale crash testing facilities and procedures are outlined, and a chronological summary of full-scale tests conducted and planned is presented. The Plastic and Large Deflection Analysis of Nonlinear Structures and Modified Seat Occupant Model for Light Aircraft computer programs which form part of the effort to predict nonlinear geometric and material behavior of sheet-stringer aircraft structures subjected to large deformations are described, and excellent agreement between simulations and experiments is noted. The development of structural concepts to attenuate the load transmitted to the passenger through the seats and subfloor structure is discussed, and an apparatus built to test emergency locator transmitters in a realistic environment is presented.
Design Rules for Tailoring Antireflection Properties of Hierarchical Optical Structures
Leon, Juan J. Diaz; Hiszpanski, Anna M.; Bond, Tiziana C.; ...
2017-05-18
Hierarchical structures consisting of small sub-wavelength features stacked atop larger structures have been demonstrated as an effective means of reducing the reflectance of surfaces. However, optical devices require different antireflective properties depending on the application, and general unifying guidelines on hierarchical structures' design to attain a desired antireflection spectral response are still lacking. The type of reflectivity (diffuse, specular, or total/hemispherical) and its angular- and spectral-dependence are all dictated by the structural parameters. Through computational and experimental studies, guidelines have been devised to modify these various aspects of reflectivity across the solar spectrum by proper selection of the features ofmore » hierarchical structures. In this wavelength regime, micrometer-scale substructures dictate the long-wavelength spectral response and effectively reduce specular reflectance, whereas nanometer-scale substructures dictate primarily the visible wavelength spectral response and reduce diffuse reflectance. Coupling structures having these two length scales into hierarchical arrays impressively reduces surfaces' hemispherical reflectance across a broad spectrum of wavelengths and angles. Furthermore, such hierarchical structures in silicon are demonstrated having an average total reflectance across the solar spectrum of 1.1% (average weighted reflectance of 1% in the 280–2500 nm range of the AM 1.5 G spectrum) and specular reflectance <1% even at angles of incidence as high as 67°.« less
Jorgensen, Scott W.; Johnson, Terry A.; Payzant, E. Andrew; ...
2016-06-11
Deuterium desorption in an automotive-scale hydrogen storage tube was studied in-situ using neutron diffraction. Gradients in the concentration of the various alanate phases were observed along the length of the tube but no significant radial anisotropy was present. In addition, neutron radiography and computed tomography showed large scale cracks and density fluctuations, confirming the presence of these structures in an undisturbed storage system. These results demonstrate that large scale storage structures are not uniform even after many absorption/desorption cycles and that movement of gaseous hydrogen cannot be properly modeled by a simple porous bed model. In addition, the evidence indicatesmore » that there is slow transformation of species at one end of the tube indicating loss of catalyst functionality. These observations explain the unusually fast movement of hydrogen in a full scale system and shows that loss of capacity is not occurring uniformly in this type of hydrogen-storage system.« less
A Polytomous Item Response Theory Analysis of Social Physique Anxiety Scale
ERIC Educational Resources Information Center
Fletcher, Richard B.; Crocker, Peter
2014-01-01
The present study investigated the social physique anxiety scale's factor structure and item properties using confirmatory factor analysis and item response theory. An additional aim was to identify differences in response patterns between groups (gender). A large sample of high school students aged 11-15 years (N = 1,529) consisting of n =…
Lo, Barbara Chuen Yee; Zhao, Yue; Kwok, Alice Wai Yee; Chan, Wai; Chan, Calais Kin Yuen
2017-07-01
The present study applied item response theory to examine the psychometric properties of the Asian Adolescent Depression Scale and to construct a short form among 1,084 teenagers recruited from secondary schools in Hong Kong. Findings suggested that some items of the full form reflected higher levels of severity and were more discriminating than others, and the Asian Adolescent Depression Scale was useful in measuring a broad range of depressive severity in community youths. Differential item functioning emerged in several items where females reported higher depressive severity than males. In the short form construction, preliminary validation suggested that, relative to the 20-item full form, our derived short form offered significantly greater diagnostic performance and stronger discriminatory ability in differentiating depressed and nondepressed groups, and simultaneously maintained adequate measurement precision with a reduced response burden in assessing depression in the Asian adolescents. Cultural variance in depressive symptomatology and clinical implications are discussed.
Dynamic passive pressure on abutments and pile caps.
DOT National Transportation Integrated Search
2010-08-01
This study investigated the lateral load response of a full-scale pile cap with nine different backfill conditions, more specifically being: 1) no backfill present (baseline response), 2) densely compacted clean sand, 3) loosely compacted clean sand,...
Silva, D P; Nogueira, D S; De Marco, P
2017-06-01
Landscape structure is an important determinant of biological fluxes and species composition, but species do not respond equally to landscape features or spatial extents. Evaluating "multi-scale" responses of species to landscape structure is an important framework to be considered, allowing insights about habitat requirements for different groups. We evaluated the response of Brazilian Cerrado's bees (eusocial vs. solitary ones) to both the amount and isolation of remnant vegetation in eight nested multiple-local scales. Response variables included abundance, observed, and estimated species richness, and beta diversity (split into nestedness and turnover resultant dissimilarities). Eusocial species' abundance responded to landscape structure at narrow scales of fragment isolation (250 m of radius from sampling sites), while solitary species' abundance responded to broader scales to fragment area (2000 m). Eusocial species nestedness also responded to landscape features in broader scales (1500 m), especially to increasing fragment isolation. However, all the remaining response variables did not respond to any other landscape variables in any spatial scale considered. Such contrasting responses of the abundances of eusocial vs. solitary species are related to the inherent life-history traits of each group. Important attributes in this context are different requirements on food resources, population features, and flight abilities. Species-specific dispersal abilities may be the main determinants of the nested patterns found for eusocial species at 1500 m. Considering these results, we suggest that different bee groups are considered separately in further landscape analyses, especially in other Brazilian biomes, for a better understanding of landscape effects on these organisms.
Guo, Yun; Yang, Dian-hai; Lu, Wen-jian
2012-08-01
The microbial populations of the oxidation ditch process at the full-scale municipal wastewater treatment plants (WWTP) in a city in north China were analyzed by fluorescent in situ hybridization (FISH). Fractions structure varieties and distribution characteristics of Accumulibacter as potential phosphorus accumulating organisms (PAOs), and Competibacter as potential glycogen accumulating organisms (GAOs) were quantified. The results indicated that Accumulibacter comprised around 2.0% +/- 0.6%, 3.4% +/- 0.6% and 3.5% +/- 1.2% of the total biomass in the anaerobic tank, anoxic zone and zone, respectively, while the corresponding values for Competibacter were 25.3% +/- 8.7%, 30.3% +/- 7.1% and 24.4% +/- 6.1%. Lower Accumulibacter fractions were found compared with previous full-scale reports (7%-22%), indicating low phosphorus removal efficiency in the oxidation ditch system. Statistical analysis indicated that the amount of PAOs was significantly higher in the anoxic zone and the aerobic zone compared with that in the anaerobic tank, while GAOs remained at the same level.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Kellas, Sotiris; Morton, John
1992-01-01
The feasibility of using scale model testing for predicting the full-scale behavior of flat composite coupons loaded in tension and beam-columns loaded in flexure is examined. Classical laws of similitude are applied to fabricate and test replica model specimens to identify scaling effects in the load response, strength, and mode of failure. Experiments were performed on graphite-epoxy composite specimens having different laminate stacking sequences and a range of scaled sizes. From the experiments it was deduced that the elastic response of scaled composite specimens was independent of size. However, a significant scale effect in strength was observed. In addition, a transition in failure mode was observed among scaled specimens of certain laminate stacking sequences. A Weibull statistical model and a fracture mechanics based model were applied to predict the strength scale effect since standard failure criteria cannot account for the influence of absolute specimen size on strength.
Vegetation response to stand structure and prescribed fire in an interior ponderosa pine ecosystem
Jianwei Zhang; Martin W. Ritchie; William W. Oliver
2008-01-01
A large-scale interior ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) study was conducted at the Blacks Mountain Experimental Forest in northeastern California. The primary purpose of the study was to determine the influence of structural diversity on the dynamics of interior pine forests at the landscape scale. High structural...
Choi, BongKyoo; Kawakami, Norito; Chang, SeiJin; Koh, SangBaek; Bjorner, Jakob; Punnett, Laura; Karasek, Robert
2008-01-01
The five-item psychological demands scale of the Job Content Questionnaire (JCQ) has been assumed to be one-dimensional in practice. To examine whether the scale has sufficient internal consistency and external validity to be treated as a single scale, using the cross-national JCQ datasets from the United States, Korea, and Japan. Exploratory factor analyses with 22 JCQ items, confirmatory factor analyses with the five psychological demands items, and correlations analyses with mental health indexes. Generally, exploratory factor analyses displayed the predicted demand/control/support structure with three and four factors extracted. However, at more detailed levels of exploratory and confirmatory factor analyses, the demands scale showed clear evidence of multi-factor structure. The correlations of items and subscales of the demands scale with mental health indexes were similar to those of the full scale in the Korean and Japanese datasets, but not in the U.S. data. In 4 out of 16 sub-samples of the U.S. data, several significant correlations of the components of the demands scale with job dissatisfaction and life dissatisfaction were obscured by the full scale. The multidimensionality of the psychological demands scale should be considered in psychometric analysis and interpretation, occupational epidemiologic studies, and future scale extension.
Dynamic testing for shuttle design verification
NASA Technical Reports Server (NTRS)
Green, C. E.; Leadbetter, S. A.; Rheinfurth, M. H.
1972-01-01
Space shuttle design verification requires dynamic data from full scale structural component and assembly tests. Wind tunnel and other scaled model tests are also required early in the development program to support the analytical models used in design verification. Presented is a design philosophy based on mathematical modeling of the structural system strongly supported by a comprehensive test program; some of the types of required tests are outlined.
Impaired consciousness in partial seizures is bimodally distributed
Cunningham, Courtney; Chen, William C.; Shorten, Andrew; McClurkin, Michael; Choezom, Tenzin; Schmidt, Christian P.; Chu, Victoria; Bozik, Anne; Best, Cameron; Chapman, Melissa; Furman, Moran; Detyniecki, Kamil; Giacino, Joseph T.
2014-01-01
Objective: To investigate whether impaired consciousness in partial seizures can usually be attributed to specific deficits in the content of consciousness or to a more general decrease in the overall level of consciousness. Methods: Prospective testing during partial seizures was performed in patients with epilepsy using the Responsiveness in Epilepsy Scale (n = 83 partial seizures, 30 patients). Results were compared with responsiveness scores in a cohort of patients with severe traumatic brain injury evaluated with the JFK Coma Recovery Scale–Revised (n = 552 test administrations, 184 patients). Results: Standardized testing during partial seizures reveals a bimodal scoring distribution, such that most patients were either fully impaired or relatively spared in their ability to respond on multiple cognitive tests. Seizures with impaired performance on initial test items remained consistently impaired on subsequent items, while other seizures showed spared performance throughout. In the comparison group, we found that scores of patients with brain injury were more evenly distributed across the full range in severity of impairment. Conclusions: Partial seizures can often be cleanly separated into those with vs without overall impaired responsiveness. Results from similar testing in a comparison group of patients with brain injury suggest that the bimodal nature of Responsiveness in Epilepsy Scale scores is not a result of scale bias but may be a finding unique to partial seizures. These findings support a model in which seizures either propagate or do not propagate to key structures that regulate overall arousal and thalamocortical function. Future investigations are needed to relate these behavioral findings to the physiology underlying impaired consciousness in partial seizures. PMID:24727311
Indentation analysis of active viscoelastic microplasmodia of P. polycephalum
NASA Astrophysics Data System (ADS)
Fessel, Adrian; Oettmeier, Christina; Wechsler, Klaus; Döbereiner, Hans-Günther
2018-01-01
Simple organisms like Physarum polycephalum realize complex behavior, such as shortest path optimization or habituation, via mechanochemical processes rather than by a network of neurons. A full understanding of these phenomena requires detailed investigation of the underlying mechanical properties. To date, micromechanical measurements on P. polycephalum are sparse and lack reproducibility. This prompts study of microplasmodia, a reproducible and homogeneous form of P. polycephalum that resembles the plasmodial ectoplasm responsible for mechanical stability and generation of forces. We combine investigation of ultra-structure and dimension of P. polycephalum with the analysis of data obtained by indentation of microplasmodia, employing a novel nonlinear viscoelastic scaling model that accounts for finite dimension of the sample. We identify the multi-modal distribution of parameters such as Young’s moduls, Poisson’s ratio, and relaxation times associated with viscous processes that cover five orders of magnitude. Results suggest a characterization of microplasmodia as porous, compressible structures that act like elastic solids with high Young’s modulus on short time scales, whereas on long time-scales and upon repeated indentation viscous behavior dominates and the effective modulus is significantly decreased. Furthermore, Young’s modulus is found to oscillate in phase with shape of microplasmodia, emphasizing that modeling P. polycephalum oscillations as a driven oscillator with constant moduli is not practicable.
Yamazaki, M; Akazawa, T; Okawa, A; Koda, M
2007-03-01
Case report. To report a case with giant cell tumor (GCT) of C6 vertebra, in which three-dimensional (3-D) full-scale modeling of the cervical spine was useful for preoperative planning and intraoperative navigation. A university hospital in Japan. A 27-year-old man with a GCT involving the C6 vertebra presented with severe neck pain. The C6 vertebra was collapsed and the tumor had infiltrated around both vertebral arteries (VAs). A single-stage operation combining anterior and posterior surgical procedures was scheduled to resect the tumor and stabilize the spine. To evaluate the anatomic structures within the surgical fields, we produced a 3-D full-scale model from the computed tomography angiography data. The 3-D full-scale model clearly showed the relationships between the destroyed C6 vertebra and the deviations in the courses of both VAs. Using the model, we were able to identify the anatomic landmarks around the VAs during anterior surgery and to successfully resect the tumor. During the posterior surgery, we were able to determine accurate starting points for the pedicle screws. Anterior iliac bone graft from C5 to C7 and posterior fixation with a rod and screw system from C4 to T2 were performed without any complications. Postoperatively, the patient experienced relief of his neck pain. The 3-D full-scale model was useful for simultaneously evaluating the destruction of the vertebral bony structures and the deviations in the courses of the VAs during surgery for GCT involving the cervical spine.
End-effects-regime in full scale and lab scale rocket nozzles
NASA Astrophysics Data System (ADS)
Rojo, Raymundo; Tinney, Charles; Baars, Woutijn; Ruf, Joseph
2014-11-01
Modern rockets utilize a thrust-optimized parabolic-contour design for their nozzles for its high performance and reliability. However, the evolving internal flow structures within these high area ratio rocket nozzles during start up generate a powerful amount of vibro-acoustic loads that act on the launch vehicle. Modern rockets must be designed to accommodate for these heavy loads or else risk a catastrophic failure. This study quantifies a particular moment referred to as the ``end-effects regime,'' or the largest source of vibro-acoustic loading during start-up [Nave & Coffey, AIAA Paper 1973-1284]. Measurements from full scale ignitions are compared with aerodynamically scaled representations in a fully anechoic chamber. Laboratory scale data is then matched with both static and dynamic wall pressure measurements to capture the associating shock structures within the nozzle. The event generated during the ``end-effects regime'' was successfully reproduced in the both the lab-scale models, and was characterized in terms of its mean, variance and skewness, as well as the spectral properties of the signal obtained by way of time-frequency analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.
As part of the Phase II testing at the HDR Test Facility in Kahl/Main, FRG, two series of high-level seismic/vibrational experiments were performed. In the first of these (SHAG) a coast-down shaker, mounted on the reactor operating floor and capable of generating 1000 tonnes of force, was used to investigate full-scale structural response, soil-structure interaction (SSI), and piping/equipment response at load levels equivalent to those of a design basis earthquake. The HDR soil/structure system was tested to incipient failure exhibiting highly nonlinear response. In the load transmission from structure to piping/equipment significant response amplifications and shifts to higher frequencies occurred.more » The performance of various pipe support configurations was evaluated. This latter effort was continued in the second series of tests (SHAM), in which an in-plant piping system was investigated at simulated seismic loads (generated by two servo-hydraulic actuators each capable of generating 40 tonnes of force), that exceeded design levels manifold and resulted in considerable pipe plastification and failure of some supports (snubbers). The evaluation of six different support configurations demonstrated that proper system design (for a given spectrum) rather than number of supports or system stiffness is essential to limiting pipe stresses. Pipe strains at loads exceeding the design level eightfold were still tolerable, indicating that pipe failure even under extreme seismic loads is unlikely inspite of multiple support failures. Conservatively, an excess capacity (margin) of at least four was estimated for the piping system, and the pipe damping was found to be 4%. Comparisons of linear and nonlinear computational results with measurements showed that analytical predictions have wide scatter and do not necessarily yield conservative responses, underpredicting, in particular, peak support forces.« less
Lightning protection guidelines and test data for adhesively bonded aircraft structures
NASA Technical Reports Server (NTRS)
Pryzby, J. E.; Plumer, J. A.
1984-01-01
The highly competitive marketplace and increasing cost of energy has motivated manufacturers of general aviation aircraft to utilize composite materials and metal-to-metal bonding in place of conventional fasteners and rivets to reduce weight, obtain smoother outside surfaces and reduce drag. The purpose of this program is protection of these new structures from hazardous lightning effects. The program began with a survey of advance-technology materials and fabrication methods under consideration for future designs. Sub-element specimens were subjected to simulated lightning voltages and currents. Measurements of bond line voltages, electrical sparking, and mechanical strength degradation were made to comprise a data base of electrical properties for new technology materials and basic structural configurations. The second hase of the program involved tests on full scale wing structures which contained integral fuel tanks and which were representative of examples of new technology structures and fuel systems. The purpose of these tests was to provide a comparison between full scale structural measurements and those obtained from the sub-element specimens.
Sample Invariance of the Structural Equation Model and the Item Response Model: A Case Study.
ERIC Educational Resources Information Center
Breithaupt, Krista; Zumbo, Bruno D.
2002-01-01
Evaluated the sample invariance of item discrimination statistics in a case study using real data, responses of 10 random samples of 500 people to a depression scale. Results lend some support to the hypothesized superiority of a two-parameter item response model over the common form of structural equation modeling, at least when responses are…
Evaluation of modal pushover-based scaling of one component of ground motion: Tall buildings
Kalkan, Erol; Chopra, Anil K.
2012-01-01
Nonlinear response history analysis (RHA) is now increasingly used for performance-based seismic design of tall buildings. Required for nonlinear RHAs is a set of ground motions selected and scaled appropriately so that analysis results would be accurate (unbiased) and efficient (having relatively small dispersion). This paper evaluates accuracy and efficiency of recently developed modal pushover–based scaling (MPS) method to scale ground motions for tall buildings. The procedure presented explicitly considers structural strength and is based on the standard intensity measure (IM) of spectral acceleration in a form convenient for evaluating existing structures or proposed designs for new structures. Based on results presented for two actual buildings (19 and 52 stories, respectively), it is demonstrated that the MPS procedure provided a highly accurate estimate of the engineering demand parameters (EDPs), accompanied by significantly reduced record-to-record variability of the responses. In addition, the MPS procedure is shown to be superior to the scaling procedure specified in the ASCE/SEI 7-05 document.
Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model
NASA Technical Reports Server (NTRS)
Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh
2014-01-01
This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.
Test Plan. GCPS Task 4, subtask 4.2 thrust structure development
NASA Astrophysics Data System (ADS)
Greenberg, H. S.
1994-09-01
The Single Stage To Orbit (SSTO) vehicle is designed to lift off from a vertical position, go into orbit, return to earth for a horizontal landing, and be reusable for the next mission. (NASA baseline only) In order to meet its performance goals, the SSTO relies on light weight structure and the use of 8 tri-propellant engines. These engines are mounted to the thrust structure. This test plan addresses selection of the material for this structure, and the integrity of the design through testing of elements and a full-scale subcomponent. This test plan supports the development of the design for an advanced composite thrust structure for a Single Stage to Orbit manned, heavy launch vehicle. The thrust structure is designed to transmit very high thrust loads from the engines to the rest of the vehicle (see Figure 1 ). The thrust structure will also be used for primary attachment of the twin vertical tails and possibly act as the aft attach point for the wing. The combination of high loading, high vibration, long service life and high acoustic environments will need to be evaluated by tests. To minimize design risk, a building block approach will be used. We will first screen materials to determine which materials show the most promise for this application. Factors in this screening will be the suitability of these materials for chosen design concepts, particularly concerning specific strength, environmental compatibility and applicability to fabrication processes. Next we will characterize two material systems that will be used in the design; the characterization will allow us to generate preliminary design data that will be used for the analysis. Element testing will be performed to evaluate critical structural locations under load. Final testing on the full scale test article will be performed to verify the design and to demonstrate predictability of the analysis. Additionally, risks associated with fabricating full scale thrust structures will be reduced through testing activities. One of the major concerns that stems from full scale fabrication is the realities of size and the associated complexities of handling, manufacturing, and assembly. The need exists to fabricate, assemble and test_representative joint specimens to achieve_confidence in the design and manufacturing technologies being proposed.
Test Plan. GCPS Task 4, subtask 4.2 thrust structure development
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1994-01-01
The Single Stage To Orbit (SSTO) vehicle is designed to lift off from a vertical position, go into orbit, return to earth for a horizontal landing, and be reusable for the next mission. (NASA baseline only) In order to meet its performance goals, the SSTO relies on light weight structure and the use of 8 tri-propellant engines. These engines are mounted to the thrust structure. This test plan addresses selection of the material for this structure, and the integrity of the design through testing of elements and a full-scale subcomponent. This test plan supports the development of the design for an advanced composite thrust structure for a Single Stage to Orbit manned, heavy launch vehicle. The thrust structure is designed to transmit very high thrust loads from the engines to the rest of the vehicle (see Figure 1 ). The thrust structure will also be used for primary attachment of the twin vertical tails and possibly act as the aft attach point for the wing. The combination of high loading, high vibration, long service life and high acoustic environments will need to be evaluated by tests. To minimize design risk, a building block approach will be used. We will first screen materials to determine which materials show the most promise for this application. Factors in this screening will be the suitability of these materials for chosen design concepts, particularly concerning specific strength, environmental compatibility and applicability to fabrication processes. Next we will characterize two material systems that will be used in the design; the characterization will allow us to generate preliminary design data that will be used for the analysis. Element testing will be performed to evaluate critical structural locations under load. Final testing on the full scale test article will be performed to verify the design and to demonstrate predictability of the analysis. Additionally, risks associated with fabricating full scale thrust structures will be reduced through testing activities. One of the major concerns that stems from full scale fabrication is the realities of size and the associated complexities of handling, manufacturing, and assembly. The need exists to fabricate, assemble and test_representative joint specimens to achieve_confidence in the design and manufacturing technologies being proposed.
A response surface methodology based damage identification technique
NASA Astrophysics Data System (ADS)
Fang, S. E.; Perera, R.
2009-06-01
Response surface methodology (RSM) is a combination of statistical and mathematical techniques to represent the relationship between the inputs and outputs of a physical system by explicit functions. This methodology has been widely employed in many applications such as design optimization, response prediction and model validation. But so far the literature related to its application in structural damage identification (SDI) is scarce. Therefore this study attempts to present a systematic SDI procedure comprising four sequential steps of feature selection, parameter screening, primary response surface (RS) modeling and updating, and reference-state RS modeling with SDI realization using the factorial design (FD) and the central composite design (CCD). The last two steps imply the implementation of inverse problems by model updating in which the RS models substitute the FE models. The proposed method was verified against a numerical beam, a tested reinforced concrete (RC) frame and an experimental full-scale bridge with the modal frequency being the output responses. It was found that the proposed RSM-based method performs well in predicting the damage of both numerical and experimental structures having single and multiple damage scenarios. The screening capacity of the FD can provide quantitative estimation of the significance levels of updating parameters. Meanwhile, the second-order polynomial model established by the CCD provides adequate accuracy in expressing the dynamic behavior of a physical system.
Niu, Lihua; Zhang, Xue; Li, Yi; Wang, Peifang; Zhang, Wenlong; Wang, Chao; Wang, Qing
2017-07-01
Due to the important roles of archaea in wastewater treatment processes, archaeal communities have been studied extensively in various anaerobic reactors, but the knowledge of archaeal communities in full-scale activated sludge wastewater treatment plants (WWTPs) remains quite poor. In this study, 454-pyrosequencing was for the first time employed to investigate archaeal communities from 20 full-scale activated sludge WWTPs distributed at a 3,660-meter elevational scale in China. Results showed that archaeal communities from WWTPs were dominated by Methanosarcinales (84.6%). A core archaeal population (94.5%) composed of Methanosaeta, Methanosarcina, Methanogenium and Methanobrevibacter was shared among WWTPs. The elevational pattern of archaeal communities was observed in WWTPs, with an elevational threshold associated with archaeal community richness and structures at approximately 1,500 meters above sea level (masl). A declining trend in community richness with increasing elevation was observed at higher elevations, whereas no trend was presented at lower elevations. Spearman correlation analysis indicated that the archaeal community richness at higher elevations was associated with more environmental variables than that at lower elevations. Redundancy analysis indicated that wastewater variables were the dominant contributors to the variation of community structures at higher elevations, followed by operational variables and elevation.
Aero-acoustics of Drag Generating Swirling Exhaust Flows
NASA Technical Reports Server (NTRS)
Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.
2007-01-01
Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.
Petersen, Solveig; Hägglöf, Bruno; Stenlund, Hans; Bergström, Erik
2009-09-01
To study the psychometric performance of the Swedish version of the Pediatric Quality of Life Inventory (PedsQL) 4.0 generic core scales in a general child population in Sweden. PedsQL forms were distributed to 2403 schoolchildren and 888 parents in two different school settings. Reliability and validity was studied for self-reports and proxy reports, full forms and short forms. Confirmatory factor analysis tested the factor structure and multigroup confirmatory factor analysis tested measurement invariance between boys and girls. Test-retest reliability was demonstrated for all scales and internal consistency reliability was shown with alpha value exceeding 0.70 for all scales but one (self-report short form: social functioning). Child-parent agreement was low to moderate. The four-factor structure of the PedsQL and factorial invariance across sex subgroups were confirmed for the self-report forms and for the proxy short form, while model fit indices suggested improvement of several proxy full-form scales. The Swedish PedsQL 4.0 generic core scales are a reliable and valid tool for health-related quality of life (HRQoL) assessment in Swedish child populations. The proxy full form, however, should be used with caution. The study also support continued use of the PedsQL as a four-factor model, capable of revealing meaningful HRQoL differences between boys and girls.
Structural Analysis and Test Comparison of a 20-Meter Inflation-Deployed Solar Sail
NASA Technical Reports Server (NTRS)
Sleight, David W.; Mann, Troy; Lichodziejewski, David; Derbes, Billy
2006-01-01
Under the direction of the NASA In-Space Propulsion Technology Office, the team of L Garde, NASA Jet Propulsion Laboratory, Ball Aerospace, and NASA Langley Research Center has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. Prior to a flight experiment of a full-scale solar sail, a comprehensive test program was implemented to advance the technology readiness level of the solar sail design. These tests consisted of solar sail component, subsystem, and sub-scale system ground tests that simulated the aspects of the space environment such as vacuum and thermal conditions. In July 2005, a 20-m four-quadrant solar sail system test article was tested in the NASA Glenn Research Center s Space Power Facility to measure its static and dynamic structural responses. Key to the maturation of solar sail technology is the development of validated finite element analysis (FEA) models that can be used for design and analysis of solar sails. A major objective of the program was to utilize the test data to validate the FEA models simulating the solar sail ground tests. The FEA software, ABAQUS, was used to perform the structural analyses to simulate the ground tests performed on the 20-m solar sail test article. This paper presents the details of the FEA modeling, the structural analyses simulating the ground tests, and a comparison of the pretest and post-test analysis predictions with the ground test results for the 20-m solar sail system test article. The structural responses that are compared in the paper include load-deflection curves and natural frequencies for the beam structural assembly and static shape, natural frequencies, and mode shapes for the solar sail membrane. The analysis predictions were in reasonable agreement with the test data. Factors that precluded better correlation of the analyses and the tests were unmeasured initial conditions in the test set-up.
Validation of the French version of the Hospital Survey on Patient Safety Culture questionnaire.
Occelli, P; Quenon, J-L; Kret, M; Domecq, S; Delaperche, F; Claverie, O; Castets-Fontaine, B; Amalberti, R; Auroy, Y; Parneix, P; Michel, P
2013-09-01
To assess the psychometric properties of the French version of the Hospital Survey on Patient Safety Culture questionnaire (HSOPSC) and study the hierarchical structure of the measured dimensions. Cross-sectional survey of the safety culture. 18 acute care units of seven hospitals in South-western France. Full- and part-time healthcare providers who worked in the units. None. Item responses measured with 5-point agreement or frequency scales. Data analyses A principal component analysis was used to identify the emerging components. Two structural equation modeling methods [LInear Structural RELations (LISREL) and Partial Least Square (PLS)] were used to verify the model and to study the relative importance of the dimensions. Internal consistency of the retained dimensions was studied. A test-retest was performed to assess reproducibility of the items. Overall response rate was 77% (n = 401). A structure in 40 items grouped in 10 dimensions was proposed. The LISREL approach showed acceptable data fit of the proposed structure. The PLS approach indicated that three dimensions had the most impact on the safety culture: 'Supervisor/manager expectations & actions promoting safety' 'Organizational learning-continuous improvement' and 'Overall perceptions of safety'. Internal consistency was above 0.70 for six dimensions. Reproducibility was considered good for four items. The French HSOPSC questionnaire showed acceptable psychometric properties. Classification of the dimensions should guide future development of safety culture improving action plans.
Research on the F/A-18E/F Using a 22%-Dynamically-Scaled Drop Model
NASA Technical Reports Server (NTRS)
Croom, M.; Kenney, H.; Murri, D.; Lawson, K.
2000-01-01
Research on the F/A-18E/F configuration was conducted using a 22%-dynamically-scaled drop model to study flight dynamics in the subsonic regime. Several topics were investigated including longitudinal response, departure/spin resistance, developed spins and recoveries, and the failing leaf mode. Comparisons to full-scale flight test results were made and show the drop model strongly correlates to the airplane even under very dynamic conditions. The capability to use the drop model to expand on the information gained from full-scale flight testing is also discussed. Finally, a preliminary analysis of an unusual inclined spinning motion, dubbed the "cartwheel", is presented here for the first time.
Cosco, Theodore D; Doyle, Frank; Watson, Roger; Ward, Mark; McGee, Hannah
2012-01-01
The Hospital Anxiety and Depression Scale (HADS) is a prolifically used scale of anxiety and depression. The original bidimensional anxiety-depression latent structure of the HADS has come under significant scrutiny, with previous studies revealing one-, two-, three- and four-dimensional structures. The current study examines the latent structure of the HADS using a non-parametric item response theory method. Using data conglomerated from four independent studies of cardiovascular disease employing the HADS (n=893), Mokken scaling procedure was conducted to assess the latent structure of the HADS. A single scale consisting of 12 of 14 HADS items was revealed, indicating a unidimensional latent HADS structure. The HADS was initially intended to measure mutually exclusive levels of anxiety and depression; however, the current study indicates that a single dimension of general psychological distress is captured. Copyright © 2012 Elsevier Inc. All rights reserved.
Shaw, K L; Southwood, T R; McDonagh, J E
2007-07-01
To develop a scale to assess satisfaction with transitional health care among adolescents with a chronic illness and their parents. The 'Mind the Gap' scale was developed using evidence from a previous needs assessment, in three stages: (1) definition of the construct; (2) design of the scale items, response options and instructions; (3) full administration of the scale, item analysis and dimensionality analysis. The scale was administered to 308 adolescents with juvenile idiopathic arthritis (JIA) and 303 parents/guardians, prior to and 12 months after the implementation of an evaluation of a structured and co-ordinated programme of transitional care. The patient population involved adolescents with JIA and their parents recruited from 10 major UK rheumatology centres. A total of 301 (97.7%) adolescents and 286 (95.0%) parents chose to complete the questionnaire, with median item completion rates of 100.0% (0-100%) for both adolescents and parents thus confirming feasibility. Face and content validity were confirmed. Factor analyses revealed a three-factor structure which explained 49.5% and 56.1% of the variation in adolescent and parent scores respectively. The internal consistency of each subscale ('management of environment', 'provider characteristics' and 'process issues') was indicated by Cronbach's alphas of 0.71, 0.89 and 0.89 for adolescents, respectively, and 0.83, 0.91 and 0.92 for parents respectively. Cronbach's alphas for the entire scales were 0.91 and 0.94 for the adolescent and parent forms respectively. These preliminary results report the potential of the 'Mind the Gap' scale in evaluating transitional care for adolescents with JIA. In view of the generic nature of transitional care reflected in the scale, this scale has wider potential for use with adolescents with other chronic illness in view of the generic nature of transition. This development is particularly timely in the context of transitional care developments in the UK and further validation of the scale is in progress.
Effects of Spatial Scale on Cognitive Play in Preschool Children.
ERIC Educational Resources Information Center
Delong, Alton J.; And Others
1994-01-01
Examined effects of a reduced-scale play environment on the temporal aspects of complex play behavior. Children playing with playdough in a 7 x 5 x 5-foot structure began complex play more quickly, played in longer segments, and spent slightly more time in complex play than when in full-size conditions, suggesting that scale-reduced environments…
ERIC Educational Resources Information Center
DeMars, Christine E.
2012-01-01
In structural equation modeling software, either limited-information (bivariate proportions) or full-information item parameter estimation routines could be used for the 2-parameter item response theory (IRT) model. Limited-information methods assume the continuous variable underlying an item response is normally distributed. For skewed and…
Advanced computational simulations of water waves interacting with wave energy converters
NASA Astrophysics Data System (ADS)
Pathak, Ashish; Freniere, Cole; Raessi, Mehdi
2017-03-01
Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.
Nonlinear Analysis and Post-Test Correlation for a Curved PRSEUS Panel
NASA Technical Reports Server (NTRS)
Gould, Kevin; Lovejoy, Andrew E.; Jegley, Dawn; Neal, Albert L.; Linton, Kim, A.; Bergan, Andrew C.; Bakuckas, John G., Jr.
2013-01-01
The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept, developed by The Boeing Company, has been extensively studied as part of the National Aeronautics and Space Administration's (NASA s) Environmentally Responsible Aviation (ERA) Program. The PRSEUS concept provides a light-weight alternative to aluminum or traditional composite design concepts and is applicable to traditional-shaped fuselage barrels and wings, as well as advanced configurations such as a hybrid wing body or truss braced wings. Therefore, NASA, the Federal Aviation Administration (FAA) and The Boeing Company partnered in an effort to assess the performance and damage arrestments capabilities of a PRSEUS concept panel using a full-scale curved panel in the FAA Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility. Testing was conducted in the FASTER facility by subjecting the panel to axial tension loads applied to the ends of the panel, internal pressure, and combined axial tension and internal pressure loadings. Additionally, reactive hoop loads were applied to the skin and frames of the panel along its edges. The panel successfully supported the required design loads in the pristine condition and with a severed stiffener. The panel also demonstrated that the PRSEUS concept could arrest the progression of damage including crack arrestment and crack turning. This paper presents the nonlinear post-test analysis and correlation with test results for the curved PRSEUS panel. It is shown that nonlinear analysis can accurately calculate the behavior of a PRSEUS panel under tension, pressure and combined loading conditions.
Impact Testing and Simulation of Composite Airframe Structures
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Littell, Justin D.; Horta, Lucas G.; Annett, Martin S.; Fasanella, Edwin L.; Seal, Michael D., II
2014-01-01
Dynamic tests were performed at NASA Langley Research Center on composite airframe structural components of increasing complexity to evaluate their energy absorption behavior when subjected to impact loading. A second objective was to assess the capabilities of predicting the dynamic response of composite airframe structures, including damage initiation and progression, using a state-of-the-art nonlinear, explicit transient dynamic finite element code, LS-DYNA. The test specimens were extracted from a previously tested composite prototype fuselage section developed and manufactured by Sikorsky Aircraft Corporation under the US Army's Survivable Affordable Repairable Airframe Program (SARAP). Laminate characterization testing was conducted in tension and compression. In addition, dynamic impact tests were performed on several components, including I-beams, T-sections, and cruciform sections. Finally, tests were conducted on two full-scale components including a subfloor section and a framed fuselage section. These tests included a modal vibration and longitudinal impact test of the subfloor section and a quasi-static, modal vibration, and vertical drop test of the framed fuselage section. Most of the test articles were manufactured of graphite unidirectional tape composite with a thermoplastic resin system. However, the framed fuselage section was constructed primarily of a plain weave graphite fabric material with a thermoset resin system. Test data were collected from instrumentation such as accelerometers and strain gages and from full-field photogrammetry.
2009-08-01
K/sigma vs a file Selected design load and material Full scale test results IAT Actual Fracture toughness distribution Selected material...update data from 5.3.4 a vs T file Selected design load and material Full scale test results IAT Actual Max stress Gumbel Dist. (loads exceedance... altitude ; Mach number; control surface positions; selected strain measurements; ground loads; aerodynamic excitations; etc. Data shall also be
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2012-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2011-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
Design, analysis, and testing of a metal matrix composite web/flange intersection
NASA Technical Reports Server (NTRS)
Biggers, S. B.; Knight, N. F., Jr.; Moran, S. G.; Olliffe, R.
1992-01-01
An experimental and analytical program to study the local design details of a typical T-shaped web/flange intersection made from a metal matrix composite is described. Loads creating flange bending were applied to specimens having different designs and boundary conditions. Finite element analyses were conducted on models of the test specimens to predict the structural response. The analyses correctly predict failure load, mode, and location in the fillet material in the intersection region of the web and the flange when specimen quality is good. The test program shows the importance of fabrication quality in the intersection region. The full-scale test program that led to the investigation of this local detail is also described.
Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram
2018-04-01
The data presented in this article is in relation to the research article "Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage" Cahill et al. (2018) [1]. The article provides data on the full-scale bridge testing using piezoelectric vibration energy harvesters on Pershagen Bridge, Sweden. The bridge is actively excited via a swept sinusoidal input. During the testing, the bridge remains operational and train passages continue. The test recordings include the voltage responses obtained from the vibration energy harvesters during these tests and train passages. The original dataset is made available to encourage the use of energy harvesting for Structural Health Monitoring.
Analysis of accelerations measured during full-scale tank car impact tests
DOT National Transportation Integrated Search
2007-04-01
Tank car impact responses were investigated using accelerometers mounted at various locations on a tank car. Several tests were run with both a full and an empty tank car, and varying the tank car impact speed. The data from the accelerometers went t...
ERIC Educational Resources Information Center
Najm, Majdi R. Abou; Mohtar, Rabi H.; Cherkauer, Keith A.; French, Brian F.
2010-01-01
Proper understanding of scaling and large-scale hydrologic processes is often not explicitly incorporated in the teaching curriculum. This makes it difficult for students to connect the effect of small scale processes and properties (like soil texture and structure, aggregation, shrinkage, and cracking) on large scale hydrologic responses (like…
Design and Manufacture of Structurally Efficient Tapered Struts
NASA Technical Reports Server (NTRS)
Brewster, Jebediah W.
2009-01-01
Composite materials offer the potential of weight savings for numerous spacecraft and aircraft applications. A composite strut is just one integral part of the node-to-node system and the optimization of the shut and node assembly is needed to take full advantage of the benefit of composites materials. Lockheed Martin designed and manufactured a very light weight one piece composite tapered strut that is fully representative of a full scale flight article. In addition, the team designed and built a prototype of the node and end fitting system that will effectively integrate and work with the full scale flight articles.
Development of the Responsiveness to Child Feeding Cues Scale
Hodges, Eric A.; Johnson, Susan L.; Hughes, Sheryl O.; Hopkinson, Judy M.; Butte, Nancy F.; Fisher, Jennifer O.
2013-01-01
Parent-child feeding interactions during the first two years of life are thought to shape child appetite and obesity risk, but remain poorly studied. This research was designed to develop and assess the Responsiveness to Child Feeding Cues Scale (RCFCS), an observational measure of caregiver responsiveness to child feeding cues relevant to obesity. General responsiveness during feeding as well as maternal responsiveness to child hunger and fullness were rated during mid-morning feeding occasions by 3 trained coders using digitally-recordings. Initial inter-rater reliability and criterion validity were evaluated in a sample of 144 ethnically-diverse mothers of healthy 7- to 24-month-old children. Maternal self-report of demographics and measurements of maternal/child anthropometrics were obtained. Inter-rater agreement for most variables was excellent (ICC>0.80). Mothers tended to be more responsive to child hunger than fullness cues (p<0.001). Feeding responsiveness dimensions were associated with demographics, including maternal education, maternal body mass index, and child age, and aspects of feeding, including breastfeeding duration, and self-feeding. The RCFCS is a reliable observational measure of responsive feeding for children <2 years of age that is relevant to obesity in early development. PMID:23419965
Dynamic behaviors of historical wrought iron truss bridges: a field testing case study
NASA Astrophysics Data System (ADS)
Dai, Kaoshan; Wang, Ying; Hedric, Andrew; Huang, Zhenhua
2016-04-01
The U.S. transportation infrastructure has many wrought iron truss bridges that are more than a century old and still remain in use. Understanding the structural properties and identifying the health conditions of these historical bridges are essential to deciding the maintenance or rebuild plan of the bridges. This research involved an on-site full-scale system identification test case study on the historical Old Alton Bridge (a wrought iron truss bridge built in 1884 in Denton, Texas) using a wireless sensor network. The study results demonstrate a practical and convenient experimental system identification method for historical bridge structures. The method includes the basic steps of the in-situ experiment and in-house data analysis. Various excitation methods are studied for field testing, including ambient vibration by wind load, forced vibration by human jumping load, and forced vibration by human pulling load. Structural responses of the bridge under these different excitation approaches were analyzed and compared with numerical analysis results.
Flexible Inhibitor Fluid-Structure Interaction Simulation in RSRM.
NASA Astrophysics Data System (ADS)
Wasistho, Bono
2005-11-01
We employ our tightly coupled fluid/structure/combustion simulation code 'Rocstar-3' for solid propellant rocket motors to study 3D flows past rigid and flexible inhibitors in the Reusable Solid Rocket Motor (RSRM). We perform high resolution simulations of a section of the rocket near the center joint slot at 100 seconds after ignition, using inflow conditions based on less detailed 3D simulations of the full RSRM. Our simulations include both inviscid and turbulent flows (using LES dynamic subgrid-scale model), and explore the interaction between the inhibitor and the resulting fluid flow. The response of the solid components is computed by an implicit finite element solver. The internal mesh motion scheme in our block-structured fluid solver enables our code to handle significant changes in geometry. We compute turbulent statistics and determine the compound instabilities originated from the natural hydrodynamic instabilities and the inhibitor motion. The ultimate goal is to studdy the effect of inhibitor flexing on the turbulent field.
Psychometric evaluation of the Swedish version of Rosenberg's self-esteem scale.
Eklund, Mona; Bäckström, Martin; Hansson, Lars
2018-04-01
The widely used Rosenberg's self-esteem scale (RSES) has not been evaluated for psychometric properties in Sweden. This study aimed at analyzing its factor structure, internal consistency, criterion, convergent and discriminant validity, sensitivity to change, and whether a four-graded Likert-type response scale increased its reliability and validity compared to a yes/no response scale. People with mental illness participating in intervention studies to (1) promote everyday life balance (N = 223) or (2) remedy self-stigma (N = 103) were included. Both samples completed the RSES and questionnaires addressing quality of life and sociodemographic data. Sample 1 also completed instruments chosen to assess convergent and discriminant validity: self-mastery (convergent validity), level of functioning and occupational engagement (discriminant validity). Confirmatory factor analysis (CFA), structural equation modeling, and conventional inferential statistics were used. Based on both samples, the Swedish RSES formed one factor and exhibited high internal consistency (>0.90). The two response scales were equivalent. Criterion validity in relation to quality of life was demonstrated. RSES could distinguish between women and men (women scoring lower) and between diagnostic groups (people with depression scoring lower). Correlations >0.5 with variables chosen to reflect convergent validity and around 0.2 with variables used to address discriminant validity further highlighted the construct validity of RSES. The instrument also showed sensitivity to change. The Swedish RSES exhibited a one-component factor structure and showed good psychometric properties in terms of good internal consistency, criterion, convergent and discriminant validity, and sensitivity to change. The yes/no and the four-graded Likert-type response scales worked equivalently.
ERIC Educational Resources Information Center
Siwatu, Kamau Oginga; Putman, S. Michael; Starker-Glass, Tehia V.; Lewis, Chance W.
2017-01-01
This article reports on the development and initial validation of the Culturally Responsive Classroom Management Self-Efficacy Scale. Data from 380 preservice and inservice teachers were used to examine the psychometric properties of the instrument. Exploratory factor analysis results suggested a one-factor structure consisting of 35 items and the…
Structural and functional connectivity as a driver of hillslope erosion following disturbance
C. Jason Williams; Frederick B. Pierson; Pete Robichaud; Osama Z. Al-Hamdan; Jan Boll; Eva K. Strand
2016-01-01
Hydrologic response to rainfall on fragmented or burnt hillslopes is strongly influenced by the ensuing connectivity of runoff and erosion processes. Yet cross-scale process connectivity is seldom evaluated in field studies owing to scale limitations in experimental design. This study quantified surface susceptibility and hydrologic response across point to...
Development and Initial Validation of the Intimate Violence Responsibility Scale (IVRS)
ERIC Educational Resources Information Center
Yun, Sung Hyun; Vonk, M. Elizabeth
2011-01-01
The present study demonstrates the development and initial examination of psychometric properties of the Intimate Violence Responsibility Scale (IVRS) in a community-based sample (N = 527). The underlying factor structure of the IVRS was tested by the exploratory factor analysis (Principal Axis Factoring), which identifies the four factors:…
Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales
NASA Technical Reports Server (NTRS)
Wen, G.; Cahalan, R.; Rind, D.; Jonas, J.; Pilewskie, P.; Harder, J.
2012-01-01
We report a series of experiments to explore clima responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations.
All-angle negative refraction and active flat lensing of ultraviolet light.
Xu, Ting; Agrawal, Amit; Abashin, Maxim; Chau, Kenneth J; Lezec, Henri J
2013-05-23
Decades ago, Veselago predicted that a material with simultaneously negative electric and magnetic polarization responses would yield a 'left-handed' medium in which light propagates with opposite phase and energy velocities--a condition described by a negative refractive index. He proposed that a flat slab of left-handed material possessing an isotropic refractive index of -1 could act like an imaging lens in free space. Left-handed materials do not occur naturally, and it has only recently become possible to achieve a left-handed response using metamaterials, that is, electromagnetic structures engineered on subwavelength scales to elicit tailored polarization responses. So far, left-handed responses have typically been implemented using resonant metamaterials composed of periodic arrays of unit cells containing inductive-capacitive resonators and conductive wires. Negative refractive indices that are isotropic in two or three dimensions at microwave frequencies have been achieved in resonant metamaterials with centimetre-scale features. Scaling the left-handed response to higher frequencies, such as infrared or visible, has been done by shrinking critical dimensions to submicrometre scales by means of top-down nanofabrication. This miniaturization has, however, so far been achieved at the cost of reduced unit-cell symmetry, yielding a refractive index that is negative along only one axis. Moreover, lithographic scaling limits have so far precluded the fabrication of resonant metamaterials with left-handed responses at frequencies beyond the visible. Here we report the experimental implementation of a bulk metamaterial with a left-handed response to ultraviolet light. The structure, based on stacked plasmonic waveguides, yields an omnidirectional left-handed response for transverse magnetic polarization characterized by a negative refractive index. By engineering the structure to have a refractive index close to -1 over a broad angular range, we achieve Veselago flat lensing, in free space, of arbitrarily shaped, two-dimensional objects beyond the near field. We further demonstrate active, all-optical modulation of the image transferred by the flat lens.
Experimental investigation of the crashworthiness of scaled composite sailplane fuselages
NASA Technical Reports Server (NTRS)
Kampf, Karl-Peter; Crawley, Edward F.; Hansman, R. John, Jr.
1989-01-01
The crash dynamics and energy absorption of composite sailplane fuselage segments undergoing nose-down impact were investigated. More than 10 quarter-scale structurally similar test articles, typical of high-performance sailplane designs, were tested. Fuselages segments were fabricated of combinations of fiberglass, graphite, Kevlar, and Spectra fabric materials. Quasistatic and dynamic tests were conducted. The quasistatic tests were found to replicate the strain history and failure modes observed in the dynamic tests. Failure modes of the quarter-scale model were qualitatively compared with full-scale crash evidence and quantitatively compared with current design criteria. By combining material and structural improvements, substantial increases in crashworthiness were demonstrated.
Control Law Synthesis for Vertical Fin Buffeting Alleviation Using Strain Actuation
NASA Technical Reports Server (NTRS)
Nitzsche, F.; Zimcik, D. G.; Ryall, T. G.; Moses, R. W.; Henderson, D. A.
1999-01-01
In the present investigation, the results obtained during the ground test of a closed-loop control system conducted on a full-scale fighter to attenuate vertical fin buffeting response using strain actuation are presented. Two groups of actuators consisting of piezoelectric elements distributed over the structure were designed to achieve authority over the first and second modes of the vertical fin. The control laws were synthesized using the Linear Quadratic Gaussian (LQG) method for a time-invariant control system. Three different pairs of sensors including strain gauges and accelerometers at different locations were used to close the feedback loop. The results demonstrated that measurable reductions in the root-mean-square (RMS) values of the fin dynamic response identified by the strain transducer at the critical point for fatigue at the root were achieved under the most severe buffet condition. For less severe buffet conditions, reductions of up to 58% were achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beskardes, G. D.; Weiss, Chester J.; Everett, M. E.
Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Here by quantifying the relationship between multi-scale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. Furthermore, we present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, suggesting that the spatial fluctuations may be considered as “geologic noise”.
Beskardes, G. D.; Weiss, Chester J.; Everett, M. E.
2016-11-30
Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Here by quantifying the relationship between multi-scale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. Furthermore, we present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, suggesting that the spatial fluctuations may be considered as “geologic noise”.
Full-scale investigation of wind-induced vibrations of mast-arm traffic signal structures.
DOT National Transportation Integrated Search
2014-08-01
Because of their inherent : fl : exibility and low damping ratios, cantilevered mast : - : arm : tra : ffi : c signal structures are suscepti : b : le to : wind : - : induced vibrations. : These vibrations : cause stru : ctural stresses and strains t...
Load Testing, Finite Element Analysis, and Design of Steel Traffic-Signal Poles
DOT National Transportation Integrated Search
1993-07-01
At request of the Structures Design and Construction Division, the Engineering Research and Development Bureau performed full-scale testing and finite element analysis (FEA) of span-wire traffic-signal poles to evaluate their structural adequacy. Res...
Mallinckrodt, Brent; Tekie, Yacob T
2016-11-01
The Working Alliance Inventory (WAI) has made great contributions to psychotherapy research. However, studies suggest the 7-point response format and 3-factor structure of the client version may have psychometric problems. This study used Rasch item response theory (IRT) to (a) improve WAI response format, (b) compare two brief 12-item versions (WAI-sr; WAI-s), and (c) develop a new 16-item Brief Alliance Inventory (BAI). Archival data from 1786 counseling center and community clients were analyzed. IRT findings suggested problems with crossed category thresholds. A rescoring scheme that combines neighboring responses to create 5- and 4-point scales sharply reduced these problems. Although subscale variance was reduced by 11-26%, rescoring yielded improved reliability and generally higher correlations with therapy process (session depth and smoothness) and outcome measures (residual gain symptom improvement). The 16-item BAI was designed to maximize "bandwidth" of item difficulty and preserve a broader range of WAI sensitivity than WAI-s or WAI-sr. Comparisons suggest the BAI performed better in several respects than the WAI-s or WAI-sr and equivalent to the full WAI on several performance indicators.
NASA Astrophysics Data System (ADS)
Brooks, P. D.; Barnard, H. R.; Biederman, J. A.; Borkhuu, B.; Edburg, S. L.; Ewers, B. E.; Gochis, D. J.; Gutmann, E. D.; Harpold, A. A.; Hicke, J. A.; Pendall, E.; Reed, D. E.; Somor, A. J.; Troch, P. A.
2011-12-01
Widespread tree mortality caused by insect infestations and drought has impacted millions of hectares across western North America in recent years. Although previous work on post-disturbance responses (e.g. experimental manipulations, fire, and logging) provides insight into how water and biogeochemical cycles may respond to insect infestations and drought, we find that the unique nature of these drivers of tree mortality complicates extrapolation to larger scales. Building from previous work on forest disturbance, we present a conceptual model of how temporal changes in forest structure impact the individual components of energy balance, hydrologic partitioning, and biogeochemical cycling and the interactions among them. We evaluate and refine this model using integrated observations and process modeling on multiple scales including plot, stand, flux tower footprint, hillslope, and catchment to identify scaling relationships and emergent patterns in hydrological and biogeochemical responses. Our initial results suggest that changes in forest structure at point or plot scales largely have predictable effects on energy, water, and biogeochemical cycles that are well captured by land surface, hydrological, and biogeochemical models. However, observations from flux towers and nested catchments suggest that both the hydrological and biogeochemical effects observed at tree and plot scales may be attenuated or exacerbated at larger scales. Compensatory processes are associated with attenuation (e.g. as transpiration decreases, evaporation and sublimation increase), whereas both attenuation and exacerbation may result from nonlinear scaling behavior across transitions in topography and ecosystem structure that affect the redistribution of energy, water, and solutes. Consequently, the effects of widespread tree mortality on ecosystem services of water supply and carbon sequestration will likely depend on how spatial patterns in mortality severity across the landscape affect large-scale hydrological partitioning.
NASA Astrophysics Data System (ADS)
Ren, W. X.; Lin, Y. Q.; Fang, S. E.
2011-11-01
One of the key issues in vibration-based structural health monitoring is to extract the damage-sensitive but environment-insensitive features from sampled dynamic response measurements and to carry out the statistical analysis of these features for structural damage detection. A new damage feature is proposed in this paper by using the system matrices of the forward innovation model based on the covariance-driven stochastic subspace identification of a vibrating system. To overcome the variations of the system matrices, a non-singularity transposition matrix is introduced so that the system matrices are normalized to their standard forms. For reducing the effects of modeling errors, noise and environmental variations on measured structural responses, a statistical pattern recognition paradigm is incorporated into the proposed method. The Mahalanobis and Euclidean distance decision functions of the damage feature vector are adopted by defining a statistics-based damage index. The proposed structural damage detection method is verified against one numerical signal and two numerical beams. It is demonstrated that the proposed statistics-based damage index is sensitive to damage and shows some robustness to the noise and false estimation of the system ranks. The method is capable of locating damage of the beam structures under different types of excitations. The robustness of the proposed damage detection method to the variations in environmental temperature is further validated in a companion paper by a reinforced concrete beam tested in the laboratory and a full-scale arch bridge tested in the field.
Compliant Robotic Structures. Part 2
1986-07-01
Nonaxially Homogeneous Stresses and Strains 44 Parametric Studies 52 % References 65 III. LARGE DEFLECTIONS OF CONTINUOUS ELASTIC ’- STRUCTURES 66...APPENDIX C: Computer Program for the Element String 133 -° SUMMARY This is the second year report which is a part of a three- year study on compliant...ratios as high as 10/1 for laboratory-scale models and up to 3/1 for full-scale prototype arms. The first two years of this study have involved the
Full-Scale Crash Tests and Analyses of Three High-Wing Single
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Littell, Justin D.; Stimson, Chad M.; Jackson, Karen E.; Mason, Brian H.
2015-01-01
The NASA Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project was initiated in 2014 to assess the crash performance standards for the next generation of ELT systems. Three Cessna 172 aircraft have been acquired to conduct crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Testing is scheduled for the summer of 2015 and will simulate three crash conditions; a flare to stall while emergency landing, and two controlled flight into terrain scenarios. Instrumentation and video coverage, both onboard and external, will also provide valuable data of airframe response. Full-scale finite element analyses will be performed using two separate commercial explicit solvers. Calibration and validation of the models will be based on the airframe response under these varying crash conditions.
Full-scale hingeless rotor performance and loads
NASA Technical Reports Server (NTRS)
Peterson, Randall L.
1995-01-01
A full-scale BO-105 hingeless rotor system was tested in the NASA Ames 40- by 80-Foot Wind Tunnel on the rotor test apparatus. Rotor performance, rotor loads, and aeroelastic stability as functions of both collective and cyclic pitch, tunnel velocity, and shaft angle were investigated. This test was performed in support of the Rotor Data Correlation Task under the U.S. Army/German Memorandum of Understanding on Cooperative Research in the Field of Helicopter Aeromechanics. The primary objective of this test program was to create a data base for full-scale hingeless rotor performance and structural blade loads. A secondary objective was to investigate the ability to match flight test conditions in the wind tunnel. This data base can be used for the experimental and analytical studies of hingeless rotor systems over large variations in rotor thrust and tunnel velocity. Rotor performance and structural loads for tunnel velocities from hover to 170 knots and thrust coefficients (C(sub T)/sigma) from 0.0 to 0.12 are presented in this report. Thrust sweeps at tunnel velocities of 10, 20, and 30 knots are also included in this data set.
Implementation of civionics in a second generation steel-free bridge deck
NASA Astrophysics Data System (ADS)
Klowak, Chad; Rivera, Evangeline; Mufti, Aftab
2005-05-01
As the design and construction of civil structures continue to evolve, it is becoming imperative that these structures be monitored for their health. In order to meet this need, the discipline of Civionics has emerged. Civionics is a new term coined from Civil-Electronics, which is derived from the application of electronics to civil structures. It is similar to the term Avionics, which is used in the aerospace industry. If structural health monitoring is to become part of civil structural engineering, it should include Civionics. It involves the application of electronics to civil structures and aims to assist engineers in realizing the full benefits of structural health monitoring (SHM). In past SHM field applications, the main reason for the failure of a sensor was not the installation of the sensor itself but the egress of the sensor cables. Often, the cables were not handled and protected correctly. For SHM to be successful, specifications must be written on the entire process, beginning with system design and concluding with data collection, interpretation, and management. Civionics specifications include the technical requirements for a SHM system which encompasses fibre optic sensors, cables, conduits, junction boxes and the control room. A specification for data collection and storage is currently being developed as well. In the spring of 2004 research engineers at the University of Manitoba constructed a full-scale second generation steel free bridge deck. The bridge deck is the first of its kind to fully incorporate a complete civionics structural health monitoring system to monitor the deck's behaviour during destructive testing. Throughout the construction of the bridge deck, the entire installation of the civionics system was carried out by research engineers simulating an actual implementation of such a system in a large scale construction environment. One major concern that consulting engineers have raised is the impact that a civionics system that uses conduit, junction boxes, and other electrical ancillary protection, will have when embedded and installed externally on full-scale infrastructure. The full-scale destructive testing of a second generation steel-free bridge deck using a civionics system designed and implemented following guidelines in a civioncs specification manual at the University of Manitoba will provide engineers with the information necessary to address the constructability and structural integrity issues. Civioncs combined with structural health monitoring will provide engineers with feedback necessary to aid in optimizing design techniques and understanding our infrastructures performance, behaviour and state of condition.
Multi-mode evaluation of power-maximizing cross-flow turbine controllers
Forbush, Dominic; Cavagnaro, Robert J.; Donegan, James; ...
2017-09-21
A general method for predicting and evaluating the performance of three candidate cross-flow turbine power-maximizing controllers is presented in this paper using low-order dynamic simulation, scaled laboratory experiments, and full-scale field testing. For each testing mode and candidate controller, performance metrics quantifying energy capture (ability of a controller to maximize power), variation in torque and rotation rate (related to drive train fatigue), and variation in thrust loads (related to structural fatigue) are quantified for two purposes. First, for metrics that could be evaluated across all testing modes, we considered the accuracy with which simulation or laboratory experiments could predict performancemore » at full scale. Second, we explored the utility of these metrics to contrast candidate controller performance. For these turbines and set of candidate controllers, energy capture was found to only differentiate controller performance in simulation, while the other explored metrics were able to predict performance of the full-scale turbine in the field with various degrees of success. Finally, effects of scale between laboratory and full-scale testing are considered, along with recommendations for future improvements to dynamic simulations and controller evaluation.« less
Multi-mode evaluation of power-maximizing cross-flow turbine controllers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbush, Dominic; Cavagnaro, Robert J.; Donegan, James
A general method for predicting and evaluating the performance of three candidate cross-flow turbine power-maximizing controllers is presented in this paper using low-order dynamic simulation, scaled laboratory experiments, and full-scale field testing. For each testing mode and candidate controller, performance metrics quantifying energy capture (ability of a controller to maximize power), variation in torque and rotation rate (related to drive train fatigue), and variation in thrust loads (related to structural fatigue) are quantified for two purposes. First, for metrics that could be evaluated across all testing modes, we considered the accuracy with which simulation or laboratory experiments could predict performancemore » at full scale. Second, we explored the utility of these metrics to contrast candidate controller performance. For these turbines and set of candidate controllers, energy capture was found to only differentiate controller performance in simulation, while the other explored metrics were able to predict performance of the full-scale turbine in the field with various degrees of success. Finally, effects of scale between laboratory and full-scale testing are considered, along with recommendations for future improvements to dynamic simulations and controller evaluation.« less
Huang, Yueng-Hsiang; Lee, Jin; Chen, Zhuo; Perry, MacKenna; Cheung, Janelle H; Wang, Mo
2017-06-01
Zohar and Luria's (2005) safety climate (SC) scale, measuring organization- and group- level SC each with 16 items, is widely used in research and practice. To improve the utility of the SC scale, we shortened the original full-length SC scales. Item response theory (IRT) analysis was conducted using a sample of 29,179 frontline workers from various industries. Based on graded response models, we shortened the original scales in two ways: (1) selecting items with above-average discriminating ability (i.e. offering more than 6.25% of the original total scale information), resulting in 8-item organization-level and 11-item group-level SC scales; and (2) selecting the most informative items that together retain at least 30% of original scale information, resulting in 4-item organization-level and 4-item group-level SC scales. All four shortened scales had acceptable reliability (≥0.89) and high correlations (≥0.95) with the original scale scores. The shortened scales will be valuable for academic research and practical survey implementation in improving occupational safety. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Actively Controlling Buffet-Induced Excitations
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Pototzky, Anthony S.; Henderson, Douglas A.; Galea, Stephen C.; Manokaran, Donald S.; Zimcik, David G.; Wickramasinghe, Viresh; Pitt, Dale M.; Gamble, Michael A.
2005-01-01
High performance aircraft, especially those with twin vertical tails, encounter unsteady buffet loads when flying at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. An international collaborative research activity among Australia, Canada and the United States, conducted under the auspices of The Technical Cooperation Program (TTCP) contributed resources toward a program that coalesced a broad range of technical knowledge and expertise into a single investigation to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration. The research team investigated the use of active structural control to alleviate the damaging structural response to these loads by applying advanced directional piezoelectric actuators, the aircraft rudder, switch mode amplifiers, and advanced control strategies on an F/A-18 aircraft empennage. Some results of the full-scale investigation are presented herein.
Controlling Buffeting Loads by Rudder and Piezo-Actuation
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Pototzky, Anthony S.; Henderson, Douglas A.; Galea, Stephen C.; Manokaran, Donald S.; Zimcik, David G.; Wickramasinghe, Viresh; Pitt, Dale M.; Gamble, Michael A.
2005-01-01
High performance aircraft, especially those with twin vertical tails, encounter unsteady buffet loads when flying at high angles of attack. These stochastic loads result in significant stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. An international collaborative research activity among Australia, Canada and the United States, conducted under the auspices of The Technical Cooperation Program (TTCP) contributed resources toward a program that coalesced a broad range of technical knowledge and expertise into a single investigation to demonstrate the enhanced performance and capability of the advanced active Buffet Load Alleviation ( ) control system in preparation for a flight test demonstration. The research team investigated the use of active structural control to alleviate the damaging structural response to these loads by applying advanced directional piezoelectric actuators, the aircraft rudder, switch mode amplifiers, and advanced control strategies on an F/A-18 aircraft empennage. Some results of the full-scale investigation are presented herein.
NASA Astrophysics Data System (ADS)
Kaczmarek, J. F.; Purcell, C. R.; Gaensler, B. M.; Sun, X.; O'Sullivan, S. P.; McClure-Griffiths, N. M.
2018-05-01
We present full-polarization, broad-band observations of the radio galaxy NGC 612 (PKS B0131-637) from 1.3 to 3.1 GHz using the Australia Telescope Compact Array. The relatively large angular scale of the radio galaxy makes it a good candidate with which to investigate the polarization mechanisms responsible for the observed Faraday depth structure. By fitting complex polarization models to the polarized spectrum of each pixel, we find that a single polarization component can adequately describe the observed signal for the majority of the radio galaxy. While we cannot definitively rule out internal Faraday rotation, we argue that the bulk of the Faraday rotation is taking place in a thin skin that girts the polarized emission. Using minimum energy estimates, we find an implied total magnetic field strength of 4.2 μG.
Occupant Responses in a Full-Scale Crash Test of the Sikorsky ACAP Helicopter
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; McEntire, Joseph; Lewis, Alan
2002-01-01
A full-scale crash test of the Sikorsky Advanced Composite Airframe Program (ACAP) helicopter was performed in 1999 to generate experimental data for correlation with a crash simulation developed using an explicit nonlinear, transient dynamic finite element code. The airframe was the residual flight test hardware from the ACAP program. For the test, the aircraft was outfitted with two crew and two troop seats, and four anthropomorphic test dummies. While the results of the impact test and crash simulation have been documented fairly extensively in the literature, the focus of this paper is to present the detailed occupant response data obtained from the crash test and to correlate the results with injury prediction models. These injury models include the Dynamic Response Index (DRI), the Head Injury Criteria (HIC), the spinal load requirement defined in FAR Part 27.562(c), and a comparison of the duration and magnitude of the occupant vertical acceleration responses with the Eiband whole-body acceleration tolerance curve.
Robbins, Neil E.
2016-01-01
Water is the most limiting resource on land for plant growth, and its uptake by plants is affected by many abiotic stresses, such as salinity, cold, heat, and drought. While much research has focused on exploring the molecular mechanisms underlying the cellular signaling events governing water-stress responses, it is also important to consider the role organismal structure plays as a context for such responses. The regulation of growth in plants occurs at two spatial scales: the cell and the organ. In this review, we focus on how the regulation of growth at these different spatial scales enables plants to acclimate to water-deficit stress. The cell wall is discussed with respect to how the physical properties of this structure affect water loss and how regulatory mechanisms that affect wall extensibility maintain growth under water deficit. At a higher spatial scale, the architecture of the root system represents a highly dynamic physical network that facilitates access of the plant to a heterogeneous distribution of water in soil. We discuss the role differential growth plays in shaping the structure of this system and the physiological implications of such changes. PMID:27503468
Dynamic response characteristics of two transport models tested in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.
1993-01-01
This paper documents recent experiences with measuring the dynamic response characteristics of a commercial transport and a military transport model during full scale Reynolds number tests in the National Transonic Facility. Both models were limited in angle of attack while testing at full scale Reynolds number and cruise Mach number due to pitch or stall buffet response. Roll buffet (wing buzz) was observed for both models at certain Mach numbers while testing at high Reynolds number. Roll buffet was more severe and more repeatable for the military transport model at cruise Mach number. Miniature strain-gage type accelerometers were used for the first time for obtaining dynamic data as a part of the continuing development of miniature dynamic measurements instrumentation for cryogenic applications. This paper presents the results of vibration measurements obtained for both the commercial and military transport models and documents the experience gained in the use of miniature strain gage type accelerometers.
The structure of supersonic jet flow and its radiated sound
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.; Hayder, M. E.; Povinelli, Louis A.
1993-01-01
Large-eddy simulation of a supersonic jet is presented with emphasis on capturing the unsteady features of the flow pertinent to sound emission. A high-accuracy numerical scheme is used to solve the filtered, unsteady, compressible Navier-Stokes equations while modelling the subgrid-scale turbulence. For random inflow disturbance, the wave-like feature of the large-scale structure is demonstrated. The large-scale structure was then enhanced by imposing harmonic disturbances to the inflow. The limitation of using the full Navier-Stokes equation to calculate the far-field sound is discussed. Application of Lighthill's acoustic analogy is given with the objective of highlighting the difficulties that arise from the non-compactness of the source term.
Brisbois, Benjamin
2016-02-01
Public health responses to agricultural pesticide exposure are often informed by ethnographic or other qualitative studies of pesticide risk perception. In addition to highlighting the importance of structural determinants of exposure, such studies can identify the specific scales at which pesticide-exposed individuals locate responsibility for their health issues, with implications for study and intervention design. In this study, an ethnographic approach was employed to map scalar features within explanatory narratives of pesticides and health in Ecuador's banana-producing El Oro province. Unstructured observation, 14 key informant interviews and 15 in-depth semi-structured interviews were carried out during 8 months of fieldwork in 2011-2013. Analysis of interview data was informed by human geographic literature on the social construction of scale. Individual-focused narratives of some participants highlighted characteristics such as carelessness and ignorance, leading to suggestions for educational interventions. More structural explanations invoked farm-scale processes, such as uncontrolled aerial fumigations on plantations owned by elites. Organization into cooperatives helped to protect small-scale farmers from 'deadly' banana markets, which in turn were linked to the Ecuadorian nation-state and actors in the banana-consuming world. These scalar elements interacted in complex ways that appear linked to social class, as more well-off individuals frequently attributed the health problems of other (poorer) people to individual behaviours, while providing more structural explanations of their own difficulties. Such individualizing narratives may help to stabilize inequitable social structures. Research implications of this study include the possibility of using scale-focused qualitative research to generate theory and candidate levels for multi-level models. Equity implications include a need for public health researchers planning interventions to engage with scale-linked inequities, such as disparities within nation-states. Finally, the prominence of the global North in explanatory narratives is a useful reminder that 'structural factors' prominently include inequities related to the legacies of colonialism. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 91.314 - Analyzer accuracy and specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (3) Zero drift. The analyzer zero-response drift during a one-hour period must be less than two percent of full-scale chart deflection on the lowest range used. The zero-response is defined as the mean... calibration or span gas. (2) Noise. The analyzer peak-to-peak response to zero and calibration or span gases...
Flight Approach to Adaptive Control Research
NASA Technical Reports Server (NTRS)
Pavlock, Kate Maureen; Less, James L.; Larson, David Nils
2011-01-01
The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.
Development of airframe design technology for crashworthiness.
NASA Technical Reports Server (NTRS)
Kruszewski, E. T.; Thomson, R. G.
1973-01-01
This paper describes the NASA portion of a joint FAA-NASA General Aviation Crashworthiness Program leading to the development of improved crashworthiness design technology. The objectives of the program are to develop analytical technology for predicting crashworthiness of structures, provide design improvements, and perform full-scale crash tests. The analytical techniques which are being developed both in-house and under contract are described, and typical results from these analytical programs are shown. In addition, the full-scale testing facility and test program are discussed.
Aeroelastic Ground Wind Loads Analysis Tool for Launch Vehicles
NASA Technical Reports Server (NTRS)
Ivanco, Thomas G.
2016-01-01
Launch vehicles are exposed to ground winds during rollout and on the launch pad that can induce static and dynamic loads. Of particular concern are the dynamic loads caused by vortex shedding from nearly-cylindrical structures. When the frequency of vortex shedding nears that of a lowly-damped structural mode, the dynamic loads can be more than an order of magnitude greater than mean drag loads. Accurately predicting vehicle response to vortex shedding during the design and analysis cycles is difficult and typically exceeds the practical capabilities of modern computational fluid dynamics codes. Therefore, mitigating the ground wind loads risk typically requires wind-tunnel tests of dynamically-scaled models that are time consuming and expensive to conduct. In recent years, NASA has developed a ground wind loads analysis tool for launch vehicles to fill this analytical capability gap in order to provide predictions for prelaunch static and dynamic loads. This paper includes a background of the ground wind loads problem and the current state-of-the-art. It then discusses the history and significance of the analysis tool and the methodology used to develop it. Finally, results of the analysis tool are compared to wind-tunnel and full-scale data of various geometries and Reynolds numbers.
Non-Axisymmetric Inflatable Pressure Structure (NAIPS) Full-Scale Pressure Test
NASA Technical Reports Server (NTRS)
Jones, Thomas C.; Doggett, William R.; Warren, Jerry E.; Watson, Judith J.; Shariff, Khadijah; Makino, Alberto; Yount, Bryan C.
2017-01-01
Inflatable space structures have the potential to significantly reduce the required launch volume for large pressure vessels required for exploration applications including habitats, airlocks and tankage. In addition, mass savings can be achieved via the use of high specific strength softgoods materials, and the reduced design penalty from launching the structure in a densely packaged state. Large inclusions however, such as hatches, induce a high mass penalty at the interfaces with the softgoods and in the added rigid structure while reducing the packaging efficiency. A novel, Non-Axisymmetric Inflatable Pressure Structure (NAIPS) was designed and recently tested at NASA Langley Research Center to demonstrate an elongated inflatable architecture that could provide areas of low stress along a principal axis in the surface. These low stress zones will allow the integration of a flexible linear seal that substantially reduces the added mass and volume of a heritage rigid hatch structure. This paper describes the test of the first full-scale engineering demonstration unit (EDU) of the NAIPS geometry and a comparison of the results to finite element analysis.
Hogstrom, L. J.; Guo, S. M.; Murugadoss, K.; Bathe, M.
2016-01-01
Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758
DOT National Transportation Integrated Search
2016-12-01
The objective of this research was to investigate the structural capacity of geogrid-reinforced aggregate base materials in flexible pavements through full-scale testing. The scope involved field testing at two sites in northern Utah that each includ...
Kandala, Sridhar; Petersen, Steven E.; Povinelli, Daniel J.
2015-01-01
Understanding the underpinnings of social responsiveness and theory of mind (ToM) will enhance our knowledge of autism spectrum disorder (ASD). We hypothesize that higher-order relational reasoning (higher-order RR: reasoning necessitating integration of relationships among multiple variables) is necessary but not sufficient for ToM, and that social responsiveness varies independently of higher-order RR. A pilot experiment tested these hypotheses in n = 17 children, 3–14, with and without ASD. No child failing 2nd-order RR passed a false belief ToM test. Contrary to prediction, Social Responsiveness Scale scores did correlate with 2nd-order RR performance, likely due to sample characteristics. It is feasible to translate this comparative cognition-inspired line of inquiry for full-scale studies of ToM, higher-order RR, and social responsiveness in ASD. PMID:25630898
Pruett, John R; Kandala, Sridhar; Petersen, Steven E; Povinelli, Daniel J
2015-07-01
Understanding the underpinnings of social responsiveness and theory of mind (ToM) will enhance our knowledge of autism spectrum disorder (ASD). We hypothesize that higher-order relational reasoning (higher-order RR: reasoning necessitating integration of relationships among multiple variables) is necessary but not sufficient for ToM, and that social responsiveness varies independently of higher-order RR. A pilot experiment tested these hypotheses in n = 17 children, 3-14, with and without ASD. No child failing 2nd-order RR passed a false belief ToM test. Contrary to prediction, Social Responsiveness Scale scores did correlate with 2nd-order RR performance, likely due to sample characteristics. It is feasible to translate this comparative cognition-inspired line of inquiry for full-scale studies of ToM, higher-order RR, and social responsiveness in ASD.
Effective communication between ENT and primary care - a survey of outpatient correspondence.
Addison, A B; Watts, S; Fleming, J
2015-06-01
To improve the quality of outpatient clinic communication between Otolaryngology and primary care doctors. Three example outpatient letters with identical content were created using different structure styles - full prose, headline subheadings with full prose and full subheadings throughout. Electronic questionnaires were sent out to 30 randomly selected General Practitioners in the area served by Western Sussex NHS Trust. The electronic mail study invite contained the initial GP referral, the three different letter formats and a link to the Sheffield Assessment for Letters (SAIL) questionnaire, which contained a 18-point checklist, 6 rating subheadings with a 10-point rating scale and a free text comment section. Study participants were asked to read the letters in the time usually afforded to outpatient letters in their routine practice, answer questions and then rate the letters. With a response rate of 66.7%, overall comparison of GP preferences demonstrated a significant variation between the three letter formats (Freidman P value = 0.0001). Post hoc multiple comparisons showed statistically significant preference for the headline subheading and prose letter compared to the full subheaded letter (P < 0.05). In assessing the letters for readability, comprehension, usefulness, informativeness and helpfulness, analysis showed significant preference for both fully subheaded and headline subheaded with full prose structures compared to the full prose letter. Although the headline subheadings and prose letter had the highest word count, it scored the highest in almost all the rating categories analysed. This study is the first published work to study primary care physician's preference for the structure of letters from secondary care. Prominent headline subheadings of diagnosis and management improve interpretation of content and comprehension and are helpful to GPs for co-ordinating patient management. Lack of subheadings or conversely an excess of subheadings may be a hindrance to effective communication between healthcare professionals. © 2014 John Wiley & Sons Ltd.
Meter scale variation in shrub dominance and soil moisture structure Arctic arthropod communities
Hansen, Oskar Liset Pryds; Bowden, Joseph J.; Treier, Urs A.; Normand, Signe; Høye, Toke
2016-01-01
The Arctic is warming at twice the rate of the rest of the world. This impacts Arctic species both directly, through increased temperatures, and indirectly, through structural changes in their habitats. Species are expected to exhibit idiosyncratic responses to structural change, which calls for detailed investigations at the species and community level. Here, we investigate how arthropod assemblages of spiders and beetles respond to variation in habitat structure at small spatial scales. We sampled transitions in shrub dominance and soil moisture between three different habitats (fen, dwarf shrub heath, and tall shrub tundra) at three different sites along a fjord gradient in southwest Greenland, using yellow pitfall cups. We identified 2,547 individuals belonging to 47 species. We used species richness estimation, indicator species analysis and latent variable modeling to examine differences in arthropod community structure in response to habitat variation at local (within site) and regional scales (between sites). We estimated species responses to the environment by fitting species-specific generalized linear models with environmental covariates. Species assemblages were segregated at the habitat and site level. Each habitat hosted significant indicator species, and species richness and diversity were significantly lower in fen habitats. Assemblage patterns were significantly linked to changes in soil moisture and vegetation height, as well as geographic location. We show that meter-scale variation among habitats affects arthropod community structure, supporting the notion that the Arctic tundra is a heterogeneous environment. To gain sufficient insight into temporal biodiversity change, we require studies of species distributions detailing species habitat preferences. PMID:27478709
Geologic map of the Bobs Flat Quadrangle, Eureka County, Nevada
Peters, Stephen G.
2003-01-01
Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map of the Bobs Flat Quadrangle in Eureka County with one cross section and descriptions of 28 geologic units. Accompanying text describes the geologic history and structural geology of the quadrangle.
Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Horta,Lucas G.
2011-01-01
Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.
Coster, Wendy J; Haley, Stephen M; Ni, Pengsheng; Dumas, Helene M; Fragala-Pinkham, Maria A
2008-04-01
To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the self-care and social function scales of the Pediatric Evaluation of Disability Inventory compared with the full-length version of these scales. Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children's homes. Children with disabilities (n=469) and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Not applicable. Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length self-care and social function scales; time (in seconds) to complete assessments and respondent ratings of burden. Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (r range, .94-.99). Using computer simulation of retrospective data, discriminant validity, and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared with over 16 minutes to complete the full-length scales. Self-care and social function score estimates from CAT administration are highly comparable with those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.
2004-01-01
This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.
Higher-Order Theory for Functionally Graded Materials
NASA Technical Reports Server (NTRS)
Aboudi, J.; Pindera, M. J.; Arnold, Steven M.
2001-01-01
Functionally graded materials (FGM's) are a new generation of engineered materials wherein the microstructural details are spatially varied through nonuniform distribution of the reinforcement phase(s). Engineers accomplish this by using reinforcements with different properties, sizes, and shapes, as well as by interchanging the roles of the reinforcement and matrix phases in a continuous manner (ref. 1). The result is a microstructure that produces continuously or discretely changing thermal and mechanical properties at the macroscopic or continuum scale. This new concept of engineering the material's microstructure marks the beginning of a revolution both in the materials science and mechanics of materials areas since it allows one, for the first time, to fully integrate the material and structural considerations into the final design of structural components. Functionally graded materials are ideal candidates for applications involving severe thermal gradients, ranging from thermal structures in advanced aircraft and aerospace engines to computer circuit boards. Owing to the many variables that control the design of functionally graded microstructures, full exploitation of the FGM's potential requires the development of appropriate modeling strategies for their response to combined thermomechanical loads. Previously, most computational strategies for the response of FGM's did not explicitly couple the material's heterogeneous microstructure with the structural global analysis. Rather, local effective or macroscopic properties at a given point within the FGM were first obtained through homogenization based on a chosen micromechanics scheme and then subsequently used in a global thermomechanical analysis.
Bryant, Lee D; Little, John C; Bürgmann, Helmut
2012-04-01
Hypolimnetic oxygenation systems (HOx) are being increasingly used in freshwater reservoirs to elevate dissolved oxygen levels in the hypolimnion and suppress sediment-water fluxes of soluble metals (e.g. Fe and Mn) which are often microbially mediated. We assessed changes in sediment microbial community structure and corresponding biogeochemical cycling on a reservoir-wide scale as a function of HOx operations. Sediment microbial biomass as quantified by DNA concentration was increased in regions most influenced by the HOx. Following an initial decrease in biomass in the upper sediment while oxygen concentrations were low, biomass typically increased at all depths as the 4-month-long oxygenation season progressed. A distinct shift in microbial community structure was only observed at the end of the season in the upper sediment near the HOx. While this shift was correlated to HOx-enhanced oxygen availability, increased TOC levels and precipitation of Fe- and Mn-oxides, abiotic controls on Fe and Mn cycling, and/or the adaptability of many bacteria to variations in prevailing electron acceptors may explain the delayed response and the comparatively limited changes at other locations. While the sediment microbial community proved remarkably resistant to relatively short-term changes in HOx operations, HOx-induced variation in microbial structure, biomass, and activity was observed after a full season of oxygenation. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. G. Little
1999-03-01
The Idaho National Engineering and Environmental Laboratory (INEEL), through the US Department of Energy (DOE), has proposed that a large-scale wind test facility (LSWTF) be constructed to study, in full-scale, the behavior of low-rise structures under simulated extreme wind conditions. To determine the need for, and potential benefits of, such a facility, the Idaho Operations Office of the DOE requested that the National Research Council (NRC) perform an independent assessment of the role and potential value of an LSWTF in the overall context of wind engineering research. The NRC established the Committee to Review the Need for a Large-scale Testmore » Facility for Research on the Effects of Extreme Winds on Structures, under the auspices of the Board on Infrastructure and the Constructed Environment, to perform this assessment. This report conveys the results of the committee's deliberations as well as its findings and recommendations. Data developed at large-scale would enhanced the understanding of how structures, particularly light-frame structures, are affected by extreme winds (e.g., hurricanes, tornadoes, sever thunderstorms, and other events). With a large-scale wind test facility, full-sized structures, such as site-built or manufactured housing and small commercial or industrial buildings, could be tested under a range of wind conditions in a controlled, repeatable environment. At this time, the US has no facility specifically constructed for this purpose. During the course of this study, the committee was confronted by three difficult questions: (1) does the lack of a facility equate to a need for the facility? (2) is need alone sufficient justification for the construction of a facility? and (3) would the benefits derived from information produced in an LSWTF justify the costs of producing that information? The committee's evaluation of the need and justification for an LSWTF was shaped by these realities.« less
Similar local order in disordered fluorite and aperiodic pyrochlore structures
Shamblin, Jacob; Tracy, Cameron; Palomares, Raul; ...
2017-10-01
A major challenge to understanding the response of materials to extreme environments (e.g., nuclear fuels/waste forms and fusion materials) is to unravel the processes by which a material can incorporate atomic-scale disorder, and at the same time, remain crystalline. While it has long been known that all condensed matter, even liquids and glasses, possess short-range order, the relation between fully-ordered, disordered, and aperiodic structures over multiple length scales is not well understood. For example, when defects are introduced (via pressure or irradiation) into materials adopting the pyrochlore structure, these complex oxides either disorder over specific crystallographic sites, remaining crystalline, ormore » become aperiodic. Here we present neutron total scattering results characterizing the irradiation response of two pyrochlores, one that is known to disorder (Er2Sn2O7) and the other to amorphize (Dy2Sn2O7) under ion irradiation. The results demonstrate that in both cases, the local pyrochlore structure is transformed into similar short range configurations that are best fit by the orthorhombic weberite structure, even though the two compositions have distinctly different structures, aperiodic vs. disordered-crystalline, at longer length scales. Thus, a material's resistance to amorphization may not depend primarily on local defect formation energies, but rather on the structure's compatibility with meso-scale modulations of the local order in a way that maintains long-range periodicity.« less
Squires, Janet E; Estabrooks, Carole A; Newburn-Cook, Christine V; Gierl, Mark
2011-05-19
There is a lack of acceptable, reliable, and valid survey instruments to measure conceptual research utilization (CRU). In this study, we investigated the psychometric properties of a newly developed scale (the CRU Scale). We used the Standards for Educational and Psychological Testing as a validation framework to assess four sources of validity evidence: content, response processes, internal structure, and relations to other variables. A panel of nine international research utilization experts performed a formal content validity assessment. To determine response process validity, we conducted a series of one-on-one scale administration sessions with 10 healthcare aides. Internal structure and relations to other variables validity was examined using CRU Scale response data from a sample of 707 healthcare aides working in 30 urban Canadian nursing homes. Principal components analysis and confirmatory factor analyses were conducted to determine internal structure. Relations to other variables were examined using: (1) bivariate correlations; (2) change in mean values of CRU with increasing levels of other kinds of research utilization; and (3) multivariate linear regression. Content validity index scores for the five items ranged from 0.55 to 1.00. The principal components analysis predicted a 5-item 1-factor model. This was inconsistent with the findings from the confirmatory factor analysis, which showed best fit for a 4-item 1-factor model. Bivariate associations between CRU and other kinds of research utilization were statistically significant (p < 0.01) for the latent CRU scale score and all five CRU items. The CRU scale score was also shown to be significant predictor of overall research utilization in multivariate linear regression. The CRU scale showed acceptable initial psychometric properties with respect to responses from healthcare aides in nursing homes. Based on our validity, reliability, and acceptability analyses, we recommend using a reduced (four-item) version of the CRU scale to yield sound assessments of CRU by healthcare aides. Refinement to the wording of one item is also needed. Planned future research will include: latent scale scoring, identification of variables that predict and are outcomes to conceptual research use, and longitudinal work to determine CRU Scale sensitivity to change.
Passive Earth Entry Vehicle Landing Test
NASA Technical Reports Server (NTRS)
Kellas, Sotiris
2017-01-01
Two full-scale passive Earth Entry Vehicles (EEV) with realistic structure, surrogate sample container, and surrogate Thermal Protection System (TPS) were built at NASA Langley Research Center (LaRC) and tested at the Utah Test and Training Range (UTTR). The main test objective was to demonstrate structural integrity and investigate possible impact response deviations of the realistic vehicle as compared to rigid penetrometer responses. With the exception of the surrogate TPS and minor structural differences in the back shell construction, the two test vehicles were identical in geometry and both utilized the Integrated Composite Stiffener Structure (ICoSS) structural concept in the forward shell. The ICoSS concept is a lightweight and highly adaptable composite concept developed at NASA LaRC specifically for entry vehicle TPS carrier structures. The instrumented test vehicles were released from a helicopter approximately 400 m above ground. The drop height was selected such that at least 98% of the vehicles terminal velocity would be achieved. While drop tests of spherical penetrometers and a low fidelity aerodynamic EEV model were conducted at UTTR in 1998 and 2000, this was the first time a passive EEV with flight-like structure, surrogate TPS, and sample container was tested at UTTR for the purpose of complete structural system validation. Test results showed that at a landing vertical speed of approximately 30 m/s, the test vehicle maintained structural integrity and enough rigidity to penetrate the sandy clay surface thus attenuating the landing load, as measured at the vehicle CG, to less than 600 g. This measured deceleration was found to be in family with rigid penetrometer test data from the 1998 and 2000 test campaigns. Design implications of vehicle structure/soil interaction with respect to sample container and sample survivability are briefly discussed.
DOT National Transportation Integrated Search
2015-03-01
The current study is a continuation of the earlier study that investigated the effects of Alkali Silica Reaction (ASR) and Delayed : Ettringite Formation (DEF) induced deterioration on the D-Regions of structures. Of the four near full-scale C-Beam s...
DOT National Transportation Integrated Search
2012-11-01
The effects of ASR/DEF on the D-regions of structures are investigated by means of a dual experimental and : analytical modeling program. Four near full scale specimens that represent cantilever and straddle pier bents, : that are representative of t...
NASA Astrophysics Data System (ADS)
Holmquist, Jeffrey G.; Schmidt-Gengenbach, Jutta; Ballenger, Elizabeth A.
2014-06-01
Assessments of vertebrate disturbance to plant and animal assemblages often contrast grazed versus ungrazed meadows or other larger areas of usage, and this approach can be powerful. Random sampling of such habitats carries the potential, however, for smaller, more intensely affected patches to be missed and for other responses that are only revealed at smaller scales to also escape detection. We instead sampled arthropod assemblages and vegetation structure at the patch scale (400-900 m2 patches) within subalpine wet meadows of Yosemite National Park (USA), with the goal of determining if there were fine-scale differences in magnitude and directionality of response at three levels of grazing intensity. Effects were both stronger and more nuanced than effects evidenced by previous random sampling of paired grazed and ungrazed meadows: (a) greater negative effects on vegetation structure and fauna in heavily used patches, but (b) some positive effects on fauna in lightly grazed patches, suggested by trends for mean richness and total and population abundances. Although assessment of disturbance at either patch or landscape scales should be appropriate, depending on the management question at hand, our patch-scale work demonstrated that there can be strong local effects on the ecology of these wetlands that may not be detected by comparing larger scale habitats.
Cleanthous, Sophie; Kinter, Elizabeth; Marquis, Patrick; Petrillo, Jennifer; You, Xiaojun; Wakeford, Craig; Sabatella, Guido
2017-01-01
Background Study objectives were to evaluate the Multiple Sclerosis Impact Scale (MSIS-29) and explore an optimized scoring structure based on empirical post-hoc analyses of data from the Phase III ADVANCE clinical trial. Methods ADVANCE MSIS-29 data from six time-points were analyzed in a sample of patients with relapsing–remitting multiple sclerosis (RRMS). Rasch Measurement Theory (RMT) analysis was undertaken to examine three broad areas: sample-to-scale targeting, measurement scale properties, and sample measurement validity. Interpretation of results led to an alternative MSIS-29 scoring structure, further evaluated alongside responsiveness of the original and revised scales at Week 48. Results RMT analysis provided mixed evidence for Physical and Psychological Impact scales that were sub-optimally targeted at the lower functioning end of the scales. Their conceptual basis could also stand to improve based on item fit results. The revised MSIS-29 rescored scales improved but did not resolve the measurement scale properties and targeting of the MSIS-29. In two out of three revised scales, responsiveness analysis indicated strengthened ability to detect change. Conclusion The revised MSIS-29 provides an initial evidence-based improved patient-reported outcome (PRO) instrument for evaluating the impact of MS. Revised scoring improves conceptual clarity and interpretation of scores by refining scale structure to include Symptoms, Psychological Impact, and General Limitations. Clinical trial ADVANCE (ClinicalTrials.gov identifier NCT00906399). PMID:29104758
Simulating the Response of a Composite Honeycomb Energy Absorber. Part 2; Full-Scale Impact Testing
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Annett, Martin S.; Jackson, Karen E.; Polanco, Michael A.
2012-01-01
NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test.
Coupled hydrological and geochemical process evolution at the Landscape Evolution Observatory
NASA Astrophysics Data System (ADS)
Troch, P. A. A.
2015-12-01
Predictions of hydrologic and biogeochemical responses to natural and anthropogenic forcing at the landscape scale are highly uncertain due to the effects of heterogeneity on the scaling of reaction, flow and transport phenomena. The physical, chemical and biological structures and processes controlling reaction, flow and transport in natural landscapes interact at multiple space and time scales and are difficult to quantify. The current paradigm of hydrological and geochemical theory is that process descriptions derived from observations at small scales in controlled systems can be applied to predict system response at much larger scales, as long as some 'equivalent' or 'effective' values of the scale-dependent parameters can be identified. Furthermore, natural systems evolve in time in a way that is hard to observe in short-run laboratory experiments or in natural landscapes with unknown initial conditions and time-variant forcing. The spatial structure of flow pathways along hillslopes determines the rate, extent and distribution of geochemical reactions (and biological colonization) that drive weathering, the transport and precipitation of solutes and sediments, and the further evolution of soil structure. The resulting evolution of structures and processes, in turn, produces spatiotemporal variability of hydrological states and flow pathways. There is thus a need for experimental research to improve our understanding of hydrology-biogeochemistry interactions and feedbacks at appropriate spatial scales larger than laboratory soil column experiments. Such research is complicated in real-world settings because of poorly constrained impacts of initial conditions, climate variability, ecosystems dynamics, and geomorphic evolution. The Landscape Evolution Observatory (LEO) at Biosphere 2 offers a unique research facility that allows real-time observations of incipient hydrologic and biogeochemical response under well-constrained initial conditions and climate forcing. The LEO allows to close the water, carbon and energy budgets at hillslope scales, thereby enabling elucidation of the tight coupling between the time water spends along subsurface flow paths and geochemical weathering reactions, including the feedbacks between flow and pedogenesis.
The Chinese-Western Intercultural Couple Standards Scale.
Hiew, Danika N; Halford, W Kim; van de Vijver, Fons J R; Liu, Shuang
2015-09-01
We developed the Chinese-Western Intercultural Couple Standards Scale (CWICSS) to assess relationship standards that may differ between Chinese and Western partners and may challenge intercultural couples. The scale assesses 4 Western-derived relationship standards (demonstrations of love, demonstrations of caring, intimacy expression, and intimacy responsiveness) and 4 Chinese-derived relationship standards (relations with the extended family, relational harmony, face, and gender roles). We administered the CWICSS to 983 Chinese and Western participants living in Australia to assess the psychometric properties of the scores as measures of respondents' relationship standards. The CWICSS has a 2-level factor structure with the items reflecting the 8 predicted standards. The 4 Western derived standards loaded onto a higher order factor of couple bond, and the 4 Chinese derived standards loaded onto a higher order factor of family responsibility. The scale scores were structurally equivalent across cultures, genders, and 2 independent samples, and good convergent and discriminant validity was found for the interpretation of scale scores as respondents' endorsement of the predicted standards. Scores on the 8 scales and 2 superordinate scales showed high internal consistency and test-retest coefficients. Chinese endorsed all 4 family responsibility standards more strongly than did Westerners, but Chinese and Western participants were similar in endorsement of couple bond standards. Across both cultures, couple bond standards were endorsed more highly than were family responsibility standards. The CWICSS assesses potential areas of conflict in Chinese-Western relationships. (c) 2015 APA, all rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, H.S.; Stone, C.M.; Krieg, R.D.
Several large scale in situ experiments in bedded salt formations are currently underway at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, USA. In these experiments, the thermal and creep responses of salt around several different underground room configurations are being measured. Data from the tests are to be compared to thermal and structural responses predicted in pretest reference calculations. The purpose of these comparisons is to evaluate computational models developed from laboratory data prior to fielding of the in situ experiments. In this paper, the computational models used in the pretest reference calculation for one of themore » large scale tests, The Overtest for Defense High Level Waste, are described; and the pretest computed thermal and structural responses are compared to early data from the experiment. The comparisons indicate that computed and measured temperatures for the test agree to within ten percent but that measured deformation rates are between two and three times greater than corresponsing computed rates. 10 figs., 3 tabs.« less
Evaluation of the Factor Structure of the Rosenberg Self-Esteem Scale in Older Adults
Mullen, Sean P.; Gothe, Neha P.; McAuley, Edward
2012-01-01
The Rosenberg Self-Esteem Scale is the most utilized measure of global self-esteem. Although psychometric studies have generally supported the uni-dimensionality of this 10-item scale, more recently, a stable, response-bias has been associated with the wording of the items (Marsh, Scalas, & Nagengast, 2010). The purpose of this report was to replicate Marsh et al.’s findings in a sample of older adults and to test for invariance across time, gender and levels of education. Our results indicated that indeed a response-bias does exist in esteem responses. Researchers should investigate ways to meaningfully examine and practically overcome the methodological challenges associated with the RSE scale. PMID:23185099
Evaluation of the Factor Structure of the Rosenberg Self-Esteem Scale in Older Adults.
Mullen, Sean P; Gothe, Neha P; McAuley, Edward
2013-01-01
The Rosenberg Self-Esteem Scale is the most utilized measure of global self-esteem. Although psychometric studies have generally supported the uni-dimensionality of this 10-item scale, more recently, a stable, response-bias has been associated with the wording of the items (Marsh, Scalas, & Nagengast, 2010). The purpose of this report was to replicate Marsh et al.'s findings in a sample of older adults and to test for invariance across time, gender and levels of education. Our results indicated that indeed a response-bias does exist in esteem responses. Researchers should investigate ways to meaningfully examine and practically overcome the methodological challenges associated with the RSE scale.
Moisture effect on interfacial integrity of epoxy-bonded system: a hierarchical approach
NASA Astrophysics Data System (ADS)
Tam, Lik-ho; Lun Chow, Cheuk; Lau, Denvid
2018-01-01
The epoxy-bonded system has been widely used in various applications across different scale lengths. Prior investigations have indicated that the moisture-affected interfacial debonding is the major failure mode of such a system, but the fundamental mechanism remains unknown, such as the basis for the invasion of water molecules in the cross-linked epoxy and the epoxy-bonded interface. This prevents us from predicting the long-term performance of the epoxy-related applications under the effect of the moisture. Here, we use full atomistic models to investigate the response of the epoxy-bonded system towards the adhesion test, and provide a detailed analysis of the interfacial integrity under the moisture effect and the associated debonding mechanism. Molecular dynamics simulations show that water molecules affect the hierarchical structure of the epoxy-bonded system at the nanoscale by disrupting the film-substrate interaction and the molecular interaction within the epoxy, which leads to the detachment of the epoxy thin film, and the final interfacial debonding. The simulation results show good agreement with the experimental results of the epoxy-bonded system. Through identifying the relationship between the epoxy structure and the debonding mechanism at multiple scales, it is shown that the hierarchical structure of the epoxy-bonded system is crucial for the interfacial integrity. In particular, the available space of the epoxy-bonded system, which consists of various sizes ranging from the atomistic scale to the macroscale and is close to the interface facilitates the moisture accumulation, leading to a distinct interfacial debonding when compared to the dry scenario.
Responses in large-scale structure
NASA Astrophysics Data System (ADS)
Barreira, Alexandre; Schmidt, Fabian
2017-06-01
We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ``bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients, which are only a function of the hard wavenumber k. Further, the responses up to n-th order completely describe the (n+2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance CovNGl=0(k1,k2), in the limit where one of the modes, say k2, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k2 lesssim 0.06 h Mpc-1, and for any k1 gtrsim 2k2. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.
Ćurčić, Srećko B; Pantelić, Dejan V; Ćurčić, Božidar P M; Savić-Šević, Svetlana N; Makarov, Slobodan E; Lačković, Vesna B; Labudović-Borović, Milica M; Ćurčić, Nina B; Stojanović, Dejan V
2012-07-01
Apatura ilia (Denis and Schiffermüller, 1775) and A. iris (Linnaeus, 1758) are fascinating butterflies found in the Palaearctic ecozone (excepting the north of Africa). The wings of these insects are covered with a great number of two types of scales positioned like roof tiles. Type I scales are on the surface, while type II scales are situated below them. The structural color of the type I scales is recognized only on the dorsal side of both the fore and hind wings of the males of the aforementioned species. Both types of scales are responsible for pigment color of the wings, but iridescence is observed only in the type I scales. The brilliant structural color is due to a multilayer structure. The features of the scales, their dimensions and fine structure were obtained using scanning electron microscopy. Cross sections of the scales were then analyzed by transmission electron microscopy. The scales of the "normal" and clytie forms of A. ilia have a different nanostructure, but are of the same type. A similar type of structure, but with a different morphology, was also noticed in A. iris. The scales of the analyzed species resemble the scales of tropical Morpho butterflies. Copyright © 2012 Wiley Periodicals, Inc.
Advances in the Surface Renewal Flux Measurement Method
NASA Astrophysics Data System (ADS)
Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.
2011-12-01
The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments underestimate the sensible heat flux, yielding results that are less than 50% of the sensible heat flux measured with finer sensors. We present the methodology for correcting the thermocouple signal to avoid underestimating the heat flux at both the smallest and the second smallest coherent structure scale.
NASA Astrophysics Data System (ADS)
Kh. Beheshti, Hamid
This study is focusing on the application of foam materials in aviation. These materials are being used for acoustic purposes, as padding in the finished interior panels of the aircraft, and as seat cushions. Foams are mostly used in seating applications. Since seat cushion is directly interacting with the body of occupant, it has to be ergonomically comfortable beside of absorbing the energy during the impact. All the seats and seat cushions have to pass regulations defined by Federal Aviation Administration (FAA). In fact, all airplane companies are required to certify the subcomponents of aircrafts before installing them on the main structure, fuselage. Current Federal Aviation Administration Regulations require a dynamic sled test of the entire seat system for certifying the seat cushions. This dynamic testing is required also for replacing the deteriorated cushions with new cushions. This involves a costly and time-consuming certification process. AGATE group has suggested a procedure based on quasi-static testing in order to certify new seat cushions without conducting full-scale dynamic sled testing. AGATE subcomponent methodology involves static tests of the energy-absorbing foam cushions and design validation by conducting a full-scale dynamic seat test. Microscopic and macroscopic studies are necessary to provide a complete understanding about performance of foams during the crash. Much investigation has been done by different sources to obtain the reliable modeling in terms of demonstration of mechanical behavior of foams. However, rate sensitivity of foams needs more attention. A mathematical hybrid dynamic model for the cushion underneath of the human body will be taken into consideration in this research. Analytical and finite element codes such as MADYMO and LS-DYNA codes have the potential to greatly speed up the crashworthy design process, to help certify seats and aircraft to dynamic crash loads, to predict seat and occupant response to impact with the probability of injury, and to evaluate numerous crash scenarios not economically feasible with full-scale crash testing. Therefore, these codes are being used to find the accurate response of spinal load during the impact of model including human body, seat cushion and seat under different acceleration pulses. (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masada, Youhei; Sano, Takayoshi, E-mail: ymasada@auecc.aichi-edu.ac.jp, E-mail: sano@ile.osaka-u.ac.jp
We report the first successful simulation of spontaneous formation of surface magnetic structures from a large-scale dynamo by strongly stratified thermal convection in Cartesian geometry. The large-scale dynamo observed in our strongly stratified model has physical properties similar to those in earlier weakly stratified convective dynamo simulations, indicating that the α {sup 2}-type mechanism is responsible for the dynamo. In addition to the large-scale dynamo, we find that large-scale structures of the vertical magnetic field are spontaneously formed in the convection zone (CZ) surface only in cases with a strongly stratified atmosphere. The organization of the vertical magnetic field proceedsmore » in the upper CZ within tens of convective turnover time and band-like bipolar structures recurrently appear in the dynamo-saturated stage. We consider several candidates to be possibly be the origin of the surface magnetic structure formation, and then suggest the existence of an as-yet-unknown mechanism for the self-organization of the large-scale magnetic structure, which should be inherent in the strongly stratified convective atmosphere.« less
Investigation of Gearbox Vibration Transmission Paths on Gear Condition Indicator Performance
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Islam, AKM Anwarul; Feldman, Jason; Larsen, Chris
2013-01-01
Helicopter health monitoring systems use vibration signatures generated from damaged components to identify transmission faults. For damaged gears, these signatures relate to changes in dynamics due to the meshing of the damaged tooth. These signatures, referred to as condition indicators (CI), can perform differently when measured on different systems, such as a component test rig, or a full-scale transmission test stand, or an aircraft. These differences can result from dissimilarities in systems design and environment under dynamic operating conditions. The static structure can also filter the response between the vibration source and the accelerometer, when the accelerometer is installed on the housing. To assess the utility of static vibration transfer paths for predicting gear CI performance, measurements were taken on the NASA Glenn Spiral Bevel Gear Fatigue Test Rig. The vibration measurements were taken to determine the effect of torque, accelerometer location and gearbox design on accelerometer response. Measurements were taken at the housing and compared while impacting the gear set near mesh. These impacts were made at gear mesh to simulate gear meshing dynamics. Data measured on a helicopter gearbox installed in a static fixture were also compared to the test rig. The behavior of the structure under static conditions was also compared to CI values calculated under dynamic conditions. Results indicate that static vibration transfer path measurements can provide some insight into spiral bevel gear CI performance by identifying structural characteristics unique to each system that can affect specific CI response.
A characteristic energy scale in glasses.
Lerner, Edan; Bouchbinder, Eran
2018-06-07
Intrinsically generated structural disorder endows glassy materials with a broad distribution of various microscopic quantities-such as relaxation times and activation energies-without an obvious characteristic scale. At the same time, macroscopic glassy responses-such as Newtonian (linear) viscosity and nonlinear plastic deformation-are widely interpreted in terms of a characteristic energy scale, e.g., an effective temperature-dependent activation energy in Arrhenius relations. Nevertheless, despite its fundamental importance, such a characteristic energy scale has not been robustly identified. Inspired by the accumulated evidence regarding the crucial role played by disorder- and frustration-induced soft quasilocalized excitations in determining the properties and dynamics of glasses, we propose that the bulk average of the glass response to a localized force dipole defines such a characteristic energy scale. We show that this characteristic glassy energy scale features remarkable properties: (i) It increases dramatically in underlying inherent structures of equilibrium supercooled states approaching the glass transition temperature T g , significantly surpassing the corresponding increase in the macroscopic shear modulus, dismissing the common view that structural variations in supercooled liquids upon vitrification are minute. (ii) Its variation with annealing and system size is very similar in magnitude and form to that of the energy of the softest non-phononic vibrational mode, thus establishing a nontrivial relation between a rare glassy fluctuation and a bulk average response. (iii) It exhibits striking dependence on spatial dimensionality and system size due to the long-ranged fields associated with quasilocalization, which are speculated to be related to peculiarities of the glass transition in two dimensions. In addition, we identify a truly static growing lengthscale associated with the characteristic glassy energy scale and discuss possible connections between the increase of this energy scale and the slowing down of dynamics near the glass transition temperature. Open questions and future directions are discussed.
ERIC Educational Resources Information Center
Li, Ying; Jiao, Hong; Lissitz, Robert W.
2012-01-01
This study investigated the application of multidimensional item response theory (IRT) models to validate test structure and dimensionality. Multiple content areas or domains within a single subject often exist in large-scale achievement tests. Such areas or domains may cause multidimensionality or local item dependence, which both violate the…
Parametric Study of the Effect of Membrane Tension on Sunshield Dynamics
NASA Technical Reports Server (NTRS)
Ross, Brian; Johnston, John D.; Smith, James
2002-01-01
The NGST sunshield is a lightweight, flexible structure consisting of pretensioned membranes supported by deployable booms. The structural dynamic behavior of the sunshield must be well understood in order to predict its influence on observatory performance. A 1/10th scale model of the sunshield has been developed for ground testing to provide data to validate modeling techniques for thin film membrane structures. The validated models can then be used to predict the behaviour of the full scale sunshield. This paper summarizes the most recent tests performed on the 1/10th scale sunshield to study the effect of membrane preload on sunshield dynamics. Topics to be covered include the test setup, procedures, and a summary of results.
Application of Probability Methods to Assess Crash Modeling Uncertainty
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Stockwell, Alan E.; Hardy, Robin C.
2003-01-01
Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stress-strain behaviors, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the effects of finite element modeling assumptions on the predicted responses. The vertical drop test of a Fokker F28 fuselage section will be the focus of this paper. The results of a probabilistic analysis using finite element simulations will be compared with experimental data.
Application of Probability Methods to Assess Crash Modeling Uncertainty
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Stockwell, Alan E.; Hardy, Robin C.
2007-01-01
Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stress-strain behaviors, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the effects of finite element modeling assumptions on the predicted responses. The vertical drop test of a Fokker F28 fuselage section will be the focus of this paper. The results of a probabilistic analysis using finite element simulations will be compared with experimental data.
Canonical Nonlinear Viscous Core Solution in pipe and elliptical geometry
NASA Astrophysics Data System (ADS)
Ozcakir, Ozge
2016-11-01
In an earlier paper (Ozcakir et al. (2016)), two new nonlinear traveling wave solutions were found with collapsing structure towards the center of the pipe as Reynolds number R -> ∞ , which were called Nonlinear Viscous Core (NVC) states. Asymptotic scaling arguments suggested that the NVC state collapse rate scales as R - 1 / 4 where axial, radial and azimuthal velocity perturbations from Hagen-Poiseuille flow scale as R - 1 / 2, R - 3 / 4 and R - 3 / 4 respectively, while (1 - c) = O (R - 1 / 2) where c is the traveling wave speed. The theoretical scaling results were roughly consistent with full Navier-Stokes numerical computations in the range 105 < R <106 . In the present paper, through numerical solutions, we show that the scaled parameter free canonical differential equations derived in Ozcakir et al. (2016) indeed has solution that satisfies requisite far-field conditions. We also show that these are in good agreement with full Navier-Stokes calculations in a larger R range than previously calculated (R upto 106). Further, we extend our study to NVC states for pipes with elliptical cross-section and identify similar canonical structure in these cases. National Science Foundation NSF-DMS-1515755, EPSRC Grant EP/1037948/1.
Reversible Self-Actuated Thermo-Responsive Pore Membrane
Park, Younggeun; Gutierrez, Maria Paz; Lee, Luke P.
2016-01-01
Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control. PMID:27991563
Reversible Self-Actuated Thermo-Responsive Pore Membrane
NASA Astrophysics Data System (ADS)
Park, Younggeun; Gutierrez, Maria Paz; Lee, Luke P.
2016-12-01
Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control.
da Silva, Pedro Giovâni; Hernández, Malva Isabel Medina
2015-01-01
Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution and functional organization of Scarabaeinae beetles. We conclude that functional diversity may be used as a complementary approach to traditional measures, and that community deconstruction allows sufficient disentangling of responses of different trait-based groups. PMID:25822150
Attitudes Toward Transgender Men and Women: Development and Validation of a New Measure
Billard, Thomas J
2018-01-01
A series of three studies were conducted to generate, develop, and validate the Attitudes toward Transgender Men and Women (ATTMW) scale. In Study 1, 120 American adults responded to an open-ended questionnaire probing various dimensions of their perceptions of transgender individuals and identity. Qualitative thematic analysis generated 200 items based on their responses. In Study 2, 238 American adults completed a questionnaire consisting of the generated items. Exploratory factor analysis (EFA) revealed two non-identical 12-item subscales (ATTM and ATTW) of the full 24-item scale. In Study 3, 150 undergraduate students completed a survey containing the ATTMW and a number of validity-testing variables. Confirmatory factor analysis (CFA) verified the single-factor structures of the ATTM and ATTW subscales, and the convergent, discriminant, predictive, and concurrent validities of the ATTMW were also established. Together, our results demonstrate that the ATTMW is a reliable and valid measure of attitudes toward transgender individuals. PMID:29666595
Monfardini, Linda; Minelli, Fausto
2016-08-30
Alkali Activated Concrete (AAC) is an alternative kind of concrete that uses fly ash as a total replacement of Portland cement. Fly ash combined with alkaline solution and cured at high temperature reacts to form a binder. Four point bending tests on two full scale beams made with AAC are described in this paper. Companion small material specimens were also casted with the aim of properly characterizing this new tailored material. The beam's length was 5000 mm and the cross section was 200 mm × 300 mm. The AAC consisted of fly ash, water, sand 0-4 mm and coarse aggregate 6-10 mm; and the alkaline solution consisted of sodium hydroxide mixed with sodium silicate. No cement was utilized. The maximum aggregate size was 10 mm; fly ash was type F, containing a maximum calcium content of 2%. After a rest period of two days, the beam was cured at 60 °C for 24 h. Data collected and critically discussed included beam deflection, crack patterns, compressive and flexural strength and elastic modulus. Results show how AAC behavior is comparable with Ordinary Portland Cement (OPC) based materials. Nonlinear numerical analyses are finally reported, promoting a better understanding of the structural response.
Shake Table Testing of an Elevator System in a Full-Scale Five-Story Building
Wang, Xiang; Hutchinson, Tara C.; Astroza, Rodrigo; Conte, Joel P.; Restrepo, José I.; Hoehler, Matthew S.; Ribeiro, Waldir
2016-01-01
SUMMARY This paper investigates the seismic performance of a functional traction elevator as part of a full-scale five-story building shake table test program. The test building was subjected to a suite of earthquake input motions of increasing intensity, first while the building was isolated at its base, and subsequently while it was fixed to the shake table platen. In addition, low-amplitude white noise base excitation tests were conducted while the elevator system was placed in three different configurations, namely, by varying the vertical location of its cabin and counterweight, to study the acceleration amplifications of the elevator components due to dynamic excitations. During the earthquake tests, detailed observation of the physical damage and operability of the elevator as well as its measured response are reported. Although the cabin and counterweight sustained large accelerations due to impact during these tests, the use of well-restrained guide shoes demonstrated its effectiveness in preventing the cabin and counterweight from derailment during high-intensity earthquake shaking. However, differential displacements induced by the building imposed undesirable distortion of the elevator components and their surrounding support structure, which caused damage and inoperability of the elevator doors. It is recommended that these aspects be explicitly considered in elevator seismic design. PMID:28242957
Monfardini, Linda; Minelli, Fausto
2016-01-01
Alkali Activated Concrete (AAC) is an alternative kind of concrete that uses fly ash as a total replacement of Portland cement. Fly ash combined with alkaline solution and cured at high temperature reacts to form a binder. Four point bending tests on two full scale beams made with AAC are described in this paper. Companion small material specimens were also casted with the aim of properly characterizing this new tailored material. The beam’s length was 5000 mm and the cross section was 200 mm × 300 mm. The AAC consisted of fly ash, water, sand 0–4 mm and coarse aggregate 6–10 mm; and the alkaline solution consisted of sodium hydroxide mixed with sodium silicate. No cement was utilized. The maximum aggregate size was 10 mm; fly ash was type F, containing a maximum calcium content of 2%. After a rest period of two days, the beam was cured at 60 °C for 24 h. Data collected and critically discussed included beam deflection, crack patterns, compressive and flexural strength and elastic modulus. Results show how AAC behavior is comparable with Ordinary Portland Cement (OPC) based materials. Nonlinear numerical analyses are finally reported, promoting a better understanding of the structural response. PMID:28773861
Shake Table Testing of an Elevator System in a Full-Scale Five-Story Building.
Wang, Xiang; Hutchinson, Tara C; Astroza, Rodrigo; Conte, Joel P; Restrepo, José I; Hoehler, Matthew S; Ribeiro, Waldir
2017-03-01
This paper investigates the seismic performance of a functional traction elevator as part of a full-scale five-story building shake table test program. The test building was subjected to a suite of earthquake input motions of increasing intensity, first while the building was isolated at its base, and subsequently while it was fixed to the shake table platen. In addition, low-amplitude white noise base excitation tests were conducted while the elevator system was placed in three different configurations, namely, by varying the vertical location of its cabin and counterweight, to study the acceleration amplifications of the elevator components due to dynamic excitations. During the earthquake tests, detailed observation of the physical damage and operability of the elevator as well as its measured response are reported. Although the cabin and counterweight sustained large accelerations due to impact during these tests, the use of well-restrained guide shoes demonstrated its effectiveness in preventing the cabin and counterweight from derailment during high-intensity earthquake shaking. However, differential displacements induced by the building imposed undesirable distortion of the elevator components and their surrounding support structure, which caused damage and inoperability of the elevator doors. It is recommended that these aspects be explicitly considered in elevator seismic design.
Validity evidence for the measurement of the strength of motivation for medical school.
Kusurkar, Rashmi; Croiset, Gerda; Kruitwagen, Cas; ten Cate, Olle
2011-05-01
The Strength of Motivation for Medical School (SMMS) questionnaire is designed to determine the strength of motivation of students particularly for medical study. This research was performed to establish the validity evidence for measuring strength of motivation for medical school. Internal structure and relations to other variables were used as the sources of validity evidence. The SMMS questionnaire was filled out by 1,494 medical students in different years of medical curriculum. The validity evidence for the internal structure was analyzed by principal components analysis with promax rotation. Validity evidence for relations to other variables was tested by comparing the SMMS scores with scores on the Academic Motivation Scale (AMS) and the exhaustion scale of Maslach Burnout Inventory-Student Survey (MBI-SS) for measuring study stress. Evidence for internal consistency was determined through the Cronbach's alpha for reliability. The analysis showed that the SMMS had a 3-factor structure. The validity in relations to other variables was established as both, the subscales and full scale scores significantly correlated positively with the intrinsic motivation scores and with the more autonomous forms of extrinsic motivation, the correlation decreasing and finally becoming negative towards the extrinsic motivation end of the spectrum. They also had significant negative correlations with amotivation scale of the AMS and exhaustion scale of MBI-SS. The Cronbach's alpha for reliability of the three subscales and full SMMS scores was 0.70, 0.67, 0.55 and 0.79. The strength of motivation for medical school has a three factor structure and acceptable validity evidence was found in our study.
Passive detection of vehicle loading
NASA Astrophysics Data System (ADS)
McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Salvaggio, Philip S.; McKeown, Donald M.; Garrett, Alfred J.; Coleman, David H.; Koffman, Larry D.
2012-01-01
The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.
Using variance structure to quantify responses to perturbation in fish catches
Vidal, Tiffany E.; Irwin, Brian J.; Wagner, Tyler; Rudstam, Lars G.; Jackson, James R.; Bence, James R.
2017-01-01
We present a case study evaluation of gill-net catches of Walleye Sander vitreus to assess potential effects of large-scale changes in Oneida Lake, New York, including the disruption of trophic interactions by double-crested cormorants Phalacrocorax auritus and invasive dreissenid mussels. We used the empirical long-term gill-net time series and a negative binomial linear mixed model to partition the variability in catches into spatial and coherent temporal variance components, hypothesizing that variance partitioning can help quantify spatiotemporal variability and determine whether variance structure differs before and after large-scale perturbations. We found that the mean catch and the total variability of catches decreased following perturbation but that not all sampling locations responded in a consistent manner. There was also evidence of some spatial homogenization concurrent with a restructuring of the relative productivity of individual sites. Specifically, offshore sites generally became more productive following the estimated break point in the gill-net time series. These results provide support for the idea that variance structure is responsive to large-scale perturbations; therefore, variance components have potential utility as statistical indicators of response to a changing environment more broadly. The modeling approach described herein is flexible and would be transferable to other systems and metrics. For example, variance partitioning could be used to examine responses to alternative management regimes, to compare variability across physiographic regions, and to describe differences among climate zones. Understanding how individual variance components respond to perturbation may yield finer-scale insights into ecological shifts than focusing on patterns in the mean responses or total variability alone.
Multiscale characterization and mechanical modeling of an Al-Zn-Mg electron beam weld
NASA Astrophysics Data System (ADS)
Puydt, Quentin; Flouriot, Sylvain; Ringeval, Sylvain; Parry, Guillaume; De Geuser, Frédéric; Deschamps, Alexis
Welding of precipitation hardening alloys results in multi-scale microstructural heterogeneities, from the hardening nano-scale precipitates to the micron-scale solidification structures and to the component geometry. This heterogeneity results in a complex mechanical response, with gradients in strength, stress triaxiality and damage initiation sites.
Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea
Giles, Emily C; Saenz-Agudelo, Pablo; Hussey, Nigel E; Ravasi, Timothy; Berumen, Michael L
2015-01-01
A main goal of population geneticists is to study patterns of gene flow to gain a better understanding of the population structure in a given organism. To date most efforts have been focused on studying gene flow at either broad scales to identify barriers to gene flow and isolation by distance or at fine spatial scales in order to gain inferences regarding reproduction and local dispersal. Few studies have measured connectivity at multiple spatial scales and have utilized novel tools to test the influence of both environment and geography on shaping gene flow in an organism. Here a seascape genetics approach was used to gain insight regarding geographic and ecological barriers to gene flow of a common reef sponge, Stylissa carteri in the Red Sea. Furthermore, a small-scale (<1 km) analysis was also conducted to infer reproductive potential in this organism. At the broad scale, we found that sponge connectivity is not structured by geography alone, but rather, genetic isolation in the southern Red Sea correlates strongly with environmental heterogeneity. At the scale of a 50-m transect, spatial autocorrelation analyses and estimates of full-siblings revealed that there is no deviation from random mating. However, at slightly larger scales (100–200 m) encompassing multiple transects at a given site, a greater proportion of full-siblings was found within sites versus among sites in a given location suggesting that mating and/or dispersal are constrained to some extent at this spatial scale. This study adds to the growing body of literature suggesting that environmental and ecological variables play a major role in the genetic structure of marine invertebrate populations. PMID:26257865
Exploring the Full-Information Bifactor Model in Vertical Scaling with Construct Shift
ERIC Educational Resources Information Center
Li, Ying; Lissitz, Robert W.
2012-01-01
To address the lack of attention to construct shift in item response theory (IRT) vertical scaling, a multigroup, bifactor model was proposed to model the common dimension for all grades and the grade-specific dimensions. Bifactor model estimation accuracy was evaluated through a simulation study with manipulated factors of percentage of common…
A Response to Some Questions Raised About the Woodcock-Johnson: I. The Mean Score Discrepancy Issue.
ERIC Educational Resources Information Center
Woodcook, Richard W.
1984-01-01
Twenty-one studies that reported mean score differences between the Woodcock-Johnson Tests of Cognitive Ability (WJTCA) and the Wechsler Intelligence Scale for Children-Revised (WISC-R) Full Scale are summarized. The differences are found to be minimal and are attributed to data bias and WJTCA's higher correlation with achievement. (EGS)
Coster, Wendy J.; Haley, Stephen M.; Ni, Pengsheng; Dumas, Helene M.; Fragala-Pinkham, Maria A.
2009-01-01
Objective To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the Self-Care and Social Function scales of the Pediatric Evaluation of Disability Inventory (PEDI) compared to the full-length version of these scales. Design Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Settings Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children’s homes. Participants Four hundred sixty-nine children with disabilities and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Interventions Not applicable. Main Outcome Measures Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length Self-Care and Social Function scales; time (in seconds) to complete assessments and respondent ratings of burden. Results Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (all r’s between .94 and .99). Using computer simulation of retrospective data, discriminant validity and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared to over 16 minutes to complete the full-length scales. Conclusions Self-care and Social Function score estimates from CAT administration are highly comparable to those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time. PMID:18373991
Microbial community structures in foaming and nonfoaming full-scale wastewater treatment plants.
de los Reyes, Francis L; Rothauszky, Dagmar; Raskin, Lutgarde
2002-01-01
A survey of full-scale activated-sludge plants in Illinois revealed that filamentous foaming is a widespread problem in the state, and that the causes and consequences of foaming control strategies are not fully understood. To link microbial community structure to foam occurrence, microbial populations in eight foaming and nine nonfoaming full-scale activated-sludge systems were quantified using oligonucleotide hybridization probes targeting the ribosomal RNA (rRNA) of the mycolata; Gordonia spp.; Gordonia amarae; "Candidatus Microthrix parvicella"; the alpha-, beta-, and gamma-subclasses of the Proteobacteria, and members of the Cytophaga-Flavobacteria. Parallel measurements of microbial population abundance using hybridization of extracted RNA and fluorescence in situ hybridization (FISH) showed that the levels of mycolata, particularly Gordonia spp., were higher in most foaming systems compared with nonfoaming systems. Fluorescence in situ hybridization and microscopy suggested the involvement of "Candidatus Microthrix parvicella" and Skermania piniformis in foam formation in other plants. Finally, high numbers of "Candidatus Microthrix parvicella" were detected by FISH in foam and mixed liquor samples of one plant, whereas the corresponding levels of rRNA were low. This finding implies that inactive "Candidatus Microthrix parvicella" cells (i.e., cells with low rRNA levels) can cause foaming.
A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Jackson, K. E.; Fasanella, E. L.
2003-01-01
The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.
Scaling of membrane-type locally resonant acoustic metamaterial arrays.
Naify, Christina J; Chang, Chia-Ming; McKnight, Geoffrey; Nutt, Steven R
2012-10-01
Metamaterials have emerged as promising solutions for manipulation of sound waves in a variety of applications. Locally resonant acoustic materials (LRAM) decrease sound transmission by 500% over acoustic mass law predictions at peak transmission loss (TL) frequencies with minimal added mass, making them appealing for weight-critical applications such as aerospace structures. In this study, potential issues associated with scale-up of the structure are addressed. TL of single-celled and multi-celled LRAM was measured using an impedance tube setup with systematic variation in geometric parameters to understand the effects of each parameter on acoustic response. Finite element analysis was performed to predict TL as a function of frequency for structures with varying complexity, including stacked structures and multi-celled arrays. Dynamic response of the array structures under discrete frequency excitation was investigated using laser vibrometry to verify negative dynamic mass behavior.
Structural Integrity of an Electron Beam Melted Titanium Alloy.
Lancaster, Robert; Davies, Gareth; Illsley, Henry; Jeffs, Spencer; Baxter, Gavin
2016-06-14
Advanced manufacturing encompasses the wide range of processes that consist of "3D printing" of metallic materials. One such method is Electron Beam Melting (EBM), a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP) test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response.
SU-E-T-472: Improvement of IMRT QA Passing Rate by Correcting Angular Dependence of MatriXX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Q; Watkins, W; Kim, T
2015-06-15
Purpose: Multi-channel planar detector arrays utilized for IMRT-QA, such as the MatriXX, exhibit an incident-beam angular dependent response which can Result in false-positive gamma-based QA results, especially for helical tomotherapy plans which encompass the full range of beam angles. Although MatriXX can use with gantry angle sensor to provide automatically angular correction, this sensor does not work with tomotherapy. The purpose of the study is to reduce IMRT-QA false-positives by correcting for the MatriXX angular dependence. Methods: MatriXX angular dependence was characterized by comparing multiple fixed-angle irradiation measurements with corresponding TPS computed doses. For 81 Tomo-helical IMRT-QA measurements, two differentmore » correction schemes were tested: (1) A Monte-Carlo dose engine was used to compute MatriXX signal based on the angular-response curve. The computed signal was then compared with measurement. (2) Uncorrected computed signal was compared with measurements uniformly scaled to account for the average angular dependence. Three scaling factor (+2%, +2.5%, +3%) were tested. Results: The MatriXX response is 8% less than predicted for a PA beam even when the couch is fully accounted for. Without angular correction, only 67% of the cases pass the >90% points γ<1 (3%, 3mm). After full angular correction, 96% of the cases pass the criteria. Of three scaling factors, +2% gave the highest passing rate (89%), which is still less than the full angular correction method. With a stricter γ(2%,3mm) criteria, the full angular correction method was still able to achieve the 90% passing rate while the scaling method only gives 53% passing rate. Conclusion: Correction for the MatriXX angular dependence reduced the false-positives rate of our IMRT-QA process. It is necessary to correct for the angular dependence to achieve the IMRT passing criteria specified in TG129.« less
40 CFR 91.321 - NDIR analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... curve for each range used as follows: (1) Zero the analyzer. (2) Span the analyzer to give a response of approximately 90 percent of full-scale chart deflection. (3) Recheck the zero response. If it has changed more... the form of equation (1) or (2). Include zero as a data point. Compensation for known impurities in...
Validity of the Malaise Inventory in general population samples.
Rodgers, B; Pickles, A; Power, C; Collishaw, S; Maughan, B
1999-06-01
The Malaise Inventory is a commonly used self-completion scale for assessing psychiatric morbidity. There is some evidence that it may represent two separate psychological and somatic subscales rather than a single underlying factor of distress. This paper provides further information on the factor structure of the Inventory and on the reliability and validity of the total scale and two sub-scales. Two general population samples completed the full Inventory: over 11,000 subjects from the National Child Development Study at ages 23 and 33, and 544 mothers of adolescents included in the Isle of Wight epidemiological surveys. The internal consistency of the full 24-item scale and the 15-item psychological subscale were found to be acceptable, but the eight-item somatic sub-scale was less reliable. Factor analysis of all 24 items identified a first main general factor and a second more purely psychological factor. Receiver operating characteristic (ROC) analysis indicated that the validity of the scale held for men and women separately and for different socio-economic groups, by reference to external criteria covering current or recent psychiatric morbidity and service use, and that the psychological sub-scale had no greater validity than the full scale. This study did not support the separate scoring of a somatic sub-scale of the Malaise Inventory. Use of the 15-item psychological sub-scale can be justified on the grounds of reduced time and cost for completion, with little loss of reliability or validity, but this approach would not significantly enhance the properties of the Inventory by comparison with the full 24-item scale. Inclusion of somatic items may be more problematic when the full scale is used to compare particular sub-populations with different propensities for physical morbidity, such as different age groups, and in these circumstances it would be a sensible precaution to utilise the 15-item psychological sub-scale.
team. His primary responsibilities include mechanical component design, test instrumentation and layout design, and data analysis for static and fatigue tests on full-scale wind turbine blades. Education B.S
The Attitudes to Ageing Questionnaire: Mokken Scaling Analysis
Shenkin, Susan D.; Watson, Roger; Laidlaw, Ken; Starr, John M.; Deary, Ian J.
2014-01-01
Background Hierarchical scales are useful in understanding the structure of underlying latent traits in many questionnaires. The Attitudes to Ageing Questionnaire (AAQ) explored the attitudes to ageing of older people themselves, and originally described three distinct subscales: (1) Psychosocial Loss (2) Physical Change and (3) Psychological Growth. This study aimed to use Mokken analysis, a method of Item Response Theory, to test for hierarchies within the AAQ and to explore how these relate to underlying latent traits. Methods Participants in a longitudinal cohort study, the Lothian Birth Cohort 1936, completed a cross-sectional postal survey. Data from 802 participants were analysed using Mokken Scaling analysis. These results were compared with factor analysis using exploratory structural equation modelling. Results Participants were 51.6% male, mean age 74.0 years (SD 0.28). Three scales were identified from 18 of the 24 items: two weak Mokken scales and one moderate Mokken scale. (1) ‘Vitality’ contained a combination of items from all three previously determined factors of the AAQ, with a hierarchy from physical to psychosocial; (2) ‘Legacy’ contained items exclusively from the Psychological Growth scale, with a hierarchy from individual contributions to passing things on; (3) ‘Exclusion’ contained items from the Psychosocial Loss scale, with a hierarchy from general to specific instances. All of the scales were reliable and statistically significant with ‘Legacy’ showing invariant item ordering. The scales correlate as expected with personality, anxiety and depression. Exploratory SEM mostly confirmed the original factor structure. Conclusions The concurrent use of factor analysis and Mokken scaling provides additional information about the AAQ. The previously-described factor structure is mostly confirmed. Mokken scaling identifies a new factor relating to vitality, and a hierarchy of responses within three separate scales, referring to vitality, legacy and exclusion. This shows what older people themselves consider important regarding their own ageing. PMID:24892302
Clinical and experimental characteristics of "hypothetically psychosis prone" college students.
Cadenhead, K; Kumar, C; Braff, D
1996-01-01
The study of individuals at the boundaries of schizophrenia has historically involved genetic relatives of schizophrenia patients or individuals who meet criteria for schizotypal personality disorder (SPD). Recently, many investigators have turned to the use of psychometric scales, developed to measure psychotic traits or vulnerability to developing schizophrenia, to screen large populations of college students in order to identify individuals who are "psychosis prone" or "schizotypal". To help answer the question of whether students identified with psychometric scales are indeed psychosis prone, we screened 1115 college students with the Perceptual Aberration/ Magical Ideation (PerMag) and Physical Anhedonia (PhysAn) Scales. Individuals who scored 2 standard deviations (SD) above the mean on the scales were selected as experimental subjects (N = 13 PerMag, N = 10 PhysAn) and a subpopulation of matched subjects who scored less than 0.5 SD above the mean were selected as control subjects (N = 24). All subjects then received a full battery of tests, including structured clinical interviews, the MMPI, and psychophysiological measures of information processing, including prepulse inhibition and habituation of the human startle response, visual backward masking and reaction time measures. The results suggest that the PerMag scale, but not the PhysAn scale, identifies individuals with some psychotic, affective and anxiety symptoms when compared to the controls. Neither scale predicts a diagnosis of schizotypal personality disorder or deficits on measures of information processing that characterize schizophrenia or schizotypal personality disordered patients.
Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine.
Hong, Jiarong; Toloui, Mostafa; Chamorro, Leonardo P; Guala, Michele; Howard, Kevin; Riley, Sean; Tucker, James; Sotiropoulos, Fotis
2014-06-24
To improve power production and structural reliability of wind turbines, there is a pressing need to understand how turbines interact with the atmospheric boundary layer. However, experimental techniques capable of quantifying or even qualitatively visualizing the large-scale turbulent flow structures around full-scale turbines do not exist today. Here we use snowflakes from a winter snowstorm as flow tracers to obtain velocity fields downwind of a 2.5-MW wind turbine in a sampling area of ~36 × 36 m(2). The spatial and temporal resolutions of the measurements are sufficiently high to quantify the evolution of blade-generated coherent motions, such as the tip and trailing sheet vortices, identify their instability mechanisms and correlate them with turbine operation, control and performance. Our experiment provides an unprecedented in situ characterization of flow structures around utility-scale turbines, and yields significant insights into the Reynolds number similarity issues presented in wind energy applications.
Universal scaling relations in scale-free structure formation
NASA Astrophysics Data System (ADS)
Guszejnov, Dávid; Hopkins, Philip F.; Grudić, Michael Y.
2018-07-01
A large number of astronomical phenomena exhibit remarkably similar scaling relations. The most well-known of these is the mass distribution dN/dM ∝ M-2 which (to first order) describes stars, protostellar cores, clumps, giant molecular clouds, star clusters, and even dark matter haloes. In this paper we propose that this ubiquity is not a coincidence and that it is the generic result of scale-free structure formation where the different scales are uncorrelated. We show that all such systems produce a mass function proportional to M-2 and a column density distribution with a power-law tail of dA/dln Σ ∝ Σ-1. In the case where structure formation is controlled by gravity the two-point correlation becomes ξ2D ∝ R-1. Furthermore, structures formed by such processes (e.g. young star clusters, DM haloes) tend to a ρ ∝ R-3 density profile. We compare these predictions with observations, analytical fragmentation cascade models, semi-analytical models of gravito-turbulent fragmentation, and detailed `full physics' hydrodynamical simulations. We find that these power laws are good first-order descriptions in all cases.
Universal Scaling Relations in Scale-Free Structure Formation
NASA Astrophysics Data System (ADS)
Guszejnov, Dávid; Hopkins, Philip F.; Grudić, Michael Y.
2018-04-01
A large number of astronomical phenomena exhibit remarkably similar scaling relations. The most well-known of these is the mass distribution dN/dM∝M-2 which (to first order) describes stars, protostellar cores, clumps, giant molecular clouds, star clusters and even dark matter halos. In this paper we propose that this ubiquity is not a coincidence and that it is the generic result of scale-free structure formation where the different scales are uncorrelated. We show that all such systems produce a mass function proportional to M-2 and a column density distribution with a power law tail of dA/d lnΣ∝Σ-1. In the case where structure formation is controlled by gravity the two-point correlation becomes ξ2D∝R-1. Furthermore, structures formed by such processes (e.g. young star clusters, DM halos) tend to a ρ∝R-3 density profile. We compare these predictions with observations, analytical fragmentation cascade models, semi-analytical models of gravito-turbulent fragmentation and detailed "full physics" hydrodynamical simulations. We find that these power-laws are good first order descriptions in all cases.
Residual Strength Analysis Methodology: Laboratory Coupons to Structural Components
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Starnes, J. H., Jr.; Rose, C. A.; Young, R. D.; Seshadri, B. R.
2000-01-01
The NASA Aircraft Structural Integrity (NASIP) and Airframe Airworthiness Assurance/Aging Aircraft (AAA/AA) Programs have developed a residual strength prediction methodology for aircraft fuselage structures. This methodology has been experimentally verified for structures ranging from laboratory coupons up to full-scale structural components. The methodology uses the critical crack tip opening angle (CTOA) fracture criterion to characterize the fracture behavior and a material and a geometric nonlinear finite element shell analysis code to perform the structural analyses. The present paper presents the results of a study to evaluate the fracture behavior of 2024-T3 aluminum alloys with thickness of 0.04 inches to 0.09 inches. The critical CTOA and the corresponding plane strain core height necessary to simulate through-the-thickness effects at the crack tip in an otherwise plane stress analysis, were determined from small laboratory specimens. Using these parameters, the CTOA fracture criterion was used to predict the behavior of middle crack tension specimens that were up to 40 inches wide, flat panels with riveted stiffeners and multiple-site damage cracks, 18-inch diameter pressurized cylinders, and full scale curved stiffened panels subjected to internal pressure and mechanical loads.
ERIC Educational Resources Information Center
Meijer, Rob R.; de Vries, Rivka M.; van Bruggen, Vincent
2011-01-01
The psychometric structure of the Brief Symptom Inventory-18 (BSI-18; Derogatis, 2001) was investigated using Mokken scaling and parametric item response theory. Data of 487 outpatients, 266 students, and 207 prisoners were analyzed. Results of the Mokken analysis indicated that the BSI-18 formed a strong Mokken scale for outpatients and…
Characterizing the Influence of Abstraction in Full-Scale Wind Turbine Nacelle Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schkoda, Ryan; Bibo, Amin; Guo, Yi
2016-08-21
In recent years, there has been a growing interest in full-scale wind turbine nacelle testing to complement individual component testing. As a result, several wind turbine nacelle test benches have been built to perform such testing with the intent of loading the integrated components as they are in the field. However, when mounted on a test bench the nacelle is not on the top of a tower and does not have blades attached to it - this is a form of abstraction. This paper aims to quantify the influence of such an abstraction on the dynamic response of the nacellemore » through a series of simulation case studies. The responses of several nacelle components are studied including the main bearing, main shaft, gearbox supports, generator, and yaw bearing interface. Results are presented to highlight the differences in the dynamic response of the nacelle caused by the abstraction. Additionally, the authors provide recommendations for mitigating the effects of the abstraction.« less
Characterizing the Influence of Abstraction in Full-Scale Wind Turbine Nacelle Testing: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schkoda, Ryan; Bibo, Amin; Guo, Yi
2016-08-01
In recent years, there has been a growing interest in full-scale wind turbine nacelle testing to complement individual component testing. As a result, several wind turbine nacelle test benches have been built to perform such testing with the intent of loading the integrated components as they are in the field. However, when mounted on a test bench the nacelle is not on the top of a tower and does not have blades attached to it--this is a form of abstraction. This paper aims to quantify the influence of such an abstraction on the dynamic response of the nacelle through amore » series of simulation case studies. The responses of several nacelle components are studied including the main bearing, main shaft, gearbox supports, generator, and yaw bearing interface. Results are presented to highlight the differences in the dynamic response of the nacelle caused by the abstraction. Additionally, the authors provide recommendations for mitigating the effects of the abstraction.« less
Dynamic Testing of a Subscale Sunshield for the Next Generation Space Telescope (NGST)
NASA Technical Reports Server (NTRS)
Lienard, Sebastien; Johnston, John D.; Ross, Brian; Smith, James; Brodeur, Steve (Technical Monitor)
2001-01-01
The NGST sunshield is a lightweight, flexible structure consisting of multiple layers of pretensioned, thin-film membranes supported by deployable booms. The structural dynamic behavior of the sunshield must be well understood in order to predict its influence on observatory performance. Ground tests were carried out in a vacuum environment to characterize the structural dynamic behavior of a one-tenth scale model of the sunshield. Results from the tests will be used to validate analytical modeling techniques that can be used in conjunction with scaling laws to predict the performance of the full-sized structure. This paper summarizes the ground tests and presents representative results for the dynamic behavior of the sunshield.
NASA Astrophysics Data System (ADS)
Krejcar, Ondrej
New kind of mobile lightweight devices can run full scale applications with same comfort as on desktop devices only with several limitations. One of them is insufficient transfer speed on wireless connectivity. Main area of interest is in a model of a radio-frequency based system enhancement for locating and tracking users of a mobile information system. The experimental framework prototype uses a wireless network infrastructure to let a mobile lightweight device determine its indoor or outdoor position. User location is used for data prebuffering and pushing information from server to user’s PDA. All server data is saved as artifacts along with its position information in building or larger area environment. The accessing of prebuffered data on mobile lightweight device can highly improve response time needed to view large multimedia data. This fact can help with design of new full scale applications for mobile lightweight devices.
Zajac, R.N.; Lewis, R.S.; Poppe, L.J.; Twichell, D.C.; Vozarik, J.; DiGiacomo-Cohen, M. L.
2003-01-01
Relationships between population abundance and seafloor landscape, or benthoscape, structure were examined for 16 infaunal taxa in eastern Long Island Sound. Based on analyses of a side-scan sonar mosaic, the 19.4-km2 study area was comprised of six distinct large-scale (> km2) benthoscape elements, with varying levels of mesoscale (km2-m2) and small-scale (2) physical and biological habitat heterogeneity. Transition zones among elements varied from ~50 to 200 m in width, comprised ~32% of the benthoscape, and added to overall benthoscape heterogeneity. Population abundances of nine taxa varied significantly among the large-scale elements. Most species were found at high abundances only in one benthoscape element, but three had several foci of elevated abundances. Analyses of population responses to habitat heterogeneity at different spatial scales indicated that abundances of eight taxa varied significantly among spatial scales, but the significant scales were mixed among these species. Relatively large residual variations suggest significant amounts of mesoscale spatial variation were unaccounted for, varying from ~1 km2 to several m2. Responses to transition zones were mixed as well. Abundances of nine taxa varied significantly among transition zones and interiors of benthoscape elements, most with elevated abundances in transition zones. Our results show that infaunal populations exhibit complex and spatially varying patterns of abundance in relation to benthoscape structure and suggest that mesoscale variation may be particularly critical in this regard. Also, transition zones among benthoscape features add considerably to this variation and may be ecological important areas in seafloor environments.
Imura, Tomoya; Takamura, Masahiro; Okazaki, Yoshihiro; Tokunaga, Satoko
2016-10-01
We developed a scale to measure time management and assessed its reliability and validity. We then used this scale to examine the impact of time management on psychological stress response. In Study 1-1, we developed the scale and assessed its internal consistency and criterion-related validity. Findings from a factor analysis revealed three elements of time management, “time estimation,” “time utilization,” and “taking each moment as it comes.” In Study 1-2, we assessed the scale’s test-retest reliability. In Study 1-3, we assessed the validity of the constructed scale. The results indicate that the time management scale has good reliability and validity. In Study 2, we performed a covariance structural analysis to verify our model that hypothesized that time management influences perceived control of time and psychological stress response, and perceived control of time influences psychological stress response. The results showed that time estimation increases the perceived control of time, which in turn decreases stress response. However, we also found that taking each moment as it comes reduces perceived control of time, which in turn increases stress response.
Sex knowledge and attitudes of moderately retarded males.
Edmonson, B; Wish, J
1975-09-01
In semistructured interview sessions, 18 moderately retarded men undergoing deinstitutional training, were questioned to determine their understanding of pictures of homosexual embrace, masturbation, dating, marriage, intercourse, pregnancy, childbirth, drunkenness, and their knowledge of anatomical terminology. The frequencies of various response categories revealed a range of comprehension, the lowest answering only 10 percent correctly, the median consisting of 28 percent correct, and only 1 subject correctly answering as many as one-half of the items. Correct conceptual responses significantly correlated with WAIS Full Scale and Verbal IQs and were also significantly related to the Adaptive Behavior Scale domains of Language, Socialization, and Responsibility. Serious errors of fact and conceptual confusion, though most prevalent in responses by the low comprehenders, were found in at least some responses by all of the men.
Macarie, Hervé; Esquivel, Maricela; Laguna, Acela; Baron, Olivier; El Mamouni, Rachid; Guiot, Serge R; Monroy, Oscar
2017-08-26
Granulation of biomass is at the basis of the operation of the most successful anaerobic systems (UASB, EGSB and IC reactors) applied worldwide for wastewater treatment. Despite of decades of studies of the biomass granulation process, it is still not fully understood and controlled. "Degranulation/lack of granulation" is a problem that occurs sometimes in anaerobic systems resulting often in heavy loss of biomass and poor treatment efficiencies or even complete reactor failure. Such a problem occurred in Mexico in two full-scale UASB reactors treating cheese wastewater. A close follow-up of the plant was performed to try to identify the factors responsible for the phenomenon. Basically, the list of possible causes to a granulation problem that were investigated can be classified amongst nutritional, i.e. related to wastewater composition (e.g. deficiency or excess of macronutrients or micronutrients, too high COD proportion due to proteins or volatile fatty acids, high ammonium, sulphate or fat concentrations), operational (excessive loading rate, sub- or over-optimal water upflow velocity) and structural (poor hydraulic design of the plant). Despite of an intensive search, the causes of the granulation problems could not be identified. The present case remains however an example of the strategy that must be followed to identify these causes and could be used as a guide for plant operators or consultants who are confronted with a similar situation independently of the type of wastewater. According to a large literature based on successful experiments at lab scale, an attempt to artificially granulate the industrial reactor biomass through the dosage of a cationic polymer was also tested but equally failed. Instead of promoting granulation, the dosage caused a heavy sludge flotation. This shows that the scaling of such a procedure from lab to real scale cannot be advised right away unless its operability at such a scale can be demonstrated.
Instrumentation for the Characterization of Inflatable Structures
NASA Technical Reports Server (NTRS)
Swanson, Gregory T.; Cassell, Alan M.; Johnson, R. Keith
2012-01-01
Current entry, descent, and landing technologies are not practical for heavy payloads due to mass and volume constraints dictated by limitations imposed by launch vehicle fairings. Therefore, new technologies are now being explored to provide a mass- and volume-efficient solution for heavy payload capabilities, including Inflatable Aerodynamic Decelerators (IAD) [1]. Consideration of IADs for space applications has prompted the development of instrumentation systems for integration with flexible structures to characterize system response to flight-like environment testing. This development opportunity faces many challenges specific to inflatable structures in extreme environments, including but not limited to physical flexibility, packaging, temperature, structural integration and data acquisition [2]. In the spring of 2012, two large scale Hypersonic Inflatable Aerodynamic Decelerators (HIAD) will be tested in the National Full-Scale Aerodynamics Complex s 40 by 80 wind tunnel at NASA Ames Research Center. The test series will characterize the performance of a 3.0 m and 6.0 m HIAD at various angles of attack and levels of inflation during flight-like loading. To analyze the performance of these inflatable test articles as they undergo aerodynamic loading, many instrumentation systems have been researched and developed. These systems will utilize new experimental sensing systems developed by the HIAD ground test campaign instrumentation team, in addition to traditional wind tunnel sensing techniques in an effort to improve test article characterization and model validation. During the 2012 test series the instrumentation systems will target inflatable aeroshell static and dynamic deformation, structural strap loading, surface pressure distribution, localized skin deflection, and torus inflation pressure. This paper will offer an overview of inflatable structure instrumentation, and provide detail into the design and implementation of the sensors systems that will be utilized during the 2012 HIAD ground test campaign.
Mach Number effects on turbulent superstructures in wall bounded flows
NASA Astrophysics Data System (ADS)
Kaehler, Christian J.; Bross, Matthew; Scharnowski, Sven
2017-11-01
Planer and three-dimensional flow field measurements along a flat plat boundary layer in the Trisonic Wind Tunnel Munich (TWM) are examined with the aim to characterize the scaling, spatial organization, and topology of large scale turbulent superstructures in compressible flow. This facility is ideal for this investigation as the ratio of boundary layer thickness to test section spanwise extent ratio is around 1/25, ensuring minimal sidewall and corner effects on turbulent structures in the center of the test section. A major difficulty in the experimental investigation of large scale features is the mutual size of the superstructures which can extend over many boundary layer thicknesses. Using multiple PIV systems, it was possible to capture the full spatial extent of large-scale structures over a range of Mach numbers from Ma = 0.3 - 3. To calculate the average large-scale structure length and spacing, the acquired vector fields were analyzed by statistical multi-point methods that show large scale structures with a correlation length of around 10 boundary layer thicknesses over the range of Mach numbers investigated. Furthermore, the average spacing between high and low momentum structures is on the order of a boundary layer thicknesses. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures of the Deutsche Forschungsgemeinschaft.
NASA Astrophysics Data System (ADS)
Bueno, J.; Yurduseven, O.; Yates, S. J. C.; Llombart, N.; Murugesan, V.; Thoen, D. J.; Baryshev, A. M.; Neto, A.; Baselmans, J. J. A.
2017-06-01
We present the design, fabrication, and full characterisation (sensitivity, beam pattern, and frequency response) of a background limited broadband antenna coupled kinetic inductance detector covering the frequency range from 1.4 to 2.8 THz. This device shows photon noise limited performance with a noise equivalent power of 2.5 × 10-19 W/Hz1/2 at 1.55 THz and can be easily scaled to a kilo-pixel array. The measured optical efficiency, beam pattern, and antenna frequency response match very well the simulations.
Smith, Kenneth J; Davy, Jeanette A; Rosenberg, Donald L
2010-04-01
This study examined alternative seven-, five-, and three-factor structures for the Academic Motivation Scale, with data from a large convenience sample of 2,078 students matriculating in various business courses at three AACSB-accredited regional comprehensive universities. In addition, the invariance of the scale's factor structure between male and female students and between undergraduate and Master's of Business Administration students was investigated. Finally, the internal consistency of the items loading on each of the seven AMS subscales was assessed as well as whether the correlations among the subscales supported a continuum of self-determination. Results for the full sample as well as the targeted subpopulations supported the seven factor configuration of the scale with adequate model fit achieved for all but the MBA student group. The data also generated acceptable internal consistency statistics for all of the subscales. However, in line with a number of previous studies, the correlations between subscales failed to fully support the scale's simplex structure as proposed by self-determination theory.
Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application
NASA Technical Reports Server (NTRS)
Johnson, R., Jr.; Killpatrick, D. H.
1975-01-01
The design, fabrication, and testing of a full-size, full-scale TD Ni-20Cr heat shield test array in simulated mission environments is described along with the design and fabrication of two additional full-size, full-scale test arrays to be tested in flowing gas test facilities at the NASA Langley Research Center. Cost and reusability evaluations of TD Ni-20Cr heat shield systems are presented, and weight estimates of a TD Ni-20Cr heat shield system for use on a shuttle orbiter vehicle are made. Safe-line expectancy of a TD Ni-20Cr heat shield system is assessed. Non-destructive test techniques are evaluated to determine their effectiveness in quality assurance checks of TD Ni-20Cr components such as heat shields, heat shield supports, close-out panels, formed cover strips, and edge seals. Results of tests on a braze reinforced full-scale, subsize panel are included. Results show only minor structural degradation in the main TD Ni-20Cr heat shields of the test array during simulated mission test cycles.
A water tunnel flow visualization study of the vortex flow structures on the F/A-18 aircraft
NASA Technical Reports Server (NTRS)
Sandlin, Doral R.; Ramirez, Edgar J.
1991-01-01
The vortex flow structures occurring on the F/A-18 aircraft at high angles of attack were studied. A water tunnel was used to gather flow visualization data on the forebody vortex and the wing leading edge extension vortex. The longitudinal location of breakdown of the leading edge vortex was found to be consistently dependent on the angle of attack. Other parameters such as Reynolds number, model scale, and model fidelity had little influence on the overall behavior of the flow structures studied. The lateral location of the forebody vortex system was greatly influenced by changes in the angle of sideslip. Strong interactions can occur between the leading edge extension vortex and the forebody vortex. Close attention was paid to vortex induced flows on various airframe components of the F/A-18. Reynolds number and angle of attack greatly affected the swirling intensity, and therefore the strength of the studied vortices. Water tunnel results on the F/A-18 correlated well with those obtained in similar studies at both full and sub scale levels. The water tunnel can provide, under certain conditions, good simulations of realistic flows in full scale configurations.
[Factor structure of the German version of the BIS/BAS Scales in a population-based sample].
Müller, A; Smits, D; Claes, L; de Zwaan, M
2013-02-01
The Behavioural Inhibition System/Behavioural Activation System Scale (BIS/BAS-Scales) developed by Carver and White 1 is a self-rating instrument to assess the dispositional sensitivity to punishment and reward. The present work aims to examine the factor structure of the German version of the BIS/BAS-Scales. In a large German population-based sample (n = 1881) the model fit of several factor models was tested by using confirmatory factor analyses. The best model fit was found for the 5-factor model with two BIS (anxiety, fear) and three BAS (drive, reward responsiveness, fun seeking) scales, whereas the BIS-fear, the BAS-reward responsiveness, and the BAS-fun seeking subscales showed low internal consistency. The BIS/BAS scales were negatively correlated with age, and women reported higher BIS subscale scores than men. Confirmatory factor analyses suggest a 5-factor model. However, due to the low internal reliability of some of the subscales the use of this model is questionable. © Georg Thieme Verlag KG Stuttgart · New York.
Andresen, Cecilia; Niklasson, Markus; Cassman Eklöf, Sofie; Wallner, Björn
2017-01-01
Calcium dependent protein kinases are unique to plants and certain parasites and comprise an N-terminal segment and a kinase domain that is regulated by a C-terminal calcium binding domain. Since the proteins are not found in man they are potential drug targets. We have characterized the calcium binding lobes of the regulatory domain of calcium dependent protein kinase 3 from the malaria parasite Plasmodium falciparum. Despite being structurally similar, the two lobes differ in several other regards. While the monomeric N-terminal lobe changes its structure in response to calcium binding and shows global dynamics on the sub-millisecond time-scale both in its apo and calcium bound states, the C-terminal lobe could not be prepared calcium-free and forms dimers in solution. If our results can be generalized to the full-length protein, they suggest that the C-terminal lobe is calcium bound even at basal levels and that activation is caused by the structural reorganization associated with binding of a single calcium ion to the N-terminal lobe. PMID:28746405
On the large scale structure of X-ray background sources
NASA Technical Reports Server (NTRS)
Bi, H. G.; Meszaros, A.; Meszaros, P.
1991-01-01
The large scale clustering of the sources responsible for the X-ray background is discussed, under the assumption of a discrete origin. The formalism necessary for calculating the X-ray spatial fluctuations in the most general case where the source density contrast in structures varies with redshift is developed. A comparison of this with observational limits is useful for obtaining information concerning various galaxy formation scenarios. The calculations presented show that a varying density contrast has a small impact on the expected X-ray fluctuations. This strengthens and extends previous conclusions concerning the size and comoving density of large scale structures at redshifts 0.5 between 4.0.
Large-scale impacts of herbivores on the structural diversity of African savannas
Asner, Gregory P.; Levick, Shaun R.; Kennedy-Bowdoin, Ty; Knapp, David E.; Emerson, Ruth; Jacobson, James; Colgan, Matthew S.; Martin, Roberta E.
2009-01-01
African savannas are undergoing management intensification, and decision makers are increasingly challenged to balance the needs of large herbivore populations with the maintenance of vegetation and ecosystem diversity. Ensuring the sustainability of Africa's natural protected areas requires information on the efficacy of management decisions at large spatial scales, but often neither experimental treatments nor large-scale responses are available for analysis. Using a new airborne remote sensing system, we mapped the three-dimensional (3-D) structure of vegetation at a spatial resolution of 56 cm throughout 1640 ha of savanna after 6-, 22-, 35-, and 41-year exclusions of herbivores, as well as in unprotected areas, across Kruger National Park in South Africa. Areas in which herbivores were excluded over the short term (6 years) contained 38%–80% less bare ground compared with those that were exposed to mammalian herbivory. In the longer-term (> 22 years), the 3-D structure of woody vegetation differed significantly between protected and accessible landscapes, with up to 11-fold greater woody canopy cover in the areas without herbivores. Our maps revealed 2 scales of ecosystem response to herbivore consumption, one broadly mediated by geologic substrate and the other mediated by hillslope-scale variation in soil nutrient availability and moisture conditions. Our results are the first to quantitatively illustrate the extent to which herbivores can affect the 3-D structural diversity of vegetation across large savanna landscapes. PMID:19258457
Toward Active Control of Noise from Hot Supersonic Jets
2013-11-15
several laboratory - and full- scale data sets. Two different scaling scenarios are presented for the practising scientist to choose from. The first...As will be detailed below, this simple proof-of-concept experiment yielded good quality data that reveals details about the large-scale 3D structure...the light-field. Co-PI Thurow has recently designed and assembled a plenoptic camera in his laboratory with its key attributes being its compact
NASA Astrophysics Data System (ADS)
Forte, Biagio; Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary
2017-01-01
Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co-aligned GPS radio link. Large-scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large-scale structures did not cascade into smaller-scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large-scale to small-scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services.
Forte, Biagio; Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary
2017-01-01
Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co-aligned GPS radio link. Large-scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large-scale structures did not cascade into smaller-scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large-scale to small-scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services.
Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary
2017-01-01
Abstract Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co‐aligned GPS radio link. Large‐scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large‐scale structures did not cascade into smaller‐scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large‐scale to small‐scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services. PMID:28331778
Modulation of Temporal Precision in Thalamic Population Responses to Natural Visual Stimuli
Desbordes, Gaëlle; Jin, Jianzhong; Alonso, Jose-Manuel; Stanley, Garrett B.
2010-01-01
Natural visual stimuli have highly structured spatial and temporal properties which influence the way visual information is encoded in the visual pathway. In response to natural scene stimuli, neurons in the lateral geniculate nucleus (LGN) are temporally precise – on a time scale of 10–25 ms – both within single cells and across cells within a population. This time scale, established by non stimulus-driven elements of neuronal firing, is significantly shorter than that of natural scenes, yet is critical for the neural representation of the spatial and temporal structure of the scene. Here, a generalized linear model (GLM) that combines stimulus-driven elements with spike-history dependence associated with intrinsic cellular dynamics is shown to predict the fine timing precision of LGN responses to natural scene stimuli, the corresponding correlation structure across nearby neurons in the population, and the continuous modulation of spike timing precision and latency across neurons. A single model captured the experimentally observed neural response, across different levels of contrasts and different classes of visual stimuli, through interactions between the stimulus correlation structure and the nonlinearity in spike generation and spike history dependence. Given the sensitivity of the thalamocortical synapse to closely timed spikes and the importance of fine timing precision for the faithful representation of natural scenes, the modulation of thalamic population timing over these time scales is likely important for cortical representations of the dynamic natural visual environment. PMID:21151356
Analysis of Decision Making Skills for Large Scale Disaster Response
2015-08-21
Capability to influence and collaborate Compassion Teamwork Communication Leadership Provide vision of outcome / set priorities Confidence, courage to make...project evaluates the viability of expanding the use of serious games to augment classroom training, tabletop and full scale exercise, and actual...training, evaluation, analysis, and technology ex- ploration. Those techniques have found successful niches, but their wider applicability faces
NASA Astrophysics Data System (ADS)
Trapani, Davide; Zonta, Daniele; Molinari, Marco; Amditis, Angelos; Bimpas, Matthaios; Bertsch, Nicolas; Spiering, Vincent; Santana, Juan; Sterken, Tom; Torfs, Tom; Bairaktaris, Dimitris; Bairaktaris, Manos; Camarinopulos, Stefanos; Frondistou-Yannas, Mata; Ulieru, Dumitru
2012-04-01
This paper illustrates an experimental campaign conducted under laboratory conditions on a full-scale reinforced concrete three-dimensional frame instrumented with wireless sensors developed within the Memscon project. In particular it describes the assumptions which the experimental campaign was based on, the design of the structure, the laboratory setup and the results of the tests. The aim of the campaign was to validate the performance of Memscon sensing systems, consisting of wireless accelerometers and strain sensors, on a real concrete structure during construction and under an actual earthquake. Another aspect of interest was to assess the effectiveness of the full damage recognition procedure based on the data recorded by the sensors and the reliability of the Decision Support System (DSS) developed in order to provide the stakeholders recommendations for building rehabilitation and the costs of this. With these ends, a Eurocode 8 spectrum-compatible accelerogram with increasing amplitude was applied at the top of an instrumented concrete frame built in the laboratory. MEMSCON sensors were directly compared with wired instruments, based on devices available on the market and taken as references, during both construction and seismic simulation.
Validation of a Spanish-language version of the ADHD Rating Scale IV in a Spanish sample.
Vallejo-Valdivielso, M; Soutullo, C A; de Castro-Manglano, P; Marín-Méndez, J J; Díez-Suárez, A
2017-07-14
The purpose of this study is to validate a Spanish-language version of the 18-item ADHD Rating Scale-IV (ADHD-RS-IV.es) in a Spanish sample. From a total sample of 652 children and adolescents aged 6 to 17 years (mean age was 11.14±3.27), we included 518 who met the DSM-IV-TR criteria for ADHD and 134 healthy controls. To evaluate the factorial structure, validity, and reliability of the scale, we performed a confirmatory factor analysis (CFA) using structural equation modelling on a polychoric correlation matrix and maximum likelihood estimation. The scale's discriminant validity and predictive value were estimated using ROC (receiver operating characteristics) curve analysis. Both the full scale and the subscales of the Spanish-language version of the ADHD-RS-IV showed good internal consistency. Cronbach's alpha was 0.94 for the full scale and ≥ 0.90 for the subscales, and ordinal alpha was 0.95 and ≥ 0.90, respectively. CFA showed that a two-factor model (inattention and hyperactivity/impulsivity) provided the best fit for the data. ADHD-RS-IV.es offered good discriminant ability to distinguish between patients with ADHD and controls (AUC=0.97). The two-factor structure of the Spanish-language version of the ADHD-RS-IV (ADHD-RS-IV.es) is consistent with those of the DSM-IV-TR and DSM-5 as well as with the model proposed by the author of the original scale. Furthermore, it has good discriminant ability. ADHD-RS-IV.es is therefore a valid and reliable tool for determining presence and severity of ADHD symptoms in the Spanish population. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Local self-uniformity in photonic networks.
Sellers, Steven R; Man, Weining; Sahba, Shervin; Florescu, Marian
2017-02-17
The interaction of a material with light is intimately related to its wavelength-scale structure. Simple connections between structure and optical response empower us with essential intuition to engineer complex optical functionalities. Here we develop local self-uniformity (LSU) as a measure of a random network's internal structural similarity, ranking networks on a continuous scale from crystalline, through glassy intermediate states, to chaotic configurations. We demonstrate that complete photonic bandgap structures possess substantial LSU and validate LSU's importance in gap formation through design of amorphous gyroid structures. Amorphous gyroid samples are fabricated via three-dimensional ceramic printing and the bandgaps experimentally verified. We explore also the wing-scale structuring in the butterfly Pseudolycaena marsyas and show that it possesses substantial amorphous gyroid character, demonstrating the subtle order achieved by evolutionary optimization and the possibility of an amorphous gyroid's self-assembly.
Local self-uniformity in photonic networks
NASA Astrophysics Data System (ADS)
Sellers, Steven R.; Man, Weining; Sahba, Shervin; Florescu, Marian
2017-02-01
The interaction of a material with light is intimately related to its wavelength-scale structure. Simple connections between structure and optical response empower us with essential intuition to engineer complex optical functionalities. Here we develop local self-uniformity (LSU) as a measure of a random network's internal structural similarity, ranking networks on a continuous scale from crystalline, through glassy intermediate states, to chaotic configurations. We demonstrate that complete photonic bandgap structures possess substantial LSU and validate LSU's importance in gap formation through design of amorphous gyroid structures. Amorphous gyroid samples are fabricated via three-dimensional ceramic printing and the bandgaps experimentally verified. We explore also the wing-scale structuring in the butterfly Pseudolycaena marsyas and show that it possesses substantial amorphous gyroid character, demonstrating the subtle order achieved by evolutionary optimization and the possibility of an amorphous gyroid's self-assembly.
[Factor structure validity of the social capital scale used at baseline in the ELSA-Brasil study].
Souto, Ester Paiva; Vasconcelos, Ana Glória Godoi; Chor, Dora; Reichenheim, Michael E; Griep, Rosane Härter
2016-07-21
This study aims to analyze the factor structure of the Brazilian version of the Resource Generator (RG) scale, using baseline data from the Brazilian Longitudinal Health Study in Adults (ELSA-Brasil). Cross-validation was performed in three random subsamples. Exploratory factor analysis using exploratory structural equation models was conducted in the first two subsamples to diagnose the factor structure, and confirmatory factor analysis was used in the third to corroborate the model defined by the exploratory analyses. Based on the 31 initial items, the model with the best fit included 25 items distributed across three dimensions. They all presented satisfactory convergent validity (values greater than 0.50 for the extracted variance) and precision (values greater than 0.70 for compound reliability). All factor correlations were below 0.85, indicating full discriminative factor validity. The RG scale presents acceptable psychometric properties and can be used in populations with similar characteristics.
Findings from the Supersonic Qualification Program of the Mars Science Laboratory Parachute System
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Steltzner, Adam; Witkowski, Allen; Candler, Graham; Pantano, Carlos
2009-01-01
In 2012, the Mars Science Laboratory Mission (MSL) will deploy NASA's largest extra-terrestrial parachute, a technology integral to the safe landing of its advanced robotic explorer on the surface. The supersonic parachute system is a mortar deployed 21.5 m disk-gap-band (DGB) parachute, identical in geometric scaling to the Viking era DGB parachutes of the 1970's. The MSL parachute deployment conditions are Mach 2.3 at a dynamic pressure of 750 Pa. The Viking Balloon Launched Decelerator Test (BLDT) successfully demonstrated a maximum of 700 Pa at Mach 2.2 for a 16.1 m DGB parachute in its AV4 flight. All previous Mars deployments have derived their supersonic qualification from the Viking BLDT test series, preventing the need for full scale high altitude supersonic testing. The qualification programs for Mars Pathfinder, Mars Exploration Rover, and Phoenix Scout Missions were all limited to subsonic structural qualification, with supersonic performance and survivability bounded by the BLDT qualification. The MSL parachute, at the edge of the supersonic heritage deployment space and 33% larger than the Viking parachute, accepts a certain degree of risk without addressing the supersonic environment in which it will deploy. In addition, MSL will spend up to 10 seconds above Mach 1.5, an aerodynamic regime that is associated with a known parachute instability characterized by significant canopy projected area fluctuation and dynamic drag variation. This aerodynamic instability, referred to as "area oscillations" by the parachute community has drag performance, inflation stability, and structural implications, introducing risk to mission success if not quantified for the MSL parachute system. To minimize this risk and as an alternative to a prohibitively expensive high altitude test program, a multi-phase qualification program using computation simulation validated by subscale test was developed and implemented for MSL. The first phase consisted of 2% of fullscale supersonic wind tunnel testing of a rigid DGB parachute with entry-vehicle to validate two high fidelity computational fluid dynamics (CFD) tools. The computer codes utilized Large Eddy Simulation and Detached Eddy Simulation numerical approaches to accurately capture the turbulent wake of the entry vehicle and its coupling to the parachute bow-shock. The second phase was the development of fluid structure interaction (FSI) computational tools to predict parachute response to the supersonic flow field. The FSI development included the integration of the CFD from the first phase with a finite element structural model of the parachute membrane and cable elements. In this phase, a 4% of full-scale supersonic flexible parachute test program was conducted to provide validation data to the FSI code and an empirical dataset of the MSL parachute in a flight-like environment. The final phase is FSI simulations of the full-scale MSL parachute in a Mars type deployment. Findings from this program will be presented in terms of code development and validation, empirical findings from the supersonic testing, and drag performance during supersonic operation.
Determination of macro-scale soil properties from pore-scale structures: model derivation.
Daly, K R; Roose, T
2018-01-01
In this paper, we use homogenization to derive a set of macro-scale poro-elastic equations for soils composed of rigid solid particles, air-filled pore space and a poro-elastic mixed phase. We consider the derivation in the limit of large deformation and show that by solving representative problems on the micro-scale we can parametrize the macro-scale equations. To validate the homogenization procedure, we compare the predictions of the homogenized equations with those of the full equations for a range of different geometries and material properties. We show that the results differ by [Formula: see text] for all cases considered. The success of the homogenization scheme means that it can be used to determine the macro-scale poro-elastic properties of soils from the underlying structure. Hence, it will prove a valuable tool in both characterization and optimization.
NASA Astrophysics Data System (ADS)
Kaneda, Shogo; Hayashi, Kazuhiro; Hachimori, Wataru; Tamura, Shuji; Saito, Taiki
2017-10-01
In past earthquake disasters, numerous building structure piles were damaged by soil liquefaction occurring during the earthquake. Damage to these piles, because they are underground, is difficult to find. The authors aim to develop a monitoring method of pile damage based on superstructure dynamic response. This paper investigated the relationship between the damage of large cross section cementitious piles and the dynamic response of the super structure using a centrifuge test apparatus. A dynamic specimen used simple cross section pile models consisting of aluminum rod and mortar, a saturated soil (Toyoura sand) of a relative density of 40% and a super structure model of a natural period of 0.63sec. In the shaking table test under a 50G field (length scale of 1/50), excitation was a total of 3 motions scaled from the Rinkai wave at different amplitudes. The maximum acceleration of each of the excitations was 602gal, 336gal and 299gal. The centrifuge test demonstrated the liquefaction of saturated soil and the failure behavior of piles. In the test result, the damage of piles affected the predominant period of acceleration response spectrum on the footing of the superstructure.
Required number of records for ASCE/SEI 7 ground-motion scaling procedure
Reyes, Juan C.; Kalkan, Erol
2011-01-01
The procedures and criteria in 2006 IBC (International Council of Building Officials, 2006) and 2007 CBC (International Council of Building Officials, 2007) for the selection and scaling ground-motions for use in nonlinear response history analysis (RHA) of structures are based on ASCE/SEI 7 provisions (ASCE, 2005, 2010). According to ASCE/SEI 7, earthquake records should be selected from events of magnitudes, fault distance, and source mechanisms that comply with the maximum considered earthquake, and then scaled so that the average value of the 5-percent-damped response spectra for the set of scaled records is not less than the design response spectrum over the period range from 0.2Tn to 1.5Tn sec (where Tn is the fundamental vibration period of the structure). If at least seven ground-motions are analyzed, the design values of engineering demand parameters (EDPs) are taken as the average of the EDPs determined from the analyses. If fewer than seven ground-motions are analyzed, the design values of EDPs are taken as the maximum values of the EDPs. ASCE/SEI 7 requires a minimum of three ground-motions. These limits on the number of records in the ASCE/SEI 7 procedure are based on engineering experience, rather than on a comprehensive evaluation. This study statistically examines the required number of records for the ASCE/SEI 7 procedure, such that the scaled records provide accurate, efficient, and consistent estimates of" true" structural responses. Based on elastic-perfectly-plastic and bilinear single-degree-of-freedom systems, the ASCE/SEI 7 scaling procedure is applied to 480 sets of ground-motions. The number of records in these sets varies from three to ten. The records in each set were selected either (i) randomly, (ii) considering their spectral shapes, or (iii) considering their spectral shapes and design spectral-acceleration value, A(Tn). As compared to benchmark (that is, "true") responses from unscaled records using a larger catalog of ground-motions, it is demonstrated that the ASCE/SEI 7 scaling procedure is overly conservative if fewer than seven ground-motions are employed. Utilizing seven or more randomly selected records provides a more accurate estimate of the EDPs accompanied by reduced record-to-record variability of the responses. Consistency in accuracy and efficiency is achieved only if records are selected on the basis of their spectral shape and A(Tn).
2011-01-01
Background There is a lack of acceptable, reliable, and valid survey instruments to measure conceptual research utilization (CRU). In this study, we investigated the psychometric properties of a newly developed scale (the CRU Scale). Methods We used the Standards for Educational and Psychological Testing as a validation framework to assess four sources of validity evidence: content, response processes, internal structure, and relations to other variables. A panel of nine international research utilization experts performed a formal content validity assessment. To determine response process validity, we conducted a series of one-on-one scale administration sessions with 10 healthcare aides. Internal structure and relations to other variables validity was examined using CRU Scale response data from a sample of 707 healthcare aides working in 30 urban Canadian nursing homes. Principal components analysis and confirmatory factor analyses were conducted to determine internal structure. Relations to other variables were examined using: (1) bivariate correlations; (2) change in mean values of CRU with increasing levels of other kinds of research utilization; and (3) multivariate linear regression. Results Content validity index scores for the five items ranged from 0.55 to 1.00. The principal components analysis predicted a 5-item 1-factor model. This was inconsistent with the findings from the confirmatory factor analysis, which showed best fit for a 4-item 1-factor model. Bivariate associations between CRU and other kinds of research utilization were statistically significant (p < 0.01) for the latent CRU scale score and all five CRU items. The CRU scale score was also shown to be significant predictor of overall research utilization in multivariate linear regression. Conclusions The CRU scale showed acceptable initial psychometric properties with respect to responses from healthcare aides in nursing homes. Based on our validity, reliability, and acceptability analyses, we recommend using a reduced (four-item) version of the CRU scale to yield sound assessments of CRU by healthcare aides. Refinement to the wording of one item is also needed. Planned future research will include: latent scale scoring, identification of variables that predict and are outcomes to conceptual research use, and longitudinal work to determine CRU Scale sensitivity to change. PMID:21595888
Zhang, Guoqing; Zhang, Xianku; Pang, Hongshuai
2015-09-01
This research is concerned with the problem of 4 degrees of freedom (DOF) ship manoeuvring identification modelling with the full-scale trial data. To avoid the multi-innovation matrix inversion in the conventional multi-innovation least squares (MILS) algorithm, a new transformed multi-innovation least squares (TMILS) algorithm is first developed by virtue of the coupling identification concept. And much effort is made to guarantee the uniformly ultimate convergence. Furthermore, the auto-constructed TMILS scheme is derived for the ship manoeuvring motion identification by combination with a statistic index. Comparing with the existing results, the proposed scheme has the significant computational advantage and is able to estimate the model structure. The illustrative examples demonstrate the effectiveness of the proposed algorithm, especially including the identification application with full-scale trial data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Dynamic Behavior of Engineered Lattice Materials
Hawreliak, J. A.; Lind, J.; Maddox, B.; Barham, M.; Messner, M.; Barton, N.; Jensen, B. J.; Kumar, M.
2016-01-01
Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations. PMID:27321697
NASA Astrophysics Data System (ADS)
Xu, Bin; Chen, Hongbing; Mo, Y.-L.; Zhou, Tianmin
2018-07-01
Piezoelectric-lead-zirconate-titanate(PZT)-based interface debonding defects detection for concrete filled steel tubulars (CFSTs) has been proposed and validated through experiments, and numerical study on its mechanism has been carried out recently by assuming that concrete material is homogenous. However, concrete is composed of coarse and fine aggregates, mortar and interface transition zones (ITZs) and even initial defects and is a typical nonhomogeneous material and its mesoscale structure might affect the wave propagation in the concrete core of CFST members. Therefore, it is significantly important to further investigate the influence of mesoscale structure of concrete on the stress wave propagation and the response of embedded PZT sensor for the interface debonding detection. In this study, multi-physical numerical simulation on the wave propagation and embedded PZT sensor response of rectangular CFST members with numerical concrete core considering the randomness in circular aggregate distribution, and coupled with surface-mounted PZT actuator and embedded PZT sensor is carried out. The effect of randomness in the circular aggregates distribution and the existence of ITZs are discussed. Both a local stress wave propagation behavior including transmission, reflection, and diffraction at the interface between concrete core and steel tube under a pulse signal excitation and a global wave field in the cross-section of the rectangular CFST models without and with interface debonding defects under sweep frequency excitation are simulated. The sensitivity of an evaluation index based on wavelet packet analysis on the embedded PZT sensor response on the variation of mesoscale parameters of concrete core without and with different interface debonding defects under sweep frequency voltage signal is investigated in details. The results show that the effect of the interface debondings on the embedded PZT measurement is dominant when compared to the meso-scale structures of concrete core. This study verified the feasibility of the PZT based debonding detection for rectangular CFST members even the meso-scale structure of concrete core is considered.
Jump, Alistair S; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco
2017-09-01
Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales. © 2017 John Wiley & Sons Ltd.
Jump, Alistair S.; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D.; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco
2017-01-01
Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales.
Durrieu, Sylvie; Gosselin, Frédéric; Herpigny, Basile
2017-01-01
We explored the potential of airborne laser scanner (ALS) data to improve Bayesian models linking biodiversity indicators of the understory vegetation to environmental factors. Biodiversity was studied at plot level and models were built to investigate species abundance for the most abundant plants found on each study site, and for ecological group richness based on light preference. The usual abiotic explanatory factors related to climate, topography and soil properties were used in the models. ALS data, available for two contrasting study sites, were used to provide biotic factors related to forest structure, which was assumed to be a key driver of understory biodiversity. Several ALS variables were found to have significant effects on biodiversity indicators. However, the responses of biodiversity indicators to forest structure variables, as revealed by the Bayesian model outputs, were shown to be dependent on the abiotic environmental conditions characterizing the study areas. Lower responses were observed on the lowland site than on the mountainous site. In the latter, shade-tolerant and heliophilous species richness was impacted by vegetation structure indicators linked to light penetration through the canopy. However, to reveal the full effects of forest structure on biodiversity indicators, forest structure would need to be measured over much wider areas than the plot we assessed. It seems obvious that the forest structure surrounding the field plots can impact biodiversity indicators measured at plot level. Various scales were found to be relevant depending on: the biodiversity indicators that were modelled, and the ALS variable. Finally, our results underline the utility of lidar data in abundance and richness models to characterize forest structure with variables that are difficult to measure in the field, either due to their nature or to the size of the area they relate to. PMID:28902920
Subscale and Full-Scale Testing of Buckling-Critical Launch Vehicle Shell Structures
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Haynie, Waddy T.; Lovejoy, Andrew E.; Roberts, Michael G.; Norris, Jeffery P.; Waters, W. Allen; Herring, Helen M.
2012-01-01
New analysis-based shell buckling design factors (aka knockdown factors), along with associated design and analysis technologies, are being developed by NASA for the design of launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles and can help mitigate some of NASA s launch vehicle development and performance risks by reducing the reliance on testing, providing high-fidelity estimates of structural performance, reliability, robustness, and enable increased payload capability. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale level. This paper describes recent buckling test efforts at NASA on two different orthogrid-stiffened metallic cylindrical shell test articles. One of the test articles was an 8-ft-diameter orthogrid-stiffened cylinder and was subjected to an axial compression load. The second test article was a 27.5-ft-diameter Space Shuttle External Tank-derived cylinder and was subjected to combined internal pressure and axial compression.
System identification through nonstationary data using Time-Frequency Blind Source Separation
NASA Astrophysics Data System (ADS)
Guo, Yanlin; Kareem, Ahsan
2016-06-01
Classical output-only system identification (SI) methods are based on the assumption of stationarity of the system response. However, measured response of buildings and bridges is usually non-stationary due to strong winds (e.g. typhoon, and thunder storm etc.), earthquakes and time-varying vehicle motions. Accordingly, the response data may have time-varying frequency contents and/or overlapping of modal frequencies due to non-stationary colored excitation. This renders traditional methods problematic for modal separation and identification. To address these challenges, a new SI technique based on Time-Frequency Blind Source Separation (TFBSS) is proposed. By selectively utilizing "effective" information in local regions of the time-frequency plane, where only one mode contributes to energy, the proposed technique can successfully identify mode shapes and recover modal responses from the non-stationary response where the traditional SI methods often encounter difficulties. This technique can also handle response with closely spaced modes which is a well-known challenge for the identification of large-scale structures. Based on the separated modal responses, frequency and damping can be easily identified using SI methods based on a single degree of freedom (SDOF) system. In addition to the exclusive advantage of handling non-stationary data and closely spaced modes, the proposed technique also benefits from the absence of the end effects and low sensitivity to noise in modal separation. The efficacy of the proposed technique is demonstrated using several simulation based studies, and compared to the popular Second-Order Blind Identification (SOBI) scheme. It is also noted that even some non-stationary response data can be analyzed by the stationary method SOBI. This paper also delineates non-stationary cases where SOBI and the proposed scheme perform comparably and highlights cases where the proposed approach is more advantageous. Finally, the performance of the proposed method is evaluated using a full-scale non-stationary response of a tall building during an earthquake and found it to perform satisfactorily.
Species, functional groups, and thresholds in ecological resilience
Sundstrom, Shana M.; Allen, Craig R.; Barichievy, Chris
2012-01-01
The cross-scale resilience model states that ecological resilience is generated in part from the distribution of functions within and across scales in a system. Resilience is a measure of a system's ability to remain organized around a particular set of mutually reinforcing processes and structures, known as a regime. We define scale as the geographic extent over which a process operates and the frequency with which a process occurs. Species can be categorized into functional groups that are a link between ecosystem processes and structures and ecological resilience. We applied the cross-scale resilience model to avian species in a grassland ecosystem. A species’ morphology is shaped in part by its interaction with ecological structure and pattern, so animal body mass reflects the spatial and temporal distribution of resources. We used the log-transformed rank-ordered body masses of breeding birds associated with grasslands to identify aggregations and discontinuities in the distribution of those body masses. We assessed cross-scale resilience on the basis of 3 metrics: overall number of functional groups, number of functional groups within an aggregation, and the redundancy of functional groups across aggregations. We assessed how the loss of threatened species would affect cross-scale resilience by removing threatened species from the data set and recalculating values of the 3 metrics. We also determined whether more function was retained than expected after the loss of threatened species by comparing observed loss with simulated random loss in a Monte Carlo process. The observed distribution of function compared with the random simulated loss of function indicated that more functionality in the observed data set was retained than expected. On the basis of our results, we believe an ecosystem with a full complement of species can sustain considerable species losses without affecting the distribution of functions within and across aggregations, although ecological resilience is reduced. We propose that the mechanisms responsible for shaping discontinuous distributions of body mass and the nonrandom distribution of functions may also shape species losses such that local extinctions will be nonrandom with respect to the retention and distribution of functions and that the distribution of function within and across aggregations will be conserved despite extinctions.
Garcia, Antonio F.; Acosta, Melina; Pirani, Saifa; Edwards, Daniel; Osman, Augustine
2017-01-01
We describe 2 studies designed to evaluate scores on the Multidimensional Shame-related Response Inventory-21 (MSRI-21), a recently developed instrument that measures affective and behavioral responses to shame. The inventory assesses shame-related responses in 3 categories: negative self-evaluation, fear of social consequences, and maladaptive behavior tendency. For Study 1, (N = 743) undergraduates completed the MSRI-21. Confirmatory factor analysis supported the validity of the MSRI-21 3-factor structure. Latent variable modeling of coefficient-α provided strong evidence for the internal consistency of scores on each scale. In Study 2, (N = 540) undergraduates completed the instrument along with 5 concurrent measures chosen for clinical significance. Achievement of factorial invariance supported the use of MSRI-21 scale scores to make valid mean comparisons across gender. In addition, MSRI-21 scale scores were associated as expected with scores on measures of self-harm, suicide, and other risk factors. Taken together, results of 2 studies support the internal consistency reliability, factorial validity, factorial invariance, and convergent validity of scores on the MSRI-21. Further work is needed to assess the temporal stability of the MSRI-21 scale scores, invariance across clinical status and other groupings, item-level measurement properties, and viability in highly symptomatic samples. PMID:28182490
Probabilistic Simulation of Multi-Scale Composite Behavior
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2012-01-01
A methodology is developed to computationally assess the non-deterministic composite response at all composite scales (from micro to structural) due to the uncertainties in the constituent (fiber and matrix) properties, in the fabrication process and in structural variables (primitive variables). The methodology is computationally efficient for simulating the probability distributions of composite behavior, such as material properties, laminate and structural responses. Bi-products of the methodology are probabilistic sensitivities of the composite primitive variables. The methodology has been implemented into the computer codes PICAN (Probabilistic Integrated Composite ANalyzer) and IPACS (Integrated Probabilistic Assessment of Composite Structures). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in composite typical laminates and comparing the results with the Monte Carlo simulation method. Available experimental data of composite laminate behavior at all scales fall within the scatters predicted by PICAN. Multi-scaling is extended to simulate probabilistic thermo-mechanical fatigue and to simulate the probabilistic design of a composite redome in order to illustrate its versatility. Results show that probabilistic fatigue can be simulated for different temperature amplitudes and for different cyclic stress magnitudes. Results also show that laminate configurations can be selected to increase the redome reliability by several orders of magnitude without increasing the laminate thickness--a unique feature of structural composites. The old reference denotes that nothing fundamental has been done since that time.
Damage identification of a TLP floating wind turbine by meta-heuristic algorithms
NASA Astrophysics Data System (ADS)
Ettefagh, M. M.
2015-12-01
Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring (SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP (Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms (GA), Artificial Immune System (AIS), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine (TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.
Effect of selected dimethylaminochalcones on some mitochondrial activities.
Vašková, Janka; Reisch, Renáta; Vaško, Ladislav; Poškrobová, Martina; Kron, Ivan; Guzy, Juraj; Perjési, Pál
2013-05-01
Chalcones and their synthetic cyclic analogues have been shown to possess a full scale of biological activities in a variety of experimental systems. They were assessed to be mostly effective in defense against free radicals in the organism, but several compounds exhibited cytotoxic pro-oxidant activities. The respiratory response and antioxidant status in mitochondria were investigated upon addition of 4'-dimethylaminochalcone (1a) and its cyclic analogues, (E)-2-(4'-((CH3)2 N)-benzylidene)-1-indanone (1b), -1-tetralone (1c), and -1-benzosuberone (1d). Selected structures were able to change the respiratory response of mitochondria and showed an ability to modify mitochondrial metabolic and redox efficiency, though they did not indicate redox reactivity towards glutathione in adduct-free incubations. The results of the study indicate that -chalcone and -tetralone derivatives cause suppression of reactive oxygen species affecting mitochondrial respiration by mild uncoupling. In addition, (E)-2-(4'-((CH3)2 N)-indanone (1b), and to a greater extent, -benzosuberone (1d), showed pro-oxidant effects, which partially explain their cytotoxicity.
Assessing the hydrologic response to wildfires in mountainous regions
NASA Astrophysics Data System (ADS)
Havel, Aaron; Tasdighi, Ali; Arabi, Mazdak
2018-04-01
This study aims to understand the hydrologic responses to wildfires in mountainous regions at various spatial scales. The Soil and Water Assessment Tool (SWAT) was used to evaluate the hydrologic responses of the upper Cache la Poudre Watershed in Colorado to the 2012 High Park and Hewlett wildfire events. A baseline SWAT model was established to simulate the hydrology of the study area between the years 2000 and 2014. A procedure involving land use and curve number updating was implemented to assess the effects of wildfires. Application of the proposed procedure provides the ability to simulate the hydrologic response to wildfires seamlessly through mimicking the dynamic of the changes due to wildfires. The wildfire effects on curve numbers were determined comparing the probability distribution of curve numbers after calibrating the model for pre- and post-wildfire conditions. Daily calibration and testing of the model produced very good
results. No-wildfire and wildfire scenarios were created and compared to quantify changes in average annual total runoff volume, water budgets, and full streamflow statistics at different spatial scales. At the watershed scale, wildfire conditions showed little impact on the hydrologic responses. However, a runoff increase up to 75 % was observed between the scenarios in sub-watersheds with high burn intensity. Generally, higher surface runoff and decreased subsurface flow were observed under post-wildfire conditions. Flow duration curves developed for burned sub-watersheds using full streamflow statistics showed that less frequent streamflows become greater in magnitude. A linear regression model was developed to assess the relationship between percent burned area and runoff increase in Cache la Poudre Watershed. A strong (R2 > 0.8) and significant (p < 0.001) positive correlation was determined between runoff increase and percentage of burned area upstream. This study showed that the effects of wildfires on hydrology of a watershed are scale-dependent. Also, using full streamflow statistics through application of flow duration curves revealed that the wildfires had a higher effect on peak flows, which may increase the risk of flash floods in post-wildfire conditions.
Past and present cosmic structure in the SDSS DR7 main sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasche, J.; Leclercq, F.; Wandelt, B.D., E-mail: jasche@iap.fr, E-mail: florent.leclercq@polytechnique.org, E-mail: wandelt@iap.fr
2015-01-01
We present a chrono-cosmography project, aiming at the inference of the four dimensional formation history of the observed large scale structure from its origin to the present epoch. To do so, we perform a full-scale Bayesian analysis of the northern galactic cap of the Sloan Digital Sky Survey (SDSS) Data Release 7 main galaxy sample, relying on a fully probabilistic, physical model of the non-linearly evolved density field. Besides inferring initial conditions from observations, our methodology naturally and accurately reconstructs non-linear features at the present epoch, such as walls and filaments, corresponding to high-order correlation functions generated by late-time structuremore » formation. Our inference framework self-consistently accounts for typical observational systematic and statistical uncertainties such as noise, survey geometry and selection effects. We further account for luminosity dependent galaxy biases and automatic noise calibration within a fully Bayesian approach. As a result, this analysis provides highly-detailed and accurate reconstructions of the present density field on scales larger than ∼ 3 Mpc/h, constrained by SDSS observations. This approach also leads to the first quantitative inference of plausible formation histories of the dynamic large scale structure underlying the observed galaxy distribution. The results described in this work constitute the first full Bayesian non-linear analysis of the cosmic large scale structure with the demonstrated capability of uncertainty quantification. Some of these results will be made publicly available along with this work. The level of detail of inferred results and the high degree of control on observational uncertainties pave the path towards high precision chrono-cosmography, the subject of simultaneously studying the dynamics and the morphology of the inhomogeneous Universe.« less
The Collaborative Seismic Earth Model Project
NASA Astrophysics Data System (ADS)
Fichtner, A.; van Herwaarden, D. P.; Afanasiev, M.
2017-12-01
We present the first generation of the Collaborative Seismic Earth Model (CSEM). This effort is intended to address grand challenges in tomography that currently inhibit imaging the Earth's interior across the seismically accessible scales: [1] For decades to come, computational resources will remain insufficient for the exploitation of the full observable seismic bandwidth. [2] With the man power of individual research groups, only small fractions of available waveform data can be incorporated into seismic tomographies. [3] The limited incorporation of prior knowledge on 3D structure leads to slow progress and inefficient use of resources. The CSEM is a multi-scale model of global 3D Earth structure that evolves continuously through successive regional refinements. Taking the current state of the CSEM as initial model, these refinements are contributed by external collaborators, and used to advance the CSEM to the next state. This mode of operation allows the CSEM to [1] harness the distributed man and computing power of the community, [2] to make consistent use of prior knowledge, and [3] to combine different tomographic techniques, needed to cover the seismic data bandwidth. Furthermore, the CSEM has the potential to serve as a unified and accessible representation of tomographic Earth models. Generation 1 comprises around 15 regional tomographic refinements, computed with full-waveform inversion. These include continental-scale mantle models of North America, Australasia, Europe and the South Atlantic, as well as detailed regional models of the crust beneath the Iberian Peninsula and western Turkey. A global-scale full-waveform inversion ensures that regional refinements are consistent with whole-Earth structure. This first generation will serve as the basis for further automation and methodological improvements concerning validation and uncertainty quantification.
NASA Technical Reports Server (NTRS)
Greene, P. H.
1972-01-01
Both in practical engineering and in control of muscular systems, low level subsystems automatically provide crude approximations to the proper response. Through low level tuning of these approximations, the proper response variant can emerge from standardized high level commands. Such systems are expressly suited to emerging large scale integrated circuit technology. A computer, using symbolic descriptions of subsystem responses, can select and shape responses of low level digital or analog microcircuits. A mathematical theory that reveals significant informational units in this style of control and software for realizing such information structures are formulated.
Arun, Mike W J; Umale, Sagar; Humm, John R; Yoganandan, Narayan; Hadagali, Prasanaah; Pintar, Frank A
2016-09-01
The objective of the current study was to perform a parametric study with different impact objects, impact locations, and impact speeds by analyzing occupant kinematics and injury estimations using a whole-vehicle and whole-body finite element-human body model (FE-HBM). To confirm the HBM responses, the biofidelity of the model was validated using data from postmortem human surrogate (PMHS) sled tests. The biofidelity of the model was validated using data from sled experiments and correlational analysis (CORA). Full-scale simulations were performed using a restrained Global Human Body Model Consortium (GHBMC) model seated on a 2001 Ford Taurus model using a far-side lateral impact condition. The driver seat was placed in the center position to represent a nominal initial impact condition. A 3-point seat belt with pretensioner and retractor was used to restrain the GHBMC model. A parametric study was performed using 12 simulations by varying impact locations, impacting object, and impact speed using the full-scale models. In all 12 simulations, the principal direction of force (PDOF) was selected as 90°. The impacting objects were a 10-in.-diameter rigid vertical pole and a movable deformable barrier. The impact location of the pole was at the C-pillar in the first case, at the B-pillar in the second case, and, finally, at the A-pillar in the third case. The vehicle and the GHBMC models were defined an initial velocity of 35 km/h (high speed) and 15 km/h (low speed). Excursion of the head center of gravity (CG), T6, and pelvis were measured from the simulations. In addition, injury risk estimations were performed on head, rib cage, lungs, kidneys, liver, spleen, and pelvis. The average CORA rating was 0.7. The shoulder belt slipped in B- and C-pillar impacts but somewhat engaged in the A-pillar case. In the B-pillar case, the head contacted the intruding struck-side structures, indicating higher risk of injury. Occupant kinematics depended on interaction with restraints and internal structures-especially the passenger seat. Risk analysis indicated that the head had the highest risk of sustaining an injury in the B-pillar case compared to the other 2 cases. Higher lap belt load (3.4 kN) may correspond to the Abbreviated Injury Scale (AIS) 2 pelvic injury observed in the B-pillar case. Risk of injury to other soft anatomical structures varied with impact configuration and restraint interaction. The average CORA rating was 0.7. In general, the results indicated that the high-speed impacts against the pole resulted in severe injuries, higher excursions followed by low-speed pole, high-speed moving deformable barrier (MDB), and low-speed MDB impacts. The vehicle and occupant kinematics varied with different impact setups and the latter kinematics were likely influenced by restraint effectiveness. Increased restraint engagement increased the injury risk to the corresponding anatomic structure, whereas ineffective restraint engagement increased the occupant excursion, resulting in a direct impact to the struck-side interior structures.
ERIC Educational Resources Information Center
O'Rourke, Norm
2005-01-01
The Center for Epidemiologic Studies?Depression Scale (CES-D) is among the most widely used depression screening measures. Existing research suggests a higher order factor structure of responses among older adults (factors labeled as Depressive Affect, Absence of Well-being, Somatic Symptoms, and Interpersonal Affect each loading on a 2nd-order…
Performance testing for superpave and structural validation.
DOT National Transportation Integrated Search
2012-11-01
The primary objective of this full-scale accelerated pavement testing was to evaluate the performance of unmodified : and polymer modified asphalt binders and to recommend improved specification tests over existing SUperior : PERforming Asphalt PAVEm...
Damage Identification of Wind Turbine Blades Using Piezoelectric Transducers
Choi, Seong-Won; Farinholt, Kevin M.; Taylor, Stuart G.; ...
2014-01-01
This paper presents the experimental results of active-sensing structural health monitoring (SHM) techniques, which utilize piezoelectric transducers as sensors and actuators, for determining the structural integrity of wind turbine blades. Specifically, Lamb wave propagations and frequency response functions at high frequency ranges are used to estimate the condition of wind turbine blades. For experiments, a 1 m section of a CX-100 blade is used. The goal of this study is to assess and compare the performance of each method in identifying incipient damage with a consideration given to field deployability. Overall, these methods yielded a sufficient damage detection capability to warrantmore » further investigation. This paper also summarizes the SHM results of a full-scale fatigue test of a 9 m CX-100 blade using piezoelectric active sensors. This paper outlines considerations needed to design such SHM systems, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.« less
Coupled Thermo-Electro-Magneto-Elastic Response of Smart Stiffened Panels
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Yarrington, Phillip W.
2009-01-01
This report documents the procedures developed for incorporating smart laminate and panel analysis capabilities within the HyperSizer aerospace structural sizing software package. HyperSizer analyzes stiffened panels composed of arbitrary composite laminates through stiffener homogenization, or "smearing " techniques. The result is an effective constitutive equation for the stiffened panel that is suitable for use in a full vehicle-scale finite element analysis via MSC/NASTRAN. The existing thermo-elastic capabilities of HyperSizer have herein been extended to include coupled thermo-electro-magneto-elastic analysis capabilities. This represents a significant step toward realization of design tools capable of guiding the development of the next generation of smart aerospace structures. Verification results are presented that compare the developed smart HyperSizer capability with an ABAQUS piezoelectric finite element solution for a facesheet-flange combination. These results show good agreement between HyperSizer and ABAQUS, but highlight a limitation of the HyperSizer formulation in that constant electric field components are assumed.
Development of a Work Climate Scale in Emergency Health Services
Sanduvete-Chaves, Susana; Lozano-Lozano, José A.; Chacón-Moscoso, Salvador; Holgado-Tello, Francisco P.
2018-01-01
An adequate work climate fosters productivity in organizations and increases employee satisfaction. Workers in emergency health services (EHS) have an extremely high degree of responsibility and consequent stress. Therefore, it is essential to foster a good work climate in this context. Despite this, scales with a full study of their psychometric properties (i.e., validity evidence based on test content, internal structure and relations to other variables, and reliability) are not available to measure work climate in EHS specifically. For this reason, our objective was to develop a scale to measure the quality of work climates in EHS. We carried out three studies. In Study 1, we used a mixed-method approach to identify the latent conceptual structure of the construct work climate. Thus, we integrated the results found in (a) a previous study, where a content analysis of seven in-depth interviews obtained from EHS professionals in two hospitals in Gibraltar Countryside County was carried out; and (b) the factor analysis of the responses given by 113 EHS professionals from these same centers to 18 items that measured the work climate in health organizations. As a result, we obtained 56 items grouped into four factors (work satisfaction, productivity/achievement of aims, interpersonal relationships, and performance at work). In Study 2, we presented validity evidence based on test content through experts' judgment. Fourteen experts from the methodology and health fields evaluated the representativeness, utility, and feasibility of each of the 56 items with respect to their factor (theoretical dimension). Forty items met the inclusion criterion, which was to obtain an Osterlind index value greater than or equal to 0.5 in the three aspects assessed. In Study 3, 201 EHS professionals from the same centers completed the resulting 40-item scale. This new instrument produced validity evidence based on the internal structure in a second-order factor model with four components (RMSEA = 0.079, GFI = 0.97, AGFI = 0.97, CFI = 0.97; NFI = 0.95, and NNFI = 0.97); absence of Differential Item Functioning (DIF) in 80% of the items; reliability (α = 0.96); and validity evidence based on relations to other variables, specifically the test-criterion relationship (ρ = 0.680). Finally, we discuss further developments of the instrument and its possible implications for EHS workers. PMID:29403417
Development of a Work Climate Scale in Emergency Health Services.
Sanduvete-Chaves, Susana; Lozano-Lozano, José A; Chacón-Moscoso, Salvador; Holgado-Tello, Francisco P
2018-01-01
An adequate work climate fosters productivity in organizations and increases employee satisfaction. Workers in emergency health services (EHS) have an extremely high degree of responsibility and consequent stress. Therefore, it is essential to foster a good work climate in this context. Despite this, scales with a full study of their psychometric properties (i.e., validity evidence based on test content, internal structure and relations to other variables, and reliability) are not available to measure work climate in EHS specifically. For this reason, our objective was to develop a scale to measure the quality of work climates in EHS. We carried out three studies. In Study 1, we used a mixed-method approach to identify the latent conceptual structure of the construct work climate . Thus, we integrated the results found in (a) a previous study, where a content analysis of seven in-depth interviews obtained from EHS professionals in two hospitals in Gibraltar Countryside County was carried out; and (b) the factor analysis of the responses given by 113 EHS professionals from these same centers to 18 items that measured the work climate in health organizations. As a result, we obtained 56 items grouped into four factors (work satisfaction, productivity/achievement of aims, interpersonal relationships, and performance at work). In Study 2, we presented validity evidence based on test content through experts' judgment. Fourteen experts from the methodology and health fields evaluated the representativeness, utility, and feasibility of each of the 56 items with respect to their factor (theoretical dimension). Forty items met the inclusion criterion, which was to obtain an Osterlind index value greater than or equal to 0.5 in the three aspects assessed. In Study 3, 201 EHS professionals from the same centers completed the resulting 40-item scale. This new instrument produced validity evidence based on the internal structure in a second-order factor model with four components ( RMSEA = 0.079, GFI = 0.97, AGFI = 0.97, CFI = 0.97; NFI = 0.95, and NNFI = 0.97); absence of Differential Item Functioning (DIF) in 80% of the items; reliability (α = 0.96); and validity evidence based on relations to other variables, specifically the test-criterion relationship (ρ = 0.680). Finally, we discuss further developments of the instrument and its possible implications for EHS workers.
Airborne Gravity Gradiometry Resolves a Full Range of Gravity Frequencies
NASA Astrophysics Data System (ADS)
Mataragio, J.; Brewster, J.; Mims, J.
2007-12-01
Airborne Full Tensor Gradiometry (Air\\-FTGR) was flown at high altitude coincident with Airborne Gravity (AG) flown in 2003 in West Arnhem Land, Australia. A preliminary analysis of two data sets indicates that the Air\\-FTGR system has the capability of resolving intermediate to long wavelengths features that may be associated with relatively deeper geological structures. A comparison of frequency filtered slices and power spectral density (PSD) for both data sets using the short (> 5 km), intermediate (10 km) and long (20 km) wavelengths reveals that high altitude Air\\-FTGR data show greater response in high frequency anomalies than a conventional Airborne Gravity and matches well with the AG even at the longest wavelengths anomalies. The effect of line spacing and target resolution was examined between the two data sets. Reprocessed gradient and AG data at 2, 4 and 6 km line spacing suggest that Air\\-FTGR could be effectively flown at a comparatively wider line spacing to resolve similar targets the AG would resolve with tighter line spacing. Introduction Airborne Full Tensor Gradiometry (Air\\-FTGR) data have been available to the mining industry since 2002 and their use for geologic applications is well established. However, Air\\-FTGR data has been mostly considered and used in mapping and delineation of near surface geological targets. This is due to the fact that gravity gradiometer measurements are well suited to capture the high frequency signal associated with near\\-surface targets ( Li, 2001). This is possible because the gradiometer signal strength falls off with the cube of the distance to the target. Nonetheless, in recent years there has been an increasing demand from the mining, oil, and gas industry in utilizing Full Tensor Gravity Gradiometer as a mapping tool for both regional and prospect level surveys. Air\\-FTGR as a Regional Mapping Tool Several, relatively low altitude surveys have been successfully flown in Brazil, Canada and Australia mostly targeting large, regional\\- scale crustal structures as well as regional mapping of both lithology and regolith. Air\\-FTGR mapping is especially effective in areas of thick lateritic and/or clay cover where other geophysical methods such as airborne magnetics or electromagnetics become less effective. For instance, an Air\\-FTGR survey was successfully flown in Brazil in the Province of Minas Gerais, where several crustal\\-scale structures associated with iron oxide mineralization were identified ( Mataragio et. al., 2006). In addition, in 2006 Air\\-FTGR had good success in the regional mapping of structures associated with Iron Oxide Copper Gold (IOCG) and uranium mineralization in the Wernecke Mountains in the Yukon, and Northwest Territories, Canada. On the basis of these successful surveys, Bell Geospace has initiated a number of high altitude test surveys aiming at evaluating the performance of the Air\\-FTGR system in capturing low frequency signal that may be associated with regional\\-scale, deeper structures. One of the test surveys was conducted in December of 2006 in Australia, where the performance of Air\\-FTGR and the conventional Airborne Gravity were evaluated. Airborne gravity is currently considered well suited for capturing low frequency signal.
Model Scaling of Hydrokinetic Ocean Renewable Energy Systems
NASA Astrophysics Data System (ADS)
von Ellenrieder, Karl; Valentine, William
2013-11-01
Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).
Lan, Chunguang; Zhou, Zhi; Ou, Jinping
2012-01-01
For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams. PMID:22778590
Lan, Chunguang; Zhou, Zhi; Ou, Jinping
2012-01-01
For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams.
Large-scale structural optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.
1983-01-01
Problems encountered by aerospace designers in attempting to optimize whole aircraft are discussed, along with possible solutions. Large scale optimization, as opposed to component-by-component optimization, is hindered by computational costs, software inflexibility, concentration on a single, rather than trade-off, design methodology and the incompatibility of large-scale optimization with single program, single computer methods. The software problem can be approached by placing the full analysis outside of the optimization loop. Full analysis is then performed only periodically. Problem-dependent software can be removed from the generic code using a systems programming technique, and then embody the definitions of design variables, objective function and design constraints. Trade-off algorithms can be used at the design points to obtain quantitative answers. Finally, decomposing the large-scale problem into independent subproblems allows systematic optimization of the problems by an organization of people and machines.
NASA Astrophysics Data System (ADS)
Troch, Peter A.; Niu, Guo-Yue; Gevaert, Anouk; Teuling, Adriaan; Uijlenhoet, Remko; Pasetto, Damiano; Paniconi, Claudio; Putti, Mario
2014-05-01
The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. We observed the spatial and temporal evolution of the soil moisture content at 496 5-TM Decagon sensors distributed over 5 different depths during a low-intensity long-duration rainfall experiment in February 2013. This presentation will focus on our modeling efforts to reveal subsurface hydraulic heterogeneity required to explain observed rainfall-runoff dynamics at the hillslope scale.
Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.
2010-01-01
A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.
Shell Structure Water Cellar’s Rapid Construct Technology
NASA Astrophysics Data System (ADS)
Xian Zhuang, Wen; Qing Yin, De; Chen, Shu Fa
2018-05-01
Tradition concrete water cellar’s problems, such as high cost, long construction term, easy to crack, are pointed out. A new construct method, and it’s matching airbag mould, of constructing concrete shell structure water cellars, are introduced. Combine with full-scale verifying cellar’s construct test, full-load water storage test, analyzed the technology in terms of construction term, cost, crack resistance, air bag pressure etc. It is believed that this new technology can successfully solve the problems that tradition technology has, and it will have a good prospect in rainfall resources utilization.
Rasch analysis of the Trypophobia Questionnaire.
Imaizumi, Shu; Tanno, Yoshihiko
2018-02-14
This study aimed to assess Rasch-based psychometric properties of the Trypophobia Questionnaire measuring proneness to trypophobia, which refers to disgust and unpleasantness induced by the observation of clusters of objects (e.g., lotus seed pods). Rasch analysis was performed on data from 582 healthy Japanese adults. The results suggested that Trypophobia Questionnaire has a unidimensional structure with ordered response categories and sufficient person and item reliabilities, and that it does not have differential item functioning across sexes and age groups, whereas the targeting of the scale leaves room for improvements. When items that did not fit the Rasch model were removed, the shortened version showed slightly improved psychometric properties. However, results were not conclusive in determining whether the full or shortened version is better for practical use. Further assessment and validation are needed.
Dima, Alexandra Lelia; Schulz, Peter Johannes
2017-01-01
Background The eHealth Literacy Scale (eHEALS) is a tool to assess consumers’ comfort and skills in using information technologies for health. Although evidence exists of reliability and construct validity of the scale, less agreement exists on structural validity. Objective The aim of this study was to validate the Italian version of the eHealth Literacy Scale (I-eHEALS) in a community sample with a focus on its structural validity, by applying psychometric techniques that account for item difficulty. Methods Two Web-based surveys were conducted among a total of 296 people living in the Italian-speaking region of Switzerland (Ticino). After examining the latent variables underlying the observed variables of the Italian scale via principal component analysis (PCA), fit indices for two alternative models were calculated using confirmatory factor analysis (CFA). The scale structure was examined via parametric and nonparametric item response theory (IRT) analyses accounting for differences between items regarding the proportion of answers indicating high ability. Convergent validity was assessed by correlations with theoretically related constructs. Results CFA showed a suboptimal model fit for both models. IRT analyses confirmed all items measure a single dimension as intended. Reliability and construct validity of the final scale were also confirmed. The contrasting results of factor analysis (FA) and IRT analyses highlight the importance of considering differences in item difficulty when examining health literacy scales. Conclusions The findings support the reliability and validity of the translated scale and its use for assessing Italian-speaking consumers’ eHealth literacy. PMID:28400356
A Screening Tool to Measure Eye Contact Avoidance in Boys with Fragile X Syndrome
ERIC Educational Resources Information Center
Hall, Scott S.; Venema, Kaitlin M.
2017-01-01
We examined the reliability, validity and factor structure of the Eye Contact Avoidance Scale (ECAS), a new 15-item screening tool designed to measure eye contact avoidance in individuals with fragile X syndrome (FXS). Internal consistency of the scale was acceptable to excellent and convergent validity with the Social Responsiveness Scale, Second…
Validity of scale-modeling for gamma-ray attenuation. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verser, F.A.; Donnert, H.J.
1973-09-01
An adjoint Monte Carlo code (GADJET) was used to calculate the exposure rate in full-scale and model structures located in the center of plane fallout fields (1 Ci/square ft of cobalt-60). Problems were run for a standard detector, an open basement, a basement with two thicknesses of covers, and a blockhouse with two thicknesses of walls. For all configurations investigated, the effects of nonscaling of the ground does not cause any problem and a procedure was developed to minimize the error introduced by non-scaling of the air. If the solid angle subtended by the roof remains unchanged, scaling of roofmore » contamination offers no problems. The lip effect can be significant in structures with the detector below grade. (GRA)« less
Modal-pushover-based ground-motion scaling procedure
Kalkan, Erol; Chopra, Anil K.
2011-01-01
Earthquake engineering is increasingly using nonlinear response history analysis (RHA) to demonstrate the performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. This paper presents a modal-pushover-based scaling (MPS) procedure to scale ground motions for use in a nonlinear RHA of buildings. In the MPS method, the ground motions are scaled to match to a specified tolerance, a target value of the inelastic deformation of the first-mode inelastic single-degree-of-freedom (SDF) system whose properties are determined by the first-mode pushover analysis. Appropriate for first-mode dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-mode SDF systems in selecting a subset of the scaled ground motions. Based on results presented for three actual buildings-4, 6, and 13-story-the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.
Directing Matter: Toward Atomic-Scale 3D Nanofabrication.
Jesse, Stephen; Borisevich, Albina Y; Fowlkes, Jason D; Lupini, Andrew R; Rack, Philip D; Unocic, Raymond R; Sumpter, Bobby G; Kalinin, Sergei V; Belianinov, Alex; Ovchinnikova, Olga S
2016-06-28
Enabling memristive, neuromorphic, and quantum-based computing as well as efficient mainstream energy storage and conversion technologies requires the next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed toward this goal through various lithographies and scanning-probe-based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron- and ion-based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3D structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano- and atomic scales and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis, and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. In this paper, we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large-scale data analysis with theory, and discuss future prospects of these technologies.
Directing Matter: Toward Atomic-Scale 3D Nanofabrication
Jesse, Stephen; Borisevich, Albina Y.; Fowlkes, Jason D.; ...
2016-05-16
Here we report that enabling memristive, neuromorphic, and quantum based computing as well as efficient mainstream energy storage and conversion technologies requires next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed towards this goal through various lithographies and scanning probe based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron and ion based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3Dmore » structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano and atomic scales, and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for new approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. Lastly, in this perspective we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large scale data analysis with theory, and discuss future prospects of these technologies.« less
Hillen, Marij A; Postma, Rosa-May; Verdam, Mathilde G E; Smets, Ellen M A
2017-03-01
The original 18-item, four-dimensional Trust in Oncologist Scale assesses cancer patients' trust in their oncologist. The current aim was to develop and validate a short form version of the scale to enable more efficient assessment of cancer patients' trust. Existing validation data of the full-length Trust in Oncologist Scale were used to create a short form of the Trust in Oncologist Scale. The resulting short form was validated in a new sample of cancer patients (n = 92). Socio-demographics, medical characteristics, trust in the oncologist, satisfaction with communication, trust in healthcare, willingness to recommend the oncologist to others and to contact the oncologist in case of questions were assessed. Internal consistency, reliability, convergent and structural validity were tested. The five-item Trust in Oncologist Scale Short Form was created by selecting the statistically best performing item from each dimension of the original scale, to ensure content validity. Mean trust in the oncologist was high in the validation sample (response rate 86%, M = 4.30, SD = 0.98). Exploratory factor analyses supported one-dimensionality of the short form. Internal consistency was high, and temporal stability was moderate. Initial convergent validity was suggested by moderate correlations between trust scores with associated constructs. The Trust in Oncologist Scale Short Form appears to efficiently, reliably and validly measures cancer patients' trust in their oncologist. It may be used in research and as a quality indicator in clinical practice. More thorough validation of the scale is recommended to confirm this initial evidence of its validity.
Cognitive Abilities Explain Wording Effects in the Rosenberg Self-Esteem Scale.
Gnambs, Timo; Schroeders, Ulrich
2017-12-01
There is consensus that the 10 items of the Rosenberg Self-Esteem Scale (RSES) reflect wording effects resulting from positively and negatively keyed items. The present study examined the effects of cognitive abilities on the factor structure of the RSES with a novel, nonparametric latent variable technique called local structural equation models. In a nationally representative German large-scale assessment including 12,437 students competing measurement models for the RSES were compared: a bifactor model with a common factor and a specific factor for all negatively worded items had an optimal fit. Local structural equation models showed that the unidimensionality of the scale increased with higher levels of reading competence and reasoning, while the proportion of variance attributed to the negatively keyed items declined. Wording effects on the factor structure of the RSES seem to represent a response style artifact associated with cognitive abilities.
Structural Similitude and Scaling Laws for Plates and Shells: A Review
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Starnes, J. H., Jr.; Rezaeepazhand, J.
2000-01-01
This paper deals with the development and use of scaled-down models in order to predict the structural behavior of large prototypes. The concept is fully described and examples are presented which demonstrate its applicability to beam-plates, plates and cylindrical shells of laminated construction. The concept is based on the use of field equations, which govern the response behavior of both the small model as well as the large prototype. The conditions under which the experimental data of a small model can be used to predict the behavior of a large prototype are called scaling laws or similarity conditions and the term that best describes the process is structural similitude. Moreover, since the term scaling is used to describe the effect of size on strength characteristics of materials, a discussion is included which should clarify the difference between "scaling law" and "size effect". Finally, a historical review of all published work in the broad area of structural similitude is presented for completeness.
Season-modulated responses of Neotropical bats to forest fragmentation.
Ferreira, Diogo F; Rocha, Ricardo; López-Baucells, Adrià; Farneda, Fábio Z; Carreiras, João M B; Palmeirim, Jorge M; Meyer, Christoph F J
2017-06-01
Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape-scale attributes. Generalized linear mixed-effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment-matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in resource abundance and consequently to local and landscape scale attributes.
Accelerated testing for studying pavement design and performance (FY 2004) : research summary.
DOT National Transportation Integrated Search
2009-03-01
The thirteenth full-scale Accelerated Pavement Test (APT) experiment at the Civil Infrastructure Laboratory (CISL) of Kansas State University aimed to determine the response and the failure mode of thin concrete overlays.
Considerations of Scale and Processes in Stream Restoration and Ecological Response
NASA Astrophysics Data System (ADS)
Simon, A.; Shields, D.; Kuhnle, R.; Knight, S.
2005-12-01
Stream restoration as a means of controlling accelerated channel erosion and improving biological function in streams has become pervasive in the United States over the past twenty years. A broad range of practices often involving direct modifications to stream channels and adjacent floodplains, including alterations to morphology and pattern have been used for stream restoration. Because alluvial-channel processes and biological functioning operate as linked, open systems, any restoration project must be placed in the context of existing watershed and channel processes with a quantitative understanding of the rates of transfer of flow energy and materials. This is particularly true of reach-scale projects where local stabilization and habitat improvements may be completely overwhelmed by watershed or channel-system scale instabilities. In this regard, it is unlikely that a reach-scale project will be successful in an unstable alluvial system. This is analogous to constructing bank-stabilization measures in an actively incising channel. A conceptual model of channel response and evolution that marks systematic shifts in channel processes over time and space has been linked to fish-community structure in Mississippi streams. This link reflects changing habitat conditions and sediment-transport regimes over the course of fluvial adjustment. Suspended-sediment concentrations that can increase by orders of magnitude for a given discharge during the incision and mass-wasting phases abrade fish gills and reduce the ability of fish to hunt for food due to reduced water clarity. Similarly, durations of high suspended-sediment concentrations are shown to be inversely related to numbers of benthic macro invertebrates. Streambeds experiencing active incision (Stage III) may be too mobile for benthic macro invertebrate communities to thrive. Channels dominated by mass-wasting processes (Stages IV and V) lose riparian vegetative cover and shading which may result in higher stream temperatures. Aggradation processes typical of Stage V result in loss of interstitial spaces for spawning, de-oxygenation of substrate and may suffocate organisms. Perhaps most importantly, channel widening produces shallower depths at base flow and renders streams less retentive of large wood. Ecological characteristics recover in advanced stages of channel evolution as baseflow channels are narrowed and berms re-vegetate (Stage VI), but full recovery to pre-incision (Stage I) conditions has not been observed for both ecologic and sediment-transport systems. The processes reflected by stages of evolution can operate over entire fluvial networks and over time scales in the order of 100 years. Issues regarding effectiveness or benefit of stream restoration practices, therefore, must address scale. Furthermore, site and approach selection for reach-scale restoration projects should be guided by knowledge of watershed-scale processes. As an example, a grade control structure installed on Hotophia Creek, Mississippi successfully eliminated upstream-progressing incision and resulted in locally improved aquatic populations in the stilling basin. However, the trapping of hydraulically-controlled sediment on the upstream side of the structure resulted in streambed incision, de-stabilization of streambanks and degraded aquatic habitat in downstream reaches not protected by other grade-control structures.
Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds
Hong, A. J.; Li, L.; He, R.; ...
2016-03-07
The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half- Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k codemore » and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley’s deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens’ equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Tidoped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. Lastly, the present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials.« less
Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, A. J.; Li, L.; He, R.
The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half- Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k codemore » and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley’s deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens’ equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Tidoped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. Lastly, the present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials.« less
NASA Astrophysics Data System (ADS)
Qiu, Lei; Yuan, Shenfang; Bao, Qiao; Mei, Hanfei; Ren, Yuanqiang
2016-05-01
For aerospace application of structural health monitoring (SHM) technology, the problem of reliable damage monitoring under time-varying conditions must be addressed and the SHM technology has to be fully validated on real aircraft structures under realistic load conditions on ground before it can reach the status of flight test. In this paper, the guided wave (GW) based SHM method is applied to a full-scale aircraft fatigue test which is one of the most similar test status to the flight test. To deal with the time-varying problem, a GW-Gaussian mixture model (GW-GMM) is proposed. The probability characteristic of GW features, which is introduced by time-varying conditions is modeled by GW-GMM. The weak cumulative variation trend of the crack propagation, which is mixed in time-varying influence can be tracked by the GW-GMM migration during on-line damage monitoring process. A best match based Kullback-Leibler divergence is proposed to measure the GW-GMM migration degree to reveal the crack propagation. The method is validated in the full-scale aircraft fatigue test. The validation results indicate that the reliable crack propagation monitoring of the left landing gear spar and the right wing panel under realistic load conditions are achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S Menon; S Wang
The PhoP protein from Mycobacterium tuberculosis is a response regulator of the OmpR/PhoB subfamily, whose structure consists of an N-terminal receiver domain and a C-terminal DNA-binding domain. How the DNA-binding activities are regulated by phosphorylation of the receiver domain remains unclear due to a lack of structural information on the full-length proteins. Here we report the crystal structure of the full-length PhoP of M. tuberculosis. Unlike other known structures of full-length proteins of the same subfamily, PhoP forms a dimer through its receiver domain with the dimer interface involving {alpha}4-{beta}5-{alpha}5, a common interface for activated receiver domain dimers. However, themore » switch residues, Thr99 and Tyr118, are in a conformation resembling those of nonactivated receiver domains. The Tyr118 side chain is involved in the dimer interface interactions. The receiver domain is tethered to the DNA-binding domain through a flexible linker and does not impose structural constraints on the DNA-binding domain. This structure suggests that phosphorylation likely facilitates/stabilizes receiver domain dimerization, bringing the DNA-binding domains to close proximity, thereby increasing their binding affinity for direct repeat DNA sequences.« less
Structure of a reattaching supersonic shear flow
NASA Technical Reports Server (NTRS)
Samimy, M.; Abu-Hijleh, B. A. K.
1988-01-01
A Mach 1.83 fully developed turbulent boundary layer with boundary layer thickness, free stream velocity, and Reynolds number of 7.5 mm, 476 m/s, and 6.2 x 10 to the 7th/m, respectively, was separated at a 25.4-mm backward step and formed a shear layer. Fast-response pressure transducers, schlieren photography, and LDV were used to study the structure of this reattaching shear flow. The preliminary results show that large-scale relatively organized structures with limited spanwise extent form in the free shear layer. Some of these structures appear to survive the recompression and reattachment processes, while others break down into smaller scales and the flow becomes increasingly three-dimensional. The survived large-scale structures lose their organization through recompression/reattachment, but regain it after reattachment. The structures after reattachment form a 40-45-degree angle relative to the free stream and deteriorate gradually as they move downstream.
NASA Astrophysics Data System (ADS)
Kim, Jin-Woong
2009-03-01
This talk introduces a flexible and straightforward method for generating responsive microgel materials with new structures by using a microfluidic technique. We demonstrate that this approach enables tight control over the size and monodispersity of droplets as well as the interfacial structures, which is essential for determining release and transport kinetics of encapsulated components. We also show that responsiveness of microgel materials is controllable by tuning their structure, thereby allowing us to overcome the limitation of length scales, since the diffusion of water molecules through the structured gel phase is much faster than through a bulk gel phase of similar dimensions. We have generated a variety of novel gel structures: microgels with complex structures, microgel shells, 3D gel network with a truly fast response, and responsive colloidosomes. The robustness and versatility of this approach are expected to generate more complex systems and create new possibilities to develop novel materials in practical applications, including drug delivery, foods, and cosmetics.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-03-01
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.
Dislocation dynamics simulations of plasticity at small scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Caizhi
2010-01-01
As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this researchmore » is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.« less
Giga-voxel computational morphogenesis for structural design
NASA Astrophysics Data System (ADS)
Aage, Niels; Andreassen, Erik; Lazarov, Boyan S.; Sigmund, Ole
2017-10-01
In the design of industrial products ranging from hearing aids to automobiles and aeroplanes, material is distributed so as to maximize the performance and minimize the cost. Historically, human intuition and insight have driven the evolution of mechanical design, recently assisted by computer-aided design approaches. The computer-aided approach known as topology optimization enables unrestricted design freedom and shows great promise with regard to weight savings, but its applicability has so far been limited to the design of single components or simple structures, owing to the resolution limits of current optimization methods. Here we report a computational morphogenesis tool, implemented on a supercomputer, that produces designs with giga-voxel resolution—more than two orders of magnitude higher than previously reported. Such resolution provides insights into the optimal distribution of material within a structure that were hitherto unachievable owing to the challenges of scaling up existing modelling and optimization frameworks. As an example, we apply the tool to the design of the internal structure of a full-scale aeroplane wing. The optimized full-wing design has unprecedented structural detail at length scales ranging from tens of metres to millimetres and, intriguingly, shows remarkable similarity to naturally occurring bone structures in, for example, bird beaks. We estimate that our optimized design corresponds to a reduction in mass of 2-5 per cent compared to currently used aeroplane wing designs, which translates into a reduction in fuel consumption of about 40-200 tonnes per year per aeroplane. Our morphogenesis process is generally applicable, not only to mechanical design, but also to flow systems, antennas, nano-optics and micro-systems.
Giga-voxel computational morphogenesis for structural design.
Aage, Niels; Andreassen, Erik; Lazarov, Boyan S; Sigmund, Ole
2017-10-04
In the design of industrial products ranging from hearing aids to automobiles and aeroplanes, material is distributed so as to maximize the performance and minimize the cost. Historically, human intuition and insight have driven the evolution of mechanical design, recently assisted by computer-aided design approaches. The computer-aided approach known as topology optimization enables unrestricted design freedom and shows great promise with regard to weight savings, but its applicability has so far been limited to the design of single components or simple structures, owing to the resolution limits of current optimization methods. Here we report a computational morphogenesis tool, implemented on a supercomputer, that produces designs with giga-voxel resolution-more than two orders of magnitude higher than previously reported. Such resolution provides insights into the optimal distribution of material within a structure that were hitherto unachievable owing to the challenges of scaling up existing modelling and optimization frameworks. As an example, we apply the tool to the design of the internal structure of a full-scale aeroplane wing. The optimized full-wing design has unprecedented structural detail at length scales ranging from tens of metres to millimetres and, intriguingly, shows remarkable similarity to naturally occurring bone structures in, for example, bird beaks. We estimate that our optimized design corresponds to a reduction in mass of 2-5 per cent compared to currently used aeroplane wing designs, which translates into a reduction in fuel consumption of about 40-200 tonnes per year per aeroplane. Our morphogenesis process is generally applicable, not only to mechanical design, but also to flow systems, antennas, nano-optics and micro-systems.
Modelling Force Transfer Around Openings of Full-Scale Shear Walls
Tom Skaggs; Borjen Yeh; Frank Lam; Minghao Li; Doug Rammer; James Wacker
2011-01-01
Wood structural panel (WSP) sheathed shear walls and diaphragms are the primary lateralload-resisting elements in wood-frame construction. The historical performance of lightframe structures in North America has been very good due, in part, to model building codes that are designed to preserve life safety. These model building codes have spawned continual improvement...
DOT National Transportation Integrated Search
2011-09-01
This report describes the results from the testing of a full scale three span 43 year old adjacent prestressed concrete box beam bridge. This research is the second phase of the overall project entitled Structural Evaluation of LIC-310-0396 Box Be...
An Alternative Approach for the Analyses and Interpretation of Attachment Sort Items
ERIC Educational Resources Information Center
Kirkland, John; Bimler, David; Drawneek, Andrew; McKim, Margaret; Scholmerich, Axel
2004-01-01
Attachment Q-Sort (AQS) is a tool for quantifying observations about toddler/caregiver relationships. Previous studies have applied factor analysis to the full 90 AQS item set to explore the structure underlying them. Here we explore that structure by applying multidimensional scaling (MDS) to judgements of inter-item similarity. AQS items are…
NASA Astrophysics Data System (ADS)
Hoell, Simon; Omenzetter, Piotr
2018-02-01
To advance the concept of smart structures in large systems, such as wind turbines (WTs), it is desirable to be able to detect structural damage early while using minimal instrumentation. Data-driven vibration-based damage detection methods can be competitive in that respect because global vibrational responses encompass the entire structure. Multivariate damage sensitive features (DSFs) extracted from acceleration responses enable to detect changes in a structure via statistical methods. However, even though such DSFs contain information about the structural state, they may not be optimised for the damage detection task. This paper addresses the shortcoming by exploring a DSF projection technique specialised for statistical structural damage detection. High dimensional initial DSFs are projected onto a low-dimensional space for improved damage detection performance and simultaneous computational burden reduction. The technique is based on sequential projection pursuit where the projection vectors are optimised one by one using an advanced evolutionary strategy. The approach is applied to laboratory experiments with a small-scale WT blade under wind-like excitations. Autocorrelation function coefficients calculated from acceleration signals are employed as DSFs. The optimal numbers of projection vectors are identified with the help of a fast forward selection procedure. To benchmark the proposed method, selections of original DSFs as well as principal component analysis scores from these features are additionally investigated. The optimised DSFs are tested for damage detection on previously unseen data from the healthy state and a wide range of damage scenarios. It is demonstrated that using selected subsets of the initial and transformed DSFs improves damage detectability compared to the full set of features. Furthermore, superior results can be achieved by projecting autocorrelation coefficients onto just a single optimised projection vector.
NASA Astrophysics Data System (ADS)
Ni, Yan-Chun; Zhang, Feng-Liang
2018-05-01
Modal identification based on vibration response measured from real structures is becoming more popular, especially after benefiting from the great improvement of the measurement technology. The results are reliable to estimate the dynamic performance, which fits the increasing requirement of different design configurations of the new structures. However, the high-quality vibration data collection technology calls for a more accurate modal identification method to improve the accuracy of the results. Through the whole measurement process of dynamic testing, there are many aspects that will cause the rise of uncertainty, such as measurement noise, alignment error and modeling error, since the test conditions are not directly controlled. Depending on these demands, a Bayesian statistical approach is developed in this work to estimate the modal parameters using the forced vibration response of structures, simultaneously considering the effect of the ambient vibration. This method makes use of the Fast Fourier Transform (FFT) of the data in a selected frequency band to identify the modal parameters of the mode dominating this frequency band and estimate the remaining uncertainty of the parameters correspondingly. In the existing modal identification methods for forced vibration, it is generally assumed that the forced vibration response dominates the measurement data and the influence of the ambient vibration response is ignored. However, ambient vibration will cause modeling error and affect the accuracy of the identified results. The influence is shown in the spectra as some phenomena that are difficult to explain and irrelevant to the mode to be identified. These issues all mean that careful choice of assumptions in the identification model and fundamental formulation to account for uncertainty are necessary. During the calculation, computational difficulties associated with calculating the posterior statistics are addressed. Finally, a fast computational algorithm is proposed so that the method can be practically implemented. Numerical verification with synthetic data and applicable investigation with full-scale field structures data are all carried out for the proposed method.
Andreu, Yolanda; Galdon, Maria J; Durá, Estrella; Ferrando, Maite; Pascual, Juan; Turk, Dennis C; Jiménez, Yolanda; Poveda, Rafael
2006-01-01
Background This paper seeks to analyse the psychometric and structural properties of the Multidimensional Pain Inventory (MPI) in a sample of temporomandibular disorder patients. Methods The internal consistency of the scales was obtained. Confirmatory Factor Analysis was carried out to test the MPI structure section by section in a sample of 114 temporomandibular disorder patients. Results Nearly all scales obtained good reliability indexes. The original structure could not be totally confirmed. However, with a few adjustments we obtained a satisfactory structural model of the MPI which was slightly different from the original: certain items and the Self control scale were eliminated; in two cases, two original scales were grouped in one factor, Solicitous and Distracting responses on the one hand, and Social activities and Away from home activities, on the other. Conclusion The MPI has been demonstrated to be a reliable tool for the assessment of pain in temporomandibular disorder patients. Some divergences to be taken into account have been clarified. PMID:17169143
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, L.H., E-mail: Luhui.Han@tum.de; Hu, X.Y., E-mail: Xiangyu.Hu@tum.de; Adams, N.A., E-mail: Nikolaus.Adams@tum.de
In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separationmore » approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.« less
NASA Astrophysics Data System (ADS)
Flamand, Olivier
2017-12-01
Wind engineering problems are commonly studied by wind tunnel experiments at a reduced scale. This introduces several limitations and calls for a careful planning of the tests and the interpretation of the experimental results. The talk first revisits the similitude laws and discusses how they are actually applied in wind engineering. It will also remind readers why different scaling laws govern in different wind engineering problems. Secondly, the paper focuses on the ways to simplify a detailed structure (bridge, building, platform) when fabricating the downscaled models for the tests. This will be illustrated by several examples from recent engineering projects. Finally, under the most severe weather conditions, manmade structures and equipment should remain operational. What “recreating the climate” means and aims to achieve will be illustrated through common practice in climatic wind tunnel modelling.
Shachar, Iris; Aderka, Idan M; Gilboa-Schechtman, Eva
2014-06-01
The Liebowitz Social Anxiety Scale for Children and Adolescents (LSAS-CA-SR) is a validated instrument for the assessment of social anxiety in youth. The three main objectives of the present study were to (a) examine the factor structure of the LSAS-CA-SR; (b) to validate the factors against relevant personality measures, and (c) to create a brief and reliable version of the questionnaire. A total of 1,362 adolescents completed self-report measures of social anxiety, temperament, character and personality traits. The factor structure was examined using a combination of confirmatory and exploratory factor analysis. The analysis was conducted on both the anxiety and avoidance sub-scales, and identical items for both sub-scales were maintained. Two factors emerged: social interaction and school performance. These factors demonstrated high internal consistency and a significant correlation with relevant self-report measures. A brief version comprised of 14 items was highly correlated (0.96) with the full version. The new factor structure represents advancement over the previous efforts, and holds promise for efficient utilization of the LSAS-CA.
Bereschenko, L. A.; Heilig, G. H. J.; Nederlof, M. M.; van Loosdrecht, M. C. M.; Stams, A. J. M.; Euverink, G. J. W.
2008-01-01
The origin, structure, and composition of biofilms in various compartments of an industrial full-scale reverse-osmosis (RO) membrane water purification plant were analyzed by molecular biological methods. Samples were taken when the RO installation suffered from a substantial pressure drop and decreased production. The bacterial community of the RO membrane biofilm was clearly different from the bacterial community present at other locations in the RO plant, indicating the development of a specialized bacterial community on the RO membranes. The typical freshwater phylotypes in the RO membrane biofilm (i.e., Proteobacteria, Cytophaga-Flexibacter-Bacteroides group, and Firmicutes) were also present in the water sample fed to the plant, suggesting a feed water origin. However, the relative abundances of the different species in the mature biofilm were different from those in the feed water, indicating that the biofilm was actively formed on the RO membrane sheets and was not the result of a concentration of bacteria present in the feed water. The majority of the microorganisms (59% of the total number of clones) in the biofilm were related to the class Proteobacteria, with a dominance of Sphingomonas spp. (27% of all clones). Members of the genus Sphingomonas seem to be responsible for the biofouling of the membranes in the RO installation. PMID:18621875
Computer modelling of cyclic deformation of high-temperature materials. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duesbery, M.S.; Louat, N.P.
1992-11-16
Current methods of lifetime assessment leave much to be desired. Typically, the expected life of a full-scale component exposed to a complex environment is based upon empirical interpretations of measurements performed on microscopic samples in controlled laboratory conditions. Extrapolation to the service component is accomplished by scaling laws which, if used at all, are empirical; little or no attention is paid to synergistic interactions between the different components of the real environment. With the increasingly hostile conditions which must be faced in modern aerospace applications, improvement in lifetime estimation is mandated by both cost and safety considerations. This program aimsmore » at improving current methods of lifetime assessment by building in the characteristics of the micro-mechanisms known to be responsible for damage and failure. The broad approach entails the integration and, where necessary, augmentation of the micro-scale research results currently available in the literature into a macro-scale model with predictive capability. In more detail, the program will develop a set of hierarchically structured models at different length scales, from atomic to macroscopic, at each level taking as parametric input the results of the model at the next smaller scale. In this way the known microscopic properties can be transported by systematic procedures to the unknown macro-scale region. It may not be possible to eliminate empiricism completely, because some of the quantities involved cannot yet be estimated to the required degree of precision. In this case the aim will be at least to eliminate functional empiricism.« less
NASA Technical Reports Server (NTRS)
Weinberg, B. C.; Mcdonald, H.
1986-01-01
The existence of large scale coherent structures in turbulent shear flows has been well documented. Discrepancies between experimental and computational data suggest a necessity to understand the roles they play in mass and momentum transport. Using conditional sampling and averaging on coincident two-component velocity and concentration velocity experimental data for swirling and nonswirling coaxial jets, triggers for identifying the structures were examined. Concentration fluctuation was found to be an adequate trigger or indicator for the concentration-velocity data, but no suitable detector was located for the two-component velocity data. The large scale structures are found in the region where the largest discrepancies exist between model and experiment. The traditional gradient transport model does not fit in this region as a result of these structures. The large scale motion was found to be responsible for a large percentage of the axial mass transport. The large scale structures were found to convect downstream at approximately the mean velocity of the overall flow in the axial direction. The radial mean velocity of the structures was found to be substantially greater than that of the overall flow.
Structural Integrity of an Electron Beam Melted Titanium Alloy
Lancaster, Robert; Davies, Gareth; Illsley, Henry; Jeffs, Spencer; Baxter, Gavin
2016-01-01
Advanced manufacturing encompasses the wide range of processes that consist of “3D printing” of metallic materials. One such method is Electron Beam Melting (EBM), a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP) test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response. PMID:28773590
NASA Astrophysics Data System (ADS)
Downs, Peter W.; Dusterhoff, Scott R.; Sears, William A.
2013-05-01
Understanding the cumulative impact of natural and human influences on the sensitivity of channel morphodynamics, a relative measure between the drivers for change and the magnitude of channel response, requires an approach that accommodates spatial and temporal variability in the suite of primary stressors. Multiple historical data sources were assembled to provide a reach-scale analysis of the lower Santa Clara River (LSCR) in Ventura County, California, USA. Sediment supply is naturally high due to tectonic activity, earthquake-generated landslides, wildfires, and high magnitude flow events during El Niño years. Somewhat typically for the region, the catchment has been subject to four reasonably distinct land use and resource management combinations since European-American settlement. When combined with analysis of channel morphological response (quantifiable since ca. 1930), reach-scale and temporal differences in channel sensitivity become apparent. Downstream reaches have incised on average 2.4 m and become narrower by almost 50% with changes focused in a period of highly sensitive response after about 1950 followed by forced insensitivity caused by structural flood embankments and a significant grade control structure. In contrast, the middle reaches have been responsive but are morphologically resilient, and the upstream reaches show a mildly sensitive aggradational trend. Superimposing the natural and human drivers for change reveals that large scale stressors (related to ranching and irrigation) have been replaced over time by a suite of stressors operating at multiple spatial scales. Lower reaches have been sensitive primarily to 'local' scale impacts (urban growth, flood control, and aggregate mining) whereas, upstream, catchment-scale influences still prevail (including flow regulation and climate-driven sediment supply factors). These factors illustrate the complexity inherent to cumulative impact assessment in fluvial systems, provide evidence for a distinct Anthropocene fluvial response, and underpin the enormity of the challenge faced in trying to sustainably manage and restore rivers.
ERIC Educational Resources Information Center
Kapuza, A. V.; Tyumeneva, Yu. A.
2017-01-01
One of the ways of controlling for the influence of social expectations on the answers given by survey respondents is to use a social desirability scale together with the main questions. The social desirability scale, which was included in the Teaching and Learning International Survey (TALIS) international comparative study for this purpose, was…
Lobe-cleft instability in the buoyant gravity current generated by estuarine outflow
NASA Astrophysics Data System (ADS)
Horner-Devine, Alexander R.; Chickadel, C. Chris
2017-05-01
Gravity currents represent a broad class of geophysical flows including turbidity currents, powder avalanches, pyroclastic flows, sea breeze fronts, haboobs, and river plumes. A defining feature in many gravity currents is the formation of three-dimensional lobes and clefts along the front and researchers have sought to understand these ubiquitous geophysical structures for decades. The prevailing explanation is based largely on early laboratory and numerical model experiments at much smaller scales, which concluded that lobes and clefts are generated due to hydrostatic instability exclusively in currents propagating over a nonslip boundary. Recent studies suggest that frontal dynamics change as the flow scale increases, but no measurements have been made that sufficiently resolve the flow structure in full-scale geophysical flows. Here we use thermal infrared and acoustic imaging of a river plume to reveal the three-dimensional structure of lobes and clefts formed in a geophysical gravity current front. The observed lobes and clefts are generated at the front in the absence of a nonslip boundary, contradicting the prevailing explanation. The observed flow structure is consistent with an alternative formation mechanism, which predicts that the lobe scale is inherited from subsurface vortex structures.
Page, Andrew C; Hooke, Geoffrey R; Morrison, David L
2007-09-01
The psychometric properties of the Depression Anxiety Stress Scales (DASS; Lovibond & Lovibond, 1995a) were examined in depressed psychiatric hospital samples. Three studies administered the DASS and other symptom measures at admission and discharge to consecutive adult hospital patients with a primary diagnosis of depression. Study 3 aimed to address problems with the DASS by extending the response options. Study 1 found that the DASS had good reliability and validity, was moderately sensitive to change, but the Depression Scale exhibited a ceiling effect. In Study 2, confirmatory factor analysis supported a three-factor structure and the DASS continued to demonstrate good psychometric properties, but the ceiling effect was replicated. Study 3 found that by extending the response scale to include an additional option, the factor structure of the instrument as a whole was maintained, the sensitivity to treatment was increased, but the ceiling effect was only marginally reduced. The psychometric properties of the DASS were sound in clinically depressed samples, but the Depression Scale exhibited a ceiling effect that could not be resolved with minor changes to the scale. Suggestions for revisions of the DASS are made.
Numerical simulation of intelligent compaction technology for construction quality control.
DOT National Transportation Integrated Search
2015-02-01
For eciently updating models of large-scale structures, the response surface (RS) method based on radial basis : functions (RBFs) is proposed to model the input-output relationship of structures. The key issues for applying : the proposed method a...
Ackerman, Robert A; Donnellan, M Brent; Roberts, Brent W; Fraley, R Chris
2016-04-01
The Narcissistic Personality Inventory (NPI) is currently the most widely used measure of narcissism in social/personality psychology. It is also relatively unique because it uses a forced-choice response format. We investigate the consequences of changing the NPI's response format for item meaning and factor structure. Participants were randomly assigned to one of three conditions: 40 forced-choice items (n = 2,754), 80 single-stimulus dichotomous items (i.e., separate true/false responses for each item; n = 2,275), or 80 single-stimulus rating scale items (i.e., 5-point Likert-type response scales for each item; n = 2,156). Analyses suggested that the "narcissistic" and "nonnarcissistic" response options from the Entitlement and Superiority subscales refer to independent personality dimensions rather than high and low levels of the same attribute. In addition, factor analyses revealed that although the Leadership dimension was evident across formats, dimensions with entitlement and superiority were not as robust. Implications for continued use of the NPI are discussed. © The Author(s) 2015.
Julee A Herdt; John Hunt; Kellen Schauermann
2016-01-01
This project demonstrates newly invented, biobased construction materials developed by applying lowcarbon, biomass waste sources through the Authorsâ engineered fiber processes and technology. If manufactured and applied large-scale the project inventions can divert large volumes of cellulose waste into high-performance, low embodied energy, environmental construction...
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Lovejoy, Andrew E.; Thornburgh, Robert P.; Rankin, Charles
2012-01-01
NASA s Shell Buckling Knockdown Factor (SBKF) project has the goal of developing new analysis-based shell buckling design factors (knockdown factors) and design and analysis technologies for launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale levels. This paper describes the design and analysis of three different orthogrid-stiffeNed metallic cylindrical-shell test articles. Two of the test articles are 8-ft-diameter, 6-ft-long test articles, and one test article is a 27.5-ft-diameter, 20-ft-long Space Shuttle External Tank-derived test article.
Structural and functional connectivity as a driver of hillslope erosion following disturbance
USDA-ARS?s Scientific Manuscript database
Hydrologic response to rainfall input on fragmented or burnt hillslopes is strongly influenced by the ensuing connectivity of runoff and erosion processes. Yet, cross-scale process connectivity is seldom evaluated in field studies due scale limitations in experimental design. This study quantified...
Dimensionality of the California Preschool Social Competency Scale.
ERIC Educational Resources Information Center
Flint, David L.; And Others
1980-01-01
Structure and construct validity of the California Preschool Social Competency Scale was investigated. Five factors were interpreted: considerateness; extraversion; task orientation; verbal facility; and response to the unfamiliar. The first three were found to be similar to the three dimensions of the Classroom Behavior Inventory. (Author/BW)
NASA Astrophysics Data System (ADS)
Schäfer, M.; Groos, L.; Forbriger, T.; Bohlen, T.
2014-09-01
Full-waveform inversion (FWI) of shallow-seismic surface waves is able to reconstruct lateral variations of subsurface elastic properties. Line-source simulation for point-source data is required when applying algorithms of 2-D adjoint FWI to recorded shallow-seismic field data. The equivalent line-source response for point-source data can be obtained by convolving the waveforms with √{t^{-1}} (t: traveltime), which produces a phase shift of π/4. Subsequently an amplitude correction must be applied. In this work we recommend to scale the seismograms with √{2 r v_ph} at small receiver offsets r, where vph is the phase velocity, and gradually shift to applying a √{t^{-1}} time-domain taper and scaling the waveforms with r√{2} for larger receiver offsets r. We call this the hybrid transformation which is adapted for direct body and Rayleigh waves and demonstrate its outstanding performance on a 2-D heterogeneous structure. The fit of the phases as well as the amplitudes for all shot locations and components (vertical and radial) is excellent with respect to the reference line-source data. An approach for 1-D media based on Fourier-Bessel integral transformation generates strong artefacts for waves produced by 2-D structures. The theoretical background for both approaches is presented in a companion contribution. In the current contribution we study their performance when applied to waves propagating in a significantly 2-D-heterogeneous structure. We calculate synthetic seismograms for 2-D structure for line sources as well as point sources. Line-source simulations obtained from the point-source seismograms through different approaches are then compared to the corresponding line-source reference waveforms. Although being derived by approximation the hybrid transformation performs excellently except for explicitly back-scattered waves. In reconstruction tests we further invert point-source synthetic seismograms by a 2-D FWI to subsurface structure and evaluate its ability to reproduce the original structural model in comparison to the inversion of line-source synthetic data. Even when applying no explicit correction to the point-source waveforms prior to inversion only moderate artefacts appear in the results. However, the overall performance is best in terms of model reproduction and ability to reproduce the original data in a 3-D simulation if inverted waveforms are obtained by the hybrid transformation.
On the statistical mechanics of the 2D stochastic Euler equation
NASA Astrophysics Data System (ADS)
Bouchet, Freddy; Laurie, Jason; Zaboronski, Oleg
2011-12-01
The dynamics of vortices and large scale structures is qualitatively very different in two dimensional flows compared to its three dimensional counterparts, due to the presence of multiple integrals of motion. These are believed to be responsible for a variety of phenomena observed in Euler flow such as the formation of large scale coherent structures, the existence of meta-stable states and random abrupt changes in the topology of the flow. In this paper we study stochastic dynamics of the finite dimensional approximation of the 2D Euler flow based on Lie algebra su(N) which preserves all integrals of motion. In particular, we exploit rich algebraic structure responsible for the existence of Euler's conservation laws to calculate the invariant measures and explore their properties and also study the approach to equilibrium. Unexpectedly, we find deep connections between equilibrium measures of finite dimensional su(N) truncations of the stochastic Euler equations and random matrix models. Our work can be regarded as a preparation for addressing the questions of large scale structures, meta-stability and the dynamics of random transitions between different flow topologies in stochastic 2D Euler flows.
Development of an Operationally-Oriented Measure of Sustainability
1991-09-01
this through new ways of using the advertising media and distribution channels. Siminlarly, process innovations also erect economies of scale and other...profound effect on structure include sweeping regulations on entry into the industry, competitive practices, and profit structure. Policies that govern... advertised , Cramer received over 55,000 responses. A decision was made to follow up each response with a field visit; however, the sales force was not
Development of a Brief Questionnaire to Assess Contraceptive Intent
Raine-Bennett, Tina R; Rocca, Corinne H
2015-01-01
Objective We sought to develop and validate an instrument that can enable providers to identify young women who may be at risk of contraceptive non-adherence. Methods Item response theory based methods were used to evaluate the psychometric properties of the Contraceptive Intent Questionnaire, a 15-item self-administered questionnaire, based on theory and prior qualitative and quantitative research. The questionnaire was administered to 200 women aged 15–24 years who were initiating contraceptives. We assessed item fit to the item response model, internal consistency, internal structure validity, and differential item functioning. Results All items fit a one-dimensional model. The separation reliability coefficient was 0.73. Participants’ overall scores covered the full range of the scale (0–15), and items appropriately matched the range of participants’ contraceptive intent. Items met the criteria for internal structure validity and most items functioned similarly between groups of women. Conclusion The Contraceptive Intent Questionnaire appears to be a reliable and valid tool. Future testing is needed to assess predictive ability and clinical utility. Practice Implications The Contraceptive Intent Questionnaire may serve as a valid tool to help providers identify women who may have problems with contraceptive adherence, as well as to pinpoint areas in which counseling may be directed. PMID:26104994
Development of a brief questionnaire to assess contraceptive intent.
Raine-Bennett, Tina R; Rocca, Corinne H
2015-11-01
We sought to develop and validate an instrument that can enable providers to identify young women who may be at risk of contraceptive non-adherence. Item response theory based methods were used to evaluate the psychometric properties of the Contraceptive Intent Questionnaire, a 15-item self-administered questionnaire, based on theory and prior qualitative and quantitative research. The questionnaire was administered to 200 women aged 15-24 years who were initiating contraceptives. We assessed item fit to the item response model, internal consistency, internal structure validity, and differential item functioning. All items fit a one-dimensional model. The separation reliability coefficient was 0.73. Participants' overall scores covered the full range of the scale (0-15), and items appropriately matched the range of participants' contraceptive intent. Items met the criteria for internal structure validity and most items functioned similarly between groups of women. The Contraceptive Intent Questionnaire appears to be a reliable and valid tool. Future testing is needed to assess predictive ability and clinical utility. The Contraceptive Intent Questionnaire may serve as a valid tool to help providers identify women who may have problems with contraceptive adherence, as well as to pinpoint areas in which counseling may be directed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Vibration Sensitivity of a Wide-Temperature Electronically Scanned Pressure Measurement (ESP) Module
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J.; Garza, Frederico R.
2001-01-01
A vibration sensitivity test was conducted on a Wide-Temperature ESP module. The test object was Module "M4," a 16-channel, 4 psi unit scheduled for installation in the Arc Sector of NTF. The module was installed on a vibration exciter and loaded to positive then negative full-scale pressures (+/-2.5 psid). Test variables were the following: Vibration frequencies: 20, 55, 75 Hz. Vibration level: 1 g. Vibration axes: X, Y, Z. The pressure response was measured on each channel, first without and then with the vibration turned on, and the difference analyzed by means of the statistical t-test. The results show that the vibration sensitivity does not exceed 0.01% Full Scale Output per g (with the exception of one channel on one axis) to a 95 percent confidence level. This specification, limited by the resolution of the pressure source, lies well below the total uncertainty specification of 0.1 percent Full Scale Output.
Hu, Tai-Ho; Whang, Liang-Ming; Liu, Pao-Wen Grace; Hung, Yu-Ching; Chen, Hung-Wei; Lin, Li-Bin; Chen, Chia-Fu; Chen, Sheng-Kun; Hsu, Shu Fu; Shen, Wason; Fu, Ryan; Hsu, Romel
2012-06-01
This study evaluated biological treatment of TMAH in a full-scale methanogenic up-flow anaerobic sludge blanket (UASB) followed by an aerobic bioreactor. In general, the UASB was able to perform a satisfactory TMAH degradation efficiency, but the effluent COD of the aerobic bioreactor seemed to increase with an increased TMAH in the influent wastewater. The batch test results confirmed that the UASB sludge under methanogenic conditions would be favored over the aerobic ones for TMAH treatment due to its superb ability of handling high strength of TMAH-containing wastewaters. Based on batch experiments, inhibitory chemicals present in TFT-LCD wastewater like surfactants and sulfate should be avoided to secure a stable methanogenic TMAH degradation. Finally, molecular monitoring of Methanomethylovorans hollandica and Methanosarcina mazei in the full-scale plant, the dominant methanogens in the UASB responsible for TMAH degradation, may be beneficial for a stable TMAH treatment performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Multi-scale modeling of the CD8 immune response
NASA Astrophysics Data System (ADS)
Barbarroux, Loic; Michel, Philippe; Adimy, Mostafa; Crauste, Fabien
2016-06-01
During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.
Multi-scale modeling of the CD8 immune response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbarroux, Loic, E-mail: loic.barbarroux@doctorant.ec-lyon.fr; Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully; Michel, Philippe, E-mail: philippe.michel@ec-lyon.fr
During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself inmore » case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.« less
FROM FINANCE TO COSMOLOGY: THE COPULA OF LARGE-SCALE STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherrer, Robert J.; Berlind, Andreas A.; Mao, Qingqing
2010-01-01
Any multivariate distribution can be uniquely decomposed into marginal (one-point) distributions, and a function called the copula, which contains all of the information on correlations between the distributions. The copula provides an important new methodology for analyzing the density field in large-scale structure. We derive the empirical two-point copula for the evolved dark matter density field. We find that this empirical copula is well approximated by a Gaussian copula. We consider the possibility that the full n-point copula is also Gaussian and describe some of the consequences of this hypothesis. Future directions for investigation are discussed.
Forecasting the forest and the trees: consequences of drought in competitive forests
NASA Astrophysics Data System (ADS)
Clark, J. S.
2015-12-01
Models that translate individual tree responses to distribution and abundance of competing populations are needed to understand forest vulnerability to drought. Currently, biodiversity predictions rely on one scale or the other, but do not combine them. Synthesis is accomplished here by modeling data together, each with their respective scale-dependent connections to the scale needed for prediction—landscape to regional biodiversity. The approach we summarize integrates three scales, i) individual growth, reproduction, and survival, ii) size-species structure of stands, and iii) regional forest biomass. Data include 24,347 USDA Forest Inventory and Analysis (FIA) plots and 135 Long-term Forest Demography plots. Climate, soil moisture, and competitive interactions are predictors. We infer and predict the four-dimensional size/species/space/time (SSST) structure of forests, where all demographic rates respond to winter temperature, growing season length, moisture deficits, local moisture status, and competition. Responses to soil moisture are highly non-linear and not strongly related to responses to climatic moisture deficits over time. In the Southeast the species that are most sensitive to drought on dry sites are not the same as those that are most sensitive on moist sites. Those that respond most to spatial moisture gradients are not the same as those that respond most to regional moisture deficits. There is little evidence of simple tradeoffs in responses. Direct responses to climate constrain the ranges of few tree species, north or south; there is little evidence that range limits are defined by fecundity or survival responses to climate. By contrast, recruitment and the interactions between competition and drought that affect growth and survival are predicted to limit ranges of many species. Taken together, results suggest a rich interaction involving demographic responses at all size classes to neighbors, landscape variation in moisture, and regional climate change.
NASA Astrophysics Data System (ADS)
Bukosky, Scott; Hammons, Joshua; Han, Jinkyu; Freyman, Megan; Lee, Elaine; Cook, Caitlyn; Kuntz, Joshua; Worsley, Marcus; Han, Thomas Yong; Ristenpart, William; Pascall, Andrew
2017-11-01
Amorphous photonic crystals (APCs) formed via electrophoretic deposition (EPD) exhibit non-iridescent, angle-independent, structural colors believed to arise from changes in the particle-particle interactions and inter-particle spacing, representing a potential new paradigm for display technologies. However, particle dynamics on nanometer length scales that govern the displayed color, crystallinity, and other characteristics of the photonic structures, are not well understood. In this work, in-situ USAXS/SAXS studies of three-dimensional colloidal particle arrays were performed in order to identify their structural response to applied external electric fields. These results were compared to simultaneously acquired UV-Vis spectra to tie the overall electrically induced structure of the APCs directly to the observed changes in visible color. The structural evolution of the APCs provides new information regarding the correlation between nano-scale particle-particle interactions and the corresponding optical response. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-736068.
Patrick, Christopher J.; Kramer, Mark D.; Krueger, Robert F.; Markon, Kristian E.
2014-01-01
The Externalizing Spectrum Inventory (ESI; Krueger, Markon, Patrick, Benning, & Kramer, 2007) provides for integrated, hierarchical assessment of a broad range of problem behaviors and traits in the domain of deficient impulse control. The ESI assesses traits and problems in this domain through 23 lower-order facet scales organized around three higher-order dimensions, reflecting general disinhibition, callous-aggression, and substance abuse. The full-form ESI contains 415 items, and a shorter form would be useful for questionnaire screening studies or multi-domain research protocols. The current work employed item response theory and structural modeling methods to create a 160-item brief form (ESI-bf) that provides for efficient measurement of the ESI’s lower-order facets and quantification of its higher-order dimensions either as scale-based factors or as item-based composites. The ESI-bf is recommended for use in research on psychological or neurobiological correlates of problems such as risk-taking, delinquency, aggression, and substance abuse, and studies of general and specific mechanisms that give rise to problems of these kinds. PMID:24320765
Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.
2014-09-01
The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPSmore » eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.« less
Diviani, Nicola; Dima, Alexandra Lelia; Schulz, Peter Johannes
2017-04-11
The eHealth Literacy Scale (eHEALS) is a tool to assess consumers' comfort and skills in using information technologies for health. Although evidence exists of reliability and construct validity of the scale, less agreement exists on structural validity. The aim of this study was to validate the Italian version of the eHealth Literacy Scale (I-eHEALS) in a community sample with a focus on its structural validity, by applying psychometric techniques that account for item difficulty. Two Web-based surveys were conducted among a total of 296 people living in the Italian-speaking region of Switzerland (Ticino). After examining the latent variables underlying the observed variables of the Italian scale via principal component analysis (PCA), fit indices for two alternative models were calculated using confirmatory factor analysis (CFA). The scale structure was examined via parametric and nonparametric item response theory (IRT) analyses accounting for differences between items regarding the proportion of answers indicating high ability. Convergent validity was assessed by correlations with theoretically related constructs. CFA showed a suboptimal model fit for both models. IRT analyses confirmed all items measure a single dimension as intended. Reliability and construct validity of the final scale were also confirmed. The contrasting results of factor analysis (FA) and IRT analyses highlight the importance of considering differences in item difficulty when examining health literacy scales. The findings support the reliability and validity of the translated scale and its use for assessing Italian-speaking consumers' eHealth literacy. ©Nicola Diviani, Alexandra Lelia Dima, Peter Johannes Schulz. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 11.04.2017.
Impact gages for detecting meteoroid and other orbital debris impacts on space vehicles.
NASA Technical Reports Server (NTRS)
Mastandrea, J. R.; Scherb, M. V.
1973-01-01
Impacts on space vehicles have been simulated using the McDonnell Douglas Aerophysics Laboratory (MDAL) Light-Gas Guns to launch particles at hypervelocity speeds into scaled space structures. Using impact gages and a triangulation technique, these impacts have been detected and accurately located. This paper describes in detail the various types of impact gages (piezoelectric PZT-5A, quartz, electret, and off-the-shelf plastics) used. This description includes gage design and experimental results for gages installed on single-walled scaled payload carriers, multiple-walled satellites and space stations, and single-walled full-scale Delta tank structures. A brief description of the triangulation technique, the impact simulation, and the data acquisition system are also included.
The XMM Large Scale Structure Survey
NASA Astrophysics Data System (ADS)
Pierre, Marguerite
2005-10-01
We propose to complete, by an additional 5 deg2, the XMM-LSS Survey region overlying the Spitzer/SWIRE field. This field already has CFHTLS and Integral coverage, and will encompass about 10 deg2. The resulting multi-wavelength medium-depth survey, which complements XMM and Chandra deep surveys, will provide a unique view of large-scale structure over a wide range of redshift, and will show active galaxies in the full range of environments. The complete coverage by optical and IR surveys provides high-quality photometric redshifts, so that cosmological results can quickly be extracted. In the spirit of a Legacy survey, we will make the raw X-ray data immediately public. Multi-band catalogues and images will also be made available on short time scales.
Development of the Computer-Adaptive Version of the Late-Life Function and Disability Instrument
Tian, Feng; Kopits, Ilona M.; Moed, Richard; Pardasaney, Poonam K.; Jette, Alan M.
2012-01-01
Background. Having psychometrically strong disability measures that minimize response burden is important in assessing of older adults. Methods. Using the original 48 items from the Late-Life Function and Disability Instrument and newly developed items, a 158-item Activity Limitation and a 62-item Participation Restriction item pool were developed. The item pools were administered to a convenience sample of 520 community-dwelling adults 60 years or older. Confirmatory factor analysis and item response theory were employed to identify content structure, calibrate items, and build the computer-adaptive testings (CATs). We evaluated real-data simulations of 10-item CAT subscales. We collected data from 102 older adults to validate the 10-item CATs against the Veteran’s Short Form-36 and assessed test–retest reliability in a subsample of 57 subjects. Results. Confirmatory factor analysis revealed a bifactor structure, and multi-dimensional item response theory was used to calibrate an overall Activity Limitation Scale (141 items) and an overall Participation Restriction Scale (55 items). Fit statistics were acceptable (Activity Limitation: comparative fit index = 0.95, Tucker Lewis Index = 0.95, root mean square error approximation = 0.03; Participation Restriction: comparative fit index = 0.95, Tucker Lewis Index = 0.95, root mean square error approximation = 0.05). Correlation of 10-item CATs with full item banks were substantial (Activity Limitation: r = .90; Participation Restriction: r = .95). Test–retest reliability estimates were high (Activity Limitation: r = .85; Participation Restriction r = .80). Strength and pattern of correlations with Veteran’s Short Form-36 subscales were as hypothesized. Each CAT, on average, took 3.56 minutes to administer. Conclusions. The Late-Life Function and Disability Instrument CATs demonstrated strong reliability, validity, accuracy, and precision. The Late-Life Function and Disability Instrument CAT can achieve psychometrically sound disability assessment in older persons while reducing respondent burden. Further research is needed to assess their ability to measure change in older adults. PMID:22546960
Recent "Ground Testing" Experiences in the National Full-Scale Aerodynamics Complex
NASA Technical Reports Server (NTRS)
Zell, Peter; Stich, Phil; Sverdrup, Jacobs; George, M. W. (Technical Monitor)
2002-01-01
The large test sections of the National Full-scale Aerodynamics Complex (NFAC) wind tunnels provide ideal controlled wind environments to test ground-based objects and vehicles. Though this facility was designed and provisioned primarily for aeronautical testing requirements, several experiments have been designed to utilize existing model mount structures to support "non-flying" systems. This presentation will discuss some of the ground-based testing capabilities of the facility and provide examples of groundbased tests conducted in the facility to date. It will also address some future work envisioned and solicit input from the SATA membership on ways to improve the service that NASA makes available to customers.