Sample records for fullerenes

  1. Conversion of fullerenes to diamond

    DOEpatents

    Gruen, Dieter M.

    1993-01-01

    A method of forming synthetic diamond on a substrate is disclosed. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond thickness on the substrate.

  2. Conversion of fullerenes to diamond

    DOEpatents

    Gruen, Dieter M.

    1994-01-01

    A method of forming synthetic diamond on a substrate. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond film thickness on the substrate.

  3. Combustion method for producing fullerenes

    DOEpatents

    Howard, Jack B.; McKinnon, J. Thomas

    1993-01-01

    A method for synthesizing fullerenes in flames is provided. Fullerenes are prepared by burning carbon-containing compounds in a flame and collecting the condensibles. The condensibles contain the desired fullerenes. Fullerene yields can be optimized and fullerene composition can be selectively varied. Fullerene yields and compositions are determined by selectively controlling flame conditions and parameters such as C/O ratio, pressure, temperature, residence time, diluent concentration and gas velocity.

  4. Combustion method for producing fullerenes

    DOEpatents

    Howard, J.B.; McKinnon, J.T.

    1993-12-28

    A method for synthesizing fullerenes in flames is provided. Fullerenes are prepared by burning carbon-containing compounds in a flame and collecting the condensable. The condensable contain the desired fullerenes. Fullerene yields can be optimized and fullerene composition can be selectively varied. Fullerene yields and compositions are determined by selectively controlling flame conditions and parameters such as C/O ratio, pressure, temperature, residence time, diluent concentration and gas velocity. 4 figures.

  5. Fullerenes and disk-fullerenes

    NASA Astrophysics Data System (ADS)

    Deza, M.; Dutour Sikirić, M.; Shtogrin, M. I.

    2013-08-01

    A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an n-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one n-gonal face and all other faces 5- and 6-gonal, by removing the n-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and n-disk-fullerenes is investigated. Bibliography: 87 titles.

  6. Efficient Regular Perovskite Solar Cells Based on Pristine [70]Fullerene as Electron-Selective Contact.

    PubMed

    Collavini, Silvia; Kosta, Ivet; Völker, Sebastian F; Cabanero, German; Grande, Hans J; Tena-Zaera, Ramón; Delgado, Juan Luis

    2016-06-08

    [70]Fullerene is presented as an efficient alternative electron-selective contact (ESC) for regular-architecture perovskite solar cells (PSCs). A smart and simple, well-described solution processing protocol for the preparation of [70]- and [60]fullerene-based solar cells, namely the fullerene saturation approach (FSA), allowed us to obtain similar power conversion efficiencies for both fullerene materials (i.e., 10.4 and 11.4 % for [70]- and [60]fullerene-based devices, respectively). Importantly, despite the low electron mobility and significant visible-light absorption of [70]fullerene, the presented protocol allows the employment of [70]fullerene as an efficient ESC. The [70]fullerene film thickness and its solubility in the perovskite processing solutions are crucial parameters, which can be controlled by the use of this simple solution processing protocol. The damage to the [70]fullerene film through dissolution during the perovskite deposition is avoided through the saturation of the perovskite processing solution with [70]fullerene. Additionally, this fullerene-saturation strategy improves the performance of the perovskite film significantly and enhances the power conversion efficiency of solar cells based on different ESCs (i.e., [60]fullerene, [70]fullerene, and TiO2 ). Therefore, this universal solution processing protocol widens the opportunities for the further development of PSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    NASA Astrophysics Data System (ADS)

    Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  8. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions.

    PubMed

    Zope, Rajendra R; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  9. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zope, Rajendra R., E-mail: rzope@utep.edu; Baruah, Tunna; Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79958

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolatedmore » C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.« less

  10. Fullerenic structures and such structures tethered to carbon materials

    DOEpatents

    Goel, Anish; Howard, Jack B.; Vander Sande, John B.

    2010-01-05

    The fullerenic structures include fullerenes having molecular weights less than that of C.sub.60 with the exception of C.sub.36 and fullerenes having molecular weights greater than C.sub.60. Examples include fullerenes C.sub.50, C.sub.58, C.sub.130, and C.sub.176. Fullerenic structure chemically bonded to a carbon surface is also disclosed along with a method for tethering fullerenes to a carbon material. The method includes adding functionalized fullerene to a liquid suspension containing carbon material, drying the suspension to produce a powder, and heat treating the powder.

  11. Fullerenic structures and such structures tethered to carbon materials

    DOEpatents

    Goel, Anish; Howard, Jack B.; Vander Sande, John B.

    2012-10-09

    The fullerenic structures include fullerenes having molecular weights less than that of C.sub.60 with the exception of C.sub.36 and fullerenes having molecular weights greater than C.sub.60. Examples include fullerenes C.sub.50, C.sub.58, C.sub.130, and C.sub.176. Fullerenic structure chemically bonded to a carbon surface is also disclosed along with a method for tethering fullerenes to a carbon material. The method includes adding functionalized fullerene to a liquid suspension containing carbon material, drying the suspension to produce a powder, and heat treating the powder.

  12. Conversion of fullerenes to diamond

    DOEpatents

    Gruen, Dieter M.

    1994-01-01

    A method of forming synthetic hydrogen defect free diamond or diamond like films on a substrate. The method involves providing vapor containing fullerene molecules with or without an inert gas, providing a device to impart energy to the fullerene molecules, fragmenting at least in part some of the fullerene molecules in the vapor or energizing the molecules to incipient fragmentation, ionizing the fullerene molecules, impinging ionized fullerene molecules on the substrate to assist in causing fullerene fragmentation to obtain a thickness of diamond on the substrate.

  13. Fullerenes in an impact crater on the LDEF spacecraft

    NASA Technical Reports Server (NTRS)

    Radicati di Brozolo, F.; Bunch, T. E.; Fleming, R. H.; Macklin, J.

    1994-01-01

    The fullerenes C60 and C70 have been found to occur naturally on Earth and have also been invoked to explain features in the absorption spectra of interstellar clouds. But no definitive spectroscopic evidence exists for fullerenes in space and attempts to find fullerenes in carbonaceous chondrites have been unsuccessful. Here we report the observation of fullerenes associated with carbonaceous impact residue in a crater on the Long Duration Exposure Facility (LDEF) spacecraft. Laser ionization mass spectrometry and Raman spectroscopy indicate the presence of fullerenes in the crater and in adjacent ejecta. Man-made fullerenes survive experimental hypervelocity (approximately 6.1 km s-1) impacts into aluminium targets, suggesting that space fullerenes contained in a carbonaceous micrometeorite could have survived the LDEF impact at velocities towards the lower end of the natural particle encounter range (<13 km s-1). We also demonstrate that the fullerenes were unlikely to have formed as instrumental artefacts, nor are they present as contaminants. Although we cannot specify the origin of the fullerenes with certainty, the most plausible source is the chondritic impactor. If, alternatively, the impact produced the fullerenes in situ on LDEF, then this suggests a viable mechanism for fullerene production in space.

  14. Effects of fullerene coalescence on the thermal conductivity of carbon nanopeapods

    NASA Astrophysics Data System (ADS)

    Li, Jiaqian; Shen, Haijun

    2018-05-01

    The heat conduction and its dependence on fullerene coalescence in carbon nanopeapods (CNPs) have been investigated by equilibrium molecular dynamics simulations. The effects of fullerene coalescence on the thermal conductivity of CNPs were discussed under different temperatures. It is shown that the thermal conductivity of the CNPs decreases with the coalescence of encapsulated fullerene molecules. The thermal transmission mechanism of the effect of fullerene coalescence was analysed by the mass transfer contribution, the relative contributions of phonon oscillation frequencies to total heat current and the phonon vibrational density of states (VDOS). The mass transfer in CNPs is mainly attributed to the motion of encapsulated fullerene molecule and it gets more restricted with the coalescence of the fullerene. It shows that the low-frequency phonon modes below 20 THz contribute mostly to thermal conductivity in CNPs. The analysis of VDOS demonstrates that the dominating contribution to heat transfer is from the inner fullerene chain. With the coalescence of fullerene, the interfacial heat transfer between the CNT and fullerene chain is strengthened; however, the heat conduction of the fullerene chain decreases more rapidly at the same time.

  15. Conversion of fullerenes to diamonds

    DOEpatents

    Gruen, Dieter M.

    1995-01-01

    A method of forming synthetic diamond or diamond-like films on a substrate surface. The method involves the steps of providing a vapor selected from the group of fullerene molecules or an inert gas/fullerene molecule mixture, providing energy to the fullerene molecules consisting of carbon-carbon bonds, the energized fullerene molecules breaking down to form fragments of fullerene molecules including C.sub.2 molecules and depositing the energized fullerene molecules with C.sub.2 fragments onto the substrate with farther fragmentation occurring and forming a thickness of diamond or diamond-like films on the substrate surface.

  16. Combustion Synthesis of Fullerenes and Fullerenic Nanostructures In Microgravity

    NASA Technical Reports Server (NTRS)

    Howard, Jack B.; Brooker, John E. (Technical Monitor)

    2002-01-01

    The objectives of the proposed research were to determine the effects of gravity on fullerenes formation in flames and, based on the observed effects, to develop fundamental understanding of fullerenes formation and to identify engineering principles for fullerenes production. The research method consisted of the operation of laminar diffusion flames under normal- and reduced-gravity conditions, and the collection from the flames and subsequent analysis of condensables including any fullerenes present, using coupled high performance liquid chromatography/mass spectrometry and high resolution transmission electron microscopy. The focus included fullerene molecules C60 and C70 and fullerenic nanostructures including tubes, spherules and other shapes. The normal-gravity experiments were performed at MIT and complementary reduced-gravity experiments were to have been contributed by NASA. The independent variables of interest are gravity, fuel type, fuel/oxygen ratio, pressure, gas velocity at burner, diluent type and concentration. Given the large number of variables and the absence of data on either fullerene formation in diffusion flames or gravitational effects on fullerene formation in diffusion or premixed flames, the first part of the work was exploratory while the later part involved detailed study of the most interesting mechanisms. Samples of condensable material from laminar low pressure benzene/argon/oxygen diffusion flames were collected and analyzed by high-performance liquid chromatography to determine the yields of fullerenes, and by high-resolution transmission electron microscopy (HRTEM) to characterize the fullerenic material, i.e., curved-layer nanostructures, on and within the soot particles. The highest concentration of fullerenes was always detected just above the visible stoichiometric surface of a flame. The percentage of fullerenes in the condensable material increases with decreasing pressure. The overall highest amount of fullerenes was found for a surprisingly high dilution fuel with argon. The maximum flame temperature seems to be of minor importance in fullerene formation. The HRTEM analysis of the soot showed an increase of the curvature of the carbon layers, and hence increased fullerenic character. After this maximum, the curvature decreases. In addition to the soot, the samples included fullerenic nanostructures, such as tubes and spheroids including highly-ordered multilayered or onion-like structures. The soot itself shows highly ordered regions that appear to have been cells of ongoing fullerenic nanostructure formation.

  17. Photophysical Properties and Singlet Oxygen Generation Efficiencies of Water-Soluble Fullerene Nanoparticles

    PubMed Central

    Stasheuski, Alexander S; Galievsky, Victor A; Stupak, Alexander P; Dzhagarov, Boris M; Choi, Mi Jin; Chung, Bong Hyun; Jeong, Jin Young

    2014-01-01

    As various fullerene derivatives have been developed, it is necessary to explore their photophysical properties for potential use in photoelectronics and medicine. Here, we address the photophysical properties of newly synthesized water-soluble fullerene-based nanoparticles and polyhydroxylated fullerene as a representative water-soluble fullerene derivative. They show broad emission band arising from a wide-range of excitation energies. It is attributed to the optical transitions from disorder-induced states, which decay in the nanosecond time range. We determine the kinetic properties of the singlet oxygen (1O2) luminescence generated by the fullerene nanoparticles and polyhydroxylated fullerene to consider the potential as photodynamic agents. Triplet state decay of the nanoparticles was longer than 1O2 lifetime in water. Singlet oxygen quantum yield of a series of the fullerene nanoparticles is comparably higher ranging from 0.15 to 0.2 than that of polyhydroxylated fullerene, which is about 0.06. PMID:24893622

  18. Interaction between fullerenes and single-wall carbon nanotubes: the influence of fullerene size and electronic structure.

    PubMed

    Hao, Jian; Guan, Lunhui; Guo, Xihong; Lian, Yongfu; Zhao, Shixiong; Dong, Jinquan; Yang, Shangyuan; Zhang, Hong; Sun, Baoyun

    2011-09-01

    A series of fullerenes and endohedral metallofullerenes peapods have been synthesized by supercritical method in high filling rate. The interaction between SWNTs and various kinds of fullerenes (C60, C70, C78, C84) and metallofullerenes (Gd@C82, Er@C82, Ho@C82, Y@C82) has been further investigated. The slight blue shift of G-band in Raman spectra with respect to pristine SWNTs was attributed to the charge transfer from SWNTs to fullerenes cage. The obvious RBM shift strongly depended on the distance between the inner wall of the SWNTs and the fullerene cage and also partly associated with the electronic structure of the fullerene. These results indicated that the interaction between fullerenes and SWNTs, which was considered to be the van de walls interaction, can be influenced by the cage size and the kind of fullerenes.

  19. Fullerene mediates proliferation and cardiomyogenic differentiation of adipose-derived stem cells via modulation of MAPK pathway and cardiac protein expression

    PubMed Central

    Hao, Tong; Zhou, Jin; Lü, Shuanghong; Yang, Boguang; Wang, Yan; Fang, Wancai; Jiang, Xiaoxia; Lin, Qiuxia; Li, Junjie; Wang, Changyong

    2016-01-01

    Zero-dimensional fullerenes can modulate the biological behavior of a variety of cell lines. However, the effects and molecular mechanisms of proliferation and cardiomyogenic differentiation in brown adipose-derived stem cells (BADSCs) are still unclear. In this study, we report the initial biological effects of fullerene-C60 on BADSCs at different concentrations. Results suggest that fullerene-C60 has no cytotoxic effects on BADSCs even at a concentration of 100 μg/mL. Fullerene-C60 improves the MAPK expression level and stem cell survival, proliferation, and cardiomyogenesis. Further, we found that the fullerene-C60 modulates cardiomyogenic differentiation. Fullerene-C60 improves the expression of cardiomyocyte-specific proteins (cTnT and α-sarcomeric actinin). At elevated concentration, fullerene-C60 reduces the incidence of diminished spontaneous cardiac differentiation of BADSCs with time. At the genetic level, fullerene-C60 (5 μg/mL) also improves the expression of cTnT. In addition, fullerene-C60 promotes the formation of gap junction among cells. These findings have important implications for clinical application of fullerenes in the treatment of myocardial infarction. PMID:26848263

  20. Fullerenes in Allende Meteorite

    NASA Technical Reports Server (NTRS)

    Becker, L.; Bada, J. L.; Winans, R. E.; Bunch, T. E.

    1994-01-01

    The detection of fullerenes in deposits from meteor impacts has led to renewed interest in the possibility that fullerenes are present in meteorites. Although fullerenes have not previously been detected in the Murchison and Allende meteorites, the Allende meteorite is known to contain several well-ordered graphite particles which are remarkably similar in size and appearance to the fullerene-related structures carbon onions and nanotubes. We report that fullerenes are in fact present in trace amounts in the Allende meteorite. In addition to fullerenes, we detected many polycyclic aromatic hydrocarbons (PAHs) in the Allende meteorite, consistent with previous reports. In particular, we detected benzofluoranthene and corannulene (C20H10), five-membered ring structures which have been proposed as precursors to the formation of fullerene synthesis, perhaps within circumstellar envelopes or other sites in the interstellar medium.

  1. Molecular dynamics simulation study of the role of evenly spaced poly(ethylene oxide) tethers on the aggregation of C60 fullerenes in water.

    PubMed

    Bedrov, Dmitry; Smith, Grant D; Li, Liwei

    2005-06-07

    The aggregation behavior of C60 fullerenes and C60 fullerenes with six symmetrically tethered poly(ethylene oxide) oligomers [(PEO)-6-C60] in aqueous solutions has been studied using implicit solvent molecular dynamics simulations. Our simulations reveal that while the attraction between two (PEO)-6-C60 fullerenes in aqueous solution is stronger and longer range than that between two bare C60 fullerenes, the (PEO)-6-C60 fullerenes do not phase-separate in water but rather aggregate in chain-like clusters at concentrations where unmodified fullerenes completely phase-separate.

  2. Polymer-fullerene miscibility: a metric for screening new materials for high-performance organic solar cells.

    PubMed

    Treat, Neil D; Varotto, Alessandro; Takacs, Christopher J; Batara, Nicolas; Al-Hashimi, Mohammed; Heeney, Martin J; Heeger, Alan J; Wudl, Fred; Hawker, Craig J; Chabinyc, Michael L

    2012-09-26

    The improvement of the power conversion efficiency (PCE) of polymer bulk heterojunction (BHJ) solar cells has generally been achieved through synthetic design to control frontier molecular orbital energies and molecular ordering of the electron-donating polymer. An alternate approach to control the PCE of a BHJ is to tune the miscibility of the fullerene and a semiconducting polymer by varying the structure of the fullerene. The miscibility of a series of 1,4-fullerene adducts in the semiconducting polymer, poly(3-hexylselenophene), P3HS, was measured by dynamic secondary ion mass spectrometry using a model bilayer structure. The microstructure of the bilayer was investigated using high-angle annular dark-field scanning transmission microscopy and linked to the polymer-fullerene miscibility. Finally, P3HS:fullerene BHJ solar cells were fabricated from each fullerene derivative, enabling the correlation of the active layer microstructure to the charge collection efficiency and resulting PCE of each system. The volume fraction of polymer-rich, fullerene-rich, and polymer-fullerene mixed domains can be tuned using the miscibility leading to improvement in the charge collection efficiency and PCE in P3HS:fullerene BHJ solar cells. These results suggest a rational approach to the design of fullerenes for improved BHJ solar cells.

  3. Diamond film growth from fullerene precursors

    DOEpatents

    Gruen, Dieter M.; Liu, Shengzhong; Krauss, Alan R.; Pan, Xianzheng

    1997-01-01

    A method and system for manufacturing diamond film. The method involves forming a fullerene vapor, providing a noble gas stream and combining the gas with the fullerene vapor, passing the combined fullerene vapor and noble gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the fullerene and deposition of a diamond film on a substrate.

  4. Benzene Adsorption on C24, Si@C24, Si-Doped C24, and C20 Fullerenes

    NASA Astrophysics Data System (ADS)

    Baei, Mohammad T.

    2017-12-01

    The absorption feasibility of benzene molecule in the C24, Si@C24, Si-doped C24, and C20 fullerenes has been studied based on calculated electronic properties of these fullerenes using Density functional Theory (DFT). It is found that energy of benzene adsorption on C24, Si@C24, and Si-doped C24 fullerenes were in range of -2.93 and -51.19 kJ/mol with little changes in their electronic structure. The results demonstrated that the C24, Si@C24, and Si-doped C24 fullerenes cannot be employed as a chemical adsorbent or sensor for benzene. Silicon doping cannot significantly modify both the electronic properties and benzene adsorption energy of C24 fullerene. On the other hand, C20 fullerene exhibits a high sensitivity, so that the energy gap of the fullerene is changed almost 89.19% after the adsorption process. We concluded that the C20 fullerene can be employed as a reliable material for benzene detection.

  5. Phase equilibria in fullerene-containing systems as a basis for development of manufacture and application processes for nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Semenov, K. N.; Charykov, N. A.; Postnov, V. N.; Sharoyko, V. V.; Murin, I. V.

    2016-01-01

    This review is the first attempt to integrate the available data on all types of phase equilibria (solubility, extraction and sorption) in systems containing light fullerenes (C60 and C70). In the case of solubility diagrams, the following types of phase equilibria are considered: individual fullerene (C60 or C70)-solvent under polythermal and polybaric conditions; C60-C70-solvent, individual fullerene-solvent(1)-solvent(2), as well as multicomponent systems comprising a single fullerene or an industrial mixture of fullerenes and vegetable oils, animal fats or essential oils under polythermal conditions. All published experimental data on the extraction equilibria in C60-C70-liquid phase(1)-liquid phase(2) systems are described systematically and the sorption characteristics of various materials towards light fullerenes are estimated. The possibility of application of these experimental data for development of pre-chromatographic and chromatographic methods for separation of fullerene mixtures and application of fullerenes as nanomodifiers are described. The bibliography includes 87 references.

  6. Fullerene derivatives as electron donor for organic photovoltaic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Taojun; Wang, Xiao-Feng, E-mail: xf-wang@yz.yamagata-u.ac.jp, E-mail: ziruo@yz.yamagata-u.ac.jp; Sano, Takeshi

    2013-11-11

    We demonstrated the performance of unconventional, all-fullerene-based, planar heterojunction (PHJ) organic photovoltaic (OPV) cells using fullerene derivatives indene-C{sub 60} bisadduct (ICBA) and phenyl C{sub 61}-butyric acid methyl ester as the electron donors with fullerene C{sub 70} as the electron acceptor. Two different charge generation processes, including charge generation in the fullerene bulk and exciton dissociation at the donor-acceptor interface, have been found to exist in such all-fullerene-based PHJ cells and the contribution to the total photocurrent from each process is strongly dependent on the thickness of fullerene donor. The optimized 5 nm ICBA/40 nm C{sub 70} PHJ cell gives clear external quantummore » efficiency responses for the long-wavelength photons corresponding to the dissociation of strongly bound Frenkel excitons, which is hardly observed in fullerene-based single layer reference devices. This approach using fullerene as a donor material provides further possibilities for developing high performance OPV cells.« less

  7. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification.

    PubMed

    Uchida, T; Rácz, R; Muramatsu, M; Kato, Y; Kitagawa, A; Biri, S; Yoshida, Y

    2016-02-01

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  8. Preparation of fluorescent mesoporous hollow silica-fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Yang, Yannan; Yu, Meihua; Song, Hao; Wang, Yue; Yu, Chengzhong

    2015-07-01

    Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy.Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02769a

  9. Recent progresses in application of fullerenes in cosmetics.

    PubMed

    Lens, Marko

    2011-08-01

    Cosmetic industry is a fast growing industry with the continuous development of new active ingredients for skin care products. Fullerene C(60) and its derivates have been subject of intensive research in the last few years. Fullerenes display a wide range of different biological activities. Strong antioxidant capacities and effective quenching radical oxygen species (ROS) made fullerenes suitable active compounds in the formulation of skin care products. Published evidence on biological activities of fullerenes relevant for their application in cosmetics use and examples of published patents are presented. Recent trends in the use of fullerenes in topical formulations and patents are reviewed. Future investigations covering application of fullerenes in skin care are discussed.

  10. Diamond film growth from fullerene precursors

    DOEpatents

    Gruen, D.M.; Liu, S.; Krauss, A.R.; Pan, X.

    1997-04-15

    A method and system are disclosed for manufacturing diamond film. The method involves forming a fullerene vapor, providing a noble gas stream and combining the gas with the fullerene vapor, passing the combined fullerene vapor and noble gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the fullerene and deposition of a diamond film on a substrate. 10 figs.

  11. Interstellar fullerene compounds and diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Omont, Alain

    2016-05-01

    Recently, the presence of fullerenes in the interstellar medium (ISM) has been confirmed and new findings suggest that these fullerenes may possibly form from polycyclic aromatic hydrocarbons (PAHs) in the ISM. Moreover, the first confirmed identification of two strong diffuse interstellar bands (DIBs) with the fullerene, C60+, connects the long standing suggestion that various fullerenes could be DIB carriers. These new discoveries justify reassessing the overall importance of interstellar fullerene compounds, including fullerenes of various sizes with endohedral or exohedral inclusions and heterofullerenes (EEHFs). The phenomenology of fullerene compounds is complex. In addition to fullerene formation in grain shattering, fullerene formation from fully dehydrogenated PAHs in diffuse interstellar clouds could perhaps transform a significant percentage of the tail of low-mass PAH distribution into fullerenes including EEHFs. But many uncertain processes make it extremely difficult to assess their expected abundance, composition and size distribution, except for the substantial abundance measured for C60+. EEHFs share many properties with pure fullerenes, such as C60, as regards stability, formation/destruction and chemical processes, as well as many basic spectral features. Because DIBs are ubiquitous in all lines of sight in the ISM, we address several questions about the interstellar importance of various EEHFs, especially as possible carriers of diffuse interstellar bands. Specifically, we discuss basic interstellar properties and the likely contributions of fullerenes of various sizes and their charged counterparts such as C60+, and then in turn: 1) metallofullerenes; 2) heterofullerenes; 3) fulleranes; 4) fullerene-PAH compounds; 5) H2@C60. From this reassessment of the literature and from combining it with known DIB line identifications, we conclude that the general landscape of interstellar fullerene compounds is probably much richer than heretofore realized. EEHFs, together with pure fullerenes of various sizes, have many properties necessary to be suitably carriers of DIBs: carbonaceous nature; stability and resilience in the harsh conditions of the ISM; existing with various heteroatoms and ionization states; relatively easy formation; few stable isomers; spectral lines in the right spectral range; various and complex energy internal conversion; rich Jahn-Teller fine structure. This is supported by the first identification of a DIB carrier as C60+. Unfortunately, the lack of any precise information about the complex optical spectra of EEHFs and most pure fullerenes other than C60 and about their interstellar abundances still precludes definitive assessment of the importance of fullerene compounds as DIB carriers. Their compounds could significantly contribute to DIBs, but it still seems difficult that they are the only important DIB carriers. Regardless, DIBs appear as the most promising way of tracing the interstellar abundances of various fullerene compounds if the breakthrough in identifying C60+ as a DIB carrier can be extended to more spectral features through systematic studies of their laboratory gas-phase spectroscopy.

  12. Inorganic nanotubes and fullerenes . Structure and properties of hypothetical phosphorus fullerenes

    NASA Astrophysics Data System (ADS)

    Seifert, G.; Heine, T.; Fowler, P. W.

    The possibility of stable non-carbon fullerenes is discussed for the case of phosphorus fullerene-like cage structures. On the basis of Density Functional Tight Binding calculations it is shown that many such cages correspond to metastable structures, but with increasing nuclearity become less stable with respect to separate molecular P4 units. Stability rules, known for carbon fullerenes, such as the ``isolated pentagon rule'', do not reflect the different electronic and steric requirements of the phosphorus atom. The computational results tend to rule out phosphorus fullerenes.

  13. Graphene macro-assembly-fullerene composite for electrical energy storage

    DOEpatents

    Campbell, Patrick G.; Baumann, Theodore F.; Biener, Juergen; Merrill, Matthew; Montalvo, Elizabeth; Worsley, Marcus A.; Biener, Monika M.; Hernandez, Maira Raquel Ceron

    2018-01-16

    Disclosed here is a method for producing a graphene macro-assembly (GMA)-fullerene composite, comprising providing a GMA comprising a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and incorporating at least 20 wt. % of at least one fullerene compound into the GMA based on the initial weight of the GMA to obtain a GMA-fullerene composite. Also described are a GMA-fullerene composite produced, an electrode comprising the GMA-fullerene composite, and a supercapacitor comprising the electrode and optionally an organic or ionic liquid electrolyte in contact with the electrode.

  14. Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light

    PubMed Central

    2011-01-01

    WO3-treated fullerene/TiO2 composites (WO3-fullerene/TiO2) were prepared using a sol-gel method. The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the photocatalytic activity. Excellent photocatalytic degradation of a MO solution was observed using the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2 composites under visible light. An increase in photocatalytic activity was observed, and WO3-fullerene/TiO2 has the best photocatalytic activity; it may attribute to the increase of the photo-absorption effect by the fullerene and the cooperative effect of the WO3. PMID:21774800

  15. Observation of an all-boron fullerene

    NASA Astrophysics Data System (ADS)

    Zhai, Hua-Jin; Zhao, Ya-Fan; Li, Wei-Li; Chen, Qiang; Bai, Hui; Hu, Han-Shi; Piazza, Zachary A.; Tian, Wen-Juan; Lu, Hai-Gang; Wu, Yan-Bo; Mu, Yue-Wen; Wei, Guang-Feng; Liu, Zhi-Pan; Li, Jun; Li, Si-Dian; Wang, Lai-Sheng

    2014-08-01

    After the discovery of fullerene-C60, it took almost two decades for the possibility of boron-based fullerene structures to be considered. So far, there has been no experimental evidence for these nanostructures, in spite of the progress made in theoretical investigations of their structure and bonding. Here we report the observation, by photoelectron spectroscopy, of an all-boron fullerene-like cage cluster at B40- with an extremely low electron-binding energy. Theoretical calculations show that this arises from a cage structure with a large energy gap, but that a quasi-planar isomer of B40- with two adjacent hexagonal holes is slightly more stable than the fullerene structure. In contrast, for neutral B40 the fullerene-like cage is calculated to be the most stable structure. The surface of the all-boron fullerene, bonded uniformly via delocalized σ and π bonds, is not perfectly smooth and exhibits unusual heptagonal faces, in contrast to C60 fullerene.

  16. Observation of an all-boron fullerene.

    PubMed

    Zhai, Hua-Jin; Zhao, Ya-Fan; Li, Wei-Li; Chen, Qiang; Bai, Hui; Hu, Han-Shi; Piazza, Zachary A; Tian, Wen-Juan; Lu, Hai-Gang; Wu, Yan-Bo; Mu, Yue-Wen; Wei, Guang-Feng; Liu, Zhi-Pan; Li, Jun; Li, Si-Dian; Wang, Lai-Sheng

    2014-08-01

    After the discovery of fullerene-C60, it took almost two decades for the possibility of boron-based fullerene structures to be considered. So far, there has been no experimental evidence for these nanostructures, in spite of the progress made in theoretical investigations of their structure and bonding. Here we report the observation, by photoelectron spectroscopy, of an all-boron fullerene-like cage cluster at B40(-) with an extremely low electron-binding energy. Theoretical calculations show that this arises from a cage structure with a large energy gap, but that a quasi-planar isomer of B40(-) with two adjacent hexagonal holes is slightly more stable than the fullerene structure. In contrast, for neutral B40 the fullerene-like cage is calculated to be the most stable structure. The surface of the all-boron fullerene, bonded uniformly via delocalized σ and π bonds, is not perfectly smooth and exhibits unusual heptagonal faces, in contrast to C60 fullerene.

  17. Non-fullerene electron acceptors for organic photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  18. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, T., E-mail: uchida-t@toyo.jp; Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585; Rácz, R.

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, andmore » fullerene-chlorine-iron.« less

  19. Colloidal aggregation and structural assembly of aspect ratio variant goethite (α-FeOOH) with nC60 fullerene in environmental media.

    PubMed

    Ghosh, Saikat; Pradhan, Nihar R; Mashayekhi, Hamid; Zhang, Qiu; Pan, Bo; Xing, Baoshan

    2016-12-01

    Environmental mobility of C 60 fullerene can be significantly affected in the presence of naturally abundant α-FeOOH. However, α-FeOOH vary significantly in sizes, shapes and associated properties that can greatly influence the fate and transport of C 60 fullerene in environmental media. Therefore, colloidal hetero-association between well crystallized low aspect (L Asp ) α-FeOOH and nC 60 fullerene may differ substantially to weakly crystallized high-aspect (H Asp ) counterpart. In contrast to L Asp α-FeOOH, inherent crystal defects and surface charge generation in H Asp α-FeOOH facilitated strong Coulombic attraction and aggregation with fullerene in acidic pH. However, L Asp α-FeOOH demonstrated subtle entropic depletion mediated interaction with fullerene prevalent in hard rods. Humic acid (HA) encapsulation of H Asp α-FeOOH substantially blocked fullerene attachment. Minute enhancement in colloidal stability was detected for HA-coated H Asp α-FeOOH and fullerene mixture to HA-coated H Asp α-FeOOH alone. To investigate the interfacial assembly of α-FeOOH with fullerene "in situ" differential interference contrast (DIC) microscopic investigations were employed. This study showed significantly different interface behavior of the binary mixtures of fullerene and H Asp α-FeOOH NPs, and L Asp particles. On air-water interface, bare H Asp α-FeOOH displayed liquid crystalline packing. However, addition of fullerene to H Asp α-FeOOH suspension at pH5 produced closed-loop polygonal and circular ring structures. Head-to-tail alignment of magnetic dipoles as well as fullerene hydrophobicity facilitated such assembly formation. "Ex situ" AFM investigation revealed further the presence of magnetically derived ring structure which asserts that the formed "in situ" ensembles were not transient, hence, may abate fullerene transport through environmental interfaces. Barring hydrophobicity assisted attachment of fullerene to L Asp α-FeOOHs, the absence of any close-packed structures may unlikely abate fullerene transport as envisaged in case of H Asp α-FeOOH. Thus, aspect ratio variation and associated material properties of naturally abundant α-FeOOH may significantly impact fullerene transport through environmental media. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Production of fullerenic nanostructures in flames

    DOEpatents

    Howard, Jack B.; Vander Sande, John B.; Chowdhury, K. Das

    1999-01-01

    A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

  1. Production Of Fullerenic Soot In Flames

    DOEpatents

    Howard, Jack B.; Vander Sande, John B.; Chowdhury, K. Das

    2000-12-19

    A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

  2. Enhanced superconductivity of fullerenes

    DOEpatents

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  3. Liposome Formulation of Fullerene-Based Molecular Diagnostic and Therapeutic Agents

    PubMed Central

    Zhou, Zhiguo

    2013-01-01

    Fullerene medicine is a new but rapidly growing research subject. Fullerene has a number of desired structural, physical and chemical properties to be adapted for biological use including antioxidants, anti-aging, anti-inflammation, photodynamic therapy, drug delivery, and magnetic resonance imaging contrast agents. Chemical functionalization of fullerenes has led to several interesting compounds with very promising preclinical efficacy, pharmacokinetic and safety data. However, there is no clinical evaluation or human use except in fullerene-based cosmetic products for human skincare. This article summarizes recent advances in liposome formulation of fullerenes for the use in therapeutics and molecular imaging. PMID:24300561

  4. A study of fullerene-quantum dot composite structure on substrates with a transparent electrode layer

    NASA Astrophysics Data System (ADS)

    Pavlov, S. I.; Kirilenko, D. A.; Nashchekin, A. V.; Sokolov, R. V.; Konnikov, S. G.

    2015-02-01

    We have studied the structure of films consisting of fullerene clusters and a related fullerene-based composite with incorporated quantum dots. The films were obtained by electrophoretic deposition from solution onto glass substrates with a transparent indium-doped tin oxide (ITO) electrode layer. The average cluster size, as measured by electron microscopy, amounts to 300 nm in pure fullerene films and 800 nm in the composite material. Electron diffraction measurements showed that pure fullerene clusters had an fcc lattice, while the introduction of quantum dots rendered the fullerene matrix predominantly amorphous.

  5. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells

    DOE PAGES

    Ke, Weijun; Zhao, Dewei; Xiao, Chuanxiao; ...

    2016-08-17

    Both tin oxide (SnO 2) and fullerenes have been reported as electron selective layers (ESLs) for producing efficient lead halide perovskite solar cells. Here, we report that SnO 2 and fullerenes can work cooperatively to further boost the performance of perovskite solar cells. We find that fullerenes can be redissolved during perovskite deposition, allowing ultra-thin fullerenes to be retained at the interface and some dissolved fullerenes infiltrate into perovskite grain boundaries. The SnO 2 layer blocks holes effectively; whereas, the fullerenes promote electron transfer and passivate both the SnO 2/perovskite interface and perovskite grain boundaries. With careful device optimization, themore » best-performing planar perovskite solar cell using a fullerene passivated SnO 2 ESL has achieved a steady-state efficiency of 17.75% and a power conversion efficiency of 19.12% with an open circuit voltage of 1.12 V, a short-circuit current density of 22.61 mA cm -2, and a fill factor of 75.8% when measured under reverse voltage scanning. In conclusion, we find that the partial dissolving of fullerenes during perovskite deposition is the key for fabricating high-performance perovskite solar cells based on metal oxide/fullerene ESLs.« less

  6. Effect of Self-Assembly of Fullerene Nano-Particles on Lipid Membrane

    PubMed Central

    Zhang, Saiqun; Mu, Yuguang; Zhang, John Z. H.; Xu, Weixin

    2013-01-01

    Carbon nanoparticles can penetrate the cell membrane and cause cytotoxicity. The diffusion feature and translocation free energy of fullerene through lipid membranes is well reported. However, the knowledge on self-assembly of fullerenes and resulting effects on lipid membrane is poorly addressed. In this work, the self-assembly of fullerene nanoparticles and the resulting influence on the dioleoylphosphtidylcholine (DOPC) model membrane were studied by using all-atom molecular dynamics simulations with explicit solvents. Our simulation results confirm that gathered small fullerene cluster can invade lipid membrane. Simulations show two pathways: 1) assembly process is completely finished before penetration; 2) assembly process coincides with penetration. Simulation results also demonstrate that in the membrane interior, fullerene clusters tend to stay at the position which is 1.0 nm away from the membrane center. In addition, the diverse microscopic stacking mode (i.e., equilateral triangle, tetrahedral pentahedral, trigonal bipyramid and octahedron) of these small fullerene clusters are well characterized. Thus our simulations provide a detailed high-resolution characterization of the microscopic structures of the small fullerene clusters. Further, we found the gathered small fullerene clusters have significant adverse disturbances to the local structure of the membrane, but no great influence on the global integrity of the lipid membrane, which suggests the prerequisite of high-content fullerene for cytotoxicity. PMID:24204827

  7. Molecular design of novel fullerene-based acceptors for enhancing the open circuit voltage in polymer solar cells

    NASA Astrophysics Data System (ADS)

    Tajbakhsh, Mahmood; Kariminasab, Mohaddeseh; Ganji, Masoud Darvish; Alinezhad, Heshmatollah

    2017-12-01

    Organic solar cells, especially bulk hetero-junction polymer solar cells (PSCs), are the most successful structures for applications in renewable energy. The dramatic improvement in the performance of PSCs has increased demand for new conjugated polymer donors and fullerene derivative acceptors. In the present study, quantum chemical calculations were performed for several representative fullerene derivatives in order to determine their frontier orbital energy levels and electronic structures, thereby helping to enhance their performance in PSC devices. We found correlations between the theoretical lowest unoccupied molecular orbital levels and electrophilicity index of various fullerenes with the experimental open circuit voltage of photovoltaic devices according to the poly(3-hexylthiophene) (P3HT):fullerene blend. The correlations between the structure and descriptors may facilitate screening of the best fullerene acceptor for the P3HT donor. Thus, we considered fullerenes with new functional groups and we predicted the output factors for the corresponding P3HT:fullerene blend devices. The results showed that fullerene derivatives based on thieno-o-quinodimethane-C60 with a methoxy group will have enhanced photovoltaic properties. Our results may facilitate the design of new fullerenes and the development of favorable acceptors for use in photovoltaic applications.

  8. Synthesis of Fullerenes in Low Pressure Benzene/Oxygen Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Hebgen, Peter; Howard, Jack B.

    1999-01-01

    The interest in fullerenes is strongly increasing since their discovery by Kroto et al. in 1985 as products of the evaporation of carbon into inert gas at low pressure. Due to their all carbon closed-shell structure, fullerenes have many exceptional physical and chemical properties and a large potential for applications such as superconductors, sensors, catalysts, optical and electronic devices, polymers, high energy fuels, and biological and medical materials. This list is still growing, because the research on fullerenes is still at an early stage. Fullerenes can be formed not only in a system containing only carbon and an inert gas, but also in premixed hydrocarbon flames under reduced pressure and fuel rich conditions. The highest yields of fullerenes in flames are obtained under conditions of substantial soot formation. There is a need for more information on the yields of fullerenes under different conditions in order to understand the mechanisms of their formation and to enable the design of practical combustion systems for large-scale fullerene production. Little work has been reported on the formation of fullerenes in diffusion flames. In order to explore the yields of fullerenes and the effect of low pressure in diffusion flames, therefore we constructed and used a low pressure diffusion flame burner in this study.

  9. Development of Mass Spectrometric Ionization Methods for Fullerenes and Fullerene Derivatives

    EPA Science Inventory

    Currently investigations into the environmental behavior of fullerenes and fullerene derivatives is hampered by the lack of well characterized standards and by the lack of readily available quantitative analytical methods. Reported herein are investigations into the utility of ma...

  10. Synthesis of novel fluorescently labeled water-soluble fullerenes and their application to its cellar uptake and distribution properties

    NASA Astrophysics Data System (ADS)

    Hashimoto, Akiko; Yamanaka, Takehiro; Takamura-Enya, Takeji

    2017-12-01

    Fullerene is a well-known carbon nanomaterial, which can be potentially used for drug manufacture or delivery. Despite several successful examples of utilizing fullerene derivatives as drug candidate materials, their low water solubility under physiological conditions negatively affects the cell penetration efficiency after treatment. In this work, we successfully synthesized two fullerene derivatives with covalently attached fluorescein and boron dipyrromethene (BODIPY) fluorophore moieties, which exhibited cellular uptake and intracellular localization. While both fluorophores decreased their fluorescence intensity in the vicinity of fullerene, the cellar uptake of the fluorescein-modified fullerene was detected via fluorescence microscopy observations. Moreover, decreases in the fluorescence intensities of the intact fluorescein and BODIPY species were observed when both fluorophores and fullerene coexisted in aqueous media.

  11. Is the Use of Fullerene in Photodynamic Therapy Effective for Atherosclerosis?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitta, Norihisa, E-mail: r34nitta@belle.shiga-med.ac.jp; Seko, Ayumi; Sonoda, Akinaga

    2008-03-15

    The purpose of this study was to evaluate Fullerene as a therapeutic photosensitizer in the treatment of atherosclerosis. An atherosclerotic experimental rabbit model was prepared by causing intimal injury to bilateral external iliac arteries using balloon expansion. In four atherosclerotic rabbits and one normal rabbit, polyethylene glycol-modified Fullerene (Fullerene-PEG) was infused into the left external iliac artery and illuminated by light emitting diode (LED), while the right external iliac artery was only illuminated by LED. Two weeks later, the histological findings for each iliac artery were evaluated quantitatively and comparisons were made among atherosclerotic Fullerene+LED artery (n = 4), atheroscleroticmore » light artery (n = 4), normal Fullerene+LED artery (n = 1), and normal light artery (n = 1). An additional two atherosclerotic rabbits were studied by fluorescence microscopy, after Fullerene-PEG-Cy5 complex infusion into the left external iliac artery, for evaluation of Fullerene-PEG incorporated within the atherosclerotic lesions. The degree of atherosclerosis in the atherosclerotic Fullerene+LED artery was significantly (p < 0.05) more severe than that in the atherosclerotic LED artery. No pathological change was observed in normal Fullerene+LED and LED arteries. In addition, strong accumulation of Fullerene-PEG-Cy5 complex within the plaque of the left iliac artery of the two rabbits was demonstrated, in contrast to no accumulation in the right iliac artery. We conclude that infusion of a high concentration of Fullerene-PEG followed by photo-illumination resulted not in a suppression of atherosclerosis but in a progression of atherosclerosis in experimental rabbit models. However, this intervention showed no adverse effects on the normal iliac artery.« less

  12. Effects of fullerene on lipid bilayers displaying different liquid ordering: a coarse-grained molecular dynamics study.

    PubMed

    Sastre, Judit; Mannelli, Ilaria; Reigada, Ramon

    2017-11-01

    The toxic effects and environmental impact of nanomaterials, and in particular of Fullerene particles, are matters of serious concern. It has been reported that fullerene molecules enter the cell membrane and occupy its hydrophobic region. Understanding the effects of carbon-based nanoparticles on biological membranes is therefore of critical importance to determine their exposure risks. We report on a systematic coarse-grained molecular dynamics study of the interaction of fullerene molecules with simple model cell membranes. We have analyzed bilayers consisting of lipid species with different degrees of unsaturation and a variety of cholesterol fractions. Addition of fullerene particles to phase-segregated ternary membranes is also investigated in the context of the lipid raft model for the organization of the cell membrane. Fullerene addition to lipid membranes modifies their structural properties like thickness, area and internal ordering of the lipid species, as well as dynamical aspects such as molecular diffusion and cholesterol flip-flop. Interestingly, we show that phase-segregating ternary lipid membranes accumulate fullerene molecules preferentially in the liquid-disordered domains promoting phase-segregation and domain alignment across the membrane. Lipid membrane internal ordering determines the behavior and distribution of fullerene particle, and this, in turn, determines the influence of fullerene on the membrane. Lipid membranes are good solvents of fullerene molecules, and in particular those with low internal ordering. Preference of fullerene molecules to be dissolved in the more disordered hydrophobic regions of a lipid bilayer and the consequent alteration of its phase behavior may have important consequences on the activity of biological cell membranes and on the bioconcentration of fullerene in living organisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Calculation of the energy loss for an electron passing near giant fullerenes

    NASA Astrophysics Data System (ADS)

    Henrard, L.; Lambin, Ph

    1996-11-01

    We present a theoretical analysis of the electron energy-loss spectra of isolated giant fullerenes. We use a macroscopic dielectric description of spherical onion-like fullerenes and a discrete dipole approximation (DDA) framework for tubular fullerenes. In the DDA model, an anisotropic dynamical polarizability is assigned to each carbon site. We stress the fundamental importance of the hollow character of giant fullerenes in the electron energy-loss resonances.

  14. Observation of fullerenes (C60-C70) associated with LDEF crater number 31

    NASA Technical Reports Server (NTRS)

    Radicatidibrozolo, Filippo; Fleming, R. H.; Bunch, T. E.

    1992-01-01

    The presence of fullerenes in and around the LDEF crater number 31 is reported. This crater has a high C level associated with it, and is interpreted as having been produced by the impact of a C-rich micrometeoroid. Fullerenes are large 3-D C structures, among which the species C sub 60 (MW 720) and C sub 70 (MW 840) are preeminent. Fullerenes have several UV absorption bands, hence fullerenes should be detectable using UV laser ionization time-of-flight mass spectrometry. We use a LIMA-2A instrument with pulsed UV laser (266 nm) to search for high mass C species associated with LDEF crater number 31. The mass range was 0 to 1200 amu. Low ablating laser power levels were used (less than or = 5 x 10 exp 7 W/sq. cm); 200 mass spectra were acquired and summed. We observed high mass signals near m/z 720, exhibiting 24 amu separation, which is characteristic of fullerenes. Alkali ion signals were also observed. Little or no C clusters of intermediate mass were observed. We interpret the signals around m/z 720 as fullerenes, mainly C sub 60+ with lower levels of C sub 70+. We propose that the mechanism that produces these signals is resonant multiphoton ionization (REMPI). This selective mechanism explains why low mass C cluster ions are not observed along with the fullerenes, since they have much higher ionization potentials. This finding is unexpected, since up to now the search for fullerenes in extraterrestrial materials has not been successful. We conclude that the fullerenes became associated with crater number 31 in space. Two alternative (and exciting) scenarios are being considered at this time: either the fullerenes were carried by the C-rich projectile that formed crater number 31, or the fullerenes formed upon impact with the LDEF. We show the results of experiments at the ARC Vertical Gun Facility, which may establish some constraints on the origin of the fullerenes.

  15. Control of morphology and function of low band gap polymer–bis-fullerene mixed heterojunctions in organic photovoltaics with selective solvent vapor annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huipeng; Hsiao, Yu-Che; Hu, Bin

    2014-05-07

    We reported how by replacing PCBM with a bis-adduct fullerene (i.e. ICBA) we significantly improve the open circuit voltage (VOC) and power conversion efficiency (PCE) in P3HT bulk heterojunctions. But, for the most promising low band-gap polymer (LBP) systems, replacing PCBM with ICBA results in very poor shortcircuit current (JSC) and PCE although the VOC is significantly improved. Therefore, in this work, we have completed small angle neutron scattering and neutron reflectometry experiments to study the impact of post-deposition solvent annealing (SA) with control of solvent quality on the morphology and performance of LBP bis-fullerene BHJ photovoltaics. Our results showmore » that SA in a solvent that is selective for the LBP results in a depletion of bis-fullerene near the air surface, which limits device performance. SA in a solvent vapor which has similar solubility for polymer and bis-fullerene results in a higher degree of polymer ordering, bis-fullerene phase separation, and segregation of the bis-fullerene to the air surface, which facilitates charge transport and increases power conversion efficiency (PCE) by 100%. The highest degree of polymer ordering combined with significant bis-fullerene phase separation and segregation of bis-fullerene to the air surface is obtained by SA in a solvent vapor that is selective for the bis-fullerene. The resultant morphology increases PCE by 190%. These results indicate that solvent annealing with judicious solvent choice provides a unique tool to tune the morphology of LBP bisfullerene BHJ system, providing sufficient polymer ordering, formation of a bis-fullerene pure phase, and segregation of bis-fullerene to the air surface to optimize the morphology of the active layer. Furthermore, this process is broadly applicable to improving current disappointing LBP bis-fullerene systems to optimize their morphology and OPV performance post-deposition, including higher VOC and power conversion efficiency.« less

  16. Fullerenes, PAH, Carbon Nanostructures, and Soot in Low Pressure Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Grieco, William J.; Lafleur, Arthur L.; Rainey, Lenore C.; Taghizadeh, Koli; VanderSande, John B.; Howard, Jack B.

    1997-01-01

    The formation of fullerenes C60 and C7O is known to occur in premixed laminar benzene/oxygen/argon flames operated at reduced pressures. High resolution transmission electron microscopy (HRTEM) images of material collected from these flames has identified a variety of multishelled nanotubes and fullerene 'onions' as well as some trigonous structures. These fullerenes and nanostructures resemble the material that results from commercial fullerene production systems using graphite vaporization. As a result, combustion is an interesting method for fullerenes synthesis. If commercial scale operation is to be considered, the use of diffusion flames might be safer and less cumbersome than premixed flames. However, it is not known whether diffusion flames produce the types and yields of fullerenes obtained from premixed benzene/oxygen flames. Therefore, the formation of fullerenes and carbon nanostructures, as well as polycyclic aromatic hydrocarbons (PAH) and soot, in acetylene and benzene diffusion flames is being studied using high performance liquid chromatography (HPLC) and high resolution transmission electron microscopy (HRTEM).

  17. Process for the removal of impurities from combustion fullerenes

    DOEpatents

    Alford, J. Michael; Bolskar, Robert

    2005-08-02

    The invention generally relates to purification of carbon nanomaterials, particularly fullerenes, by removal of PAHs and other hydrocarbon impurities. The inventive process involves extracting a sample containing carbon nanomaterials with a solvent in which the PAHs are substantially soluble but in which the carbon nanomaterials are not substantially soluble. The sample can be repeatedly or continuously extracted with one or more solvents to remove a greater amount of impurities. Preferred solvents include ethanol, diethyl ether, and acetone. The invention also provides a process for efficiently separating solvent extractable fullerenes from samples containing fullerenes and PAHs wherein the sample is extracted with a solvent in which both fullerenes and PAHs are substantially soluble and the sample extract then undergoes selective extraction to remove PAHs. Suitable solvents in which both fullerenes and PAHs are soluble include o-xylene, toluene, and o-dichlorobenzene. The purification process is capable of treating quantities of combustion soot in excess of one kilogram and can produce fullerenes or fullerenic soot of suitable purity for many applications.

  18. A plasma arc reactor for fullerene research

    NASA Astrophysics Data System (ADS)

    Anderson, T. T.; Dyer, P. L.; Dykes, J. W.; Klavins, P.; Anderson, P. E.; Liu, J. Z.; Shelton, R. N.

    1994-12-01

    A modified Krätschmer-Huffman reactor for the mass production of fullerenes is presented. Fullerene mass production is fundamental for the synthesis of higher and endohedral fullerenes. The reactor employs mechanisms for continuous graphite-rod feeding and in situ slag removal. Soot collects into a Soxhlet extraction thimble which serves as a fore-line vacuum pump filter, thereby easing fullerene separation from soot. Thermal gravimetric analysis (TGA) for yield determination is reported. This TGA method is faster and uses smaller samples than Soxhlet extraction methods which rely on aromatic solvents. Production of 10 g of soot per hour is readily achieved utilizing this reactor. Fullerene yields of 20% are attained routinely.

  19. One-pot synthesis of h-BN fullerenes usinsg a graphene oxide template

    NASA Astrophysics Data System (ADS)

    Kim, Sang Sub; Khai, Tran Van; Kwon, Yong Jung; Katoch, Akash; Wu, Ping; Kim, Hyoun Woo

    2015-09-01

    Hexagonal-boron nitride ( h-BN) fullerenes were synthesized from a graphene oxide (GO) template by simultaneously heating the GO and B2O3 in the presence of NH3 gas. Transmission electron microscopy (TEM) observations revealed that a considerable amount of product had a fullerene-like nanostructure. Typical BN fullerenes have a polyhedral shape, being hollow nanocages. Lattice-resolved TEM and X-ray diffraction consistently demonstrated the formation of h-BN fullerenes. The FTIR spectrum exhibited absorption bands at approximately 800 and 1378 cm-1, which were related to the h-BN structure. The Raman spectra exhibited peaks at 1368 and 1399 cm-1, which can be related to BN sheets and BN fullerenes, respectively. The photoluminescence spectrum of the h-BN fullerenes taken at 8 K exhibited intense white-light emission. To reveal the origin of the broad emission band, which could be a superimposition of several peaks, we used a deconvolution procedure based on Gaussian functions. We proposed a growth mechanism of the h-BN fullerenes and verified it with a thermodynamic calculation. This work provides a cost-effective approach to synthesize fullerene-type boron nitride on a production scale.

  20. PREFACE: Fullerene Nano Materials (Symposium of IUMRS-ICA2008)

    NASA Astrophysics Data System (ADS)

    Miyazawa, Kun'ichi; Fujita, Daisuke; Wakahara, Takatsugu; Kizuka, Tokushi; Matsuishi, Kiyoto; Ochiai, Yuichi; Tachibana, Masaru; Ogata, Hironori; Mashino, Tadahiko; Kumashiro, Ryotaro; Oikawa, Hidetoshi

    2009-07-01

    This volume contains peer-reviewed invited and contributed papers that were presented in Symposium N 'Fullerene Nano Materials' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Over twenty years have passed since the discovery of C60 in 1985. The discovery of superconductivity of C60 in 1991 suggested infinite possibilities for fullerenes. On the other hand, a new field of nanocarbon has been developed recently, based on novel functions of the low-dimensional fullerene nanomaterials that include fullerene nanowhiskers, fullerene nanotubes, fullerene nanosheets, chemically modified fullerenes, endohedral fullerenes, thin films of fullerenes and so forth. Electrical, electrochemical, optical, thermal, mechanical and various other properties of fullerene nanomaterials have been investigated and their novel and anomalous nature has been reported. Biological properties of fullerene nanomaterials also have been investigated both in medical applications and toxicity aspects. The recent research developments of fullerene nanomaterials cover a variety of categories owing to their functional diversity. This symposium aimed to review the progress in the state-of-the-art technology based on fullerenes and to offer the forum for active interdisciplinary discussions. 24 oral papers containing 8 invited papers and 22 poster papers were presented at the two-day symposium. Topics on the social acceptance of nanomaterials including fullerene were presented on the first day of the symposium. Biological impacts of nanomaterials and the importance of standardization of nanomaterials characterization were also shown. On the second day, the synthesis, properties, functions and applications of various fullerene nanomaterials were shown in both the oral and poster presentations. We are grateful to all invited speakers and many participants for valuable contributions and active discussions. This symposium was partly supported by the Coordination Program of Science and Technology Projects ''Developing Nanotechnologies and Engaging the Public'' conducted by the Council for Science and Technology Policy (CSTP) and funded by Special Coordination Funds for Promoting Science and Technology. Organizing committee of Symposium N (IUMRS-ICA 2008) Chair Kun'ichi Miyazawa (National Institute for Materials Science, Japan) Vice Chairs Daisuke Fujita (National Institute for Materials Science, Japan) Takatsugu Wakahara (National Institute for Materials Science, Japan) Tokushi Kizuka (Tsukuba University, Japan) Kiyoto Matsuishi (Tsukuba University, Japan) Yuichi Ochiai (Chiba University, Japan) Masaru Tachibana (Yokohama City University, Japan) Hironori Ogata (Hosei University, Japan) Tadahiko Mashino (Keio University, Japan) Ryotaro Kumashiro (Tohoku University, Japan) Hidetoshi Oikawa (Tohoku University, Japan)

  1. Production of fullerenes with concentrated solar flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, M. J.; Fields, C.; Lewandowski, A.

    1994-01-01

    Research at the National Renewable Energy Laboratory (NREL) has demonstrated that fullerenes can be produced using highly concentrated sunlight from a solar furnace. Since they were first synthesized in 1989, fullerenes have been the subject of intense research. They show considerable commercial potential in advanced materials and have potential applications that include semiconductors, superconductors, high-performance metals, and medical technologies. The most common fullerene is C{sub 60}, which is a molecule with a geometry resembling a soccer ball. Graphite vaporization methods such as pulsed-laser vaporization, resistive heating, and carbon arc have been used to produce fullerenes. None of these, however, seemsmore » capable of producing fullerenes economically on a large scale. The use of concentrated sunlight may help avoid the scale-up limitations inherent in more established production processes. Recently, researchers at NREL made fullerenes in NREL`s 10 kW High Flux Solar Furnace (HFSF) with a vacuum reaction chamber designed to deliver a solar flux of 1200 W/cm{sup 2} to a graphite pellet. Analysis of the resulting carbon soot by mass spectrometry and high-pressure liquid chromatography confirmed the existence of fullerenes. These results are very encouraging and we are optimistic that concentrated solar flux can provide a means for large-scale, economical production of fullerenes. This paper presents our method, experimental apparatus, and results of fullerene production research performed with the HFSF.« less

  2. Toxicological Effects of Fullerenes on Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Schomaker, Justin; Snook, Renee; Howell, Carina

    2014-03-01

    The nematode species Caenorhabditis elegans is a useful genetic model organism due to its simplicity and the substantial molecular, genetic, and developmental knowledge about the species. In this study, this species was used to test the toxicological effects of C60 fullerene nanoparticles. In previous studies using rats, a solution of C60 fullerenes in olive oil proved to extend the life of the subjects. The purpose of this experiment was to subject C. elegans to varying concentrations of C60 fullerenes and observe their toxicological effects. Initial findings indicate a link between fullerene exposure and enlargement of the vulva as well as the formation of a small nodule at the base of the tail in some individuals. While the fullerenes are not lethally toxic in C. elegans, results will be presented that pertain to changes in life span and progeny of the nematodes exposed to varying concentrations of fullerenes as well as the mechanisms of toxicity. High magnification imaging via SEM and/or AFM will be used to characterize the fullerene nanoparticles. Testing the toxicity of fullerenes in a wide variety of organisms will lead to a more complete understanding of the effects of fullerenes on living organisms to ultimately understand their effects in humans. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047, DUE-0806660 and Lock Haven FPDC grants.

  3. Constructing I[subscript h] Symmetrical Fullerenes from Pentagons

    ERIC Educational Resources Information Center

    Gan, Li-Hua

    2008-01-01

    Twelve pentagons are sufficient and necessary to form a fullerene cage. According to this structural feature of fullerenes, we propose a simple and efficient method for the construction of I[subscript h] symmetrical fullerenes from pentagons. This method does not require complicated mathematical knowledge; yet it provides an excellent paradigm for…

  4. Surface enhanced Raman spectroscopy of fullerene C60 drop-deposited on the silvered porous silicon

    NASA Astrophysics Data System (ADS)

    Khinevich, N.; Girel, K.; Bandarenka, H.; Salo, V.; Mosunov, A.

    2017-11-01

    Surface enhanced Raman spectroscopy (SERS) of fullerene C60 drop-deposited from the 1.4·10-4 M aqueous solutions on the silvered porous silicon (Ag/PS) is reported for the first time. The used concentration is found to be not detected by the ordinary Raman spectroscopy. It is shown that SERS-spectrum of the fullerene deposited from the air-aged solution are characterized by less intensity than that of the fullerene solution kept out of the air. This indicates degradation of the fullerene solution due to oxidation. The results are prospective for the fast qualitative and quantitative analysis of the fullerene-based materials.

  5. Memory operation mechanism of fullerene-containing polymer memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Anri, E-mail: anakajima@hiroshima-u.ac.jp; Fujii, Daiki

    2015-03-09

    The memory operation mechanism in fullerene-containing nanocomposite gate insulators was investigated while varying the kind of fullerene in a polymer gate insulator. It was cleared what kind of traps and which positions in the nanocomposite the injected electrons or holes are stored in. The reason for the difference in the easiness of programming was clarified taking the role of the charging energy of an injected electron into account. The dependence of the carrier dynamics on the kind of fullerene molecule was investigated. A nonuniform distribution of injected carriers occurred after application of a large magnitude programming voltage due to themore » width distribution of the polystyrene barrier between adjacent fullerene molecules. Through the investigations, we demonstrated a nanocomposite gate with fullerene molecules having excellent retention characteristics and a programming capability. This will lead to the realization of practical organic memories with fullerene-containing polymer nanocomposites.« less

  6. Beyond nC60: strategies for identification of transformation products of fullerene oxidation in aquatic and biological samples

    PubMed Central

    Pycke, Benny F. G.; Chao, Tzu-Chiao; Herckes, Pierre; Westerhoff, Paul

    2013-01-01

    Owing to their exceptional properties and versatility, fullerenes are in widespread use for numerous applications. Increased production and use of fullerenes will inevitably result in accelerated environmental release. However, study of the occurrence, fate, and transport of fullerenes in the environment is complicated because a variety of surface modifications can occur as a result of either intentional functionalization or natural processes. To gain a better understanding of the effect and risk of fullerenes on environmental health, it is necessary to acquire reliable data on the parent compounds and their congeners. Whereas currently established quantification methods generally focus on analysis of unmodified fullerenes, we discuss in this review the occurrence and analysis of oxidized fullerene congeners (i.e., their corresponding epoxides and polyhydroxylated derivatives) in the environment and in biological specimens. We present possible strategies for detection and quantification of parent nanomaterials and their various derivatives. PMID:22644149

  7. Fullerene nanomaterials potentiate hair growth.

    PubMed

    Zhou, Zhiguo; Lenk, Robert; Dellinger, Anthony; MacFarland, Darren; Kumar, Krishan; Wilson, Stephen R; Kepley, Christopher L

    2009-06-01

    Hair loss is a common symptom resulting from a wide range of disease processes and can lead to stress in affected individuals. The purpose of this study was to examine the effect of fullerene nanomaterials on hair growth. We used shaved mice as well as SKH-1 "bald" mice to determine if fullerene-based compounds could affect hair growth and hair follicle numbers. In shaved mice, fullerenes increase the rate of hair growth as compared with mice receiving vehicle only. In SKH-1 hairless mice fullerene derivatives given topically or subdermally markedly increased hair growth. This was paralleled by a significant increase in the number of hair follicles in fullerene-treated mice as compared with those mice treated with vehicle only. The fullerenes also increased hair growth in human skin sections maintained in culture. These studies have wide-ranging implications for those conditions leading to hair loss, including alopecia, chemotherapy, and reactions to various chemicals.

  8. Fullerenes: An extraterrestrial carbon carrier phase for noble gases

    PubMed Central

    Becker, Luann; Poreda, Robert J.; Bunch, Ted E.

    2000-01-01

    In this work, we report on the discovery of naturally occurring fullerenes (C60 to C400) in the Allende and Murchison meteorites and some sediment samples from the 65 million-year-old Cretaceous/Tertiary boundary layer (KTB). Unlike the other pure forms of carbon (diamond and graphite), fullerenes are extractable in an organic solvent (e.g., toluene or 1,2,4-trichlorobenzene). The recognition of this unique property led to the detection and isolation of the higher fullerenes in the Kratschmer/Huffmann arc evaporated graphite soot and in the carbon material in the meteorite and impact deposits. By further exploiting the unique ability of the fullerene cage structure to encapsulate and retain noble gases, we have determined that both the Allende and Murchison fullerenes and the KTB fullerenes contain trapped noble gases with ratios that can only be described as extraterrestrial in origin. PMID:10725367

  9. Medicinal applications of fullerenes

    PubMed Central

    Bakry, Rania; Vallant, Rainer M; Najam-ul-Haq, Muhammad; Rainer, Matthias; Szabo, Zoltan; Huck, Christian W; Bonn, Günther K

    2007-01-01

    Fullerenes have attracted considerable attention in different fields of science since their discovery in 1985. Investigations of physical, chemical and biological properties of fullerenes have yielded promising information. It is inferred that size, hydrophobicity, three-dimensionality and electronic configurations make them an appealing subject in medicinal chemistry. Their unique carbon cage structure coupled with immense scope for derivatization make them a potential therapeutic agent. The study of biological applications has attracted increasing attention despite the low solubility of carbon spheres in physiological media. The fullerene family, and especially C60, has appealing photo, electrochemical and physical properties, which can be exploited in various medical fields. Fullerene is able to fit inside the hydrophobic cavity of HIV proteases, inhibiting the access of substrates to the catalytic site of enzyme. It can be used as radical scavenger and antioxidant. At the same time, if exposed to light, fullerene can produce singlet oxygen in high quantum yields. This action, together with direct electron transfer from excited state of fullerene and DNA bases, can be used to cleave DNA. In addition, fullerenes have been used as a carrier for gene and drug delivery systems. Also they are used for serum protein profiling as MELDI material for biomarker discovery. In this review we report the aspects of medicinal applications of fullerenes. PMID:18203430

  10. The influence of polymer architecture on the assembly of poly(ethylene oxide) grafted C60 fullerene clusters in aqueous solution: a molecular dynamics simulation study.

    PubMed

    Hooper, Justin B; Bedrov, Dmitry; Smith, Grant D

    2009-03-28

    The effect of polymer architecture on the aggregation behavior of C60 fullerenes tethered with a single chain of poly(ethylene oxide) (PEO) in aqueous solution has been investigated using coarse-grained, implicit solvent molecular dynamics simulations. The PEO-grafted fullerenes were comprised of a single tether of 60 repeat units represented as a linear polymer, a three-arm star (20 repeat units/arm) or a six-arm star (10 repeat units/arm). Additionally, the influence of arm length on self-assembly of the PEO-fullerene conjugates was investigated for the three-arm stars. Self-assembly is driven by favorable fullerene-fullerene and fullerene-PEO interactions. Our simulations reveal that it should be possible to control the size and geometry of the self-assembled fullerene aggregates in water through variation of PEO architecture and PEO molecular weight. We found that aggregate size and shape could be understood qualitatively in terms of the packing parameter concept that has been employed for diblock polymer and surfactant self-assembly. Higher molecular weight PEO (longer arms) and more compact PEO (more arms for the same molecular weight) resulted in greater steric repulsion between fullerenes, engendering greater aggregate surface curvature and hence the formation of smaller, more spherically shaped aggregates. Finally, weak attractive interactions between PEO and the fullerenes were found to play an important role in determining aggregate shape, size and the dynamics of self-assembly.

  11. Extensive Penetration of Evaporated Electrode Metals into Fullerene Films: Intercalated Metal Nanostructures and Influence on Device Architecture.

    PubMed

    Zhang, Guangye; Hawks, Steven A; Ngo, Chilan; Schelhas, Laura T; Scholes, D Tyler; Kang, Hyeyeon; Aguirre, Jordan C; Tolbert, Sarah H; Schwartz, Benjamin J

    2015-11-18

    Although it is known that evaporated metals can penetrate into films of various organic molecules that are a few nanometers thick, there has been little work aimed at exploring the interaction of the common electrode metals used in devices with fullerene derivatives, such as organic photovoltaics (OPVs) or perovskite solar cells that use fullerenes as electron transport layers. In this paper, we show that when commonly used electrode metals (e.g., Au, Ag, Al, Ca, etc.) are evaporated onto films of fullerene derivatives (such as [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)), the metal penetrates many tens of nanometers into the fullerene layer. This penetration decreases the effective electrical thickness of fullerene-based sandwich structure devices, as measured by the device's geometric capacitance, and thus significantly alters the device physics. For the case of Au/PCBM, the metal penetrates a remarkable 70 nm into the fullerene, and we see penetration of similar magnitude in a wide variety of fullerene derivative/evaporated metal combinations. Moreover, using transmission electron microscopy to observed cross-sections of the films, we show that when gold is evaporated onto poly(3-hexylthiophene) (P3HT)/PCBM sequentially processed OPV quasi-bilayers, Au nanoparticles with diameters of ∼3-20 nm are formed and are dispersed entirely throughout the fullerene-rich overlayer. The plasmonic absorption and scattering from these nanoparticles are readily evident in the optical transmission spectrum, demonstrating that the interpenetrated metal significantly alters the optical properties of fullerene-rich active layers. This opens a number of possibilities in terms of contact engineering and light management so that metal penetration in devices that use fullerene derivatives could be used to advantage, making it critical that researchers are aware of the electronic and optical consequences of exposing fullerene-derivative films to evaporated electrode metals.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Tadashi; Nakamura, Shigeo; Ono, Toshiya

    Highlights: • Seven fullerenes were evaluated in terms of their cytotoxic effects on B-lymphomas. • Pyrrolidinium fullerene induced apoptosis of KSHV-infected B-lymphoma PEL cells. • The activation of Akt is essential for PEL cell survival. • Pyrrolidinium fullerene activated caspase-9 by inactivating Akt in PEL cells. • Pyrrolidinium fullerene have potential as novel drugs for the treatment of PEL. - Abstract: Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin’s B-cell lymphoma and is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. In general, PEL cells are derived from post-germinal center B-cells and are infected withmore » KSHV. To evaluate potential novel anti-tumor compounds against KSHV-associated PEL, seven water-soluble fullerene derivatives were evaluated as potential drug candidates for the treatment of PEL. Herein, we discovered a pyrrolidinium fullerene derivative, 1,1,1′,1′-tetramethyl [60]fullerenodipyrrolidinium diiodide, which induced apoptosis of PEL cells via a novel mechanism, the caspase-9 activation by suppressing the caspase-9 phosphorylation, causing caspase-9 inactivation. Pyrrolidinium fullerene treatment reduced significantly the viability of PEL cells compared with KSHV-uninfected lymphoma cells, and induced the apoptosis of PEL cells by activating caspase-9 via procaspase-9 cleavage. Pyrrolidinium fullerene additionally reduced the Ser473 phosphorylation of Akt and Ser196 of procaspase-9. Ser473-phosphorylated Akt (i.e., activated Akt) phosphorylates Ser196 in procaspase-9, causing inactivation of procaspase-9. We also demonstrated that Akt inhibitors suppressed the proliferation of PEL cells compared with KSHV-uninfected cells. Our data therefore suggest that Akt activation is essential for cell survival in PEL and a pyrrolidinium fullerene derivative induced apoptosis by activating caspase-9 via suppression of Akt in PEL cells. In addition, we evaluated whether pyrrolidinium fullerene in combination with the HSP90 inhibitor (geldanamycin; GA) or valproate, potentiated the cytotoxic effects on PEL cells. Compared to treatment with pyrrolidinium fullerene alone, the addition of low-concentration GA or valproate enhanced the cytotoxic activity of pyrrolidinium fullerene. These results indicate that pyrrolidinium fullerene could be used as a novel therapy for the treatment of PEL.« less

  13. Synthesis of a water-soluble fullerene [C60] under ultrasonication.

    PubMed

    Ko, Weon-Bae; Heo, Jae-Young; Nam, Jae-Heon; Lee, Kyu-Bong

    2004-03-01

    A water-soluble fullerene [C60] is prepared with fullerene [C60] and a mixture of strong inorganic acids at the ratio (v/v) of 3:1 under ultrasonic condition at 25-43 degrees C. The MALDI-TOF MS and 13C-NMR spectra confirmed that the product of a water-soluble fullerene compound was C60.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demin, V. A., E-mail: victordemin88@gmail.com; Blank, V. D.; Karaeva, A. R.

    A new fully carbon nanocomposite material is synthesized by the immersion of carbon nanotubes in a fullerene solution in carbon disulfide. The presence of a dense layer of fullerene molecules on the outer nanotube surface is demonstrated by TEM and XPS. Fullerenes are redistributed on the nanotube surface during a long-term action of an electron beam, which points to the existence of a molecular bond between a nanotube and fullerenes. Theoretical calculations show that the formation of a fullerene shell begins with the attachment of one C{sub 60} molecule to a defect on the nanotube surface.

  15. Roles of Fullerene-Based Interlayers in Enhancing the Performance of Organometal Perovskite Thin-Film Solar Cells

    DOE PAGES

    Liang, Po-Wei; Chueh, Chu-Chen; Williams, Spencer T.; ...

    2015-02-27

    Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells are elucidated. By studying various fullerenes, a clear correlation between the electron mobility of fullerenes and the resulting performance of derived devices is determined. The metallic characteristics of the bilayer perovskite/fullerene field-effect transistor indicates an effective charge redistribution occurring at the corresponding interface. Lastly, a conventional perovskite thin-film solar cell derived from the C 60 electron-transporting layer (ETL) affords a high power conversion efficiency of 15.4%.

  16. Self-organisation of dodeca-dendronized fullerene into supramolecular discs and helical columns containing a nanowire-like core.

    PubMed

    Guerra, Sebastiano; Iehl, Julien; Holler, Michel; Peterca, Mihai; Wilson, Daniela A; Partridge, Benjamin E; Zhang, Shaodong; Deschenaux, Robert; Nierengarten, Jean-François; Percec, Virgil

    2015-06-01

    Twelve chiral and achiral self-assembling dendrons have been grafted onto a [60]fullerene hexa-adduct core by copper-catalyzed alkyne azide "click" cycloaddition. The structure adopted by these compounds was determined by the self-assembling peripheral dendrons. These twelve dendrons mediate the self-organisation of the dendronized [60]fullerene into a disc-shaped structure containing the [60]fullerene in the centre. The fullerene-containing discs self-organise into helical supramolecular columns with a fullerene nanowire-like core, forming a 2D columnar hexagonal periodic array. These unprecedented supramolecular structures and their assemblies are expected to provide new developments in chiral complex molecular systems and their application to organic electronics and solar cells.

  17. Growth and potential damage of human bone-derived cells on fresh and aged fullerene c60 films.

    PubMed

    Kopova, Ivana; Bacakova, Lucie; Lavrentiev, Vasily; Vacik, Jiri

    2013-04-26

    Fullerenes are nanoparticles composed of carbon atoms arranged in a spherical hollow cage-like structure. Numerous studies have evaluated the therapeutic potential of fullerene derivates against oxidative stress-associated conditions, including the prevention or treatment of arthritis. On the other hand, fullerenes are not only able to quench, but also to generate harmful reactive oxygen species. The reactivity of fullerenes may change in time due to the oxidation and polymerization of fullerenes in an air atmosphere. In this study, we therefore tested the dependence between the age of fullerene films (from one week to one year) and the proliferation, viability and metabolic activity of human osteosarcoma cells (lines MG-63 and U-2 OS). We also monitored potential membrane and DNA damage and morphological changes of the cells. After seven days of cultivation, we did not observe any cytotoxic morphological changes, such as enlarged cells or cytosolic vacuole formation. Furthermore, there was no increased level of DNA damage. The increasing age of the fullerene films did not cause enhancement of cytotoxicity. On the contrary, it resulted in an improvement in the properties of these materials, which are more suitable for cell cultivation. Therefore, fullerene films could be considered as a promising material with potential use as a bioactive coating of cell carriers for bone tissue engineering.

  18. Pristine fullerenes mixed by vacuum-free solution process: Efficient electron transport layer for planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Dai, Si-Min; Tian, Han-Rui; Zhang, Mei-Lin; Xing, Zhou; Wang, Lu-Yao; Wang, Xin; Wang, Tan; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2017-01-01

    Discovery of organic-inorganic hybrid perovskites ignites the dream of next-generation solar cells fabricated by low-cost solution processing. To date, fullerene derivative [6,6]-phenyl-C61- butyric acid methyl ester (PC61BM), is the most prevalently used electron transport layer for high efficiency p-i-n planar heterojunction perovskite solar cells. Compared with PC61BM, pristine fullerenes, such as C60 and C70, have shown superiority of higher electron mobility and much lower costs. Due to the poor solubility and strong tendency to crystallize for pristine fullerenes in solution process, it is still a challenge to deposit compact and continuous film of pristine fullerenes for p-i-n type perovskite solar cells by solution processing. Herein, solution processed pristine fullerenes (C60 and C70) were used as electron transport layers to replace PC61BM in perovskite solar cells with high performance and enhanced stability. Power conversion efficiency of 14.04% was obtained by using mixture of C60 and C70 as electron transport layer, which is comparable to that of PC61BM based device (13.74%). We demonstrated that the strong tendency of pristine fullerenes to crystallize during solvent removal can be largely mitigated by mixing different kinds of pristine fullerenes. These findings implicate pristine fullerenes as promising electron transport layers for high performance perovskite solar cells.

  19. Photodynamic therapy with fullerenes in vivo: reality or a dream?

    PubMed

    Sharma, Sulbha K; Chiang, Long Y; Hamblin, Michael R

    2011-12-01

    Photodynamic therapy (PDT) employs the combination of nontoxic photosensitizers and visible light that is absorbed by the chromophore to produce long-lived triplet states that can carry out photochemistry in the presence of oxygen to kill cells. The closed carbon-cage structure found in fullerenes can act as a photosensitizer, especially when functionalized to impart water solubility. Although there are reports of the use of fullerenes to carry out light-mediated destruction of viruses, microorganisms and cancer cells in vitro, the use of fullerenes to mediate PDT of diseases such as cancer and infections in animal models is less well developed. It has recently been shown that fullerene PDT can be used to save the life of mice with wounds infected with pathogenic Gram-negative bacteria. Fullerene PDT has also been used to treat mouse models of various cancers including disseminated metastatic cancer in the peritoneal cavity. In vivo PDT with fullerenes represents a new application in nanomedicine.

  20. Effects of Two Fullerene Derivatives on Monocytes and Macrophages

    PubMed Central

    Pacor, Sabrina; Grillo, Alberto; Đorđević, Luka; Zorzet, Sonia; Da Ros, Tatiana; Prato, Maurizio

    2015-01-01

    Two fullerene derivatives (fullerenes 1 and 2), bearing a hydrophilic chain on the pyrrolidinic nitrogen, were developed with the aim to deliver anticancer agents to solid tumors. These two compounds showed a significantly different behaviour on human neoplastic cell lines in vitro in respect to healthy leukocytes. In particular, the pyrrolidinium ring on the fullerene carbon cage brings to a more active compound. In the present work, we describe the effects of these fullerenes on primary cultures of human monocytes and macrophages, two kinds of immune cells representing the first line of defence in the immune response to foreign materials. These compounds are not recognized by circulating monocytes while they get into macrophages. The evaluation of the pronecrotic or proapoptotic effects, analysed by means of analysis of the purinergic receptor P2X7 activation and of ROS scavenging activity, has allowed us to show that fullerene 2, but not its analogue fullerene 1, displays toxicity, even though at concentrations higher than those shown to be active on neoplastic cells. PMID:26090460

  1. Effect of C(60) fullerene on the duplex formation of i-motif DNA with complementary DNA in solution.

    PubMed

    Jin, Kyeong Sik; Shin, Su Ryon; Ahn, Byungcheol; Jin, Sangwoo; Rho, Yecheol; Kim, Heesoo; Kim, Seon Jeong; Ree, Moonhor

    2010-04-15

    The structural effects of fullerene on i-motif DNA were investigated by characterizing the structures of fullerene-free and fullerene-bound i-motif DNA, in the presence of cDNA and in solutions of varying pH, using circular dichroism and synchrotron small-angle X-ray scattering. To facilitate a direct structural comparison between the i-motif and duplex structures in response to pH stimulus, we developed atomic scale structural models for the duplex and i-motif DNA structures, and for the C(60)/i-motif DNA hybrid associated with the cDNA strand, assuming that the DNA strands are present in an ideal right-handed helical conformation. We found that fullerene shifted the pH-induced conformational transition between the i-motif and the duplex structure, possibly due to the hydrophobic interactions between the terminal fullerenes and between the terminal fullerenes and an internal TAA loop in the DNA strand. The hybrid structure showed a dramatic reduction in cyclic hysteresis.

  2. Stable Au–C bonds to the substrate for fullerene-based nanostructures

    PubMed Central

    Chutora, Taras; Redondo, Jesús; de la Torre, Bruno; Švec, Martin

    2017-01-01

    We report on the formation of fullerene-derived nanostructures on Au(111) at room temperature and under UHV conditions. After low-energy ion sputtering of fullerene films deposited on Au(111), bright spots appear at the herringbone corner sites when measured using a scanning tunneling microscope. These features are stable at room temperature against diffusion on the surface. We carry out DFT calculations of fullerene molecules having one missing carbon atom to simulate the vacancies in the molecules resulting from the sputtering process. These modified fullerenes have an adsorption energy on the Au(111) surface that is 1.6 eV higher than that of C60 molecules. This increased binding energy arises from the saturation by the Au surface of the bonds around the molecular vacancy defect. We therefore interpret the observed features as adsorbed fullerene-derived molecules with C vacancies. This provides a pathway for the formation of fullerene-based nanostructures on Au at room temperature. PMID:28685108

  3. Elemental and Microscopic Analysis of Naturally Occurring C-O-Si Hetero-Fullerene-Like Structures.

    PubMed

    Hullavarad, Nilima V; Hullavarad, Shiva S; Fochesatto, Javier

    2015-03-01

    Carbon exhibits an ability to form a wide range of structures in nature. Under favorable conditions, carbon condenses to form hollow, spheroid fullerenes in an inert atmosphere. Using high resolution FESEM, we have concealed the existence of giant hetero-fullerene like structures in the natural form. Clear, distinct features of connected hexagons and pentagons were observed. Energy dispersive X-ray analysis depth-profile of natural fullerene structures indicates that Russian-doll-like configurations composed of C, 0, and Si rings exist in nature. The analysis is based on an outstanding molecular feature found in the size fraction of aerosols having diameters 150 nm to 1.0 µm. The fullerene like structures, which are ~ 150 nm in diameter, are observed in large numbers. To the best of our knowledge, this is the first direct detailed observation of natural fullerene-like structures. This article reports inadvertent observation of naturally occurring hetero-fullerene-like structures in the Arctic.

  4. Extraterrestrial Helium (He@C60) Trapped in Fullerenes in the Sudbury Impact Structure

    NASA Technical Reports Server (NTRS)

    Becker, L.; Bada, J. L.; Poreda, R. J.; Bunch, T. E.

    1997-01-01

    Fullerenes (C60 and C70) have recently been identified in a shock-produced breccia (Onaping Formation) associated with the 1.85-Ga Sudbury Impact Crater. The presence of parts-per-million levels of fullerenes in this impact structure raises interesting questions about the processes that led to the formation of fullerenes and the potential for delivery of intact organic material to the Earth by a large bolide (e.g., asteroid or comet). Two possible scenarios for the presence of fullerenes in the Sudbury impact deposits are that (1) fullerenes are synthesized within the impact plume from the C contained in the bolide; or (2) fullerenes are already present in the bolide and survived the impact event. The correlation of C and trapped noble gas atoms in meteorites is well established. Primitive meteorites contain several trapped noble gas components that have anomalous isotopic compositions, some of which may have a presolar origin. Several C-bearing phases, including SiC, graphite, and diamond, have been recognized as carriers of trapped noble gases. It has also been suggested that fullerenes (C60 and C70) might be a carrier of noble gas components in carbonaceous chondrites. Recently, fullerenes have been detected in separate samples in the Allende meteorite. Carbon-60 is large enough to enclose the noble gases He, Ne, Ar, Kr, and Xe, but it is too small to contain diatomic gases such as N2 or triatomic gases such as CO2. Recent experimental work has demonstrated that noble gases of a specific isotopic composition can be introduced into synthetic fullerenes at high temperatures and pressures; these encapsulated gases can then be released by the breaking of one or more C bonds during step-heating under vacuum. These thermal-release patterns for He encapsulated within the C60 molecule (He@C60) are similar to the patterns for acid residues of carbonaceous chondrites, suggesting that fullerenes could be an additional carrier of trapped noble gases in acid residues of meteorites. Analysis and Results: In order to characterize the noble gas compositions of the Sudbury fullerenes, we undertook a systematic study of acid-resistant residues throughout the C-rich layer (Black member) of the Onaping Formation. Samples were demineralized and extracted using standard techniques. The Onaping extracts were analyzed using several techniques, including UV-Vis adsorption, electro spray mass spectrometry, and laser desorption (linear and reflectron) time-of-flight (TOF) mass spectrometry (LDMS). The Sudbury fullerenes were then separated and purified using HPLC coupled with a photo diode array detector. The HPLC extracts containing the purified fullerenes were loaded into a metal tube furnace within a glove box under a N atmosphere in preparation for noble gas analyses. The 3-He and 4-He content of the fullerene extracts was measured using previously reported standard techniques . Discussion: Fullerenes (C60 and C70) in the Sudbury Impact Structure have been found to contain trapped He with a 3-He/4-He ratio greater than 5 x 10(exp -4). The 3-He/4-He ratio exceeds the accepted solar value by more than 30% and is more than 10x higher than the maximum reported mantle value. Terrestrial nuclear reactions or cosmic-my bombardment are not sufficient to generate such a high ratio. The 3-He/4-He ratios in the Sudbury fullerenes are similar to those determined for interplanetary dust particles. The greater-than-solar ratios of 3-He/4-He in the Sudbury fullerenes may indicate a presolar origin, although alternative mechanisms occurring in the ISM to explain these high ratios (e.g., spallation reactions, selective He implantation, etc.) cannot be entirely ruled out. We are currently attempting to isolate enough fullerene material to measure anomalous Ne (or Kr or Xe) contained within the C60 (e.g., the "pure" 22-Ne component) and thus determine whether the Sudbury fullerenes are indeed presolar in origin.

  5. Modeling the self-assembly of functionalized fullerenes on solid surfaces using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bubnis, Gregory J.

    Since their discovery 25 years ago, carbon fullerenes have been widely studied for their unique physicochemical properties and for applications including organic electronics and photovoltaics. For these applications it is highly desirable for crystalline fullerene thin films to spontaneously self-assemble on surfaces. Accordingly, many studies have functionalized fullerenes with the aim of tailoring their intermolecular interactions and controlling interactions with the solid substrate. The success of these rational design approaches hinges on the subtle interplay of intermolecular forces and molecule-substrate interactions. Molecular modeling is well-suited to studying these interactions by directly simulating self-assembly. In this work, we consider three different fullerene functionalization approaches and for each approach we carry out Monte Carlo simulations of the self-assembly process. In all cases, we use a "coarse-grained" molecular representation that preserves the dominant physical interactions between molecules and maximizes computational efficiency. The first approach we consider is the traditional gold-thiolate SAM (self-assembled monolayer) strategy which tethers molecules to a gold substrate via covalent sulfur-gold bonds. For this we study an asymmetric fullerene thiolate bridged by a phenyl group. Clusters of 40 molecules are simulated on the Au(111) substrate at different temperatures and surface coverage densities. Fullerenes and S atoms are found to compete for Au(111) surface sites, and this competition prevents self-assembly of highly ordered monolayers. Next, we investigate self-assembled monolayers formed by fullerenes with hydrogen-bonding carboxylic acid substituents. We consider five molecules with different dimensions and symmetries. Monte Carlo cooling simulations are used to find the most stable solid structures of clusters adsorbed to Au(111). The results show cases where fullerene-Au(111) attraction, fullerene close-packing, and hydrogen-bonding interactions can cooperate to guide self-assembly or compete to hinder it. Finally, we consider three bis-fullerene molecules, each with a different "bridging group" covalently joining two fullerenes. To effectively study the competing "standing-up" and "lying-down" morphologies, we use Monte Carlo simulations in conjunction with replica exchange and force field biasing methods. For clusters adsorbed to smooth model surfaces, we determine free energy landscapes and demonstrate their utility for rationalizing and predicting self-assembly.

  6. Adsorption of alanine with heteroatom substituted fullerene for solar cell application: A DFT study.

    PubMed

    Dheivamalar, S; Sugi, L; Ravichandran, K; Sriram, S

    2018-09-05

    C 20 is the most important fullerene cage and alanine is the simplest representation of a backbone unit of the protein. The absorption feasibility of alanine molecule in the Si-doped C 20 and B-doped C 20 fullerenes has been studied based on calculated electronic properties of fullerenes using density functional theory (DFT). In this work, we explore the ability of Si-doped C 20 , B-doped C 20 fullerene to interact with alanine at the DFT-B3LYP/6-31G, RHF level of theory. We find that noticeable structural change takes place in C 20 when one of its carbon is substituted with Si or B. The molecular geometry, electronic properties and vibrational analysis have also been performed on the title compounds. The NMR study reveals the aromaticity of the pure and doped fullerene compounds. Stability of the doped fullerene - alanine compound arises from hyper conjugative interactions. It leads to one of the major property of bioactivity, charge transfer and delocalization of charge and this properties has been analyzed using Natural Bond Orbital (NBO) analysis. The energy gap of the doped fullerene reveals that there is a decrease in the size of energy gap significantly, making them more reactive as compared to C 20 fullerene. Theoretical studies of the electronic spectra by using time - dependent density functional theory (TD-DFT) method were helpful to interpret the observed electronic transition state. We aim to optimize the performance of the solar cells by altering the frontier orbital energy gaps. Considering all studied properties, it may be inferred that the applicability of C 20 fullerene as the non-linear optical (NLO) material and its NLO property would increase on doping fullerene with Si and B atom. Specifically C 19 Si would be better among them. Copyright © 2018. Published by Elsevier B.V.

  7. Quantitative Analysis of Fullerene Nanomaterials in Environmental Systems: A Critical Review

    PubMed Central

    Isaacson, Carl W.; Kleber, Markus; Field, Jennifer A.

    2009-01-01

    The increasing production and use of fullerene nanomaterials has led to calls for more information regarding the potential impacts that releases of these materials may have on human and environmental health. Fullerene nanomaterials, which are comprised of both fullerenes and surface-functionalized fullerenes, are used in electronic, optic, medical and cosmetic applications. Measuring fullerene nanomaterial concentrations in natural environments is difficult because they exhibit a duality of physical and chemical characteristics as they transition from hydrophobic to polar forms upon exposure to water. In aqueous environments, this is expressed as their tendency to initially (i) self assemble into aggregates of appreciable size and hydrophobicity, and subsequently (ii) interact with the surrounding water molecules and other chemical constituents in natural environments thereby acquiring negative surface charge. Fullerene nanomaterials may therefore deceive the application of any single analytical method that is applied with the assumption that fullerenes have but one defining characteristic (e.g., hydrophobicity). [1] We find that analytical procedures are needed to account for the potentially transitory nature of fullerenes in natural environments through the use of approaches that provide chemically-explicit information including molecular weight and the number and identity of surface functional groups. [2] We suggest that sensitive and mass-selective detection, such as that offered by mass spectrometry when combined with optimized extraction procedures, offers the greatest potential to achieve this goal. [3] With this review, we show that significant improvements in analytical rigor would result from an increased availability of well characterized authentic standards, reference materials, and isotopically-labeled internal standards. Finally, the benefits of quantitative and validated analytical methods for advancing the knowledge on fullerene occurrence, fate, and behavior are indicated. PMID:19764203

  8. Fullerene surfactants and their use in polymer solar cells

    DOEpatents

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  9. Supracolloidal fullerene-like cages: design principles and formation mechanisms.

    PubMed

    Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan

    2016-11-30

    How to create novel desired structures by rational design of building blocks represents a significant challenge in materials science. Here we report a conceptually new design principle for creating supracolloidal fullerene-like cages through the self-assembly of soft patchy particles interacting via directional nonbonded interactions by mimicking non-planar sp 2 hybridized carbon atoms in C 60 . Our numerical investigations demonstrate that the rational design of patch configuration, size, and interaction can drive soft three-patch particles to reversibly self-assemble into a vast collection of supracolloidal fullerene-like cages. We further elucidate the formation mechanisms of supracolloidal fullerene-like cages by analyzing the structural characteristics and the formation process. Our results provide conceptual and practical guidance towards the experimental realization of supracolloidal fullerene-like cages, as well as a new perspective on understanding the fullerene formation mechanisms.

  10. Electronic structure evolution of fullerene on CH 3NH 3PbI 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenggong; Wang, Congcong; Liu, Xiaoliang

    2015-03-19

    The thickness dependence of fullerene on CH 3NH 3PbI 3 perovskitefilm surface has been investigated by using ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy(XPS), and inverse photoemission spectroscopy (IPES). The lowest unoccupied molecular orbital and highest occupied molecular orbital (HOMO) can be observed directly with IPES and UPS. It is observed that the HOMO level in fullerene shifts to lower binding energy. The XPS results show a strong initial shift of core levels to lower binding energy in the perovskite, which indicates that electrons transfer from the perovskitefilm to fullerene molecules. Further deposition of fullerene forms C 60 solid, accompaniedmore » by the reduction of the electron transfer. As a result, the strongest electron transfer happened at 1/4 monolayer of fullerene.« less

  11. Electronic structure evolution of fullerene on CH{sub 3}NH{sub 3}PbI{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenggong; Wang, Congcong; Kauppi, John

    2015-03-16

    The thickness dependence of fullerene on CH{sub 3}NH{sub 3}PbI{sub 3} perovskite film surface has been investigated by using ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS), and inverse photoemission spectroscopy (IPES). The lowest unoccupied molecular orbital and highest occupied molecular orbital (HOMO) can be observed directly with IPES and UPS. It is observed that the HOMO level in fullerene shifts to lower binding energy. The XPS results show a strong initial shift of core levels to lower binding energy in the perovskite, which indicates that electrons transfer from the perovskite film to fullerene molecules. Further deposition of fullerene forms C{submore » 60} solid, accompanied by the reduction of the electron transfer. The strongest electron transfer happened at 1/4 monolayer of fullerene.« less

  12. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blendmore » using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.« less

  13. Fullerenes, nanotubes, and graphite as matrices for collision mechanism in secondary ion mass spectrometry: determination of cyclodextrin.

    PubMed

    Stupavska, Monika; Jerigova, Monika; Michalka, Miroslav; Hasko, Daniel; Szoecs, Vojtech; Velic, Dusan

    2011-12-01

    A technique for improving the sensitivity of high mass molecular analysis is described. Three carbon species, fullerenes, single walled carbon nanotubes, and highly ordered pyrolytic graphite are introduced as matrices for the secondary ion mass spectrometry analysis of cyclodextrin (C(42)H(70)O(35), 1134 u). The fullerene and nanotubes are deposited as single deposition, and 10, 20, or 30 deposition films and cyclodextrin is deposited on top. The cyclodextrin parent-like ions and two fragments were analyzed. A 30 deposition fullerene film enhanced the intensity of cationized cyclodextrin with Na by a factor of 37. While the C(6)H(11)O(5) fragment, corresponding to one glucopyranose unit, increased by a factor of 16. Although fragmentation on fullerene is not suppressed, the intensity is twice as low as the parent-like ion. Deprotonated cyclodextrin increases by 100× and its C(8)H(7)O fragment by 10×. While the fullerene matrix enhances secondary ion emission, the nanotubes matrix film generates a basically constant yield. Graphite gives rise to lower intensity peaks than either fullerene or nanotubes. Scanning electron microscopy and atomic force microscopy provide images of the fullerene and nanotubes deposition films revealing flat and web structured surfaces, respectively. A "colliding ball" model is presented to provide a plausible physical mechanism of parent-like ion enhancement using the fullerene matrix. © American Society for Mass Spectrometry, 2011

  14. Organic-Inorganic Nanostructure Architecture via Directly Capping Fullerenes onto Quantum Dots.

    PubMed

    Lee, Jae Kwan; Kim, Jonggi; Yang, Changduk

    2011-12-01

    A new form of fullerene-capped CdSe nanoparticles (PCBA-capped CdSe NPs), using carboxylate ligands with [60]fullerene capping groups that provides an effective synthetic methodology to attach fullerenes noncovalently to CdSe, is presented for usage in nanotechnology and photoelectric fields. Interestingly, either the internal charge transfer or the energy transfer in the hybrid material contributes to photoluminescence (PL) quenching of the CdSe moieties.

  15. Toxicity of Pristine and Chemically Functionalized Fullerenes to White Rot Fungus Phanerochaete chrysosporium

    PubMed Central

    Ming, Zhu; Feng, Shicheng; Yilihamu, Ailimire; Ma, Qiang; Yang, Shengnan

    2018-01-01

    Fullerenes are widely produced and applied carbon nanomaterials that require a thorough investigation into their environmental hazards and risks. In this study, we compared the toxicity of pristine fullerene (C60) and carboxylated fullerene (C60-COOH) to white rot fungus Phanerochaete chrysosporium. The influence of fullerene on the weight increase, fibrous structure, ultrastructure, enzyme activity, and decomposition capability of P. chrysosporium was investigated to reflect the potential toxicity of fullerene. C60 did not change the fresh and dry weights of P. chrysosporium but C60-COOH inhibited the weight gain at high concentrations. Both C60 and C60-COOH destroyed the fibrous structure of the mycelia. The ultrastructure of P. chrysosporium was changed by C60-COOH. Pristine C60 did not affect the enzyme activity of the P. chrysosporium culture system while C60-COOH completely blocked the enzyme activity. Consequently, in the liquid culture, P. chrysosporium lost the decomposition activity at high C60-COOH concentrations. The decreased capability in degrading wood was observed for P. chrysosporium exposed to C60-COOH. Our results collectively indicate that chemical functionalization enhanced the toxicity of fullerene to white rot fungi and induced the loss of decomposition activity. The environmental risks of fullerene and its disturbance to the carbon cycle are discussed. PMID:29470407

  16. Enhanced brain penetration of hexamethonium in complexes with derivatives of fullerene C60.

    PubMed

    Piotrovskiy, L B; Litasova, E V; Dumpis, M A; Nikolaev, D N; Yakovleva, E E; Dravolina, O A; Bespalov, A Yu

    2016-05-01

    The present report describes development of hexamethonium complexes based on fullerene C60. Hexamethonium has a limited penetration into CNS and therefore can antagonize central effects of nicotine only when given at high doses. In the present studies conducted in laboratory rodents, intraperitoneal administration of hexamethonium-fullerene complexes blocked effects of nicotine (convulsions and locomotor stimulation). When compared to equimolar doses of hexamethonium, complexes of hexamethonium with derivatives of fullerene C60 were 40 times more potent indicating an enhanced ability to interact with central nicotine receptors. Thus, fullerene C60 derivatives should be explored further as potential carrier systems for polar drug delivery into CNS.

  17. Micelle-assisted fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres

    NASA Astrophysics Data System (ADS)

    Xiong, Yujie; Xie, Yi; Li, Zhengquan; Li, Xiaoxu; Zhang, Rong

    2003-11-01

    The fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres via a micelle-assisted route is reported, in which necklace-shaped assembly of amorphous MoS 3 nanospheres is driven by the aggregation transformation of surfactants at low temperatures and then is transformed to the assembly of target fullerene-like MoS 2 by annealing. This nanostructure is a type of oriented assembly of inorganic fullerene-like structures, which is confirmed by the transmission electron microscopy and high-resolution transmission electron microscopy analysis. The optical absorption property is investigated to show their inorganic fullerene-like structure and uniform shape.

  18. A novel fullerene lipoic acid derivative: Synthesis and preparation of self-assembled monolayers on gold

    NASA Astrophysics Data System (ADS)

    Viana, A. S.; Leupold, S.; Eberle, C.; Shokati, T.; Montforts, F.-P.; Abrantes, L. M.

    2007-11-01

    Synthesis and preparation of self-assembled monolayers of a novel fullerene lipoic acid derivative on gold are reported. The presence of densely packed SAMs was confirmed by ellipsometry and cyclic voltammetry. The electrochemical response of the modified electrode in organic media exhibits the first two redox peaks characteristic of the extended π-electron system of fullerene. C 60 surface coverage (1.4 × 10 -10 mol cm -2) has been electrochemically determined by the redox process of the adsorbed fullerene moiety and by reductive desorption of the SAM in strong alkaline solution. Electrochemical data indicate that all four sulphur atoms are involved in the self-assembly process, providing an increase of SAM stability in comparison to mono or di-thiolated appended molecules. Visualisation of discrete fullerene molecules by scanning tunnelling microscopy supplied further evidence for gold modification and molecular distribution on the surface. Mixed monolayers of hexanethiol and fullerene derivatives in a proportion of 1:2 have been also studied with the purpose of controlling the amount and distribution of fullerene units on the gold surface.

  19. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Generation of singlet oxygen in fullerene-containing media: 2. Fullerene-containing solutions

    NASA Astrophysics Data System (ADS)

    Bagrov, I. V.; Belousova, I. M.; Grenishin, A. S.; Danilov, O. B.; Ermakov, A. V.; Kiselev, V. M.; Kislyakov, I. M.; Murav'eva, T. D.; Sosnov, E. N.

    2008-03-01

    The generation of singlet oxygen in fullerene solutions is studied by luminescence methods upon excitation by pulsed, repetitively pulsed, and continuous radiation sources. The concentration of singlet oxygen in solutions is measured in stationary and pulsed irradiation regimes. The rate constants of quenching of O2(1Δg) by fullerenes C70 and C60 in the CCl4 solution are measured to be (7.2±0.1)×107 L mol-1 s-1 and less than 6×104 L mol-1 s-1, respectively. The temperature and photolytic variations in the generation properties of the fullerene solution exposed to intense continuous radiation are studied by the methods of optical and EPR spectroscopy. Pulsed irradiation resulted in the production of singlet oxygen in suspensions of fullerene-like structures, in particular, astralenes. A liquid pulsed singlet-oxygen generator based on the fullerene solution in CCl4 is developed and studied, in which the yield of O2 (1Δg) to the gas phase at concentrations up to 5×1016 cm-3 is obtained.

  20. Self-organization processes in polysiloxane block copolymers, initiated by modifying fullerene additives

    NASA Astrophysics Data System (ADS)

    Voznyakovskii, A. P.; Kudoyarova, V. Kh.; Kudoyarov, M. F.; Patrova, M. Ya.

    2017-08-01

    Thin films of a polyblock polysiloxane copolymer and their composites with a modifying fullerene C60 additive are studied by atomic force microscopy, Rutherford backscattering, and neutron scattering. The data of atomic force microscopy show that with the addition of fullerene to the bulk of the polymer matrix, the initial relief of the film surface is leveled more, the larger the additive. This trend is associated with the processes of self-organization of rigid block sequences, which are initiated by the field effect of the surface of fullerene aggregates and lead to an increase in the number of their domains in the bulk of the polymer matrix. The data of Rutherford backscattering and neutron scattering indicate the formation of additional structures with a radius of 60 nm only in films containing fullerene, and their fraction increases with increasing fullerene concentration. A comparative analysis of the data of these methods has shown that such structures are, namely, the domains of a rigid block and are not formed by individual fullerene aggregates. The interrelation of the structure and mechanical properties of polymer films is considered.

  1. In Situ Raman Spectroscopy of the Nanodiamond-to-Carbon Onion Transformation During Thermal Annealing of Detonation Nanodiamond Powder

    DTIC Science & Technology

    2012-06-01

    SUBJECT TERMS carbon nanomaterials, nanodiamond, carbon onion, onion-like carbon, carbon nano-onions, onion-like fullerenes , Raman spectroscopy, x-ray...Metal encapsulating onion-like fullerenes ND Nanodiamond OLC Onion-like carbon OLF Onion-like fullerenes SNR Signal-to-noise ratio TGA...INTRODUCTION A. CARBON ONIONS 1. Carbon Onion Structure and Synthesis Carbon onions, also known as onion-like carbon (OLC), onion-like fullerenes (OLFs

  2. Organo-Soluble Porphyrin Mixed Monolayer-Protected Gold Nanorods with Intercalated Fullerenes

    DTIC Science & Technology

    2012-03-16

    Mixed Monolayer- Protected Gold Nanorods with Intercalated Fullerenes Chenming Xue, Yongqian Xu, Yi Pang, Dingshan Yu, Liming Dai, Min Gao, Augustine...Protected Gold Nanorods with Intercalated Fullerenes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT... Fullerenes Chenming Xue, † Yongqian Xu, ‡ Yi Pang, ‡ Dingshan Yu, § Liming Dai, § Min Gao, † Augustine Urbas ± and Quan

  3. Synthesis and radiation resistance of fullerenes and fullerene derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shilin, V. A., E-mail: shilin@pnpi.spb.ru; Lebedev, V. T.; Sedov, V. P.

    2016-07-15

    The parameters of an electric-arc facility for the synthesis of fullerenes and endohedral metallofullerenes are optimized. The resistance of C{sub 60} and C{sub 70} fullerenes and C{sub 60}(OH){sub 30} and C{sub 70}(OH){sub 30} fullerenols against neutron irradiation is studied. It is established that the radiation resistance of the fullerenes is higher than that of the fullerenols, but the radiation resistance of the Gd@C{sub 2n} endometallofullerenes is lower than that of the corresponding Gd@C{sub 2n}(OH){sub 38} fullerenols. The radiation resistance of mixtures of Me@C{sub 2n}(OH){sub 38} (Me = Gd, Tb, Sc, Fe, and Pr) endometallofullerenes with C{sub 60}(OH){sub 30} is determined.more » The factors affecting the radiation resistance of the fullerenes and fullerenols are discussed.« less

  4. Gas storage using fullerene based adsorbents

    NASA Technical Reports Server (NTRS)

    Mikhael, Michael G. (Inventor); Loutfy, Raouf O. (Inventor); Lu, Xiao-Chun (Inventor); Li, Weijiong (Inventor)

    2000-01-01

    This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor.

  5. Carboxylated Fullerene at the Oil/Water Interface.

    PubMed

    Li, Rongqiang; Chai, Yu; Jiang, Yufeng; Ashby, Paul D; Toor, Anju; Russell, Thomas P

    2017-10-04

    The self-assembly of carboxylated fullerene with poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) with different molecular weights, poly-2-vinylpyridine, and amine-terminated polystyrene, at the interface between toluene and water was investigated. For all values of the pH, the functionalized fullerene interacted with the polymers at the water/toluene interface, forming a nanoparticle network, reducing the interfacial tension. At pH values of 4.84 and 7.8, robust, elastic films were formed at the interface, such that hollow tubules could be formed in situ when an aqueous solution of the functionalized fullerene was jetted into a toluene solution of PS-b-P2VP at a pH of 4.84. With variation of the pH, the mechanical properties of the fullerene/polymer assemblies can be varied by tuning the strength of the interactions between the functionalized fullerenes and the PS-b-P2VP.

  6. Fullerene-like chemistry at the interior carbon atoms of an alkene-centered C26H12 geodesic polyarene.

    PubMed

    Bronstein, Hindy E; Scott, Lawrence T

    2008-01-04

    The title compound (1) undergoes 1,2-addition reactions of both electrophilic and nucleophilic reagents preferentially at the "interior" carbon atoms of the central 6:6-bond to give fullerene-type adducts 2, 3, 4, and 5. Such fullerene-like chemistry is unprecedented for a topologically 2-dimensional polycyclic aromatic hydrocarbon and qualifies this geodesic polyarene as a "bridge" between the old flat world of polycyclic aromatic hydrocarbons (PAHs) and the new round world of fullerenes. The relief of pyramidalization strain, as in the addition reactions of fullerenes, presumably contributes to the atypical mode of reactivity seen in 1. Molecular orbital calculations, however, reveal features of the nonalternant pi system in 1 that may also play an important role. Thus, the fullerene-like chemistry of 1 may be driven by two or more factors, the relative importances of which are difficult to discern.

  7. Self-organisation of dodeca-dendronized fullerene into supramolecular discs and helical columns containing a nanowire-like core† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc00449g Click here for additional data file.

    PubMed Central

    Guerra, Sebastiano; Iehl, Julien; Holler, Michel; Peterca, Mihai; Wilson, Daniela A.; Partridge, Benjamin E.; Zhang, Shaodong

    2015-01-01

    Twelve chiral and achiral self-assembling dendrons have been grafted onto a [60]fullerene hexa-adduct core by copper-catalyzed alkyne azide “click” cycloaddition. The structure adopted by these compounds was determined by the self-assembling peripheral dendrons. These twelve dendrons mediate the self-organisation of the dendronized [60]fullerene into a disc-shaped structure containing the [60]fullerene in the centre. The fullerene-containing discs self-organise into helical supramolecular columns with a fullerene nanowire-like core, forming a 2D columnar hexagonal periodic array. These unprecedented supramolecular structures and their assemblies are expected to provide new developments in chiral complex molecular systems and their application to organic electronics and solar cells. PMID:29142695

  8. Physical properties of organic fullerene cocrystals

    NASA Astrophysics Data System (ADS)

    Macovez, Roberto

    2017-12-01

    The basic facts and fundamental properties of binary fullerene cocrystals are reviewed, focusing especially on solvates and salts of Buckminsterfullerene (C60), and hydrates of hydrophilic C60 derivatives. The examined properties include the lattice structure and the presence of orientational disorder and/or rotational dynamics (of both fullerenes and cocrystallizing moieties), thermodynamic properties such as decomposition enthalpies, and charge transport properties. Both thermodynamic properties and molecular orientational disorder shed light on the extent of intermolecular interactions in these binary solid-state systems. Comparison is carried out also with pristine fullerite and with the solid phases of functionalized C60. Interesting experimental findings on binary fullerene cocrystals include the simultaneous occurrence of rotations of both constituent molecular species, crystal morphologies reminiscent of quasi-crystalline behaviour, the observation of proton conduction in hydrate solids of hydrophilic fullerene derivatives, and the production of super-hard carbon materials by application of high pressures on solvated fullerene crystals.

  9. Preparation of macrocycles with high carbon content: Toward the synthesis of endohedral metal fullerene complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, T.C.; Rubin, Y.

    1995-12-31

    This research is focused on the synthesis of macrocycles with high carbon content for the purpose of total synthesis of fullerenes or fullerene-like structures with the ultimate goal of obtaining endohedral metal complexes of fullerene C{sub 60}. Toward this goal, the authors have utilized organometallic chemistry to synthesize novel cyclophanes such as 1 which are constituted primarily of acetylenic units. The authors believe such macrocycles may be C{sub 60} precursors since studies have shown that acetylenic macrocycles form fullerenes in the gas phase. The authors have synthesized macrocycle 1 using a highly convergent route from commercially available starting materials. Themore » macrocycle 1 is produced from copper (I) catalyzed coupling of 2 which is obtained in turn by the coupling of the copper acetylide 3 with 4. The suitability of macrocycles such as 1 for fullerene precursors is currently under investigation.« less

  10. The topology of fullerenes

    PubMed Central

    Schwerdtfeger, Peter; Wirz, Lukas N; Avery, James

    2015-01-01

    Fullerenes are carbon molecules that form polyhedral cages. Their bond structures are exactly the planar cubic graphs that have only pentagon and hexagon faces. Strikingly, a number of chemical properties of a fullerene can be derived from its graph structure. A rich mathematics of cubic planar graphs and fullerene graphs has grown since they were studied by Goldberg, Coxeter, and others in the early 20th century, and many mathematical properties of fullerenes have found simple and beautiful solutions. Yet many interesting chemical and mathematical problems in the field remain open. In this paper, we present a general overview of recent topological and graph theoretical developments in fullerene research over the past two decades, describing both solved and open problems. WIREs Comput Mol Sci 2015, 5:96–145. doi: 10.1002/wcms.1207 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:25678935

  11. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  12. Aggregation and Deposition of C60 in Aqueous Systems

    EPA Science Inventory

    The extremely low water solubility of many fullerenes precludes aqueous solution processing for engineering applications and minimizes the potential for fullerene environmental effects in aqueous environments. However, studies have shown that C60 fullerene can form stable colloi...

  13. Paper Models for Fullerenes C60-C84.

    ERIC Educational Resources Information Center

    Beaton, John M.

    1995-01-01

    Describes a system to construct paper models of all 51 of the possible fullerene isomers from C60 through C84. Provides students, teachers, and specialists with an inexpensive mechanism to follow the literature interplay on fullerene structures. (JRH)

  14. Fullerenes formation in flames

    NASA Technical Reports Server (NTRS)

    Howard, Jack B.

    1993-01-01

    Fullerenes are composed of carbon atoms arranged in approximately spherical or ellipsoidal cages resembling the geodesic domes designed by Buckminster Fuller, after whom the molecules were named. The approximately spherical fullerene, which resembles a soccer ball and contains sixty atoms (C60), is called buckminsterfullerene. The fullerene containing seventy carbon atoms (C70) is approximately ellipsoidal, similar to a rugby ball. Fullerenes were first detected in 1985, in carbon vapor produced by laser evaporation of graphite. The closed shell structure, which has no edge atoms vulnerable to reaction, was proposed to explain the observed high stability of certain carbon clusters relative to that of others at high temperatures and in the presence of an oxidizing gas.

  15. The energy spectrum and the optical absorption spectrum of C{sub 60} fullerene within the Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silant’ev, A. V., E-mail: kvvant@rambler.ru

    2015-10-15

    Anticommutator Green’s functions and the energy spectrum of C{sub 60} fullerene are calculated in the approximation of static fluctuations within the Hubbard model. On the basis of this spectrum, an interpretation is proposed for the experimentally observed optical absorption bands of C{sub 60} fullerene. The parameters of C{sub 60} fullerene that characterize it within the Hubbard model are calculated by the optical absorption spectrum.

  16. Molecular packing and electronic processes in amorphous-like polymer bulk heterojunction solar cells with fullerene intercalation.

    PubMed

    Xiao, Ting; Xu, Haihua; Grancini, Giulia; Mai, Jiangquan; Petrozza, Annamaria; Jeng, U-Ser; Wang, Yan; Xin, Xin; Lu, Yong; Choon, Ng Siu; Xiao, Hu; Ong, Beng S; Lu, Xinhui; Zhao, Ni

    2014-06-09

    The interpenetrating morphology formed by the electron donor and acceptor materials is critical for the performance of polymer:fullerene bulk heterojunction (BHJ) photovoltaic (PV) cells. In this work we carried out a systematic investigation on a high PV efficiency (>6%) BHJ system consisting of a newly developed 5,6-difluorobenzo[c] thiadiazole-based copolymer, PFBT-T20TT, and a fullerene derivative. Grazing incidence X-ray scattering measurements reveal the lower-ordered nature of the BHJ system as well as an intermixing morphology with intercalation of fullerene molecules between the PFBT-T20TT lamella. Steady-state and transient photo-induced absorption spectroscopy reveal ultrafast charge transfer (CT) at the PFBT-T20TT/fullerene interface, indicating that the CT process is no longer limited by exciton diffusion. Furthermore, we extracted the hole mobility based on the space limited current (SCLC) model and found that more efficient hole transport is achieved in the PFBT-T20TT:fullerene BHJ as compared to pure PFBT-T20TT, showing a different trend as compared to the previously reported highly crystalline polymer:fullerene blend with a similar intercalation manner. Our study correlates the fullerene intercalated polymer lamella morphology with device performance and provides a coherent model to interpret the high photovoltaic performance of some of the recently developed weakly-ordered BHJ systems based on conjugated polymers with branched side-chain.

  17. Density functional study of the electronic structure of dye-functionalized fullerenes and their model donor-acceptor complexes containing P3HT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baruah, Tunna; Garnica, Amanda; Paggen, Marina

    2016-04-14

    We study the electronic structure of C{sub 60} fullerenes functionalized with a thiophene-diketo-pyrrolopyrrole-thiophene based chromophore using density functional theory combined with large polarized basis sets. As the attached chromophore has electron donor character, the functionalization of the fullerene leads to a donor-acceptor (DA) system. We examine in detail the effect of the linker and the addition site on the electronic structure of the functionalized fullerenes. We further study the electronic structure of these DA complexes with a focus on the charge transfer excitations. Finally, we examine the interface of the functionalized fullerenes with the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) donor. Ourmore » results show that all functionalized fullerenes with an exception of the C{sub 60}-pyrrolidine [6,6], where the pyrrolidine is attached at a [6,6] site, have larger electron affinities relative to the pristine C{sub 60} fullerene. We also estimate the quasi-particle gap, lowest charge transfer excitation energy, and the exciton binding energies of the functionalized fullerene-P3MT model systems. Results show that the exciton binding energies in these model complexes are slightly smaller compared to a similarly prepared phenyl-C{sub 61}-butyric acid methyl ester (PCBM)-P3MT complex.« less

  18. Liquid chromatography-atmospheric pressure photoionization-Orbitrap analysis of fullerene aggregates on surface soils and river sediments from Santa Catarina (Brazil).

    PubMed

    Sanchís, Josep; Oliveira, Luis Felipe Silva; de Leão, Felipe Baptista; Farré, Marinella; Barceló, Damià

    2015-02-01

    In the present work, a new analytical approach is proposed for the analysis of seven fullerenes (C₆₀, C₇₀, N-methylfulleropyrrolidine, [6,6]-phenyl C₆₁ butyric acid methyl ester, [6,6]-thienyl C61 butyric acid methyl ester, C60 pyrrolidine tris-acid ethyl ester and [6,6]-phenyl C₇₁ butyric acid methyl ester fullerenes) in soils and sediments. This procedure combines an ultrasound-assisted solvent extraction (UAE) with toluene followed by liquid chromatography (LC), using a pyrenylpropyl group bonded silica based column, coupled to a high-resolution mass spectrometer (HRMS) using atmospheric pressure photoionisation (APPI) in negative ion mode. The analytical performance for fullerene separation of the pyrenylpropyl group bonded silica column was compared to the C18 column. For the ultra-trace analysis of fullerenes in complex environmental samples, the use of the APPI source and the use of the electrospray ionisation (ESI) source were compared. Using this approach for the analysis of fullerenes in complex matrices, a series of advantages, in terms of sensitivity and specificity, have been demonstrated. The method limits of detection (MLOD) and the method limits of quantification (MLOQ) in soils and sediments ranged from 0.022 to 0.39 pg/g and from 0.072 to 1.3 pg/g, respectively. Recoveries were between 68 and 106%. The analytical method was applied in order to assess the occurrence of selected fullerenes in 45 soils of Sul Catarinense (Santa Catalina State, Brazil) and 15 sediments from the Tubarão River, presenting different pressures of contamination: a coal-combustion power plant, car exhaust, coal mining industry and wastewater effluents. C₆₀ and C₇₀ fullerenes have been detected at concentrations ranging from the MLOD to 0.150 ng/g. None of the functionalised fullerenes were detected in any of the samples. Combustion processes, in particular car exhaust, were identified as the main source of fullerenes. However, the potential degradation of residual concentrations of engineered fullerenes to more stable forms, such as C₆₀ and C₇₀, should also be considered. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Simple method for determining fullerene negative ion formation★

    NASA Astrophysics Data System (ADS)

    Felfli, Zineb; Msezane, Alfred Z.

    2018-04-01

    A robust potential wherein is embedded the crucial core-polarization interaction is used in the Regge-pole methodology to calculate low-energy electron elastic scattering total cross section for the C60 fullerene in the electron impact energy range 0.02 ≤ E ≤ 10.0 eV. The energy position of the characteristic dramatically sharp resonance appearing at the second Ramsauer-Townsend minimum of the total cross section representing stable C60 - fullerene negative ion formation agrees excellently with the measured electron affinity of C60 [Huang et al., J. Chem. Phys. 140, 224315 (2014)]. The benchmarked potential and the Regge-pole methodology are then used to calculate electron elastic scattering total cross sections for selected fullerenes, from C54 through C240. The total cross sections are found to be characterized generally by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances representing long-lived states of fullerene negative ion formation. For the total cross sections of C70, C76, C78, and C84 the agreement between the energy positions of the very sharp resonances and the measured electron affinities is outstanding. Additionally, we compare our extracted energy positions of the resultant fullerene anions from our calculated total cross sections of the C86, C90 and C92 fullerenes with the estimated electron affinities ≥3.0 eV by the experiment [Boltalina et al., Rapid Commun. Mass Spectrom. 7, 1009 (1993)]. Resonance energy positions of other fullerenes, including C180 and C240 are also obtained. Most of the total cross sections presented in this paper are the first and only; our novel approach is general and should be applicable to other fullerenes as well and complex heavy atoms, such as the lanthanide atoms. We conclude with a remark on the catalytic properties of the fullerenes through their negative ions.

  20. Implications of fullerene-60 upon in-vitro LDPE biodegradation.

    PubMed

    Sah, Aditi; Kapri, Anil; Zaidi, M G H; Negi, Harshita; Goel, Reeta

    2010-05-01

    Fullerene-60 nanoparticles were used for studying their influence upon the LDPE biodegradation efficiency of two potential polymer-degrading consortia comprising of three bacterial strains each. At a concentration of 0.01% (w/v) in minimal broth lacking dextrose, fullerene did not have any negative influence upon the consortial growth. However, fullerene was found to be detrimental for bacterial growth at higher concentrations (viz. 0.25%, 0.5% and 1%). Although, addition of 0.01% fullerene into the biodegradation assays containing 5 mg/ml LDPE subsided growth-curves significantly, but subsequent analysis of degraded products revealed enhanced biodegradation. Fourier transform infrared spectroscopy (FT-IR) revealed breakage and formation of chemical bonds along with introduction of nu C-O frequencies into hydrocarbon backbone of LDPE. Further, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) revealed higher number of decomposition steps along with a 1,000-fold decrease in the heat of reactions (DeltaH) in fullerene-assisted biodegraded LDPE suggesting probable formation of multiple, macromolecular by-products. This is the first report whereby fullerene-60, which is otherwise considered toxic, has helped to alleviate polymer biodegradation process of bacterial consortia.

  1. Expeditious Preparation of Open-Cage Fullerenes by Rhodium(I)-Catalyzed [2+2+2] Cycloaddition of Diynes and C60: an Experimental and Theoretical Study.

    PubMed

    Artigas, Albert; Pla-Quintana, Anna; Lledó, Agustí; Roglans, Anna; Solà, Miquel

    2018-06-04

    A novel methodology to transform C60 into a variety of open-cage fullerene derivatives employing rhodium(I) catalysis has been developed. This transformation encompasses a partially intermolecular [2+2+2] cycloaddition reaction between diynes 1 and C60 to deliver a cyclohexadiene-fused fullerene, which concomitantly undergoes a formal [4+4]/retro-[2+2+2] rearrangement to deliver open-cage fullerenes 2. Most notably, this process occurs without the need of photoexcitation. The complete mechanism of this transformation has been rationalized by DFT calculations, which indicate that, after [2+2+2] cycloaddition, the cyclohexadiene-fused intermediate evolves into the final product through a Rh-catalyzed di-π-methane rearrangement followed by a retro-[2+2+2] cycloaddition. The obtained open-cage fullerenes can be derivatized by Suzuki-Miyaura cross-coupling, or subjected to ring expansion to deliver a 12-membered ring orifice in the fullerene structure. Overall, the methodology presented constitutes a straightforward entry to functional open-cage C60-fullerene derivatives employing catalytic methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fullerene materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malhotra, R.; Ruoff, R.S.; Lorents, D.C.

    1995-04-01

    Fullerenes are all-carbon cage molecules. The most celebrated fullerene is the soccer-ball shaped C{sub 60}, which is composed of twenty hexagons and twelve pentagons. Because its structure is reminiscent of the geodesic domes of architect R. Buckminster Fuller, C{sub 60} is called buckminsterfullerene, and all the materials in the family are designated fullerenes. Huffman and Kraetschmer`s discovery unleashed activity around the world as scientists explored production methods, properties, and potential uses of fullerenes. Within a short period, methods for their production in electric arcs, plasmas, and flames were discovered, and several companies began selling fullerenes to the research market. Whatmore » is remarkable is that in all these methods, carbon atoms assemble themselves into cage structures. The capability for self-assembly points to some inherent stability of these structures that allows their formation. The unusual structure naturally leads to unusual properties. Among them are ready solubility in solvents and a relatively high vapor pressure for a pure carbon material. The young fullerene field has already produced a surprising array of structures for the development of carbon-base materials having completely new and different properties from any that were previously possible.« less

  3. Process for fullerene functionalization

    DOEpatents

    Cahill, Paul A.; Henderson, Craig C.

    1995-01-01

    Di-addended and tetra-addended Buckminster fullerenes are synthesized through the use of novel organoborane intermediates. The C.sub.60, C.sub.70, or higher fullerene is reacted with a borane such as BH.sub.3 in a solvent such as toluene to form an organoborane intermediate. Reaction of the organoborane such as hydrolysis with water or alcohol results in the product di-addended and tetra-addended fullerene in up to 30% yields. Dihydrofullerenes and tetrahydrofullerenes are produced by the process of the invention.

  4. Antimicrobial Photodynamic Inactivation and Antitumor Photodynamic Therapy with Fullerenes

    NASA Astrophysics Data System (ADS)

    de Freitas, Lucas F.

    2016-04-01

    This book provides detailed and current information on using fullerenes (bucky-balls) in photodynamic therapy (PDT), one of the most actively studied applications of photonic science in healthcare. This will serve as a useful source for researchers working in photomedicine and nanomedicine, especially those who are investigating PDT for cancer treatment and infectious disease treatment. The book runs the gamut from an introduction to the history and chemistry of fullerenes and some basic photochemistry, to the application of fullerenes as photosensitizers for cancer and antimicrobial inactivation.

  5. Fullerene-like boron clusters stabilized by an endohedrally doped iron atom: B(n)Fe with n = 14, 16, 18 and 20.

    PubMed

    Tam, Nguyen Minh; Pham, Hung Tan; Duong, Long Van; Pham-Ho, My Phuong; Nguyen, Minh Tho

    2015-02-07

    Stabilized fullerene and tubular forms can be produced in boron clusters Bn in small sizes from n∼ 14 to 20 upon doping by transition metal atoms. B14Fe and B16Fe are stable tubes whereas B18Fe and B20Fe are stable fullerenes. Their formation and stability suggest the use of dopants to induce different growth paths leading to larger cages, fullerenes and tubes of boron.

  6. Process for fullerene functionalization

    DOEpatents

    Cahill, P.A.; Henderson, C.C.

    1995-12-12

    Di-addended and tetra-addended Buckminster fullerenes are synthesized through the use of novel organoborane intermediates. The C{sub 60}, C{sub 70}, or higher fullerene is reacted with a borane such as BH{sub 3} in a solvent such as toluene to form an organoborane intermediate. Reaction of the organoborane such as hydrolysis with water or alcohol results in the product di-addended and tetra-addended fullerene in up to 30% yields. Dihydrofullerenes and tetrahydrofullerenes are produced by the process of the invention. 7 figs.

  7. Smooth Scaling of Valence Electronic Properties in Fullerenes: From One Carbon Atom, to C60, to Graphene

    DTIC Science & Technology

    2012-09-18

    Smooth scaling of valence electronic properties in fullerenes: from one carbon atom , to C60, to graphene Greyson R. Lewis,1 William E. Bunting,1...pacitance scaling lines of the fullerenes. Lastly, it is found that points representing the carbon atom and the graphene limit lie on scaling lines for...icosahedral fullerenes, so their quantum capacitances and their detachment energies scale smoothly from one C atom , through C60, to graphene. I

  8. Origin of high open-circuit voltage in a planar heterojunction solar cell containing a non-fullerene acceptor

    NASA Astrophysics Data System (ADS)

    Cheng, Nongyi; Peng, Yuelin; Andrew, Trisha L.

    2017-09-01

    Vapor-deposited, planar heterojunction organic solar cells containing a periflanthene donor and either a fullerene or non-fullerene acceptor are investigated. A high VOC of 1.16 V is observed in devices containing the non-fullerene, pyrrolo[3,4-c]pyrrole-1,4-dione, 3,6-bis(4-chlorophenyl)-2,5-dihydro acceptor, whereas analogous devices containing C60 only result in a VOC of 0.8 V. The measured band energy levels of the two different acceptors do not readily explain the observed difference. Small-perturbation transient photovoltage and transient photocurrent measurements reveal that interfacial charge recombination is comparatively slower for the non-fullerene acceptor, resulting in relatively higher Voc values.

  9. ‘Horror vacui’ or topological in-out isomerism in perhydrogenated fullerenes: C60H60 and monoalkylated perhydrogenated fullerenes

    NASA Astrophysics Data System (ADS)

    Dodziuk, Helena; Nowinski, Krzysztof

    1996-02-01

    In endohedral chemistry, one of the exciting prospects offered by the cage-like structure of fullerenes, several aspects of the calculations on in-out isomerism of perhydrogenated fullerene and their consequences went unnoticed, e.g. the topological character of the isomerism, the instability of C 60F 60, which was thought to revolutionize industry as an ideal lubricant, as well as the possibility of in-out isomerism in alkylated fulleranes. Molecular mechanics calculations indicate that for smaller alkyl groups the 'in' isomer is significantly more stable extending the possibility of endohedral fullerene chemistry. C 60H 60 and its derivatives can be considered as examples of a manifestation of the ancient 'horror vacui' concept.

  10. Size-exclusive Nanosensor for Quantitative Analysis of Fullerene C60: A Concept Paper

    EPA Science Inventory

    This paper presents the first development of a mass-sensitive nanosensor for the isolation and quantitative analyses of engineered fullerene (C60) nanoparticles, while excluding mixtures of structurally similar fullerenes. Amino-modified beta cyclodextrin (β-CD-NH

  11. Donor polymer design enables efficient non-fullerene organic solar cells

    PubMed Central

    Li, Zhengke; Jiang, Kui; Yang, Guofang; Lai, Joshua Yuk Lin; Ma, Tingxuan; Zhao, Jingbo; Ma, Wei; Yan, He

    2016-01-01

    To achieve efficient organic solar cells, the design of suitable donor–acceptor couples is crucially important. State-of-the-art donor polymers used in fullerene cells may not perform well when they are combined with non-fullerene acceptors, thus new donor polymers need to be developed. Here we report non-fullerene organic solar cells with efficiencies up to 10.9%, enabled by a novel donor polymer that exhibits strong temperature-dependent aggregation but with intentionally reduced polymer crystallinity due to the introduction of a less symmetric monomer unit. Our comparative study shows that an analogue polymer with a C2 symmetric monomer unit yields highly crystalline polymer films but less efficient non-fullerene cells. Based on a monomer with a mirror symmetry, our best donor polymer exhibits reduced crystallinity, yet such a polymer matches better with small molecular acceptors. This study provides important insights to the design of donor polymers for non-fullerene organic solar cells. PMID:27782112

  12. A structural diagnostics diagram for metallofullerenes encapsulating metal carbides and nitrides.

    PubMed

    Maki, Sachiko; Nishibori, Eiji; Terauchi, Ikuya; Ishihara, Masayuki; Aoyagi, Shinobu; Sakata, Makoto; Takata, Masaki; Umemoto, Hisashi; Inoue, Takashi; Shinohara, Hisanori

    2013-01-16

    Systematic structural studies of 24 different kinds of endohedral metallofullerenes, M(x)C(2n) (M = La, Y, Sc, Lu, Ti, Eu, Er, Hf, Sc(3)N; 34 ≤ n ≤ 43), as 1:1 cocrystals with solvent toluene molecules have been carried out using synchrotron radiation powder diffraction. Thirteen of the 24 molecular structures, including five metal carbides, one metal nitride endohedral fullerene, and one hollow fullerene, have been determined by a combination of the maximum entropy method and Rietveld refinement of the X-ray diffraction data obtained. We have found that the volume for one fullerene and one toluene molecule depends linearly on the number of carbon atoms in the fullerene cage. Fifteen different kinds of metal carbide endohedral fullerenes have been identified, which can be structurally characterized from the obtained lattice constants using only this linear dependence. The linear dependence found in the present study provides a metallofullerene diagnostics diagram that may have universal importance for structural characterization of the so-called cluster endohedral fullerenes.

  13. Preparation of non-aggregating aqueous fullerenes in highly saline solutions with a biocompatible non-ionic polymer

    NASA Astrophysics Data System (ADS)

    Aich, Nirupam; Boateng, Linkel K.; Flora, Joseph R. V.; Saleh, Navid B.

    2013-10-01

    Size-tunable stable aqueous fullerenes were prepared with different concentrations of biocompatible block-copolymer pluronic (PA) F-127, ranging from 0.001% to 1% (w/v). Size uniformity increased with the increase in PA concentration, yielding optimum 58.8 ± 5.6 and 61.8 ± 5.6 nm nC60s and nC70s, respectively (0.10%w/v PA), as observed using a dynamic light scattering technique. Fullerene aqueous suspensions also manifested enhanced stability in saline solution, Dulbecco’s modified Eagle medium (DMEM), and Roswell Park Memorial Institute (RPMI) culture medium. Transmission electron microscopy was performed to elaborate on the morphology and size specificity of fullerene clusters. Physicochemical characterizations of the suspended fullerenes were performed through UV-vis spectroscopy and electrophoretic mobility measurements. PA molecules showed size restriction by encasement, as observed via molecular dynamics simulations. Such solubilization with controllable size and non-aggregating behavior can facilitate application enhancement and mechanistic environmental and toxicological studies of size-specific fullerenes.

  14. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    DOE PAGES

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; ...

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealedmore » both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.« less

  15. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells.

    PubMed

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Purdum, Geoffrey E; Khlyabich, Petr P; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles T; Steigerwald, Michael L; Loo, Yueh-Lin; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.

  16. The interactions of high-energy, highly-charged ions with fullerenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, R.; Berry, H.G.; Cheng, S.

    1996-03-01

    In 1985, Robert Curl and Richard Smalley discovered a new form of carbon, the fullerene, C{sub 60}, which consists of 60 carbon atoms in a closed cage resembling a soccer ball. In 1990, Kritschmer et al. were able to make macroscopic quantities of fullerenes. This has generated intense activity to study the properties of fullerenes. One area of research involves collisions between fullerenes and atoms, ions or electrons. In this paper we describe experiments involving interactions between fullerenes and highly charged ions in which the center-of-mass energies exceed those used in other work by several orders of magnitude. The highmore » values of projectile velocity and charge state result in excitation and decay processes differing significantly from those seen in studies 3 at lower energies. Our results are discussed in terms of theoretical models analogous to those used in nuclear physics and this provides an interesting demonstration of the unity of physics.« less

  17. Rotor-stator molecular crystals of fullerenes with cubane.

    PubMed

    Pekker, Sándor; Kováts, Eva; Oszlányi, Gábor; Bényei, Gyula; Klupp, Gyöngyi; Bortel, Gábor; Jalsovszky, István; Jakab, Emma; Borondics, Ferenc; Kamarás, Katalin; Bokor, Mónika; Kriza, György; Tompa, Kálmán; Faigel, Gyula

    2005-10-01

    Cubane (C8H8) and fullerene (C60) are famous cage molecules with shapes of platonic or archimedean solids. Their remarkable chemical and solid-state properties have induced great scientific interest. Both materials form polymorphic crystals of molecules with variable orientational ordering. The idea of intercalating fullerene with cubane was raised several years ago but no attempts at preparation have been reported. Here we show that C60 and similarly C70 form high-symmetry molecular crystals with cubane owing to topological molecular recognition between the convex surface of fullerenes and the concave cubane. Static cubane occupies the octahedral voids of the face-centred-cubic structures and acts as a bearing between the rotating fullerene molecules. The smooth contact of the rotor and stator molecules decreases significantly the temperature of orientational ordering. These materials have great topochemical importance: at elevated temperatures they transform to high-stability covalent derivatives although preserving their crystalline appearance. The size-dependent molecular recognition promises selective formation of related structures with higher fullerenes and/or substituted cubanes.

  18. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene

    DOE PAGES

    Bai, Yang; Dong, Qingfeng; Shao, Yuchuan; ...

    2016-10-05

    The instability of hybrid perovskite materials due to water and moisture arises as one major challenge to be addressed before any practical application of the demonstrated high efficiency perovskite solar cells. Here we report a facile strategy that can simultaneously enhance the stability and efficiency of p-i-n planar heterojunction-structure perovskite devices. Crosslinkable silane molecules with hydrophobic functional groups are bonded onto fullerene to make the fullerene layer highly water-resistant. Methylammonium iodide is introduced in the fullerene layer for n-doping via anion-induced electron transfer, resulting in dramatically increased conductivity over 100-fold. With crosslinkable silane-functionalized and doped fullerene electron transport layer, themore » perovskite devices deliver an efficiency of 19.5% with a high fill factor of 80.6%. Furthermore, a crosslinked silane-modified fullerene layer also enhances the water and moisture stability of the non-sealed perovskite devices by retaining nearly 90% of their original efficiencies after 30 days’ exposure in an ambient environment.« less

  19. The first stable lower fullerene: C{sub 36}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piskoti, C.; Zettl, A.

    1998-08-01

    A new pure carbon material, presumably composed of thirty six carbon atom molecules, has been synthesized and isolated in milligram quantities. It appears as though these molecules have a closed cage structure making them the smallest member of a new class of molecules known as fullerenes, most notably of which is the soccer ball shaped C{sub 60}. However, unlike other known fullerenes, any closed, fullerene-like C{sub 36} cage will necessarily contain fused pentagon rings. Therefore, this molecule apparently violates the isolated pentagon rule, a criterion which requires isolated pentagons for stability in fullerene molecules. Striking parallels between this problem andmore » the synthesis of other fused five member fused ring systems will be discussed. Also, it will be shown that certain biological structures known as clathrin behave in a manner which gives excellent predictions about fullerenes and nanotubes. These predictions help to explain the presence of abundant quantities of C{sub 36} in arced graphite soot. {copyright} {ital 1998 American Institute of Physics.}« less

  20. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene

    PubMed Central

    Bai, Yang; Dong, Qingfeng; Shao, Yuchuan; Deng, Yehao; Wang, Qi; Shen, Liang; Wang, Dong; Wei, Wei; Huang, Jinsong

    2016-01-01

    The instability of hybrid perovskite materials due to water and moisture arises as one major challenge to be addressed before any practical application of the demonstrated high efficiency perovskite solar cells. Here we report a facile strategy that can simultaneously enhance the stability and efficiency of p–i–n planar heterojunction-structure perovskite devices. Crosslinkable silane molecules with hydrophobic functional groups are bonded onto fullerene to make the fullerene layer highly water-resistant. Methylammonium iodide is introduced in the fullerene layer for n-doping via anion-induced electron transfer, resulting in dramatically increased conductivity over 100-fold. With crosslinkable silane-functionalized and doped fullerene electron transport layer, the perovskite devices deliver an efficiency of 19.5% with a high fill factor of 80.6%. A crosslinked silane-modified fullerene layer also enhances the water and moisture stability of the non-sealed perovskite devices by retaining nearly 90% of their original efficiencies after 30 days' exposure in an ambient environment. PMID:27703136

  1. Determination of the equilibrium constant of C60 fullerene binding with drug molecules.

    PubMed

    Mosunov, Andrei A; Pashkova, Irina S; Sidorova, Maria; Pronozin, Artem; Lantushenko, Anastasia O; Prylutskyy, Yuriy I; Parkinson, John A; Evstigneev, Maxim P

    2017-03-01

    We report a new analytical method that allows the determination of the magnitude of the equilibrium constant of complexation, K h , of small molecules to C 60 fullerene in aqueous solution. The developed method is based on the up-scaled model of C 60 fullerene-ligand complexation and contains the full set of equations needed to fit titration datasets arising from different experimental methods (UV-Vis spectroscopy, 1 H NMR spectroscopy, diffusion ordered NMR spectroscopy, DLS). The up-scaled model takes into consideration the specificity of C 60 fullerene aggregation in aqueous solution and allows the highly dispersed nature of C 60 fullerene cluster distribution to be accounted for. It also takes into consideration the complexity of fullerene-ligand dynamic equilibrium in solution, formed by various types of self- and hetero-complexes. These features make the suggested method superior to standard Langmuir-type analysis, the approach used to date for obtaining quantitative information on ligand binding with different nanoparticles.

  2. Detection of fullerenes (C60 and C70) in commercial cosmetics

    PubMed Central

    Benn, Troy M.; Westerhoff, Paul; Herckes, Pierre

    2013-01-01

    Detection methods are necessary to quantify fullerenes in commercial applications to provide potential exposure levels for future risk assessments of fullerene technologies. The fullerene concentrations of five cosmetic products were evaluated using liquid chromatography with mass spectrometry to separate and specifically detect C60 and C70 from interfering cosmetic substances (e.g., castor oil). A cosmetic formulation was characterized with transmission electron microscopy, which confirmed that polyvinylpyrrolidone encapsulated C60. Liquid-liquid extraction of fullerenes from control samples approached 100% while solid-phase and sonication in toluene extractions yielded recoveries of 27–42%. C60 was detected in four commercial cosmetics ranging from 0.04 to 1.1 μg/g, and C70 was qualitatively detected in two samples. A single-use quantity of cosmetic (0.5 g) may contain up to 0.6 μg of C60, demonstrating a pathway for human exposure. Steady-state modeling of fullerene adsorption to biosolids is used to discuss potential environmental releases from wastewater treatment systems. PMID:21300421

  3. The study of dielectric properties of the endohedral fullerenes

    NASA Astrophysics Data System (ADS)

    Bhusal, Shusil

    Dielectric response of the metal nitride fullerenes is studied using the density functional theory at the all-electron level using generalized gradient approximation. The dielectric response is studied by computing the static dipole polarizabilities using the finite field method, i.e. by numerically differentiating the dipole moments with respect to electric field. The endohedral fullerenes studied in this work are Sc3N C68(6140), Sc3N C68(6146), Sc3N C70(7854), Sc3N C70(7960), Sc3N C76(17490), Sc3N C78(22010), Sc3N C80(31923), Sc3N C80(31924), Sc3N C82(39663), Sc3N C90(43), Sc3N C90(44), Sc3N C92(85), Sc3N C94(121), Sc3N C96(186), Sc3N C98(166). Using the Voronoi and Hirschfield approaches as implemented in our NRLMOL code, we determine the atomic contributions to the total polarizability. The site-specific contributions to the polarizability of endohedral fullerenes allowed us to determine the polarizability of two subsystems: the fullerene shell and the encapsulated Sc3N unit. Our results showed that the contributions to the total polarizability from the encapsulated Sc3N units are vanishingly small. Thus, the total polarizability of the endohedral fullerene is almost entirely due to the outer fullerene shell. These fullerenes are excellent molecular models of a Faraday cage.

  4. Fullerene ion chemistry: a journey of discovery and achievement

    PubMed Central

    Böhme, Diethard K.

    2016-01-01

    An account is provided of the extraordinary features of buckminster fullerene cations and their chemistry that we discovered in our Ion Chemistry Laboratory at York University (Canada) during a ‘golden’ period of research in the early 1990s, just after C60 powder became available. We identified new chemical ways of C60 ionization and tracked novel chemistry of C60n+ as a function of charge state (n=1–3) with some 50 different reagent molecules. We found that multiple charges enhance reaction rates and diversify reaction products and mechanisms. Strong electrostatic interactions with reagent molecules were seen to reduce barriers to carbon surface bonding and charge-separation reactions, while intramolecular Coulomb repulsion appeared to localize charge on the surface or the substituent and so influence higher order chemistry, including ‘spindle’, ‘star’, ‘fuzzy ball’, ‘ball-and-chain’ and dimer ion formation. We introduced the notion of ‘apparent’ gas-phase acidity with measurements of proton-transfer reactions of multiply charged fullerene cations. We also explored the attachment of atomic metal cations to C60 and their subsequent reactions. All these findings were applied to the possible chemistry of fullerene cations in the interstellar medium with a focus on multiply charged fullerene ion formation and the intervention of fullerene cations in fullerene derivatization and molecular synthesis, with a view to their possible future detection. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’. PMID:27501972

  5. Fullerene Nanoparticles Exhibit Greater Retention in Freshwater Sediment than in Model Porous Media

    EPA Science Inventory

    Increasing production and use of fullerene-based nanomaterials underscore the need to determine their mobility in environmental transport pathways and potential ecological exposures. This study investigated the transport of two fullerenes (i.e., aqu/C(60) and water-soluble C(60) ...

  6. Storage of nuclear materials by encapsulation in fullerenes

    DOEpatents

    Coppa, Nicholas V.

    1994-01-01

    A method of encapsulating radioactive materials inside fullerenes for stable long-term storage. Fullerenes provide a safe and efficient means of disposing of nuclear waste which is extremely stable with respect to the environment. After encapsulation, a radioactive ion is essentially chemically isolated from its external environment.

  7. Transport of Fullerene Nanoparticles in Saturated Porous Media

    EPA Science Inventory

    The high strength, electrical conductivity, and electron affinity of fullerenes has lead to their utilization in fuel cells and drug-delivery devices, as well as in cosmetics and other applications. Though C60 fullerene is very insoluble in water, studies have shown that C60 ful...

  8. Complexation of C60 fullerene with aromatic drugs.

    PubMed

    Evstigneev, Maxim P; Buchelnikov, Anatoly S; Voronin, Dmitry P; Rubin, Yuriy V; Belous, Leonid F; Prylutskyy, Yuriy I; Ritter, Uwe

    2013-02-25

    The contributions of various physical factors to the energetics of complexation of aromatic drug molecules with C(60) fullerene are investigated in terms of the calculated magnitudes of equilibrium complexation constants and the components of the net Gibbs free energy. Models of complexation are developed taking into account the polydisperse nature of fullerene solutions in terms of the continuous or discrete (fractal) aggregation of C(60) molecules. Analysis of the energetics has shown that stabilization of the ligand-fullerene complexes in aqueous solution is mainly determined by intermolecular van der Waals interactions and, to lesser extent, by hydrophobic interactions. The results provide a physicochemical basis for a potentially new biotechnological application of fullerenes as modulators of biological activity of aromatic drugs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Amrish, E-mail: amrish99@gmail.com; Kaur, Sandeep, E-mail: sipusukhn@gmail.com; Mudahar, Isha, E-mail: isha@pbi.ac.in

    We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves C{sub n} (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density ofmore » state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.« less

  10. KO(t)Bu-Mediated Coupling of Indoles and [60]Fullerene: Transition-Metal-Free and General Synthesis of 1,2-(3-Indole)(hydro)[60]fullerenes.

    PubMed

    Li, Fei; Haj Elhussin, Imad Elddin; Li, Shengli; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2015-11-06

    Direct coupling of indoles with C60 has been achieved for the first time. Transition-metal-free KO(t)Bu-mediated reaction of indoles to [60]fullerene has been developed as a practical and efficient method for the synthesis of various 1,2-(3-indole)(hydro)[60]fullerenes that are otherwise difficult to direct synthesize in an efficient and selective manner. This methodology tolerates sensitive functionalities such as chloro, ester, and nitro on indole and builds molecular complexity rapidly, with most reactions reaching completion in <1 h. A plausible reaction mechanism is proposed to explain the high regioselectivity at the 3-position of the indoles and the formation of 1,2-(3-indole)(hydro)[60]fullerenes.

  11. Chironomus riparius exposure to fullerene-contaminated sediment results in oxidative stress and may impact life cycle parameters

    PubMed Central

    Waissi, G.C; Bold, S; Pakarinen, K; Akkanen, J; Leppänen, M.T; Petersen, E.J; Kukkonen, J.V.K

    2016-01-01

    A key component of understanding the potential environmental risks of fullerenes (C60) is their potential effects on benthic invertebrates. Using the sediment dwelling invertebrate Chironomus riparius we explored the effects of acute (12 h and 24 h) and chronic (10 d, 15 d, and 28 d) exposures of sediment associated fullerenes. The aims of this study were to assess the impact of exposure to C60 in the sediment top layer ((0.025, 0.18 and 0.48) C60 mg/cm2) on larval growth, oxidative stress and emergence rates and to quantify larval body burdens in similarly exposed organisms. Oxidative stress localization was observed in the tissues next to the microvilli and exoskeleton through a method for identifying oxidative stress reactions generated by reactive oxygen species. Rapid intake of fullerenes was shown in acute experiments, whereas body residues decreased after chronic exposure. Transmission electron microscopy analysis revealed oxidative damage and structural changes in cells located between the lipid droplets and next to the microvilli layer in fullerene exposed samples. Fullerene associated sediments also caused changes in the emergence rate of males and females, suggesting that the cellular interactions described above or other effects from the fullerenes may influence reproduction rates. PMID:27178647

  12. Generation of singlet oxygen in fullerene-containing media: 2. Fullerene-containing solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagrov, I V; Belousova, I M; Grenishin, A S

    2008-03-31

    The generation of singlet oxygen in fullerene solutions is studied by luminescence methods upon excitation by pulsed, repetitively pulsed, and continuous radiation sources. The concentration of singlet oxygen in solutions is measured in stationary and pulsed irradiation regimes. The rate constants of quenching of O{sub 2}({sup 1}{delta}{sub g}) by fullerenes C{sub 70} and C{sub 60} in the CCl{sub 4} solution are measured to be (7.2{+-}0.1)x10{sup 7} L mol{sup -1} s{sup -1} and less than 6x10{sup 4} L mol{sup -1} s{sup -1}, respectively. The temperature and photolytic variations in the generation properties of the fullerene solution exposed to intense continuous radiationmore » are studied by the methods of optical and EPR spectroscopy. Pulsed irradiation resulted in the production of singlet oxygen in suspensions of fullerene-like structures, in particular, astralenes. A liquid pulsed singlet-oxygen generator based on the fullerene solution in CCl{sub 4} is developed and studied, in which the yield of O{sub 2} ({sup 1}{delta}{sub g}) to the gas phase at concentrations up to 5x10{sup 16} cm{sup -3} is obtained. (laser applications and other topics in quantum electronics)« less

  13. Fullerene reinforced ionic polymer transducer

    NASA Astrophysics Data System (ADS)

    Jung, J. H.; Cheng, T. H.; Oh, I. K.

    2009-07-01

    Novel fullerene reinforced nano-composite transducers based on nafion were developed inorder to improve the ionic polymer metal composite transducer. The fullerene reinforced nano-composite membranes were fabricated by recasting method with 0.1 and 0.5 weight percentage of a Fullerenes. Stress-Strain tests showed tremendous increase in stiffness and modulus of the nano-composite membranes even at these minute concentrations of Fullerenes. Ionic exchange capacity analysis and proton conductivity test were performed to calculate the electrical property of the composite films. Water uptake was measured to understand the liquid adsorbing characteristics of the membranes. Also, tip displacement of the nano-composite membrane transducer was investigated under AC excitations with various magnitudes and frequencies. Furthermore, the generated energy was measured from external sinusoidal physical input vibration with several displacements and frequencies by using a mechanical shaker. As a result, the fullerene reinforced nanocomposite membrane based on nafion shows higher stiffness and Young's modulus than that of pure nafion membrane. Also, the nano-composite membrane had better water uptake and proton conductivity than the pure membrane. Fullerene reinforced nano-composite membrane transducer actuates to a much larger deformations than pure nafion membrane transducer. The developed membrane transducer dissipates more energy from the physical input vibration than that of unfilled(or virgin) Nafion membrane transducer.

  14. A zeta potential value determines the aggregate's size of penta-substituted [60]fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells.

    PubMed

    Deryabin, Dmitry G; Efremova, Ludmila V; Vasilchenko, Alexey S; Saidakova, Evgeniya V; Sizova, Elena A; Troshin, Pavel A; Zhilenkov, Alexander V; Khakina, Ekaterina A; Khakina, Ekaterina E

    2015-08-08

    The cause-effect relationships between physicochemical properties of amphiphilic [60]fullerene derivatives and their toxicity against bacterial cells have not yet been clarified. In this study, we report how the differences in the chemical structure of organic addends in 10 originally synthesized penta-substituted [60]fullerene derivatives modulate their zeta potential and aggregate's size in salt-free and salt-added aqueous suspensions as well as how these physicochemical characteristics affect the bioenergetics of freshwater Escherichia coli and marine Photobacterium phosphoreum bacteria. Dynamic light scattering, laser Doppler micro-electrophoresis, agarose gel electrophoresis, atomic force microscopy, and bioluminescence inhibition assay were used to characterize the fullerene aggregation behavior in aqueous solution and their interaction with the bacterial cell surface, following zeta potential changes and toxic effects. Dynamic light scattering results indicated the formation of self-assembled [60]fullerene aggregates in aqueous suspensions. The measurement of the zeta potential of the particles revealed that they have different surface charges. The relationship between these physicochemical characteristics was presented as an exponential regression that correctly described the dependence of the aggregate's size of penta-substituted [60]fullerene derivatives in salt-free aqueous suspension from zeta potential value. The prevalence of DLVO-related effects was shown in salt-added aqueous suspension that decreased zeta potential values and affected the aggregation of [60]fullerene derivatives expressed differently for individual compounds. A bioluminescence inhibition assay demonstrated that the toxic effect of [60]fullerene derivatives against E. coli cells was strictly determined by their positive zeta potential charge value being weakened against P. phosphoreum cells in an aquatic system of high salinity. Atomic force microscopy data suggested that the activity of positively charged [60]fullerene derivatives against bacterial cells required their direct interaction. The following zeta potential inversion on the bacterial cells surface was observed as an early stage of toxicity mechanism that violates the membrane-associated energetic functions. The novel data about interrelations between physicochemical parameters and toxic properties of amphiphilic [60]fullerene derivatives make possible predicting their behavior in aquatic environment and their activity against bacterial cells.

  15. Changes in Agglomeration of Fullerenes During Ingestion and Excretion in Thamnocephalus Platuyrus

    EPA Science Inventory

    The crustacean Thamnocephalus platyurus was exposed to aqueous suspensions of fullerenes C60 and C70. Aqueous fullerene suspensions were formed by stirring C60 and C70 as received from a commercial vendor in deionized water (term...

  16. Changes in Agglomeration of Fullerenes During Ingestion and Excretion in Thamnocephalus Platyurus

    EPA Science Inventory

    The crustacean Thamnocephalus platyurus was exposed to aqueous suspensions of fullerenes C60 and C70. Aqueous fullerene suspensions were formed by stirring C60 and C70 as received from a commercial vendor in deionized water (termed aqu/C60 and aqu/C70) for approximately 100 d. Th...

  17. Li interactions with the B40 fullerene and its application in Li-ion batteries: DFT studies

    NASA Astrophysics Data System (ADS)

    Moradi, Morteza; Bagheri, Zargham; Bodaghi, Ali

    2017-05-01

    The interaction of Li and Li+ with a B40 all-boron fullerene was theoretically investigated at the B3LYP, and Minnesota 2006 levels of theory. It was found that, unexpectedly, the interaction Li+ cation with the electron deficient B40 fullerene is stronger than the Li atom. It indicates that the B40 fullerene does not act as a conventional Lewis acid because of its highly correlated structure. Frontier molecular orbitals, partial density of states, and natural bond orbital analyses were used to discuss this unusual behavior. Our calculations indicate that this behavior makes the B40 fullerene more appropriate for application in the Li-ion batteries as anode material. The calculated cell voltage is about 530 mV. Also, it was found that Hartree Fock (HF) exchange percentage of density functionals has a reverse effect on the adsorption energies of Li and Li+. This energy is increased and decreased, respectively, for Li+ and Li adsorptions by increasing %HF exchange. Finally, a potential energy surface for Li and Li+ penetration into B40 fullerene was predicted.

  18. Detection of fullerenes (C60 and C70) in commercial cosmetics.

    PubMed

    Benn, Troy M; Westerhoff, Paul; Herckes, Pierre

    2011-05-01

    Detection methods are necessary to quantify fullerenes in commercial applications to provide potential exposure levels for future risk assessments of fullerene technologies. The fullerene concentrations of five cosmetic products were evaluated using liquid chromatography with mass spectrometry to separate and specifically detect C60 and C70 from interfering cosmetic substances (e.g., castor oil). A cosmetic formulation was characterized with transmission electron microscopy, which confirmed that polyvinylpyrrolidone encapsulated C60. Liquid-liquid extraction of fullerenes from control samples approached 100% while solid-phase and sonication in toluene extractions yielded recoveries of 27-42%. C60 was detected in four commercial cosmetics ranging from 0.04 to 1.1 μg/g, and C70 was qualitatively detected in two samples. A single-use quantity of cosmetic (0.5 g) may contain up to 0.6 μg of C60, demonstrating a pathway for human exposure. Steady-state modeling of fullerene adsorption to biosolids is used to discuss potential environmental releases from wastewater treatment systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Is the 21-micron Feature Observed in Some Post-AGB Stars Caused by the Interaction Between Ti Atoms and Fullerenes?

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A. III; Ferguson, Frank T.

    2005-01-01

    Recent measurements of fullerenes and Ti atoms recorded in our laboratory have demonstrated the presence of an infrared feature near 21 pm. The feature observed has nearly the same shape and position as is observed for one of the most enigmatic features in post-asymptotic giant blanch (AGB) stars. In our experimental system large cage carbon particles, such as large fullerenes, were produced from CO gas by the Boudouard reaction. Large-cage carbon particles intermixed with Ti atoms were produced by the evaporation of a Ti metal wrapped carbon electrode in CO gas. The infrared spectra of large fullerenes interacting with Ti atoms show a characteristic feature at 20.3 micron that closely corresponds to the 20.1 micron feature observed in post-AGB stars. Both the lab- oratory and stellar spectra also show a small but significant peak at 19.0 micron, which is attributed to fullerenes. Here, we propose that the interaction between fullerenes and Ti atoms may be a plausible explanation for the 21-micron feature seen in some post-AGB stars.

  20. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    PubMed

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-05-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    PubMed

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-02-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. 30 years of cosmic fullerenes

    NASA Astrophysics Data System (ADS)

    Berné, O.; Montillaud, J.; Mulas, G.; Joblin, C.

    2015-12-01

    In 1985, ``During experiments aimed at understanding the mechanisms by which long-chain carbon molecules are formed in interstellar space and circumstellar shells'', Harry Kroto and his collaborators serendipitously discovered a new form of carbon: fullerenes. The most emblematic fullerene (i.e. C_{60} ``buckminsterfullerene''), contains exactly 60 carbon atoms organized in a cage-like structure similar to a soccer ball. Since their discovery impacted the field of nanotechnologies, Kroto and colleagues received the Nobel prize in 1996. The cage-like structure, common to all fullerene molecules, gives them unique properties, in particular an extraordinary stability. For this reason and since they were discovered in experiments aimed to reproduce conditions in space, fullerenes were sought after by astronomers for over two decades, and it is only recently that they have been firmly identified by spectroscopy, in evolved stars and in the interstellar medium. This identification offered the opportunity to study the molecular physics of fullerenes in the unique physical conditions provided by space, and to make the link with other large carbonaceous molecules thought to be present in space : polycyclic aromatic hydrocarbons.

  3. Solvation of carbonaceous molecules by para-H2 and ortho-D2 clusters. II. Fullerenes.

    PubMed

    Calvo, F; Yurtsever, E

    2016-08-28

    The coating of various fullerenes by para-hydrogen and ortho-deuterium molecules has been computationally studied as a function of the solvent amount. Rotationally averaged interaction potentials for structureless hydrogen molecules are employed to model their interaction with neutral or charged carbonaceous dopants containing between 20 and 240 atoms, occasionally comparing different fullerenes having the same size but different shapes. The solvation energy and the size of the first solvation shell obtained from path-integral molecular dynamics simulations at 2 K show only minor influence on the dopant charge and on the possible deuteration of the solvent, although the shell size is largest for ortho-D2 coating cationic fullerenes. Nontrivial finite size effects have been found with the shell size varying non-monotonically close to its completion limit. For fullerenes embedded in large hydrogen clusters, the shell size and solvation energy both follow linear scaling with the fullerene size. The shell sizes obtained for C60 (+) and C70 (+) are close to 49 and 51, respectively, and agree with mass spectrometry experiments.

  4. Solvation of carbonaceous molecules by para-H2 and ortho-D2 clusters. II. Fullerenes

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Yurtsever, E.

    2016-08-01

    The coating of various fullerenes by para-hydrogen and ortho-deuterium molecules has been computationally studied as a function of the solvent amount. Rotationally averaged interaction potentials for structureless hydrogen molecules are employed to model their interaction with neutral or charged carbonaceous dopants containing between 20 and 240 atoms, occasionally comparing different fullerenes having the same size but different shapes. The solvation energy and the size of the first solvation shell obtained from path-integral molecular dynamics simulations at 2 K show only minor influence on the dopant charge and on the possible deuteration of the solvent, although the shell size is largest for ortho-D2 coating cationic fullerenes. Nontrivial finite size effects have been found with the shell size varying non-monotonically close to its completion limit. For fullerenes embedded in large hydrogen clusters, the shell size and solvation energy both follow linear scaling with the fullerene size. The shell sizes obtained for C 60+ and C 70+ are close to 49 and 51, respectively, and agree with mass spectrometry experiments.

  5. Anion-π Catalysis on Fullerenes.

    PubMed

    López-Andarias, Javier; Frontera, Antonio; Matile, Stefan

    2017-09-27

    Anion-π interactions on fullerenes are about as poorly explored as the use of fullerenes in catalysis. However, strong exchange-correlation contributions and the localized π holes on their surface promise unique selectivities. To elaborate on this promise, tertiary amines are attached nearby. Dependent on their positioning, the resulting stabilization of anionic transition states on fullerenes is shown to accelerate disfavored enolate addition and exo Diels-Alder reactions enantioselectively. The found selectivities are consistent with computational simulations, particularly concerning the discrimination of differently planarized and charge-delocalized enolate tautomers by anion-π interactions. Enolate-π interactions on fullerenes are much shorter than standard π-π interactions and anion-π interactions on planar surfaces, and alternative cation-π interactions are not observed. These findings open new perspectives with regard to anion-π interactions in general and the use of carbon allotropes in catalysis.

  6. [Effect of dilution on aggregation of nanoparticles of polycarboxylic derivative of fullerene C60].

    PubMed

    Bobylev, A G; Pen'kov, N V; Troshin, P A; Gudkov, S V

    2015-01-01

    In this work, we investigated the effect of dilution on aggregation of nanoparticles of the polycarboxylic derivative of fullerene C60. It is shown that the diminution of the concentration of PCDF-1 in aqueous medium leads to a decreased amount of aggregates of fullerene and an increased amount of single molecules. This can potentially interfere with the biological activity of a compound on one molecule basis. Addition of organic and inorganic salts to the aqueous medium with fullerene derivative leads to intense disaggregation of PCDF-1. The data obtained suggest an explanation of non-stoichiometric nature of neutralization of reactive oxygen species by derivatives of fullerenes, as well as provide new insight into the physical meaning of the work on the impact of nanoparticles at ultra-low concentrations on biological objects.

  7. Plasma-chemical synthesis of carbon nanotubes and fullerenes to create frost-resistant composite building materials

    NASA Astrophysics Data System (ADS)

    Semenov, A. P.; Smirnyagina, N. N.; Tsyrenov, B. O.; Dasheev, D. E.; Khaltarov, Z. M.

    2017-05-01

    This paper considers a method of synthesis fullerenes and carbon nanotubes at atmospheric pressure. Carbon evaporates into the plasma arc. The paper discusses the method of synthesis of helium at a pressure of 105 Pa. We show the dependence yield of fullerenes and carbon nanotubes from the buffer gas pressure. It has been found that the fullerene yield increased with increasing pressure. The obtained fullerenes and nanotubes find their application in the modification of construction materials. The use of carbon nanomodifiers in the modification of the construction is promising since their introduction significantly improves the physico-mechanical properties using a small quantity of additives. With the introduction of the carbon nanomodifier decrease the porosity of cement stone, which leads to high strength and frost-resistant indicators of the modified cement.

  8. B38: an all-boron fullerene analogue

    NASA Astrophysics Data System (ADS)

    Lv, Jian; Wang, Yanchao; Zhu, Li; Ma, Yanming

    2014-09-01

    Fullerene-like structures formed by elements other than carbon have long been sought. Finding all-boron (B) fullerene-like structures is challenging due to the geometrical frustration arising from competitions among various structural motifs. We report here the prediction of a B38 fullerene analogue found through first-principles swarm structure searching calculations. The structure is highly symmetric and consists of 56 triangles and four hexagons, which provide an optimal void in the center of the cage. Energetically, it is more favorable than the planar and tubular structures, and possesses an unusually high chemical stability: a large energy gap (~2.25 eV) and a high double aromaticity, superior to those of most aromatic quasi-planar B12 and double-ring B20 clusters. Our findings represent a key step forward towards to the understanding of structures of medium-sized B clusters and map out the experimental direction of the synthesis of an all-B fullerene analogue.Fullerene-like structures formed by elements other than carbon have long been sought. Finding all-boron (B) fullerene-like structures is challenging due to the geometrical frustration arising from competitions among various structural motifs. We report here the prediction of a B38 fullerene analogue found through first-principles swarm structure searching calculations. The structure is highly symmetric and consists of 56 triangles and four hexagons, which provide an optimal void in the center of the cage. Energetically, it is more favorable than the planar and tubular structures, and possesses an unusually high chemical stability: a large energy gap (~2.25 eV) and a high double aromaticity, superior to those of most aromatic quasi-planar B12 and double-ring B20 clusters. Our findings represent a key step forward towards to the understanding of structures of medium-sized B clusters and map out the experimental direction of the synthesis of an all-B fullerene analogue. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01846j

  9. Co-exposure of the organic nanomaterial fullerene C₆₀ with benzo[a]pyrene in Danio rerio (zebrafish) hepatocytes: evidence of toxicological interactions.

    PubMed

    Ferreira, Josencler L Ribas; Lonné, María Noelia; França, Thiago A; Maximilla, Naiana R; Lugokenski, Thiago H; Costa, Patrícia G; Fillmann, Gilberto; Antunes Soares, Félix A; de la Torre, Fernando R; Monserrat, José María

    2014-02-01

    Compounds from the nanotechnology industry, such as carbon-based nanomaterials, are strong candidates to contaminate aquatic environments because their production and disposal have exponentially grown in a few years. Previous evidence shows that fullerene C60, a carbon nanomaterial, can facilitate the intake of metals or PAHs both in vivo and in vitro, potentially amplifying the deleterious effects of these toxicants in organisms. The present work aimed to investigate the effects of fullerene C60 in a Danio rerio (zebrafish) hepatocyte cell lineage exposed to benzo[a]pyrene (BaP) in terms of cell viability, oxidative stress parameters and BaP intracellular accumulation. Additionally, a computational docking was performed to investigate the interaction of the fullerene C60 molecule with the detoxificatory and antioxidant enzyme πGST. Fullerene C60 provoked a significant (p<0.05) loss in cellular viability when co-exposed with BaP at 0.01, 0.1 and 1.0 μg/L, and induced an increase (p<0.05) in BaP accumulation in the cells after 3 and 4h of exposure. The levels of reactive oxygen species (ROS) in the cells exposed to BaP were diminished (p<0.05) by the fullerene addition, and the increase of the GST activity observed in the BaP-only treated cells was reduced to the basal levels by co-exposure to fullerene. However, despite the potential of the fullerene molecule to inhibit π GST activity, demonstrated by the computational docking, the nanomaterial did not significantly (p>0.05) alter the enzyme activity when added to GST purified extracts from the zebrafish hepatocyte cells. These results show that fullerene C60 can increase the intake of BaP into the cells, decreasing cell viability and impairing the detoxificatory response by phase II enzymes, such as GST, and this latter effect should be occurring at the transcriptional level. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Solid-phase fullerene-like nanostructures as singlet oxygen photosensitizers in liquid media

    NASA Astrophysics Data System (ADS)

    Belousova, I. M.; Danilov, O. B.; Kiselev, V. M.; Kislyakov, I. M.; Kris'ko, T. K.; Murav'eva, T. D.; Videnichev, D. A.

    2007-04-01

    Singlet oxygen generation by fullerene and astralen containing surfaces and powders under visible irradiation was studied in water and organic liquids by means of 1Δ g state luminescence and chemical scavenger transmittance measurements. The chemical method, pioneered for solid photosensitizers of 10 II, allowed to measure the singlet oxygen concentration in the aqueous medium down to 10 8 cm -3. The singlet oxygen sensitizing by the solid-phase fullerene-containing systems was found to be 100 times less effective then by fullerene in solution. The results obtained confirm the applicability of these structures in biology and medicine.

  11. Fullerene C60 for enhancing phytoremediation of urea plant wastewater by timber plants.

    PubMed

    Yavari, Sara; Malakahmad, Amirhossein; Sapari, Nasiman B; Yavari, Saba

    2018-04-01

    Phytoremediation has been applied as a promising and cost-effective technique for removing nutrient pollutants from wastewater. In this study, the effect of fullerene C60 was assessed on enhancing the phytoremediation efficiency of teak plants over a period of 1 month. Teak plants were supplied with fullerene C60 (0, 25, or 50 mg L -1 ) and fed daily with two types of urea plant wastewater (with and without adding optimum ratio of phosphorus and potassium). The required volume of wastewater by the teak plants, nitrogen removal percentage, plant growth parameters (plant height, number of leaves, leaf surface area, and dry biomass), and nutrient content was recorded throughout the study. The results showed that addition of 25 mg L -1 fullerene C60 to urea plant wastewater could increase water uptake and nitrogen recovery of the teak plants. Plant growth and nutrient contents of teak plants were also increased in the presence of 25 mg L -1 fullerene C60. However, addition of 50 mg L -1 fullerene C60 to the wastewater decreased the values for water uptake and nitrogen recovery. The findings indicated that addition of proper amount of fullerene C60 to the teak-based remediation system can increase the efficiency of the plants for nitrogen removal.

  12. Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size

    DOE PAGES

    Roehling, John D.; Baran, Derya; Sit, Joseph; ...

    2016-08-08

    High efficiency polymer:fullerene photovoltaic device layers self-assemble with hierarchical features from ångströms to 100’s of nanometers. The feature size, shape, composition, orientation, and order all contribute to device efficiency and are simultaneously difficult to study due to poor contrast between carbon based materials. This study seeks to increase device efficiency and simplify morphology measurements by replacing the typical fullerene acceptor with endohedral fullerene Lu 3N@PC 80BEH. The metal atoms give excellent scattering contrast for electron beam and x-ray experiments. Additionally, Lu 3N@PC 80BEH has a lower electron affinity than standard fullerenes, which can raise the open circuit voltage of photovoltaicmore » devices. Electron microscopy techniques are used to produce a detailed account of morphology evolution in mixtures of Lu 3N@PC 80BEH with the record breaking donor polymer, PTB7 and coated using solvent mixtures. We demonstrate that common solvent additives like 1,8-diiodooctane or chloronapthalene do not improve the morphology of endohedral fullerene devices as expected. The poor device performance is attributed to the lack of mutual miscibility between this particular polymer:fullerene combination and to co-crystallization of Lu 3N@PC 80BEH with 1,8-diiodooctane. This negative result explains why solvent additives mixtures are not necessarily a morphology cure-all.« less

  13. Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roehling, John D.; Baran, Derya; Sit, Joseph

    High efficiency polymer:fullerene photovoltaic device layers self-assemble with hierarchical features from ångströms to 100’s of nanometers. The feature size, shape, composition, orientation, and order all contribute to device efficiency and are simultaneously difficult to study due to poor contrast between carbon based materials. This study seeks to increase device efficiency and simplify morphology measurements by replacing the typical fullerene acceptor with endohedral fullerene Lu 3N@PC 80BEH. The metal atoms give excellent scattering contrast for electron beam and x-ray experiments. Additionally, Lu 3N@PC 80BEH has a lower electron affinity than standard fullerenes, which can raise the open circuit voltage of photovoltaicmore » devices. Electron microscopy techniques are used to produce a detailed account of morphology evolution in mixtures of Lu 3N@PC 80BEH with the record breaking donor polymer, PTB7 and coated using solvent mixtures. We demonstrate that common solvent additives like 1,8-diiodooctane or chloronapthalene do not improve the morphology of endohedral fullerene devices as expected. The poor device performance is attributed to the lack of mutual miscibility between this particular polymer:fullerene combination and to co-crystallization of Lu 3N@PC 80BEH with 1,8-diiodooctane. This negative result explains why solvent additives mixtures are not necessarily a morphology cure-all.« less

  14. Electrochemistry of (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part III

    ERIC Educational Resources Information Center

    Igartua-Nieves, Elvin; Ocasio-Delgado, Yessenia; Rivera-Pagan, Jose; Cortes-Figueroa, Jose E.

    2007-01-01

    Cyclic voltammetry experiments on [60]fullerene, (C[subscript 60]), and (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], constitute an educational experiment for the inorganic chemistry laboratory with a primary objective to teach the chemical interpretation of a voltammogram, in…

  15. Synthesis of condensed phases containing polycyclic aromatic hydrocarbons fullerenes and nanotubes

    DOEpatents

    Reilly, Peter T. A.

    2004-10-19

    The invention relates to methods for producing polycyclic aromatic hydrocarbons, fullerenes, and nanotubes, comprising: a. heating at least one carbon-containing material to form a condensed phase comprising at least one polycyclic aromatic hydrocarbon; b. collecting at least some of the condensed phase; c. reacting the condensed phase to form fullerenes and/or nanotubes.

  16. 40 CFR 721.10267 - [5,6]Fullerene-C60-Ih.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10267 [5,6]Fullerene-C60-Ih. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as [5,6]Fullerene-C60-Ih (PMN P-09-54; CAS No. 99685-96-8...

  17. 40 CFR 721.10267 - [5,6]Fullerene-C60-Ih.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10267 [5,6]Fullerene-C60-Ih. (a) Chemical substance and significant new uses subject to reporting.(1) The chemical substance identified as [5,6]Fullerene-C60-Ih (PMN P-09-54;CAS No. 99685-96-8) is...

  18. Inorganic nanotubes and fullerene-like materials.

    PubMed

    Tenne, Reshef

    2002-12-02

    Following the discovery of fullerenes and carbon nanotubes, it was shown that nanoparticles of inorganic layered compounds, like MoS2, are unstable in the planar form and they form closed cage structures with polyhedral or nanotubular shapes. Various issues on the structure, synthesis, and properties of such inorganic fullerene-like structures are reviewed, together with some possible applications.

  19. A fullerene colloidal suspension stimulates the growth and denitrification ability of wastewater treatment sludge-derived bacteria.

    PubMed

    Huang, Fei; Ge, Ling; Zhang, Bo; Wang, Yun; Tian, Hao; Zhao, Liping; He, Yiliang; Zhang, Xiaojun

    2014-08-01

    Fullerene (C60) is a nanoparticle that has been widely studied and applied in numerous commodities. However, there are concerns regarding its potential negative impact on the environment. A fullerene colloidal suspension (nC60) is known for its property of selectively inhibiting the growth of microorganisms. In this study, using denaturing gradient gel electrophoresis fingerprinting technology, we found that fullerene altered the structure of a sludge-derived microbial community. Specifically, the bacteria from Bacillus, Acidovorax and Cloacibacterium genera were enriched in abundance when supplemented with nC60 at pH 6.5 under aerobic conditions. The effects of the fullerene colloidal suspension on a strain of Bacillus isolated from the same microbial community were evaluated to further characterize the growth-stimulating effect of nC60. The biomass of cultures of this strain incubated with nC60 concentrations ranging from 3 mg L(-1) to 7 mg L(-1) was approximately twice that of the control during the stationary phase. The fullerene also induced higher superoxide dismutase activity in Bacillus cereus. Furthermore, the nitrate removal rate of B. cereus increased to nearly 55% in the presence of 5 mg L(-1) nC60, compared to 35% for the control. Meanwhile, the cumulative loading amount of nitrite was reduced from 33 μg mL(-1) to 25 μg mL(-1) by the addition of 5 mg L(-1) nC60. Our results demonstrate that the fullerene colloidal suspension is conditionally capable of promoting the growth and denitrification metabolism of certain bacteria, such as B. cereus. Fullerene might have both inhibitory and stimulatory effects on microorganisms in various environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. 2D-QSAR study of fullerene nanostructure derivatives as potent HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Barzegar, Abolfazl; Jafari Mousavi, Somaye; Hamidi, Hossein; Sadeghi, Mehdi

    2017-09-01

    The protease of human immunodeficiency virus1 (HIV-PR) is an essential enzyme for antiviral treatments. Carbon nanostructures of fullerene derivatives, have nanoscale dimension with a diameter comparable to the diameter of the active site of HIV-PR which would in turn inhibit HIV. In this research, two dimensional quantitative structure-activity relationships (2D-QSAR) of fullerene derivatives against HIV-PR activity were employed as a powerful tool for elucidation the relationships between structure and experimental observations. QSAR study of 49 fullerene derivatives was performed by employing stepwise-MLR, GAPLS-MLR, and PCA-MLR models for variable (descriptor) selection and model construction. QSAR models were obtained with higher ability to predict the activity of the fullerene derivatives against HIV-PR by a correlation coefficient (R2training) of 0.942, 0.89, and 0.87 as well as R2test values of 0.791, 0.67and 0.674 for stepwise-MLR, GAPLS-MLR, and PCA -MLR models, respectively. Leave-one-out cross-validated correlation coefficient (R2CV) and Y-randomization methods confirmed the models robustness. The descriptors indicated that the HIV-PR inhibition depends on the van der Waals volumes, polarizability, bond order between two atoms and electronegativities of fullerenes derivatives. 2D-QSAR simulation without needing receptor's active site geometry, resulted in useful descriptors mainly denoting ;C60 backbone-functional groups; and ;C60 functional groups; properties. Both properties in fullerene refer to the ligand fitness and improvement van der Waals interactions with HIV-PR active site. Therefore, the QSAR models can be used in the search for novel HIV-PR inhibitors based on fullerene derivatives.

  1. GTC/CanariCam Mid-IR Imaging of the Fullerene-rich Planetary Nebula IC 418: Searching for the Spatial Distribution of Fullerene-like Molecules

    NASA Astrophysics Data System (ADS)

    Díaz-Luis, J. J.; García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Villaver, E.; García-Segura, G.

    2018-03-01

    We present seeing-limited narrow-band mid-IR GTC/CanariCam images of the spatially extended fullerene-containing planetary nebula (PN) IC 418. The narrow-band images cover the C60 fullerene band at 17.4 μm, the polycyclic aromatic hydrocarbon like (PAH-like) feature at 11.3 μm, the broad 9–13 μm feature, and their adjacent continua at 9.8 and 20.5 μm. We study the relative spatial distribution of these complex species, all detected in the Spitzer and Infrared Space Observatory spectra of IC 418, with the aim of getting observational constraints to the formation process of fullerenes in H-rich circumstellar environments. A similar ring-like extended structure is seen in all narrow-band filters, except in the dust continuum emission at 9.8 μm, which peaks closer to the central star. The continuum-subtracted images display a clear ring-like extended structure for the carrier of the broad 9–13 μm emission, while the spatial distribution of the (PAH-like) 11.3 μm emission is not so well defined. Interestingly, a residual C60 17.4 μm emission (at about 4σ from the sky background) is seen when subtracting the dust continuum emission at 20.5 μm. This residual C60 emission, if real, might have several interpretations, the most exciting being perhaps that other fullerene-based species like hydrogenated fullerenes with very low H-content may contribute to the observed 17.4 μm emission. We conclude that higher sensitivity mid-IR images and spatially resolved spectroscopic observations (especially in the Q-band) are necessary to get some clues about fullerene formation in PNe.

  2. Understanding Local and Macroscopic Electron Mobilities in the Fullerene Network of Conjugated Polymer-based Solar Cells. Time-Resolved Microwave Conductivity and Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguirre, Jordan C.; Arntsen, Christopher D.; Hernandez, Samuel

    2013-09-23

    The efficiency of bulk heterojunction (BHJ) organic photovoltaics is sensitive to the morphology of the fullerene network that transports electrons through the device. This sensitivity makes it difficult to distinguish the contrasting roles of local electron mobility (how easily electrons can transfer between neighboring fullerene molecules) and macroscopic electron mobility (how well-connected is the fullerene network on device length scales) in solar cell performance. In this work, a combination of density functional theory (DFT) calculations, flash-photolysis time-resolved microwave conductivity (TRMC) experiments, and space-charge-limit current (SCLC) mobility estimates are used to examine the roles of local and macroscopic electron mobility inmore » conjugated polymer/fullerene BHJ photovoltaics. The local mobility of different pentaaryl fullerene derivatives (so-called ‘shuttlecock’ molecules) is similar, so that differences in solar cell efficiency and SCLC mobilities result directly from the different propensities of these molecules to self-assemble on macroscopic length scales. These experiments and calculations also demonstrate that the local mobility of phenyl-C60 butyl methyl ester (PCBM) is an order of magnitude higher than that of other fullerene derivatives, explaining why PCBM has been the acceptor of choice for conjugated polymer BHJ devices even though it does not form an optimal macroscopic network. The DFT calculations indicate that PCBM's superior local mobility comes from the near-spherical nature of its molecular orbitals, which allow strong electronic coupling between adjacent molecules. In combination, DFT and TRMC techniques provide a tool for screening new fullerene derivatives for good local mobility when designing new molecules that can improve on the macroscopic electron mobility offered by PCBM.« less

  3. Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation

    NASA Astrophysics Data System (ADS)

    Paternò, G. M.; Skoda, M. W. A.; Dalgliesh, Robert; Cacialli, F.; Sakai, V. García

    2016-10-01

    Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs).

  4. Production of fullerenes and single-wall carbon nanotubes by high-temperature pulsed arc discharge

    NASA Astrophysics Data System (ADS)

    Sugai, Toshiki; Omote, Hideki; Bandow, Shunji; Tanaka, Nobuo; Shinohara, Hisanori

    2000-04-01

    Fullerenes and single-wall carbon nanotubes (SWNTs) have been produced for the first time by the high-temperature pulsed arc-discharge technique, which has developed in this laboratory. Fullerenes are identified quantitatively by high-performance liquid chromatography (HPLC), and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations reveal a significant amount of production of bundles of SWNTs in soot. The pulse arc production of fullerenes and SWNTs favors the high-temperature (⩾1000 °C), long pulses (⩾1 ms) and a heavy rare gas such as Ar or Kr as a buffer gas. We have found that fullerenes and SWNTs have complementary relationships in their early stage of production. The details of the pulsed arc discharge have been obtained by observing the transition from the pulsed arc discharge to the steady arc discharge while increasing the pulse width.

  5. Nanoparticles of layered compounds with hollow cage structures (inorganic fullerene-like structures)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenne, R.; Homyonfer, M.; Feldman, Y.

    Using the paradigm of carbon fullerenes, it is shown that nanoparticles of inorganic compounds with a layered structure, like MoS{sub 2}, are unstable against bending and form hollow closed clusters, designated inorganic fullerene-like structures (IF). The analogy can be extended to similar nanostructures, like nanotubes (NT), nested fullerenes, fullerenes with negative curvature (Schwartzites), etc. Various synthetic routes are described to obtain isolated phases of IF. Pentagons and heptagons are expected to play a primodal role in the folding of these nanostructures but no direct evidence for their presence or their detailed structure exits so far. Depending on the structure ofmore » the unit cell of the layered compound, apexes of a different topology, like triangles or rectangles, are believed to be stable elements in IF. Applications of such nanoparticles as solid lubricants in mixtures with lubricating fluids are described.« less

  6. Nanotribological performance of fullerene-like carbon nitride films

    NASA Astrophysics Data System (ADS)

    Flores-Ruiz, Francisco Javier; Enriquez-Flores, Christian Ivan; Chiñas-Castillo, Fernando; Espinoza-Beltrán, Francisco Javier

    2014-09-01

    Fullerene-like carbon nitride films exhibit high elastic modulus and low friction coefficient. In this study, thin CNx films were deposited on silicon substrate by DC magnetron sputtering and the tribological behavior at nanoscale was evaluated using an atomic force microscope. Results show that CNx films with fullerene-like structure have a friction coefficient (CoF ∼ 0.009-0.022) that is lower than amorphous CNx films (CoF ∼ 0.028-0.032). Analysis of specimens characterized by X-ray photoelectron spectroscopy shows that films with fullerene-like structure have a higher number of sp3 CN bonds and exhibit the best mechanical properties with high values of elastic modulus (E > 180 GPa) and hardness (H > 20 GPa). The elastic recovery determined on specimens with a fullerene-like CNx structure was of 95% while specimens of amorphous CNx structure had only 75% elastic recovery.

  7. Inter-Fullerene Electronic Coupling Controls the Efficiency of Photoinduced Charge Generation in Organic Bulk Heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Bryon W.; Reid, Obadiah G.; Coffey, David C.

    2016-09-26

    Photoinduced charge generation (PCG) dynamics are notoriously difficult to correlate with specific molecular properties in device relevant polymer:fullerene organic photovoltaic blend films due to the highly complex nature of the solid state blend morphology. Here, this study uses six judiciously selected trifluoromethylfullerenes blended with the prototypical polymer poly(3-hexylthiophene) and measure the PCG dynamics in 50 fs-500 ns time scales with time-resolved microwave conductivity and femtosecond transient absorption spectroscopy. The isomeric purity and thorough chemical characterization of the fullerenes used in this study allow for a detailed correlation between molecular properties, driving force, local intermolecular electronic coupling and, ultimately, the efficiencymore » of PCG yield. The findings show that the molecular design of the fullerene not only determines inter-fullerene electronic coupling, but also influences the decay dynamics of free holes in the donor phase even when the polymer microstructure remains unchanged.« less

  8. Hybrid chalcogenide nanoparticles: 2D-WS2 nanocrystals inside nested WS2 fullerenes.

    PubMed

    Hoshyargar, Faegheh; Corrales, Tomas P; Branscheid, Robert; Kolb, Ute; Kappl, Michael; Panthöfer, Martin; Tremel, Wolfgang

    2013-10-28

    The MOCVD assisted formation of nested WS2 inorganic fullerenes (IF-WS2) was performed by enhancing surface diffusion with iodine, and fullerene growth was monitored by taking TEM snapshots of intermediate products. The internal structure of the core-shell nanoparticles was studied using scanning electron microscopy (SEM) after cross-cutting with a focused ion beam (FIB). Lamellar reaction intermediates were found occluded in the fullerene particles. In contrast to carbon fullerenes, layered metal chalcogenides prefer the formation of planar, plate-like structures where the dangling bonds at the edges are stabilized by excess S atoms. The effects of the reaction and annealing temperatures on the composition and morphology of the final product were investigated, and the strength of the WS2 shell was measured by intermittent contact-mode AFM. The encapsulated lamellar structures inside the hollow spheres may lead to enhanced tribological activities.

  9. Reactivity Indexes of Fullerene and Bismullene Mixed Clusters: How the Intruders Modify the Properties.

    PubMed

    Martínez, Ana

    2016-11-03

    In this investigation, the feasibility of functionalizing fullerene and bismullene with Bi and C as intruders is theoretically explored. The systems analyzed are C 60-x Bi x (with x = 0-10, fullerene-like) and Bi 60-y C y (with y = 0-10, bismullene-like). Optimized geometries, reactivity indexes, and highest occupied molecular orbital to lowest unoccupied molecular orbital (HOMO-LUMO) gaps (for analyzing the potential application of these molecules as materials for solar cells) are reported. The most stable structures of bismullene-like systems have cage geometries. The most stable fullerene-like geometries resemble a cup with bismuth atoms at the edge of the bowl. The presence of intruders increases the electron acceptor power and decreases the electron donor power in most cases. HOMO-LUMO gaps indicate that bismullene-like clusters represent better candidates for building solar cells than fullerene-like clusters. This information could be useful for future experiments.

  10. Evaluation of the physi- and chemisorption of hydrogen in alkali (Na, Li) doped fullerenes

    DOE PAGES

    Ward, Patrick A.; Teprovich, Jr., Jospeph A.; Compton, Robert N.; ...

    2015-01-11

    Here, alkali doped fullerenes synthesized by two different solvent assisted mixing techniques are compared for their hydrogen uptake activity. In this study we investigated the interaction of hydrogen with alkali doped fullerenes via physisorption. In addition, we present the first mass spectrometric evidence for the formation of C 60H 60 via chemisorption. Hydrogen physisorption isotherms up to 1 atm at temperatures ranging from 77-303 K were measured demonstrating an increase in hydrogen uptake versus pure C 60 and increased isosteric heats of adsorption for the lithium doped fullerene Li 12C 60. However, despite these improvements the low amount of physisorbedmore » hydrogen at 1 atm and 77 K in these materials suggests that fullerenes do not possess enough accessible surface area to effectively store hydrogen due to their close packed crystalline nature.« less

  11. B38: an all-boron fullerene analogue.

    PubMed

    Lv, Jian; Wang, Yanchao; Zhu, Li; Ma, Yanming

    2014-10-21

    Fullerene-like structures formed by elements other than carbon have long been sought. Finding all-boron (B) fullerene-like structures is challenging due to the geometrical frustration arising from competitions among various structural motifs. We report here the prediction of a B38 fullerene analogue found through first-principles swarm structure searching calculations. The structure is highly symmetric and consists of 56 triangles and four hexagons, which provide an optimal void in the center of the cage. Energetically, it is more favorable than the planar and tubular structures, and possesses an unusually high chemical stability: a large energy gap (∼2.25 eV) and a high double aromaticity, superior to those of most aromatic quasi-planar B12 and double-ring B20 clusters. Our findings represent a key step forward towards to the understanding of structures of medium-sized B clusters and map out the experimental direction of the synthesis of an all-B fullerene analogue.

  12. Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation.

    PubMed

    Paternò, G M; Skoda, M W A; Dalgliesh, Robert; Cacialli, F; Sakai, V García

    2016-10-04

    Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs).

  13. Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation

    PubMed Central

    Paternò, G. M.; Skoda, M. W. A.; Dalgliesh, Robert; Cacialli, F.; Sakai, V. García

    2016-01-01

    Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs). PMID:27698410

  14. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    ERIC Educational Resources Information Center

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  15. Synthesis of different types of alkoxy fullerene derivatives from chlorofullerene C60Cl6.

    PubMed

    Khakina, Ekaterina A; Kraevaya, Ol'ga A; Popova, Maria L; Peregudov, Alexander S; Troyanov, Sergey I; Chernyak, Alexander V; Martynenko, Vyacheslav M; Kulikov, Alexander V; Schols, Dominique; Troshin, Pavel A

    2017-01-25

    We report novel synthetic routes for facile preparation of highly functionalized fullerene derivatives C 60 (OR) 5 X (X = H, Cl, Br), C 60 (OR) 4 O and C 60 (OR) 2 from chlorofullerene C 60 Cl 6 . The first water-soluble fullerene compound bearing residues of 3-oxypropanoic acid demonstrated a potent anti-HIV activity.

  16. 40 CFR 721.10270 - [5,6]Fullerene-C84-D2d.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10270 [5,6]Fullerene-C84-D2d. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as [5,6]Fullerene-C84-D2d (PMN P-09-57; CAS No. 145809-20-7...

  17. 40 CFR 721.10269 - [5,6]Fullerene-C84-D2.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10269 [5,6]Fullerene-C84-D2. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as [5,6]Fullerene-C84-D2 (PMN P-09-56; CAS No. 145809-19-4...

  18. 40 CFR 721.10270 - [5,6]Fullerene-C84-D2d.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10270 [5,6]Fullerene-C84-D2d. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as [5,6]Fullerene-C84-D2d (PMN P-09-57; CAS No. 145809-20-7...

  19. 40 CFR 721.10269 - [5,6]Fullerene-C84-D2.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10269 [5,6]Fullerene-C84-D2. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as [5,6]Fullerene-C84-D2 (PMN P-09-56; CAS No. 145809-19-4...

  20. Understanding the Low-Energy Dynamics of Inorganic Fullerene-Like WS2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Luttrell, R. D.; Rosentsveig, R.

    2005-03-01

    Inorganic fullerene-like nanoparticles are attracting attention due to their outstanding solid-state lubricating behavior. We present the vibrational response of inorganic fullerene-like WS2 nanoparticles and discuss the effects of local strain and effective charge on the dynamics of this material. We compare these results to those of the chemically identical (but morphologically different) layered solid.

  1. Self-assembled nitrogen-doped fullerenes and their catalysis for fuel cell and rechargeable metal-air battery applications.

    PubMed

    Noh, Seung Hyo; Kwon, Choah; Hwang, Jeemin; Ohsaka, Takeo; Kim, Beom-Jun; Kim, Tae-Young; Yoon, Young-Gi; Chen, Zhongwei; Seo, Min Ho; Han, Byungchan

    2017-06-08

    In this study, we report self-assembled nitrogen-doped fullerenes (N-fullerene) as non-precious catalysts, which are active for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and thus applicable for energy conversion and storage devices such as fuel cells and metal-air battery systems. We screen the best N-fullerene catalyst at the nitrogen doping level of 10 at%, not at the previously known doping level of 5 or 20 at% for graphene. We identify that the compressive surface strain induced by doped nitrogen plays a key role in the fine-tuning of catalytic activity.

  2. Novel synthesis and characterization of five isomers of (C(70))(2) fullerene dimers.

    PubMed

    Forman, Grant S; Tagmatarchis, Nikos; Shinohara, Hisanori

    2002-01-16

    The synthesis and characterization of dimers and polymers, wherein two or more cages are linked, represent an important frontier in the chemistry of fullerene derivatives. A simple and novel method that requires no special apparatus has been developed for the dimerization of [70]fullerene to (C70)2. Upon grinding [70]fullerene in a mortar and pestle in the presence of K2CO3, five structural isomers of (C70)2 have been produced. These isomers are separated from one another via high performance liquid chromatography and are characterized by 13C NMR, UV-vis-NIR absorption and mass spectroscopy.

  3. Endohedral fullerenes contaning transition-metal clusters

    NASA Astrophysics Data System (ADS)

    Bhusal, Shusil; Basurto, Luis; Zope, Rajendra; Baruah, Tunna

    We report detailed investigation of structural, electronic, and spectroscopic properties of VSc2N-containing fullerenes in the size range C68 - C96. First, the candidate structures of the ground state are obtained using a systematic approach in which a large number of isomers of endohedral fullerenes were screened for their energetic stability. Stability of some of the most promising isomers were further studied using density functional theory at the all-electron level using large polarized Gaussian basis sets. The effect of the V doping is examined on the structure, spin states and the magnetic properties of the endohedral fullerenes. De-SC0002168, NSF-DMR 125302, DE-SC0006818.

  4. Next-generation organic photovoltaics based on non-fullerene acceptors

    NASA Astrophysics Data System (ADS)

    Cheng, Pei; Li, Gang; Zhan, Xiaowei; Yang, Yang

    2018-03-01

    Over the past three years, a particularly exciting and active area of research within the field of organic photovoltaics has been the use of non-fullerene acceptors (NFAs). Compared with fullerene acceptors, NFAs possess significant advantages including tunability of bandgaps, energy levels, planarity and crystallinity. To date, NFA solar cells have not only achieved impressive power conversion efficiencies of 13-14%, but have also shown excellent stability compared with traditional fullerene acceptor solar cells. This Review highlights recent progress on single-junction and tandem NFA solar cells and research directions to achieve even higher efficiencies of 15-20% using NFA-based organic photovoltaics are also proposed.

  5. Arc Synthesis of Fullerenes from the Carbide of Waste Cloths

    NASA Astrophysics Data System (ADS)

    Hayashi, Koichiro; Mieno, Tetsu

    2000-09-01

    A great many scraps of cotton cloth are disposed of as industrial waste through making clothes. The purpose of this study is to transform the waste into very valuable carbon compounds, that is, fullerenes. The scraps were piled and carbonized in air at 1050°C. By carbonization, the weight of the scraps decreased to 16-18%. Carbide from the scraps was used as the raw material for synthesizing fullerenes with the \\mbi{J}×\\mbi{B} arc discharge method. The soot that was deposited on the inside of the vacuum chamber contained C60 (>0.05 wt%), C70 and higher fullerenes.

  6. Structural models of inorganic fullerene-like structures

    NASA Astrophysics Data System (ADS)

    Ascencio, J. A.; Perez-Alvarez, M.; Molina, L. M.; Santiago, P.; José-Yacaman, M.

    2003-03-01

    In the study of fullerene-like structures, some of the more interesting systems are the inorganic cages, made of MoS 2 (usually named inorganic fullerenes), which have many important potential applications as lubricant and catalysts. In the present work, we report calculations for structural models of closed cage of inorganic fullerene-like structures for MoS 2 system. Three cage shapes were found to be the most stable: triangular pyramid, octahedron and dodecahedron. High resolution TEM images of MoS 2 cages structures were calculated to be compared with experimental data. Some examples of triangular pyramid and polyhedron in experimental MoS 2 samples are presented.

  7. The first true inorganic fullerenes?

    NASA Astrophysics Data System (ADS)

    Parilla, P. A.; Dillon, A. C.; Jones, K. M.; Riker, G.; Schulz, D. L.; Ginley, D. S.; Heben, M. J.

    1999-01-01

    Boron nitride and materials of composition MX2, where M is molybdenum or tungsten and X is sulphur or selenium, can form fullerene-like structures such as nested polyhedra or nanotubes. However, the analogy to the carbon fullerene family falls short because no small preferred structure akin to C60(ref. 5) has been found. We have discovered nano-octahedra of MoS2of discrete sizes in soots that we prepared by laser ablation of pressed MoS2targets. These nano-octahedra are much larger than C60structures, having edge lengths of about 4.0 and 5.0 nanometres, and may represent the first `inorganic fullerenes'.

  8. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Generation of singlet oxygen in fullerene-containing media: 1. Photodesorption of singlet oxygen from fullerene-containing surfaces

    NASA Astrophysics Data System (ADS)

    Belousova, I. M.; Belousov, V. P.; Danilov, O. B.; Ermakov, A. V.; Kiselev, V. M.; Kislyakov, I. M.; Sosnov, E. N.

    2008-03-01

    It is shown that upon irradiation of fullerene-containing surfaces by laser or flashlamp pulses, oxygen adsorbed by these surfaces efficiently escapes to the gas phase. The observation of luminescence pulses in the spectral region of 762 and 1268 nm confirms the presence of oxygen molecules in the excited singlet state in the desorbed oxygen. The conditions for optimisation of the efficiency of singlet-oxygen production are studied. It is shown that singlet oxygen at the concentration sufficient for obtaining operation of a fullerene-oxygen-iodine laser can be produced in this way.

  9. The influence hydrogen atom addition has on charge switching during motion of the metal atom in endohedral Ca@C60H4 isomers

    PubMed Central

    Raggi, G.; Besley, E.; Stace, A. J.

    2016-01-01

    Density functional theory has been applied in a study of charge transfer between an endohedral calcium atom and the fullerene cage in Ca@C60H4 and [Ca@C60H4]+ isomers. Previous calculations on Ca@C60 have shown that the motion of calcium within a fullerene is accompanied by large changes in electron density on the carbon cage. Based on this observation, it has been proposed that a tethered endohedral fullerene might form the bases of a nanoswitch. Through the addition of hydrogen atoms to one hemisphere of the cage it is shown that, when compared with Ca@C60, asymmetric and significantly reduced energy barriers can be generated with respect to motion of the calcium atom. It is proposed that hydrogen atom addition to a fullerene might offer a route for creating a bi-stable nanoswitch that can be fine-tuned through the selection of an appropriate isomer and number of atoms attached to the cage of an endohedral fullerene. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’. PMID:27501967

  10. Non-Covalent Functionalisation of C30 Fullerene by Pyrrole-n-Carboxylic Acid (n=2, 3): Density Functional Theory Studies

    NASA Astrophysics Data System (ADS)

    Harismah, Kun; Mirzaei, Mahmoud; Ghasemi, Nahid; Nejati, Mohammad

    2017-12-01

    For functionalisation of a representative C30 fullerene nanostructure by pyrrole-n-carboxylic acid (PnCA; n=2, 3) their stabilities and properties were investigated based on density functional theory calculations. Parallel calculations were also done for C60 fullerene as evidence for comparing the results. Non-covalent interactions are considered to make the functionalised structures. In contrast with the spherical shape of C60, the shape of C30 fullerene is elliptical; therefore, the functionalisation processes were done for both axial and equatorial elliptical positions (AC30 and EC30). The results indicated that both the positions of C30 have almost equivalent chances to be functionalised by PnCA; but functionalisation by P2CA is slightly more favourable than P3CA, either for C60. The illustrated molecular orbitals' distributions indicated that the direction of charge transfer could be considered from PnCA counterparts to fullerene counterparts. The molecular properties indicated more reactivity for C30 than for C60 fullerene. Finally, the atomic scale quadrupole coupling constants indicated different roles for N and O atoms of PnCA in the functionalised models.

  11. Table of periodic properties of fullerenes based on structural parameters.

    PubMed

    Torrens, Francisco

    2004-01-01

    The periodic table (PT) of the elements suggests that hydrogen could be the origin of everything else. The construction principle is an evolutionary process that is formally similar to those of Darwin and Oparin. The Kekulé structure count and permanence of the adjacency matrix of fullerenes are related to structural parameters involving the presence of contiguous pentagons p, q and r. Let p be the number of edges common to two pentagons, q the number of vertices common to three pentagons, and r the number of pairs of nonadjacent pentagon edges shared between two other pentagons. Principal component analysis (PCA) of the structural parameters and cluster analysis (CA) of the fullerenes permit classifying them and agree. A PT of the fullerenes is built based on the structural parameters, PCA and CA. The periodic law does not have the rank of the laws of physics. (1) The properties of the fullerenes are not repeated; only, and perhaps, their chemical character. (2) The order relationships are repeated, although with exceptions. The proposed statement is the following: The relationships that any fullerene p has with its neighbor p + 1 are approximately repeated for each period.

  12. Mechanical oscillatory behavior of a C60 fullerene tunneling through open carbon nanocones

    NASA Astrophysics Data System (ADS)

    Sadeghi, F.; Ansari, R.

    2017-07-01

    This paper deals with the mechanical oscillatory behavior of a C60 fullerene inside open carbon nanocones (CNCs). The fullerene molecule is assumed to enter the nanocone through its small end or wide end. Following our previously published study, semi-analytical expressions for the evaluation of vdW interactions are presented which facilitate obtaining a formula for oscillation frequency. The equation of motion is numerically solved to attain the time histories of separation distance and velocity of the fullerene molecule. Based on the conservation of the mechanical energy law, a new semi-analytical formula is also derived to accurately evaluate the oscillation frequency of the system. With respect to the present formulation, a detailed parametric study is conducted to gain an insight into the effects of both geometrical parameters (small-end radius, wide-end radius and vertex angle of nanocone) and initial conditions (initial separation distance and initial velocity) on the oscillatory behavior of C60 fullerene-open CNC oscillators. For given geometrical parameters and initial conditions, it is shown that higher oscillation frequencies can be achieved when the fullerene molecule enters the open nanocone through its small end.

  13. Fullerene data mining using bibliometrics and database tomography

    PubMed

    Kostoff; Braun; Schubert; Toothman; Humenik

    2000-01-01

    Database tomography (DT) is a textual database analysis system consisting of two major components: (1) algorithms for extracting multiword phrase frequencies and phrase proximities (physical closeness of the multiword technical phrases) from any type of large textual database, to augment (2) interpretative capabilities of the expert human analyst. DT was used to derive technical intelligence from a fullerenes database derived from the Science Citation Index and the Engineering Compendex. Phrase frequency analysis by the technical domain experts provided the pervasive technical themes of the fullerenes database, and phrase proximity analysis provided the relationships among the pervasive technical themes. Bibliometric analysis of the fullerenes literature supplemented the DT results with author/journal/institution publication and citation data. Comparisons of fullerenes results with past analyses of similarly structured near-earth space, chemistry, hypersonic/supersonic flow, aircraft, and ship hydrodynamics databases are made. One important finding is that many of the normalized bibliometric distribution functions are extremely consistent across these diverse technical domains and could reasonably be expected to apply to broader chemical topics than fullerenes that span multiple structural classes. Finally, lessons learned about integrating the technical domain experts with the data mining tools are presented.

  14. Calculation of the structure of carbon clusters based on fullerene-like C24 and C48 molecules

    NASA Astrophysics Data System (ADS)

    Krylova, K. A.; Baimova, Yu. A.; Dmitriev, S. V.; Mulyukov, R. R.

    2016-02-01

    Equilibrium structures obtained by linking with valence bonds the carbon carcasses of two fullerene-like molecules have been studied by molecular dynamics simulation. In free fullerene, carbon atoms form sp 2 hybridized bonds, but at places of links between fullerenes, sp 3 hybridized bonds are formed, which determines the changes in the properties of such structures. In the literature, the topology of diamond-like phases is described, but equilibrium clusters based on fullerene-like molecules are underexplored. The right angles between the C-C bonds are energetically unfavorable, and the reduction in the energy of clusters in the process of relaxation is connected with the optimization of valence angles, which leads to a reduction in the symmetry of clusters and, in a number of cases, even to disruption of some valence bonds. It is shown that different fashions of linking two fullerenes result in the formation of clusters with different structures and energies. Different initial conditions can lead to different configurations of clusters with the same topology. Among the analyzed clusters, a structure with the minimum potential energy per atom was found. The results of this work contribute to the study of the real structure of carbon clusters.

  15. Self-assembly of a nanotube from a black phosphorus nanoribbon on a string of fullerenes at low temperature.

    PubMed

    Cai, Kun; Shi, Jiao; Liu, Ling-Nan; Qin, Qing-Hua

    2017-09-13

    A string of fullerenes is used for generating a nanotube by self-assembly of a black phosphorus (BP) nanoribbon at a temperature of 8 K. Among the fullerenes in the string, there are at least two fixed fullerenes placed along the edge of the BP ribbon for keeping its configuration stability during winding. By way of molecular dynamics simulations, it is found that successful generation of a BP nanotube depends on the bending stiffness of the ribbon and the attraction between the fullerenes and the ribbon. When the attraction is strong enough, the two edges (along the zigzag direction) of the BP ribbon will be able to bond covalently to form a nanotube. By the molecular dynamics approach, the maximum width of the BP ribbon capable of forming a nanotube with a perfect length is investigated in three typical models. The maximum width of the BP ribbon becomes larger with the string containing more fullerenes. This finding reveals a way to control the width of the BP ribbon which forms a nanotube. It provides guidance for fabricating a BP nanotube with a specified length, the same as to the width of the ribbon.

  16. Fullerene formation and annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mintmire, J.W.

    1996-04-05

    Why does the highly symmetric carbon cluster C{sub 60} form in such profusion under the right conditions? This question was first asked in 1985, when Kroto suggested that the predominance of the C{sub 60} carbon clusters observed in the molecular beam experiments could be explained by the truncated icosahedral (or soccer ball) form. The name given to this cluster, buckminsterfullerene, led to the use of the term fullerenes for the family of hollow-cage carbon clusters made up of even numbers of triply coordinated carbons arranged with 12 pentagonal rings and an almost arbitrary number of hexagonal rings. More than amore » decade later, we still lack a completely satisfying understanding of the fundamental chemistry that takes place during fullerene formation. Most current models for fullerene formation require a facile mechanism for ring rearrangement in the fullerene structure, but the simplest proposed mechanisms are believed to have unrealistically high activation barriers. In recent research calculations have suggested that atomic carbon in the reaction mixture could act as a catalyst and allow substantially lower activation barriers for fullerene annealing. This article discusses the background for this research and other adjunct research. 14 refs.« less

  17. Polarizabilities and van der Waals C{sub 6} coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saidi, Wissam A., E-mail: alsaidi@pitt.edu; Norman, Patrick

    2016-07-14

    The van der Waals C{sub 6} coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C{sub 6} ∝ N{sup 2.2} as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N{sup 2.75} as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes bymore » fitting against accurate ab initio calculations. This model shows that C{sub 6} ∝ N{sup 2.8}, which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole–dipole term scales almost linearly with the number of carbon atoms.« less

  18. Predictive modeling: Solubility of C60 and C70 fullerenes in diverse solvents.

    PubMed

    Gupta, Shikha; Basant, Nikita

    2018-06-01

    Solubility of fullerenes imposes a major limitation to further advanced research and technological development using these novel materials. There have been continued efforts to discover better solvents and their properties that influence the solubility of fullerenes. Here, we have developed QSPR (quantitative structure-property relationship) models based on structural features of diverse solvents and large experimental data for predicting the solubility of C 60 and C 70 fullerenes. The developed models identified most relevant features of the solvents that encode the polarizability, polarity and lipophilicity properties which largely influence the solubilizing potential of the solvent for the fullerenes. We also established Inter-moieties solubility correlations (IMSC) based quantitative property-property relationship (QPPR) models for predicting solubility of C 60 and C 70 fullerenes. The QSPR and QPPR models were internally and externally validated deriving the most stringent statistical criteria and predicted C 60 and C 70 solubility values in different solvents were in close agreement with the experimental values. In test sets, the QSPR models yielded high correlations (R 2  > 0.964) and low root mean squared error of prediction errors (RMSEP< 0.25). Results of comparison with other studies indicated that the proposed models could effectively improve the accuracy and ability for predicting solubility of C 60 and C 70 fullerenes in solvents with diverse structures and would be useful in development of more effective solvents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A geometric constraint, the head-to-tail exclusion rule, may be the basis for the isolated-pentagon rule in fullerenes with more than 60 vertices

    PubMed Central

    Schein, Stan; Friedrich, Tara

    2008-01-01

    Carbon atoms self-assemble into the famous soccer-ball shaped Buckminsterfullerene (C60), the smallest fullerene cage that obeys the isolated-pentagon rule (IPR). Carbon atoms self-assemble into larger (n > 60 vertices) empty cages as well—but only the few that obey the IPR—and at least 1 small fullerene (n ≤ 60) with adjacent pentagons. Clathrin protein also self-assembles into small fullerene cages with adjacent pentagons, but just a few of those. We asked why carbon atoms and clathrin proteins self-assembled into just those IPR and small cage isomers. In answer, we described a geometric constraint—the head-to-tail exclusion rule—that permits self-assembly of just the following fullerene cages: among the 5,769 possible small cages (n ≤ 60 vertices) with adjacent pentagons, only 15; the soccer ball (n = 60); and among the 216,739 large cages with 60 < n ≤ 84 vertices, only the 50 IPR ones. The last finding was a complete surprise. Here, by showing that the largest permitted fullerene with adjacent pentagons is one with 60 vertices and a ring of interleaved hexagons and pentagon pairs, we prove that for all n > 60, the head-to-tail exclusion rule permits only (and all) fullerene cages and nanotubes that obey the IPR. We therefore suggest that self-assembly that obeys the IPR may be explained by the head-to-tail exclusion rule, a geometric constraint. PMID:19050075

  20. Fullerenes and interplanetary dust at the Permian-Triassic boundary.

    PubMed

    Poreda, Robert J; Becker, Luann

    2003-01-01

    We recently presented new evidence that an impact occurred approximately 250 million years ago at the Permian-Triassic boundary (PTB), triggering the most severe mass extinction in the history of life on Earth. We used a new extraterrestrial tracer, fullerene, a third carbon carrier of noble gases besides diamond and graphite. By exploiting the unique properties of this molecule to trap noble gases inside of its caged structure (helium, neon, argon), the origin of the fullerenes can be determined. Here, we present new evidence for fullerenes with extraterrestrial noble gases in the PTB at Graphite Peak, Antarctica, similar to PTB fullerenes from Meishan, China and Sasayama, Japan. In addition, we isolated a (3)He-rich magnetic carrier phase in three fractions from the Graphite Peak section. The noble gases in this magnetic fraction were similar to zero-age deep-sea interplanetary dust particles (IDPs) and some magnetic grains isolated from the Cretaceous-Tertiary boundary. The helium and neon isotopic compositions for both the bulk Graphite Peak sediments and an isolated magnetic fraction from the bulk material are consistent with solar-type gases measured in zero-age deep-sea sediments and point to a common source, namely, the flux of IDPs to the Earth's surface. In this instance, the IDP noble gas signature for the bulk sediment can be uniquely decoupled from fullerene, demonstrating that two separate tracers are present (direct flux of IDPs for (3)He vs. giant impact for fullerene).

  1. FAST TRACK COMMUNICATION: First prediction of the direct effect of a confined atom on photoionization of the confining fullerene

    NASA Astrophysics Data System (ADS)

    McCune, Matthew A.; De, Ruma; Madjet, Mohamed E.; Chakraborty, Himadri S.

    2010-09-01

    We predict that the confined atom can qualitatively modify the energetic photoionization of some cage levels, even though these levels are of very dominant fullerene character. The effect imposes strong new oscillations in the cross sections which are forbidden to the ionization of empty fullerenes. Results are presented for the Ar@C60 endofullerene compound.

  2. Synthesis of fullerene@gold core-shell nanostructures.

    PubMed

    Ren, Yupeng; Paira, Priyankar; Nayak, Tapas Ranjan; Ang, Wee Han; Pastorin, Giorgia

    2011-07-21

    A "direct encapsulation" method was developed for the synthesis of highly stable water-soluble fullerene@gold core-shell nanostructures, with gold nanoshells showing either closed or porous morphology. This gold nano-shell coating formed a "nano-oven", capable of decomposing encapsulated fullerene molecules rapidly when irradiated by laser. We envisaged this being a useful tool for chemical reactions as well as a novel scaffold for nano-material synthesis.

  3. Endohedral fullerenes: Synthesis, isolation, mono- and bis -functionalization

    DOE PAGES

    Cerón, Maira R.; Maffeis, Viviana; Stevenson, Steven; ...

    2017-03-29

    Here, in this paper, we present a short overview of the contribution of our research group to the discovery, functionalization and characterization of unprecedented endohedral fullerenes. We also report a comprehensive study of regioselective bis-1,3-dipolar cycloadditions to cluster endohedral fullerenes M 3N@I h-C 80 (M = Lu, Y and Er) and the spectroscopic characterization of the new bis-adducts obtained.

  4. 40 CFR 721.10268 - [5,6]Fullerene-C70-D5h(6).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10268 [5,6]Fullerene-C70-D5h(6). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as [5,6]Fullerene-C70-D5h(6) (PMN P-09-55; CAS No. 115383...

  5. 40 CFR 721.10268 - [5,6]Fullerene-C70-D5h(6).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10268 [5,6]Fullerene-C70-D5h(6). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as [5,6]Fullerene-C70-D5h(6) (PMN P-09-55; CAS No. 115383...

  6. Endo-Fullerenes and Doped Diamond Nanocrystallite Based Solid-State Qubits

    NASA Technical Reports Server (NTRS)

    Park, Seongjun; Srivastava, Deepak; Cho, K.

    2001-01-01

    This viewgraph presentation provides information on the use of endo-fullerenes and doped diamond nanocrystallites in the development of a solid state quantum computer. Arrays of qubits, which have 1/2 nuclear spin, are more easily fabricated than arrays of similar bare atoms. H-1 can be encapsulated in a C20D20 fullerene, while P-31 can be encapsulated in a diamond nanocrystallite.

  7. Enhanced ambient stability of efficient perovskite solar cells by employing a modified fullerene cathode interlayer

    DOE PAGES

    Zhu, Zonglong; Chueh, Chu -Chen; Lin, Francis; ...

    2016-03-22

    A novel fullerene cathode interlayer is employed to facilitate the fabrication of stable and efficient perovskite solar cells. Here, this modified fullerene surfactant significantly increases air stability of the derived devices due to its hydrophobic characteristics to enable 80% of the initial PCE to be retained after being exposed in ambient condition with 20% relative humidity for 14 days.

  8. Growth and structure of fullerene-like CNx thin films produced by pulsed laser ablation of graphite in nitrogen

    NASA Astrophysics Data System (ADS)

    Voevodin, A. A.; Jones, J. G.; Zabinski, J. S.; Czigany, Zs.; Hultman, L.

    2002-11-01

    The growth and structure of fullerene-like CNx films produced by laser ablation of graphite in low pressure nitrogen were investigated. Deposition conditions were selected based on investigations of CN and C2 concentration at the condensation surface, vibrational temperature of CN radicals, and kinetic energies of atomic and molecular species. Films were characterized with x-ray photoelectron spectroscopy, Raman spectroscopy, high-resolution transmission electron microscopy, nanoindentation, and stress analyses. The nitrogen content in CNx films directly depended on the concentration of CN radicals at the condensation surface. Formation of fullerene-like structures required a high vibrational temperature of these radicals, which was maximized at about 4 eV for depositions at 10 mTorr N2 and laser fluences of approx7 J/cm2. The presence of C2 had only a minor effect on film composition and structure. Optimization of plasma characteristics and a substrate temperature of 300 degC helped to produce about 1-mum-thick solid films of CNx (N/C ratioapproximately0.2-0.3) and pure carbon consisting of fullerene-like fragments and packages. In contrast to carbon films, fullerene-like CNx films exhibited a high elastic recovery of about 80% in using a Berkovich tip at 5 mN load and indentation depths up to 150 nm. Their elastic modulus was about 160 GPa measured from the unloading portion of an indentation curve, and about 250 GPa measured with a 40 Hz tip oscillation during nanoindentation tests. The difference was related to time dependent processes of shape restoration of fullerene-like fragments, and an analogy was made to the behavior of elastomer polymers. However, unlike elastomers, CNx film hardness was as high as 30 GPa, which was twice that of fullerene-like carbon films. The unusual combination of high elasticity and hardness of CNx films was explained by crosslinking of fullerene fragments induced by the incorporated nitrogen and stored compressive stress. The study demonstrated laser ablation as a viable technique for the growth of fullerene-like CNx films, which may be used as hard protective coatings resisting brittle fracture at high loads and extensive substrate deformations.

  9. Formation of {Co(dppe)}2{μ2-η(2):η(2)-η(2):η(2)-[(C60)2]} Dimers Bonded by Single C-C Bonds and Bridging η(2)-Coordinated Cobalt Atoms.

    PubMed

    Konarev, Dmitri V; Troyanov, Sergey I; Ustimenko, Kseniya A; Nakano, Yoshiaki; Shestakov, Alexander F; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2015-05-18

    Coordination of two bridging cobalt atoms to fullerenes by the η(2) type in {Co(dppe)}2{μ2-η(2):η(2)-η(2):η(2)-[(C60)2]}·3C6H4Cl2 [1; dppe = 1,2-bis(diphenylphosphino)ethane] triggers fullerene dimerization with the formation of two intercage C-C bonds of 1.571(4) Å length. Coordination-induced fullerene dimerization opens a path to the design of fullerene structures bonded by both covalent C-C bonds and η(2)-coordination-bridged metal atoms.

  10. A density functional theory investigation on amantadine drug interaction with pristine and B, Al, Si, Ga, Ge doped C60 fullerenes

    NASA Astrophysics Data System (ADS)

    Parlak, Cemal; Alver, Özgür

    2017-06-01

    Amantadine is a well-known drug for its treatment effect on Parkinson's disease and influenza infection or hepatitis. Heteroatom doped fullerenes have been extensively examined for their possible usage in sensor technology and medical applications as drug delivery vehicles. In this research, pristine and B, Al, Si, Ga, Ge doped C60 fullerenes and their interaction with amantadine drug molecule were investigated based on the density functional theory calculations. Findings suggest that doped C60 fullerenes might be used to detect the presence of amantadine and they might be used as drug delivery vehicles because of their moderately high adsorption energies with amantadine.

  11. Single-size thermometric measurements on a size distribution of neutral fullerenes.

    PubMed

    Cauchy, C; Bakker, J M; Huismans, Y; Rouzée, A; Redlich, B; van der Meer, A F G; Bordas, C; Vrakking, M J J; Lépine, F

    2013-05-10

    We present measurements of the velocity distribution of electrons emitted from mass-selected neutral fullerenes, performed at the intracavity free electron laser FELICE. We make use of mass-specific vibrational resonances in the infrared domain to selectively heat up one out of a distribution of several fullerene species. Efficient energy redistribution leads to decay via thermionic emission. Time-resolved electron kinetic energy distributions measured give information on the decay rate of the selected fullerene. This method is generally applicable to all neutral species that exhibit thermionic emission and provides a unique tool to study the stability of mass-selected neutral clusters and molecules that are only available as part of a size distribution.

  12. The correlation between nano-hardness and elasticity and fullerene-like clusters in hydrogenated amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Wang, Yongfu; Gao, Kaixiong; Wang, Qi; Zhang, Junyan

    2018-01-01

    Fullerene-like hydrogenated carbon films have outstanding mechanical and frictional properties, but their structures have never enjoyed elaboration. In this study, we investigate the relation between nano-hardness and elasticity and fullerene-like clusters by changing energy supply form (direct current and pulse) and H2 concentration in the feedstock. It is found that the films have a network of H-rich amorphous carbon and H-poor or -deficient fullerene-like carbon, and the network change can affect hardness and elastic recovery. This is due to the energy minimization process of the film growing system in a very short pulse period at low temperature.

  13. Hybrid materials with an increased resistance to hard X-rays using fullerenes as radical sponges.

    PubMed

    Pinna, Alessandra; Malfatti, Luca; Piccinini, Massimo; Falcaro, Paolo; Innocenzi, Plinio

    2012-07-01

    The protection of organic and hybrid organic-inorganic materials from X-ray damage is a fundamental technological issue for broadening the range of applications of these materials. In the present article it is shown that doping hybrid films with fullerenes C(60) gives a significant reduction of damage upon exposure to hard X-rays generated by a synchrotron source. At low X-ray dose the fullerene molecules act as `radical scavengers', considerably reducing the degradation of organic species triggered by radical formation. At higher doses the gradual hydroxylation of the fullerenes converts C(60) into fullerol and a bleaching of the radical sinking properties is observed.

  14. Photocurrent in Multilayered Assemblies of Porphyrin-Fullerene Covalent Dyads: Evidence for Channels for Charge Transport.

    PubMed

    Konev, Alexander S; Khlebnikov, Alexander F; Levin, Oleg V; Lukyanov, Daniil A; Zorin, Ivan M

    2016-04-07

    Specially designed porphyrin-fullerene dyads have been synthesized to verify literature predictions based on quantum chemistry calculations that certain porphyrin-fullerene dyads are able to self-arrange into specific structures providing channels for charge transport in a bulk mass of organic compound. According to AFM and SEM data, the newly synthesized compounds were indeed prone to some kind of self-arrangement, although to a lesser degree than was expected. A dispersion corrected DFT study of the molecular non-covalent interactions performed at the DFT-D3 (B3LYP, 6-31G*) level of theory showed that the least energy corresponded to head-to-head dimers, with close contacts of porphyrin-porphyrin and fullerene-fullerene fragments, thus providing a unit building block of the channel for charge transport. Experimental proof for the existence of channels for charge transport was obtained by observing a photocurrent in a simple photovoltaic cell. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Improved spectrophotometric analysis of fullerenes C60 and C70 in high-solubility organic solvents.

    PubMed

    Törpe, Alexander; Belton, Daniel J

    2015-01-01

    Fullerenes are among a number of recently discovered carbon allotropes that exhibit unique and versatile properties. The analysis of these materials is of great importance and interest. We present previously unreported spectroscopic data for C60 and C70 fullerenes in high-solubility solvents, including error bounds, so as to allow reliable colorimetric analysis of these materials. The Beer-Lambert-Bouguer law is found to be valid at all wavelengths. The measured data were highly reproducible, and yielded high-precision molar absorbance coefficients for C60 and C70 in o-xylene and o-dichlorobenzene, which both exhibit a high solubility for these fullerenes, and offer the prospect of improved extraction efficiency. A photometric method for a C60/C70 mixture analysis was validated with standard mixtures, and subsequently improved for real samples by correcting for light scattering, using a power-law fit. The method was successfully applied to the analysis of C60/C70 mixtures extracted from fullerene soot.

  16. Controllable preparation of fluorine-containing fullerene-like carbon film

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Liang, Aimin; Wang, Fuguo; Xu, Longhua; Zhang, Junyan

    2016-05-01

    Fluorine-containing fullerene-like carbon (F-FLC) films were prepared by high frequency unipolar pulse plasma-enhanced chemical vapor deposition. The microstructures, mechanical properties as well as the tribological properties of the films were investigated. The results indicate that fullerene-like microstructures appear in amorphous carbon matrix and increase greatly with the increase of bias voltage from -600 to -1600 V. And the fluorine contents in F-FLC films also show a minor rise. In addition, the hardness enhances with the bias voltage and the outstanding elastic recovery maintains because of the formation of fullerene-like microstructures in the F-FLC films. Undoubtedly, the F-FLC film deposited under high bias voltage owns a superiorly low friction, which combines the merits of fluorinated carbon film and fullerene-like carbon film. Moreover, the film also shows a remarkable wear resistance, which is mainly attributed to the excellent mechanical properties. This study provides new insights for us to prepare fluorine-containing FLC films with good mechanical and tribological properties.

  17. Computational investigation of fullerene-DNA interactions: Implications of fullerene's size and functionalization on DNA structure and binding energetics.

    PubMed

    Papavasileiou, Konstantinos D; Avramopoulos, Aggelos; Leonis, Georgios; Papadopoulos, Manthos G

    2017-06-01

    DNA is the building block of life, as it carries the biological information controlling development, function and reproduction of all organisms. However, its central role in storing and transferring genetic information can be severely hindered by molecules with structure altering abilities. Fullerenes are nanoparticles that find a broad spectrum of uses, but their toxicological effects on living organisms upon exposure remain unclear. The present study examines the interactions of a diverse array of fullerenes with DNA, by means of Molecular Dynamics and MM-PBSA methodologies, with special focus on structural deformations that may hint toxicity implications. Our results show that pristine and hydroxylated fullerenes have no unwinding effects upon DNA structure, with the latter displaying binding preference to the DNA major groove, achieved by both direct formation of hydrogen bonds and water molecule mediation. Fluorinated derivatives are capable of penetrating DNA structure, forming intercalative complexes with high binding affinities. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Quantum transport through single and multilayer icosahedral fullerenes

    NASA Astrophysics Data System (ADS)

    Lovey, Daniel A.; Romero, Rodolfo H.

    2013-10-01

    We use a tight-binding Hamiltonian and Green functions methods to calculate the quantum transmission through single-wall fullerenes and bilayered and trilayered onions of icosahedral symmetry attached to metallic leads. The electronic structure of the onion-like fullerenes takes into account the curvature and finite size of the fullerenes layers as well as the strength of the intershell interactions depending on to the number of interacting atom pairs belonging to adjacent shells. Misalignment of the symmetry axes of the concentric iscosahedral shells produces breaking of the level degeneracies of the individual shells, giving rise some narrow quasi-continuum bands instead of the localized discrete peaks of the individual fullerenes. As a result, the transmission function for non symmetrical onions is rapidly varying functions of the Fermi energy. Furthermore, we found that most of the features of the transmission through the onions are due to the electronic structure of the outer shell with additional Fano-like antiresonances arising from coupling with or between the inner shells.

  19. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells

    PubMed Central

    Liu, Yuhang; Zhao, Jingbo; Li, Zhengke; Mu, Cheng; Hu, Huawei; Jiang, Kui; Lin, Haoran; Ade, Harald; Yan, He

    2014-01-01

    Although the field of polymer solar cell has seen much progress in device performance in the past few years, several limitations are holding back its further development. For instance, current high-efficiency (>9.0%) cells are restricted to material combinations that are based on limited donor polymers and only one specific fullerene acceptor. Here we report the achievement of high-performance (efficiencies up to 10.8%, fill factors up to 77%) thick-film polymer solar cells for multiple polymer:fullerene combinations via the formation of a near-ideal polymer:fullerene morphology that contains highly crystalline yet reasonably small polymer domains. This morphology is controlled by the temperature-dependent aggregation behaviour of the donor polymers and is insensitive to the choice of fullerenes. The uncovered aggregation and design rules yield three high-efficiency (>10%) donor polymers and will allow further synthetic advances and matching of both the polymer and fullerene materials, potentially leading to significantly improved performance and increased design flexibility. PMID:25382026

  20. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND CARBONACEOUS SOLIDS IN GAS-PHASE CONDENSATION EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, C.; Huisken, F.; Henning, Th.

    2009-05-01

    Carbonaceous grains represent a major component of cosmic dust. In order to understand their formation pathways, they have been prepared in the laboratory by gas-phase condensation reactions such as laser pyrolysis and laser ablation. Our studies demonstrate that the temperature in the condensation zone determines the formation pathway of carbonaceous particles. At temperatures lower than 1700 K, the condensation by-products are mainly polycyclic aromatic hydrocarbons (PAHs) that are also the precursors or building blocks for the condensing soot grains. The low-temperature condensates contain PAH mixtures that are mainly composed of volatile three to five ring systems. At condensation temperatures highermore » than 3500 K, fullerene-like carbon grains and fullerene compounds are formed. Fullerene fragments or complete fullerenes equip the nucleating particles. Fullerenes can be identified as soluble components. Consequently, condensation products in cool and hot astrophysical environments such as cool and hot asymptotic giant branch stars or Wolf-Rayet stars should be different and should have distinct spectral properties.« less

  1. Combining Fullerenes and Zwitterions in non-Conjugated Polymer Interlayers to Raise Solar Cell Efficiency.

    PubMed

    Liu, Yao; Sheri, Madhu; Cole, Marcus D; Emrick, Todd; Russell, Thomas P

    2018-06-12

    Polymer zwitterions were synthesized by nucleophilic ring-opening of 3,3'-(but-2-ene-1,4-diyl)bis(1,2-oxathiolane 2,2-dioxide) (a bis-sultone) with functional perylene diimide (PDI) or fullerene monomers. Integration of these polymers into solar cell devices as cathode interlayers boosted efficiencies of fullerene-based organic photovoltaics (OPVs) from 2.75% to 10.74%, and of non-fullerene-based OPVs from 4.25% to 10.10%, demonstrating the versatility of these interlayer materials in OPVs. The fullerene-containing polymer zwitterion (C60-PZ) showed a higher interfacial dipole (∆) value and electron mobility than its PDI counterpart (PDI-PZ), affording solar cells with high efficiency. The power of PDI-PZ and C60-PZ to improve electron injection and extraction processes when positioned between metal electrodes and organic semiconductors highlights their promise to overcome energy barriers at the hard-soft materials interface of organic electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Diffusion and self-assembly of C60 molecules on monolayer graphyne sheets

    PubMed Central

    Ozmaian, Masoumeh; Fathizadeh, Arman; Jalalvand, Morteza; Ejtehadi, Mohammad Reza; Allaei, S. Mehdi Vaez

    2016-01-01

    The motion of a fullerene (C60) on 5 different types of graphyne is studied by all-atom molecular dynamics simulations and compared with former studies on the motion of C60 on graphene. The motion shows a diffusive behavior which consists of either a continuous motion or discrete movements between trapping sites depending on the type of the graphyne sheet. For graphyne-4 and graphyne-5, fullerenes could detach from the surface of the graphyne sheet at room temperature which was not reported for similar cases on graphene sheets. Collective motion of a group of fullerenes interacting with a graphyne studied and it is shown that fullerenes exhibit stable assemblies. Depending on the type of graphyne, these assemblies can have either single or double layers. The mobility of the assembled structures is also dependent on the type of the graphyne sheet. The observed properties of the motion suggests novel applications for the complexes of fullerene and monolayer graphynes. PMID:26912386

  3. Synthesis of Dual NIR Two-photon Absorptive [60]fullerenyl Multiadducts for Nonlinear Light-transmittance Reduction Application

    DTIC Science & Technology

    2014-11-01

    INTRODUCTION Nonlinear optical characteristics of [60] fullerene -derived C60-(antenna)x nanostructure conjugates are based on excited singlet state...two-photon absorption (2PA) processes in the NIR region [3]. Fullerene cages exhibit high electronegativity and electron-accepting characteristics...photoenergy by the donor DPAF-Cn antenna was able to undergo efficient intramolecular electron- or energy-transfer to the fullerene acceptor moiety in

  4. Theoretical Studies of Gas Phase Elementary and Carbon Nanostructure Growth Reactions

    DTIC Science & Technology

    2013-09-19

    time dynamics of electron transfer in a prototype redox reaction that occurs in reactive collisions between neutral and ionic fullerenes is discussed...The LvNMD show that the electron transfer occurs within 60 fs directly preceding the collision of the fullerenes , followed by structural changes...collisions between neutral and multiply charged fullerenes . 2 B. Collaboration with the AFRL. Collaboration with the VIggiano group at AFRL at

  5. Impact of Ultrathin C60 on Perovskite Photovoltaic Devices.

    PubMed

    Liu, Dianyi; Wang, Qiong; Traverse, Christopher J; Yang, Chenchen; Young, Margaret; Kuttipillai, Padmanaban S; Lunt, Sophia Y; Hamann, Thomas W; Lunt, Richard R

    2018-01-23

    Halide perovskite solar cells have seen dramatic progress in performance over the past several years. Certified efficiencies of inverted structure (p-i-n) devices have now exceeded 20%. In these p-i-n devices, fullerene compounds are the most popular electron-transfer materials. However, the full function of fullerenes in perovskite solar cells is still under investigation, and the mechanism of photocurrent hysteresis suppression by fullerene remains unclear. In previous reports, thick fullerene layers (>20 nm) were necessary to fully cover the perovskite film surface to make good contact with perovskite film and avoid large leakage currents. In addition, the solution-processed fullerene layer has been broadly thought to infiltrate into the perovskite film to passivate traps on grain boundary surfaces, causing suppressed photocurrent hysteresis. In this work, we demonstrate an efficient perovskite photovoltaic device with only 1 nm C 60 deposited by vapor deposition as the electron-selective material. Utilizing a combination of fluorescence microscopy and impedance spectroscopy, we show that the ultrathin C 60 predominately acts to extract electrons from the perovskite film while concomitantly suppressing the photocurrent hysteresis by reducing space charge accumulation at the interface. This work ultimately helps to clarify the dominant role of fullerenes in perovskite solar cells while simplifying perovskite solar cell design to reduce manufacturing costs.

  6. Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging.

    PubMed

    Ngan, Cheng Loong; Basri, Mahiran; Tripathy, Minaketan; Abedi Karjiban, Roghayeh; Abdul-Malek, Emilia

    2015-04-05

    Despite the fact that intrinsic oxidative stress is inevitable, the extrinsic factor such as ultraviolet radiation enhances reactive oxygen species (ROS) generation resulting in premature skin aging. Nanoemulsion was loaded with fullerene, a strong free radical scavenger, and its efficacy to provide protection and regenerative effect against ROS-induced collagen breakdown in human skin was studied. Stable fullerene nanoemulsions were formulated using high shear homogenization and ultrasonic dispersion technique. An open trial was conducted using fullerene nanoemulsion on skin twice a day for 28 days. The mean collagen score significantly increased (P<0.05) from 36.53±4.39 to 48.69±5.46 with 33.29% increment at the end of the treatment. Biophysical characteristics of skin revealed that skin hydration was increased significantly (P<0.05) from 40.91±7.01 to 58.55±6.08 corneometric units (43.12% increment) and the water was able to contain within the stratum corneum without any increased in transepidermal water loss. In the in vitro safety evaluation, fullerene nanoemulsion showed no acute toxicity on 3T3 fibroblast cell line for 48h and no indication of potential dermal irritation. Hence, the fullerene nanoemulsion may assist in protecting collagen from breakdown with cosmeceutical benefit. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Adsorption and possible dissociation of glucose by the [BN fullerene-B6]- magnetic nanocomposite. In silico studies

    NASA Astrophysics Data System (ADS)

    Anota, E. Chigo; Villanueva, M. Salazar; Shakerzadeh, E.; Castro, M.

    2018-02-01

    The adsorption, activation and possible dissociation of the glucose molecule on the magnetic [BN fullerene-B6]- system is performed by means of density functional theory calculations. Three models of magnetic nanocomposites were inspected: i) pristine BN fullerene, BN fullerene functionalized with a magnetic B6 cluster which generates two structures: ii) pyramidal (P) and iii) triangular (T). Chemical interactions of glucose appear for all these cases; however, for the BNF:B6(T)—glucose system, the interaction generates an effect of dissociation on glucose, due to the magnetic effects, since it has high spin multiplicity. The latter nanocomposite shows electronic behavior like-conductor and like-semi-conductor for the P and T geometries, respectively. Intrinsic magnetism associated to values of 1.0 magneton bohr (µB) for the pyramidal and 5.0 µB for the triangular structure, high polarity, and low-chemical reactivity are found for these systems. These interesting properties make these functionalized fullerenes a good option for being used as nano-vehicles for drug delivery. These quantum descriptors remain invariant when the [BN]-fullerene and [BNF:B6 (P) or (T)]- nanocomposites are interacting with the glucose molecule. According to the determined adsorption energy, chemisorption regimes occur in both the phases: gas and aqueous medium.

  8. Fullerene (C60) films for solid lubrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhushan, B.; Gupta, B.K.; Van Cleef, G.W.

    1993-10-01

    The advent of techniques for producing gram quantities of a new form of stable, pure, solid carbon, designated as fullerene, opens a profusion of possibilities to be explored in many disciplines including tribology. Fullerenes take the form of hollow geodesic domes, which are formed from a network of pentagons and hexagons with covalently bonded carbon atoms. The C60 molecule has the highest possible symmetry (icosahedral) and assumes the shape of a soccer ball. At room temperature, fullerene molecules pack in an fcc lattice bonded with weak van der Waals attractions. Fullerenes can be dissolved in solvents such as toluene andmore » benzene and are easily sublimed. The low surface energy, high chemical stability, spherical shape, weak intermolecular bonding, and high load bearing capacity of C60 molecules offer potential for various mechanical and tribological applications. This paper describes the crystal structure and properties of fullerenes and proposes a mechanism for self-lubricating action. Sublimed films of C60 have been produced and friction and wear performance of these films in various operating environments are the subject of this paper. The results of this study indicate that C60, owing to its unique crystal structure and bonding, may be a promising solid lubricant. 31 refs.« less

  9. Effects of alkyl chain length and substituent pattern of fullerene bis-adducts on film structures and photovoltaic properties of bulk heterojunction solar cells.

    PubMed

    Tao, Ran; Umeyama, Tomokazu; Kurotobi, Kei; Imahori, Hiroshi

    2014-10-08

    A series of alkoxycarbonyl-substituted dihydronaphthyl-based [60]fullerene bis-adduct derivatives (denoted as C2BA, C4BA, and C6BA with the alkyl chain of ethyl, n-butyl, and n-hexyl, respectively) have been synthesized to investigate the effects of alkyl chain length and substituent pattern of fullerene bis-adducts on the film structures and photovoltaic properties of bulk heterojunction polymer solar cells. The shorter alkyl chain length caused lower solubility of the fullerene bis-adducts (C6BA > C4BA > C2BA), thereby resulting in the increased separation difficulty of respective bis-adduct isomers. The device performance based on poly(3-hexylthiophene) (P3HT) and the fullerene bis-adduct regioisomer mixtures was enhanced by shortening the alkyl chain length. When using the regioisomerically separated fullerene bis-adducts, the devices based on trans-2 and a mixture of trans-4 and e of C4BA exhibited the highest power conversion efficiencies of ca. 2.4%, which are considerably higher than those of the C6BA counterparts (ca. 1.4%) and the C4BA regioisomer mixture (1.10%). The film morphologies as well as electron mobilities of the P3HT:bis-adduct blend films were found to affect the photovoltaic properties considerably. These results reveal that the alkyl chain length and substituent pattern of fullerene bis-adducts significantly influence the photovoltaic properties as well as the film structures of bulk heterojunction solar cells.

  10. Distinguishing the importance of fullerene phase separation from polymer ordering in the performance of low band gap polymer: Bis-fullerene heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huipeng; Hsiao, Yu -Che; Chen, Jihua

    2014-09-16

    It is known, one way to improve power conversion efficiency (PCE) of polymer based bulk-heterojunction (BHJ) photovoltaic cells is to increase the open circuit voltage (V oc). Replacing PCBM with bis-adduct fullerenes significantly improves V oc and the PCE in devices based on the conjugated polymer poly(3-hexyl thiophene) (P3HT). However, for the most promising low band-gap polymer (LBP) system, replacing PCBM with ICBA results in poor short-circuit current (J sc) and PCE although V oc is significantly improved. The optimization of the morphology of as-cast LBP/bis-fullerene BHJ photovoltaics is attempted by adding a co-solvent to the polymer/fullerene solution prior tomore » film deposition. Varying the solubility of polymer and fullerene in the co-solvent, bulk heterojunctions are fabricated with no change of polymer ordering, but with changes in fullerene phase separation. The morphologies of the as-cast samples are characterized by small angle neutron scattering and neutron reflectometry. A homogenous dispersion of ICBA in LBP is found in the samples where the co-solvent is selective to the polymer, giving poor device performance. Aggregates of ICBA are formed in samples where the co-solvent is selective to ICBA. Furthermore, the resultant morphology improves PCE by up to 246%. Finally, a quantitative analysis of the neutron data shows that the interfacial area between ICBA aggregates and its surrounding matrix is improved, facilitating charge transport and improving the PCE.« less

  11. Ferrocene/fullerene hybrids showing large second-order nonlinear optical activities: impact of the cage unit size.

    PubMed

    Wang, Wen-Yong; Wang, Li; Ma, Na-Na; Zhu, Chang-Li; Qiu, Yong-Qing

    2015-06-07

    The electron donor-acceptor complexes, which undergo intramolecular charge transfer under external stimulus, are an emerging class of materials showing important application in nonlinear optics. Synthesizing ferrocene/fullerene complexes through face-to-face fusion would enjoy the merits of both ferrocene and fullerene due to their strong donor-acceptor interactions. Four ferrocene/fullerene hybrid complexes with the gradual extension of fullerene cage size, including CpFe(C60H5), CpFe(C66H5), CpFe(C70H5), and CpFe(C80H5) (Cp is cyclopentadienyl), have been investigated by density functional theory. These hybrid molecules give eclipsed and staggered isomers. The main reason that the eclipsed isomer is stable is that the eclipsed structure possesses large CpFefullerene bonding energy. The CpFefullerene interaction is smaller than that of CpFefullerene, which must come from two different interfaces. The presence of covalent bond character between CpFe and fullerene is supported by the localized orbital locator, deformation of electron density distribution and energy decomposition analysis. Significantly, the absorption bands and first hyperpolarizabilities of these hybrid complexes are strongly sensitive to the fullerene cage size, which is ascribed to a change in the charge transfer pattern, especially for CpFe(C80H5), which displays reverse π → π* charge transfer from bottom to top cage, leading to notable hyperpolarizability. Investigation of the structure-property relationship at the molecular level can benefit the design and preparation of such hybrid complexes in chemistry and materials science.

  12. Skin penetration and kinetics of pristine fullerenes (C{sub 60}) topically exposed in industrial organic solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Xin R., E-mail: xia@ncsu.ed; Monteiro-Riviere, Nancy A.; Riviere, Jim E.

    2010-01-01

    Pristine fullerenes (C{sub 60}) in different solvents will be used in many industrial and pharmaceutical manufacturing and derivatizing processes. This report explores the impact of solvents on skin penetration of C{sub 60} from different types of industrial solvents (toluene, cyclohexane, chloroform and mineral oil). Yorkshire weanling pigs (n = 3) were topically dosed with 500 muL of 200 mug/mL C{sub 60} in a given solvent for 24 h and re-dosed daily for 4 days to simulate the worst scenario in occupational exposures. The dose sites were tape-stripped and skin biopsies were taken after 26 tape-strips for quantitative analysis. When dosedmore » in toluene, cyclohexane or chloroform, pristine fullerenes penetrated deeply into the stratum corneum, the primary barrier of skin. More C{sub 60} was detected in the stratum corneum when dosed in chloroform compared to toluene or cyclohexane. Fullerenes were not detected in the skin when dosed in mineral oil. This is the first direct evidence of solvent effects on the skin penetration of pristine fullerenes. The penetration of C{sub 60} into the stratum corneum was verified using isolated stratum corneum in vitro; the solvent effects on the stratum corneum absorption of C{sub 60} were consistent with those observed in vivo. In vitro flow-through diffusion cell experiments were conducted in pig skin and fullerenes were not detected in the receptor solutions by 24 h. The limit of detection was 0.001 mug/mL of fullerenes in 2 mL of the receptor solutions.« less

  13. C60 Fullerene Effects on Diphenyl-N-(trichloroacetyl)-amidophosphate Interaction with DNA In Silico and Its Cytotoxic Activity Against Human Leukemic Cell Line In Vitro.

    PubMed

    Grebinyk, A; Prylutska, S; Grynyuk, I; Kolp, B; Hurmach, V; Sliva, T; Amirkhanov, V; Trush, V; Matyshevska, O; Slobodyanik, M; Prylutskyy, Yu; Frohme, M; Ritter, U

    2018-03-09

    New representative of carbacylamidophosphates - diphenyl-N-(trichloroacetyl)-amidophosphate (HL), which contains two phenoxy substituents near the phosphoryl group, was synthesized, identified by elemental analysis and IR and NMR spectroscopy, and tested as a cytotoxic agent itself and in combination with C 60 fullerene.According to molecular simulation results, C 60 fullerene and HL could interact with DNA and form a rigid complex stabilized by stacking interactions of HL phenyl groups with C 60 fullerene and DNA G nucleotide, as well as by interactions of HL CCl 3 group by ion-π bonds with C 60 molecule and by electrostatic bonds with DNA G nucleotide.With the use of MTT test, the cytotoxic activity of HL against human leukemic CCRF-CM cells with IC 50 value detected at 10 μM concentration at 72 h of cells treatment was shown. Under combined action of 16 μM C 60 fullerene and HL, the value of IC 50 was detected at lower 5 μM HL concentration and at earlier 48 h period of incubation, besides the cytotoxic effect of HL was observed at a low 2.5 μM concentration at which HL by itself had no influence on cell viability. Binding of C 60 fullerene and HL with minor DNA groove with formation of a stable complex is assumed to be one of the possible reasons of their synergistic inhibition of CCRF-CЕM cells proliferation.Application of C 60 fullerene in combination with 2.5 μM HL was shown to have no harmful effect on structural stability of blood erythrocytes membrane. Thus, combined action of C 60 fullerene and HL in a low concentration potentiated HL cytotoxic effect against human leukemic cells and was not followed by hemolytic effect.

  14. C60 Fullerene Effects on Diphenyl-N-(trichloroacetyl)-amidophosphate Interaction with DNA In Silico and Its Cytotoxic Activity Against Human Leukemic Cell Line In Vitro

    NASA Astrophysics Data System (ADS)

    Grebinyk, A.; Prylutska, S.; Grynyuk, I.; Kolp, B.; Hurmach, V.; Sliva, T.; Amirkhanov, V.; Trush, V.; Matyshevska, O.; Slobodyanik, M.; Prylutskyy, Yu.; Frohme, M.; Ritter, U.

    2018-03-01

    New representative of carbacylamidophosphates - diphenyl-N-(trichloroacetyl)-amidophosphate (HL), which contains two phenoxy substituents near the phosphoryl group, was synthesized, identified by elemental analysis and IR and NMR spectroscopy, and tested as a cytotoxic agent itself and in combination with C60 fullerene. According to molecular simulation results, C60 fullerene and HL could interact with DNA and form a rigid complex stabilized by stacking interactions of HL phenyl groups with C60 fullerene and DNA G nucleotide, as well as by interactions of HL CCl3 group by ion-π bonds with C60 molecule and by electrostatic bonds with DNA G nucleotide. With the use of MTT test, the cytotoxic activity of HL against human leukemic CCRF-CM cells with IC50 value detected at 10 μM concentration at 72 h of cells treatment was shown. Under combined action of 16 μM C60 fullerene and HL, the value of IC50 was detected at lower 5 μM HL concentration and at earlier 48 h period of incubation, besides the cytotoxic effect of HL was observed at a low 2.5 μM concentration at which HL by itself had no influence on cell viability. Binding of C60 fullerene and HL with minor DNA groove with formation of a stable complex is assumed to be one of the possible reasons of their synergistic inhibition of CCRF-CEM cells proliferation. Application of C60 fullerene in combination with 2.5 μM HL was shown to have no harmful effect on structural stability of blood erythrocytes membrane. Thus, combined action of C60 fullerene and HL in a low concentration potentiated HL cytotoxic effect against human leukemic cells and was not followed by hemolytic effect.

  15. Electronic properties of Bilayer Fullerene onions

    NASA Astrophysics Data System (ADS)

    Pincak, R.; Shunaev, V. V.; Smotlacha, J.; Slepchenkov, M. M.; Glukhova, O. E.

    2017-10-01

    The HOMO-LUMO gaps of the bilayer fullerene onions were investigated. For this purpose, the HOMO and LUMO energies were calculated for the isolated fullerenes using the parametrization of the tight binding method with the Harrison-Goodwin modification. Next, the difference of the Fermi levels of the outer and inner shell was calculated by considering the hybridization of the orbitals on the base of the geometric parameters. The results were obtained by the combination of these calculations.

  16. High-Performance Non-Fullerene Organic Solar Cells Based on a Selenium-Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tao; Meng, Dong; Cai, Yunhao

    2016-04-23

    A novel polymer donor (PBDTS-Se) is designed to match with a non-fullerene acceptor (SdiPBI-S). The corresponding solar cells show a high efficiency of 8.22%, which result from synergetic improvements of light harvesting, charge carrier transport and collection, and morphology. The results indicate that rational design of novel donor materials is important for non-fullerene organic solar cells.

  17. Effect of collective response on electron capture and excitation in collisions of highly charged ions with fullerenes.

    PubMed

    Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C

    2003-03-07

    Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions.

  18. Fullerene C60 and graphene photosensibiles for photodynamic virus inactivation

    NASA Astrophysics Data System (ADS)

    Belousova, I.; Hvorostovsky, A.; Kiselev, V.; Zarubaev, V.; Kiselev, O.; Piotrovsky, L.; Anfimov, P.; Krisko, T.; Muraviova, T.; Rylkov, V.; Starodubzev, A.; Sirotkin, A.; Grishkanich, A.; Kudashev, I.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Afanasyev, M.; Lukyanov, N.; Redka, D.; Paklinov, N.

    2018-02-01

    A solid-phase photosensitizer based on aggregated C60 fullerene and graphene oxide for photodynamic inactivation of pathogens in biological fluids was studied. The most promising technologies of inactivation include the photodynamic effect, which consists in the inactivation of infectious agents by active oxygen forms (including singlet oxygen), formed when light is activated by the photosensitizer introduced into the plasma. Research shows features of solid-phase systems based on graphene and fullerene C60 oxide, which is a combination of an effective inactivating pathogens (for example, influenza viruses) reactive oxygen species formed upon irradiation of the photosensitizer in aqueous and biological fluids, a high photostability fullerene coatings and the possibility of full recovery photosensitizer from the biological environment after the photodynamic action.

  19. Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles.

    PubMed

    Tenne, Reshef

    2003-11-03

    In analogy to graphite, nanoparticles of inorganic compounds with lamellar two-dimensional structure, such as MoS(2), are not stable against folding, and can adopt nanotubular and fullerene-like structures, nicknamed inorganic fullerenes or IF. Various applications for such nanomaterials were proposed. For instance, IF-WS(2) nanoparticles were shown to have beneficial effects as solid lubricants and as part of tribological surfaces. Further applications of IF for high-tensile-strength fibers, hydrogen storage, rechargeable batteries, catalysis, and in nanotechnology are being contemplated. This Minireview highlights some of the latest developments in the synthesis of inorganic nanotubes and fullerene-like structures. Some structural aspects and properties of IF, which are distinct from the bulk materials, are briefly discussed.

  20. Open-cage fullerene-like graphitic carbons as catalysts for oxidative dehydrogenation of isobutane.

    PubMed

    Liang, Chengdu; Xie, Hong; Schwartz, Viviane; Howe, Jane; Dai, Sheng; Overbury, Steven H

    2009-06-10

    We report herein a facile synthesis of fullerene-like cages, which can be opened and closed through simple thermal treatments. A glassy carbon with enclosed fullerene-like cages of 2-3 nm was synthesized through a soft-template approach that created open mesopores of 7 nm. The open mesopores provided access to the fullerene-like cages, which were opened and closed through heat treatments in air and inert gas at various temperatures. Catalytic measurements showed that the open cages displayed strikingly higher activity for the oxidative dehydrogenation of isobutane in comparison to the closed ones. We anticipate that this synthesis approach could unravel an avenue for pursuing fundamental understanding of the unique catalytic properties of graphitic carbon nanostructures.

  1. Interpretation of electron diffraction patterns from amorphous and fullerene-like carbon allotropes.

    PubMed

    Czigány, Zsolt; Hultman, Lars

    2010-06-01

    The short range order in amorphous and fullerene-like carbon compounds has been characterized by selected area electron diffraction (SAED) patterns and compared with simulations of model nanoclusters. Broad rings in SAED pattern from fullerene-like CN(x) at approximately 1.2, approximately 2, and approximately 3.5A indicate short-range order similar to that in graphite, but peak shifts indicate sheet curvature in agreement with high-resolution transmission electron microscopy images. Fullerene-like CP(x) exhibits rings at approximately 1.6 and 2.6A, which can be explained if it consists of fragments with short-range order and high curvature similar to that of C(20). Copyright 2010 Elsevier B.V. All rights reserved.

  2. Fullerene-like hydrogenated carbon films with super-low friction and wear, and low sensitivity to environment

    NASA Astrophysics Data System (ADS)

    Ji, Li; Li, Hongxuan; Zhao, Fei; Quan, Weilong; Chen, Jianmin; Zhou, Huidi

    2010-01-01

    A novel hydrogenated carbon film containing fullerene-like nanostructure was prepared by pulse bias-assisted plasma enhanced chemical vapour deposition, and the fullerene-like arrangement in the film was characterized by high resolution transmission electron microscopy. The as-prepared hydrogenated carbon film exhibited super-low friction and wear in both dry N2 and humid ambient atmospheres, and was superior to the conventional hydrogenated carbon films. These excellent tribological properties could be attributed to the unique fullerene-like nanostructure, which endows the film with some special chemical and physical features, such as high chemical inertness, hardness and elastic recovery owing to the closed, curved and caged graphite planes, and hence, improves the tribological properties of the hydrogenated carbon film.

  3. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- an overview.

    PubMed

    Gupta, Vinod K; Saleh, Tawfik A

    2013-05-01

    The quality of water is continuously deteriorating due to its increasing toxic threat to humans and the environment. It is imperative to perform treatment of wastewater in order to remove pollutants and to get good quality water. Carbon materials like porous carbon, carbon nanotubes and fullerene have been extensively used for advanced treatment of wastewaters. In recent years, carbon nanomaterials have become promising adsorbents for water treatment. This review attempts to compile relevant knowledge about the adsorption activities of porous carbon, carbon nanotubes and fullerene related to various organic and inorganic pollutants from aqueous solutions. A detailed description of the preparation and treatment methods of porous carbon, carbon nanotubes and fullerene along with relevant applications and regeneration is also included.

  4. Organic solar cells based on non-fullerene acceptors

    NASA Astrophysics Data System (ADS)

    Hou, Jianhui; Inganäs, Olle; Friend, Richard H.; Gao, Feng

    2018-02-01

    Organic solar cells (OSCs) have been dominated by donor:acceptor blends based on fullerene acceptors for over two decades. This situation has changed recently, with non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-based OSCs. NF acceptors show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities. The coexistence of low voltage losses and high current generation indicates that new regimes of device physics and photophysics are reached in these systems. This Review highlights these opportunities made possible by NF acceptors, and also discuss the challenges facing the development of NF OSCs for practical applications.

  5. Electrochemical oxidation of sulfites by DWCNTs, MWCNTs, higher fullerenes and manganese

    NASA Astrophysics Data System (ADS)

    Uzun, Dzhamal; Pchelarov, George; Dimitrov, Ognian; Vassilev, Sasho; Obretenov, Willi; Petrov, Konstantin

    2018-03-01

    Different electrocatalysts were tested for oxidation of sulfites to sulfates, namely, manganese thin films deposited on fullerenes and carbon nanotubes. The results presented clearly show that electrodes containing HFs (higher fullerenes), DWCNTs (double-wall carbon nanotubes) and manganese acetate are effective catalysts in S/O2 fuel cells. HFs and DWCNTs have high catalytic activity and can be employed as standalone catalysts. Manganese was deposited on DWCNTs, HFs and fullerenes C60/C70 by a thermal process. The electrocatalysts were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical testing was carried out by plotting the E/V polarization curve. The polarization curves of the electrodes composed of pristine DWCNTs showed the lowest overpotentials.

  6. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms.

    PubMed

    Pilehvar, Sanaz; De Wael, Karolien

    2015-11-23

    Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.

  7. The molecular mechanism of fullerene-inhibited aggregation of Alzheimer's β-amyloid peptide fragment

    NASA Astrophysics Data System (ADS)

    Xie, Luogang; Luo, Yin; Lin, Dongdong; Xi, Wenhui; Yang, Xinju; Wei, Guanghong

    2014-07-01

    Amyloid deposits are implicated in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease (AD). The inhibition of β-sheet formation has been considered as the primary therapeutic strategy for AD. Increasing data show that nanoparticles can retard or promote the fibrillation of amyloid-β (Aβ) peptides depending on the physicochemical properties of nanoparticles, however, the underlying molecular mechanism remains elusive. In this study, our replica exchange molecular dynamics (REMD) simulations show that fullerene nanoparticle - C60 (with a fullerene : peptide molar ratio greater than 1 : 8) can dramatically prevent β-sheet formation of Aβ(16-22) peptides. Atomic force microscopy (AFM) experiments further confirm the inhibitory effect of C60 on Aβ(16-22) fibrillation, in support of our REMD simulations. An important finding from our REMD simulations is that fullerene C180, albeit with the same number of carbon atoms as three C60 molecules (3C60) and smaller surface area than 3C60, displays an unexpected stronger inhibitory effect on the β-sheet formation of Aβ(16-22) peptides. A detailed analysis of the fullerene-peptide interaction reveals that the stronger inhibition of β-sheet formation by C180 results from the strong hydrophobic and aromatic-stacking interactions of the fullerene hexagonal rings with the Phe rings relative to the pentagonal rings. The strong interactions between the fullerene nanoparticles and Aβ(16-22) peptides significantly weaken the peptide-peptide interaction that is important for β-sheet formation, thus retarding Aβ(16-22) fibrillation. Overall, our studies reveal the significant role of fullerene hexagonal rings in the inhibition of Aβ(16-22) fibrillation and provide novel insight into the development of drug candidates against Alzheimer's disease.Amyloid deposits are implicated in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease (AD). The inhibition of β-sheet formation has been considered as the primary therapeutic strategy for AD. Increasing data show that nanoparticles can retard or promote the fibrillation of amyloid-β (Aβ) peptides depending on the physicochemical properties of nanoparticles, however, the underlying molecular mechanism remains elusive. In this study, our replica exchange molecular dynamics (REMD) simulations show that fullerene nanoparticle - C60 (with a fullerene : peptide molar ratio greater than 1 : 8) can dramatically prevent β-sheet formation of Aβ(16-22) peptides. Atomic force microscopy (AFM) experiments further confirm the inhibitory effect of C60 on Aβ(16-22) fibrillation, in support of our REMD simulations. An important finding from our REMD simulations is that fullerene C180, albeit with the same number of carbon atoms as three C60 molecules (3C60) and smaller surface area than 3C60, displays an unexpected stronger inhibitory effect on the β-sheet formation of Aβ(16-22) peptides. A detailed analysis of the fullerene-peptide interaction reveals that the stronger inhibition of β-sheet formation by C180 results from the strong hydrophobic and aromatic-stacking interactions of the fullerene hexagonal rings with the Phe rings relative to the pentagonal rings. The strong interactions between the fullerene nanoparticles and Aβ(16-22) peptides significantly weaken the peptide-peptide interaction that is important for β-sheet formation, thus retarding Aβ(16-22) fibrillation. Overall, our studies reveal the significant role of fullerene hexagonal rings in the inhibition of Aβ(16-22) fibrillation and provide novel insight into the development of drug candidates against Alzheimer's disease. Electronic supplementary information (ESI) available: The description of REMD simulations, analysis parameters, and AFM imaging of Aβ(16-22) aggregation with and without C60 nanoparticles, and three figures. The figures show the initial states, the convergence check for all the REMD runs, the PDF of the centroid distance (d) between the aromatic rings of Phe and its closest carbon ring, and the PDF of the angle between the two rings with a centroid distance of d <= 0.65 nm. See DOI: 10.1039/c4nr01005a

  8. Development of a ReaxFF Potential for Carbon Condensed Phases and Its Application to the Thermal Fragmentation of a Large Fullerene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivasan, Sriram Goverapet; van Duin, Adri C. T.; Ganesh, P.

    2015-01-20

    In this article, we report the development of a ReaxFF reactive potential that can accurately describe the chemistry and dynamics of carbon condensed phases. Density functional theory (DFT)-based calculations were performed to obtain the equation of state for graphite and diamond and the formation energies of defects in graphene and amorphous phases from fullerenes. The DFT data were used to reparametrize ReaxFFCHO, resulting in a new potential called ReaxFFC-2013. ReaxFFC-2013 accurately predicts the atomization energy of graphite and closely reproduces the DFT-based energy difference between graphite and diamond, and the barrier for transition from graphite to diamond. ReaxFFC-2013 also accuratelymore » predicts the DFT-based energy barrier for Stone–Wales transformation in a C60(Ih) fullerene through the concerted rotation of a C2 unit. Later, MD simulations of a C180 fullerene using ReaxFFC-2013 suggested that the thermal fragmentation of these giant fullerenes is an exponential function of time. An Arrhenius-type equation was fit to the decay rate, giving an activation energy of 7.66 eV for the loss of carbon atoms from the fullerene. Although the decay of the molecule occurs primarily via the loss of C2 units, we observed that, with an increase in temperature, the probability of loss of larger fragments increases. The ReaxFFC-2013 potential developed in this work, and the results obtained on fullerene fragmentation, provide an important step toward the full computational chemical modeling of coal pyrolysis, soot incandescence, high temperature erosion of graphitic rocket nozzles, and ablation of carbon-based spacecraft materials during atmospheric reentry.« less

  9. Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene

    DOE PAGES

    Srinivasan, Sriram Goverapet; Adri C. T. van Duin; Ganesh, Panchapakesan

    2015-01-06

    In this paper, we report the development of a ReaxFF reactive potential that can accurately describe the chemistry and dynamics of carbon condensed phases. Density functional theory (DFT)-based calculations were performed to obtain the equation of state for graphite and diamond and the formation energies of defects in graphene and amorphous phases from fullerenes. The DFT data were used to reparametrize ReaxFF CHO, resulting in a new potential called ReaxFF C-2013. ReaxFF C-2013 accurately predicts the atomization energy of graphite and closely reproduces the DFT-based energy difference between graphite and diamond, and the barrier for transition from graphite to diamond.more » ReaxFF C-2013 also accurately predicts the DFT-based energy barrier for Stone–Wales transformation in a C 60(I h) fullerene through the concerted rotation of a C 2 unit. Later, MD simulations of a C 180 fullerene using ReaxFF C-2013 suggested that the thermal fragmentation of these giant fullerenes is an exponential function of time. An Arrhenius-type equation was fit to the decay rate, giving an activation energy of 7.66 eV for the loss of carbon atoms from the fullerene. Although the decay of the molecule occurs primarily via the loss of C 2 units, we observed that, with an increase in temperature, the probability of loss of larger fragments increases. Finally, the ReaxFF C-2013 potential developed in this work, and the results obtained on fullerene fragmentation, provide an important step toward the full computational chemical modeling of coal pyrolysis, soot incandescence, high temperature erosion of graphitic rocket nozzles, and ablation of carbon-based spacecraft materials during atmospheric reentry.« less

  10. Co-exposure with fullerene may strengthen health effects of organic industrial chemicals.

    PubMed

    Lehto, Maili; Karilainen, Topi; Róg, Tomasz; Cramariuc, Oana; Vanhala, Esa; Tornaeus, Jarkko; Taberman, Helena; Jänis, Janne; Alenius, Harri; Vattulainen, Ilpo; Laine, Olli

    2014-01-01

    In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water.

  11. Low energy ion irradiation studies of fullerene C70 thin films - An emphasis on mapping the local structure modifications

    NASA Astrophysics Data System (ADS)

    Singhal, Rahul; Bhardwaj, Jyotsna; Vishnoi, Ritu; Aggarwal, S.; Sharma, Ganesh D.; Pivin, J. C.

    2018-06-01

    Metal matrix composites have a diverse range of applications. We have probed local structural modifications taking fullerene C70 as a model matrix material. In this study, thin films of fullerene C70 were grown on polished silicon and quartz substrates by resistive heating of fullerene C70. In order to understand local structural changes, these semi-crystalline films were irradiated with 120 keV N+ ions at different fluences ranging from 1 × 1013 to 3 × 1016 ions.cm-2. Microscopic analysis shows an increase in topological roughness up to a fluence of 1 × 1015 ions.cm-2 and then a decrease. The size of the particles decreases with increase in the fluence. Various spectroscopic analyses conducted on differently irradiated fullerene C70 films show that the bandgap decreases with the increase in the fluence which will increase the conductivity of the irradiated thin films. These results are proved by I-V measurements showing the decrease in the resistivity at higher fluences. Therefore, this characteristic trait makes fullerene C70 to be used as a prominent matrix component in the composites. Raman spectroscopic investigations reveal that C70 is completely transformed into amorphous carbon at a fluence of 3 × 1016 ions.cm-2. Different vibrational modes in FT-IR are also reported in the present work.

  12. Carbon based thirty six atom spheres

    DOEpatents

    Piskoti, Charles R.; Zettl, Alex K.; Cohen, Marvin L.; Cote, Michel; Grossman, Jeffrey C.; Louie, Steven G.

    2005-09-06

    A solid phase or form of carbon is based on fullerenes with thirty six carbon atoms (C.sub.36). The C.sub.36 structure with D.sub.6h symmetry is one of the two most energetically favorable, and is conducive to forming a periodic system. The lowest energy crystal is a highly bonded network of hexagonal planes of C.sub.36 subunits with AB stacking. The C.sub.36 solid is not a purely van der Waals solid, but has covalent-like bonding, leading to a solid with enhanced structural rigidity. The solid C.sub.36 material is made by synthesizing and selecting out C.sub.36 fullerenes in relatively large quantities. A C.sub.36 rich fullerene soot is produced in a helium environment arc discharge chamber by operating at an optimum helium pressure (400 torr). The C.sub.36 is separated from the soot by a two step process. The soot is first treated with a first solvent, e.g. toluene, to remove the higher order fullerenes but leave the C.sub.36. The soot is then treated with a second solvent, e.g. pyridine, which is more polarizable than the first solvent used for the larger fullerenes. The second solvent extracts the C.sub.36 from the soot. Thin films and powders can then be produced from the extracted C.sub.36. Other materials are based on C.sub.36 fullerenes, providing for different properties.

  13. Potentiometric Urea Biosensor Based on an Immobilised Fullerene-Urease Bio-Conjugate

    PubMed Central

    Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid

    2013-01-01

    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10−3 M to 8.28 × 10−5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days. PMID:24322561

  14. Electronic excitation induced modifications of structural, electrical and optical properties of Cu-C60 nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Inani, H.; Singhal, R.; Sharma, P.; Vishnoi, R.; Ojha, S.; Chand, S.; Sharma, G. D.

    2017-09-01

    High energy ion irradiation significantly affects the size and shape of nanoparticles in composites. Low concentration metal fraction embedded in fullerene matrix in form of nanocomposites was synthesized by thermal co-evaporation method. Swift heavy ion irradiation was performed with 120 MeV Au ion beam on Cu-C60 nanocomposites at different fluences 1 × 1012, 3 × 1012, 6 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. Absorption spectra demonstrated that absorption intensity of nanocomposite thin film was increased whereas absorption modes of fullerene C60 were diminished with fluence. Rutherford backscattering spectroscopy was also performed to estimate the thickness of the film and atomic metal fraction in matrix and found to be 45 nm and 3%, respectively. Transmission electron microscopy was performed for structural and particle size evaluation of Cu nanoparticles (NPs) in fullerene C60 matrix. A growth of Cu nanoparticles is observed at a fluence of 3 × 1013 ions/cm2 with a bi-modal distribution in fullerene C60. Structural evolution of fullerene C60 matrix with increasing fluence of 120 MeV Au ion beam is studied by Raman spectroscopy which shows the amorphization of matrix (fullerene C60) at lower fluence. The growth of Cu nanoparticles is explained using the phenomena of Ostwald ripening.

  15. Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate.

    PubMed

    Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid

    2013-12-06

    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.

  16. Hierarchical Nanomorphologies Promote Exciton Dissociation in Polymer: Fullerene Bulk Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Darling, Seth

    2012-02-01

    In the last fifteen years, research efforts have led to organic photovoltaic (OPV) devices with power conversion efficiencies (PCEs) up to ˜8%, but these values are still insufficient for the devices to become widely marketable. To further improve solar cell performance a thorough understanding of the complex structure-property relationships in the OPV devices is required. In this work, we demonstrated that the OPV active layer of PTB7:fullerene bulk heterojunction (BHJ) solar cells, which set a historic record of PCE (7.4%), involves hierarchical nanomorphologies ranging from several nanometers of crystallites to tens of nanometers of nanocrystallite aggregates in PTB7-rich and fullerene-rich domains, themselves hundreds of nanometers in size. These hierarchical nanomorphologies with optimum crystallinity and intermixing of PTB7 with fullerenes are coupled to significantly enhanced exciton dissociation, which consequently contribute to photocurrent, leading to the superior performance of PTB7:fullerene BHJ solar cells. New insights of performance-related structures afforded by the current study should aid in the rational design of even higher performance polymeric solar cells.

  17. Inorganic nanotubes and fullerene-like nanoparticles.

    PubMed

    Tenne, R

    2006-11-01

    Although graphite, with its anisotropic two-dimensional lattice, is the stable form of carbon under ambient conditions, on nanometre length scales it forms zero- and one-dimensional structures, namely fullerenes and nanotubes, respectively. This virtue is not limited to carbon and, in recent years, fullerene-like structures and nanotubes have been made from numerous compounds with layered two-dimensional structures. Furthermore, crystalline and polycrystalline nanotubes of pure elements and compounds with quasi-isotropic (three-dimensional) unit cells have also been synthesized, usually by making use of solid templates. These findings open up vast opportunities for the synthesis and study of new kinds of nanostructures with properties that may differ significantly from the corresponding bulk materials. Various potential applications have been proposed for the inorganic nanotubes and the fullerene-like phases. Fullerene-like nanoparticles have been shown to exhibit excellent solid lubrication behaviour, suggesting many applications in, for example, the automotive and aerospace industries, home appliances, and recently for medical technology. Various other potential applications, in catalysis, rechargeable batteries, drug delivery, solar cells and electronics have also been proposed.

  18. Morphology Control for Fully Printable Organic-Inorganic Bulk-heterojunction Solar Cells Based on a Ti-alkoxide and Semiconducting Polymer.

    PubMed

    Kato, Takehito; Oinuma, Chihiro; Otsuka, Munechika; Hagiwara, Naoki

    2017-01-10

    The photoactive layer of a typical organic thin-film bulk-heterojunction (BHJ) solar cell commonly uses fullerene derivatives as the electron-accepting material. However, fullerene derivatives are air-sensitive; therefore, air-stable material is needed as an alternative. In the present study, we propose and describe the properties of Ti-alkoxide as an alternative electron-accepting material to fullerene derivatives to create highly air-stable BHJ solar cells. It is well-known that controlling the morphology in the photoactive layer, which is constructed with fullerene derivatives as the electron acceptor, is important for obtaining a high overall efficiency through the solvent method. The conventional solvent method is useful for high-solubility materials, such as fullerene derivatives. However, for Ti-alkoxides, the conventional solvent method is insufficient, because they only dissolve in specific solvents. Here, we demonstrate a new approach to morphology control that uses the molecular bulkiness of Ti-alkoxides without the conventional solvent method. That is, this method is one approach to obtain highly efficient, air-stable, organic-inorganic bulk-heterojunction solar cells.

  19. Inorganic nanotubes and fullerene-like nanoparticles

    NASA Astrophysics Data System (ADS)

    Tenne, R.

    2006-11-01

    Although graphite, with its anisotropic two-dimensional lattice, is the stable form of carbon under ambient conditions, on nanometre length scales it forms zero- and one-dimensional structures, namely fullerenes and nanotubes, respectively. This virtue is not limited to carbon and, in recent years, fullerene-like structures and nanotubes have been made from numerous compounds with layered two-dimensional structures. Furthermore, crystalline and polycrystalline nanotubes of pure elements and compounds with quasi-isotropic (three-dimensional) unit cells have also been synthesized, usually by making use of solid templates. These findings open up vast opportunities for the synthesis and study of new kinds of nanostructures with properties that may differ significantly from the corresponding bulk materials. Various potential applications have been proposed for the inorganic nanotubes and the fullerene-like phases. Fullerene-like nanoparticles have been shown to exhibit excellent solid lubrication behaviour, suggesting many applications in, for example, the automotive and aerospace industries, home appliances, and recently for medical technology. Various other potential applications, in catalysis, rechargeable batteries, drug delivery, solar cells and electronics have also been proposed.

  20. C60 fullerene binding to DNA

    NASA Astrophysics Data System (ADS)

    Alshehri, Mansoor H.; Cox, Barry J.; Hill, James M.

    2014-09-01

    Fullerenes have attracted considerable attention in various areas of science and technology. Owing to their exceptional physical, chemical, and biological properties, they have many applications, particularly in cosmetic and medical products. Using the Lennard-Jones 6-12 potential function and the continuum approximation, which assumes that intermolecular interactions can be approximated by average atomic surface densities, we determine the binding energies of a C60 fullerene with respect to both single-strand and double-strand DNA molecules. We assume that all configurations are in a vacuum and that the C60 fullerene is initially at rest. Double integrals are performed to determine the interaction energy of the system. We find that the C60 fullerene binds to the double-strand DNA molecule, at either the major or minor grooves, with binding energies of -4.7 eV or -2.3 eV, respectively, and that the C60 molecule binds to the single-strand DNA molecule with a binding energy of -1.6 eV. Our results suggest that the C60 molecule is most likely to be linked to the major groove of the dsDNA molecule.

  1. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms

    PubMed Central

    Pilehvar, Sanaz; De Wael, Karolien

    2015-01-01

    Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing. PMID:26610583

  2. Photophysical properties of fullerene-dendron-pyropheophorbide supramolecules

    NASA Astrophysics Data System (ADS)

    Ermilov, E. A.; Al-Omari, S.; Helmreich, M.; Jux, N.; Hirsch, A.; Röder, B.

    2004-05-01

    Two novel monofullerene-bis(pyropheophorbide a) complexes were synthesized and their photophysical properties were studied by using both steady-state and time-resolved techniques. It was revealed that in the pyropheophorbide a (pyroPheo)-C 60 molecular system (FP1) strong quenching of the first excited singlet state of the pyroPheo and, as result, dramatically decreasing of photosensitized singlet oxygen generation occurs by efficient photoinduced electron transfer to the fullerene molecule with a rate constant of 2.5 × 10 9 s -1. In contrast, the fullerene hexaadduct-bis(pyroPheo) system (FHP1), which possesses five diethyl malonate addends in the remaining octahedral positions, shows a high singlet oxygen quantum yield which is due to the reduced fullerene chromophore which is not a good electron acceptor anymore.

  3. Open-cage Fullerene-like Graphitic Carbons as Catalysts for Oxidative Dehydrogenation of Isobutane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Chengdu; Xie, Hong; Schwartz, Viviane

    We report herein a facile synthesis of fullerene-like cages, which can be opened and closed through simple thermal treatments. A glassy carbon with enclosed fullerene-like cages of 2-3 nm was synthesized through a soft-template approach that created open mesopores of 7 nm. The open mesopores provided access to the fullerene-like cages, which were opened and closed through heat treatments in air and inert gas at various temperatures. Catalytic measurements showed that the open cages displayed strikingly higher activity for the oxidative dehydrogenation of isobutane in comparison to the close ones. We anticipate that this synthesis approach could unravel an avenuemore » for pursuing fundamental understanding of the unique catalytic properties of graphitic carbon nanostructures.« less

  4. B 36N 36 fullerene-like nanocages: A novel material for drug delivery

    NASA Astrophysics Data System (ADS)

    Ganji, M. D.; Yazdani, H.; Mirnejad, A.

    2010-07-01

    We study interaction between B 36N 36 fullerene-like nanocage and glycine amino acid from the first- principles. Binding energy is calculated and glycine binding to the pure C 60 fullerene is compared. We also analyze the electronic structure and charge Mulliken population for the energetically most favorable complexes. Our results indicate that glycine can form stable bindings with B 36N 36 nanocage via their carbonyl oxygen (O) active site while, the C 60 fullerene might be unable to form stable bindings to glycine amino acid via their active sites, which is consistence with recent experimental and theoretical investigations. Thus, we arrive at the prediction that the B 36N 36 nanocage can be implemented as a novel material for drug delivery applications.

  5. Mechanical properties of fullerite of various composition

    NASA Astrophysics Data System (ADS)

    Rysaeva, L. Kh.

    2017-12-01

    Molecular dynamics simulation is used to study the structures of fullerite of various composition as well as their mechanical properties. Fullerites based on fullerene C60 with simple cubic and face-centered packing, fullerene-like molecule C48 and fullerene C240 with simple cubic packing are studied. Compliance and stiffness coefficients are calculated for fullerites C60 and C48. For fullerite C240, C60, and C48, deformation behavior under the effect of hydrostatic compression is also investigated. It is shown that the fullerenes in the fullerite remain almost spherical up to high values of compressive strain, as a result of which the fullerite is an elastic medium up to densities of 2.5 g/cm3. The increasing stiffness and strength under an applied compression is found for all the considered fullerites.

  6. In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.

    PubMed

    Ganguly, Gaurab; Malakar, Tanmay; Paul, Ankan

    2016-06-22

    Using well calibrated DFT studies we predict that experimentally synthesized B24 N24 fullerene can serve as a potential reversible chemical hydrogen storage material with hydrogen-gas storage capacity up to 5.13 wt %. Our theoretical studies show that hydrogenation and dehydrogenation of the fullerene framework can be achieved at reasonable rates using existing metal-free hydrogenating agents and base metal-containing dehydrogenation catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Spectral properties of singlet-oxygen luminescence in the IR Region at the 1Δ g → 3Σ g transition in the presence of fullerene as a photosensitizer

    NASA Astrophysics Data System (ADS)

    Kiselev, V. M.; Bagrov, I. V.

    2017-10-01

    The spectral properties of singlet-oxygen luminescence at the 1Δ g → 3Σ g transition observed using fullerene as a photosensitizer are analyzed. It is shown that the use of C60 and C70 fullerenes for singlet-oxygen generation exhibits all the main spectral regularities observed for other photosensitizers. The results of investigations in this field are summarized.

  8. Transmutation of fullerenes.

    PubMed

    Cross, R James; Saunders, Martin

    2005-03-09

    Fullerenes were pyrolyzed by subliming them into a stream of flowing argon gas and then passing them through an oven heated to approximately 1000 degrees C. C(76), C(78), and C(84) all readily lost carbons to form smaller fullerenes. In the case of C(78), some isomerization was seen. Pyrolysis of (3)He@C(76) showed that all or most of the (3)He was lost during the decomposition. C(60) passes through the apparatus with no decomposition and no loss of helium.

  9. Nanomorphology Characteristics of Thermally Annealed Pre Encapsulated P3HT:PCBM Thin Films Using Atomic Force Microscopy

    DTIC Science & Technology

    2014-10-30

    fib- rils aggregate in bundles with the fullerene as the anneal- ing temperature increases. This bundle formation or grain features could indicate a...the diffusion lengths of charge carriers (∼10 nm). Past work on these fullerene networks have shown that trap distribution in devices is broader for...aver- age distance between polymer and fullerene molecules. The size of crystallites perhaps reach an upper limit in the range of 150 "C; beyond this

  10. Energy Spectrum and Optical Absorption of Isomer No. 11 of C84 Fullerene of C 2 Symmetry Within the Hubbard Model

    NASA Astrophysics Data System (ADS)

    Murzashev, A. I.; Rumyantsev, I. A.

    2018-05-01

    Energy spectrum of isomer No. 11 of C84 fullerene of C2 symmetry is calculated within the Hubbard model. Based on the obtained energy spectrum, the optical absorption spectrum is modeled taking into account not only allowed, but also forbidden symmetry transitions. Good qualitative agreement with the experimental data is obtained. This suggests that when studying fullerenes, the intra-site Coulomb interaction of electrons must be taken into account.

  11. Fabrication of nylon/fullerene polymer memory

    NASA Astrophysics Data System (ADS)

    Jayan, Manuvel; Davis, Rosemary; Karthik, M. P.; Devika, K.; Kumar, G. Vijay; Sriraj, B.; Predeep, P.

    2017-06-01

    Two terminal Organic memories in passive matrix array form with device structure, Al/Nylon/ (Nylon+C60)/Nylon/ Al are fabricated. The current-voltage measurements showed hysteresis and the devices are thoroughly characterized for write-read-erase-read cycles. The control over the dispersion concentration, capacity of fullerene to readily accept electrons and the constant diameter of fullerene made possible uniform device fabrication with reproducible results. Scanning electron micrographs indicated that the device thickness remained uniform in the range of 19 micrometers.

  12. Polynuclear aromatic hydrocarbons for fullerene synthesis in flames

    DOEpatents

    Alford, J. Michael; Diener, Michael D.

    2006-12-19

    This invention provides improved methods for combustion synthesis of carbon nanomaterials, including fullerenes, employing multiple-ring aromatic hydrocarbon fuels selected for high carbon conversion to extractable fullerenes. The multiple-ring aromatic hydrocarbon fuels include those that contain polynuclear aromatic hydrocarbons. More specifically, multiple-ring aromatic hydrocarbon fuels contain a substantial amount of indene, methylnapthalenes or mixtures thereof. Coal tar and petroleum distillate fractions provide low cost hydrocarbon fuels containing polynuclear aromatic hydrocarbons, including without limitation, indene, methylnapthalenes or mixtures thereof.

  13. Photophysical characterization of a cytidine-guanosine tethered phthalocyanine-fullerene dyad.

    PubMed

    Torres, Tomas; Gouloumis, Andreas; Sanchez-Garcia, David; Jayawickramarajah, Janarthanan; Seitz, Wolfgang; Guldi, Dirk M; Sessler, Jonathan L

    2007-01-21

    A new non-covalent electron transfer model system, based on the use of cytidine-guanosine hydrogen bonding interactions, is described that incorporates a phthalocyanine photodonor and a C60 fullerene acceptor.

  14. Computational modeling of the effective Young's modulus values of fullerene molecules: a combined molecular dynamics simulation and continuum shell model.

    PubMed

    Ghavanloo, Esmaeal; Izadi, Razie; Nayebi, Ali

    2018-02-28

    Estimating the Young's modulus of a structure in the nanometer size range is a difficult task. The reliable determination of this parameter is, however, important in both basic and applied research. In this study, by combining molecular dynamics (MD) simulations and continuum shell theory, we designed a new approach to determining the Young's modulus values of different spherical fullerenes. The results indicate that the Young's modulus values of fullerene molecules decrease nonlinearly with increasing molecule size and understandably tend to the Young's modulus of an ideal flat graphene sheet at large molecular radii. To the best of our knowledge, this is first time that a combined atomistic-continuum method which can predict the Young's modulus values of fullerene molecules with high precision has been reported.

  15. A magnetic resonance study of MoS(2) fullerene-like nanoparticles.

    PubMed

    Panich, A M; Shames, A I; Rosentsveig, R; Tenne, R

    2009-09-30

    We report on the first nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) investigation of inorganic fullerene-like MoS(2) nanoparticles. Spectra of bulk 2H-MoS(2) samples have also been measured for comparison. The similarity between the measured quadrupole coupling constants and chemical shielding anisotropy parameters for bulk and fullerene-like MoS(2) reflects the nearly identical local crystalline environments of the Mo atoms in these two materials. EPR measurements show that fullerene-like MoS(2) exhibits a larger density of dangling bonds carrying unpaired electrons, indicative of them having a more defective structure than the bulk sample. The latter observation explains the increase in the spin-lattice relaxation rate observed in the NMR measurements for this sample in comparison with the bulk 2H- MoS(2) ones.

  16. A magnetic resonance study of MoS2 fullerene-like nanoparticles

    NASA Astrophysics Data System (ADS)

    Panich, A. M.; Shames, A. I.; Rosentsveig, R.; Tenne, R.

    2009-09-01

    We report on the first nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) investigation of inorganic fullerene-like MoS2 nanoparticles. Spectra of bulk 2H-MoS2 samples have also been measured for comparison. The similarity between the measured quadrupole coupling constants and chemical shielding anisotropy parameters for bulk and fullerene-like MoS2 reflects the nearly identical local crystalline environments of the Mo atoms in these two materials. EPR measurements show that fullerene-like MoS2 exhibits a larger density of dangling bonds carrying unpaired electrons, indicative of them having a more defective structure than the bulk sample. The latter observation explains the increase in the spin-lattice relaxation rate observed in the NMR measurements for this sample in comparison with the bulk 2H- MoS2 ones.

  17. Fullerene nanoparticle in dermatological and cosmetic applications.

    PubMed

    Mousavi, S Zeinab; Nafisi, Shohreh; Maibach, Howard I

    2017-04-01

    Nanoparticles are equipped with exceptional properties which make them well suitable for diverse and novel applications. Fullerene is one of the nanomaterials that has valuable applications in the field of biomedicine. It possesses exceptional antioxidant capacity which has made it a promising core ingredient in many dermatological and skin care products. However, fullerene has the potentials to display a range of activities resulting in cell death or dysfunction. This review outlines the achievements made so far by reporting studies that have focused on incorporating fullerene in skin care products and cosmetics and assessed their beneficial effects. We have also documented reports that have assessed toxicity of this novel carbon allotrope toward skin cells and discussed its possible dermal reactions. Aside from pointing out the recent developments, areas that can benefit from further researches are identified. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Computational quest for spherical C12B68 fullerenes with "magic" π-electrons and quasi-planar tetra-coordinated carbon.

    PubMed

    Li, Fengyu; Jiang, De-en; Chen, Zhongfang

    2014-02-01

    Inspired by the exciting properties of B80 clusters and the novel chemical bonding of planar tetra-coordinated carbon (ptC), we computationally investigated C12B68 clusters by substituting 12 boron atoms to 12 carbon in the B80 framework. Three types of C12B68 configurations, namely core-shell, boron-trapped and fullerene-like, were examined. The fullerene-like C12B68 clusters are featured with multiple quasi-planar tetra-coordinated carbon moieties; though with "magic" (72) number of electrons, they are not highly aromatic due to the limitations of Hirsch's rule for clusters with more than 50 π electrons. These C12B68 fullerenes are not global minima, but the appreciable HOMO-LUMO gaps, spherical aromaticity, and the thermal stability indicate their reasonable stabilities.

  19. C{sub 60}-dyad aggregates: Self-organized structures in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guskova, O. A., E-mail: guskova@ipfdd.de, E-mail: s.raovaranasi@uq.edu.au; Varanasi, S. R., E-mail: guskova@ipfdd.de, E-mail: s.raovaranasi@uq.edu.au; Sommer, J.-U.

    2014-10-14

    Extensive full-atomistic molecular dynamics simulations are performed to study the self-organization of C{sub 60}-fullerene dyad molecules in water, namely phenyl-C{sub 61}-butyric acid methyl ester and fulleropyrrolidines, which have two elements of ordering, the hydrophobic fullerene cage and the hydrophilic/ionic group. While pristine fullerene or phenyl-C{sub 61}-butyric acid methyl ester forms spherical droplets in order to minimize the surface tension, the amphiphilic nature of charged solute molecules leads to the formation of supramolecular assemblies having cylindrical shape driven by charge repulsion between the ionic groups located on the surface of the aggregates. We show that formation of non-spherical micelles is themore » geometrical consequence if the fullerene derivatives are considered as surfactants where the ionized groups are only hydrophilic unit. The agglomeration behavior of fullerenes is evaluated by determining sizes of the clusters, solvent accessible surface areas, and shape parameters. By changing the size of the counterions from chloride over iodide to perchlorate we find a thickening of the cylinder-like structures which can be explained by stronger condensation of larger ions and thus partial screening of the charge repulsion on the cluster surface. The reason for the size dependence of counterion condensation is the formation of a stronger hydration shell in case of small ions which in turn are repelled from the fullerene aggregates. Simulations are also in good agreement with the experimentally observed morphologies of decorated C{sub 60}-nanoparticles.« less

  20. Analyzing the adsorption of blood plasma components by means of fullerene-containing silica gels and NMR spectroscopy in solids

    NASA Astrophysics Data System (ADS)

    Melenevskaya, E. Yu.; Mokeev, M. V.; Nasonova, K. V.; Podosenova, N. G.; Sharonova, L. V.; Gribanov, A. V.

    2012-10-01

    The results from studying the adsorption of blood plasma components (e.g., protein, triglycerides, cholesterol, and lipoproteins of low and high density) using silica gels modified with fullerene molecules (in the form of C60 or the hydroxylated form of C60(OH) x ) and subjected to hydration (or, alternatively, dehydration) are presented. The conditions for preparing adsorbents that allow us to control the adsorption capacity of silica gel and the selectivity of adsorption toward the components of blood plasma, are revealed. The nature and strength of the interactions of the introduced components (fullerene molecules and water) with functional groups on the silica surface are studied by means of solid state NMR spectroscopy (NMR-SS). Conclusions regarding the nature of the centers that control adsorption are drawn on the basis of NMR-SS spectra in combination with direct measurements of adsorption. The interaction of the oxygen of the hydroxyl group of silica gel with fullerene, leading to the formation of electron-donor complexes of C60-H, C60-OH, or C60-OSi type, is demonstrated by the observed changes in the NMR-SS spectra of silica gels in the presence of fullerene.

  1. On the upper bound of the thermodynamic stability of fullerenes from small to giant

    NASA Astrophysics Data System (ADS)

    Pankratyev, Evgeniy Yu; Khatymov, Rustem V.; Sabirov, Denis Sh; Yuldashev, Arthur V.

    2018-07-01

    From the large variety of C20sbnd C720 fullerenes, the energetically most stable isomers were chosen and studied within the PBE/3ζ quantum-chemical approximation. A phenomenological model of the dependence of the standard enthalpy of formation and entropy of the selected isomers on the number of the carbon atoms is developed. From the analysis of the constants of the phenomenological model, it follows that the C60, C70, C180, and C1500 molecules hold a prominent position among the hypothetical and/or experimentally discovered fullerenes. For the selected energy-stable isomers, the values of the singlet-triplet splitting were calculated. The ground state of the C260sbnd C3, C320sbnd D3d and C500sbnd D3d molecules were found to be of triplet multiplicity that may indicate their low kinetic stability and/or possibility of existence in the derivatized forms. In view of the lack of relevant experimental thermodynamic data on fullerenes, the obtained in this work approximation dependences, expressed in a simple analytical form, may provide useful tool for fast assessing the energetic characteristics of fullerenes, as well as for prediction of those undiscovered yet.

  2. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions. A Combined EPR and DFT Study

    DOE PAGES

    Mardis, Kristy L.; Webb, J.; Holloway, Tarita; ...

    2015-12-03

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advancedmore » electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.« less

  3. Rectification of current responds to incorporation of fullerenes into mixed-monolayers of alkanethiolates in tunneling junctions.

    PubMed

    Qiu, Li; Zhang, Yanxi; Krijger, Theodorus L; Qiu, Xinkai; Hof, Patrick Van't; Hummelen, Jan C; Chiechi, Ryan C

    2017-03-01

    This paper describes the rectification of current through molecular junctions comprising self-assembled monolayers of decanethiolate through the incorporation of C 60 fullerene moieties bearing undecanethiol groups in junctions using eutectic Ga-In (EGaIn) and Au conducting probe AFM (CP-AFM) top-contacts. The degree of rectification increases with increasing exposure of the decanethiolate monolayers to the fullerene moieties, going through a maximum after 24 h. We ascribe this observation to the resulting mixed-monolayer achieving an optimal packing density of fullerene cages sitting above the alkane monolayer. Thus, the degree of rectification is controlled by the amount of fullerene present in the mixed-monolayer. The voltage dependence of R varies with the composition of the top-contact and the force applied to the junction and the energy of the lowest unoccupied π-state determined from photoelectron spectroscopy is consistent with the direction of rectification. The maximum value of rectification R = | J (+)/ J (-)| = 940 at ±1 V or 617 at ±0.95 V is in agreement with previous studies on pure monolayers relating the degree of rectification to the volume of the head-group on which the frontier orbitals are localized.

  4. Functionalized Fullerene Targeting Human Voltage-Gated Sodium Channel, hNav1.7.

    PubMed

    Hilder, Tamsyn A; Robinson, Anna; Chung, Shin-Ho

    2017-08-16

    Mutations of hNa v 1.7 that cause its activities to be enhanced contribute to severe neuropathic pain. Only a small number of hNa v 1.7 specific inhibitors have been identified, most of which interact with the voltage-sensing domain of the voltage-activated sodium ion channel. In our previous computational study, we demonstrated that a [Lys 6 ]-C 84 fullerene binds tightly (affinity of 46 nM) to Na v Ab, the voltage-gated sodium channel from the bacterium Arcobacter butzleri. Here, we extend this work and, using molecular dynamics simulations, demonstrate that the same [Lys 6 ]-C 84 fullerene binds strongly (2.7 nM) to the pore of a modeled human sodium ion channel hNa v 1.7. In contrast, the fullerene binds only weakly to a mutated model of hNa v 1.7 (I1399D) (14.5 mM) and a model of the skeletal muscle hNa v 1.4 (3.7 mM). Comparison of one representative sequence from each of the nine human sodium channel isoforms shows that only hNa v 1.7 possesses residues that are critical for binding the fullerene derivative and blocking the channel pore.

  5. Thermal decomposition of fullerene nanowhiskers protected by amorphous carbon mask

    NASA Astrophysics Data System (ADS)

    Guo, Hongxuan; Wang, Chengxiang; Miyazawa, Kun'Ichi; Wang, Hongxin; Masuda, Hideki; Fujita, Daisuke

    2016-12-01

    Fullerene nanostructures are well known for their unique morphology, physical and mechanical properties. The thermal stability of fullerene nanostructures, such as their sublimation at high temperature is also very important for studying their structures and applications. In this work, We observed fullerene nanowhiskers (FNWs) in situ with scanning helium ion microscopy (HIM) at elevated temperatures. The FNWs exhibited different stabilities with different thermal histories during the observation. The pristine FNWs were decomposed at the temperatures higher than 300 °C in a vacuum environment. Other FNWs were protected from decomposition with an amorphous carbon (aC) film deposited on the surface. Based on high spacial resolution, aC film with periodic structure was deposited by helium ion beam induced deposition (IBID) on the surface of FNWs. Annealed at the high temperature, the fullerene molecules were selectively sublimated from the FNWs. The periodic structure was formed on the surface of FNWs and observed by HIM. Monte Carlo simulation and Raman characterization proved that the morphology of the FNWs was changed by helium IBID at high temperature. This work provides a new method of fabricating artificial structure on the surface of FNWs with periodic aC film as a mask.

  6. Fullerene C{sub 70} as a p-type donor in organic photovoltaic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Taojun; Wang, Xiao-Feng, E-mail: charles1976110@hotmail.com, E-mail: zrhong@ucla.edu, E-mail: kid@yz.yamagata-u.ac.jp; Sano, Takeshi

    2014-09-01

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C{sub 70}, known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C{sub 70} layer even up to 100 nm thick in PHJ cells, suggesting the superior potentialmore » of fullerene C{sub 70} as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33 mA/cm{sup 2}, an open circuit voltage of 0.72 V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.« less

  7. Physicochemical Characterization and Thermodynamic Studies of Nanoemulsion-Based Transdermal Delivery System for Fullerene

    PubMed Central

    Basri, Mahiran; Tripathy, Minaketan; Abdul-Malek, Emilia

    2014-01-01

    Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W) nanoemulsions with particle sizes in the range of 70–160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2–1.0%, w/w) and beeswax (1–3%, w/w) in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions. PMID:25165736

  8. Fullerene-Based Symmetry in Hibiscus rosa-sinensis Pollen

    PubMed Central

    Andrade, Kleber; Guerra, Sara; Debut, Alexis

    2014-01-01

    The fullerene molecule belongs to the so-called super materials. The compound is interesting due to its spherical configuration where atoms occupy positions forming a mechanically stable structure. We first demonstrate that pollen of Hibiscus rosa-sinensis has a strong symmetry regarding the distribution of its spines over the spherical grain. These spines form spherical hexagons and pentagons. The distance between atoms in fullerene is explained applying principles of flat, spherical, and spatial geometry, based on Euclid’s “Elements” book, as well as logic algorithms. Measurements of the pollen grain take into account that the true spine lengths, and consequently the real distances between them, are measured to the periphery of each grain. Algorithms are developed to recover the spatial effects lost in 2D photos. There is a clear correspondence between the position of atoms in the fullerene molecule and the position of spines in the pollen grain. In the fullerene the separation gives the idea of equal length bonds which implies perfectly distributed electron clouds while in the pollen grain we suggest that the spines being equally spaced carry an electrical charge originating in forces involved in the pollination process. PMID:25003375

  9. The Electronic Structure of Transition Metal Coated Fullerenes

    NASA Astrophysics Data System (ADS)

    Patton, David C.; Pederson, Mark R.; Kaxiras, Efthimios

    1998-03-01

    Clusters composed of fullerene molecules with an outer shell of transition metal atoms in the composition C_60M_62 (M being a transition metal) have been produced with laser vaporisation techniques(F. Tast, N. Malinowski, S. Frank, M. Heinebrodt, I.M.L. Billas, and T. P. Martin, Z. Phys D 40), 351 (1997).. We have studied several of these very large systems with a parallel version of the all-electron NRLMOL cluster code. Optimized geometries of the metal encased fullerenes C_60Ti_62 and C_60V_62 are presented along with their HOMO-LUMO gaps, electron affinities, ionization energies, and cohesive energies. We compare the stability of these clusters to relaxed met-car structures (e.g. Ti_8C_12) and to relaxed rocksalt metal-carbide fragments (TiC)n with n=8 and 32. In addition to metal-coated fullerenes we consider the possibility of a trilayered structure consisting of a small shell of metal atoms enclosed by a metal coated fullerene. The nature of bonding in these systems is analyzed by studying the electronic charge distributions.

  10. Characterizing Fullerene Nanoparticles in Aqueous Suspensions

    EPA Science Inventory

    Studies have indicated that fullerenes can form stable colloidal suspensions in water when introduced to the aqueous phase through solvent exchange, sonication, or extended mixing. The colloidal suspensions created using these techniques have effective aqueous phase concentratio...

  11. Glycofullerenes: Sweet fullerenes vanquish viruses

    NASA Astrophysics Data System (ADS)

    Vidal, Sébastien

    2016-01-01

    Fullerene-based dendritic structures coated with 120 sugars can be made in high yields in a relatively short sequence of reactions. The mannosylated compound is shown to inhibit Ebola infection in cells more efficiently than monofullerene-based glycoclusters.

  12. Diazo compounds in the chemistry of fullerenes

    NASA Astrophysics Data System (ADS)

    Tuktarov, Airat R.; Dzhemilev, Usein M.

    2010-09-01

    Experimental and theoretical data on the reactions of different diazo compounds (diazomethane, its derivatives, cyclic diazo compounds and diazocarbonyl compounds) with fullerenes are summarized. The structures and stereochemistry of cycloadducts formed in these reactions are considered.

  13. Distance numbers and Wiener indices of IPR fullerenes with formula C10(n-2) (n ≥ 8) in analytical forms

    NASA Astrophysics Data System (ADS)

    Ghosh, Tapanendu; Mondal, Sukanya; Mondal, Swapnadeep; Mandal, Bholanath

    2018-06-01

    The IPR fullerenes C10(n-2) with n ≥ 8 have been considered for obtaining their distance numbers and hence the Wiener indices in analytical forms for both even and odd n. The distance numbers along with their patterns have been found to give the number of 13C NMR signals with their respective intensity ratios. Logarithms of Wiener indices have been found to correlate well with the band (HOMO-LUMO) gaps and resonance energies of the respective fullerenes.

  14. Fabrication of One-Dimensional Zigzag [6,6]-PhenylC61-Butyric Acid Methyl Ester Nanoribbons from Two-Dimensional Nanosheets (Open Access: Author’s Final)

    DTIC Science & Technology

    2015-09-18

    a derivative is the [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), a C60 fullerene with a chemically bonded functional group. The addition of the...functional group, on the other hand, decreases the fullerene symmetry and conse- quently affects its crystallization.8 Although growth of crystalline C60...possibility to tune the grown structures to different morphologies.8 One-dimensional fullerene (C60) struc- tures, namely, nanorods and nanoribbons, are of

  15. An electrochemical and photophysical study of a covalently linked inorganic-organic dyad.

    PubMed

    Kahnt, Axel; Heiniger, Leo-Philipp; Liu, Shi-Xia; Tu, Xiaoyan; Zheng, Zhiping; Hauser, Andreas; Decurtins, Silvio; Guldi, Dirk M

    2010-02-22

    A molecular donor-acceptor dyad comprising a hexarhenium cluster core, [Re(6)(mu(3)-Se)(8)](2+), and a fullerene moiety which are covalently linked through a pyridine ligand was synthesized and fully characterized. The electrochemical and photophysical properties are reported. The detailed study includes cyclic voltammetry, steady-state absorption and fluorescence spectroscopy, radiation chemistry and transient absorption spectroscopy. A light-induced electron transfer between the inorganic cluster moiety and the fullerene can be excluded. However, a light-induced energy transfer from the rhenium cluster to the fullerene is proposed.

  16. Generation, Characterization and Applications of Fullerenes

    NASA Astrophysics Data System (ADS)

    Liu, Shengzhong

    A contact-arc sputtering configuration has been adopted and optimized in order to generate fullerene-containing soot. Several stages of design improvements have made our equipment more effective in terms of yield and production rate. Upon modification of Wudl's Soxhlet separation procedure, we have been able to significantly speed up C_ {60} separation and higher fullerene enrichment. At least ten more separable HPLC peaks after C_ {84} have been observed for the first time. Preliminary laser desorption time of flight mass spectra suggest that our enriched higher fullerene sample possibly contains, C_{86}, C_{88}, C_ {90}, C_{92} , C_{94} and C _{96} in addition to the previously isolated smaller fullerenes C_ {60}, C_{70} , C_{76}, C _{78}(D_2), C_{78}(C_ {rm 2v}) and C_{84 }. Among these, C_{86 }, C_{88}, C_{92} show up for the first time in separable amounts and the controversial species --C_{94} appears present too. HPLC has been successfully used for high fullerene separation, pure C_{76}, C_{84} samples so far having been obtained. Fullerene decomposition (especially of higher fullerenes) in the column has been clearly identified. We defined HPLC peaks indicate that the oxidation process may follow certain "well defined" routes. A yellow epoxide band containing various oxides of C_{60 } has been extracted and characterized using mass spectrometry. Characterizations of pure C _{60} and C_{70 } include HPLC, mass spectrometry, vibrational IR and Raman spectroscopy, STM, TEM etc. Our Raman measurements completed the full assignment of C_{60 } fundamental modes and supplied more structural information on C_{70}. STM imaging supplied clear pictures of both C_ {60} and C_{70} molecular topologies. Especially for C _{70}, both the long and the short axes of the molecule have been clearly resolved. TEM observations involving imaging, diffraction and electron energy loss spectroscopy of crystalline C_{60} and C_{70} were performed. The room temperature lattice structure of C _{70} was determined for the first time. C_{60} single crystals have been obtained from cyclohexane solution and X-ray diffraction has been successfully employed. Diffraction data sets collected with three crystals at different temperatures show that at these temperatures the molecules are statistically distributed in two molecular orientations within the cubic lattice. Fullerenes have been applied for diamond nucleation and second-harmonic generation. We have discovered that activated fullerenes, especially C_{70 } can be used as diamond nucleation sites on non-diamond substrates. A speculative diamond nucleation model is proposed which may provide a means of better understanding the mechanism of diamond nucleation. The second harmonic generation intensity of C_{60} thin films has been measured as a function of film temperature and poling field voltage. The largest value of chi_sp{rm pol} {(2)} is about fifteen times larger than that of quartz.

  17. Sequential Processing for Organic Photovoltaics: Design Rules for Morphology Control by Tailored Semi-Orthogonal Solvent Blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguirre, Jordan C.; Hawks, Steven A.; Ferreira, Amy S.

    2015-03-18

    Design rules are presented for significantly expanding sequential processing (SqP) into previously inaccessible polymer:fullerene systems by tailoring binary solvent blends for fullerene deposition. Starting with a base solvent that has high fullerene solubility, 2-chlorophenol (2-CP), ellipsometry-based swelling experiments are used to investigate different co-solvents for the fullerene-casting solution. By tuning the Flory-Huggins χ parameter of the 2-CP/co-solvent blend, it is possible to optimally swell the polymer of interest for fullerene interdiffusion without dissolution of the polymer underlayer. In this way solar cell power conversion efficiencies are obtained for the PTB7 (poly[(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)(3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl)]) and PC61BM (phenyl-C61-butyric acid methyl ester) materials combination thatmore » match those of blend-cast films. Both semicrystalline (e.g., P3HT (poly(3-hexylthiophene-2,5-diyl)) and entirely amorphous (e.g., PSDTTT (poly[(4,8-di(2-butyloxy)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)-alt-(2,5-bis(4,4'-bis(2-octyl)dithieno[3,2-b:2'3'-d]silole-2,6-diyl)thiazolo[5,4-d]thiazole)]) conjugated polymers can be processed into highly efficient photovoltaic devices using the solvent-blend SqP design rules. Grazing-incidence wide-angle x-ray diffraction experiments confirm that proper choice of the fullerene casting co-solvent yields well-ordered interdispersed bulk heterojunction (BHJ) morphologies without the need for subsequent thermal annealing or the use of trace solvent additives (e.g., diiodooctane). The results open SqP to polymer/fullerene systems that are currently incompatible with traditional methods of device fabrication, and make BHJ morphology control a more tractable problem.« less

  18. Harnessing Structure-Property Relationships for Poly(alkyl thiophene)-Fullerene Derivative Thin Filmsto Optimize Performance in Photovoltaic Devices

    DOE PAGES

    Deb, Nabankur; Li, Bohao; Skoda, Maximilian; ...

    2016-02-08

    Nanoscale bulk heterojunction (BHJ) systems, consisting of fullerenes dispersed in conjugated polymers as the active component, have been actively studied over the last decades in order to produce high performance organic photovoltaics (OPVs). A significant role in device efficiency is played by the active layer morphology, but despite considerable study, a full understanding of the exact role that morphology plays and therefore a definitive method to produce and control an ideal morphology is lacking. In order to understand the BHJ phase behavior and associated morphology in these devices, we have used neutron reflection, together with grazing incidence X-ray and neutronmore » scattering and X-ray photoelectron spectroscopy (XPS) to determine the morphology of the BHJ active layer in functional devices. We have studied nine model BHJ systems based on mixtures of three poly(3-alkyl thiophenes, P3AT) (A=butyl, hexyl, octyl) blended with three different fullerene derivatives, which provides variations in crystallinity and miscibility within the BHJ composite. In studying properties of functional devices, we show a direct correlation between the observed morphology within the BHJ layer and the device performance metrics, i.e., the short-circuit current (J SC), fill factor (FF), open-circuit voltage (VOC) and overall power conversion efficiency (PCE). Using these model systems, the effect of typical thermal annealing processes on the BHJ morphology through the film thickness as a function of the polythiophene-fullerene mixtures and different electron transport layer interfaces has been determined. It is shown that fullerene enrichment occurs at both the electrode interfaces after annealing. The degree of fullerene enrichment is found to strongly correlate with J SC and to a lesser degree with FF. Finally, based on these findings we demonstrate that by deliberately adding a fullerene layer at the electron transport layer interface, J SC can be increased by up to 20%, resulting in an overall increase in PCE of 5%.« less

  19. From C60 to Infinity: Large-Scale Quantum Chemistry Calculations of the Heats of Formation of Higher Fullerenes.

    PubMed

    Chan, Bun; Kawashima, Yukio; Katouda, Michio; Nakajima, Takahito; Hirao, Kimihiko

    2016-02-03

    We have carried out large-scale computational quantum chemistry calculations on the K computer to obtain heats of formation for C60 and some higher fullerenes with the DSD-PBE-PBE/cc-pVQZ double-hybrid density functional theory method. Our best estimated values are 2520.0 ± 20.7 (C60), 2683.4 ± 17.7 (C70), 2862.0 ± 18.5 (C76), 2878.8 ± 13.3 (C78), 2946.4 ± 14.5 (C84), 3067.3 ± 15.4 (C90), 3156.6 ± 16.2 (C96), 3967.7 ± 33.4 (C180), 4364 (C240) and 5415 (C320) kJ mol(-1). In our assessment, we also find that the B3-PW91-D3BJ and BMK-D3(BJ) functionals perform reasonably well. Using the convergence behavior for the calculated per-atom heats of formation, we obtained the formula ΔfH per carbon = 722n(-0.72) + 5.2 kJ mol(-1) (n = the number of carbon atoms), which enables an estimation of ΔfH for higher fullerenes more generally. A slow convergence to the graphene limit is observed, which we attribute to the relatively small proportion of fullerene carbons that are in "low-strain" regions. We further propose that it would take tens, if not hundreds, of thousands of carbons for a fullerene to roughly approach the limit. Such a distinction may be a contributing factor to the discrete properties between the two types of nanomaterials. During the course of our study, we also observe a fairly reliable means for the theoretical calculation of heats of formation for medium-sized fullerenes. This involves the use of isodesmic-type reactions with fullerenes of similar sizes to provide a good balance of the chemistry and to minimize the use of accompanying species.

  20. Color rendering based on a plasmon fullerene cavity.

    PubMed

    Tsai, Fu-Cheng; Weng, Cheng-Hsi; Chen, Yu Lim; Shih, Wen-Pin; Chang, Pei-Zen

    2018-04-16

    Fullerene in the plasmon fullerene cavity is utilized to propagate plasmon energy in order to break the confinement of the plasmonic coupling effect, which relies on the influential near-field optical region. It acts as a plasmonic inductor for coupling gold nano-islands to the gold film; the separation distances of the upper and lower layers are longer than conventional plasmonic cavities. This coupling effect causes the discrete and continuum states to cooperate together in a cavity and produces asymmetric curve lines in the spectra, producing a hybridized resonance. The effect brings about a bright and saturated displaying film with abundant visible colors. In addition, the reflection spectrum is nearly omnidirectional, shifting by only 5% even when the incident angle changes beyond ± 60°. These advantages allow plasmon fullerene cavities to be applied to reflectors, color filters, visible chromatic sensors, and large-area display.

  1. Analysis of Co-Tunneling Current in Fullerene Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    KhademHosseini, Vahideh; Dideban, Daryoosh; Ahmadi, MohammadTaghi; Ismail, Razali

    2018-05-01

    Single-electron transistors (SETs) are nano devices which can be used in low-power electronic systems. They operate based on coulomb blockade effect. This phenomenon controls single-electron tunneling and it switches the current in SET. On the other hand, co-tunneling process increases leakage current, so it reduces main current and reliability of SET. Due to co-tunneling phenomenon, main characteristics of fullerene SET with multiple islands are modelled in this research. Its performance is compared with silicon SET and consequently, research result reports that fullerene SET has lower leakage current and higher reliability than silicon counterpart. Based on the presented model, lower co-tunneling current is achieved by selection of fullerene as SET island material which leads to smaller value of the leakage current. Moreover, island length and the number of islands can affect on co-tunneling and then they tune the current flow in SET.

  2. Enhanced Efficiency in Fullerene-Free Polymer Solar Cell by Incorporating Fine-designed Donor and Acceptor Materials.

    PubMed

    Ye, Long; Sun, Kai; Jiang, Wei; Zhang, Shaoqing; Zhao, Wenchao; Yao, Huifeng; Wang, Zhaohui; Hou, Jianhui

    2015-05-06

    Among the diverse nonfullerene acceptors, perylene bisimides (PBIs) have been attracting much attention due to their excellent electron mobility and tunable molecular and electronic properties by simply engineering the bay and head linkages. Herein, guided by two efficient small molecular acceptors, we designed, synthesized, and characterized a new nonfullerene small molecule PPDI with fine-tailored alkyl chains. Notably, a certificated PCE of 5.40% is realized in a simple structured fullerene-free polymer solar cell comprising PPDI as the electron acceptor and a fine-tailored 2D-conjugated polymer PBDT-TS1 as the electron donor. Moreover, the device behavior, morphological feature, and origin of high efficiency in PBDT-TS1/PPDI-based fullerene-free PSC were investigated. The synchronous selection and design of donor and acceptor materials reported here offer a feasible strategy for realizing highly efficient fullerene-free organic photovoltaics.

  3. Formation of high mass carbon cluster ions from laser ablation of polymers and thin carbon films

    NASA Astrophysics Data System (ADS)

    Creasy, William R.; Brenna, J. T.

    1990-02-01

    Three materials were studied by laser ablation/Fourier transform mass spectrometry, using 266 nm laser radiation: a copolymer of ethylene and tetrafluoroethylene (ETFE), polyphenylene sulfide (PPS), and a diamond-like carbon film (DLC). In each case, positive ion mass spectra exhibit primarily even-numbered, high mass carbon clusters (``fullerenes'') of the type previously reported for graphite ablation. In the case of ETFE, a large C+60 peak (``buckminsterfullerene'') was observed. The polymer spectra showed a strong dependence on the number of laser pulses on one spot and the laser power density. For ETFE, the fullerene ion relative intensity first increases and then decreases as a function of the number of laser pulses. For the DLC film, fullerenes are observed with a single laser pulse on a fresh spot of the sample. The results are interpreted in terms of a gas phase growth model for the fullerene ion formation.

  4. Scaling of size distributions of C60 and C70 fullerene surface islands

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Berdnikov, Y.; Olyanich, D. A.; Mararov, V. V.; Utas, T. V.; Zotov, A. V.; Saranin, A. A.

    2017-06-01

    We present experimental data and a theoretical analysis for the size distributions of C60 and C70 surface islands deposited onto In-modified Si(111)√3 × √3-Au surface under different conditions. We show that both fullerene islands feature an analytic Vicsek-Family scaling shape where the scaled size distributions are given by a power law times an incomplete beta-function with the required normalization. The power exponent in this distribution corresponds to the fractal shape of two-dimensional islands, confirmed by the experimentally observed morphologies. Quite interestingly, we do not see any significant difference between C60 and C70 fullerenes in terms of either scaling parameters or temperature dependence of the diffusion constants. In particular, we deduce the activation energy for surface diffusion of ED = 140 ± 10 meV for both types of fullerenes.

  5. Soluble fullerene derivatives: The effect of electronic structure on transistor performance and air stability

    NASA Astrophysics Data System (ADS)

    Ball, James M.; Bouwer, Ricardo K. M.; Kooistra, Floris B.; Frost, Jarvist M.; Qi, Yabing; Domingo, Ester Buchaca; Smith, Jeremy; de Leeuw, Dago M.; Hummelen, Jan C.; Nelson, Jenny; Kahn, Antoine; Stingelin, Natalie; Bradley, Donal D. C.; Anthopoulos, Thomas D.

    2011-07-01

    The family of soluble fullerene derivatives comprises a widely studied group of electron transporting molecules for use in organic electronic and optoelectronic devices. For electronic applications, electron transporting (n-channel) materials are required for implementation into organic complementary logic circuit architectures. To date, few soluble candidate materials have been studied that fulfill the stringent requirements of high carrier mobility and air stability. Here we present a study of three soluble fullerenes with varying electron affinity to assess the impact of electronic structure on device performance and air stability. Through theoretical and experimental analysis of the electronic structure, characterization of thin-film structure, and characterization of transistor device properties we find that the air stability of the present series of fullerenes not only depends on the absolute electron affinity of the semiconductor but also on the disorder within the thin-film.

  6. Unique Crystallization of Fullerenes: Fullerene Flowers

    PubMed Central

    Kim, Jungah; Park, Chibeom; Song, Intek; Lee, Minkyung; Kim, Hyungki; Choi, Hee Cheul

    2016-01-01

    Solution-phase crystallization of fullerene molecules strongly depends on the types of solvent and their ratios because solvent molecules are easily included in the crystal lattice and distort its structure. The C70 (solute)–mesitylene (solvent) system yields crystals with various morphologies and structures, such as cubes, tubes, and imperfect rods. Herein, using C60 and C70 dissolved in mesitylene, we present a novel way to grow unique flower-shaped crystals with six symmetric petals. The different solubility of C60 and C70 in mesitylene promotes nucleation of C70 with sixfold symmetry in the early stage, which is followed by co-crystallization of both C60 and C70 molecules, leading to lateral petal growth. Based on the growth mechanism, we obtained more complex fullerene crystals, such as multi-deck flowers and tube-flower complexes, by changing the sequence and parameters of crystallization. PMID:27561446

  7. Potentiation of antimicrobial photodynamic inactivation mediated by a cationic fullerene by added iodide: in vitro and in vivo studies

    PubMed Central

    Zhang, Yunsong; Dai, Tianhong; Wang, Min; Vecchio, Daniela; Chiang, Long Y; Hamblin, Michael R

    2016-01-01

    Background Antimicrobial photodynamic inactivation with fullerenes bearing cationic charges may overcome resistant microbes. Methods & results We synthesized C60-fullerene (LC16) bearing decaquaternary chain and deca-tertiary-amino groups that facilitates electron-transfer reactions via the photoexcited fullerene. Addition of the harmless salt, potassium iodide (10 mM) potentiated the ultraviolet A (UVA) or white light-mediated killing of Gram-negative bacteria Acinetobacter baumannii, Gram-positive methicillin-resistant Staphylococcus aureus and fungal yeast Candida albicans by 1–2+ logs. Mouse model infected with bioluminescent Acinetobacter baumannii gave increased loss of bioluminescence when iodide (10 mM) was combined with LC16 and UVA/white light. Conclusion The mechanism may involve photoinduced electron reduction of 1(C60>)* or 3(C60>)* by iodide producing I· or I2 followed by subsequent intermolecular electron-transfer events of (C60>)−· to produce reactive radicals. PMID:25723093

  8. Inorganic fullerenes and nanotubes: Wealth of materials and morphologies

    NASA Astrophysics Data System (ADS)

    Bar-Sadan, M.; Kaplan-Ashiri, I.; Tenne, R.

    2007-10-01

    It is already well established today that numerous materials form closed-cage structures, of which carbon fullerenes and nanotubes are a special case [1]. Inorganic fullerene-like nanoparticles (designated IF) and inorganic nanotubes (INT) have been produced by different routes and experimental techniques, achieving persistent growth of a variety of materials and structural wealth within them. The research in this area has focused on synthesizing new IF and INT materials and understanding their different properties as well as scaling up the synthetic process in order to make it suitable for industrial applications. In this review, the main synthetic procedures to obtain inorganic fullerene-like nanoparticles and nanotubes will be discussed alongside with the different mechanisms that affect the morphology of the final product. The main differences between the morphologies will be presented. Some general considerations relating the properties of the parent compound with the morphology of the product will be mentioned.

  9. Suppression of Proinflammatory Cytokines in Functionalized Fullerene-Exposed Dermal Keratinocytes

    DOE PAGES

    Gao, Jun; Wang, Hsing-Lin; Iyer, Rashi

    2010-01-01

    Initial experiments using differentially functionalized fullerenes, CD-, hexa-, and tris-, suggested a properties dependent effect on cytotoxic and proliferative responses in human skin keratinocytes. In the present study we investigated the cytokine secretion profile of dermal epithelial cells exposed to functionalized fullerenes. Keratinocyte-derived cytokines affect homing and trafficking of normal and malignant epidermal immune as well as nonimmune cells in vivo. These cytokines are critical for regulating activation, proliferation, and differentiation of epidermal cells. Our results indicate that tris- (size range <100 nm) significantly reduces inflammatory cytokine release in a dose- and time-dependent manner. In contrast CD- demonstrated a relatively pro-inflammatorymore » cytokine response, while hexa- did not significantly perturb cytokine responses. Physical and chemical characterizations of these engineered nanomaterials suggest that the disparate biological responses observed may potentially be a function of the aggregation properties of these fullerenes.« less

  10. Relationship between Intensity of Fullerene-Mass Spectrum and Carbon Vibrational Temperature in Microwave-Helium Plasmas

    NASA Astrophysics Data System (ADS)

    Ueda, Kengo; Kuwahara, Kiyoshi; Fujiyama, Hiroshi

    1999-07-01

    Soot containing fullerenes, such as C60 and C70, was synthesized with He plasmas generated in a quartz tube by microwave-glow discharge. A reticulated vitreous carbon (RVC) heated by the microwave He plasmas with an electric field of TE10 mode was used as the carbon source. Swan bands of C2 molecules were observed during the synthesis by optical emission spectroscopy (OES) in order to investigate the effect of the vibrational temperature of C2 molecules on the formation of the fullerenes. The soot deposited on the quartz tube was analyzed by laser desorption time-of-flight mass-spectroscopy (LD-TOF-MS). The intensities of the mass spectra of fullerenes were confirmed to be maximum for the conditions as follows: the absorbed microwave power Pab=200 W and the He gas pressure P=100 Torr, while the C2 vibrational temperature was approximately 7000 K.

  11. Photoinduced intercomponent excited-state decays in a molecular dyad made of a dinuclear rhenium(I) chromophore and a fullerene electron acceptor unit.

    PubMed

    Nastasi, Francesco; Puntoriero, Fausto; Natali, Mirco; Mba, Miriam; Maggini, Michele; Mussini, Patrizia; Panigati, Monica; Campagna, Sebastiano

    2015-05-01

    A novel molecular dyad, 1, made of a dinuclear {[Re2(μ-X)2(CO)6(μ-pyridazine)]} component covalently-linked to a fullerene unit by a carbocyclic molecular bridge has been prepared and its redox, spectroscopic, and photophysical properties - including pump-probe transient absorption spectroscopy in the visible and near-infrared region - have been investigated, along with those of its model species. Photoinduced, intercomponent electron transfer occurs in 1 from the thermally-equilibrated, triplet metal/ligand-to-ligand charge-transfer ((3)MLLCT) state of the dinuclear rhenium(I) subunit to the fullerene acceptor, with a time constant of about 100 ps. The so-formed triplet charge-separated state recombines in a few nanoseconds by a spin-selective process yielding, rather than the ground state, the locally-excited, triplet fullerene state, which finally decays to the ground state by intersystem crossing in about 290 ns.

  12. Synthesis and characterization of monoisomeric 1,8,15,22-substituted (A3B and A2B2) phthalocyanines and phthalocyanine-fullerene dyads.

    PubMed

    Ranta, Jenni; Kumpulainen, Tatu; Lemmetyinen, Helge; Efimov, Alexander

    2010-08-06

    Synthesis and characterization of three phthalocyanine-fullerene (Pc-C(60)) dyads, corresponding monoisomeric phthalocyanines (Pc), and building blocks, phthalonitriles, are described. Six novel bisaryl phthalonitriles were prepared by the Suzuki-Miyaura coupling reaction from trifluoromethanesulfonic acid 2,3-dicyanophenyl ester and various oxaborolanes. Two phthalonitriles were selected for the synthesis of A(3)B- and A(2)B(2)-type phthalocyanines. Phthalonitrile 4 has a bulky 3,5-di-tert-butylphenyl substituent at the alpha-phthalo position, which forces only one regioisomer to form and greatly increases the solubility of phthalocyanine. Phthalonitrile 8 has a 3-phenylpropanol side chain at the alpha-position making further modifications of the side group possible. Synthesized monoisomeric A(3)B- and A(2)B(2)-type phthalocyanines are modified by attachment of malonic residues. Finally, fullerene is covalently linked to phthalocyanine with one or two malonic bridges to produce Pc-C(60) dyads. Due to the monoisomeric structure and increased solubility of phthalocyanines, the quality of NMR spectra of the compounds is enhanced significantly, making detailed NMR analysis of the structures possible. The synthesized dyads have different orientations of phthalocyanine and fullerene, which strongly influence the electron transfer (ET) from phthalocyanine to fullerene moiety. Fluorescence quenchings of the dyads were measured in both polar and nonpolar solvents, and in all cases, the quenching was more efficient in the polar environment. As expected, most efficient fluorescence quenching was observed for dyad 20b, with two linkers and phthalocyanine and fullerene in face-to-face orientation.

  13. A novel route for the synthesis of nanotubes and fullerene-like nanostructures of molybdenum disulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panigrahi, Pravas Kumar, E-mail: pravas.iit@gmail.com; Pathak, Amita, E-mail: ami@chem.iitkgp.ernet.in

    Graphical abstract: Nanotubes and fullerene-like nanostructures of MoS{sub 2} were synthesized via a microwave-assisted route in solution phase. Highlights: Black-Right-Pointing-Pointer Microwave-assisted route for synthesis of nanotube and fullerene-like nanostructures of MoS{sub 2}. Black-Right-Pointing-Pointer Morphological analysis of the synthesized products. Black-Right-Pointing-Pointer Solvent plays important role in the modification of morphology of MoS{sub 2}. -- Abstract: The paper described the synthesis of nanotubes and fullerene-like nanostructures of MoS{sub 2} through a technically simple, rapid, and energy-efficient microwave-assisted synthesis technique, which involved the use of elemental sulfur dissolved in a mixture of monoethanolamine and hydrazine hydrate as the sulfide source. The microwave inducedmore » reaction between the molybdate with sulfide ions, in the presence of hydrazine hydrate in the reaction medium, resulted in the formation of gray colored powders of amorphous MoS{sub 2}. The as-obtained powders were calcined at 600 Degree-Sign C for 2 h and characterized by different techniques. HRTEM analysis of the calcined samples indicated the formation of fullerene-like MoS{sub 2} structures when the starting solution mixture was irradiated with microwave for a period of 200 s, while on 600 s of irradiation of the same revealed the formation of folded sheets like MoS{sub 2} nanotubes. BET surface areas of the calcined samples have been measured and a plausible reaction mechanism for the formation of nanotubes and fullerene-like nanostructures of MoS{sub 2} has been proposed.« less

  14. Stirring Up Acceptor Phase and Controlling Morphology via Choosing Appropriate Rigid Aryl Rings as Lever Arms in Symmetry-Breaking Benzodithiophene for High-Performance Fullerene and Fullerene-Free Polymer Solar Cells.

    PubMed

    Liu, Deyu; Wang, Junyi; Gu, Chunyang; Li, Yonghai; Bao, Xichang; Yang, Renqiang

    2018-02-01

    Two series of new polymers with medium and wide bandgaps to match fullerene (PC 71 BM) and fullerene-free 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC) acceptors are designed and synthesized, respectively. For constructing the key donor building blocks, the effective symmetry-breaking strategy is employed. Two common aromatic rings (thiophene and benzene) are chosen as one side substituted groups in the asymmetric benzodithiophene (BDT) monomers. In addition, another rigid benzene ring is inserted between aryl and thioether in the side chains, which results in larger twisting and destroying the aggregation and forming longer lever arms. As a result, highly ordered polymers (PBDTsTh-FBT and PBDTsPh-FBT) with strong aggregation properties can blend well with roughly spherical PC 71 BM, while amorphous polymers (PBDTsThPh-BDD and PBDTsPhPh-BDD) with long and rigid aryl rings show good miscibility with elongated ITIC, and finally, both devices exhibit excellent power conversion efficiencies over 10%. Thus, it clearly shows that the asymmetric BDT unit is an excellent donor building block to construct highly efficient photovoltaic polymers. Meanwhile, this work demonstrates that it is not necessary that high-performance fullerene-free polymer solar cells (PSCs) require highly ordered microstructures in the blending films, different from the fullerene-based PSCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. J-V and C-V investigation of the effect of small molecular fullerene and non-fullerene acceptors for CH3NH3PbI3 perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Zheng, Yanqiong; Wang, Chao; Yu, Junle; Yang, Fang; Zhang, Jing; Wei, Bin; Li, Weishi

    2017-11-01

    To find the ideal acceptors for perovskite solar cells (PSCs) and get insight into the dielectric property at the interface between perovskite and acceptor, series of small molecular fullerene and non-fullerene acceptors were comparatively investigated. Fullerene acceptors based PSCs show higher performance than non-fullerene acceptors based PSCs. However, the perylene tetracarboxylic diimide based PSC has achieved a η PCE of 4.70%, implying that it is a promising acceptor candidate for PSCs because of its suitable energy level, high electron mobility, and smooth surface. By employing double acceptors of (6,6)-phenyl-C61-butyric acid methyl ester (PCBM)/C60 or PCBM/3,4,9,10-perylenetetracarboxylic bisbenzimidazole, the PSC stability is greatly improved even without performance enhancement. The perovskite (Pero)/PCBM film shows smooth surface, suggesting that PCBM penetrates into the Pero layer. The hydrophobicity trend of Pero/acceptor composite films is same as the device performance by judging from the water contact angle, and Pero/PCBM as well as Pero/C60 show higher hydrophobicity than other Pero/small-molecular-acceptor composite films. Capacitance-voltage characteristics of the series of single and double acceptor based PSCs were measured. The double acceptor based PSCs show larger depletion layer width (W d) than single acceptor based PSCs. Meanwhile, the defect density (N A) in Pero layer for single acceptor based PSCs is larger than that for double acceptor based PSCs, implying better n-doping of Pero layer by using a single acceptor.

  16. Production and Consumption of Reactive Oxygen Species by Fullerenes

    EPA Science Inventory

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  17. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding

    NASA Astrophysics Data System (ADS)

    Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng

    2014-06-01

    Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding. Electronic supplementary information (ESI) is available: Fluorescence spectra, ITC, CD spectra and other data as described in the text. See DOI: 10.1039/c4nr01544d

  18. Characterization of aggregates of surface modified fullerenes by asymmetrical flow field-flow fractionation with multi-angle light scattering detection.

    PubMed

    Astefanei, Alina; Kok, Wim Th; Bäuerlein, Patrick; Núñez, Oscar; Galceran, Maria Teresa; de Voogt, Pim; Schoenmakers, Peter J

    2015-08-21

    Fullerenes are carbon nanoparticles with widespread biomedical, commercial and industrial applications. Attributes such as their tendency to aggregate and aggregate size and shape impact their ability to be transported into and through the environment and living tissues. Knowledge of these properties is therefore valuable for their human and environmental risk assessment as well as to control their synthesis and manufacture. In this work, asymmetrical flow-field flow fractionation (AF4) coupled to multi-angle light scattering (MALS) was used for the first time to study the size distribution of surface modified fullerenes with both polyhydroxyl and carboxyl functional groups in aqueous solutions having different pH (6.5-11) and ionic strength values (0-200mM) of environmental relevance. Fractionation key parameters such as flow rates, flow programming, and membrane material were optimized for the selected fullerenes. The aggregation of the compounds studied appeared to be indifferent to changes in solution pH, but was affected by changes in the ionic strength. Polyhydroxy-fullerenes were found to be present mostly as 4nm aggregates in water without added salt, but showed more aggregation at high ionic strength, with an up to 10-fold increase in their mean hydrodynamic radii (200mM), due to a decrease in the electrostatic repulsion between the nanoparticles. Carboxy-fullerenes showed a much stronger aggregation degree in water (50-100nm). Their average size and recoveries decreased with the increase in the salt concentration. This behavior can be due to enhanced adsorption of the large particles to the membrane at high ionic strength, because of their higher hydrophobicity and much larger particle sizes compared to polyhydroxy-fullerenes. The method performance was evaluated by calculating the run-to-run precision of the retention time (hydrodynamic radii), and the obtained RSD values were lower than 1%. MALS measurements showed aggregate sizes that were in good agreement with the AF4 data. A comparison of the scattering radii from the MALS with the hydrodynamic radii obtained from the retention times in AF4 indicated that the aggregate shapes are far from spherical. TEM images of the fullerenes in the dry state also showed branched and irregular clusters. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Fullerene C60: Surface Energy and Interfacial Interactions in Aqueous Systems

    EPA Science Inventory

    The underlying mechanisms of fullerene−fullerene, fullerene−water, and fullerene−soil surface interactions in aqueous systems are not well understood. To advance our understanding of these interfacial interactions, the surface properties of Buckminsterfullerene (C60) and quartz s...

  20. [60]Fullerene-based monolayers as neuroprotective biocompatible hybrid materials.

    PubMed

    Giust, Davide; Albasanz, José Luis; Martín, Mairena; Marega, Riccardo; Delforge, Arnaud; Bonifazi, Davide

    2011-10-14

    Here we report on the surface immobilization of redox-active [60]fullerene derivatives and the consequent neuroprotective effects toward l-glutamate induced excitotoxicity in human derived undifferentiated neuroblastoma cells. This journal is © The Royal Society of Chemistry 2011

  1. Effect on magnetic properties of germanium encapsulated C60 fullerene

    NASA Astrophysics Data System (ADS)

    Umran, Nibras Mossa; Kumar, Ranjan

    2013-02-01

    Structural and electronic properties of Gen(n = 1-4) doped C60 fullerene are investigated with ab initio density functional theory calculations by using an efficient computer code, known as SIESTA. The pseudopotentials are constructed using a Trouiller-Martins scheme, to describe the interaction of valence electrons with the atomic cores. In endohedral doped embedding of more germanium atoms complexes we have seen that complexes are stable and thereafter cage break down. We have also investigated that binding energy, electronic affinity increases and magnetic moment oscillating behavior as the number of semiconductor atoms in C60 fullerene goes on increasing.

  2. Probing the Dipolar Coupling in a Heterospin Endohedral Fullerene-Phthalocyanine Dyad.

    PubMed

    Zhou, Shen; Yamamoto, Masanori; Briggs, G Andrew D; Imahori, Hiroshi; Porfyrakis, Kyriakos

    2016-02-03

    Paramagnetic endohedral fullerenes and phthalocyanine (Pc) complexes are promising building blocks for molecular quantum information processing, for which tunable dipolar coupling is required. We have linked these two spin qubit candidates together and characterized the resulting electron paramagnetic resonance properties, including the spin dipolar coupling between the fullerene spin and the copper spin. Having interpreted the distance-dependent coupling strength quantitatively and further discussed the antiferromagnetic aggregation effect of the CuPc moieties, we demonstrate two ways of tuning the dipolar coupling in such dyad systems: changing the spacer group and adjusting the solution concentration.

  3. Destroying Gadofullerene Aggregates by Salt Addition in Aqueous Solution of Gd@C60(OH)x and Gd@C60[C(COOH2)]10

    PubMed Central

    Laus, Sabrina; Sitharaman, Balaji; Tóth, Éva; Bolskar, Robert D.; Helm, Lothar; Asokan, Subashini; Wong, Michael S.; Wilson, Lon J.

    2008-01-01

    A combined proton relaxivity and dynamic light scattering study has shown that aggregates formed in aqueous solution of water-soluble gadofullerenes can be disrupted by addition of salts. The salt content of fullerene-based materials will strongly influence properties related to aggregation phenomena, therefore their behavior in biological or medical applications. In particular, the relaxivity of gadofullerenes decreases dramatically with phosphate addition. Moreover, real biological fluids present a rather high salt concentration which will have consequences on fullerene aggregation and influence fullerene-based drug delivery. PMID:15984854

  4. Distorted asymmetric cubic nanostructure of soluble fullerene crystals in efficient polymer:fullerene solar cells.

    PubMed

    Kim, Youngkyoo; Nelson, Jenny; Zhang, Tong; Cook, Steffan; Durrant, James R; Kim, Hwajeong; Park, Jiho; Shin, Minjung; Nam, Sungho; Heeney, Martin; McCulloch, Iain; Ha, Chang-Sik; Bradley, Donal D C

    2009-09-22

    We found that 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)C(61) (PCBM) molecules make a distorted asymmetric body-centered cubic crystal nanostructure in the bulk heterojunction films of reigoregular poly(3-hexylthiophene) and PCBM. The wider angle of distortion in the PCBM nanocrystals was approximately 96 degrees , which can be assigned to the influence of the attached side group to the fullerene ball of PCBM to bestow solubility. Atom concentration analysis showed that after thermal annealing the PCBM nanocrystals do preferentially distribute above the layer of P3HT nanocrystals inside devices.

  5. Phosphorene quantum dot-fullerene nanocomposites for solar energy conversion: An unexplored inorganic-organic nanohybrid with novel photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Rajbanshi, Biplab; Kar, Moumita; Sarkar, Pallavi; Sarkar, Pranab

    2017-10-01

    Using the self-consistent charge density-functional based tight-binding (SCC-DFTB) method, coupled with time-dependent density functional theory (TDDFT) calculations, for the first time we explore the possibility of use of phosphorene quantum dots in solar energy harvesting devices. The phosphorene quantum dots-fullerene (PQDs-PCBA) nanocomposites show type-II band alignment indicating spatial separation of charge carriers. The TDDFT calculations also show that the PQD-fullerene nanocomposites seem to be exciting material for future generation solar energy harvester, with extremely fast charge transfer and very poor recombination rate.

  6. Plastic Electronics and Optoelectronics: New Science and Technology from Soluble Semiconducting Polymers and Bulk Heterojunction Solar Cells Fabricated from Soluble Semiconducting Polymers

    DTIC Science & Technology

    2011-11-03

    fundamental discovery of photoinduced ultrafast electron transfer from conjugated polymers to fullerenes . Many groups in the U.S., Europe and Asia are...electron transfer from conjugated polymers to fullerenes . Many groups in the U.S., Europe and Asia are now making important contributions. Nevertheless...This confirms that the middle curve in Fig. 1 utilizes the correct assumptions.          2ln 1 c heBPolymer HOMO Fullerene LUMOoc N

  7. Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures.

    PubMed

    Inganäs, Olle; Zhang, Fengling; Tvingstedt, Kristofer; Andersson, Lars Mattias; Hellström, Stefan; Andersson, Mats R

    2010-05-25

    The synthesis of novel conjugated polymers, designed for the purpose of photovoltaic energy conversion, and their properties in polymer/fullerene materials and photovoltaic devices are reviewed. Two families of main-chain polymer donors, based on fluorene or phenylene and donor-acceptor-donor comonomers in alternating copolymers, are used to absorb the high-energy parts of the solar spectrum and to give high photovoltages in combinations with fullerene acceptors in devices. These materials are used in alternative photovoltaic device geometries with enhanced light incoupling to collect larger photocurrents or to enable tandem devices and enhance photovoltage.

  8. Design of organic ternary blends and small-molecule bulk heterojunctions: photophysical considerations

    NASA Astrophysics Data System (ADS)

    Rajesh, Kallarakkal Ramakrishnan; Paudel, Keshab; Johnson, Brian; Hallani, Rawad; Anthony, John; Ostroverkhova, Oksana

    2015-01-01

    We explored relationships between photophysical processes and solar cell characteristics in solution-processable bulk heterojunctions (BHJs), in particular: (1) polymer donor:fullerene acceptor:small-molecule (SM) nonfullerene acceptor, (2) polymer donor:SM donor:SM nonfullerene acceptor, and (3) SM donor:SM nonfullerene or fullerene acceptor. Addition of a nonfullerene SM acceptor to "efficient" polymer:fullerene BHJs led to a reduction in power conversion efficiency (PCE), mostly due to decreased charge photogeneration efficiency and increased disorder. By contrast, addition of an SM donor to "inefficient" polymer:SM nonfullerene acceptor BHJs led to a factor of two to three improvement in the PCE, due to improved charge photogeneration efficiency and transport. In most blends, exciplex formation was observed and correlated with a reduced short-circuit current (Jsc) without negatively impacting the open-circuit voltage (Voc). A factor of ˜5 higher PCE was observed in SM donor:fullerene acceptor BHJs as compared to SMBHJs with the same SM donor but nonfullerene acceptor, due to enhanced charge carrier photogeneration in the blend with fullerene. Our study revealed that the HOMO and LUMO energies of molecules comprising a blend are not reliable parameters for predicting Voc of the blend, and an understanding of the photophysics is necessary for interpreting solar cell characteristics and improving the molecular design of BHJs.

  9. Stabilizing effects of hydrated fullerenes C₆₀ in a wide range of concentrations on luciferase, alkaline phosphatase, and peroxidase in vitro.

    PubMed

    Voeikov, Vladimir L; Yablonskaya, Olga I

    2015-01-01

    Hydrated fullerene (HyFnC60) is a highly hydrophilic supra-molecular complex consisting of unmodified С60 fullerene molecule enclosed into a hydrated shell. It has been shown in numerous experiments that aqueous solutions of HyFnC60 manifest a wide range of biological activities both in vivo and in vitro even at very low concentrations of HyFnC60. We used a spectrophotometric method and a method of biochemoluminescence to demonstrate that HyFnC60 in concentrations below 10(-9) M down to 10(-23) M stabilizes peroxidase, alkaline phosphatase, and bacterial luciferase against inactivation due to long-term incubation of the enzymes at room temperature and also against heat inactivation. In addition, HyFnC60 was able to "revive" heat inactivated enzymes. These effects cannot be explained by the direct action of the fullerene molecules upon the enzymes. We suggest that the effects of HyFnC60 on the enzymes are related to the ability of hydrated fullerene C60 molecules to organize thick aqueous shells around them. One of the specific properties of water phase in these shells is its ability to optimize redox reactions, which can support enzyme stability against factors deteriorating their structure.

  10. Photoionization and Photofragmentation of Carbon Fullerene Molecular Ions

    NASA Astrophysics Data System (ADS)

    Baral, Kiran Kumar

    Cross sections are reported for single and double photoionization accompanied by the loss of as many as seven pairs of C atoms of C60 + and C70+ fullerene molecular ions in the photon energy range 18 eV to 150 eV. These measurements were performed at the Advanced Light Source (ALS) by merging a mass-selected ion beam with a beam of monochromatized synchrotron radiation. Threshold energies were determined for the formation of doubly and triply charged fragment ions from parent ions C60+ and C70+. The energy dependences of cross-sections for direct photoionization yielding C60 2+ and C702+ are compared with those for forming different doubly and triply charged fullerene fragment ions. Two-dimensional product ion scans were measured and quantified at four discrete photon energies: 35 eV, 65 eV, 105 eV and 140 eV, in the vacuum ultraviolet region, providing a comprehensive mapping of the product channels involving single ionization of fullerene ions C60+ and C 70+ accompanied by fragmentation. Since fullerenes are composed of even numbers of carbon atoms, the fragmentation occurs by the loss of differing numbers of carbon atom pairs. In addition to pure ionization, fragmentation product channels become relatively more important at higher photon energies.

  11. Trap formation and energy transfer in the hexapyropheophorbide a - fullerene C 60 hexaadduct molecular system

    NASA Astrophysics Data System (ADS)

    Ermilov, E. A.; Hackbarth, St.; Al-Omari, S.; Helmreich, M.; Jux, N.; Hirsch, A.; Röder, B.

    2005-06-01

    The photophysical properties of the novel hexapyropheophorbide a - fullerene hexaadduct (FHP6) compound were studied using both steady-state and time-resolved spectroscopic methods. It was found that neighboring pyropheophorbide a (pyroPheo) molecules covalently linked to one fullerene moiety due to the length and high flexibility of carbon chains could stack with each other. This structural property is the reason for the possibility of formation of two different types of energy traps, which could be resolved experimentally. One of them is formed via face-to-face stacking of two pyroPheo molecules with parallel to each other direction of the transition dipole moments. The second type of energy trap gives the dominant contribution to the fluorescence signal at registration wavelengths having the oblique geometry or orthogonal direction of the transition dipole moments of the interacting pyroPheo molecules. In any case the dipole-dipole resonant Förster energy transfer between pyroPheo molecules coupled to one fullerene moiety caused a very fast and efficient delivery of the excitation to a trap. As result the fluorescence as well as the singlet oxygen quantum yields of FHP6 were reduced three and two times, respectively, compared to those values of the reference bis pyropheophorbide a - fullerene hexaadduct (FHP1) compound.

  12. Nanostructure enhanced ionic transport in fullerene reinforced solid polymer electrolytes.

    PubMed

    Sun, Che-Nan; Zawodzinski, Thomas A; Tenhaeff, Wyatt E; Ren, Fei; Keum, Jong Kahk; Bi, Sheng; Li, Dawen; Ahn, Suk-Kyun; Hong, Kunlun; Rondinone, Adam J; Carrillo, Jan-Michael Y; Do, Changwoo; Sumpter, Bobby G; Chen, Jihua

    2015-03-28

    Solid polymer electrolytes, such as polyethylene oxide (PEO) based systems, have the potential to replace liquid electrolytes in secondary lithium batteries with flexible, safe, and mechanically robust designs. Previously reported PEO nanocomposite electrolytes routinely use metal oxide nanoparticles that are often 5-10 nm in diameter or larger. The mechanism of those oxide particle-based polymer nanocomposite electrolytes is under debate and the ion transport performance of these systems is still to be improved. Herein we report a 6-fold ion conductivity enhancement in PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI)-based solid electrolytes upon the addition of fullerene derivatives. The observed conductivity improvement correlates with nanometer-scale fullerene crystallite formation, reduced crystallinities of both the (PEO)6:LiTFSI phase and pure PEO, as well as a significantly larger PEO free volume. This improved performance is further interpreted by enhanced decoupling between ion transport and polymer segmental motion, as well as optimized permittivity and conductivity in bulk and grain boundaries. This study suggests that nanoparticle induced morphological changes, in a system with fullerene nanoparticles and no Lewis acidic sites, play critical roles in their ion conductivity enhancement. The marriage of fullerene derivatives and solid polymer electrolytes opens up significant opportunities in designing next-generation solid polymer electrolytes with improved performance.

  13. Growth and structure of hydrogenated carbon films containing fullerene-like structure

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Wang, Xia; Liu, Weimin; Zhang, Junyan

    2008-04-01

    Hydrogenated carbon films were prepared by magnetron sputtering of a titanium target in methane and argon atmosphere. The film grown at -800 V bias exhibits excellent mechanical properties with a hardness of 20.9 GPa and an elastic recovery as high as 85%. Its structure, characterized by high-resolution transmission electron microscopy, Raman spectrum, and x-ray photoelectron spectroscopy, can be described as fullerene-like structures uniformly dispersed in an amorphous carbon matrix. In order to reveal the evolution of fullerene-like structures in our films, different bias voltages were introduced. The results show that high bias voltage leads to the accumulation of high compressive internal stress in the film and promotes the evolution of fullerene-like structures. Although the film grown at -800 V bias presents high sp2 bonding content, it exhibits good mechanical properties with high hardness and high elasticity at the same time; we attribute it to the unique structure of the film, in which a fullerene-like structure, just like a molecule spring dispersed in the film, reserves the elastic energy during distortion through reversible bond rotation and bond angle deflection, while the amorphous carbon matrix restrains the relaxation of the rigid C-C network and compressive stress and restricts the slip of graphene sheets.

  14. Derivatization and diffusive motion of molecular fullerenes: Ab initio and atomistic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdiyorov, G., E-mail: gberdiyorov@qf.org.qa; Tabet, N.; Harrabi, K.

    2015-07-14

    Using first principles density functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of derivatization on the electronic and transport properties of C{sub 60} fullerene. As a typical example, we consider [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM), which forms one of the most efficient organic photovoltaic materials in combination with electron donating polymers. Extra peaks are observed in the density of states (DOS) due to the formation of new electronic states localized at/near the attached molecule. Despite such peculiar behavior in the DOS of an isolated molecule, derivatization does not have a pronounced effect onmore » the electronic transport properties of the fullerene molecular junctions. Both C{sub 60} and PCBM show the same response to finite voltage biasing with new features in the transmission spectrum due to voltage induced delocalization of some electronic states. We also study the diffusive motion of molecular fullerenes in ethanol solvent and inside poly(3-hexylthiophene) lamella using reactive molecular dynamics simulations. We found that the mobility of the fullerene reduces considerably due to derivatization; the diffusion coefficient of C{sub 60} is an order of magnitude larger than the one for PCBM.« less

  15. Synthesis and structure determination of uranyl peroxide nanospheres in the presence of organic structure directing agents

    NASA Astrophysics Data System (ADS)

    Forbes, T. Z.; Burns, P. C.

    2007-12-01

    Recently, actinyl peroxide nanoclusters containing 20, 24, 28, or 32 actinyl polyhedra have been synthesized and their structures identified with single crystal X-ray diffraction [1]. Most nanomaterials are composed of main group elements or transition metals, therefore, these actinyl nanospheres may display vastly different chemical and physical properties due to the presence of filled f-orbitals. A major goal of our research group is to create novel actinyl materials, focusing on nano- and mesoporous materials. The original nanosphere syntheses were limited to inorganic crystallization agents, such as monovalent cations. Over the last decade, the use of organic compounds and surfactants have received increased attention as structure-directing agents for the generation of novel inorganic materials. Using structure-directing organic amines we have successfully synthesized and determined the structures of uranyl nanospheres containing 40 and 50 uranyl polyhedra. The topology of the skeletal U-50 nanosphere is identical to the C50Cl10 fullerene [2]. The topographical relationship between the actinyl nanospheres and fullerene or fullerene-like material may provide additional insight into stable configurations for lower fullerenes. [1] Burns et al., Actinyl peroxide nanospheres. Angewandte Chemie, International Edition, 2005. 44(14): p. 2135. [2] Xie et al., Capturing the Labile Fullerene[50] as C50Cl10. Science, (2004) 305(5671): p. 699.

  16. Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications.

    PubMed

    Chen, Kai Loon; Elimelech, Menachem

    2008-10-15

    The deposition kinetics of fullerene (C60) nanoparticles onto bare silica surfaces and surfaces precoated with humic acid and alginate are investigated over a range of monovalent (NaCI) and divalent (CaCl2) salt concentrations using a quartz crystal microbalance. Because simultaneous aggregation of the fullerene nanoparticles occurs, especially at higher electrolyte concentrations, we normalize the observed deposition rates by the corresponding favorable (transport-limited) deposition rates to obtain the attachment efficiencies, alpha. The deposition kinetics of fullerene nanoparticles onto bare silica surfaces are shown to be controlled by electrostatic interactions and van der Waals attraction, consistent with the classical particle deposition behavior where both favorable and unfavorable deposition regimes are observed. The presence of dissolved humic acid and alginate in solution leads to significantly slower deposition kinetics due to steric repulsion. Precoating the silica surfaces with humic acid and alginate exerts similar steric stabilization in the presence of NaCl. In the presence of CaCl2, the deposition kinetics of fullerene nanoparticles onto both humic acid- and alginate-coated surfaces are relatively high, even at relatively low (0.3 mM) calcium concentration. This behavior is attributed to the macromolecules undergoing complex formation with calcium ions, which reduces the charge and steric influences of the adsorbed macromolecular layers.

  17. A charge-stabilizing, multimodular, ferrocene-bis(triphenylamine)-zinc-porphyrin-fullerene polyad.

    PubMed

    Wijesinghe, Channa A; El-Khouly, Mohamed E; Zandler, Melvin E; Fukuzumi, Shunichi; D'Souza, Francis

    2013-07-15

    A novel multimodular donor-acceptor polyad featuring zinc porphyrin, fullerene, ferrocene, and triphenylamine entities was designed, synthesized, and studied as a charge-stabilizing, photosynthetic-antenna/reaction-center mimic. The ferrocene and fullerene entities, covalently linked to the porphyrin ring, were distantly separated to accomplish the charge-separation/hole-migration events leading to the creation of a long-lived charge-separated state. The geometry and electronic structures of the newly synthesized compound was deduced by B3LYP/3-21G(*) optimization, while the energy levels for different photochemical events was established using data from the optical absorption and emission, and electrochemical studies. Excitation of the triphenylamine entities revealed singlet-singlet energy transfer to the appended zinc porphyrin. As predicted from the energy levels, photoinduced electron transfer from both the singlet and triplet excited states of the zinc porphyrin to fullerene followed by subsequent hole migration involving ferrocene was witnessed from the transient absorption studies. The charge-separated state persisted for about 8.5 μs and was governed by the distance between the final charge-transfer product, that is, a species involving a ferrocenium cation and a fullerene radical anion, with additional influence from the charge-stabilizing triphenylamine entities located on the zinc-porphyrin macrocycle. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fullerenes, fulleranes and polycyclic aromatic hydrocarbons in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Becker, L.; Bunch, T. E.

    1997-01-01

    In this paper, we confirm our earlier observations of fullerenes (C60 and C70) in the Allende meteorite (Becker et al., 1994a, 1995). Fullerene C60 was also detected in two separate C-rich (approximately 0.5-1.0%) dark inclusions (Heymann et al., 1987) that were hand picked from the Allende sample. The amounts of C60 detected were approximately 5 and approximately 10 ppb, respectively, which is considerably less than what was detected in the Allende 15/21 sample (approximately 100 ppb; Becker et al., 1994a, 1995). This suggests that fullerenes are heterogeneously distributed in the meteorite. In addition, we present evidence for fulleranes, (C60Hx), detected in separate samples by laser desorption (reflectron) time-of-flight (TOF) mass spectrometry (LDMS). The LDMS spectra for the Allende extracts were remarkably similar to the spectra generated for the synthetic fullerane mixtures. Several fullerane products were synthesized using a Rh catalyst (Becker et al., 1993a) and separated using high-performance liquid chromatography (HPLC). Polycyclic aromatic hydrocarbons (PAHs) were also observed ppm levels) that included benzofluoranthene and corannulene, a cup-shaped molecule that has been proposed as a precursor molecule to the formation of fullerenes in the gas phase (Pope et al., 1993).

  19. Quenching and Sensitizing Fullerene Photoreactions by Natural Organic Matter

    EPA Science Inventory

    Effects of natural organic matter (NOM) on the photoreaction kinetics of fullerenes (i.e., C60 and fullerenol) were investigated using simulated sunlight and monochromatic radiation (365 nm). NOM from several sources quenched (slowed) the photoreaction of C60 aggregates in water ...

  20. Chemically Adjusting Plasma Temperature, Energy and Reactivity (CAPTEAR) Method Using NOx and Combustion for Selective Synthesis of Sc3N@C80 Metallic Nitride Fullerenes

    PubMed Central

    Stevenson, Steven; Thompson, M. Corey; Coumbe, H. Louie; Mackey, Mary A.; Coumbe, Curtis E.; Phillips, J. Paige

    2008-01-01

    Goals are (1) to selectively synthesize MNFs in lieu of empty-cage fullerenes (e.g., C60, C70) without compromising MNF yield and (2) to test our hypothesis that MNFs possess a different set of optimal formation parameters than empty-cage fullerenes. In this work, we introduce a novel approach for the selective synthesis of metallic nitride fullerenes (MNFs). This new method is “Chemically Adjusting Plasma Temperature, Energy and Reactivity” (CAPTEAR). The CAPTEAR approach with copper nitrate hydrate uses NOx vapor from NOx generating solid reagents, air and combustion to “tune” the temperature, energy and reactivity of the plasma environment. The extent of temperature, energy and reactive environment is stoichiometrically varied until optimal conditions for selective MNF synthesis are achieved. Analysis of soot extracts indicate that percentages of C60 and Sc3N@C80 are inversely related, whereas the percentages of C70 and higher empty-cage C2n fullerenes are largely unaffected. Hence, there may be a “competitive link” in the formation and mechanism of C60 and Sc3N@C80. Using this CAPTEAR method, purified MNFs (96% Sc3N@C80, 12 mg) have been obtained in soot extracts without a significant penalty in milligram yield when compared to control soot extracts (4% Sc3N@C80, 13 mg Sc3N@C80). The CAPTEAR process with Cu(NO3)2·2.5 H2O uses an exothermic nitrate moiety to suppress empty-cage fullerene formation, whereas Cu functions as a catalyst additive to offset the reactive plasma environment and boost the Sc3N@C80 MNF production. PMID:18052069

  1. Roles of oxygen radicals and elastase in citric acid-induced airway constriction of guinea-pigs

    PubMed Central

    Lai, Y -L; Chiou, W -Y; Lu, F J; Chiang, L Y

    1999-01-01

    Antioxidants attenuate noncholinergic airway constriction. To further investigate the relationship between tachykinin-mediated airway constriction and oxygen radicals, we explored citric acid-induced bronchial constriction in 48 young Hartley strain guinea-pigs, divided into six groups: control; citric acid; hexa(sulphobutyl)fullerenes+citric acid; hexa(sulphobutyl)fullerenes+phosphoramidon+citric acid; dimethylthiourea (DMTU)+citric acid; and DMTU+phosphoramidon+citric acid. Hexa(sulphobutyl)fullerenes and DMTU are scavengers of oxygen radicals while phosphoramidon is an inhibitor of the major degradation enzyme for tachykinins. Animals were anaesthetized, paralyzed, and artificially ventilated. Each animal was given 50 breaths of 4 ml saline or citric acid aerosol. We measured dynamic respiratory compliance (Crs), forced expiratory volume in 0.1 (FEV0.1), and maximal expiratory flow at 30% total lung capacity (V[dot above]max30) to evaluate the degree of airway constriction. Citric acid, but not saline, aerosol inhalation caused marked decreases in Crs, FEV0.1 and V[dot above]max30, indicating marked airway constriction. This constriction was significantly attenuated by either hexa(sulphobutyl)fullerenes or by DMTU. In addition, phosphoramidon significantly reversed the attenuating action of hexa(sulphobutyl)fullerenes, but not that of DMTU. Citric acid aerosol inhalation caused increases in both lucigenin- and t-butyl hydroperoxide-initiated chemiluminescence counts, indicating citric acid-induced increase in oxygen radicals and decrease in antioxidants in bronchoalveolar lavage fluid. These alterations were significantly suppressed by either hexa(sulphobutyl)fullerenes or DMTU. An elastase inhibitor eglin-c also significantly attenuated citric acid-induced airway constriction, indicating the contributing role of elastase in this type of constriction. We conclude that both oxygen radicals and elastase play an important role in tachykinin-mediated, citric acid-induced airway constriction. PMID:10188991

  2. Search for fullerenes in stone meteorites

    NASA Astrophysics Data System (ADS)

    Oester, M. Y.; Kuechl, D.; Sipiera, P. P.; Welch, C. J.

    1994-07-01

    The possibility of identifying fullerenes in stony meteorites became apparent from a paper given by Radicati de Brozolo. In this paper it was reported that fullerenes were present in the debris resulting from a collision between a micrometeoroid and an orbiting satellite. This fact generated sufficient curiosity to initiate a search for the presence of fullerenes in various stone meteorites. In the present study seven ordinary chondrites (al-Ghanim L6 (find), Dimmitt H4 (find), Lazbuddie LL5 (find), New Concord H5 (fall), Silverton H4 (find), Springlake L6 (find), and Umbarger L3/6 (find)). Four carbonaceous chondrites (ALH 83100 C2 (find), ALH 83108 C30 (find), Allende CV3 (fall), and Murchison CM2 (fall), and one achondrite (Monticello How (find)) were analyzed for the presence of fullerenes. The analytical procedure employed was as follows: 100 mg of meteorite was ground up with a mortar and pestle; 10 mL of toluene was then added and the mixture was refluxed for 90 min; this mixture was then filtered through a short column of silica; a 50 microliter sample was then analyzed by high pressure liquid chromatography (HPLC) using a Buckyclutcher I column with a mobile phase consisting of equal volumes of toluene and hexane at a flow rate of 1.00 mg per minute, with detection at 330 and 600 nm. Three of the meteorites, Allende, Murchison, and al-Ghanim, gave HPLC traces containing peaks with similar retention times to the HPLC trace of an authentic fullerene C60. However, further analysis using an HPLC instrument equipped with a diode-array detector failed to confirm any of the substances detected in the three meteorites as C60. Additional analyses will be conducted to identify what the HPLC traces actually represent.

  3. Computational Nanotechnology Molecular Electronics, Materials and Machines

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This presentation covers research being performed on computational nanotechnology, carbon nanotubes and fullerenes at the NASA Ames Research Center. Topics cover include: nanomechanics of nanomaterials, nanotubes and composite materials, molecular electronics with nanotube junctions, kinky chemistry, and nanotechnology for solid-state quantum computers using fullerenes.

  4. Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles.

    PubMed

    Guldi, Dirk M; Zilbermann, Israel; Anderson, Greg; Kotov, Nicholas A; Tagmatarchis, Nikos; Prato, Maurizio

    2004-11-10

    Novel organic (positively charged fullerene)-inorganic (negatively charged CdTe nanoparticle) nanoensembles were devised through electrostatic interactions and probed as versatile donor-acceptor hybrids. Photoirradiation of their homogeneous solutions, containing the electrostatically packed components, let to very long-lived (1.3 ms) charge separated states.

  5. Colloidal synthesis of inorganic fullerene nanoparticles and hollow spheres of titanium disulfide.

    PubMed

    Prabakar, Sujay; Collins, Sean; Northover, Bryan; Tilley, Richard D

    2011-01-07

    The synthesis of inorganic fullerene (IF) nanoparticles and IF hollow spheres of titanium disulfide by a simple colloidal route is reported. The injection temperature of the titanium precursor into the solvent mixture was found to be important in controlling the morphology.

  6. Are hot charge transfer states the primary cause of efficient free-charge generation in polymer:fullerene organic photovoltaic devices? A kinetic Monte Carlo study.

    PubMed

    Jones, Matthew L; Dyer, Reesha; Clarke, Nigel; Groves, Chris

    2014-10-14

    Kinetic Monte Carlo simulations are used to examine the effect of high-energy, 'hot' delocalised charge transfer (HCT) states for donor:acceptor and mixed:aggregate blends, the latter relating to polymer:fullerene photovoltaic devices. Increased fullerene aggregation is shown to enhance charge generation and short-circuit device current - largely due to the increased production of HCT states at the aggregate interface. However, the instances where HCT states are predicted to give internal quantum efficiencies in the region of 50% do not correspond to HCT delocalisation or electron mobility measured in experiments. These data therefore suggest that HCT states are not the primary cause of high quantum efficiencies in some polymer:fullerene OPVs. Instead it is argued that HCT states are responsible for the fast charge generation seen in spectroscopy, but that regional variation in energy levels are the cause of long-term, efficient free-charge generation.

  7. Ion mobility studies of PdC{sub n}{sup +} clusters: Where are the fullerenes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelimov, K.B.; Jarrold, M.F.

    1995-12-14

    Gas-phase ion mobility measurements have been used to study the structures and isomerization of PdC{sub n}{sup +} (n = 10-60) clusters. Non-fullerene isomers of PdC{sub n}{sup +} clusters are similar to those of C{sub n}{sup +} and MC{sub n}{sup +} (M = La and Nb) clusters, and include metal-containing mono- and bicyclic rings and graphite sheets. Neither endohedral nor nonendohedral PdC{sub n} {sup +} fullerene isomers are detected. When collisionally heated, PdC{sub n}{sup +} clusters efficiently convert into fullerenes, but the exothermicity of this process results in the loss of the Pd atom and the formation of a pure carbonmore » cluster cation. PdC{sub n}{sup +} bicyclic rings with an odd number of carbon atoms efficiently isomerize into monocyclic rings, while no evidence is found for this isomerization process for bicyclic rings with an even number of carbon atoms. 18 refs., 4 figs.« less

  8. Potential Suppressive Effects of Two C60 Fullerene Derivatives on Acquired Immunity

    NASA Astrophysics Data System (ADS)

    Hirai, Toshiro; Yoshioka, Yasuo; Udaka, Asako; Uemura, Eiichiro; Ohe, Tomoyuki; Aoshima, Hisae; Gao, Jian-Qing; Kokubo, Ken; Oshima, Takumi; Nagano, Kazuya; Higashisaka, Kazuma; Mashino, Tadahiko; Tsutsumi, Yasuo

    2016-10-01

    The therapeutic effects of fullerene derivatives on many models of inflammatory disease have been demonstrated. The anti-inflammatory mechanisms of these nanoparticles remain to be elucidated, though their beneficial roles in allergy and autoimmune diseases suggest their suppressive potential in acquired immunity. Here, we evaluated the effects of C60 pyrrolidine tris-acid (C60-P) and polyhydroxylated fullerene (C60(OH)36) on the acquired immune response in vitro and in vivo. In vitro, both C60 derivatives had dose-dependent suppressive effects on T cell receptor-mediated activation of T cells and antibody production by B cells under anti-CD40/IL-4 stimulation, similar to the actions of the antioxidant N-acetylcysteine. In addition, C60-P suppressed ovalbumin-specific antibody production and ovalbumin-specific T cell responses in vivo, although T cell-independent antibodies responses were not affected by C60-P. Together, our data suggest that fullerene derivatives can suppress acquired immune responses that require T cells.

  9. Lattice dynamics of a rotor-stator molecular crystal: Fullerene-cubane C60ṡC8H8

    NASA Astrophysics Data System (ADS)

    Bousige, Colin; Rols, Stéphane; Cambedouzou, Julien; Verberck, Bart; Pekker, Sándor; Kováts, Éva; Durkó, Gábor; Jalsovsky, István; Pellegrini, Éric; Launois, Pascale

    2010-11-01

    The dynamics of fullerene-cubane (C60ṡC8H8) cocrystal is studied combining experimental [x-ray diffuse scattering, quasielastic and inelastic neutron scattering (INS)] and simulation (molecular dynamics) investigations. Neutron scattering gives direct evidence of the free rotation of fullerenes and of the libration of cubanes in the high-temperature phase, validating the “rotor-stator” description of this molecular system. X-ray diffuse scattering shows that orientational disorder survives the order/disorder transition in the low-temperature phase, although the loss of fullerene isotropic rotational diffusion is featured by the appearance of a 2.2 meV mode in the INS spectra. The coupling between INS and simulations allows identifying a degeneracy lift of the cubane librations in the low temperature phase, which is used as a tool for probing the environment of cubane in this phase and for getting further insights into the phase transition mechanism.

  10. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    PubMed Central

    Holliday, Sarah; Ashraf, Raja Shahid; Wadsworth, Andrew; Baran, Derya; Yousaf, Syeda Amber; Nielsen, Christian B.; Tan, Ching-Hong; Dimitrov, Stoichko D.; Shang, Zhengrong; Gasparini, Nicola; Alamoudi, Maha; Laquai, Frédéric; Brabec, Christoph J.; Salleo, Alberto; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications. PMID:27279376

  11. Organic Solar Cells: Degradation Processes and Approaches to Enhance Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fungura, Fadzai

    2016-12-17

    Intrinsic photodegradation of organic solar cells, theoretically attributed to C-H bond rearrangement/breaking, remains a key commercialization barrier. This work presents, via dark electron paramagnetic resonance (EPR), the first experimental evidence for metastable C dangling bonds (DBs) (g=2.0029±0.0004) formed by blue/UV irradiation of polymer:fullerene blend films in nitrogen. The DB density increased with irradiation and decreased ~4 fold after 2 weeks in the dark. The dark EPR also showed increased densities of other spin-active sites in photodegraded polymer, fullerene, and polymer:fullerene blend films, consistent with broad electronic measurements of fundamental properties, including defect/gap state densities. The EPR enabled identification of defectmore » states, whether in the polymer, fullerene, or at the donor/acceptor (D/A) interface. Importantly, the EPR results indicate that the DBs are at the D/A interface, as they were present only in the blend films. The role of polarons in interface DB formation is also discussed.« less

  12. Thermally induced anchoring of fullerene in copolymers with Si-bridging atom: Spectroscopic evidences

    NASA Astrophysics Data System (ADS)

    Marchiori, Cleber F. N.; Garcia-Basabe, Yunier; de A. Ribeiro, Fabio; Koehler, Marlus; Roman, Lucimara S.; Rocco, Maria Luiza M.

    2017-01-01

    We use X-ray photoelectron spectroscopy (XPS), Near-edge X-ray absorption fine structure (NEXAFS), resonant Auger spectroscopy (RAS), Attenuation Total Reflection Infrared (ATR-IR) and Atomic Force Microscopy (AFM) to study the blend between the copolymer poly[2,7-(9,9-bis(2-ethylhexyl)-dibenzosilole)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PSiF-DBT) and the fullerene derivative PC71BM submitted to different annealing temperatures. Those measurements indicate that there is an incidental anchoring of a fullerene derivative to the Si-bridging atoms of a copolymer induced by thermal annealing of the film. Insights about the physical properties of one possible PSiF-DBT/PC71BM anchored structure are obtained using Density Functional Theory calculations. Since the performance of organic photovoltaic based on polymer-fullerene blends depends on the chemical structure of the blend components, the anchoring effect might affect the photovoltaic properties of those devices.

  13. Enhancing fullerene-based solar cell lifetimes by addition of a fullerene dumbbell.

    PubMed

    Schroeder, Bob C; Li, Zhe; Brady, Michael A; Faria, Gregório Couto; Ashraf, Raja Shahid; Takacs, Christopher J; Cowart, John S; Duong, Duc T; Chiu, Kar Ho; Tan, Ching-Hong; Cabral, João T; Salleo, Alberto; Chabinyc, Michael L; Durrant, James R; McCulloch, Iain

    2014-11-17

    Cost-effective, solution-processable organic photovoltaics (OPV) present an interesting alternative to inorganic silicon-based solar cells. However, one of the major remaining challenges of OPV devices is their lack of long-term operational stability, especially at elevated temperatures. The synthesis of a fullerene dumbbell and its use as an additive in the active layer of a PCDTBT:PCBM-based OPV device is reported. The addition of only 20 % of this novel fullerene not only leads to improved device efficiencies, but more importantly also to a dramatic increase in morphological stability under simulated operating conditions. Dynamic secondary ion mass spectrometry (DSIMS) and TEM are used, amongst other techniques, to elucidate the origins of the improved morphological stability. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  14. Selective Complexation and Reactivity of Metallic Nitride and OxoMetallic Fullerenes with Lewis Acids and Use as an Effective Purification Method

    PubMed Central

    Stevenson, Steven; Mackey, Mary A.; Pickens, Jane E.; Stuart, Melissa A.; Confait, Bridget S.; Phillips, J. Paige

    2009-01-01

    Metallic nitride fullerenes (MNFs) and oxometallic fullerenes (OMFs) react quickly with an array of Lewis acids. Empty-cage fullerenes are largely unreactive under conditions used in this study. The reactivity order is Sc4O2@Ih-C80 > Sc3N@C78 > Sc3N@C68 > Sc3N@D5h-C80 > Sc3N@Ih-C80. Manipulations of Lewis acids, molar ratios and kinetic differences within the family of OMF and MNF metallofullerenes are demonstrated in a selective precipitation scheme, which can be used either alone for purifying Sc3N@Ih-C80 or combined with a final HPLC pass for Sc4O2@Ih-C80, Sc3N@D5h-C80, Sc3N@C68, or Sc3N@C78. The purification process is scalable. Analysis of experimental rate constants versus electrochemical band gap explains the order of reactivity among the OMF and MNFs. PMID:19911812

  15. Extraction of fullerenes from environmental matrices as affected by solvent characteristics and analyte concentration.

    PubMed

    Place, Benjamin J; Kleber, Markus; Field, Jennifer A

    2013-03-01

    Fullerenes possess unique chemical properties that make the isolation of these compounds from heterogeneous environmental matrices difficult. For example, previous reports indicate that toluene-based extraction techniques vary in their ability to extract C60, especially from highly carbonaceous solid matrices. Here, we examined the effects of (i) solvent type (toluene alone versus an 80:20 v/v mixture of toluene and 1-methylnaphthalene) and (ii) analyte concentration on the extraction efficiency of an isotopically labeled surrogate compound, (13)C60. The toluene/1-methylnaphthalene mixture increased fullerene extraction efficiency from carbon lampblack by a factor of five, but was not significantly different from 100% toluene when applied to wood stove soot or montmorillonite. Recovery of the (13)C60 surrogate declined with decreasing analyte concentration. The usefulness of isotopically labeled surrogate is demonstrated and the study provides a quantitative assessment regarding the dependence of fullerene extraction efficiencies on the geochemical characteristics of solid matrices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Investigation of the Reactions and Distribution of Polycyclic Aromatic Hydrocarbons and Fullerenes in Extraterrestrial Material

    NASA Technical Reports Server (NTRS)

    Zare, Richard N.

    2005-01-01

    The work funded by this research grant includes four specific projects: (1) Mapping the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in a variety of meteoritic samples and comparing this distribution with mineralogical features of the meteorite to determine whether a correlation exists between the two. (2) Developing a method for detection of fullerenes in extraterrestrial samples using microprobe laser-desorption laser-ionization mass spectrometry ( pL2MS) and utilizing this technique to investigate fullerene presence, while exploring the possibility of spatially mapping the fullerene distribution in these samples through in situ detection. (3) Investigating a possible formation pathway for meteoritic and ancient terrestrial kerogen involving the photochemical reactions of PAHs with alkanes under prebiotic and astrophysically relevant conditions. (4) Studying reaction pathways and identifying the photoproducts generated during the photochemical evolution of PAH-containing interstellar ice analogs as part of an ongoing collaboration with researchers at the Astrochemistry Lab at NASA Ames.

  17. Distribution of electron density in charged Li@C60 complexes

    NASA Astrophysics Data System (ADS)

    Sadlej-Sosnowska, Nina; Mazurek, Aleksander P.

    2013-08-01

    The Letter is an expanded commentary to the paper 'Fullerene as an electron buffer: charge transfer in Li@C60', by Pavanello and co-authors [8]. We calculated the electron density distribution in the space inside and outside the fullerene cage in Li@C60 complexes differing in total charge, based on Gauss's law. It allowed us to determine the charges contained inside surfaces isomorphic with the fullerene cage and contracted or enlarged with respect to the latter. For every complex, a surface was found in the vicinity of the central Li atom such that the charge enclosed within it was equal to +1.

  18. Fullerene-based low-density superhard materials with tunable bandgaps

    NASA Astrophysics Data System (ADS)

    Cao, Ai-Hua; Zhao, Wen-Juan; Gan, Li-Hua

    2018-06-01

    Four carbon allotropes built from tetrahedral symmetrical fullerenes C28 and C40 are predicted to be superhard materials with mass density around that of water, and all of them are porous semiconductors. Both the bandgaps and hardness decrease with increasing ratio of sp2 hybridized carbon atoms. The mechanical and thermodynamic stabilities of C28- and C40-based allotropes at zero pressure are confirmed by a variety of state-of-the-art theoretical calculations. The evolution trend of bandgap found here suggests that one can obtain low-density hard materials with tunable bandgaps by substituting the carbon atom in diamond with different Td-symmetrical non-IPR fullerene Cn.

  19. Equation of motion coupled cluster methods for electron attachment and ionization potential in fullerenes C60 and C70

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Moreno, Juana

    Discovery of fullerenes has opened a entirely new chapter in chemistry due to their wide range of properties which holds exciting applications in numerous disciplines of science. The Nobel Prize in Chemistry 1996 was awarded jointly to Robert F. Curl Jr., Sir Harold W. Kroto and Richard E. Smalley in recoginition for their discovery of this new carbon allotrope. In this letter we are reporting ionization potential and electron attachment studies on fullerenes (C60 and C70) obtained with novel parallel implementation of the EA-EOM-CCSD and IP-EOM-CCSD methods in NWChem program package.

  20. Electronic structure evolution in doping of fullerene (C{sub 60}) by ultra-thin layer molybdenum trioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenggong; Wang, Congcong; Kauppi, John

    2015-08-28

    Ultra-thin layer molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The highest occupied molecular orbital (HOMO) can be observed directly with UPS. It is observed that the Fermi level position in fullerene is modified by ultra-thin-layer molybdenum oxide doping, and the HOMO onset is shifted to less than 1.3 eV below the Fermi level. The XPS results indicate that charge transfer was observed from the C{sub 60} to MoO{sub x} and Mo{sup 6+} oxides is the basis as hole dopants.

  1. Systematic Construction and Calculation of Electronic Properties of Fullerene Series Related by Rotational Symmetry: From Fullerenes to Bicapped Nanotubes.

    PubMed

    Dias, Jerry Ray

    2016-06-09

    The results herein demonstrate that the methods of circumscribing and the facile calculation of Hückel molecular orbital (HMO) eigenvalues by mirror-plane fragmentation have a broad application in the construction of carbon cluster series and the systematic study of trends in their electronic properties. In comparing open-ended nanotubes and their isomeric elongated fullerenes (bicapped nanotubes), we show that the former are more aromatic but the latter are more conjugated and that progressive elongation increases aromaticity and conjugation in both. Recursion equations that will allow one to obtain the eigenvalues to all 5-endcapped nanotubes are given.

  2. Bertrand Tremolet de Villers | NREL

    Science.gov Websites

    University of California, Santa Barbara. There, he studied novel materials for organic electronic devices , including non-fullerene acceptors for organic solar cells and low optical bandgap polymers for near-IR Universal Non-Fullerene Acceptors for Organic Photovoltaics." Adv. Energy Mater. (4); p. 1301007. http

  3. UV Irradiation and Humic Acid Mediate Aggregation of Aqueous Fullerene (nC60) Nanoparticles

    EPA Science Inventory

    The transport and fate of engineered nanomaterials is affected by multiple environmental factors, including sunlight and natural organic matter. In this study, the initial aggregation kinetics of aqueous fullerene (nC60) nanoparticles before and after UVA irradiation was investig...

  4. Inorganic Fullerenes, Onions, and Tubes

    ERIC Educational Resources Information Center

    York, Andrew P. E.

    2004-01-01

    Buckminsterfullerene, which is in the shape of a soccer-ball was first discovered in 1985, has many applications as a good lubricant, or as a new superconductor. The synthesis of these inorganic fullerenes involves a great deal of interdisciplinary research between physicists, material scientists, engineers and chemists from various fields.

  5. Encapsulation of Mo₂C in MoS₂ inorganic fullerene-like nanoparticles and nanotubes.

    PubMed

    Wiesel, Inna; Popovitz-Biro, Ronit; Tenne, Reshef

    2013-02-21

    Mo(2)C nanoparticles encapsulated within MoS(2) inorganic fullerene-like nanoparticles and nanotubes were produced by carbothermal reaction at 1200-1300 °C inside a vertical induction furnace. The particles were analyzed using various electron microscopy techniques and complementary methods.

  6. Fullerene-like colloidal nanocrystal of nickel hydroxychloride.

    PubMed

    Hu, Shi; Wang, Xun

    2010-07-21

    In this work, we successfully fabricated near-monodisperse colloids of a new type of inorganic fullerene-like structure (IF) of nickel hydroxychloride as the first example of the application of colloidal synthetic routes to the synthesis of IFs. The formation mechanism and interesting magnetic properties are briefly discussed.

  7. Physical and electrical properties of trimetallic nitride template endohedral metallofullerenes and their polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Ahmed, Hanaa Mohammed

    The main objective of this study was characterization of pure metallic nitride fullerene, MNF, and MNF containing polymers to evaluate these materials as suitable devices for tunable applications. Polymer-fullerene nanocomposites consisting of linear polyurethane (PU) segments crosslinked via polyhydroxylated fullerenes (C60 and Sc3N C 80, a metallic nitride fullerene) were prepared and characterized for their mechanical and dielectric properties using dynamic mechanical analysis (DMA) and broadband dielectric spectroscopic techniques. Polyhydroxylated fullerenes C60(OH)29 and Sc3N C80(OH) 18 were synthesized in a high yield through a solid-state high sheer ball-milling procedure and were characterized using a verity of techniques, such as FT-R, mass spectroscopy (MS) and thermal gravimetric analysis (TGA), to elucidate their structures. A difunctional isocyanate-terminated prepolymer was prepared from the reaction of poly(tetramethylene oxide) glycol (PTMO, ˜2000 g/mol) and methylene bis(4-isocyanatobenzene) (MDI) followed by the addition of the crosslinking fullerene agent. Fullerene-polymer networks [C60 -PU and Sc3N C80-PU] having high gel fractions and good mechanical properties and thermal stabilities were produced. Dynamic mechanical analyses of (C60 or Sc3N C80)-PU networks indicated a glass transition temperature, Tg, of -50°C with a sub-Tg relaxation due to local chain motions. Broadband dielectric spectroscopic analyses of the nanoparticles prior to incorporation into the networks revealed one relaxation and large epsilon' values in hydroxylated C60 relative to unfunctionalized C60. The analogous hydroxylated Sc3N C80 exhibited two relaxations, and the extra relaxation may be due to reorientations of cage-encapsulated Sc 3N clusters. Permittivity values (epsilon') for Sc3N C 80-PU were found to be higher than the corresponding values for C 60-PU, likely because of the rotationally mobile dipoles. For temperature < 0°C there was a dielectric loss peak due to the glass transition of the PU matrix and another at a lower temperature due to short range chain motions. The loss-frequency spectra of all prepared samples were analyzed sing the Kramers-Kronig transformation and Havriliak-Negami (HN) equation to extract information about relaxation processes taken place in these samples. Capacitance-voltage characteristics of the fullerene-PUs did not show any significant change with the applied dc bias voltage in the range of our instrument window (-30 to +30 volt). A general conclusion is that this class of materials can be rendered quite polarizable.

  8. Hetero Bis-Addition of Spiro-Acetalized or Cyclohexanone Ring to 58π Fullerene Impacts Solubility and Mobility Balance in Polymer Solar Cells.

    PubMed

    Mikie, Tsubasa; Saeki, Akinori; Ikuma, Naohiko; Kokubo, Ken; Seki, Shu

    2015-06-17

    Fullerene bis-adducts are increasingly being studied to gain a high open circuit voltage (Voc) in bulk heterojunction organic photovoltaics (OPVs). We designed and synthesized homo and hetero bis-adduct [60]fullerenes by combining fused cyclohexanone or a five-membered spiro-acetalized unit (SAF5) with 1,2-dihydromethano (CH2), indene, or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These new eight 56π fullerenes showed a rational rise of the lowest unoccupied molecular orbital (LUMO). We perform a systematic study on the electrochemical property, solubility, morphology, and space-charge-limited current (SCLC) mobility. The best power conversion efficiency (PCE) of 4.43% (average, 4.36%) with the Voc of 0.80 V was obtained for poly(3-hexylthiophene) (P3HT) blended with SAF5/indene hetero bis-adduct, which is a marked advancement in PCE compared to the 0.9% of SAF5 monoadduct. More importantly, we elucidate an important role of mobility balance between hole and electron that correlates with the device PCEs. Besides, an empirical equation to extrapolate the solubilities of hetero bis-adducts is proposed on the basis of those of counter monoadducts. Our work offers a guide to mitigate barriers for exploring a large number of hetero bis-adduct fullerenes for efficient OPVs.

  9. Metabolizer in vivo of fullerenes and metallofullerenes by positron emission tomography

    NASA Astrophysics Data System (ADS)

    Li, Juan; Yang, Wenjiang; Cui, Rongli; Wang, Dongliang; Chang, Yanan; Gu, Weihong; Yin, Wenyan; Bai, Xue; Chen, Kui; Xia, Lin; Geng, Huan; Xing, Gengmei

    2016-04-01

    Fullerenes (C60) and metallofullerenes (Gd@C82) have similar chemical structure, but the bio-effects of both fullerene-based materials are distinct in vivo. Tracking organic carbon-based materials such as C60 and Gd@C82 is difficult in vivo due to the high content of carbon element in the living tissues themselves. In this study, the biodistribution and metabolism of fullerenes (C60 and Gd@C82) radiolabeled with 64Cu were observed by positron emission tomography (PET). 64Cu-C60 and 64Cu-Gd@C82 were prepared using 1, 4, 7, 10-tetrakis (carbamoylmethyl)-1, 4, 7, 10-tetra-azacyclodo-decanes grafted on carbon cages as a chelator for 64Cu, and were obtained rapidly with high radiochemical yield (≥90%). The new radio-conjugates were evaluated in vivo in the normal mouse model and tissue distribution by small animal PET/CT imaging and histology was carried out. The PET imaging, the biodistribution and the excretion of C60 and Gd@C82 indicated that C60 samples have higher blood retention and lower renal clearance than the Gd@C82 samples in vivo and suggested that the differences in metabolism and distribution in vivo were caused by the structural differences of the groups on the fullerene cages though there is chemical similarity between C60 and Gd@C82.

  10. Charge-associated effects of fullerene derivatives on microbialstructural integrity and central metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Yinjie J.; Ashcroft, Jared M.; Chen, Ding

    2007-01-23

    The effects of four types of fullerene compounds (C60,C60-OH, C60-COOH, C60-NH2) were examined on two model microorganisms(Escherichia coli W3110 and Shewanella oneidensis MR-1). Positivelycharged C60-NH2 at concentrations as low as 10 mg/L inhibited growth andreduced substrate uptake for both microorganisms. Scanning ElectronMicroscopy (SEM) revealed damage to cellular structures.Neutrally-charged C60 and C60-OH had mild negative effects on S.oneidensis MR-1, whereas the negatively-charged C60-COOH did not affecteither microorganism s growth. The effect of fullerene compounds onglobal metabolism was further investigated using [3-13C]L-lactateisotopic labeling, which tracks perturbations to metabolic reaction ratesin bacteria by examining the change in the isotopic labeling pattern inthe resultingmore » metabolites (often amino acids).1-3 The 13C isotopomeranalysis from all fullerene-exposed cultures revealed no significantdifferences in isotopomer distributions from unstressed cells. Thisresult indicates that microbial central metabolism is robust toenvironmental stress inflicted by fullerene nanoparticles. In addition,although C60-NH2 compounds caused mechanical stress on the cell wall ormembrane, both S. oneidensis MR-1 and E. coli W3110 can efficientlyalleviate such stress by cell aggregation and precipitation of the toxicnanoparticles. The results presented here favor the hypothesis thatfullerenes cause more membrane stress4, 5, 6 than perturbation to energymetabolism7« less

  11. Photodynamic therapy with decacationic [60]fullerene monoadducts: effect of a light absorbing electron-donor antenna and micellar formulation.

    PubMed

    Yin, Rui; Wang, Min; Huang, Ying-Ying; Huang, Huang-Chiao; Avci, Pinar; Chiang, Long Y; Hamblin, Michael R

    2014-05-01

    We report the synthesis and anticancer photodynamic properties of two new decacationic fullerene (LC14) and red light-harvesting antenna-fullerene conjugated monoadduct (LC15) derivatives. The antenna of LC15 was attached covalently to C60>with distance of only <3.0 Ǻ to facilitate ultrafast intramolecular photoinduced-electron-transfer (for type-I photochemistry) and photon absorption at longer wavelengths. Because LC15 was hydrophobic we compared formulation in Cremophor EL micelles with direct dilution from dimethylacetamide. LC14 produced more (1)O2 than LC15, while LC15 produced much more HO·than LC14 as measured by specific fluorescent probes. When delivered by DMA, LC14 killed more HeLa cells than LC15 when excited by UVA light, while LC15 killed more cells when excited by white light consistent with the antenna effect. However LC15 was more effective than LC14 when delivered by micelles regardless of the excitation light. Micellar delivery produced earlier apoptosis and damage to the endoplasmic reticulum as well as to lysosomes and mitochondria. This team of authors report the synthesis and the photodynamic properties of two new derivatives for cancer treatment; one is a decacationic fullerene (LC14) and the other is a red light-harvesting antenna-fullerene conjugated monoadduct (LC15) utilizing a HeLa cell model. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Analytical and molecular dynamics studies on the impact loading of single-layered graphene sheet by fullerene

    NASA Astrophysics Data System (ADS)

    Hosseini-Hashemi, Shahrokh; Sepahi-Boroujeni, Amin; Sepahi-Boroujeni, Saeid

    2018-04-01

    Normal impact performance of a system including a fullerene molecule and a single-layered graphene sheet is studied in the present paper. Firstly, through a mathematical approach, a new contact law is derived to describe the overall non-bonding interaction forces of the "hollow indenter-target" system. Preliminary verifications show that the derived contact law gives a reliable picture of force field of the system which is in good agreements with the results of molecular dynamics (MD) simulations. Afterwards, equation of the transversal motion of graphene sheet is utilized on the basis of both the nonlocal theory of elasticity and the assumptions of classical plate theory. Then, to derive dynamic behavior of the system, a set including the proposed contact law and the equations of motion of both graphene sheet and fullerene molecule is solved numerically. In order to evaluate outcomes of this method, the problem is modeled by MD simulation. Despite intrinsic differences between analytical and MD methods as well as various errors arise due to transient nature of the problem, acceptable agreements are established between analytical and MD outcomes. As a result, the proposed analytical method can be reliably used to address similar impact problems. Furthermore, it is found that a single-layered graphene sheet is capable of trapping fullerenes approaching with low velocities. Otherwise, in case of rebound, the sheet effectively absorbs predominant portion of fullerene energy.

  13. Photoaddition of N-substituted piperazines to C60: an efficient approach to the synthesis of water-soluble fullerene derivatives.

    PubMed

    Troshina, Olesya A; Troshin, Pavel A; Peregudov, Alexander S; Kozlovski, Viacheslav I; Lyubovskaya, Rimma N

    2006-07-17

    An oxidative radical photoaddition of mono N-substituted piperazines to [60]fullerene was systematically investigated. Reactions of C60 with piperazines bearing bulky electron-withdrawing groups (2-pyridyl, 2-pyrimidinyl) were found to be the most selective and yielded C60(amine)4O as major products along with small amounts of C60(amine)2. In contrast, interactions of fullerene with N-methylpiperazine and N-(tert-butoxycarbonyl)piperazine were found to have low selectivity due to different side reactions. Tetraaminofullerene derivative C60(N-(2-pyridyl)piperazine)4O was found to react readily with organic and inorganic acids to yield highly water-soluble salts (solubility approximately 150 mg mL(-1)). In contrast, C60(N-(2-pyrimidinyl)piperazine)4O undergoes hydrolysis under the same conditions and results in a complex mixture of compounds with an average composition of C60(N-(2-pyrimidinyl)piperazine)2(OH)2O. Radical photoaddition of N-(2-pyridyl)piperazine to fullerene derivatives can be used as a facile route for their transformation into water-soluble compounds. Two model fullerene cycloadducts (a methanofullerene and a pyrrolidinofullerene) were easily converted into mixtures of regioisomers of A=C60(N-(2-pyridyl)piperazine)4O (A=cyclic addend) that give highly water-soluble salts under acid treatment.

  14. Precursor soot synthesis of fullerenes and nanotubes without formation of carbonaceous soot

    DOEpatents

    Reilly, Peter T. A.

    2007-03-20

    The present invention is a method for the synthesis of fullerenes and/or nanotubes from precursor soot without the formation of carbonaceous soot. The method comprises the pyrolysis of a hydrocarbon fuel source by heating the fuel source at a sufficient temperature to transform the fuel source to a condensed hydrocarbon. The condensed hydrocarbon is a reaction medium comprising precursor soot wherein hydrogen exchange occurs within the reaction medium to form reactive radicals which cause continuous rearrangement of the carbon skeletal structure of the condensed hydrocarbon. Then, inducing dehydrogenation of the precursor soot to form fullerenes and/or nanotubes free from the formation of carbonaceous soot by continued heating at the sufficient temperature and by regulating the carbon to hydrogen ratio within the reaction medium. The dehydrogenation process produces hydrogen gas as a by-product. The method of the present invention in another embodiment is also a continuous synthesis process having a continuous supply of the fuel source. The method of the present invention can also be a continuous cyclic synthesis process wherein the reaction medium is fed back into the system as a fuel source after extraction of the fullerenes and/or nanotube products. The method of the present invention is also a method for producing precursor soot in bulk quantity, then forming fullerenes and/or nanotubes from the precursor bulk.

  15. Suspension and Characterization of Aqueous C60 Nanomaterials in Natural and Engineered Waters

    EPA Science Inventory

    Many current studies on the aqueous suspension of fullerene (aqu/C60) have used deionized water or simple salt solutions, and as a result little is know about the suspension of fullerene nanomatierals under environmentally relevant conditions, such as solutions that contain organ...

  16. Effect of Natural Organic Matter on the Light-initiated Transformation of Fullerenes

    EPA Science Inventory

    Natural organic matter (NOM) is ubiquitous in natural environments. Previous research has observed enhanced dispersion of Buckminster fullerene (C60) in water in the presence of NOM. It is also well-known that NOM can impact the photoreaction of many organic compounds by producin...

  17. Encapsulation of Mo2C in MoS2 inorganic fullerene-like nanoparticles and nanotubes

    NASA Astrophysics Data System (ADS)

    Wiesel, Inna; Popovitz-Biro, Ronit; Tenne, Reshef

    2013-01-01

    Mo2C nanoparticles encapsulated within MoS2 inorganic fullerene-like nanoparticles and nanotubes were produced by carbothermal reaction at 1200-1300 °C inside a vertical induction furnace. The particles were analyzed using various electron microscopy techniques and complementary methods.

  18. Correction: An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells.

    PubMed

    Payne, Abby-Jo; Li, Shi; Dayneko, Sergey V; Risko, Chad; Welch, Gregory C

    2017-09-21

    Correction for 'An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells' by Abby-Jo Payne et al., Chem. Commun., 2017, 53, 10168-10171.

  19. Nanorings of self-assembled fullerene C(70) as templating nanoreactors.

    PubMed

    Iyer, K Swaminathan; Saunders, Martin; Becker, Thomas; Evans, Cameron W; Raston, Colin L

    2009-11-18

    Micelles, polyelectrolytes, peptides, and plasmid DNA with well-defined growth cavities can function as templates for the synthesis of metal nanocrystals. In a similar way, carbon-based toroidal 'nanoreactors' composed of clustered fullerenes could be used to synthesize nanohybrids by forming metal nanocrystals within the confines of the ring.

  20. Producing multicharged fullerene ion beam extracted from the second stage of tandem-type ECRIS.

    PubMed

    Nagaya, Tomoki; Nishiokada, Takuya; Hagino, Shogo; Uchida, Takashi; Muramatsu, Masayuki; Otsuka, Takuro; Sato, Fuminobu; Kitagawa, Atsushi; Kato, Yushi; Yoshida, Yoshikazu

    2016-02-01

    We have been constructing the tandem-type electron cyclotron resonance ion source (ECRIS). Two ion sources of the tandem-type ECRIS are possible to generate plasma individually, and they also confined individual ion species by each different plasma parameter. Hence, it is considered to be suitable for new materials production. As the first step, we try to produce and extract multicharged C60 ions by supplying pure C60 vapor in the second stage plasma because our main target is producing the endohedral fullerenes. We developed a new evaporator to supply fullerene vapor, and we succeeded in observation about multicharged C60 ion beam in tandem-type ECRIS for the first time.

  1. Vibrational Spectra of Tetrahedral Fullerenes.

    PubMed

    Cheng; Li; Tang

    1999-01-01

    From the topological structures of the following classes of tetrahedral fullerenes-(1) Cn(h, h; -i, i), Cn(h, 0; -i, 2i), Cn(2h + i, -h + i; i, i), Cn(h - i, h + 2i; -i, 2i), and Cn(h, i; 0, i) for Td symmetry; (2) Cn(h, k; k, h), Cn(h, k; -h - k, k), and Cn(h, k; -h, h + k) for Th symmetry; (3) Cn(h, k; i, j) for T symmetry-we have obtained theoretically the formulas for the numbers of their IR and Raman active modes for all of the tetrahedral fullerenes through the decomposition of their nuclear motions into irreducible representations by means of group theory. Copyright 1999 Academic Press.

  2. Optical properties of C28 fullerene cage: A DFT study

    NASA Astrophysics Data System (ADS)

    Paul, Debolina; Bhattacharya, Barnali; Deb, Jyotirmoy; Sarkar, Utpal

    2018-05-01

    Density functional theory methodology have been used to study the optical properties of fullerene C28 with the application of average electric field. The static dielectric constant of C28 is recorded a low value of 1.4. It is observed that the fullerene shows a wide range of absorption in the UV region of the electromagnetic spectrum. The presence of the optical gap in the system as can be observed from the imaginary part of the dielectric function. The observation of small reflectivity suggests its possible uses in hybrid solar cell applications. In addition, due to strong absorption taking place in the UV region, the system could be used in the UV light protection devices.

  3. Poly(ethylene glycol)-[60]Fullerene-Based Materials for Perovskite Solar Cells with Improved Moisture Resistance and Reduced Hysteresis.

    PubMed

    Collavini, Silvia; Saliba, Michael; Tress, Wolfgang R; Holzhey, Philippe J; Völker, Sebastian F; Domanski, Konrad; Turren-Cruz, Silver H; Ummadisingu, Amita; Zakeeruddin, Shaik M; Hagfeldt, Anders; Grätzel, Michael; Delgado, Juan L

    2018-03-22

    A series of [60]fullerenes covalently functionalized with the polymer poly(ethylene glycol) is presented. These new [60]fullerene-based materials have been incorporated as additives in CH 3 NH 3 PbI 3 (MAPbI 3 ), the most common organic-inorganic perovskite used in perovskite solar cells. The extensive photovoltaic study performed by using these materials shows several beneficial effects on the performance of these cells, including a reduction in hysteresis and an increased stability against moisture, whereby the solar cells retain up to 97 % of their initial power conversion efficiency in an ambient atmosphere. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fabrication and electrochemical properties of insoluble fullerene-diamine adduct thin-films as buffer layer by alternate immersion process

    NASA Astrophysics Data System (ADS)

    Saito, Jo; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo

    2017-01-01

    Insoluble fullerene-diamine adduct thin-films consisting of C60 and 1,2-diaminoethane were easily fabricated on an electrode by an alternate immersion process. Formation of the C60-diamine adduct films were confirmed using transmission absorption spectroscopy and atomic force microscopy. An inverted-type organic solar cells were fabricated by using the C60-diamine adduct film as the electron transport layer. The resultant photoelectric conversation performance of the solar cells suggested that photocurrent is generated via the photoexcitation of polythiophene. The result suggests that the present insoluble fullerene-diamine adduct films worked as buffer layer for organic thin-film solar cells.

  5. Supramolecular Differentiation for Construction of Anisotropic Fullerene Nanostructures by Time-Programmed Control of Interfacial Growth.

    PubMed

    Bairi, Partha; Minami, Kosuke; Hill, Jonathan P; Nakanishi, Waka; Shrestha, Lok Kumar; Liu, Chao; Harano, Koji; Nakamura, Eiichi; Ariga, Katsuhiko

    2016-09-27

    Supramolecular assembly can be used to construct a wide variety of ordered structures by exploiting the cumulative effects of multiple noncovalent interactions. However, the construction of anisotropic nanostructures remains subject to some limitations. Here, we demonstrate the preparation of anisotropic fullerene-based nanostructures by supramolecular differentiation, which is the programmed control of multiple assembly strategies. We have carefully combined interfacial assembly and local phase separation phenomena. Two fullerene derivatives, PhH and C12H, were together formed into self-assembled anisotropic nanostructures by using this approach. This technique is applicable for the construction of anisotropic nanostructures without requiring complex molecular design or complicated methodology.

  6. Size Determination of Aqueous C60 by Asymmetric Flow Field-Flow Fractionation (AF4) and in-Line Dynamic Light Scattering

    EPA Science Inventory

    To date, studies on the environmental behaviour of aggregated aqueous fullerene nanomaterials have used the entire size distribution of fullerene aggregates and do not distinguish between different aggregate size classes. This is a direct result of the lack of analytical methods ...

  7. Synergistic effects of chlorination and a fully two-dimensional side-chain design on molecular energy level modulation toward non-fullerene photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Pengjie; Wang, Huan; Mo, Daize

    By taking the advantage of chlorination and fully conjugated side chains,2D-PBTClshows a PCE of up to 8.81% in non-fullerene solar cells, which corresponds to an approximately 28% improvement compared to that ofPTB7-Th-based devices.

  8. Synergistic effects of chlorination and a fully two-dimensional side-chain design on molecular energy level modulation toward non-fullerene photovoltaics

    DOE PAGES

    Chao, Pengjie; Wang, Huan; Mo, Daize; ...

    2017-12-18

    By taking the advantage of chlorination and fully conjugated side chains,2D-PBTClshows a PCE of up to 8.81% in non-fullerene solar cells, which corresponds to an approximately 28% improvement compared to that ofPTB7-Th-based devices.

  9. Understanding charge transport and recombination losses in high performance polymer solar cells with non-fullerene acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xuning; Zuo, Xiaobing; Xie, Shenkun

    Photovoltaic characteristics, recombination and charge transport properties are investigated. The determined recombination reduction factor can reconcile the supreme device performance in organic solar cells using non-fullerene ITIC acceptor and severe carrier losses in all-polymer devices with P(NDI2OD-T2).

  10. Energy Level Alignment of N-Doping Fullerenes and Fullerene Derivatives Using Air-Stable Dopant.

    PubMed

    Bao, Qinye; Liu, Xianjie; Braun, Slawomir; Li, Yanqing; Tang, Jianxin; Duan, Chungang; Fahlman, Mats

    2017-10-11

    Doping has been proved to be one of the powerful technologies to achieve significant improvement in the performance of organic electronic devices. Herein, we systematically map out the interface properties of solution-processed air-stable n-type (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) doping fullerenes and fullerene derivatives and establish a universal energy level alignment scheme for this class of n-doped system. At low doping levels at which the charge-transfer doping induces mainly bound charges, the energy level alignment of the n-doping organic semiconductor can be described by combining integer charger transfer-induced shifts with a so-called double-dipole step. At high doping levels, significant densities of free charges are generated and the charge flows between the organic film and the conducting electrodes equilibrating the Fermi level in a classic "depletion layer" scheme. Moreover, we demonstrate that the model holds for both n- and p-doping of π-backbone molecules and polymers. With the results, we provide wide guidance for identifying the application of the current organic n-type doping technology in organic electronics.

  11. Quasi 2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode Material for Electrochemical Supercapacitors.

    PubMed

    Tang, Qin; Bairi, Partha; Shrestha, Rekha Goswami; Hill, Jonathan P; Ariga, Katsuhiko; Zeng, Haibo; Ji, Qingmin; Shrestha, Lok Kumar

    2017-12-27

    Fullerene C 60 microbelts were fabricated using the liquid-liquid interfacial precipitation method and converted into quasi 2D mesoporous carbon microbelts by heat treatment at elevated temperatures of 900 and 2000 °C. The carbon microbelts obtained by heat treatment of fullerene C 60 microbelts at 900 °C showed excellent electrochemical supercapacitive performance, exhibiting high specific capacitances ca. 360 F g -1 (at 5 mV s -1 ) and 290 F g -1 (at 1 A g -1 ) because of the enhanced surface area and the robust mesoporous framework structure. Additionally, the heat-treated carbon microbelt showed good rate performance, retaining 49% of capacitance at a high scan rate of 10 A g -1 . The carbon belts exhibit super cyclic stability. Capacity loss was not observed even after 10 000 charge/discharge cycles. These results demonstrate that the quasi 2D mesoporous carbon microbelts derived from a π-electron-rich carbon source, fullerene C 60 crystals, could be used as a new candidate material for electrochemical supercapacitor applications.

  12. Impact of C 60 fullerene on the dynamics of force-speed changes in soleus muscle of rat at ischemia-reperfusion injury.

    PubMed

    Nozdrenko, D M; Bogutska, K I; Prylutskyy, Yu I; Korolovych, V F; Evstigneev, M P; Ritter, U; Scharff, P

    2015-01-01

    The effect of C60 fullerene nanoparticles (30-90 nm) on dynamics of force response development to stimulated soleus muscle of rat with ischemic pathology, existing in muscle during the first 5 hours and first 5 days after 2 hours of ischemia and further reperfusion, was investigated using the tensometric method. It was found that intravenous and intramuscular administration of C60 fullerene with a single dose of 1 mg/kg exert different therapeutic effects dependent on the investigated macroparameters of muscle contraction. The intravenous drug administration was shown to be the most optimal for correction of the velocity macroparameters of contraction due to muscle tissue ischemic damage. In contrast, the intramuscular administration displays protective action with respect to motions associated with generation of maximal force response or continuous contractions elevating the level of muscle fatigue. Hence, C60 fullerene, being a strong antioxidant, may be considered as a promising agent for effective therapy of pathological states of the muscle system caused by pathological action of free radical processes.

  13. Centimetre-scale electron diffusion in photoactive organic heterostructures

    NASA Astrophysics Data System (ADS)

    Burlingame, Quinn; Coburn, Caleb; Che, Xiaozhou; Panda, Anurag; Qu, Yue; Forrest, Stephen R.

    2018-02-01

    The unique properties of organic semiconductors, such as flexibility and lightness, are increasingly important for information displays, lighting and energy generation. But organics suffer from both static and dynamic disorder, and this can lead to variable-range carrier hopping, which results in notoriously poor electrical properties, with low electron and hole mobilities and correspondingly short charge-diffusion lengths of less than a micrometre. Here we demonstrate a photoactive (light-responsive) organic heterostructure comprising a thin fullerene channel sandwiched between an electron-blocking layer and a blended donor:C70 fullerene heterojunction that generates charges by dissociating excitons. Centimetre-scale diffusion of electrons is observed in the fullerene channel, and this can be fitted with a simple electron diffusion model. Our experiments enable the direct measurement of charge diffusivity in organic semiconductors, which is as high as 0.83 ± 0.07 square centimetres per second in a C60 channel at room temperature. The high diffusivity of the fullerene combined with the extraordinarily long charge-recombination time yields diffusion lengths of more than 3.5 centimetres, orders of magnitude larger than expected for an organic system.

  14. Low-energy positron scattering upon endohedrals

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Chernysheva, L. V.

    2017-07-01

    We investigate positron scattering upon endohedrals and compare it with electron-endohedral scattering. We show that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects both the positron and electron elastic scattering phases as well as corresponding cross sections. Of great importance is also the interaction between the incoming positron and the target electrons that leads to formation of the virtual positronium P˜s. We illustrate the general trend by concrete examples of positron and electron scattering upon endohedrals He@C60 and Ar@C60, and compare it to scattering upon fullerene C60. To obtain the presented results, we have employed new simplified approaches that permit to incorporate the effect of fullerenes polarizability into the He@C60 and Ar@C60 polarization potential and to take into account the virtual positronium formation. Using these approaches, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross sections due to effect of endohedral polarization and P˜s formation.

  15. On the Mechanical Properties of WS2 and MoS2 Nanotubes and Fullerene-Like Nanoparticles: In Situ Electron Microscopy Measurements

    NASA Astrophysics Data System (ADS)

    Kaplan-Ashiri, Ifat; Tenne, Reshef

    2016-01-01

    Since the discovery of the first inorganic fullerene-like nanoparticles and nanotubes made of WS2 and then MoS2, many more compounds which produce such nanostructures have been discovered and added to the ever expanding list of this group of the layered nanomaterials. Scaling-up the synthesis of the nano-phases of WS2 and MoS2 together with their incredible mechanical properties has turned them into a most promising product for the lubrication industry. Fundamental studies on the mechanical properties of WS2 and MoS2 inorganic fullerene-like nanoparticles and nanotubes are presented in this review. A wide range of mechanical testing was conducted on WS2 and MoS2 nanoparticles. The main focus of this review will be on single nanoparticle experiments in situ electron microscopy as it enables simultaneous structure and properties characterization. Although it is quite challenging, the single nanoparticle approach provides us with the ability to elucidate the intrinsic properties of WS2 and MoS2 inorganic fullerenes and nanotubes.

  16. Stability Criteria of Fullerene-like Nanoparticles: Comparing V₂O5 to Layered Metal Dichalcogenides and Dihalides.

    PubMed

    Levi, Roi; Bar-Sadan, Maya; Albu-Yaron, Ana; Popovitz-Biro, Ronit; Houben, Lothar; Prior, Yehiam; Tenne, Reshef

    2010-08-18

    Numerous examples of closed-cage nanostructures, such as nested fullerene-like nanoparticles and nanotubes, formed by the folding of materials with layered structure are known. These compounds include WS₂, NiCl₂, CdCl₂, Cs₂O, and recently V₂O₅. Layered materials, whose chemical bonds are highly ionic in character, possess relatively stiff layers, which cannot be evenly folded. Thus, stress-relief generally results in faceted nanostructures seamed by edge-defects. V₂O₅, is a metal oxide compound with a layered structure. The study of the seams in nearly perfect inorganic "fullerene-like" hollow V₂O 5 nanoparticles (NIF-V₂O₅) synthesized by pulsed laser ablation (PLA), is discussed in the present work. The relation between the formation mechanism and the seams between facets is examined. The formation mechanism of the NIF-V₂O 5 is discussed in comparison to fullerene-like structures of other layered materials, like IF structures of MoS₂, CdCl₂, and Cs₂O. The criteria for the perfect seaming of such hollow closed structures are highlighted.

  17. Simultaneous Increase in Open-Circuit Voltage and Efficiency of Fullerene-Free Solar Cells through Chlorinated Thieno[3,4-b]thiophene Polymer Donor

    DOE PAGES

    Wang, Huan; Chao, Pengjie; Chen, Hui; ...

    2017-08-01

    Here, the chlorinated polymer, PBTCl, have been found to be an efficient donor in non-fullerene PSCs, which showed a blue-shifted absorbance compared to that of its fluorine analog (PTB7-th), and resulted in a more complementary light absorption with non-fullerene acceptor, such as ITIC. Meanwhile, chlorine substitution lowered the HOMO level of PBTCl, which increased the open-circuit voltage of the corresponding polymer-based devices. The 2D GIWAXS analysis illustrated that the PBTCl/ITIC blend film exhibited a “face-on” orientation and scattering features of both PBTCl and ITIC, suggesting that the blend of PBTCl and ITIC was phase separated and formed individual crystalline domainsmore » of the donor and acceptor, which promoted charge transfer in the bi-continuous film and eventually elevated the solar energy conversion efficiency. The PBTCl-based non-fullerene PSC exhibited a maximum PCE of 7.57% with a Voc of 0.91 V, which was an approximately 13% increasing in the PCE compared to the fluorine-analog-based device.« less

  18. Non-fullerene acceptors for organic solar cells

    NASA Astrophysics Data System (ADS)

    Yan, Cenqi; Barlow, Stephen; Wang, Zhaohui; Yan, He; Jen, Alex K.-Y.; Marder, Seth R.; Zhan, Xiaowei

    2018-03-01

    Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure-property relationships, donor-acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field.

  19. Molecular Basis for the Recognition of Higher Fullerenes into Ureidopyrimidinone-Cyclotriveratrylene Self-Assembled Capsules.

    PubMed

    Huerta, Elisa; Serapian, Stefano Artin; Santos, Eva; Cequier, Enrique; Bo, Carles; de Mendoza, Javier

    2016-09-12

    Fullerenes C60 , C70 , and C84 may be readily encaged within a hydrogen-bonded dimeric capsule, based on two concave cyclotriveratrylene (CTV) scaffolds, each containing three self-complementary 2-ureido-4-[1H]-pyrimidinone (UPy) subunits. NMR spectroscopy and circular dichroism studies, complemented by dispersion-corrected DFT calculations, are reported with the aim of characterizing such capsule-fullerene complexes both structurally and energetically. Six fullerenes are considered: in agreement with experiments, calculations find that encapsulation is most favorable for C84 (on a par with C90 ), and follows the trend C60

  20. Effects of inter-fullerene π-band mixings in the photoexcitation of hybrid plasmons in the C60@C240 molecule

    NASA Astrophysics Data System (ADS)

    de, Rume; Madjet, Mohamed; Chakraborty, Himadri

    2013-05-01

    We perform a detailed study of the ground state electronic structure of a two-layer fullerene onion molecule C60@C240. Calculations are carried out in a quantum mechanical framework of local density approximation (LDA) where the onion's ion-core of sixty C4+ ions from C60 and two hundred and forty of those from C240 is smeared into a classical jellium distribution. Significant inter-fullerene mixing between the bands of single-node radial symmetry, the π-bands, is found. We then compute the photoionization from all the levels of the system using a time-dependent version of LDA at photon energies where the ionization is dominated by the inter-layer hybridization of collective plasmon resonances. It is determined, by comparing the isolated fullerene cross sections with the cross section of the onion system for both π and σ (having nodeless radial waves) symmetry, that the π-band mixing is predominantly responsible for the production of plasmon hybrids. Supported by NSF and DOE.

  1. Modified denatured lysozyme effectively solubilizes fullerene c60 nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Siepi, Marialuisa; Politi, Jane; Dardano, Principia; Amoresano, Angela; De Stefano, Luca; Monti, Daria Maria; Notomista, Eugenio

    2017-08-01

    Fullerenes, allotropic forms of carbon, have very interesting pharmacological effects and engineering applications. However, a very low solubility both in organic solvents and water hinders their use. Fullerene C60, the most studied among fullerenes, can be dissolved in water only in the form of nanoparticles of variable dimensions and limited stability. Here the effect on the production of C60 nanoparticles by a native and denatured hen egg white lysozyme, a highly basic protein, has been systematically studied. In order to obtain a denatured, yet soluble, lysozyme derivative, the four disulfides of the native protein were reduced and exposed cysteines were alkylated by 3-bromopropylamine, thus introducing eight additional positive charges. The C60 solubilizing properties of the modified denatured lysozyme proved to be superior to those of the native protein, allowing the preparation of biocompatible highly homogeneous and stable C60 nanoparticles using lower amounts of protein, as demonstrated by dynamic light scattering, transmission electron microscopy and atomic force microscopy studies. This lysozyme derivative could represent an effective tool for the solubilization of other carbon allotropes.

  2. The quest for inorganic fullerenes

    NASA Astrophysics Data System (ADS)

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Park, Eun Ji; Ganteför, Gerd; Seo, Hyun Ook; Kim, Young Dok; Idrobo, Juan-Carlos; Pennycook, Stephen J.

    2015-10-01

    Experimental results of the search for inorganic fullerenes are presented. MonSm- and WnSm- clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  3. Nitrogen-atom endohedral fullerene synthesis with high efficiency by controlling plasma-ion irradiation energy and C60 internal energy

    NASA Astrophysics Data System (ADS)

    Cho, Soon Cheon; Kaneko, Toshiro; Ishida, Hiroyasu; Hatakeyama, Rikizo

    2015-03-01

    The nitrogen-atom endohedral fullerene (N@C60) has been synthesized by controlling the plasma ion irradiation energy (Ei) and fullerene (C60) behavior in the sublimation phase. We examined the relationship between the synthesis purity of N@C60 [molar concentration ratio of N@C60 to pristine fullerene (C60)] and Ei, which was controlled by changing the substrate bias voltages (Vsub) and gas pressure (PN2) during the plasma irradiation process. High-density nitrogen-molecular ions (N2+) with a suitable Ei near 80 eV are confirmed to be the optimum condition of the nitrogen plasma for the synthesis of high-purity N@C60. In addition, high sublimation of C60 contributes to a higher yield due to the high internal energy of C60 and the related cage defects that are present under these conditions. As a result, a purity of 0.83% is realized for the first time, which is almost two orders of magnitude higher than that using other methods.

  4. Novel endohedral derivatives of Sc3N C2n (n = 34, 40) and unique tether controlled bis-functionalization of fullerenes

    NASA Astrophysics Data System (ADS)

    Ceron Hernandez, Maira Raquel

    Since the discovery of fullerenes in 1985, their exohedral functionalization has been necessary to increase their solubility and explore their properties and potential applications in materials science and medicinal chemistry. This thesis provides a short overview of the importance of electronic, size and shape complementarity in determining the structures of specific endohedral fullerene compounds. This is followed by a description of a new method for the separation of scandium nitride endohedral fullerenes Sc3N C2n (n = 34, 39 and 40), and their monofunctionalization. We also present the regioselective synthesis of easily isolable bis-derivatives of C60, C70, and M3N Ih-C80 (M = Sc, Lu) using 1,3-dipolar, addition/elimination (Bingel reaction) and diazo cycloadditions. The following sections are composed of a brief introduction and a pre-peer reviewed version of the published article, each section follows its own nomenclature and numerical order. The experimental section in each section includes methods, synthesis and characterization of the most relevant compounds.

  5. Simultaneous Increase in Open-Circuit Voltage and Efficiency of Fullerene-Free Solar Cells through Chlorinated Thieno[3,4-b]thiophene Polymer Donor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huan; Chao, Pengjie; Chen, Hui

    Here, the chlorinated polymer, PBTCl, have been found to be an efficient donor in non-fullerene PSCs, which showed a blue-shifted absorbance compared to that of its fluorine analog (PTB7-th), and resulted in a more complementary light absorption with non-fullerene acceptor, such as ITIC. Meanwhile, chlorine substitution lowered the HOMO level of PBTCl, which increased the open-circuit voltage of the corresponding polymer-based devices. The 2D GIWAXS analysis illustrated that the PBTCl/ITIC blend film exhibited a “face-on” orientation and scattering features of both PBTCl and ITIC, suggesting that the blend of PBTCl and ITIC was phase separated and formed individual crystalline domainsmore » of the donor and acceptor, which promoted charge transfer in the bi-continuous film and eventually elevated the solar energy conversion efficiency. The PBTCl-based non-fullerene PSC exhibited a maximum PCE of 7.57% with a Voc of 0.91 V, which was an approximately 13% increasing in the PCE compared to the fluorine-analog-based device.« less

  6. Application of C30B15N15 heterofullerene in the isoniazid drug delivery: DFT studies

    NASA Astrophysics Data System (ADS)

    Hazrati, Mehrnoosh Khodam; Bagheri, Zargham; Bodaghi, Ali

    2017-05-01

    Using density functional theory, we have investigated the potential application of a C30B15N15 heterofullerene in anti-cancer isoniazid drug delivery. It was found that isoniazid prefers to attach via its -NH2 group to a boron atom of the C30B15N15 with releasing a large energy of about 21.91 kcal/mol. Our partial density of states analysis demonstrates that the boron atoms significantly contribute in generation of virtual orbitals of C30B15N15 fullerene, indicating that these atoms will be suitable for nucleophilic attack rather than carbon atoms. In addition to the large released energy, the electronic properties C30B15N15 are significantly sensitive to the isoniazid attachment which can recognize the drug trajectory by affecting the fluorescence emission properties. Unlike, different nanostructures whose structures need to be manipulated to be suitable for drug delivery, the C30B15N15 fullerene can be used in the pristine form. We proposed a drug release mechanism in cancer tissues, representing that in the low pH of the cancer cells the drug and C30B15N15 fullerene are considerably protonated, thereby separating the drug from the surface of the fullerene. The reaction mechanism of the drug with the fullerene is changed from covalence in natural environment to hydrogen bonding in acidic cancer cells.

  7. Influence of charge carrier mobility and morphology on solar cell parameters in devices of mono- and bis-fullerene adducts.

    PubMed

    Muth, Mathis-Andreas; Mitchell, William; Tierney, Steven; Lada, Thomas A; Xue, Xiang; Richter, Henning; Carrasco-Orozco, Miguel; Thelakkat, Mukundan

    2013-12-06

    Herein, we analyze charge carrier mobility and morphology of the active blend layer in thin film organic solar cells and correlate them with device parameters. A low band gap donor-acceptor copolymer in combination with phenyl-C61-butyric acid methyl ester (PCBM) or two bis-adduct fullerenes, bis-PCBM and bis-o-quino-dimethane C60 (bis-oQDMC), is investigated. We study the charge transport of polymer:fullerene blends in hole- and electron-only devices using the space-charge limited current method. Lower electron mobilities are observed in both bis-adduct fullerene blends. Hole mobility, however, is decreased only in the blend containing bis-oQDMC. Both bis-adduct fullerene blends show very high open circuit voltage in solar cell devices, but poor photocurrent compared to the standard PCBM blend for an active layer thickness of 200 nm. Therefore, a higher short circuit current is feasible for the polymer:bis-PCBM blend by reducing the active layer thickness in order to compensate for the low electron mobility, which results in a PCE of 4.3%. For the polymer:bis-oQDMC blend, no such improvement is achieved due to an unfavorable morphology in this particular blend system. The results are supported by external quantum efficiency measurements, atomic force microscopy, transmission electron microscopy and UV/vis spectroscopy. Based on these results, the investigations presented herein give a more scientific basis for the optimization of solar cells.

  8. A SEARCH FOR NEAR INFRARED BANDS OF THE FULLERENE CATION C{sub 60}{sup +} IN THE PROTOPLANETARY NEBULA IRAS 01005+7910

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iglesias-Groth, S.; Esposito, M., E-mail: sigroth@iac.es

    IRAS 01005+7910 is a carbon-rich protoplanetary nebula with a recently reported detection of mid-IR vibrational transitions of the fullerene C{sub 60} by Zhang and Kwok. We present new high spectral resolution (R ∼ 57, 000) observations of this object obtained at the 3.6 m Telescopio Nazionale Galileo, showing the presence of two absorption bands at 9577 and 9632 Å which are consistent with laboratory measurements of the C{sub 60}{sup +} cation. If these two bands were produced by C{sub 60}{sup +} in the material surrounding the central post-asymptotic giant branch star, we estimate that ∼1% of carbon could be trappedmore » in this ionized form of fullerenes which would be more abundant than the neutral species in this protoplanetary nebulae. The central star with an effective temperature of T ≥ 20, 000 K can provide the ionizing photons required. These observations bring further evidence for the presence of fullerenes in protoplanetary nebulae and suggest that a significant production takes place in this late stage of stellar evolution. Mid-IR bands of C{sub 60}{sup +} could be present in the 7-20 μm spectrum of IRAS 01005+7910 and are also likely to be detected in the spectra of planetary nebulae. High-resolution spectroscopy will be required for a reliable determination of the excitation temperatures and the relative abundance of neutral and ionized fullerenes in these objects.« less

  9. Trap formation and energy transfer in pheophorbide a-DAB-dendrimers and pyropheophorbide a-fullerene C 60 hexaadduct molecular systems

    NASA Astrophysics Data System (ADS)

    Röder, Beate; Ermilov, Eugeny A.; Hackbarth, Steffen; Helmreich, Matthias; Jux, Norbert

    2006-04-01

    The photophysical properties of DAB-dendrimers from 1 st to 4 th generation as well as Diaminohexane - all substituted with the in maximum achievable quantity of pheophorbide a (Pheo) molecules were studied in comparison with a novel hexapyropheophorbide a - fullerene hexaadduct (FHP6) and a fullerene [6:0]-hexaadduct which carries twelve pyropheophorbide a units (FHP12) using both steady-state and time-resolved spectroscopic methods. It was found that neighboring dye molecules covalently linked to one DAB- or fullerene moiety due to the length and high flexibility of carbon chains could stack with each other. This structural property is the reason for the possibility of formation different types of energy traps, which were resolved experimentally. The dipole-dipole resonance Förster energy transfer between the dye molecules coupled to one complex caused a very fast and efficient delivery of the excitation to a trap. As result the fluorescence as well as the singlet oxygen quantum yields of the different complexes were reduced with increasing number of dye molecules per complex. Nevertheless in every case the singlet oxygen generation was less influenced then the fluorescence quantum yield, exposing the complex to a non-negligible amount of excited oxygen in the singlet state. While the fullerene complexes turned out to be stable under these conditions, the DAB-dendrimer-backbones were completely fragmented to small rudiments carrying just one or a small number of dye molecules.

  10. A Geometric Principle May Guide Self-Assembly of Fullerene Cages from Clathrin Triskelia and from Carbon Atoms☆

    PubMed Central

    Schein, Stan; Sands-Kidner, Michelle

    2008-01-01

    Abstract Clathrin triskelia and carbon atoms alike self-assemble into a limited selection of fullerene cages (with n three connected vertices, 3n/2 edges, 12 pentagonal faces, and (n−20)/2 hexagonal faces). We show that a geometric constraint—exclusion of head-to-tail dihedral angle discrepancies (DADs)—explains this limited selection as well as successful assembly into such closed cages in the first place. An edge running from a pentagon to a hexagon has a DAD, since the dihedral angles about the edge broaden from its pentagon (tail) end to its hexagon (head) end. Of the 21 configurations of a central face and surrounding faces, six have such DAD vectors arranged head-to-tail. Of the 5770 mathematically possible fullerene cages for n ≤ 60, excluding those with any of the six configurations leaves just 15 cages plus buckminsterfullerene (n = 60), among them the known clathrin cages. Of the 216,739 mathematically possible cages for 60 < n ≤ 84, just the 50 that obey the isolated-pentagon rule, among them known carbon cages, pass. The absence of likely fullerenes for some n (30,34,46,48,52–58,62–68) explains the abundance of certain cages, including buckminsterfullerene. These principles also suggest a “probable roads” path to self-assembly in place of pentagon-road and fullerene-road hypotheses. PMID:17921209

  11. Reliable but Timesaving: In Search of an Efficient Quantum-chemical Method for the Description of Functional Fullerenes.

    PubMed

    Reis, H; Rasulev, B; Papadopoulos, M G; Leszczynski, J

    2015-01-01

    Fullerene and its derivatives are currently one of the most intensively investigated species in the area of nanomedicine and nanochemistry. Various unique properties of fullerenes are responsible for their wide range applications in industry, biology and medicine. A large pool of functionalized C60 and C70 fullerenes is investigated theoretically at different levels of quantum-mechanical theory. The semiempirial PM6 method, density functional theory with the B3LYP functional, and correlated ab initio MP2 method are employed to compute the optimized structures, and an array of properties for the considered species. In addition to the calculations for isolated molecules, the results of solution calculations are also reported at the DFT level, using the polarizable continuum model (PCM). Ionization potentials (IPs) and electron affinities (EAs) are computed by means of Koopmans' theorem as well as with the more accurate but computationally expensive ΔSCF method. Both procedures yield comparable values, while comparison of IPs and EAs computed with different quantum-mechanical methods shows surprisingly large differences. Harmonic vibrational frequencies are computed at the PM6 and B3LYP levels of theory and compared with each other. A possible application of the frequencies as 3D descriptors in the EVA (EigenVAlues) method is shown. All the computed data are made available, and may be used to replace experimental data in routine applications where large amounts of data are required, e.g. in structure-activity relationship studies of the toxicity of fullerene derivatives.

  12. Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures.

    PubMed

    Bar Sadan, Maya; Houben, Lothar; Wolf, Sharon G; Enyashin, Andrey; Seifert, Gotthard; Tenne, Reshef; Urban, Knut

    2008-03-01

    We present the advancement of electron tomography for three-dimensional structure reconstruction of fullerene-like particles toward atomic-scale resolution. The three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is achieved by the combination of low voltage operation of the electron microscope with aberration-corrected phase contrast imaging. The method enables the study of defects and irregularities in the three-dimensional structure of individual fullerene-like particles on the scale of 2-3 A. Control over shape, size, and atomic architecture is a key issue in synthesis and design of functional nanoparticles. Transmission electron microscopy (TEM) is the primary technique to characterize materials down to the atomic level, albeit the images are two-dimensional projections of the studied objects. Recent advancements in aberration-corrected TEM have demonstrated single atom sensitivity for light elements at subångström resolution. Yet, the resolution of tomographic schemes for three-dimensional structure reconstruction has not surpassed 1 nm3, preventing it from becoming a powerful tool for characterization in the physical sciences on the atomic scale. Here we demonstrate that negative spherical aberration imaging at low acceleration voltage enables tomography down to the atomic scale at reduced radiation damage. First experimental data on the three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is presented. The method is applicable to the analysis of the atomic architecture of a wide range of nanostructures where strong electron channeling is absent, in particular to carbon fullerenes and inorganic fullerenes.

  13. Aggregation behavior of fullerenes in aqueous solutions: a capillary electrophoresis and asymmetric flow field-flow fractionation study.

    PubMed

    Astefanei, Alina; Núñez, Oscar; Galceran, Maria Teresa; Kok, Wim Th; Schoenmakers, Peter J

    2015-10-01

    In this work, the electrophoretic behavior of hydrophobic fullerenes [buckminsterfullerene (C60), C70, and N-methyl-fulleropyrrolidine (C60-pyrr)] and water-soluble fullerenes [fullerol (C60(OH)24); polyhydroxy small gap fullerene, hydrated (C120(OH)30); C60 pyrrolidine tris acid (C60-pyrr tris acid); and (1,2-methanofullerene C60)-61-carboxylic acid (C60CHCOOH)] in micellar electrokinetic capillary chromatography (MECC) was evaluated. The aggregation behavior of the water-soluble compounds in MECC at different buffer and sodium dodecyl sulfate (SDS) concentrations and pH values of the background electrolyte (BGE) was studied by monitoring the changes observed in the electrophoretic pattern of the peaks. Broad and distorted peaks that can be attributed to fullerene aggregation were obtained in MECC which became narrower and more symmetric by working at low buffer and SDS concentrations (below the critical micelle concentration, capillary zone electrophoresis (CZE) conditions). For the characterization of the suspected aggregates formed (size and shape), asymmetrical flow field-flow fractionation (AF4) and transmission electron microscopy (TEM) were used. The results showed that the increase in the buffer concentration promoted the aggregation of the particles, while the presence of SDS micelles revealed multiple peaks corresponding to particles of different aggregation degrees. Furthermore, MECC has been applied for the first time for the analysis of C60 in two different cosmetic products (i.e., anti-aging serum and facial mask).

  14. Controlled deposition of fullerene derivatives within a graphene template by means of a modified Langmuir-Schaefer method.

    PubMed

    Kouloumpis, Antonios; Vourdas, Nikolaos; Zygouri, Panagiota; Chalmpes, Nikolaos; Potsi, Georgia; Kostas, Vasilios; Spyrou, Konstantinos; Stathopoulos, Vassilis N; Gournis, Dimitrios; Rudolf, Petra

    2018-04-12

    The scientific and technological potential of graphene's includes the development of light, open 3D hybrid structures with high surface area, tunable pore size and aromatic functionalities. Towards this aim, we describe a scalable and low-cost bottom-up approach that combines self-assembly and Langmuir-Schaefer deposition for the production of fullerene-intercalated graphene oxide hybrids. This method uses graphene oxide (GO) nanosheets as template for the attachment of two types of fullerene derivatives (bromo-fullerenes, C 60 Br 24 and fullerols, C 60 (OH) 24 ) in a bi-dimensional arrangement, allowing a layer-by-layer growth with control at nanoscale. Our film preparation approach relies on a bottom-up process that includes the formation of a hybrid organo-graphene Langmuir film, which is transferred onto a substrate and then brought in contact with C 60 (OH) 24 molecules in solution to induce self-assembly. In the case of grafting C 60 Br 24 molecules into graphene a further modification of the GO platelets was performed by bringing the surface of the transferred GO Langmuir film in contact with a second amino surfactant solution. Repeating these deposition cycles, pillared structures were fabricated in thin films form. These fullerene-based hybrid thin films were characterized by Raman and X-ray photoelectron (XPS) spectroscopies, X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and contact angle measurements. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Is the interaction between Ti atoms and fullerenes the origin of the 21-μ m feature?

    NASA Astrophysics Data System (ADS)

    Kimura, Y.; Nuth, J. A., III; Ferguson, F. T.

    2005-12-01

    A 21-μ m-emission feature has been observed in the shells of carbon-rich post-asymptotic giant branch (AGB) stars. The carrier of the 21-μ m feature remains unidentified, although many candidate materials have been proposed, including nanodiamond, SiS2, a derivative of SiC and nanometer-sized TiC. In particular, TiC grains were extensively discussed after the report by von Helden (2000). Gas-phase TiC clusters less than 1 nm in diameter have been suggested as the source of the 21-μ m dust feature. The spectrum of TiC clusters recorded in the laboratory provides a good fit with the observational data. However, only negative results have been reported for both theoretical and laboratory experimental studies concerning TiC since the discovery by von Helden. Recent measurements of fullerenes and Ti atoms recorded in our laboratory have demonstrated the presence of an infrared feature near 21 μ m. The feature observed has nearly the same shape and position as is observed for one of the most enigmatic features in post-AGB stars. In our experimental system, large-cage carbon particles, such as large fullerenes, were produced from CO gas by the Boudouard reaction. Large-cage carbon particles intermixed with Ti atoms were produced by the evaporation of a Ti-metal-wrapped carbon electrode in CO gas. The infrared spectra of large fullerenes interacting with Ti atoms show a characteristic feature at 20.3 μ m that closely corresponds to the 20.1-μ m feature observed in post-AGB stars. Both the laboratory and stellar spectra also show a small but significant peak at 19.0 μ m, which is attributed to fullerenes. We propose that the interaction between fullerenes and Ti atoms may be a plausible explanation for the 21-μ m feature seen in some post-AGB stars.

  16. Architecture of clathrin fullerene cages reflects a geometric constraint--the head-to-tail exclusion rule--and a preference for asymmetry.

    PubMed

    Schein, Stan

    2009-03-27

    Fullerene cages have n trivalent vertices, 12 pentagonal faces, and (n-20)/2 hexagonal faces. The smallest cage in which all of the pentagons are surrounded by hexagons and thus isolated from each other has 60 vertices and is shaped like a soccer ball. The protein clathrin self-assembles into fullerene cages of a variety of sizes and shapes, including smaller ones with adjacent pentagons as well as larger ones, but the variety is limited. To explain the range of clathrin architecture and how these fullerene cages self-assemble, we proposed a hypothesis, the "head-to-tail exclusion rule" (the "Rule"). Of the 5769 small clathrin cage isomers with n< or =60 vertices and adjacent pentagons, the Rule permits just 15, three identified in 1976 and 12 others. A "weak version" of the Rule permits another 99. Based on cryo-electron tomography, Cheng et al. reported six raw clathrin fullerene cages. One was among the three identified in 1976. Here, (1) we identify the remaining five. (2) Four are new and are among the 12 others permitted by the Rule. (3) One, also new, is among the 99 weak version cages. (4) Of particular note, none of the remaining 5565 excluded cages has been identified. These findings provide powerful experimental confirmation of the Rule and the principle on which it is based. (5) Surprisingly, the newly identified clathrin cages are among the least symmetric of those permitted. (6) By devising a method for counting assembly paths, (7) we show that asymmetric cages can be assembled by larger numbers of paths, thus providing a kinetic explanation for the prevalence of asymmetric cages. (8) Finally, we show that operation during cage growth of the Rule greatly increases the likelihood of producing a closed fullerene cage, specifically one of those permitted, but efficient assembly still appears to require internal remodeling.

  17. Effect of hydration on the stability of fullerene-like silica molecules

    NASA Astrophysics Data System (ADS)

    Filonenko, O. V.; Lobanov, V. V.

    2011-05-01

    The hydration of fullerene-like silica molecules was studied by the density functional method (exchange-correlation functional B3LYP, basis set 6-31G**). It was demonstrated that completely coordinated structures transform to more stable hydroxylated ones during hydrolysis. These in turn react with H2O molecules with the formation of hydrogen bonds.

  18. Revisit of the Saito-Dresselhaus-Dresselhaus C2 ingestion model: on the mechanism of atomic-carbon-participated fullerene growth.

    PubMed

    Wang, Wei-Wei; Dang, Jing-Shuang; Zhao, Xiang; Nagase, Shigeru

    2017-11-09

    We introduce a mechanistic study based on a controversial fullerene bottom-up growth model proposed by R. Saito, G. Dresselhaus, and M. S. Dresselhaus. The so-called SDD C 2 addition model has been dismissed as chemically inadmissible but here we prove that it is feasible via successive atomic-carbon-participated addition and migration reactions. Kinetic calculations on the formation of isolated pentagon rule (IPR)-obeying C 70 and Y 3 N@C 80 are carried out by employing the SDD model for the first time. A stepwise mechanism is proposed with a considerably low barrier of ca. 2 eV which is about 3 eV lower than a conventional isomerization-containing fullerene growth pathway.

  19. Electron transport in doped fullerene molecular junctions

    NASA Astrophysics Data System (ADS)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    The effect of doping on the electron transport of molecular junctions is analyzed in this paper. The doped fullerene molecules are stringed to two semi-infinite gold electrodes and analyzed at equilibrium and nonequilibrium conditions of these device configurations. The contemplation is done using nonequilibrium Green’s function (NEGF)-density functional theory (DFT) to evaluate its density of states (DOS), transmission coefficient, molecular orbitals, electron density, charge transfer, current, and conductance. We conclude from the elucidated results that Au-C16Li4-Au and Au-C16Ne4-Au devices behave as an ordinary p-n junction diode and a Zener diode, respectively. Moreover, these doped fullerene molecules do not lose their metallic nature when sandwiched between the pair of gold electrodes.

  20. Why are Buckyonions Round?

    NASA Technical Reports Server (NTRS)

    Bates, Kevin R.; Scuseria, Gustavo E.

    1998-01-01

    Multi-layered round carbon particles (onions) containing tens to hundreds of thousands of atoms form during electron irradiation of graphite. However. theoretical models or large icosahedral fullerenes predict highly faceted shapes for molecules with more than a few hundred atoms. This discrepancy in shape may be explained by the presence of defects during the formation of carbon onions. Here, we use the semi-empirical tight-binding method for carbon to simulate the incorporation of pentagon-heptagon defects on to the surface of large icosahedral fullerenes. We show a simple mechanism that results in energetically competitive derivative structures and a global change in molecular shape from faceted to round. Our results provide a plausible explanation of the apparent discrepancy between experimental observations or round buckyonions and theoretical predictions of faceted icosahedral fullerenes.

  1. Super-low friction and super-elastic hydrogenated carbon films originated from a unique fullerene-like nanostructure

    NASA Astrophysics Data System (ADS)

    Wang, Chengbing; Yang, Shengrong; Wang, Qi; Wang, Zhou; Zhang, Junyan

    2008-06-01

    Hydrogenated carbon films were grown by a plasma-enhanced chemical vapor deposition (PECVD) technique using CH4 and H2 as feedstock at ambient temperature. The microstructure of the films was characterized by high resolution transmission electron microscopy (HRTEM). The images showed the presence of curved basal planes in fullerene-like arrangements. An apparent amorphous graphene structure with nm-sized packages of basal planes in a turbostratic feature was observed. The fabricated fullerene-like hydrogenated carbon films (FL-C:H) possess superior mechanical properties, i.e. high hardness (19 GPa) and high elasticity (elastic recovery of 85%). More importantly, the films exhibit ultra-low friction (μ = 0.009) under ambient conditions with 20% relative humidity.

  2. Super-low friction and super-elastic hydrogenated carbon films originated from a unique fullerene-like nanostructure.

    PubMed

    Wang, Chengbing; Yang, Shengrong; Wang, Qi; Wang, Zhou; Zhang, Junyan

    2008-06-04

    Hydrogenated carbon films were grown by a plasma-enhanced chemical vapor deposition (PECVD) technique using CH(4) and H(2) as feedstock at ambient temperature. The microstructure of the films was characterized by high resolution transmission electron microscopy (HRTEM). The images showed the presence of curved basal planes in fullerene-like arrangements. An apparent amorphous graphene structure with nm-sized packages of basal planes in a turbostratic feature was observed. The fabricated fullerene-like hydrogenated carbon films (FL-C:H) possess superior mechanical properties, i.e. high hardness (19 GPa) and high elasticity (elastic recovery of 85%). More importantly, the films exhibit ultra-low friction (μ = 0.009) under ambient conditions with 20% relative humidity.

  3. Producing multicharged fullerene ion beam extracted from the second stage of tandem-type ECRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaya, Tomoki, E-mail: nagaya@nf.eie.eng.osaka-u.ac.jp; Nishiokada, Takuya; Hagino, Shogo

    2016-02-15

    We have been constructing the tandem-type electron cyclotron resonance ion source (ECRIS). Two ion sources of the tandem-type ECRIS are possible to generate plasma individually, and they also confined individual ion species by each different plasma parameter. Hence, it is considered to be suitable for new materials production. As the first step, we try to produce and extract multicharged C{sub 60} ions by supplying pure C{sub 60} vapor in the second stage plasma because our main target is producing the endohedral fullerenes. We developed a new evaporator to supply fullerene vapor, and we succeeded in observation about multicharged C{sub 60}more » ion beam in tandem-type ECRIS for the first time.« less

  4. Isolation and Structural Characterization of Two Very Large, and Largely Empty, Endohedral Fullerenes: Tm@C3v-C94 and Ca@C3v-C94

    PubMed Central

    Che, Yuliang; Yang, Hua; Wang, Zhimin; Jin, Hongxiao; Lu, Chunxin; Zuo, Tianming; Beavers, Christine M.

    2009-01-01

    The structures of two newly synthesized endohedral fullerenes - Tm@C3v-C94 and Ca@C3v-C94 - have been determined by single crystal X-ray diffraction on samples co-crystallized with NiII(octaethylporphyrin). Both compounds exhibit the same cage geometry and conform to the isolated pentagon rule (IPR). The metal ions within these rather large cages are localized near one end and along the C3 axis. While the calcium ion is situated over a C-C bond at a 6:6 ring junction, the thulium ion is positioned above a six-membered ring of the fullerene. PMID:19507844

  5. Fabrication of inorganic molybdenum disulfide fullerenes by arc in water

    NASA Astrophysics Data System (ADS)

    Sano, Noriaki; Wang, Haolan; Chhowalla, Manish; Alexandrou, Ioannis; Amaratunga, Gehan A. J.; Naito, Masakazu; Kanki, Tatsuo

    2003-01-01

    Closed caged fullerene-like molybdenum disulfide (MoS 2) nano-particles were obtained via an arc discharge between a graphite cathode and a molybdenum anode filled with microscopic MoS 2 powder submerged in de-ionized water. A statistical study of over 150 polyhedral fullerene-like MoS 2 nano-particles in plan view transmission electron microscopy revealed that the majority consisted of 2-3 layers with diameters of 5-15 nm. We show that the nano-particles are formed by seamless folding of MoS 2 sheets. A model based on the agglomeration of MoS 2 fragments over an extreme temperature gradient around a plasma ball in water is proposed to explain the formation of nano-particles.

  6. Substrate influence on the interlayer electron-phonon couplings in fullerene films probed with doubly-resonant SFG spectroscopy.

    PubMed

    Elsenbeck, Dennis; Das, Sushanta K; Velarde, Luis

    2017-07-19

    We present doubly-resonant sum frequency generation (DR-SFG) spectra of fullerene thin films on metallic and dielectric substrates as a way to investigate the interplay between nuclear and electronic coupling at buried interfaces. Modal and substrate selectivity in the electronic enhancement of the C 60 vibrational signatures is demonstrated for excitation wavelengths spanning the visible range. While the SFG response of the totally symmetric A g (2) mode of fullerene is distinctly coupled to the optically allowed electronic transition corresponding to the HOMO-LUMO+1 of C 60 (ca. 2.6 eV), the T 1u (4) vibrational mode appears to be coupled to a symmetry-forbidden HOMO-LUMO transition at lower energies (ca. 2.0 eV). For dielectric substrates, the DR-SFG intensity of the T 1u (4) mode shows lack of enhancement for upconversion wavelengths off-resonance with the optically-dark LUMO. However, the T 1u (4) mode shows a unique coupling to an intermediate state (∼2.4 eV) only for the fullerene films on the gold substrate. We attribute this coupling to unique interactions at the buried C 60 /gold interface. These results demonstrate the occurrence of clear electron-phonon couplings at the C 60 /substrate interfaces and shed light on the impact of these couplings on the optical response of electronically excited fullerene. This coupling may influence charge and energy transport in organic electronic devices mediated by vibrational motions. We also demonstrate a potential use of this added selectivity in chemical imaging.

  7. Fabrication and Atomic Force Microscopy Characterization of Molecular Composites of Fullerenes in Aerogel Matrix for Optical Limiting

    NASA Technical Reports Server (NTRS)

    Lu, W. J .; Sunkara, H. B.; Shi, D.; Morgan, S. H.; Penn, B.; Frazier, D.; Collins, W. E.

    1998-01-01

    An optical limiter is a device which exhibits a decrease in the transmittance in a material with an increase in intensity of light. Sol-gel techniques offer many advantages in the fabrication of materials. These materials possess many desirable properties for nonlinear optical (NLO) device applications which include transparency, high thermal and chemical stabilities, very low refractive index and dielectric constants. C60 shows a higher excited state absorption cross section than the ground state absorption cross section over the complete visible spectrum, and the spectrum of the excited state absorption of C60 has the same general shape as the ground state absorption. This fact suggests that fullerenes are ideal optical limiting materials. Aerogels are fabricated by sol-gel processing. One of the key issues is the dispersion of fullerenes into small and uniform pores of silica aerogel host matrices. The aerogel network was characterized by Raman spectroscopy. Atomic force microscopy is a technique with many advantages to characterize the aerogel materials. The morphology of the cleaved surface for a C60/aerogel sample shows that there are long paralleled shaped stripes with 20-30 nm in width and about 500 nm in length on the cleaved surface. The cleaved surface also was etched by 5% HF solution for one minutes, and it became smoother after HF etching. The main feature in on the surface is the spherical particles with the size of few nanometers, and no aggregated fullerenes appear. The fullerenes are well dispersed in the aerogel matrices.

  8. Single or functionalized fullerenes interacting with heme group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Wallison Chaves; Diniz, Eduardo Moraes, E-mail: eduardo.diniz@ufma.br

    The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C{sub 60} fullerene or with C{sub 60} functionalized with small functional groupsmore » (−CH{sub 3}, −COOH, −NH{sub 2}, −OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.« less

  9. Multi-modular, tris(triphenylamine) zinc porphyrin-zinc phthalocyanine-fullerene conjugate as a broadband capturing, charge stabilizing, photosynthetic 'antenna-reaction center' mimic.

    PubMed

    Kc, Chandra B; Lim, Gary N; D'Souza, Francis

    2015-04-21

    A broadband capturing, charge stabilizing, photosynthetic antenna-reaction center model compound has been newly synthesized and characterized. The model compound is comprised of a zinc porphyrin covalently linked to three units of triphenylamine entities and a zinc phthalocyanine entity. The absorption and fluorescence spectra of zinc porphyrin complemented that of zinc phthalocyanine offering broadband coverage. Stepwise energy transfer from singlet excited triphenylamine to zinc porphyrin, and singlet excited zinc porphyrin to zinc phthalocyanine (kENT ∼ 10(11) s(-1)) was established from spectroscopic and time-resolved transient absorption techniques. Next, an electron acceptor, fullerene was introduced via metal-ligand axial coordination to both zinc porphyrin and zinc phthalocyanine centers, and they were characterized by spectroscopic and electrochemical techniques. An association constant of 4.9 × 10(4) M(-1) for phenylimidazole functionalized fullerene binding to zinc porphyrin, and 5.1 × 10(4) M(-1) for it binding to zinc phthalocyanine was obtained. An energy level diagram for the occurrence of different photochemical events within the multi-modular donor-acceptor conjugate was established from spectral and electrochemical data. Unlike the previous zinc porphyrin-zinc phthalocyanine-fullerene conjugates, the newly assembled donor-acceptor conjugate has been shown to undergo the much anticipated initial charge separation from singlet excited zinc porphyrin to the coordinated fullerene followed by a hole shift process to zinc phthalocyanine resulting in a long-lived charge separated state as revealed by femto- and nanosecond transient absorption spectroscopic techniques. The lifetime of the final charge separated state was about 100 ns.

  10. Thermoelectricity in fullerene-metal heterojunctions.

    PubMed

    Yee, Shannon K; Malen, Jonathan A; Majumdar, Arun; Segalman, Rachel A

    2011-10-12

    Thermoelectricty in heterojunctions, where a single-molecule is trapped between metal electrodes, has been used to understand transport properties at organic-inorganic interfaces. (1) The transport in these systems is highly dependent on the energy level alignment between the molecular orbitals and the Fermi level (or work function) of the metal contacts. To date, the majority of single-molecule measurements have focused on simple small molecules where transport is dominated through the highest occupied molecular orbital. (2, 3) In these systems, energy level alignment is limited by the absence of electrode materials with low Fermi levels (i.e., large work functions). Alternatively, more controllable alignment between molecular orbitals and the Fermi level can be achieved with molecules whose transport is dominated by the lowest unoccupied molecular orbital (LUMO) because of readily available metals with lower work functions. Herein, we report molecular junction thermoelectric measurements of fullerene molecules (i.e., C(60), PCBM, and C(70)) trapped between metallic electrodes (i.e., Pt, Au, Ag). Fullerene junctions demonstrate the first strongly n-type molecular thermopower corresponding to transport through the LUMO, and the highest measured magnitude of molecular thermopower to date. While the electronic conductance of fullerenes is highly variable, due to fullerene's variable bonding geometries with the electrodes, the thermopower shows predictable trends based on the alignment of the LUMO with the work function of the electrodes. Both the magnitude and trend of the thermopower suggest that heterostructuring organic and inorganic materials at the nanoscale can further enhance thermoelectric performance, therein providing a new pathway for designing thermoelectric materials.

  11. Open-Circuit Voltage Losses in Selenium-Substituted Organic Photovoltaic Devices from Increased Density of Charge-Transfer States

    DOE PAGES

    Sulas, Dana B.; Yao, Kai; Intemann, Jeremy J.; ...

    2015-09-12

    Using an analysis based on Marcus theory, we characterize losses in open-circuit voltage (V OC) due to changes in charge-transfer state energy, electronic coupling, and spatial density of charge-transfer states in a series of polymer/fullerene solar cells. Here, we use a series of indacenodithiophene polymers and their selenium-substituted analogs as electron donor materials and fullerenes as the acceptors. By combining device measurements and spectroscopic studies (including subgap photocurrent, electroluminescence, and, importantly, time-resolved photoluminescence of the charge-transfer state) we are able to isolate the values for electronic coupling and the density of charge-transfer states (NCT), rather than the more commonly measuredmore » product of these values. We find values for NCT that are surprisingly large (~4.5 × 10 21–6.2 × 10 22 cm -3), and we find that a significant increase in N CT upon selenium substitution in donor polymers correlates with lower VOC for bulk heterojunction photovoltaic devices. The increase in N CT upon selenium substitution is also consistent with nanoscale morphological characterization. Using transmission electron microscopy, selected area electron diffraction, and grazing incidence wide-angle X-ray scattering, we find evidence of more intermixed polymer and fullerene domains in the selenophene blends, which have higher densities of polymer/fullerene interfacial charge-transfer states. Our results provide an important step toward understanding the spatial nature of charge-transfer states and their effect on the open-circuit voltage of polymer/fullerene solar cells« less

  12. Extraction and HPLC- UV Analysis of C60, C70, and [6,6]-phenyl C61-butyric acid methyl ester in Synthetic and Natural Waters

    EPA Science Inventory

    Studies have shown that C60 fullerene can form stable colloidal suspensions in water that result in C60 aqueous concentrations many orders of magnitude above C60's aqueous solubility; however, quantitative methods for the analysis of C60 and other fullerenes in environmental medi...

  13. Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation

    NASA Astrophysics Data System (ADS)

    Toufarová, M.; Hájková, V.; Chalupský, J.; Burian, T.; Vacík, J.; Vorlíček, V.; Vyšín, L.; Gaudin, J.; Medvedev, N.; Ziaja, B.; Nagasono, M.; Yabashi, M.; Sobierajski, R.; Krzywinski, J.; Sinn, H.; Störmer, M.; Koláček, K.; Tiedtke, K.; Toleikis, S.; Juha, L.

    2017-12-01

    All carbon materials, e.g., amorphous carbon (a-C) coatings and C60 fullerene thin films, play an important role in short-wavelength free-electron laser (FEL) research motivated by FEL optics development and prospective nanotechnology applications. Responses of a-C and C60 layers to the extreme ultraviolet (SPring-8 Compact SASE Source in Japan) and soft x-ray (free-electron laser in Hamburg) free-electron laser radiation are investigated by Raman spectroscopy, differential interference contrast, and atomic force microscopy. A remarkable difference in the behavior of covalent (a-C) and molecular (C60) carbonaceous solids is demonstrated under these irradiation conditions. Low thresholds for ablation of a fullerene crystal (estimated to be around 0.15 eV/atom for C60 vs 0.9 eV/atom for a-C in terms of the absorbed dose) are caused by a low cohesive energy of fullerene crystals. An efficient mechanism of the removal of intact C60 molecules from the irradiated crystal due to Coulomb repulsion of fullerene-cage cation radicals formed by the ionizing radiation is revealed by a detailed modeling.

  14. Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation

    DOE PAGES

    Toufarová, M.; Hájková, V.; Chalupský, J.; ...

    2017-12-04

    All carbon materials, e.g., amorphous carbon (a-C) coatings and C 60 fullerene thin films, play an important role in short-wavelength free-electron laser (FEL) research motivated by FEL optics development and prospective nanotechnology applications. We investigate responses of a-C and C 60 layers to the extreme ultraviolet (SPring-8 Compact SASE Source in Japan) and soft x-ray (free-electron laser in Hamburg) free-electron laser radiation by Raman spectroscopy, differential interference contrast, and atomic force microscopy. A remarkable difference in the behavior of covalent (a-C) and molecular ( C 60 ) carbonaceous solids is demonstrated under these irradiation conditions. Low thresholds for ablation ofmore » a fullerene crystal (estimated to be around 0.15 eV/atom for C 60 vs 0.9 eV/atom for a-C in terms of the absorbed dose) are caused by a low cohesive energy of fullerene crystals. An efficient mechanism of the removal of intact C 60 molecules from the irradiated crystal due to Coulomb repulsion of fullerene-cage cation radicals formed by the ionizing radiation is revealed by a detailed modeling.« less

  15. Delivery of fullerene-containing complexes via microgel swelling and shear-induced release.

    PubMed

    Tarabukina, Elena; Zoolshoev, Zoolsho; Melenevskaya, Elena; Budtova, Tatiana

    2010-01-15

    The absorption and release of poly(vinylpyrrolidone)-fullerene C60 complexes (PVP/C60) from a model microgel is studied. A dry microgel based on a chemically cross-linked sodium polyacrylate was swollen in the aqueous solutions of complexes which were afterwards released under shear stress. First, gel swelling degree in static conditions in the excess of PVP/C60 solutions was studied: the degree of swelling decreases with the increase in PVP/C60 concentration. While pure PVP is homogeneously distributed between the gel and the surrounding solution, a slight concentration of complexes outside the gel was recorded. It was attributed to PVP/C60 hydrophobicity leading to the decrease in the thermodynamic quality of fullerene-containing solution being gel solvent. The release of PVP/C60 solutions induced by shear was studied with counter-rotating rheo-optical technique and compared with PVP solution release under the same conditions. The amount of solution released depends on polymer concentration and shear strain. Contrary to pure PVP solutions in which rate of release decreases with the increase in polymer concentration, PVP/C60 complexes are released faster when fullerene concentration inside the gel is higher.

  16. Metallofullerene and fullerene formation from condensing carbon gas under conditions of stellar outflows and implication to stardust

    PubMed Central

    Dunk, Paul W.; Adjizian, Jean-Joseph; Kaiser, Nathan K.; Quinn, John P.; Blakney, Gregory T.; Ewels, Christopher P.; Marshall, Alan G.; Kroto, Harold W.

    2013-01-01

    Carbonaceous presolar grains of supernovae origin have long been isolated and are determined to be the carrier of anomalous 22Ne in ancient meteorites. That exotic 22Ne is, in fact, the decay isotope of relatively short-lived 22Na formed by explosive nucleosynthesis, and therefore, a selective and rapid Na physical trapping mechanism must take place during carbon condensation in supernova ejecta. Elucidation of the processes that trap Na and produce large carbon molecules should yield insight into carbon stardust enrichment and formation. Herein, we demonstrate that Na effectively nucleates formation of Na@C60 and other metallofullerenes during carbon condensation under highly energetic conditions in oxygen- and hydrogen-rich environments. Thus, fundamental carbon chemistry that leads to trapping of Na is revealed, and should be directly applicable to gas-phase chemistry involving stellar environments, such as supernova ejecta. The results indicate that, in addition to empty fullerenes, metallofullerenes should be constituents of stellar/circumstellar and interstellar space. In addition, gas-phase reactions of fullerenes with polycyclic aromatic hydrocarbons are investigated to probe “build-up” and formation of carbon stardust, and provide insight into fullerene astrochemistry. PMID:24145444

  17. Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toufarová, M.; Hájková, V.; Chalupský, J.

    All carbon materials, e.g., amorphous carbon (a-C) coatings and C 60 fullerene thin films, play an important role in short-wavelength free-electron laser (FEL) research motivated by FEL optics development and prospective nanotechnology applications. We investigate responses of a-C and C 60 layers to the extreme ultraviolet (SPring-8 Compact SASE Source in Japan) and soft x-ray (free-electron laser in Hamburg) free-electron laser radiation by Raman spectroscopy, differential interference contrast, and atomic force microscopy. A remarkable difference in the behavior of covalent (a-C) and molecular ( C 60 ) carbonaceous solids is demonstrated under these irradiation conditions. Low thresholds for ablation ofmore » a fullerene crystal (estimated to be around 0.15 eV/atom for C 60 vs 0.9 eV/atom for a-C in terms of the absorbed dose) are caused by a low cohesive energy of fullerene crystals. An efficient mechanism of the removal of intact C 60 molecules from the irradiated crystal due to Coulomb repulsion of fullerene-cage cation radicals formed by the ionizing radiation is revealed by a detailed modeling.« less

  18. X-Ray Photoelectron Spectroscopy and Tribology Studies of Annealed Fullerene-like WS2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kopnov, F.; Tenne, R.; Späth, B.; Jägermann, W.; Cohen, H.; Feldman, Y.; Zak, A.; Moshkovich, A.; Rapoport, L.

    The temporal chemical changes occurring at the surface of fullerene-like (IF) nanoparticles of WS2 were investigated using X-ray photo-electron spectroscopy (XPS) and compared to those of bulk powder (2H) of the same material. It is possible to follow the long term (surface oxidation and carbonization) occurring at defects on the outermost surface (0001) layer of the fullerene-like nanoparticles. Similar but perhaps more distinctive changes are observed on the prismatic (hk0) surfaces of the 2H powder. Vacuum annealing is shown to remove most of these changes and bring the surface close to its stoichiometric composition. In accordance with previous measurements, further evidence is obtained for the existence of water molecules which are entrapped in the hollow core and interstitial defects of the fullerene-like nanoparticles during the synthesis. They are also shown to be removed by the vacuum annealing process. Chemically resolved electrical measurements (CREM) in the XPS show that the vacuum annealed IF samples become more intrinsic. Finally, tribological measurements show that the vacuum annealed IF samples perform better as an additive to oil than the non-annealed IF samples and the bulk (2H) platelets powder.

  19. Onion-like nanoscale structures and fullerene-type cages formed by electron irradiation on turbostratic B{sub x}C{sub 1{minus}x} (x<0.2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golberg, D.; Bando, Y.; Kurashima, K.

    Flakes of CVD grown B{sub x}C{sub 1{minus}x} (x<0.2) films were exposed to intense electron irradiation (flux density up to {approximately}100 A/cm{sup 2}) in a 300 kV high resolution electron microscope equipped with a field emission gun. The starting flakes revealed a turbostratic B{sub x}C{sub 1{minus}x} structure. The composition of the starting materials and irradiated products was determined by using electron energy loss spectroscopy (EELS). Depending on the electron dose applied, irradiation of the turbostratic material led to formation of soap-bubble-like irregularly-shaped objects (linear dimensions of {approximately}2--5 nm), onion- and semi-onion-like structures (d{approximately}10nm), nested fullerenes (3--14 shells) and elementary fullerene-type cagesmore » (d{approximately}0.7 nm). It is thought that these curled and closed nanostructures arise from a continuous bending of the hexagonal B{sub x}C{sub 1{minus}x} sheets under electron irradiation. Finally, some possible structural models of B{sub x}C{sub 1{minus}x} fullerenes are considered.« less

  20. Stability Criteria of Fullerene-like Nanoparticles: Comparing V2O5 to Layered Metal Dichalcogenides and Dihalides

    PubMed Central

    Levi, Roi; Bar-Sadan, Maya; Albu-Yaron, Ana; Popovitz-Biro, Ronit; Houben, Lothar; Prior, Yehiam; Tenne, Reshef

    2010-01-01

    Numerous examples of closed-cage nanostructures, such as nested fullerene-like nanoparticles and nanotubes, formed by the folding of materials with layered structure are known. These compounds include WS2, NiCl2, CdCl2, Cs2O, and recently V2O5. Layered materials, whose chemical bonds are highly ionic in character, possess relatively stiff layers, which cannot be evenly folded. Thus, stress-relief generally results in faceted nanostructures seamed by edge-defects. V2O5, is a metal oxide compound with a layered structure. The study of the seams in nearly perfect inorganic "fullerene-like" hollow V2O5 nanoparticles (NIF-V2O5) synthesized by pulsed laser ablation (PLA), is discussed in the present work. The relation between the formation mechanism and the seams between facets is examined. The formation mechanism of the NIF-V2O5 is discussed in comparison to fullerene-like structures of other layered materials, like IF structures of MoS2, CdCl2, and Cs2O. The criteria for the perfect seaming of such hollow closed structures are highlighted. PMID:28883335

  1. Search for Hydrogenated C60 (Fulleranes) in Circumstellar Envelopes

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Sadjadi, SeyedAbdolreza; Hsia, Chih-Hao; Kwok, Sun

    2017-08-01

    The recent detection of fullerene (C60) in space and the positive assignment of five diffuse interstellar bands to {{{C}}}60+ reinforce the notion that fullerene-related compounds can be efficiently formed in circumstellar envelopes and be present in significant quantities in the interstellar medium. Experimental studies have shown that C60 can be readily hydrogenated, raising the possibility that hydrogenated fullerenes (or fulleranes, C60H m , m = 1-60) may be abundant in space. In this paper, we present theoretical studies of the vibrational modes of isomers of C60H m . Our results show that the four mid-infrared bands from the C60 skeletal vibrations remain prominent in slightly hydrogenated C60, but their strengths diminish in different degrees with increasing hydrogenation. It is therefore possible that the observed infrared bands assigned to C60 could be due to a mixture of fullerenes and fulleranes. This provides a potential explanation for the observed scatter of the C60 band ratios. Our calculations suggest that a feature around 15 μm due to the breathing mode of heavily hydrogenated C60 may be detectable astronomically. A preliminary search for this feature in 35 C60 sources is reported.

  2. Nitrogen-atom endohedral fullerene synthesis with high efficiency by controlling plasma-ion irradiation energy and C{sub 60} internal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Soon Cheon; Kaneko, Toshiro, E-mail: kaneko@ecei.tohoku.ac.jp; Ishida, Hiroyasu

    2015-03-28

    The nitrogen-atom endohedral fullerene (N@C{sub 60}) has been synthesized by controlling the plasma ion irradiation energy (E{sub i}) and fullerene (C{sub 60}) behavior in the sublimation phase. We examined the relationship between the synthesis purity of N@C{sub 60} [molar concentration ratio of N@C{sub 60} to pristine fullerene (C{sub 60})] and E{sub i}, which was controlled by changing the substrate bias voltages (V{sub sub}) and gas pressure (P{sub N2}) during the plasma irradiation process. High-density nitrogen-molecular ions (N{sub 2}{sup +}) with a suitable E{sub i} near 80 eV are confirmed to be the optimum condition of the nitrogen plasma for themore » synthesis of high-purity N@C{sub 60}. In addition, high sublimation of C{sub 60} contributes to a higher yield due to the high internal energy of C{sub 60} and the related cage defects that are present under these conditions. As a result, a purity of 0.83% is realized for the first time, which is almost two orders of magnitude higher than that using other methods.« less

  3. The possibility of using C20 fullerene and graphene as semiconductor segments for detection, and destruction of cyanogen-chloride chemical agent.

    PubMed

    Pakravan, Parvaneh; Siadati, Seyyed Amir

    2017-08-01

    Detection of hazardous chemical species by changing the electrical conductivity of a semiconductor matter is a proposed and applied way for decreasing their subsequent unpleasant effects. Recently, many examples of using inorganic or organic materials, polymeric, and also nano-sized species as sensors were reported in which, in some cases, those matters were strongly affective and suitable. In this project, we have made an assessment on whether the graphene segment or C 20 fullerene, able to sense the existence of cyanogen chloride NCCl? In order to gain trustable results, the possible reaction pathways along with the adsorption kinetics were investigated. Moreover, the electronic density of states DOS showed that C 20 fullerene senses the existence of cyanogen chloride agent with a clearer signal (ΔE g =0.0110eV) compared to the graphene segment (ΔE g =0.0001eV). Also the adsorption energy calculations showed that cyanogen chloride could be adsorbed by the fullerene in a multi-step process (E ads1 =-0.852kcalmol -1 ; E ads2 =-0.446kcalmol -1 ; E ads3 =-2.330kcalmol -1 ). Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Fullerene-bisadduct acceptors for polymer solar cells.

    PubMed

    Li, Yongfang

    2013-10-01

    Polymer solar cells (PSCs) have drawn great attention in recent years for their simple device structure, light weight, and low-cost fabrication in comparison with inorganic semiconductor solar cells. However, the power-conversion efficiency (PCE) of PSCs needs to be increased for their future application. The key issue for improving the PCE of PSCs is the design and synthesis of high-efficiency conjugated polymer donors and fullerene acceptors for the photovoltaic materials. For the acceptor materials, several fullerene-bisadduct acceptors with high LUMO energy levels have demonstrated excellent photovoltaic performance in PSCs with P3HT as a donor. In this Focus Review, recent progress in high-efficiency fullerene-bisadduct acceptors is discussed, including the bisadduct of PCBM, indene-C60 bisadduct (ICBA), indene-C70 bisadduct (IC70BA), DMPCBA, NCBA, and bisTOQC. The LUMO levels and photovoltaic performance of these bisadduct acceptors with P3HT as a donor are summarized and compared. In addition, the applications of an ICBA acceptor in new device structures and with other conjugated polymer donors than P3HT are also introduced and discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Understanding the electronic structure of CdSe quantum dot-fullerene (C{sub 60}) hybrid nanostructure for photovoltaic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Sunandan; Rajbanshi, Biplab; Sarkar, Pranab, E-mail: pranab.sarkar@visva-bharati.ac.in

    2014-09-21

    By using the density-functional tight binding method, we studied the electronic structure of CdSe quantum dot(QD)-buckminsterfullerene (C{sub 60}) hybrid systems as a function of both the size of the QD and concentration of the fullerene molecule. Our calculation reveals that the lowest unoccupied molecular orbital energy level of the hybrid CdSeQD-C{sub 60} systems lies on the fullerene moiety, whereas the highest occupied molecular orbital (HOMO) energy level lies either on the QD or the fullerene depending on size of the CdSe QD. We explored the possibility of engineering the energy level alignment by varying the size of the CdSe QD.more » With increase in size of the QD, the HOMO level is shifted upward and crosses the HOMO level of the C{sub 60}-thiol molecule resulting transition from the type-I to type-II band energy alignment. The density of states and charge density plot support these types of band gap engineering of the CdSe-C{sub 60} hybrid systems. This type II band alignment indicates the possibility of application of this nanohybrid for photovoltaic purpose.« less

  6. Optical excitations dynamics at hetero-interfaces fullerene/quantum dots

    NASA Astrophysics Data System (ADS)

    Righetto, Marcello; Privitera, Alberto; Franco, Lorenzo; Bozio, Renato

    2017-08-01

    Embedding Semiconductor Quantum Dots (QDs) into hybrid organic-inorganic solar cell holds promises for improving photovoltaic performances. Thanks to their strong coupling with electro-magnetic radiation field, QDs represent paradigmatic photon absorbers. Nevertheless, the quest for suitable charge separating hetero-interfaces is still an open challenge. Within this framework, the excited state interactions between QDs and fullerene derivatives are of great interest for ternary solar cells (polymer:QDs:fullerene). In this work, we investigated the exciton dynamics of core/shell CdSe/CdS QDs both in solution and in blends with fullerene derivative (PCBM). By means of transient optical techniques, we aimed to unveil the dynamics of the QDs-PCBM interaction. Indeed, the observed excited state depopulation of QDs in blends is compatible with an excited state interaction living on picosecond timescale. Through electron paramagnetic resonance, we delved into the nature of this interaction, identifying the presence of charge separated states. The concurrence of these observations suggest a fast electron transfer process, where QDs act as donors and PCBM molecules as acceptors, followed by effective charge separation. Therefore, our experimental results indicate the QDs-PCBM heterointerface as suitable exciton separating interface, paving the way for possible applications in photovoltaics.

  7. Electronic structures of 1-ML C84/Ag(111): Energy level alignment and work function variation

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhao, Li-Li; Zhang, Jin-Juan; Li, Wen-Jie; Liu, Wei-Hui; Chen, Da; Sheng, Chun-Qi; Wang, Jia-Ou; Qian, Hai-Jie; Ibrahim, Kurash; Li, Hong-Nian

    2017-12-01

    The electronic structures of fullerene/metal interface are critical to the performance of devices based on fullerene in molecular electronics and organic electronics. Herein, we investigate the electronic structures at the interface between C84 and Ag(111) by photoelectron spectroscopy and soft X-ray absorption spectroscopy techniques. It is observed that C84 monolayer on Ag(111) surface (1-ML C84/Ag(111)) has metallic nature. A charge transfer from substrate to the unoccupied states of C84 is determined to be 1.3 electrons per molecule. However, the work function of 1-ML C84 (4.72 eV) is observed slightly larger than that of the clean Ag(111) substrate (4.50 eV). A bidirectional charge transfer model is introduced to understand the work function variation of the fullerene/metal system. In addition to the charge transfer from substrate to the adsorbate's unoccupied states, there exists non-negligible back charge transfer from fullerene occupied molecular orbital to the metal substrate through interfacial hybridization. The Fermi level will be pinned at ∼4.72 eV for C84 monolayer on coinage metal substrate.

  8. The quest for inorganic fullerenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.

    2015-10-02

    Experimental results of the search for inorganic fullerenes are presented. Mo nS m - and W nS m - clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. Moreover, the species in the first maximum at low mass are known to be platelets. The structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy,more » and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Likewise, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.« less

  9. The quest for inorganic fullerenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.

    2015-10-07

    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, andmore » scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.« less

  10. Polyethylene oxide-fullerene nanocomposites

    NASA Astrophysics Data System (ADS)

    Ali, Nasar; Chipara, Dorina; Lozano, Karen; Hinthorne, James; Chipara, Mircea

    2017-11-01

    Polyethylene oxide - fullerene nanocomposites have been prepared by using the solution path with water as solvent (only for the polymer). The dispersion of C60 within the polymer solution was achieved by high power sonication. The study aims to a better understanding on the effect of C60 nanoparticles on the macromolecular chains. Raman Wide Angle X Ray spectroscopy, Differential Scanning Calorimetry, and Thermogravimetric Analysis were used to inspect the interactions between the nanofiller and macromolecular chains. The experimental results revealed a completely different behavior of fullerene dispersed within polymeric matrices than using carbon nanotubes or nanofibers as nanofiller. The observed behavior was explained by the low aspect ratio of C60 compared to nanotubes and by the low thermal conductivity of C60 compared to the thermal conductivity of others carbon nanostructures.

  11. Preparation of fullerene/glass composites

    DOEpatents

    Mattes, Benjamin R.; McBranch, Duncan W.; Robinson, Jeanne M.; Koskelo, Aaron C.; Love, Steven P.

    1995-01-01

    Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

  12. Preparation of fullerene/glass composites

    DOEpatents

    Mattes, B.R.; McBranch, D.W.; Robinson, J.M.; Koskelo, A.C.; Love, S.P.

    1995-05-30

    Synthesis of fullerene/glass composites is described. A direct method for preparing solid solutions of C{sub 60} in silicon dioxide (SiO{sub 2}) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these ``guests`` in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C{sub 60}. Depending upon the preparative procedure, C{sub 60} dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C{sub 60} in a solid glass matrix, is generated by the present method.

  13. Why Are Buckyonions Round?

    NASA Technical Reports Server (NTRS)

    Bates, Kevin R.; Scuseria, Gustavo E.

    1997-01-01

    Multi-layered round carbon particles (onions) containing tens to hundreds of thousands of atoms form during electron irradiation of graphite carbon. However, theoretical models of large icosahedral fullerenes predict highly faceted shapes for molecules with more than a few hundred atoms. This discrepancy in shape may be explained by the presence of defects during the formation of carbon onions. Here, we use the semi-empirical tight-binding method for carbon to simulate the incorporation of pentagon-heptagon defects on to the surface of large icosahedral fullerenes. We show a simple mechanism that results in energetically competitive derivative structures and a global change in molecular shape from faceted to round. Our results provide a plausible explanation of the apparent discrepancy between experimental observations of round buckyonions and theoretical predictions of faceted icosahedral fullerenes.

  14. Nuclear magnetic resonance study of fullerene-like WS2.

    PubMed

    Panich, A M; Kopnov, F; Tenne, R

    2006-06-01

    Inorganic fullerene-like nanoparticles of WS2 (IF-WS2), are synthesized by a reaction of tungsten oxide with molecular hydrogen and hydrogen sulfide. The synthesized nanoparticles appear as large agglomerates (>40 microns), each one counting thousands of IF nanoparticles. 1H nuclear magnetic resonance study of these nanoparticles is reported. The measurements show that the prepared product contains water (and possibly some hydrogen) molecules that occupy the voids in the central part of the fullerene-like nanoparticles and the nanopores between the adhering IF-WS2 particles. Defects in the IF-WS2 structure, arising due to the strain release during the folding of the layers, may result in additional sites for the absorbed water. Vacuum annealing of the powder leads to substantial reduction in the amount of absorbed water molecules.

  15. Dendronized fullerene-porphyrin conjugates in ortho, meta, and para positions: a charge-transfer assay.

    PubMed

    Krokos, Evangelos; Schubert, Christina; Spänig, Fabian; Ruppert, Michaela; Hirsch, Andreas; Guldi, Dirk M

    2012-06-01

    The physicochemical characterization, that is, ground and excited state, of a new series of dendronized porphyrin/fullerene electron donor-acceptor conjugates in nonaqueous and aqueous environments is reported. In contrast to previous work, we detail the charge-separation and charge-recombination dynamics in zinc and copper metalloporphyrins as a function of first- and second-generation dendrons as well as a function of ortho, meta, and para substitution. Both have an appreciable impact on the microenvironments of the redox-active constituents, namely the porphyrins and the fullerenes. As a matter of fact, the resulting charge-transfer dynamics were considerably impacted by the interplay between the associated forces that reach from dendron-induced shielding to dipole-charge interactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Photoinduced triplet-triplet energy transfer in a 2-ureido-4(1H)-pyrimidinone-bridged, quadruply hydrogen-bonded ferrocene-fullerene assembly.

    PubMed

    Feng, Ke; Yu, Mao-Lin; Wang, Su-Min; Wang, Ge-Xia; Tung, Chen-Ho; Wu, Li-Zhu

    2013-01-14

    2-Ureido-4(1H)-pyrimidinone-bridged ferrocene-fullerene assembly I is designed and synthesized for elaborating the photoinduced electron-transfer processes in self-complementary quadruply hydrogen-bonded modules. Unexpectedly, steady-state and time-resolved spectroscopy reveal an inefficient electron-transfer process from the ferrocene to the singlet or triplet excited state of the fullerene, although the electron-transfer reactions are thermodynamically feasible. Instead, an effective intra-assembly triplet-triplet energy-transfer process is found to be operative in assembly I with a rate constant of 9.2×10(5) s(-1) and an efficiency of 73% in CH(2)Cl(2) at room temperature. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The boron conundrum: Bonding in the bowl B30 and B36, fullerene B40 and triple ring B42 clusters

    NASA Astrophysics Data System (ADS)

    Pham, Hung Tan; Duong, L. V.; Tam, Nguyen Minh; Pham-Ho, M. P.; Nguyen, Minh Tho

    2014-07-01

    Geometries and bonding of B30, B36, B40 and B42 clusters were studied using quantum chemical computations. The bowl B30 and B36 and planar B42 clusters exhibit disk aromaticity. Diatropic ring current is strong in B30 and weaker in B42. A fullerene-like B40 (D2d) having two hexagons and four heptagons was found as the lowest-lying isomer. Such a fullerene whose MOs closely mimic those of the buckyball B80, represents novel structural feature of boron clusters. The most stable B42 (C2h) isomer is a triple ring tube with consistent σ + π diatropic magnetic responses making it a tubular aromatic species.

  18. An overview of molecular acceptors for organic solar cells

    NASA Astrophysics Data System (ADS)

    Hudhomme, Piétrick

    2013-07-01

    Organic solar cells (OSCs) have gained serious attention during the last decade and are now considered as one of the future photovoltaic technologies for low-cost power production. The first dream of attaining 10% of power coefficient efficiency has now become a reality thanks to the development of new materials and an impressive work achieved to understand, control and optimize structure and morphology of the device. But most of the effort devoted to the development of new materials concerned the optimization of the donor material, with less attention for acceptors which to date remain dominated by fullerenes and their derivatives. This short review presents the progress in the use of non-fullerene small molecules and fullerene-based acceptors with the aim of evaluating the challenge for the next generation of acceptors in organic photovoltaics.

  19. Spin dynamics of light-induced charge separation in composites of semiconducting polymers and PC60BM revealed using Q-band pulse EPR.

    PubMed

    Lukina, E A; Suturina, E; Reijerse, E; Lubitz, W; Kulik, L V

    2017-08-23

    Light-induced processes in composites of semiconducting polymers and fullerene derivatives have been widely studied due to their usage as active layers of organic solar cells. However the process of charge separation under light illumination - the key process of an organic solar cell is not well understood yet. Here we report a Q-band pulse electron paramagnetic resonance study of composites of the fullerene derivative PC 60 BM ([6,6]-phenyl-C 61 -butyric acid methyl ester) with different p-type semiconducting polymers regioregular and regiorandom P3HT (poly(3-hexylthiophene-2,5-diyl), MEH-PPV (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]), PCDTBT (poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]), PTB7 (poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}))), resulting in a detailed description of the in-phase laser flash-induced electron spin echo (ESE) signal. We found that in organic donor-acceptor composites the laser flash simultaneously induces species of two types: a polymer˙ + /fullerene˙ - spin-correlated polaron pair (SCPP) with an initial singlet spin state and (nearly) free polymer˙ + and fullerene˙ - species with non-equilibrium spin polarization. Species of the first type (SCPP) are well-known for polymer/fullerene blends and are usually associated with a charge-separated state. Also, spin polarization of long-living free species (polarons in deep traps) is affected by the laser flash, which is the third contribution to the flash-induced ESE signal. A protocol for extracting the in-phase ESE signal of the SCPP based on the dependence of the microwave nutation frequency on the strength of the spin coupling within the polaron pair was developed. Nutation experiments revealed an unusual pattern of the SCPP in RR-P3HT/PC 60 BM composites, from which the strength of the exchange interaction between the polymer˙ + and fullerene˙ - was extracted. In composites with low-efficient polymers the contribution of the SCPP to the in-phase ESE signal is high, while in composites with high-efficient polymers it is low. This finding can be used as a selection criterion of charge separation efficiency in the polymer/fullerene composites.

  20. Efficient Charge Transfer and Fine-Tuned Energy Level Alignment in a THF-Processed Fullerene-Free Organic Solar Cell with 11.3% Efficiency.

    PubMed

    Zheng, Zhong; Awartani, Omar M; Gautam, Bhoj; Liu, Delong; Qin, Yunpeng; Li, Wanning; Bataller, Alexander; Gundogdu, Kenan; Ade, Harald; Hou, Jianhui

    2017-02-01

    Fullerene-free organic solar cells show over 11% power conversion efficiency, processed by low toxic solvents. The applied donor and acceptor in the bulk heterojunction exhibit almost the same highest occupied molecular orbital level, yet exhibit very efficient charge creation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Low-Energy, Hydrogen-Free Method of Diamond Synthesis

    NASA Technical Reports Server (NTRS)

    Varshney, Deepak (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor); Makarov, Vladimir (Inventor)

    2013-01-01

    Diamond thin films were deposited on copper substrate by the Vapor Solid (VS) deposition method using a mixture of fullerene C(sub 60) and graphite as the source material. The deposition took place only when the substrate was kept in a narrow temperature range of approximately 550-650 C. Temperatures below and above this range results in the deposition of fullerenes and other carbon compounds, respectively.

  2. Facile preparation of amine and amino acid adducts of [60]fullerene using chlorofullerene C60Cl6 as a precursor.

    PubMed

    Kornev, Alexey B; Khakina, Ekaterina A; Troyanov, Sergey I; Kushch, Alla A; Peregudov, Alexander; Vasilchenko, Alexey; Deryabin, Dmitry G; Martynenko, Vyacheslav M; Troshin, Pavel A

    2012-06-04

    We report a general synthetic approach to the preparation of highly functionalized amine and amino acid derivatives of [60]fullerene starting from readily available chlorofullerene C(60)Cl(6). The synthesized water-soluble amino acid derivative of C(60) demonstrated pronounced antiviral activity, while the cationic amine-based compound showed strong antibacterial action in vitro.

  3. Inorganic Nanotubes and Fullerene-Like Nanoparticles:. from the Lab to the Market Place

    NASA Astrophysics Data System (ADS)

    Tenne, R.

    2013-05-01

    Layered compounds, like MoS2 were shown by the author to be unstable in the nano-regime. Using new chemical strategies, closed-cage hollow nanostructures in the form of inorganic fullerene-like nanoparticles and inorganic nanotubes were synthesized. These nanostructures exhibit numerous interesting physico-chemical properties and are employed as superior solid lubricants, with numerous other applications currently being developed.

  4. Polythiophene-fullerene based photodetectors: tuning of spectral response and application in photoluminescence based (bio)chemical sensors.

    PubMed

    Nalwa, Kanwar S; Cai, Yuankun; Thoeming, Aaron L; Shinar, Joseph; Shinar, Ruth; Chaudhary, Sumit

    2010-10-01

    A photoluminescence (PL)-based oxygen and glucose sensor utilizing inorganic or organic light emitting diode as the light source, and polythiophene: fullerene type bulk-heterojunction devices as photodetectors, for both intensity and decay-time based monitoring of the sensing element's PL. The sensing element is based on the oxygen-sensitive dye Pt-octaethylporphyrin embedded in a polystyrene matrix.

  5. Computational evidence for stable inorganic fullerene-like structures of ceramic and semiconductor materials

    NASA Astrophysics Data System (ADS)

    Chang, Ch; Patzer, A. B. C.; Sedlmayr, E.; Steinke, T.; Sülzle, D.

    2001-12-01

    Theoretical electronic structure techniques have become an indispensible and powerful means for predicting molecular properties and designing new materials. Based on a density functional approach and guided by geometric considerations we provide evidence for some specific inorganic fullerene-like cage molecules of ceramic and semiconductor materials which exhibit high energetic stability and point group symmetry as well as nearly perfect spherical shape.

  6. Synthesis of a Crushed Fullerene C60H24 through Sixfold Palladium‐Catalyzed Arylation

    PubMed Central

    Dorel, Ruth; de Mendoza, Paula; Calleja, Pilar; Pascual, Sergio; González‐Cantalapiedra, Esther; Cabello, Noemí

    2016-01-01

    The synthesis of a new C 3v‐symmetric crushed fullerene C60H24 (5) has been accomplished in three steps from truxene through sixfold palladium‐catalyzed intramolecular arylation of a syn‐trialkylated truxene precursor. Laser irradiation of 5 induces cyclodehydrogenation processes that result in the formation of C60, as detected by LDI‐MS. PMID:27774038

  7. From Desktop Toy to Educational Aid: Neo Magnets as an Alternative to Ball-and-Stick Models in Representing Carbon Fullerenes

    ERIC Educational Resources Information Center

    Kao, Jacqueline Y.; Yang, Min-Han; Lee, Chi-Young

    2015-01-01

    Neo magnets are neodymium magnet beads that have been marketed as a desktop toy. We proposed using neo magnets as an alternative building block to traditional ball-and-stick models to construct carbon allotropes, such as fullerene and various nanocone structures. Due to the lack of predetermined physical connections, the versatility of carbon…

  8. Functionalization of multilayer fullerenes (carbon nano-onions) using diazonium compounds and "click" chemistry.

    PubMed

    Flavin, Kevin; Chaur, Manuel N; Echegoyen, Luis; Giordani, Silvia

    2010-02-19

    A novel versatile approach for the functionalization of multilayer fullerenes (carbon nano-onions) has been developed, which involves the facile introduction of a variety of simple functionalities onto their surface by treatment with in situ generated diazonium compounds. This approach is complemented by use of "click" chemistry which was used for the covalent introduction of more complex porphyrin molecules.

  9. Monitoring nanoparticle synthesis in a carbon arc discharge environment, in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrani, James

    This work presents experimental and theoretical studies of gas-phase synthesis of fullerenes and carbon nanoparticles in the presence of an atmospheric-pressure, arc discharge plasma. Carbon arc discharges have been used for synthesizing carbon nanotubes for over 25 years, and have the potential for economically synthesizing industrial-scale quantities of fullerenes. However, the efficiency and selectivity of fullerene synthesis with carbon arc discharges are quite low. Optimizing carbon arc discharges for fullerene synthesis requires a thorough understanding of the dynamics behind gas-phase nanoparticle synthesis in the presence of an arc discharge plasma. We built a carbon arc discharge setup to study nanoparticlemore » and fullerene synthesis. The laser-induced incandescence (LII) diagnostic was applied for monitoring nanoparticle synthesis, in situ. The LII diagnostic had previously been applied as a combustion diagnostic for in situ measurements of concentrations and sizes of soot particles in flame environments. Prior to the present study, it had never been applied for studying fullerenes, nor had it been applied to study nanoparticles in the presence of an atmospheric-pressure plasma. Therefore, experiments were designed that allowed for the calibration of the LII diagnostic with research-grade, arc-synthesized soot particles and carbon nanotubes. Additionally, the theory and models underpinning the LII diagnostic were adapted to include the presence of an atmospheric-pressure, arc-discharge plasma. Results presented in this work confirm the ability of the LII diagnostic to measure sizes of arc-synthesized nanoparticles in situ, and show the spatial location of high densities of arc-synthesized nanoparticles with respect to the arc discharge plasma. Determining the spatial location of nanoparticle synthesis and growth is crucial for understanding the background conditions (e.g. background gas temperature, electron densities ...) in which nanoparticles nucleate and grow in the arc discharge environment. Future work would involve combining the LII diagnostic with other laser-based diagnostics (e.g. Rayleigh scattering, laser-induced fluorescence) for a more comprehensive study of gas-phase nanoparticle synthesis and investigating fundamental basic-science questions related to low temperature plasma physics, and laser-nanoparticle interactions.« less

  10. Monitoring Nanoparticle Synthesis in a Carbon Arc Discharge Environment, In Situ

    NASA Astrophysics Data System (ADS)

    Mitrani, James

    This work presents experimental and theoretical studies of gas-phase synthesis of fullerenes and carbon nanoparticles in the presence of an atmospheric-pressure, arc discharge plasma. Carbon arc discharges have been used for synthesizing carbon nanotubes for over 25 years, and have the potential for economically synthesizing industrial-scale quantities of fullerenes. However, the efficiency and selectivity of fullerene synthesis with carbon arc discharges are quite low. Optimizing carbon arc discharges for fullerene synthesis requires a thorough understanding of the dynamics behind gas-phase nanoparticle synthesis in the presence of an arc discharge plasma. We built a carbon arc discharge setup to study nanoparticle and fullerene synthesis. The laser-induced incandescence (LII) diagnostic was applied for monitoring nanoparticle synthesis, in situ. The LII diagnostic had previously been applied as a combustion diagnostic for in situ measurements of concentrations and sizes of soot particles in flame environments. Prior to the present study, it had never been applied for studying fullerenes, nor had it been applied to study nanoparticles in the presence of an atmospheric-pressure plasma. Therefore, experiments were designed that allowed for the calibration of the LII diagnostic with research-grade, arc-synthesized soot particles and carbon nanotubes. Additionally, the theory and models underpinning the LII diagnostic were adapted to include the presence of an atmospheric-pressure, arc-discharge plasma. Results presented in this work confirm the ability of the LII diagnostic to measure sizes of arc-synthesized nanoparticles in situ, and show the spatial location of high densities of arc-synthesized nanoparticles with respect to the arc discharge plasma. Determining the spatial location of nanoparticle synthesis and growth is crucial for understanding the background conditions (e.g. background gas temperature, electron densities ...) in which nanoparticles nucleate and grow in the arc discharge environment. Future work would involve combining the LII diagnostic with other laser-based diagnostics (e.g. Rayleigh scattering, laser-induced fluorescence) for a more comprehensive study of gas-phase nanoparticle synthesis and investigating fundamental basic-science questions related to low temperature plasma physics, and laser-nanoparticle interactions.

  11. Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

    DOE PAGES

    Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang; ...

    2015-07-03

    In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC 60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer andmore » increased solubility of PC 70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC 60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC 70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC 70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC 70BM than PC 60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC 70BM and PC 60BM based active layers was observed. Photo-CELIV experiment showed larger extracted charge carrier density and mobility in PC 70BM/DIO film.« less

  12. Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang

    In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC 60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer andmore » increased solubility of PC 70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC 60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC 70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC 70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC 70BM than PC 60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC 70BM and PC 60BM based active layers was observed. Photo-CELIV experiment showed larger extracted charge carrier density and mobility in PC 70BM/DIO film.« less

  13. Role of four-membered rings in C32 fullerene stability and mechanisms of generalized Stone-Wales transformation: a density functional theory investigation.

    PubMed

    Wang, Weiwei; Dang, Jingshuang; Zhao, Xiang

    2011-08-28

    Density functional theory (DFT) methods have been applied to study C(32) fullerenes built from four-, five-, and six-membered rings. The relative energies of pure C(32) fullerenes have been evaluated to locate three most stable structures, 32:D(4d) with two squares, 1:D(3) without square and 5:C(s) with one square. Structural analysis reveals that there is a rearrangement pathway between the lowest energy classical isomer 1:D(3) and the lowest energy non-classical isomer 32:D(4d), and 5:C(s) behaves just as an intermediate between them. The kinetic processes of generalized Stone-Wales transformation (GSWT) with four-membered rings have been explored and two distinct reaction mechanisms are determined by all the transition states and intrinsic reaction coordinates with PBE1PBE/6-31G(d) approach for the first time. One mechanism is the concerted reaction with a rotating dimer closed to the cage surface and another is the stepwise reaction with a carbene-like sp(3) structure, whereas the latter is sorted into two paths based on four-membered ring vanishing before or after the formation of the carbene-like structure. It is indicated that there is no absolute preference for any mechanism, which depends on the adaptability of different reactants on the diverse mechanisms. Furthermore, it's found that the interconversion process with the participation of squares is more reactive than the rearrangement between C(60)_I(h) and C(60)_C(2v), implying some potential importance of non-classical small fullerenes in the fullerene isomerization.

  14. What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends.

    PubMed

    Jakowetz, Andreas C; Böhm, Marcus L; Zhang, Jiangbin; Sadhanala, Aditya; Huettner, Sven; Bakulin, Artem A; Rao, Akshay; Friend, Richard H

    2016-09-14

    In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE.

  15. Optical and electrochemical properties of hydrogen-bonded phenol-pyrrolidino[60]fullerenes.

    PubMed

    Moore, Gary F; Megiatto, Jackson D; Hambourger, Michael; Gervaldo, Miguel; Kodis, Gerdenis; Moore, Thomas A; Gust, Devens; Moore, Ana L

    2012-06-01

    We report the photophysical and electrochemical properties of phenol-pyrrolidino[60]fullerenes 1 and 2, in which the phenol hydroxyl group is ortho and para to the pyrrolidino group, respectively, as well as those of a phenyl-pyrrolidino[60]fullerene model compound, 3. For the ortho analog 1, the presence of an intramolecular hydrogen bond is supported by (1)H NMR and FTIR characterization. The redox potential of the phenoxyl radical-phenol couple in this architecture is 240 mV lower than that observed in the associated para compound 2. Further, the C(60) excited-state lifetime of the hydrogen-bonded compound 1 in benzonitrile is 260 ps, while the corresponding lifetime for 2 is identical to that of the model compound 3 at 1.34 ns. Addition of excess organic acid to a benzonitrile solution of 1 gives rise to a new species, 4, with an excited-state lifetime of 1.40 ns. In nonpolar aprotic solvents such as toluene, all three compounds have a C(60) excited-state lifetime of ∼1 ns. These results suggest that the presence of an intramolecular H-bond in 1 poises the potential of phenoxyl radical-phenol redox couple at a value that it is thermodynamically capable of reducing the photoexcited fullerene. This is not the case for the para analog 2 nor is it the case for the protonated species 4. This work illustrates that in addition to being used as light activated electron acceptors, pyrrolidino fullerenes are also capable of acting as built-in proton-accepting units that influence the potential of an attached donor when organized in an appropriate molecular design.

  16. Carotenoids as electron or excited-state energy donors in artificial photosynthesis: an ultrafast investigation of a carotenoporphyrin and a carotenofullerene dyad.

    PubMed

    Pillai, Smitha; Ravensbergen, Janneke; Antoniuk-Pablant, Antaeres; Sherman, Benjamin D; van Grondelle, Rienk; Frese, Raoul N; Moore, Thomas A; Gust, Devens; Moore, Ana L; Kennis, John T M

    2013-04-07

    Photophysical investigations of molecular donor-acceptor systems have helped elucidate many details of natural photosynthesis and revealed design principles for artificial photosynthetic systems. To obtain insights into the factors that govern the partition between excited-state energy transfer (EET) and electron transfer (ET) processes among carotenoids and tetrapyrroles and fullerenes, we have designed artificial photosynthetic dyads that are thermodynamically poised to favor ET over EET processes. The dyads were studied using transient absorption spectroscopy with ∼100 femtosecond time resolution. For dyad , a carotenoporphyrin, excitation to the carotenoid S2 state induces ultrafast ET, competing with internal conversion (IC) to the carotenoid S1 state. In addition, the carotenoid S1 state gives rise to ET. In contrast with biological photosynthesis and many artificial photosynthetic systems, no EET at all was detected for this dyad upon carotenoid S2 excitation. Recombination of the charge separated state takes place in hundreds of picoseconds and yields a triplet state, which is interpreted as a triplet delocalized between the porphyrin and carotenoid moieties. In dyad , a carotenofullerene, excitation of the carotenoid in the S2 band results in internal conversion to the S1 state, ET and probably EET to fullerene on ultrafast timescales. From the carotenoid S1 state EET to fullerene occurs. Subsequently, the excited-state fullerene gives rise to ET from the carotenoid to the fullerene. Again, the charge separated state recombines in hundreds of picoseconds. The results illustrate that for a given rate of EET, the ratio of ET to EET can be controlled by adjusting the driving force for electron transfer.

  17. Convergent Synthesis and Photoinduced Processes in Multi-Chromophoric Rotaxanes1

    PubMed Central

    Megiatto, Jackson D.; Li, Ke; Schuster, David I.; Palkar, Amit; Herranz, M. Ángeles; Echegoyen, Luis; Abwandner, Silke; de Miguel, Gustavo; Guldi, Dirk M.

    2010-01-01

    A series of [2]rotaxane materials, in which [60]fullerene is linked to a macrocycle and ferrocene (Fc) moieties are placed at the termini of a thread, both of which possess a central Cu(I)-1,10-phenanthroline [Cu(phen)2]+ complex, were synthesized by self-assembly using Sauvage metal template methodology. Two types of threads were constructed, one with terminal ester linkages, and a second with terminal 1,2,3-triazole linkages derived from Cu(I)-catalyzed “click” 1,3-cycloaddition reactions. Model compounds lacking the fullerene moiety were prepared in an analogous manner. The ability of the interlocked Fc-[Cu(phen)2]+-C60 hybrids to undergo electron transfer upon photoexcitation was investigated by means of time-resolved fluorescence and transient absorption spectroscopy, using excitation wavelengths directed at the fullerene and [Cu(phen)2]+ subunits. The energies of the electronic excited states and charge separated (CS) states that might be formed upon photoexcitation were determined from spectroscopic and electrochemical data. These studies showed that MLCT excited states of the copper complex in the fullerenerotaxanes were quenched by electron transfer to the fullerene, resulting in charge separated states with oxidized copper and reduced fullerene moieties, (Fc)2-[Cu(phen)2]2+-C60•−. Even though electron transfer from Fc to the oxidized copper complex is predicted to be exergonic by 0.18 eV, no unequivocal evidence in support of such a process was obtained. The conclusion that Fc plays no role in the photoinduced processes in our systems rests on the lack of enhancement of the lifetime of the charge separated state as measured by decay of C60•− at ~ 1000 nm, since one-electron oxidized Fc is very difficult to detect spectroscopically in the 500–800 nm spectral region. PMID:20518479

  18. Consideration Of The Toxicity of Manufactured Nanoparticles

    NASA Astrophysics Data System (ADS)

    Haasch, Mary L.; McClellan-Green, Patricia; Oberdörster, Eva

    2005-09-01

    Fullerene (C60 and single- and multi-wall carbon nanotubes, SWCNT and MWCNT, respectively) is engineered to be redox active and it is thought that the potential toxicity of fullerene exposure is related to the formation of reactive oxygen species. During manufacture, transport or during scientific investigation, there is a potential for human or environmental exposure to nanoparticles. Several studies regarding human exposure have indicated reasons for concern. There is a lack of studies addressing the toxicity of engineered nanoparticles in aquatic species but one study using the fish, largemouth bass, exposed to fullerene has shown increased (10-17-fold) lipid peroxidation (LPO) in the brain. It is likely that repair enzymes or anti-oxidants may have been induced in gill and liver tissues that had reduced LPO compared to control tissues (Oberdörster, 2004). In support of that hypothesis, suppressive subtractive hybridization was used with liver tissue and the biotransformation enzyme, cytochrome P450, specifically CYP2K4, and other oxidoreductases related to metabolism, along with repair enzymes, were increased while proteins related to normal physiological homeostasis were decreased in fullerene-exposed fish. In a new study involving the exposure of a toxicological model fish species, the fathead minnow (Pimephales promelas) to water-soluble fullerene (nC60), uptake and distribution indicated that nC60 elevated LPO in the brain and induced expression of CYP2 family isozymes in the liver. In an in vitro study, BSA-coated SWCNT interfered with biotransformation enzyme activity. These studies taken together provide support to the hypothesis that the toxicity of manufactured nanoparticles is related to oxidative stress and provide insight into possible mechanisms of toxicity as well as providing information for evaluating the risk to aquatic organisms exposed to manufactured nanoparticles.

  19. Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency.

    PubMed

    Bin, Haijun; Zhang, Zhi-Guo; Gao, Liang; Chen, Shanshan; Zhong, Lian; Xue, Lingwei; Yang, Changduk; Li, Yongfang

    2016-04-06

    Non-fullerene polymer solar cells (PSCs) with solution-processable n-type organic semiconductor (n-OS) as acceptor have seen rapid progress recently owing to the synthesis of new low bandgap n-OS, such as ITIC. To further increase power conversion efficiency (PCE) of the devices, it is of a great challenge to develop suitable polymer donor material that matches well with the low bandgap n-OS acceptors thus providing complementary absorption and nanoscaled blend morphology, as well as suppressed recombination and minimized energy loss. To address this challenge, we synthesized three medium bandgap 2D-conjugated bithienyl-benzodithiophene-alt-fluorobenzotriazole copolymers J52, J60, and J61 for the application as donor in the PSCs with low bandgap n-OS ITIC as acceptor. The three polymers were designed with branched alkyl (J52), branched alkylthio (J60), and linear alkylthio (J61) substituent on the thiophene conjugated side chain of the benzodithiophene (BDT) units for studying effect of the substituents on the photovoltaic performance of the polymers. The alkylthio side chain, red-shifted absorption down-shifted the highest occupied molecular orbital (HOMO) level and improved crystallinity of the 2D conjugated polymers. With linear alkylthio side chain, the tailored polymer J61 exhibits an enhanced JSC of 17.43 mA/cm(2), a high VOC of 0.89 V, and a PCE of 9.53% in the best non-fullerene PSCs with the polymer as donor and ITIC as acceptor. To the best of our knowledge, the PCE of 9.53% is one of the highest values reported in literature to date for the non-fullerene PSCs. The results indicate that J61 is a promising medium bandgap polymer donor in non-fullerene PSCs.

  20. Stability of multiply charged fullerene anions and cations

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zettergren, Henning; Alcamí, Manuel; Martín, Fernando

    2009-09-01

    We present a systematic study of the stability of highly charged cationic and anionic fullerenes whose most stable neutral counterparts follow the isolated pentagon rule (IPR). In agreement with recent studies, we have found that, for many highly charged fullerenes, non-IPR isomers are significantly more stable than the IPR ones. To understand this behavior, we compare the results of elaborate density-functional theory (DFT) calculations to those of a simple Hückel molecular-orbital theory in which the DFT energies of the corresponding neutral systems are used as a reference. The model leads to a reasonable estimate of the relative stability of the IPR and non-IPR isomers as a function of charge, which can be used to identify, among the thousands of possible isomers and charge states, the non-IPR species that are likely more stable than the IPR isomers.

Top