Sample records for fully automated algorithm

  1. Twelve automated thresholding methods for segmentation of PET images: a phantom study.

    PubMed

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M

    2012-06-21

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  2. Twelve automated thresholding methods for segmentation of PET images: a phantom study

    NASA Astrophysics Data System (ADS)

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.

    2012-06-01

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  3. Automated frame selection process for high-resolution microendoscopy

    NASA Astrophysics Data System (ADS)

    Ishijima, Ayumu; Schwarz, Richard A.; Shin, Dongsuk; Mondrik, Sharon; Vigneswaran, Nadarajah; Gillenwater, Ann M.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2015-04-01

    We developed an automated frame selection algorithm for high-resolution microendoscopy video sequences. The algorithm rapidly selects a representative frame with minimal motion artifact from a short video sequence, enabling fully automated image analysis at the point-of-care. The algorithm was evaluated by quantitative comparison of diagnostically relevant image features and diagnostic classification results obtained using automated frame selection versus manual frame selection. A data set consisting of video sequences collected in vivo from 100 oral sites and 167 esophageal sites was used in the analysis. The area under the receiver operating characteristic curve was 0.78 (automated selection) versus 0.82 (manual selection) for oral sites, and 0.93 (automated selection) versus 0.92 (manual selection) for esophageal sites. The implementation of fully automated high-resolution microendoscopy at the point-of-care has the potential to reduce the number of biopsies needed for accurate diagnosis of precancer and cancer in low-resource settings where there may be limited infrastructure and personnel for standard histologic analysis.

  4. Automated System for Early Breast Cancer Detection in Mammograms

    NASA Technical Reports Server (NTRS)

    Bankman, Isaac N.; Kim, Dong W.; Christens-Barry, William A.; Weinberg, Irving N.; Gatewood, Olga B.; Brody, William R.

    1993-01-01

    The increasing demand on mammographic screening for early breast cancer detection, and the subtlety of early breast cancer signs on mammograms, suggest an automated image processing system that can serve as a diagnostic aid in radiology clinics. We present a fully automated algorithm for detecting clusters of microcalcifications that are the most common signs of early, potentially curable breast cancer. By using the contour map of the mammogram, the algorithm circumvents some of the difficulties encountered with standard image processing methods. The clinical implementation of an automated instrument based on this algorithm is also discussed.

  5. Automated condition-invariable neurite segmentation and synapse classification using textural analysis-based machine-learning algorithms

    PubMed Central

    Kandaswamy, Umasankar; Rotman, Ziv; Watt, Dana; Schillebeeckx, Ian; Cavalli, Valeria; Klyachko, Vitaly

    2013-01-01

    High-resolution live-cell imaging studies of neuronal structure and function are characterized by large variability in image acquisition conditions due to background and sample variations as well as low signal-to-noise ratio. The lack of automated image analysis tools that can be generalized for varying image acquisition conditions represents one of the main challenges in the field of biomedical image analysis. Specifically, segmentation of the axonal/dendritic arborizations in brightfield or fluorescence imaging studies is extremely labor-intensive and still performed mostly manually. Here we describe a fully automated machine-learning approach based on textural analysis algorithms for segmenting neuronal arborizations in high-resolution brightfield images of live cultured neurons. We compare performance of our algorithm to manual segmentation and show that it combines 90% accuracy, with similarly high levels of specificity and sensitivity. Moreover, the algorithm maintains high performance levels under a wide range of image acquisition conditions indicating that it is largely condition-invariable. We further describe an application of this algorithm to fully automated synapse localization and classification in fluorescence imaging studies based on synaptic activity. Textural analysis-based machine-learning approach thus offers a high performance condition-invariable tool for automated neurite segmentation. PMID:23261652

  6. Accuracy of patient specific organ-dose estimates obtained using an automated image segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-03-01

    The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.

  7. Fully automated segmentation of callus by micro-CT compared to biomechanics.

    PubMed

    Bissinger, Oliver; Götz, Carolin; Wolff, Klaus-Dietrich; Hapfelmeier, Alexander; Prodinger, Peter Michael; Tischer, Thomas

    2017-07-11

    A high percentage of closed femur fractures have slight comminution. Using micro-CT (μCT), multiple fragment segmentation is much more difficult than segmentation of unfractured or osteotomied bone. Manual or semi-automated segmentation has been performed to date. However, such segmentation is extremely laborious, time-consuming and error-prone. Our aim was to therefore apply a fully automated segmentation algorithm to determine μCT parameters and examine their association with biomechanics. The femura of 64 rats taken after randomised inhibitory or neutral medication, in terms of the effect on fracture healing, and controls were closed fractured after a Kirschner wire was inserted. After 21 days, μCT and biomechanical parameters were determined by a fully automated method and correlated (Pearson's correlation). The fully automated segmentation algorithm automatically detected bone and simultaneously separated cortical bone from callus without requiring ROI selection for each single bony structure. We found an association of structural callus parameters obtained by μCT to the biomechanical properties. However, results were only explicable by additionally considering the callus location. A large number of slightly comminuted fractures in combination with therapies that influence the callus qualitatively and/or quantitatively considerably affects the association between μCT and biomechanics. In the future, contrast-enhanced μCT imaging of the callus cartilage might provide more information to improve the non-destructive and non-invasive prediction of callus mechanical properties. As studies evaluating such important drugs increase, fully automated segmentation appears to be clinically important.

  8. Image segmentation evaluation for very-large datasets

    NASA Astrophysics Data System (ADS)

    Reeves, Anthony P.; Liu, Shuang; Xie, Yiting

    2016-03-01

    With the advent of modern machine learning methods and fully automated image analysis there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. Current approaches of visual inspection and manual markings do not scale well to big data. We present a new approach that depends on fully automated algorithm outcomes for segmentation documentation, requires no manual marking, and provides quantitative evaluation for computer algorithms. The documentation of new image segmentations and new algorithm outcomes are achieved by visual inspection. The burden of visual inspection on large datasets is minimized by (a) customized visualizations for rapid review and (b) reducing the number of cases to be reviewed through analysis of quantitative segmentation evaluation. This method has been applied to a dataset of 7,440 whole-lung CT images for 6 different segmentation algorithms designed to fully automatically facilitate the measurement of a number of very important quantitative image biomarkers. The results indicate that we could achieve 93% to 99% successful segmentation for these algorithms on this relatively large image database. The presented evaluation method may be scaled to much larger image databases.

  9. Tissue segmentation of computed tomography images using a Random Forest algorithm: a feasibility study

    NASA Astrophysics Data System (ADS)

    Polan, Daniel F.; Brady, Samuel L.; Kaufman, Robert A.

    2016-09-01

    There is a need for robust, fully automated whole body organ segmentation for diagnostic CT. This study investigates and optimizes a Random Forest algorithm for automated organ segmentation; explores the limitations of a Random Forest algorithm applied to the CT environment; and demonstrates segmentation accuracy in a feasibility study of pediatric and adult patients. To the best of our knowledge, this is the first study to investigate a trainable Weka segmentation (TWS) implementation using Random Forest machine-learning as a means to develop a fully automated tissue segmentation tool developed specifically for pediatric and adult examinations in a diagnostic CT environment. Current innovation in computed tomography (CT) is focused on radiomics, patient-specific radiation dose calculation, and image quality improvement using iterative reconstruction, all of which require specific knowledge of tissue and organ systems within a CT image. The purpose of this study was to develop a fully automated Random Forest classifier algorithm for segmentation of neck-chest-abdomen-pelvis CT examinations based on pediatric and adult CT protocols. Seven materials were classified: background, lung/internal air or gas, fat, muscle, solid organ parenchyma, blood/contrast enhanced fluid, and bone tissue using Matlab and the TWS plugin of FIJI. The following classifier feature filters of TWS were investigated: minimum, maximum, mean, and variance evaluated over a voxel radius of 2 n , (n from 0 to 4), along with noise reduction and edge preserving filters: Gaussian, bilateral, Kuwahara, and anisotropic diffusion. The Random Forest algorithm used 200 trees with 2 features randomly selected per node. The optimized auto-segmentation algorithm resulted in 16 image features including features derived from maximum, mean, variance Gaussian and Kuwahara filters. Dice similarity coefficient (DSC) calculations between manually segmented and Random Forest algorithm segmented images from 21 patient image sections, were analyzed. The automated algorithm produced segmentation of seven material classes with a median DSC of 0.86  ±  0.03 for pediatric patient protocols, and 0.85  ±  0.04 for adult patient protocols. Additionally, 100 randomly selected patient examinations were segmented and analyzed, and a mean sensitivity of 0.91 (range: 0.82-0.98), specificity of 0.89 (range: 0.70-0.98), and accuracy of 0.90 (range: 0.76-0.98) were demonstrated. In this study, we demonstrate that this fully automated segmentation tool was able to produce fast and accurate segmentation of the neck and trunk of the body over a wide range of patient habitus and scan parameters.

  10. A Fully Automated Microfluidic Femtosecond Laser Axotomy Platform for Nerve Regeneration Studies in C. elegans

    PubMed Central

    Gokce, Sertan Kutal; Guo, Samuel X.; Ghorashian, Navid; Everett, W. Neil; Jarrell, Travis; Kottek, Aubri; Bovik, Alan C.; Ben-Yakar, Adela

    2014-01-01

    Femtosecond laser nanosurgery has been widely accepted as an axonal injury model, enabling nerve regeneration studies in the small model organism, Caenorhabditis elegans. To overcome the time limitations of manual worm handling techniques, automation and new immobilization technologies must be adopted to improve throughput in these studies. While new microfluidic immobilization techniques have been developed that promise to reduce the time required for axotomies, there is a need for automated procedures to minimize the required amount of human intervention and accelerate the axotomy processes crucial for high-throughput. Here, we report a fully automated microfluidic platform for performing laser axotomies of fluorescently tagged neurons in living Caenorhabditis elegans. The presented automation process reduces the time required to perform axotomies within individual worms to ∼17 s/worm, at least one order of magnitude faster than manual approaches. The full automation is achieved with a unique chip design and an operation sequence that is fully computer controlled and synchronized with efficient and accurate image processing algorithms. The microfluidic device includes a T-shaped architecture and three-dimensional microfluidic interconnects to serially transport, position, and immobilize worms. The image processing algorithms can identify and precisely position axons targeted for ablation. There were no statistically significant differences observed in reconnection probabilities between axotomies carried out with the automated system and those performed manually with anesthetics. The overall success rate of automated axotomies was 67.4±3.2% of the cases (236/350) at an average processing rate of 17.0±2.4 s. This fully automated platform establishes a promising methodology for prospective genome-wide screening of nerve regeneration in C. elegans in a truly high-throughput manner. PMID:25470130

  11. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images

    PubMed Central

    Srinivasan, Pratul P.; Kim, Leo A.; Mettu, Priyatham S.; Cousins, Scott W.; Comer, Grant M.; Izatt, Joseph A.; Farsiu, Sina

    2014-01-01

    We present a novel fully automated algorithm for the detection of retinal diseases via optical coherence tomography (OCT) imaging. Our algorithm utilizes multiscale histograms of oriented gradient descriptors as feature vectors of a support vector machine based classifier. The spectral domain OCT data sets used for cross-validation consisted of volumetric scans acquired from 45 subjects: 15 normal subjects, 15 patients with dry age-related macular degeneration (AMD), and 15 patients with diabetic macular edema (DME). Our classifier correctly identified 100% of cases with AMD, 100% cases with DME, and 86.67% cases of normal subjects. This algorithm is a potentially impactful tool for the remote diagnosis of ophthalmic diseases. PMID:25360373

  12. Crossword: A Fully Automated Algorithm for the Segmentation and Quality Control of Protein Microarray Images

    PubMed Central

    2015-01-01

    Biological assays formatted as microarrays have become a critical tool for the generation of the comprehensive data sets required for systems-level understanding of biological processes. Manual annotation of data extracted from images of microarrays, however, remains a significant bottleneck, particularly for protein microarrays due to the sensitivity of this technology to weak artifact signal. In order to automate the extraction and curation of data from protein microarrays, we describe an algorithm called Crossword that logically combines information from multiple approaches to fully automate microarray segmentation. Automated artifact removal is also accomplished by segregating structured pixels from the background noise using iterative clustering and pixel connectivity. Correlation of the location of structured pixels across image channels is used to identify and remove artifact pixels from the image prior to data extraction. This component improves the accuracy of data sets while reducing the requirement for time-consuming visual inspection of the data. Crossword enables a fully automated protocol that is robust to significant spatial and intensity aberrations. Overall, the average amount of user intervention is reduced by an order of magnitude and the data quality is increased through artifact removal and reduced user variability. The increase in throughput should aid the further implementation of microarray technologies in clinical studies. PMID:24417579

  13. ARTIST: A fully automated artifact rejection algorithm for single-pulse TMS-EEG data.

    PubMed

    Wu, Wei; Keller, Corey J; Rogasch, Nigel C; Longwell, Parker; Shpigel, Emmanuel; Rolle, Camarin E; Etkin, Amit

    2018-04-01

    Concurrent single-pulse TMS-EEG (spTMS-EEG) is an emerging noninvasive tool for probing causal brain dynamics in humans. However, in addition to the common artifacts in standard EEG data, spTMS-EEG data suffer from enormous stimulation-induced artifacts, posing significant challenges to the extraction of neural information. Typically, neural signals are analyzed after a manual time-intensive and often subjective process of artifact rejection. Here we describe a fully automated algorithm for spTMS-EEG artifact rejection. A key step of this algorithm is to decompose the spTMS-EEG data into statistically independent components (ICs), and then train a pattern classifier to automatically identify artifact components based on knowledge of the spatio-temporal profile of both neural and artefactual activities. The autocleaned and hand-cleaned data yield qualitatively similar group evoked potential waveforms. The algorithm achieves a 95% IC classification accuracy referenced to expert artifact rejection performance, and does so across a large number of spTMS-EEG data sets (n = 90 stimulation sites), retains high accuracy across stimulation sites/subjects/populations/montages, and outperforms current automated algorithms. Moreover, the algorithm was superior to the artifact rejection performance of relatively novice individuals, who would be the likely users of spTMS-EEG as the technique becomes more broadly disseminated. In summary, our algorithm provides an automated, fast, objective, and accurate method for cleaning spTMS-EEG data, which can increase the utility of TMS-EEG in both clinical and basic neuroscience settings. © 2018 Wiley Periodicals, Inc.

  14. Improved automated lumen contour detection by novel multifrequency processing algorithm with current intravascular ultrasound system.

    PubMed

    Kume, Teruyoshi; Kim, Byeong-Keuk; Waseda, Katsuhisa; Sathyanarayana, Shashidhar; Li, Wenguang; Teo, Tat-Jin; Yock, Paul G; Fitzgerald, Peter J; Honda, Yasuhiro

    2013-02-01

    The aim of this study was to evaluate a new fully automated lumen border tracing system based on a novel multifrequency processing algorithm. We developed the multifrequency processing method to enhance arterial lumen detection by exploiting the differential scattering characteristics of blood and arterial tissue. The implementation of the method can be integrated into current intravascular ultrasound (IVUS) hardware. This study was performed in vivo with conventional 40-MHz IVUS catheters (Atlantis SR Pro™, Boston Scientific Corp, Natick, MA) in 43 clinical patients with coronary artery disease. A total of 522 frames were randomly selected, and lumen areas were measured after automatically tracing lumen borders with the new tracing system and a commercially available tracing system (TraceAssist™) referred to as the "conventional tracing system." The data assessed by the two automated systems were compared with the results of manual tracings by experienced IVUS analysts. New automated lumen measurements showed better agreement with manual lumen area tracings compared with those of the conventional tracing system (correlation coefficient: 0.819 vs. 0.509). When compared against manual tracings, the new algorithm also demonstrated improved systematic error (mean difference: 0.13 vs. -1.02 mm(2) ) and random variability (standard deviation of difference: 2.21 vs. 4.02 mm(2) ) compared with the conventional tracing system. This preliminary study showed that the novel fully automated tracing system based on the multifrequency processing algorithm can provide more accurate lumen border detection than current automated tracing systems and thus, offer a more reliable quantitative evaluation of lumen geometry. Copyright © 2011 Wiley Periodicals, Inc.

  15. Numerical and experimental analysis of a ducted propeller designed by a fully automated optimization process under open water condition

    NASA Astrophysics Data System (ADS)

    Yu, Long; Druckenbrod, Markus; Greve, Martin; Wang, Ke-qi; Abdel-Maksoud, Moustafa

    2015-10-01

    A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.

  16. Automated system for analyzing the activity of individual neurons

    NASA Technical Reports Server (NTRS)

    Bankman, Isaac N.; Johnson, Kenneth O.; Menkes, Alex M.; Diamond, Steve D.; Oshaughnessy, David M.

    1993-01-01

    This paper presents a signal processing system that: (1) provides an efficient and reliable instrument for investigating the activity of neuronal assemblies in the brain; and (2) demonstrates the feasibility of generating the command signals of prostheses using the activity of relevant neurons in disabled subjects. The system operates online, in a fully automated manner and can recognize the transient waveforms of several neurons in extracellular neurophysiological recordings. Optimal algorithms for detection, classification, and resolution of overlapping waveforms are developed and evaluated. Full automation is made possible by an algorithm that can set appropriate decision thresholds and an algorithm that can generate templates on-line. The system is implemented with a fast IBM PC compatible processor board that allows on-line operation.

  17. Large-scale image region documentation for fully automated image biomarker algorithm development and evaluation.

    PubMed

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2017-04-01

    With the advent of fully automated image analysis and modern machine learning methods, there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. This paper presents a method and implementation for facilitating such datasets that addresses the critical issue of size scaling for algorithm validation and evaluation; current evaluation methods that are usually used in academic studies do not scale to large datasets. This method includes protocols for the documentation of many regions in very large image datasets; the documentation may be incrementally updated by new image data and by improved algorithm outcomes. This method has been used for 5 years in the context of chest health biomarkers from low-dose chest CT images that are now being used with increasing frequency in lung cancer screening practice. The lung scans are segmented into over 100 different anatomical regions, and the method has been applied to a dataset of over 20,000 chest CT images. Using this framework, the computer algorithms have been developed to achieve over 90% acceptable image segmentation on the complete dataset.

  18. Peak picking multidimensional NMR spectra with the contour geometry based algorithm CYPICK.

    PubMed

    Würz, Julia M; Güntert, Peter

    2017-01-01

    The automated identification of signals in multidimensional NMR spectra is a challenging task, complicated by signal overlap, noise, and spectral artifacts, for which no universally accepted method is available. Here, we present a new peak picking algorithm, CYPICK, that follows, as far as possible, the manual approach taken by a spectroscopist who analyzes peak patterns in contour plots of the spectrum, but is fully automated. Human visual inspection is replaced by the evaluation of geometric criteria applied to contour lines, such as local extremality, approximate circularity (after appropriate scaling of the spectrum axes), and convexity. The performance of CYPICK was evaluated for a variety of spectra from different proteins by systematic comparison with peak lists obtained by other, manual or automated, peak picking methods, as well as by analyzing the results of automated chemical shift assignment and structure calculation based on input peak lists from CYPICK. The results show that CYPICK yielded peak lists that compare in most cases favorably to those obtained by other automated peak pickers with respect to the criteria of finding a maximal number of real signals, a minimal number of artifact peaks, and maximal correctness of the chemical shift assignments and the three-dimensional structure obtained by fully automated assignment and structure calculation.

  19. A novel algorithm for fully automated mapping of geospatial ontologies

    NASA Astrophysics Data System (ADS)

    Chaabane, Sana; Jaziri, Wassim

    2018-01-01

    Geospatial information is collected from different sources thus making spatial ontologies, built for the same geographic domain, heterogeneous; therefore, different and heterogeneous conceptualizations may coexist. Ontology integrating helps creating a common repository of the geospatial ontology and allows removing the heterogeneities between the existing ontologies. Ontology mapping is a process used in ontologies integrating and consists in finding correspondences between the source ontologies. This paper deals with the "mapping" process of geospatial ontologies which consist in applying an automated algorithm in finding the correspondences between concepts referring to the definitions of matching relationships. The proposed algorithm called "geographic ontologies mapping algorithm" defines three types of mapping: semantic, topological and spatial.

  20. Early detection of glaucoma using fully automated disparity analysis of the optic nerve head (ONH) from stereo fundus images

    NASA Astrophysics Data System (ADS)

    Sharma, Archie; Corona, Enrique; Mitra, Sunanda; Nutter, Brian S.

    2006-03-01

    Early detection of structural damage to the optic nerve head (ONH) is critical in diagnosis of glaucoma, because such glaucomatous damage precedes clinically identifiable visual loss. Early detection of glaucoma can prevent progression of the disease and consequent loss of vision. Traditional early detection techniques involve observing changes in the ONH through an ophthalmoscope. Stereo fundus photography is also routinely used to detect subtle changes in the ONH. However, clinical evaluation of stereo fundus photographs suffers from inter- and intra-subject variability. Even the Heidelberg Retina Tomograph (HRT) has not been found to be sufficiently sensitive for early detection. A semi-automated algorithm for quantitative representation of the optic disc and cup contours by computing accumulated disparities in the disc and cup regions from stereo fundus image pairs has already been developed using advanced digital image analysis methodologies. A 3-D visualization of the disc and cup is achieved assuming camera geometry. High correlation among computer-generated and manually segmented cup to disc ratios in a longitudinal study involving 159 stereo fundus image pairs has already been demonstrated. However, clinical usefulness of the proposed technique can only be tested by a fully automated algorithm. In this paper, we present a fully automated algorithm for segmentation of optic cup and disc contours from corresponding stereo disparity information. Because this technique does not involve human intervention, it eliminates subjective variability encountered in currently used clinical methods and provides ophthalmologists with a cost-effective and quantitative method for detection of ONH structural damage for early detection of glaucoma.

  1. An optimized routing algorithm for the automated assembly of standard multimode ribbon fibers in a full-mesh optical backplane

    NASA Astrophysics Data System (ADS)

    Basile, Vito; Guadagno, Gianluca; Ferrario, Maddalena; Fassi, Irene

    2018-03-01

    In this paper a parametric, modular and scalable algorithm allowing a fully automated assembly of a backplane fiber-optic interconnection circuit is presented. This approach guarantees the optimization of the optical fiber routing inside the backplane with respect to specific criteria (i.e. bending power losses), addressing both transmission performance and overall costs issues. Graph theory has been exploited to simplify the complexity of the NxN full-mesh backplane interconnection topology, firstly, into N independent sub-circuits and then, recursively, into a limited number of loops easier to be generated. Afterwards, the proposed algorithm selects a set of geometrical and architectural parameters whose optimization allows to identify the optimal fiber optic routing for each sub-circuit of the backplane. The topological and numerical information provided by the algorithm are then exploited to control a robot which performs the automated assembly of the backplane sub-circuits. The proposed routing algorithm can be extended to any array architecture and number of connections thanks to its modularity and scalability. Finally, the algorithm has been exploited for the automated assembly of an 8x8 optical backplane realized with standard multimode (MM) 12-fiber ribbons.

  2. Fully automated, deep learning segmentation of oxygen-induced retinopathy images

    PubMed Central

    Xiao, Sa; Bucher, Felicitas; Wu, Yue; Rokem, Ariel; Lee, Cecilia S.; Marra, Kyle V.; Fallon, Regis; Diaz-Aguilar, Sophia; Aguilar, Edith; Friedlander, Martin; Lee, Aaron Y.

    2017-01-01

    Oxygen-induced retinopathy (OIR) is a widely used model to study ischemia-driven neovascularization (NV) in the retina and to serve in proof-of-concept studies in evaluating antiangiogenic drugs for ocular, as well as nonocular, diseases. The primary parameters that are analyzed in this mouse model include the percentage of retina with vaso-obliteration (VO) and NV areas. However, quantification of these two key variables comes with a great challenge due to the requirement of human experts to read the images. Human readers are costly, time-consuming, and subject to bias. Using recent advances in machine learning and computer vision, we trained deep learning neural networks using over a thousand segmentations to fully automate segmentation in OIR images. While determining the percentage area of VO, our algorithm achieved a similar range of correlation coefficients to that of expert inter-human correlation coefficients. In addition, our algorithm achieved a higher range of correlation coefficients compared with inter-expert correlation coefficients for quantification of the percentage area of neovascular tufts. In summary, we have created an open-source, fully automated pipeline for the quantification of key values of OIR images using deep learning neural networks. PMID:29263301

  3. Fully Automated Quantitative Estimation of Volumetric Breast Density from Digital Breast Tomosynthesis Images: Preliminary Results and Comparison with Digital Mammography and MR Imaging.

    PubMed

    Pertuz, Said; McDonald, Elizabeth S; Weinstein, Susan P; Conant, Emily F; Kontos, Despina

    2016-04-01

    To assess a fully automated method for volumetric breast density (VBD) estimation in digital breast tomosynthesis (DBT) and to compare the findings with those of full-field digital mammography (FFDM) and magnetic resonance (MR) imaging. Bilateral DBT images, FFDM images, and sagittal breast MR images were retrospectively collected from 68 women who underwent breast cancer screening from October 2011 to September 2012 with institutional review board-approved, HIPAA-compliant protocols. A fully automated computer algorithm was developed for quantitative estimation of VBD from DBT images. FFDM images were processed with U.S. Food and Drug Administration-cleared software, and the MR images were processed with a previously validated automated algorithm to obtain corresponding VBD estimates. Pearson correlation and analysis of variance with Tukey-Kramer post hoc correction were used to compare the multimodality VBD estimates. Estimates of VBD from DBT were significantly correlated with FFDM-based and MR imaging-based estimates with r = 0.83 (95% confidence interval [CI]: 0.74, 0.90) and r = 0.88 (95% CI: 0.82, 0.93), respectively (P < .001). The corresponding correlation between FFDM and MR imaging was r = 0.84 (95% CI: 0.76, 0.90). However, statistically significant differences after post hoc correction (α = 0.05) were found among VBD estimates from FFDM (mean ± standard deviation, 11.1% ± 7.0) relative to MR imaging (16.6% ± 11.2) and DBT (19.8% ± 16.2). Differences between VDB estimates from DBT and MR imaging were not significant (P = .26). Fully automated VBD estimates from DBT, FFDM, and MR imaging are strongly correlated but show statistically significant differences. Therefore, absolute differences in VBD between FFDM, DBT, and MR imaging should be considered in breast cancer risk assessment.

  4. Polymeric endovascular strut and lumen detection algorithm for intracoronary optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Amrute, Junedh M.; Athanasiou, Lambros S.; Rikhtegar, Farhad; de la Torre Hernández, José M.; Camarero, Tamara García; Edelman, Elazer R.

    2018-03-01

    Polymeric endovascular implants are the next step in minimally invasive vascular interventions. As an alternative to traditional metallic drug-eluting stents, these often-erodible scaffolds present opportunities and challenges for patients and clinicians. Theoretically, as they resorb and are absorbed over time, they obviate the long-term complications of permanent implants, but in the short-term visualization and therefore positioning is problematic. Polymeric scaffolds can only be fully imaged using optical coherence tomography (OCT) imaging-they are relatively invisible via angiography-and segmentation of polymeric struts in OCT images is performed manually, a laborious and intractable procedure for large datasets. Traditional lumen detection methods using implant struts as boundary limits fail in images with polymeric implants. Therefore, it is necessary to develop an automated method to detect polymeric struts and luminal borders in OCT images; we present such a fully automated algorithm. Accuracy was validated using expert annotations on 1140 OCT images with a positive predictive value of 0.93 for strut detection and an R2 correlation coefficient of 0.94 between detected and expert-annotated lumen areas. The proposed algorithm allows for rapid, accurate, and automated detection of polymeric struts and the luminal border in OCT images.

  5. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2018-01-01

    The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.

  6. JPLEX: Java Simplex Implementation with Branch-and-Bound Search for Automated Test Assembly

    ERIC Educational Resources Information Center

    Park, Ryoungsun; Kim, Jiseon; Dodd, Barbara G.; Chung, Hyewon

    2011-01-01

    JPLEX, short for Java simPLEX, is an automated test assembly (ATA) program. It is a mixed integer linear programming (MILP) solver written in Java. It reads in a configuration file, solves the minimization problem, and produces an output file for postprocessing. It implements the simplex algorithm to create a fully relaxed solution and…

  7. Autoreject: Automated artifact rejection for MEG and EEG data.

    PubMed

    Jas, Mainak; Engemann, Denis A; Bekhti, Yousra; Raimondo, Federico; Gramfort, Alexandre

    2017-10-01

    We present an automated algorithm for unified rejection and repair of bad trials in magnetoencephalography (MEG) and electroencephalography (EEG) signals. Our method capitalizes on cross-validation in conjunction with a robust evaluation metric to estimate the optimal peak-to-peak threshold - a quantity commonly used for identifying bad trials in M/EEG. This approach is then extended to a more sophisticated algorithm which estimates this threshold for each sensor yielding trial-wise bad sensors. Depending on the number of bad sensors, the trial is then repaired by interpolation or by excluding it from subsequent analysis. All steps of the algorithm are fully automated thus lending itself to the name Autoreject. In order to assess the practical significance of the algorithm, we conducted extensive validation and comparisons with state-of-the-art methods on four public datasets containing MEG and EEG recordings from more than 200 subjects. The comparisons include purely qualitative efforts as well as quantitatively benchmarking against human supervised and semi-automated preprocessing pipelines. The algorithm allowed us to automate the preprocessing of MEG data from the Human Connectome Project (HCP) going up to the computation of the evoked responses. The automated nature of our method minimizes the burden of human inspection, hence supporting scalability and reliability demanded by data analysis in modern neuroscience. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Large-scale image region documentation for fully automated image biomarker algorithm development and evaluation

    PubMed Central

    Reeves, Anthony P.; Xie, Yiting; Liu, Shuang

    2017-01-01

    Abstract. With the advent of fully automated image analysis and modern machine learning methods, there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. This paper presents a method and implementation for facilitating such datasets that addresses the critical issue of size scaling for algorithm validation and evaluation; current evaluation methods that are usually used in academic studies do not scale to large datasets. This method includes protocols for the documentation of many regions in very large image datasets; the documentation may be incrementally updated by new image data and by improved algorithm outcomes. This method has been used for 5 years in the context of chest health biomarkers from low-dose chest CT images that are now being used with increasing frequency in lung cancer screening practice. The lung scans are segmented into over 100 different anatomical regions, and the method has been applied to a dataset of over 20,000 chest CT images. Using this framework, the computer algorithms have been developed to achieve over 90% acceptable image segmentation on the complete dataset. PMID:28612037

  9. Building Flexible User Interfaces for Solving PDEs

    NASA Astrophysics Data System (ADS)

    Logg, Anders; Wells, Garth N.

    2010-09-01

    FEniCS is a collection of software tools for the automated solution of differential equations by finite element methods. In this note, we describe how FEniCS can be used to solve a simple nonlinear model problem with varying levels of automation. At one extreme, FEniCS provides tools for the fully automated and adaptive solution of nonlinear partial differential equations. At the other extreme, FEniCS provides a range of tools that allow the computational scientist to experiment with novel solution algorithms.

  10. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  11. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2018-01-29

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  12. ATLAS, an integrated structural analysis and design system. Volume 6: Design module theory

    NASA Technical Reports Server (NTRS)

    Backman, B. F.

    1979-01-01

    The automated design theory underlying the operation of the ATLAS Design Module is decribed. The methods, applications and limitations associated with the fully stressed design, the thermal fully stressed design and a regional optimization algorithm are presented. A discussion of the convergence characteristics of the fully stressed design is also included. Derivations and concepts specific to the ATLAS design theory are shown, while conventional terminology and established methods are identified by references.

  13. Automatic localization of the left ventricular blood pool centroid in short axis cardiac cine MR images.

    PubMed

    Tan, Li Kuo; Liew, Yih Miin; Lim, Einly; Abdul Aziz, Yang Faridah; Chee, Kok Han; McLaughlin, Robert A

    2018-06-01

    In this paper, we develop and validate an open source, fully automatic algorithm to localize the left ventricular (LV) blood pool centroid in short axis cardiac cine MR images, enabling follow-on automated LV segmentation algorithms. The algorithm comprises four steps: (i) quantify motion to determine an initial region of interest surrounding the heart, (ii) identify potential 2D objects of interest using an intensity-based segmentation, (iii) assess contraction/expansion, circularity, and proximity to lung tissue to score all objects of interest in terms of their likelihood of constituting part of the LV, and (iv) aggregate the objects into connected groups and construct the final LV blood pool volume and centroid. This algorithm was tested against 1140 datasets from the Kaggle Second Annual Data Science Bowl, as well as 45 datasets from the STACOM 2009 Cardiac MR Left Ventricle Segmentation Challenge. Correct LV localization was confirmed in 97.3% of the datasets. The mean absolute error between the gold standard and localization centroids was 2.8 to 4.7 mm, or 12 to 22% of the average endocardial radius. Graphical abstract Fully automated localization of the left ventricular blood pool in short axis cardiac cine MR images.

  14. A new fast and fully automated software based algorithm for extracting respiratory signal from raw PET data and its comparison to other methods.

    PubMed

    Kesner, Adam Leon; Kuntner, Claudia

    2010-10-01

    Respiratory gating in PET is an approach used to minimize the negative effects of respiratory motion on spatial resolution. It is based on an initial determination of a patient's respiratory movements during a scan, typically using hardware based systems. In recent years, several fully automated databased algorithms have been presented for extracting a respiratory signal directly from PET data, providing a very practical strategy for implementing gating in the clinic. In this work, a new method is presented for extracting a respiratory signal from raw PET sinogram data and compared to previously presented automated techniques. The acquisition of respiratory signal from PET data in the newly proposed method is based on rebinning the sinogram data into smaller data structures and then analyzing the time activity behavior in the elements of these structures. From this analysis, a 1D respiratory trace is produced, analogous to a hardware derived respiratory trace. To assess the accuracy of this fully automated method, respiratory signal was extracted from a collection of 22 clinical FDG-PET scans using this method, and compared to signal derived from several other software based methods as well as a signal derived from a hardware system. The method presented required approximately 9 min of processing time for each 10 min scan (using a single 2.67 GHz processor), which in theory can be accomplished while the scan is being acquired and therefore allowing a real-time respiratory signal acquisition. Using the mean correlation between the software based and hardware based respiratory traces, the optimal parameters were determined for the presented algorithm. The mean/median/range of correlations for the set of scans when using the optimal parameters was found to be 0.58/0.68/0.07-0.86. The speed of this method was within the range of real-time while the accuracy surpassed the most accurate of the previously presented algorithms. PET data inherently contains information about patient motion; information that is not currently being utilized. We have shown that a respiratory signal can be extracted from raw PET data in potentially real-time and in a fully automated manner. This signal correlates well with hardware based signal for a large percentage of scans, and avoids the efforts and complications associated with hardware. The proposed method to extract a respiratory signal can be implemented on existing scanners and, if properly integrated, can be applied without changes to routine clinical procedures.

  15. A two-dimensionally coincident second difference cosmic ray spike removal method for the fully automated processing of Raman spectra.

    PubMed

    Schulze, H Georg; Turner, Robin F B

    2014-01-01

    Charge-coupled device detectors are vulnerable to cosmic rays that can contaminate Raman spectra with positive going spikes. Because spikes can adversely affect spectral processing and data analyses, they must be removed. Although both hardware-based and software-based spike removal methods exist, they typically require parameter and threshold specification dependent on well-considered user input. Here, we present a fully automated spike removal algorithm that proceeds without requiring user input. It is minimally dependent on sample attributes, and those that are required (e.g., standard deviation of spectral noise) can be determined with other fully automated procedures. At the core of the method is the identification and location of spikes with coincident second derivatives along both the spectral and spatiotemporal dimensions of two-dimensional datasets. The method can be applied to spectra that are relatively inhomogeneous because it provides fairly effective and selective targeting of spikes resulting in minimal distortion of spectra. Relatively effective spike removal obtained with full automation could provide substantial benefits to users where large numbers of spectra must be processed.

  16. Quantitative Analysis of Mouse Retinal Layers Using Automated Segmentation of Spectral Domain Optical Coherence Tomography Images

    PubMed Central

    Dysli, Chantal; Enzmann, Volker; Sznitman, Raphael; Zinkernagel, Martin S.

    2015-01-01

    Purpose Quantification of retinal layers using automated segmentation of optical coherence tomography (OCT) images allows for longitudinal studies of retinal and neurological disorders in mice. The purpose of this study was to compare the performance of automated retinal layer segmentation algorithms with data from manual segmentation in mice using the Spectralis OCT. Methods Spectral domain OCT images from 55 mice from three different mouse strains were analyzed in total. The OCT scans from 22 C57Bl/6, 22 BALBc, and 11 C3A.Cg-Pde6b+Prph2Rd2/J mice were automatically segmented using three commercially available automated retinal segmentation algorithms and compared to manual segmentation. Results Fully automated segmentation performed well in mice and showed coefficients of variation (CV) of below 5% for the total retinal volume. However, all three automated segmentation algorithms yielded much thicker total retinal thickness values compared to manual segmentation data (P < 0.0001) due to segmentation errors in the basement membrane. Conclusions Whereas the automated retinal segmentation algorithms performed well for the inner layers, the retinal pigmentation epithelium (RPE) was delineated within the sclera, leading to consistently thicker measurements of the photoreceptor layer and the total retina. Translational Relevance The introduction of spectral domain OCT allows for accurate imaging of the mouse retina. Exact quantification of retinal layer thicknesses in mice is important to study layers of interest under various pathological conditions. PMID:26336634

  17. Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images.

    PubMed

    Harati, Vida; Khayati, Rasoul; Farzan, Abdolreza

    2011-07-01

    Uncontrollable and unlimited cell growth leads to tumor genesis in the brain. If brain tumors are not diagnosed early and cured properly, they could cause permanent brain damage or even death to patients. As in all methods of treatments, any information about tumor position and size is important for successful treatment; hence, finding an accurate and a fully automated method to give information to physicians is necessary. A fully automatic and accurate method for tumor region detection and segmentation in brain magnetic resonance (MR) images is suggested. The presented approach is an improved fuzzy connectedness (FC) algorithm based on a scale in which the seed point is selected automatically. This algorithm is independent of the tumor type in terms of its pixels intensity. Tumor segmentation evaluation results based on similarity criteria (similarity index (SI), overlap fraction (OF), and extra fraction (EF) are 92.89%, 91.75%, and 3.95%, respectively) indicate a higher performance of the proposed approach compared to the conventional methods, especially in MR images, in tumor regions with low contrast. Thus, the suggested method is useful for increasing the ability of automatic estimation of tumor size and position in brain tissues, which provides more accurate investigation of the required surgery, chemotherapy, and radiotherapy procedures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Automated contour detection in X-ray left ventricular angiograms using multiview active appearance models and dynamic programming.

    PubMed

    Oost, Elco; Koning, Gerhard; Sonka, Milan; Oemrawsingh, Pranobe V; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2006-09-01

    This paper describes a new approach to the automated segmentation of X-ray left ventricular (LV) angiograms, based on active appearance models (AAMs) and dynamic programming. A coupling of shape and texture information between the end-diastolic (ED) and end-systolic (ES) frame was achieved by constructing a multiview AAM. Over-constraining of the model was compensated for by employing dynamic programming, integrating both intensity and motion features in the cost function. Two applications are compared: a semi-automatic method with manual model initialization, and a fully automatic algorithm. The first proved to be highly robust and accurate, demonstrating high clinical relevance. Based on experiments involving 70 patient data sets, the algorithm's success rate was 100% for ED and 99% for ES, with average unsigned border positioning errors of 0.68 mm for ED and 1.45 mm for ES. Calculated volumes were accurate and unbiased. The fully automatic algorithm, with intrinsically less user interaction was less robust, but showed a high potential, mostly due to a controlled gradient descent in updating the model parameters. The success rate of the fully automatic method was 91% for ED and 83% for ES, with average unsigned border positioning errors of 0.79 mm for ED and 1.55 mm for ES.

  19. Fully Automated Quantitative Estimation of Volumetric Breast Density from Digital Breast Tomosynthesis Images: Preliminary Results and Comparison with Digital Mammography and MR Imaging

    PubMed Central

    Pertuz, Said; McDonald, Elizabeth S.; Weinstein, Susan P.; Conant, Emily F.

    2016-01-01

    Purpose To assess a fully automated method for volumetric breast density (VBD) estimation in digital breast tomosynthesis (DBT) and to compare the findings with those of full-field digital mammography (FFDM) and magnetic resonance (MR) imaging. Materials and Methods Bilateral DBT images, FFDM images, and sagittal breast MR images were retrospectively collected from 68 women who underwent breast cancer screening from October 2011 to September 2012 with institutional review board–approved, HIPAA-compliant protocols. A fully automated computer algorithm was developed for quantitative estimation of VBD from DBT images. FFDM images were processed with U.S. Food and Drug Administration–cleared software, and the MR images were processed with a previously validated automated algorithm to obtain corresponding VBD estimates. Pearson correlation and analysis of variance with Tukey-Kramer post hoc correction were used to compare the multimodality VBD estimates. Results Estimates of VBD from DBT were significantly correlated with FFDM-based and MR imaging–based estimates with r = 0.83 (95% confidence interval [CI]: 0.74, 0.90) and r = 0.88 (95% CI: 0.82, 0.93), respectively (P < .001). The corresponding correlation between FFDM and MR imaging was r = 0.84 (95% CI: 0.76, 0.90). However, statistically significant differences after post hoc correction (α = 0.05) were found among VBD estimates from FFDM (mean ± standard deviation, 11.1% ± 7.0) relative to MR imaging (16.6% ± 11.2) and DBT (19.8% ± 16.2). Differences between VDB estimates from DBT and MR imaging were not significant (P = .26). Conclusion Fully automated VBD estimates from DBT, FFDM, and MR imaging are strongly correlated but show statistically significant differences. Therefore, absolute differences in VBD between FFDM, DBT, and MR imaging should be considered in breast cancer risk assessment. © RSNA, 2015 Online supplemental material is available for this article. PMID:26491909

  20. Automated detection of diabetic retinopathy on digital fundus images.

    PubMed

    Sinthanayothin, C; Boyce, J F; Williamson, T H; Cook, H L; Mensah, E; Lal, S; Usher, D

    2002-02-01

    The aim was to develop an automated screening system to analyse digital colour retinal images for important features of non-proliferative diabetic retinopathy (NPDR). High performance pre-processing of the colour images was performed. Previously described automated image analysis systems were used to detect major landmarks of the retinal image (optic disc, blood vessels and fovea). Recursive region growing segmentation algorithms combined with the use of a new technique, termed a 'Moat Operator', were used to automatically detect features of NPDR. These features included haemorrhages and microaneurysms (HMA), which were treated as one group, and hard exudates as another group. Sensitivity and specificity data were calculated by comparison with an experienced fundoscopist. The algorithm for exudate recognition was applied to 30 retinal images of which 21 contained exudates and nine were without pathology. The sensitivity and specificity for exudate detection were 88.5% and 99.7%, respectively, when compared with the ophthalmologist. HMA were present in 14 retinal images. The algorithm achieved a sensitivity of 77.5% and specificity of 88.7% for detection of HMA. Fully automated computer algorithms were able to detect hard exudates and HMA. This paper presents encouraging results in automatic identification of important features of NPDR.

  1. ACQUA: Automated Cyanobacterial Quantification Algorithm for toxic filamentous genera using spline curves, pattern recognition and machine learning.

    PubMed

    Gandola, Emanuele; Antonioli, Manuela; Traficante, Alessio; Franceschini, Simone; Scardi, Michele; Congestri, Roberta

    2016-05-01

    Toxigenic cyanobacteria are one of the main health risks associated with water resources worldwide, as their toxins can affect humans and fauna exposed via drinking water, aquaculture and recreation. Microscopy monitoring of cyanobacteria in water bodies and massive growth systems is a routine operation for cell abundance and growth estimation. Here we present ACQUA (Automated Cyanobacterial Quantification Algorithm), a new fully automated image analysis method designed for filamentous genera in Bright field microscopy. A pre-processing algorithm has been developed to highlight filaments of interest from background signals due to other phytoplankton and dust. A spline-fitting algorithm has been designed to recombine interrupted and crossing filaments in order to perform accurate morphometric analysis and to extract the surface pattern information of highlighted objects. In addition, 17 specific pattern indicators have been developed and used as input data for a machine-learning algorithm dedicated to the recognition between five widespread toxic or potentially toxic filamentous genera in freshwater: Aphanizomenon, Cylindrospermopsis, Dolichospermum, Limnothrix and Planktothrix. The method was validated using freshwater samples from three Italian volcanic lakes comparing automated vs. manual results. ACQUA proved to be a fast and accurate tool to rapidly assess freshwater quality and to characterize cyanobacterial assemblages in aquatic environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images.

    PubMed

    Cunefare, David; Cooper, Robert F; Higgins, Brian; Katz, David F; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina

    2016-05-01

    Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice's coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice's coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images.

  3. Normalized gradient fields cross-correlation for automated detection of prostate in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Fotin, Sergei V.; Yin, Yin; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Cornud, François; Turkbey, Baris; Choyke, Peter L.

    2012-02-01

    Fully automated prostate segmentation helps to address several problems in prostate cancer diagnosis and treatment: it can assist in objective evaluation of multiparametric MR imagery, provides a prostate contour for MR-ultrasound (or CT) image fusion for computer-assisted image-guided biopsy or therapy planning, may facilitate reporting and enables direct prostate volume calculation. Among the challenges in automated analysis of MR images of the prostate are the variations of overall image intensities across scanners, the presence of nonuniform multiplicative bias field within scans and differences in acquisition setup. Furthermore, images acquired with the presence of an endorectal coil suffer from localized high-intensity artifacts at the posterior part of the prostate. In this work, a three-dimensional method for fast automated prostate detection based on normalized gradient fields cross-correlation, insensitive to intensity variations and coil-induced artifacts, is presented and evaluated. The components of the method, offline template learning and the localization algorithm, are described in detail. The method was validated on a dataset of 522 T2-weighted MR images acquired at the National Cancer Institute, USA that was split in two halves for development and testing. In addition, second dataset of 29 MR exams from Centre d'Imagerie Médicale Tourville, France were used to test the algorithm. The 95% confidence intervals for the mean Euclidean distance between automatically and manually identified prostate centroids were 4.06 +/- 0.33 mm and 3.10 +/- 0.43 mm for the first and second test datasets respectively. Moreover, the algorithm provided the centroid within the true prostate volume in 100% of images from both datasets. Obtained results demonstrate high utility of the detection method for a fully automated prostate segmentation.

  4. The effects of automated artifact removal algorithms on electroencephalography-based Alzheimer's disease diagnosis

    PubMed Central

    Cassani, Raymundo; Falk, Tiago H.; Fraga, Francisco J.; Kanda, Paulo A. M.; Anghinah, Renato

    2014-01-01

    Over the last decade, electroencephalography (EEG) has emerged as a reliable tool for the diagnosis of cortical disorders such as Alzheimer's disease (AD). EEG signals, however, are susceptible to several artifacts, such as ocular, muscular, movement, and environmental. To overcome this limitation, existing diagnostic systems commonly depend on experienced clinicians to manually select artifact-free epochs from the collected multi-channel EEG data. Manual selection, however, is a tedious and time-consuming process, rendering the diagnostic system “semi-automated.” Notwithstanding, a number of EEG artifact removal algorithms have been proposed in the literature. The (dis)advantages of using such algorithms in automated AD diagnostic systems, however, have not been documented; this paper aims to fill this gap. Here, we investigate the effects of three state-of-the-art automated artifact removal (AAR) algorithms (both alone and in combination with each other) on AD diagnostic systems based on four different classes of EEG features, namely, spectral, amplitude modulation rate of change, coherence, and phase. The three AAR algorithms tested are statistical artifact rejection (SAR), blind source separation based on second order blind identification and canonical correlation analysis (BSS-SOBI-CCA), and wavelet enhanced independent component analysis (wICA). Experimental results based on 20-channel resting-awake EEG data collected from 59 participants (20 patients with mild AD, 15 with moderate-to-severe AD, and 24 age-matched healthy controls) showed the wICA algorithm alone outperforming other enhancement algorithm combinations across three tasks: diagnosis (control vs. mild vs. moderate), early detection (control vs. mild), and disease progression (mild vs. moderate), thus opening the doors for fully-automated systems that can assist clinicians with early detection of AD, as well as disease severity progression assessment. PMID:24723886

  5. Automated ILA design for synchronous sequential circuits

    NASA Technical Reports Server (NTRS)

    Liu, M. N.; Liu, K. Z.; Maki, G. K.; Whitaker, S. R.

    1991-01-01

    An iterative logic array (ILA) architecture for synchronous sequential circuits is presented. This technique utilizes linear algebra to produce the design equations. The ILA realization of synchronous sequential logic can be fully automated with a computer program. A programmable design procedure is proposed to fullfill the design task and layout generation. A software algorithm in the C language has been developed and tested to generate 1 micron CMOS layouts using the Hewlett-Packard FUNGEN module generator shell.

  6. Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks.

    PubMed

    Yi, Faliu; Yang, Lin; Wang, Shidan; Guo, Lei; Huang, Chenglong; Xie, Yang; Xiao, Guanghua

    2018-02-27

    Pathological angiogenesis has been identified in many malignancies as a potential prognostic factor and target for therapy. In most cases, angiogenic analysis is based on the measurement of microvessel density (MVD) detected by immunostaining of CD31 or CD34. However, most retrievable public data is generally composed of Hematoxylin and Eosin (H&E)-stained pathology images, for which is difficult to get the corresponding immunohistochemistry images. The role of microvessels in H&E stained images has not been widely studied due to their complexity and heterogeneity. Furthermore, identifying microvessels manually for study is a labor-intensive task for pathologists, with high inter- and intra-observer variation. Therefore, it is important to develop automated microvessel-detection algorithms in H&E stained pathology images for clinical association analysis. In this paper, we propose a microvessel prediction method using fully convolutional neural networks. The feasibility of our proposed algorithm is demonstrated through experimental results on H&E stained images. Furthermore, the identified microvessel features were significantly associated with the patient clinical outcomes. This is the first study to develop an algorithm for automated microvessel detection in H&E stained pathology images.

  7. NMR-based automated protein structure determination.

    PubMed

    Würz, Julia M; Kazemi, Sina; Schmidt, Elena; Bagaria, Anurag; Güntert, Peter

    2017-08-15

    NMR spectra analysis for protein structure determination can now in many cases be performed by automated computational methods. This overview of the computational methods for NMR protein structure analysis presents recent automated methods for signal identification in multidimensional NMR spectra, sequence-specific resonance assignment, collection of conformational restraints, and structure calculation, as implemented in the CYANA software package. These algorithms are sufficiently reliable and integrated into one software package to enable the fully automated structure determination of proteins starting from NMR spectra without manual interventions or corrections at intermediate steps, with an accuracy of 1-2 Å backbone RMSD in comparison with manually solved reference structures. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Automated aortic calcification detection in low-dose chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Htwe, Yu Maw; Padgett, Jennifer; Henschke, Claudia; Yankelevitz, David; Reeves, Anthony P.

    2014-03-01

    The extent of aortic calcification has been shown to be a risk indicator for vascular events including cardiac events. We have developed a fully automated computer algorithm to segment and measure aortic calcification in low-dose noncontrast, non-ECG gated, chest CT scans. The algorithm first segments the aorta using a pre-computed Anatomy Label Map (ALM). Then based on the segmented aorta, aortic calcification is detected and measured in terms of the Agatston score, mass score, and volume score. The automated scores are compared with reference scores obtained from manual markings. For aorta segmentation, the aorta is modeled as a series of discrete overlapping cylinders and the aortic centerline is determined using a cylinder-tracking algorithm. Then the aortic surface location is detected using the centerline and a triangular mesh model. The segmented aorta is used as a mask for the detection of aortic calcification. For calcification detection, the image is first filtered, then an elevated threshold of 160 Hounsfield units (HU) is used within the aorta mask region to reduce the effect of noise in low-dose scans, and finally non-aortic calcification voxels (bony structures, calcification in other organs) are eliminated. The remaining candidates are considered as true aortic calcification. The computer algorithm was evaluated on 45 low-dose non-contrast CT scans. Using linear regression, the automated Agatston score is 98.42% correlated with the reference Agatston score. The automated mass and volume score is respectively 98.46% and 98.28% correlated with the reference mass and volume score.

  9. Fully Automated Segmentation of Fluid/Cyst Regions in Optical Coherence Tomography Images With Diabetic Macular Edema Using Neutrosophic Sets and Graph Algorithms.

    PubMed

    Rashno, Abdolreza; Koozekanani, Dara D; Drayna, Paul M; Nazari, Behzad; Sadri, Saeed; Rabbani, Hossein; Parhi, Keshab K

    2018-05-01

    This paper presents a fully automated algorithm to segment fluid-associated (fluid-filled) and cyst regions in optical coherence tomography (OCT) retina images of subjects with diabetic macular edema. The OCT image is segmented using a novel neutrosophic transformation and a graph-based shortest path method. In neutrosophic domain, an image is transformed into three sets: (true), (indeterminate) that represents noise, and (false). This paper makes four key contributions. First, a new method is introduced to compute the indeterminacy set , and a new -correction operation is introduced to compute the set in neutrosophic domain. Second, a graph shortest-path method is applied in neutrosophic domain to segment the inner limiting membrane and the retinal pigment epithelium as regions of interest (ROI) and outer plexiform layer and inner segment myeloid as middle layers using a novel definition of the edge weights . Third, a new cost function for cluster-based fluid/cyst segmentation in ROI is presented which also includes a novel approach in estimating the number of clusters in an automated manner. Fourth, the final fluid regions are achieved by ignoring very small regions and the regions between middle layers. The proposed method is evaluated using two publicly available datasets: Duke, Optima, and a third local dataset from the UMN clinic which is available online. The proposed algorithm outperforms the previously proposed Duke algorithm by 8% with respect to the dice coefficient and by 5% with respect to precision on the Duke dataset, while achieving about the same sensitivity. Also, the proposed algorithm outperforms a prior method for Optima dataset by 6%, 22%, and 23% with respect to the dice coefficient, sensitivity, and precision, respectively. Finally, the proposed algorithm also achieves sensitivity of 67.3%, 88.8%, and 76.7%, for the Duke, Optima, and the university of minnesota (UMN) datasets, respectively.

  10. Image processing improvement for optical observations of space debris with the TAROT telescopes

    NASA Astrophysics Data System (ADS)

    Thiebaut, C.; Theron, S.; Richard, P.; Blanchet, G.; Klotz, A.; Boër, M.

    2016-07-01

    CNES is involved in the Inter-Agency Space Debris Coordination Committee (IADC) and is observing space debris with two robotic ground based fully automated telescopes called TAROT and operated by the CNRS. An image processing algorithm devoted to debris detection in geostationary orbit is implemented in the standard pipeline. Nevertheless, this algorithm is unable to deal with debris tracking mode images, this mode being the preferred one for debris detectability. We present an algorithm improvement for this mode and give results in terms of false detection rate.

  11. Automated quantification of surface water inundation in wetlands using optical satellite imagery

    USGS Publications Warehouse

    DeVries, Ben; Huang, Chengquan; Lang, Megan W.; Jones, John W.; Huang, Wenli; Creed, Irena F.; Carroll, Mark L.

    2017-01-01

    We present a fully automated and scalable algorithm for quantifying surface water inundation in wetlands. Requiring no external training data, our algorithm estimates sub-pixel water fraction (SWF) over large areas and long time periods using Landsat data. We tested our SWF algorithm over three wetland sites across North America, including the Prairie Pothole Region, the Delmarva Peninsula and the Everglades, representing a gradient of inundation and vegetation conditions. We estimated SWF at 30-m resolution with accuracies ranging from a normalized root-mean-square-error of 0.11 to 0.19 when compared with various high-resolution ground and airborne datasets. SWF estimates were more sensitive to subtle inundated features compared to previously published surface water datasets, accurately depicting water bodies, large heterogeneously inundated surfaces, narrow water courses and canopy-covered water features. Despite this enhanced sensitivity, several sources of errors affected SWF estimates, including emergent or floating vegetation and forest canopies, shadows from topographic features, urban structures and unmasked clouds. The automated algorithm described in this article allows for the production of high temporal resolution wetland inundation data products to support a broad range of applications.

  12. Quantification of common carotid artery and descending aorta vessel wall thickness from MR vessel wall imaging using a fully automated processing pipeline.

    PubMed

    Gao, Shan; van 't Klooster, Ronald; Brandts, Anne; Roes, Stijntje D; Alizadeh Dehnavi, Reza; de Roos, Albert; Westenberg, Jos J M; van der Geest, Rob J

    2017-01-01

    To develop and evaluate a method that can fully automatically identify the vessel wall boundaries and quantify the wall thickness for both common carotid artery (CCA) and descending aorta (DAO) from axial magnetic resonance (MR) images. 3T MRI data acquired with T 1 -weighted gradient-echo black-blood imaging sequence from carotid (39 subjects) and aorta (39 subjects) were used to develop and test the algorithm. The vessel wall segmentation was achieved by respectively fitting a 3D cylindrical B-spline surface to the boundaries of lumen and outer wall. The tube-fitting was based on the edge detection performed on the signal intensity (SI) profile along the surface normal. To achieve a fully automated process, Hough Transform (HT) was developed to estimate the lumen centerline and radii for the target vessel. Using the outputs of HT, a tube model for lumen segmentation was initialized and deformed to fit the image data. Finally, lumen segmentation was dilated to initiate the adaptation procedure of outer wall tube. The algorithm was validated by determining: 1) its performance against manual tracing; 2) its interscan reproducibility in quantifying vessel wall thickness (VWT); 3) its capability of detecting VWT difference in hypertensive patients compared with healthy controls. Statistical analysis including Bland-Altman analysis, t-test, and sample size calculation were performed for the purpose of algorithm evaluation. The mean distance between the manual and automatically detected lumen/outer wall contours was 0.00 ± 0.23/0.09 ± 0.21 mm for CCA and 0.12 ± 0.24/0.14 ± 0.35 mm for DAO. No significant difference was observed between the interscan VWT assessment using automated segmentation for both CCA (P = 0.19) and DAO (P = 0.94). Both manual and automated segmentation detected significantly higher carotid (P = 0.016 and P = 0.005) and aortic (P < 0.001 and P = 0.021) wall thickness in the hypertensive patients. A reliable and reproducible pipeline for fully automatic vessel wall quantification was developed and validated on healthy volunteers as well as patients with increased vessel wall thickness. This method holds promise for helping in efficient image interpretation for large-scale cohort studies. 4 J. Magn. Reson. Imaging 2017;45:215-228. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Automated volumetric evaluation of stereoscopic disc photography

    PubMed Central

    Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A; Kagemann, Larry; Craig, Jamie E; Mackey, David A; Hewitt, Alex W; Schuman, Joel S

    2010-01-01

    PURPOSE: To develop a fully automated algorithm (AP) to perform a volumetric measure of the optic disc using conventional stereoscopic optic nerve head (ONH) photographs, and to compare algorithm-produced parameters with manual photogrammetry (MP), scanning laser ophthalmoscope (SLO) and optical coherence tomography (OCT) measurements. METHODS: One hundred twenty-two stereoscopic optic disc photographs (61 subjects) were analyzed. Disc area, rim area, cup area, cup/disc area ratio, vertical cup/disc ratio, rim volume and cup volume were automatically computed by the algorithm. Latent variable measurement error models were used to assess measurement reproducibility for the four techniques. RESULTS: AP had better reproducibility for disc area and cup volume and worse reproducibility for cup/disc area ratio and vertical cup/disc ratio, when the measurements were compared to the MP, SLO and OCT methods. CONCLUSION: AP provides a useful technique for an objective quantitative assessment of 3D ONH structures. PMID:20588996

  14. An Algorithm to Automate Yeast Segmentation and Tracking

    PubMed Central

    Doncic, Andreas; Eser, Umut; Atay, Oguzhan; Skotheim, Jan M.

    2013-01-01

    Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from population measurements, such as all-or-none cellular decisions, cell-to-cell variability, and oscillations. Examination of these phenomena requires segmenting and tracking individual cells over long periods of time. However, accurate segmentation and tracking of cells is difficult and is often the rate-limiting step in an experimental pipeline. Here, we present an algorithm that accomplishes fully automated segmentation and tracking of budding yeast cells within growing colonies. The algorithm incorporates prior information of yeast-specific traits, such as immobility and growth rate, to segment an image using a set of threshold values rather than one specific optimized threshold. Results from the entire set of thresholds are then used to perform a robust final segmentation. PMID:23520484

  15. Automated determination of arterial input function for DCE-MRI of the prostate

    NASA Astrophysics Data System (ADS)

    Zhu, Yingxuan; Chang, Ming-Ching; Gupta, Sandeep

    2011-03-01

    Prostate cancer is one of the commonest cancers in the world. Dynamic contrast enhanced MRI (DCE-MRI) provides an opportunity for non-invasive diagnosis, staging, and treatment monitoring. Quantitative analysis of DCE-MRI relies on determination of an accurate arterial input function (AIF). Although several methods for automated AIF detection have been proposed in literature, none are optimized for use in prostate DCE-MRI, which is particularly challenging due to large spatial signal inhomogeneity. In this paper, we propose a fully automated method for determining the AIF from prostate DCE-MRI. Our method is based on modeling pixel uptake curves as gamma variate functions (GVF). First, we analytically compute bounds on GVF parameters for more robust fitting. Next, we approximate a GVF for each pixel based on local time domain information, and eliminate the pixels with false estimated AIFs using the deduced upper and lower bounds. This makes the algorithm robust to signal inhomogeneity. After that, according to spatial information such as similarity and distance between pixels, we formulate the global AIF selection as an energy minimization problem and solve it using a message passing algorithm to further rule out the weak pixels and optimize the detected AIF. Our method is fully automated without training or a priori setting of parameters. Experimental results on clinical data have shown that our method obtained promising detection accuracy (all detected pixels inside major arteries), and a very good match with expert traced manual AIF.

  16. Automated Detection of Synapses in Serial Section Transmission Electron Microscopy Image Stacks

    PubMed Central

    Kreshuk, Anna; Koethe, Ullrich; Pax, Elizabeth; Bock, Davi D.; Hamprecht, Fred A.

    2014-01-01

    We describe a method for fully automated detection of chemical synapses in serial electron microscopy images with highly anisotropic axial and lateral resolution, such as images taken on transmission electron microscopes. Our pipeline starts from classification of the pixels based on 3D pixel features, which is followed by segmentation with an Ising model MRF and another classification step, based on object-level features. Classifiers are learned on sparse user labels; a fully annotated data subvolume is not required for training. The algorithm was validated on a set of 238 synapses in 20 serial 7197×7351 pixel images (4.5×4.5×45 nm resolution) of mouse visual cortex, manually labeled by three independent human annotators and additionally re-verified by an expert neuroscientist. The error rate of the algorithm (12% false negative, 7% false positive detections) is better than state-of-the-art, even though, unlike the state-of-the-art method, our algorithm does not require a prior segmentation of the image volume into cells. The software is based on the ilastik learning and segmentation toolkit and the vigra image processing library and is freely available on our website, along with the test data and gold standard annotations (http://www.ilastik.org/synapse-detection/sstem). PMID:24516550

  17. Automated segmentation of cardiac visceral fat in low-dose non-contrast chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Liang, Mingzhu; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2015-03-01

    Cardiac visceral fat was segmented from low-dose non-contrast chest CT images using a fully automated method. Cardiac visceral fat is defined as the fatty tissues surrounding the heart region, enclosed by the lungs and posterior to the sternum. It is measured by constraining the heart region with an Anatomy Label Map that contains robust segmentations of the lungs and other major organs and estimating the fatty tissue within this region. The algorithm was evaluated on 124 low-dose and 223 standard-dose non-contrast chest CT scans from two public datasets. Based on visual inspection, 343 cases had good cardiac visceral fat segmentation. For quantitative evaluation, manual markings of cardiac visceral fat regions were made in 3 image slices for 45 low-dose scans and the Dice similarity coefficient (DSC) was computed. The automated algorithm achieved an average DSC of 0.93. Cardiac visceral fat volume (CVFV), heart region volume (HRV) and their ratio were computed for each case. The correlation between cardiac visceral fat measurement and coronary artery and aortic calcification was also evaluated. Results indicated the automated algorithm for measuring cardiac visceral fat volume may be an alternative method to the traditional manual assessment of thoracic region fat content in the assessment of cardiovascular disease risk.

  18. Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images.

    PubMed

    Salvi, Massimo; Molinari, Filippo

    2018-06-20

    Accurate nuclei detection and segmentation in histological images is essential for many clinical purposes. While manual annotations are time-consuming and operator-dependent, full automated segmentation remains a challenging task due to the high variability of cells intensity, size and morphology. Most of the proposed algorithms for the automated segmentation of nuclei were designed for specific organ or tissues. The aim of this study was to develop and validate a fully multiscale method, named MANA (Multiscale Adaptive Nuclei Analysis), for nuclei segmentation in different tissues and magnifications. MANA was tested on a dataset of H&E stained tissue images with more than 59,000 annotated nuclei, taken from six organs (colon, liver, bone, prostate, adrenal gland and thyroid) and three magnifications (10×, 20×, 40×). Automatic results were compared with manual segmentations and three open-source software designed for nuclei detection. For each organ, MANA obtained always an F1-score higher than 0.91, with an average F1 of 0.9305 ± 0.0161. The average computational time was about 20 s independently of the number of nuclei to be detected (anyway, higher than 1000), indicating the efficiency of the proposed technique. To the best of our knowledge, MANA is the first fully automated multi-scale and multi-tissue algorithm for nuclei detection. Overall, the robustness and versatility of MANA allowed to achieve, on different organs and magnifications, performances in line or better than those of state-of-art algorithms optimized for single tissues.

  19. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features.

    PubMed

    Radüntz, Thea; Scouten, Jon; Hochmuth, Olaf; Meffert, Beate

    2017-08-01

    Biological and non-biological artifacts cause severe problems when dealing with electroencephalogram (EEG) recordings. Independent component analysis (ICA) is a widely used method for eliminating various artifacts from recordings. However, evaluating and classifying the calculated independent components (IC) as artifact or EEG is not fully automated at present. In this study, we propose a new approach for automated artifact elimination, which applies machine learning algorithms to ICA-based features. We compared the performance of our classifiers with the visual classification results given by experts. The best result with an accuracy rate of 95% was achieved using features obtained by range filtering of the topoplots and IC power spectra combined with an artificial neural network. Compared with the existing automated solutions, our proposed method is not limited to specific types of artifacts, electrode configurations, or number of EEG channels. The main advantages of the proposed method is that it provides an automatic, reliable, real-time capable, and practical tool, which avoids the need for the time-consuming manual selection of ICs during artifact removal.

  20. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features

    NASA Astrophysics Data System (ADS)

    Radüntz, Thea; Scouten, Jon; Hochmuth, Olaf; Meffert, Beate

    2017-08-01

    Objective. Biological and non-biological artifacts cause severe problems when dealing with electroencephalogram (EEG) recordings. Independent component analysis (ICA) is a widely used method for eliminating various artifacts from recordings. However, evaluating and classifying the calculated independent components (IC) as artifact or EEG is not fully automated at present. Approach. In this study, we propose a new approach for automated artifact elimination, which applies machine learning algorithms to ICA-based features. Main results. We compared the performance of our classifiers with the visual classification results given by experts. The best result with an accuracy rate of 95% was achieved using features obtained by range filtering of the topoplots and IC power spectra combined with an artificial neural network. Significance. Compared with the existing automated solutions, our proposed method is not limited to specific types of artifacts, electrode configurations, or number of EEG channels. The main advantages of the proposed method is that it provides an automatic, reliable, real-time capable, and practical tool, which avoids the need for the time-consuming manual selection of ICs during artifact removal.

  1. Automated Verification of Specifications with Typestates and Access Permissions

    NASA Technical Reports Server (NTRS)

    Siminiceanu, Radu I.; Catano, Nestor

    2011-01-01

    We propose an approach to formally verify Plural specifications based on access permissions and typestates, by model-checking automatically generated abstract state-machines. Our exhaustive approach captures all the possible behaviors of abstract concurrent programs implementing the specification. We describe the formal methodology employed by our technique and provide an example as proof of concept for the state-machine construction rules. The implementation of a fully automated algorithm to generate and verify models, currently underway, provides model checking support for the Plural tool, which currently supports only program verification via data flow analysis (DFA).

  2. Effects of signal artefacts on electroencephalography spectral power during sleep: quantifying the effectiveness of automated artefact-rejection algorithms.

    PubMed

    Liu, Jianbo; Ramakrishnan, Sridhar; Laxminarayan, Srinivas; Neal, Maxwell; Cashmere, David J; Germain, Anne; Reifman, Jaques

    2018-02-01

    Electroencephalography (EEG) recordings during sleep are often contaminated by muscle and ocular artefacts, which can affect the results of spectral power analyses significantly. However, the extent to which these artefacts affect EEG spectral power across different sleep states has not been quantified explicitly. Consequently, the effectiveness of automated artefact-rejection algorithms in minimizing these effects has not been characterized fully. To address these issues, we analysed standard 10-channel EEG recordings from 20 subjects during one night of sleep. We compared their spectral power when the recordings were contaminated by artefacts and after we removed them by visual inspection or by using automated artefact-rejection algorithms. During both rapid eye movement (REM) and non-REM (NREM) sleep, muscle artefacts contaminated no more than 5% of the EEG data across all channels. However, they corrupted delta, beta and gamma power levels substantially by up to 126, 171 and 938%, respectively, relative to the power level computed from artefact-free data. Although ocular artefacts were infrequent during NREM sleep, they affected up to 16% of the frontal and temporal EEG channels during REM sleep, primarily corrupting delta power by up to 33%. For both REM and NREM sleep, the automated artefact-rejection algorithms matched power levels to within ~10% of the artefact-free power level for each EEG channel and frequency band. In summary, although muscle and ocular artefacts affect only a small fraction of EEG data, they affect EEG spectral power significantly. This suggests the importance of using artefact-rejection algorithms before analysing EEG data. © 2017 European Sleep Research Society.

  3. Fully automated chest wall line segmentation in breast MRI by using context information

    NASA Astrophysics Data System (ADS)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Localio, A. Russell; Schnall, Mitchell D.; Kontos, Despina

    2012-03-01

    Breast MRI has emerged as an effective modality for the clinical management of breast cancer. Evidence suggests that computer-aided applications can further improve the diagnostic accuracy of breast MRI. A critical and challenging first step for automated breast MRI analysis, is to separate the breast as an organ from the chest wall. Manual segmentation or user-assisted interactive tools are inefficient, tedious, and error-prone, which is prohibitively impractical for processing large amounts of data from clinical trials. To address this challenge, we developed a fully automated and robust computerized segmentation method that intensively utilizes context information of breast MR imaging and the breast tissue's morphological characteristics to accurately delineate the breast and chest wall boundary. A critical component is the joint application of anisotropic diffusion and bilateral image filtering to enhance the edge that corresponds to the chest wall line (CWL) and to reduce the effect of adjacent non-CWL tissues. A CWL voting algorithm is proposed based on CWL candidates yielded from multiple sequential MRI slices, in which a CWL representative is generated and used through a dynamic time warping (DTW) algorithm to filter out inferior candidates, leaving the optimal one. Our method is validated by a representative dataset of 20 3D unilateral breast MRI scans that span the full range of the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) fibroglandular density categorization. A promising performance (average overlay percentage of 89.33%) is observed when the automated segmentation is compared to manually segmented ground truth obtained by an experienced breast imaging radiologist. The automated method runs time-efficiently at ~3 minutes for each breast MR image set (28 slices).

  4. Automated structure determination of proteins with the SAIL-FLYA NMR method.

    PubMed

    Takeda, Mitsuhiro; Ikeya, Teppei; Güntert, Peter; Kainosho, Masatsune

    2007-01-01

    The labeling of proteins with stable isotopes enhances the NMR method for the determination of 3D protein structures in solution. Stereo-array isotope labeling (SAIL) provides an optimal stereospecific and regiospecific pattern of stable isotopes that yields sharpened lines, spectral simplification without loss of information, and the ability to collect rapidly and evaluate fully automatically the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as those that can be analyzed using conventional methods. Here, we describe a protocol for the preparation of SAIL proteins by cell-free methods, including the preparation of S30 extract and their automated structure analysis using the FLYA algorithm and the program CYANA. Once efficient cell-free expression of the unlabeled or uniformly labeled target protein has been achieved, the NMR sample preparation of a SAIL protein can be accomplished in 3 d. A fully automated FLYA structure calculation can be completed in 1 d on a powerful computer system.

  5. Performance of an Artificial Multi-observer Deep Neural Network for Fully Automated Segmentation of Polycystic Kidneys.

    PubMed

    Kline, Timothy L; Korfiatis, Panagiotis; Edwards, Marie E; Blais, Jaime D; Czerwiec, Frank S; Harris, Peter C; King, Bernard F; Torres, Vicente E; Erickson, Bradley J

    2017-08-01

    Deep learning techniques are being rapidly applied to medical imaging tasks-from organ and lesion segmentation to tissue and tumor classification. These techniques are becoming the leading algorithmic approaches to solve inherently difficult image processing tasks. Currently, the most critical requirement for successful implementation lies in the need for relatively large datasets that can be used for training the deep learning networks. Based on our initial studies of MR imaging examinations of the kidneys of patients affected by polycystic kidney disease (PKD), we have generated a unique database of imaging data and corresponding reference standard segmentations of polycystic kidneys. In the study of PKD, segmentation of the kidneys is needed in order to measure total kidney volume (TKV). Automated methods to segment the kidneys and measure TKV are needed to increase measurement throughput and alleviate the inherent variability of human-derived measurements. We hypothesize that deep learning techniques can be leveraged to perform fast, accurate, reproducible, and fully automated segmentation of polycystic kidneys. Here, we describe a fully automated approach for segmenting PKD kidneys within MR images that simulates a multi-observer approach in order to create an accurate and robust method for the task of segmentation and computation of TKV for PKD patients. A total of 2000 cases were used for training and validation, and 400 cases were used for testing. The multi-observer ensemble method had mean ± SD percent volume difference of 0.68 ± 2.2% compared with the reference standard segmentations. The complete framework performs fully automated segmentation at a level comparable with interobserver variability and could be considered as a replacement for the task of segmentation of PKD kidneys by a human.

  6. Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods.

    PubMed

    Suleimanov, Yury V; Green, William H

    2015-09-08

    We present a simple protocol which allows fully automated discovery of elementary chemical reaction steps using in cooperation double- and single-ended transition-state optimization algorithms--the freezing string and Berny optimization methods, respectively. To demonstrate the utility of the proposed approach, the reactivity of several single-molecule systems of combustion and atmospheric chemistry importance is investigated. The proposed algorithm allowed us to detect without any human intervention not only "known" reaction pathways, manually detected in the previous studies, but also new, previously "unknown", reaction pathways which involve significant atom rearrangements. We believe that applying such a systematic approach to elementary reaction path finding will greatly accelerate the discovery of new chemistry and will lead to more accurate computer simulations of various chemical processes.

  7. Machine Learning Algorithms for Automated Satellite Snow and Sea Ice Detection

    NASA Astrophysics Data System (ADS)

    Bonev, George

    The continuous mapping of snow and ice cover, particularly in the arctic and poles, are critical to understanding the earth and atmospheric science. Much of the world's sea ice and snow covers the most inhospitable places, making measurements from satellite-based remote sensors essential. Despite the wealth of data from these instruments many challenges remain. For instance, remote sensing instruments reside on-board different satellites and observe the earth at different portions of the electromagnetic spectrum with different spatial footprints. Integrating and fusing this information to make estimates of the surface is a subject of active research. In response to these challenges, this dissertation will present two algorithms that utilize methods from statistics and machine learning, with the goal of improving on the quality and accuracy of current snow and sea ice detection products. The first algorithm aims at implementing snow detection using optical/infrared instrument data. The novelty in this approach is that the classifier is trained using ground station measurements of snow depth that are collocated with the reflectance observed at the satellite. Several classification methods are compared using this training data to identify the one yielding the highest accuracy and optimal space/time complexity. The algorithm is then evaluated against the current operational NASA snow product and it is found that it produces comparable and in some cases superior accuracy results. The second algorithm presents a fully automated approach to sea ice detection that integrates data obtained from passive microwave and optical/infrared satellite instruments. For a particular region of interest the algorithm generates sea ice maps of each individual satellite overpass and then aggregates them to a daily composite level, maximizing the amount of high resolution information available. The algorithm is evaluated at both, the individual satellite overpass level, and at the daily composite level. Results show that at the single overpass level for clear-sky regions, the developed multi-sensor algorithm performs with accuracy similar to that of the optical/infrared products, with the advantage of being able to also classify partially cloud-obscured regions with the help of passive microwave data. At the daily composite level, results show that the algorithm's performance with respect to total ice extent is in line with other daily products, with the novelty of being fully automated and having higher resolution.

  8. Automated Transition State Theory Calculations for High-Throughput Kinetics.

    PubMed

    Bhoorasingh, Pierre L; Slakman, Belinda L; Seyedzadeh Khanshan, Fariba; Cain, Jason Y; West, Richard H

    2017-09-21

    A scarcity of known chemical kinetic parameters leads to the use of many reaction rate estimates, which are not always sufficiently accurate, in the construction of detailed kinetic models. To reduce the reliance on these estimates and improve the accuracy of predictive kinetic models, we have developed a high-throughput, fully automated, reaction rate calculation method, AutoTST. The algorithm integrates automated saddle-point geometry search methods and a canonical transition state theory kinetics calculator. The automatically calculated reaction rates compare favorably to existing estimated rates. Comparison against high level theoretical calculations show the new automated method performs better than rate estimates when the estimate is made by a poor analogy. The method will improve by accounting for internal rotor contributions and by improving methods to determine molecular symmetry.

  9. Retina Image Analysis and Ocular Telehealth: The Oak Ridge National Laboratory-Hamilton Eye Institute Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnowski, Thomas Paul; Giancardo, Luca; Li, Yaquin

    2013-01-01

    Automated retina image analysis has reached a high level of maturity in recent years, and thus the question of how validation is performed in these systems is beginning to grow in importance. One application of retina image analysis is in telemedicine, where an automated system could enable the automated detection of diabetic retinopathy and other eye diseases as a low-cost method for broad-based screening. In this work we discuss our experiences in developing a telemedical network for retina image analysis, including our progression from a manual diagnosis network to a more fully automated one. We pay special attention to howmore » validations of our algorithm steps are performed, both using data from the telemedicine network and other public databases.« less

  10. A new method for automated high-dimensional lesion segmentation evaluated in vascular injury and applied to the human occipital lobe.

    PubMed

    Mah, Yee-Haur; Jager, Rolf; Kennard, Christopher; Husain, Masud; Nachev, Parashkev

    2014-07-01

    Making robust inferences about the functional neuroanatomy of the brain is critically dependent on experimental techniques that examine the consequences of focal loss of brain function. Unfortunately, the use of the most comprehensive such technique-lesion-function mapping-is complicated by the need for time-consuming and subjective manual delineation of the lesions, greatly limiting the practicability of the approach. Here we exploit a recently-described general measure of statistical anomaly, zeta, to devise a fully-automated, high-dimensional algorithm for identifying the parameters of lesions within a brain image given a reference set of normal brain images. We proceed to evaluate such an algorithm in the context of diffusion-weighted imaging of the commonest type of lesion used in neuroanatomical research: ischaemic damage. Summary performance metrics exceed those previously published for diffusion-weighted imaging and approach the current gold standard-manual segmentation-sufficiently closely for fully-automated lesion-mapping studies to become a possibility. We apply the new method to 435 unselected images of patients with ischaemic stroke to derive a probabilistic map of the pattern of damage in lesions involving the occipital lobe, demonstrating the variation of anatomical resolvability of occipital areas so as to guide future lesion-function studies of the region. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A Fully Automated Approach to Spike Sorting.

    PubMed

    Chung, Jason E; Magland, Jeremy F; Barnett, Alex H; Tolosa, Vanessa M; Tooker, Angela C; Lee, Kye Y; Shah, Kedar G; Felix, Sarah H; Frank, Loren M; Greengard, Leslie F

    2017-09-13

    Understanding the detailed dynamics of neuronal networks will require the simultaneous measurement of spike trains from hundreds of neurons (or more). Currently, approaches to extracting spike times and labels from raw data are time consuming, lack standardization, and involve manual intervention, making it difficult to maintain data provenance and assess the quality of scientific results. Here, we describe an automated clustering approach and associated software package that addresses these problems and provides novel cluster quality metrics. We show that our approach has accuracy comparable to or exceeding that achieved using manual or semi-manual techniques with desktop central processing unit (CPU) runtimes faster than acquisition time for up to hundreds of electrodes. Moreover, a single choice of parameters in the algorithm is effective for a variety of electrode geometries and across multiple brain regions. This algorithm has the potential to enable reproducible and automated spike sorting of larger scale recordings than is currently possible. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Assessing Rotation-Invariant Feature Classification for Automated Wildebeest Population Counts.

    PubMed

    Torney, Colin J; Dobson, Andrew P; Borner, Felix; Lloyd-Jones, David J; Moyer, David; Maliti, Honori T; Mwita, Machoke; Fredrick, Howard; Borner, Markus; Hopcraft, J Grant C

    2016-01-01

    Accurate and on-demand animal population counts are the holy grail for wildlife conservation organizations throughout the world because they enable fast and responsive adaptive management policies. While the collection of image data from camera traps, satellites, and manned or unmanned aircraft has advanced significantly, the detection and identification of animals within images remains a major bottleneck since counting is primarily conducted by dedicated enumerators or citizen scientists. Recent developments in the field of computer vision suggest a potential resolution to this issue through the use of rotation-invariant object descriptors combined with machine learning algorithms. Here we implement an algorithm to detect and count wildebeest from aerial images collected in the Serengeti National Park in 2009 as part of the biennial wildebeest count. We find that the per image error rates are greater than, but comparable to, two separate human counts. For the total count, the algorithm is more accurate than both manual counts, suggesting that human counters have a tendency to systematically over or under count images. While the accuracy of the algorithm is not yet at an acceptable level for fully automatic counts, our results show this method is a promising avenue for further research and we highlight specific areas where future research should focus in order to develop fast and accurate enumeration of aerial count data. If combined with a bespoke image collection protocol, this approach may yield a fully automated wildebeest count in the near future.

  13. A detailed comparison of analysis processes for MCC-IMS data in disease classification—Automated methods can replace manual peak annotations

    PubMed Central

    Horsch, Salome; Kopczynski, Dominik; Kuthe, Elias; Baumbach, Jörg Ingo; Rahmann, Sven

    2017-01-01

    Motivation Disease classification from molecular measurements typically requires an analysis pipeline from raw noisy measurements to final classification results. Multi capillary column—ion mobility spectrometry (MCC-IMS) is a promising technology for the detection of volatile organic compounds in the air of exhaled breath. From raw measurements, the peak regions representing the compounds have to be identified, quantified, and clustered across different experiments. Currently, several steps of this analysis process require manual intervention of human experts. Our goal is to identify a fully automatic pipeline that yields competitive disease classification results compared to an established but subjective and tedious semi-manual process. Method We combine a large number of modern methods for peak detection, peak clustering, and multivariate classification into analysis pipelines for raw MCC-IMS data. We evaluate all combinations on three different real datasets in an unbiased cross-validation setting. We determine which specific algorithmic combinations lead to high AUC values in disease classifications across the different medical application scenarios. Results The best fully automated analysis process achieves even better classification results than the established manual process. The best algorithms for the three analysis steps are (i) SGLTR (Savitzky-Golay Laplace-operator filter thresholding regions) and LM (Local Maxima) for automated peak identification, (ii) EM clustering (Expectation Maximization) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) for the clustering step and (iii) RF (Random Forest) for multivariate classification. Thus, automated methods can replace the manual steps in the analysis process to enable an unbiased high throughput use of the technology. PMID:28910313

  14. Fully automated laser ray tracing system to measure changes in the crystalline lens GRIN profile.

    PubMed

    Qiu, Chen; Maceo Heilman, Bianca; Kaipio, Jari; Donaldson, Paul; Vaghefi, Ehsan

    2017-11-01

    Measuring the lens gradient refractive index (GRIN) accurately and reliably has proven an extremely challenging technical problem. A fully automated laser ray tracing (LRT) system was built to address this issue. The LRT system captures images of multiple laser projections before and after traversing through an ex vivo lens. These LRT images, combined with accurate measurements of the lens geometry, are used to calculate the lens GRIN profile. Mathematically, this is an ill-conditioned problem; hence, it is essential to apply biologically relevant constraints to produce a feasible solution. The lens GRIN measurements were compared with previously published data. Our GRIN retrieval algorithm produces fast and accurate measurements of the lens GRIN profile. Experiments to study the optics of physiologically perturbed lenses are the future direction of this research.

  15. Fully automated laser ray tracing system to measure changes in the crystalline lens GRIN profile

    PubMed Central

    Qiu, Chen; Maceo Heilman, Bianca; Kaipio, Jari; Donaldson, Paul; Vaghefi, Ehsan

    2017-01-01

    Measuring the lens gradient refractive index (GRIN) accurately and reliably has proven an extremely challenging technical problem. A fully automated laser ray tracing (LRT) system was built to address this issue. The LRT system captures images of multiple laser projections before and after traversing through an ex vivo lens. These LRT images, combined with accurate measurements of the lens geometry, are used to calculate the lens GRIN profile. Mathematically, this is an ill-conditioned problem; hence, it is essential to apply biologically relevant constraints to produce a feasible solution. The lens GRIN measurements were compared with previously published data. Our GRIN retrieval algorithm produces fast and accurate measurements of the lens GRIN profile. Experiments to study the optics of physiologically perturbed lenses are the future direction of this research. PMID:29188093

  16. A fully-automated multiscale kernel graph cuts based particle localization scheme for temporal focusing two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Huang, Xia; Li, Chunqiang; Xiao, Chuan; Sun, Wenqing; Qian, Wei

    2017-03-01

    The temporal focusing two-photon microscope (TFM) is developed to perform depth resolved wide field fluorescence imaging by capturing frames sequentially. However, due to strong nonignorable noises and diffraction rings surrounding particles, further researches are extremely formidable without a precise particle localization technique. In this paper, we developed a fully-automated scheme to locate particles positions with high noise tolerance. Our scheme includes the following procedures: noise reduction using a hybrid Kalman filter method, particle segmentation based on a multiscale kernel graph cuts global and local segmentation algorithm, and a kinematic estimation based particle tracking method. Both isolated and partial-overlapped particles can be accurately identified with removal of unrelated pixels. Based on our quantitative analysis, 96.22% isolated particles and 84.19% partial-overlapped particles were successfully detected.

  17. Segmentation of the whole breast from low-dose chest CT images

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Salvatore, Mary; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2015-03-01

    The segmentation of whole breast serves as the first step towards automated breast lesion detection. It is also necessary for automatically assessing the breast density, which is considered to be an important risk factor for breast cancer. In this paper we present a fully automated algorithm to segment the whole breast in low-dose chest CT images (LDCT), which has been recommended as an annual lung cancer screening test. The automated whole breast segmentation and potential breast density readings as well as lesion detection in LDCT will provide useful information for women who have received LDCT screening, especially the ones who have not undergone mammographic screening, by providing them additional risk indicators for breast cancer with no additional radiation exposure. The two main challenges to be addressed are significant range of variations in terms of the shape and location of the breast in LDCT and the separation of pectoral muscles from the glandular tissues. The presented algorithm achieves robust whole breast segmentation using an anatomy directed rule-based method. The evaluation is performed on 20 LDCT scans by comparing the segmentation with ground truth manually annotated by a radiologist on one axial slice and two sagittal slices for each scan. The resulting average Dice coefficient is 0.880 with a standard deviation of 0.058, demonstrating that the automated segmentation algorithm achieves results consistent with manual annotations of a radiologist.

  18. Automated placement of interfaces in conformational kinetics calculations using machine learning

    NASA Astrophysics Data System (ADS)

    Grazioli, Gianmarc; Butts, Carter T.; Andricioaei, Ioan

    2017-10-01

    Several recent implementations of algorithms for sampling reaction pathways employ a strategy for placing interfaces or milestones across the reaction coordinate manifold. Interfaces can be introduced such that the full feature space describing the dynamics of a macromolecule is divided into Voronoi (or other) cells, and the global kinetics of the molecular motions can be calculated from the set of fluxes through the interfaces between the cells. Although some methods of this type are exact for an arbitrary set of cells, in practice, the calculations will converge fastest when the interfaces are placed in regions where they can best capture transitions between configurations corresponding to local minima. The aim of this paper is to introduce a fully automated machine-learning algorithm for defining a set of cells for use in kinetic sampling methodologies based on subdividing the dynamical feature space; the algorithm requires no intuition about the system or input from the user and scales to high-dimensional systems.

  19. Automated placement of interfaces in conformational kinetics calculations using machine learning.

    PubMed

    Grazioli, Gianmarc; Butts, Carter T; Andricioaei, Ioan

    2017-10-21

    Several recent implementations of algorithms for sampling reaction pathways employ a strategy for placing interfaces or milestones across the reaction coordinate manifold. Interfaces can be introduced such that the full feature space describing the dynamics of a macromolecule is divided into Voronoi (or other) cells, and the global kinetics of the molecular motions can be calculated from the set of fluxes through the interfaces between the cells. Although some methods of this type are exact for an arbitrary set of cells, in practice, the calculations will converge fastest when the interfaces are placed in regions where they can best capture transitions between configurations corresponding to local minima. The aim of this paper is to introduce a fully automated machine-learning algorithm for defining a set of cells for use in kinetic sampling methodologies based on subdividing the dynamical feature space; the algorithm requires no intuition about the system or input from the user and scales to high-dimensional systems.

  20. VizieR Online Data Catalog: Proper motions of PM2000 open clusters (Krone-Martins+, 2010)

    NASA Astrophysics Data System (ADS)

    Krone-Martins, A.; Soubiran, C.; Ducourant, C.; Teixeira, R.; Le Campion, J. F.

    2010-04-01

    We present lists of proper-motions and kinematic membership probabilities in the region of 49 open clusters or possible open clusters. The stellar proper motions were taken from the Bordeaux PM2000 catalogue. The segregation between cluster and field stars and the assignment of membership probabilities was accomplished by applying a fully automated method based on parametrisations for the probability distribution functions and genetic algorithm optimisation heuristics associated with a derivative-based hill climbing algorithm for the likelihood optimization. (3 data files).

  1. Automatic laser beam alignment using blob detection for an environment monitoring spectroscopy

    NASA Astrophysics Data System (ADS)

    Khidir, Jarjees; Chen, Youhua; Anderson, Gary

    2013-05-01

    This paper describes a fully automated system to align an infra-red laser beam with a small retro-reflector over a wide range of distances. The component development and test were especially used for an open-path spectrometer gas detection system. Using blob detection under OpenCV library, an automatic alignment algorithm was designed to achieve fast and accurate target detection in a complex background environment. Test results are presented to show that the proposed algorithm has been successfully applied to various target distances and environment conditions.

  2. Insulin Patch Pumps: Their Development and Future in Closed-Loop Systems

    PubMed Central

    Bohannon, Nancy J.V.

    2010-01-01

    Abstract Steady progress is being made toward the development of a so-called “artificial pancreas,” which may ultimately be a fully automated, closed-loop, glucose control system comprising a continuous glucose monitor, an insulin pump, and a controller. The controller will use individualized algorithms to direct delivery of insulin without user input. A major factor propelling artificial pancreas development is the substantial incidence of—and attendant patient, parental, and physician concerns about—hypoglycemia and extreme hyperglycemia associated with current means of insulin delivery for type 1 diabetes mellitus (T1DM). A successful fully automated artificial pancreas would likely reduce the frequency of and anxiety about hypoglycemia and marked hyperglycemia. Patch-pump systems (“patch pumps”) are likely to be used increasingly in the control of T1DM and may be incorporated into the artificial pancreas systems of tomorrow. Patch pumps are free of tubing, small, lightweight, and unobtrusive. This article describes features of patch pumps that have been approved for U.S. marketing or are under development. Included in the review is an introduction to control algorithms driving insulin delivery, particularly the two major types: proportional integrative derivative and model predictive control. The use of advanced algorithms in the clinical development of closed-loop systems is reviewed along with projected next steps in artificial pancreas development. PMID:20515308

  3. Fully automated contour detection of the ascending aorta in cardiac 2D phase-contrast MRI.

    PubMed

    Codari, Marina; Scarabello, Marco; Secchi, Francesco; Sforza, Chiarella; Baselli, Giuseppe; Sardanelli, Francesco

    2018-04-01

    In this study we proposed a fully automated method for localizing and segmenting the ascending aortic lumen with phase-contrast magnetic resonance imaging (PC-MRI). Twenty-five phase-contrast series were randomly selected out of a large population dataset of patients whose cardiac MRI examination, performed from September 2008 to October 2013, was unremarkable. The local Ethical Committee approved this retrospective study. The ascending aorta was automatically identified on each phase of the cardiac cycle using a priori knowledge of aortic geometry. The frame that maximized the area, eccentricity, and solidity parameters was chosen for unsupervised initialization. Aortic segmentation was performed on each frame using active contouring without edges techniques. The entire algorithm was developed using Matlab R2016b. To validate the proposed method, the manual segmentation performed by a highly experienced operator was used. Dice similarity coefficient, Bland-Altman analysis, and Pearson's correlation coefficient were used as performance metrics. Comparing automated and manual segmentation of the aortic lumen on 714 images, Bland-Altman analysis showed a bias of -6.68mm 2 , a coefficient of repeatability of 91.22mm 2 , a mean area measurement of 581.40mm 2 , and a reproducibility of 85%. Automated and manual segmentation were highly correlated (R=0.98). The Dice similarity coefficient versus the manual reference standard was 94.6±2.1% (mean±standard deviation). A fully automated and robust method for identification and segmentation of ascending aorta on PC-MRI was developed. Its application on patients with a variety of pathologic conditions is advisable. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Automation and Preclinical Evaluation of a Dedicated Emission Mammotomography System for Fully 3-D Molecular Breast Imaging

    DTIC Science & Technology

    2008-10-01

    concentrated aqueous 99m Tc and taped to the exterior surface of the breast phantom to act as fiducial markers for registration purposes. Two...34 Physica Medica, vol. 21, pp. 48-55, 2006. [16] H. Erdogan and J. A. Fessler, "Ordered subsets algorithms for transmission tomography," Phys Med Biol

  5. Topological leakage detection and freeze-and-grow propagation for improved CT-based airway segmentation

    NASA Astrophysics Data System (ADS)

    Nadeem, Syed Ahmed; Hoffman, Eric A.; Sieren, Jered P.; Saha, Punam K.

    2018-03-01

    Numerous large multi-center studies are incorporating the use of computed tomography (CT)-based characterization of the lung parenchyma and bronchial tree to understand chronic obstructive pulmonary disease status and progression. To the best of our knowledge, there are no fully automated airway tree segmentation methods, free of the need for user review. A failure in even a fraction of segmentation results necessitates manual revision of all segmentation masks which is laborious considering the thousands of image data sets evaluated in large studies. In this paper, we present a novel CT-based airway tree segmentation algorithm using topological leakage detection and freeze-and-grow propagation. The method is fully automated requiring no manual inputs or post-segmentation editing. It uses simple intensity-based connectivity and a freeze-and-grow propagation algorithm to iteratively grow the airway tree starting from an initial seed inside the trachea. It begins with a conservative parameter and then, gradually shifts toward more generous parameter values. The method was applied on chest CT scans of fifteen subjects at total lung capacity. Airway segmentation results were qualitatively assessed and performed comparably to established airway segmentation method with no major visual leakages.

  6. Toward fully automated processing of dynamic susceptibility contrast perfusion MRI for acute ischemic cerebral stroke.

    PubMed

    Kim, Jinsuh; Leira, Enrique C; Callison, Richard C; Ludwig, Bryan; Moritani, Toshio; Magnotta, Vincent A; Madsen, Mark T

    2010-05-01

    We developed fully automated software for dynamic susceptibility contrast (DSC) MR perfusion-weighted imaging (PWI) to efficiently and reliably derive critical hemodynamic information for acute stroke treatment decisions. Brain MR PWI was performed in 80 consecutive patients with acute nonlacunar ischemic stroke within 24h after onset of symptom from January 2008 to August 2009. These studies were automatically processed to generate hemodynamic parameters that included cerebral blood flow and cerebral blood volume, and the mean transit time (MTT). To develop reliable software for PWI analysis, we used computationally robust algorithms including the piecewise continuous regression method to determine bolus arrival time (BAT), log-linear curve fitting, arrival time independent deconvolution method and sophisticated motion correction methods. An optimal arterial input function (AIF) search algorithm using a new artery-likelihood metric was also developed. Anatomical locations of the automatically determined AIF were reviewed and validated. The automatically computed BAT values were statistically compared with estimated BAT by a single observer. In addition, gamma-variate curve-fitting errors of AIF and inter-subject variability of AIFs were analyzed. Lastly, two observes independently assessed the quality and area of hypoperfusion mismatched with restricted diffusion area from motion corrected MTT maps and compared that with time-to-peak (TTP) maps using the standard approach. The AIF was identified within an arterial branch and enhanced areas of perfusion deficit were visualized in all evaluated cases. Total processing time was 10.9+/-2.5s (mean+/-s.d.) without motion correction and 267+/-80s (mean+/-s.d.) with motion correction on a standard personal computer. The MTT map produced with our software adequately estimated brain areas with perfusion deficit and was significantly less affected by random noise of the PWI when compared with the TTP map. Results of image quality assessment by two observers revealed that the MTT maps exhibited superior quality over the TTP maps (88% good rating of MTT as compared to 68% of TTP). Our software allowed fully automated deconvolution analysis of DSC PWI using proven efficient algorithms that can be applied to acute stroke treatment decisions. Our streamlined method also offers promise for further development of automated quantitative analysis of the ischemic penumbra. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  7. Application of heuristic satellite plan synthesis algorithms to requirements of the WARC-88 allotment plan

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Reilly, Charles H.; Walton, Eric K.; Mata, Fernando; Olen, Carl

    1990-01-01

    Creation of an Allotment Plan for the Fixed Satellite Service at the 1988 Space World Administrative Radio Conference (WARC) represented a complex satellite plan synthesis problem, involving a large number of planned and existing systems. Solutions to this problem at WARC-88 required the use of both automated and manual procedures to develop an acceptable set of system positions. Development of an Allotment Plan may also be attempted through solution of an optimization problem, known as the Satellite Location Problem (SLP). Three automated heuristic procedures, developed specifically to solve SLP, are presented. The heuristics are then applied to two specific WARC-88 scenarios. Solutions resulting from the fully automated heuristics are then compared with solutions obtained at WARC-88 through a combination of both automated and manual planning efforts.

  8. Unimolecular Reaction Pathways of a γ-Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grambow, Colin A.; Jamal, Adeel; Li, Yi -Pei

    Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The presentmore » joint approach significantly outperforms previous manual and automated transition-state searches – 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Altogether, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).« less

  9. Unimolecular Reaction Pathways of a γ-Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods

    DOE PAGES

    Grambow, Colin A.; Jamal, Adeel; Li, Yi -Pei; ...

    2017-12-22

    Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The presentmore » joint approach significantly outperforms previous manual and automated transition-state searches – 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Altogether, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).« less

  10. Implementation of a state of the art automated system for the production of cloud/water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher

    1995-01-01

    The research objectives in this proposal were part of a continuing program at UW-CIMSS to develop and refine an automated geostationary satellite winds processing system which can be utilized in both research and operational environments. The majority of the originally proposed tasks were successfully accomplished, and in some cases the progress exceeded the original goals. Much of the research and development supported by this grant resulted in upgrades and modifications to the existing automated satellite winds tracking algorithm. These modifications were put to the test through case study demonstrations and numerical model impact studies. After being successfully demonstrated, the modifications and upgrades were implemented into the NESDIS algorithms in Washington DC, and have become part of the operational support. A major focus of the research supported under this grant attended to the continued development of water vapor tracked winds from geostationary observations. The fully automated UW-CIMSS tracking algorithm has been tuned to provide complete upper-tropospheric coverage from this data source, with data set quality close to that of operational cloud motion winds. Multispectral water vapor observations were collected and processed from several different geostationary satellites. The tracking and quality control algorithms were tuned and refined based on ground-truth comparisons and case studies involving impact on numerical model analyses and forecasts. The results have shown the water vapor motion winds are of good quality, complement the cloud motion wind data, and can have a positive impact in NWP on many meteorological scales.

  11. TU-H-CAMPUS-JeP1-02: Fully Automatic Verification of Automatically Contoured Normal Tissues in the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarroll, R; UT Health Science Center, Graduate School of Biomedical Sciences, Houston, TX; Beadle, B

    Purpose: To investigate and validate the use of an independent deformable-based contouring algorithm for automatic verification of auto-contoured structures in the head and neck towards fully automated treatment planning. Methods: Two independent automatic contouring algorithms [(1) Eclipse’s Smart Segmentation followed by pixel-wise majority voting, (2) an in-house multi-atlas based method] were used to create contours of 6 normal structures of 10 head-and-neck patients. After rating by a radiation oncologist, the higher performing algorithm was selected as the primary contouring method, the other used for automatic verification of the primary. To determine the ability of the verification algorithm to detect incorrectmore » contours, contours from the primary method were shifted from 0.5 to 2cm. Using a logit model the structure-specific minimum detectable shift was identified. The models were then applied to a set of twenty different patients and the sensitivity and specificity of the models verified. Results: Per physician rating, the multi-atlas method (4.8/5 point scale, with 3 rated as generally acceptable for planning purposes) was selected as primary and the Eclipse-based method (3.5/5) for verification. Mean distance to agreement and true positive rate were selected as covariates in an optimized logit model. These models, when applied to a group of twenty different patients, indicated that shifts could be detected at 0.5cm (brain), 0.75cm (mandible, cord), 1cm (brainstem, cochlea), or 1.25cm (parotid), with sensitivity and specificity greater than 0.95. If sensitivity and specificity constraints are reduced to 0.9, detectable shifts of mandible and brainstem were reduced by 0.25cm. These shifts represent additional safety margins which might be considered if auto-contours are used for automatic treatment planning without physician review. Conclusion: Automatically contoured structures can be automatically verified. This fully automated process could be used to flag auto-contours for special review or used with safety margins in a fully automatic treatment planning system.« less

  12. The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors

    NASA Astrophysics Data System (ADS)

    Marshall, J. S.; Blake, A. S. T.; Thomson, M. A.; Escudero, L.; de Vries, J.; Weston, J.; MicroBooNE Collaboration

    2017-09-01

    The development and operation of Liquid Argon Time Projection Chambers (LAr TPCs) for neutrino physics has created a need for new approaches to pattern recognition, in order to fully exploit the superb imaging capabilities offered by this technology. The Pandora Software Development Kit provides functionality to aid the process of designing, implementing and running pattern recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition: individual algorithms each address a specific task in a particular topology; a series of many tens of algorithms then carefully builds-up a picture of the event. The input to the Pandora pattern recognition is a list of 2D Hits. The output from the chain of over 70 algorithms is a hierarchy of reconstructed 3D Particles, each with an identified particle type, vertex and direction.

  13. Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Vaughan, Mark A.; Powell, Kathleen A.; Kuehn, Ralph E.; Young, Stuart A.; Winker, David M.; Hostetler, Chris A.; Hunt, William H.; Liu, Zhaoyan; McGill, Matthew J.; Getzewich, Brian J.

    2009-01-01

    Accurate knowledge of the vertical and horizontal extent of clouds and aerosols in the earth s atmosphere is critical in assessing the planet s radiation budget and for advancing human understanding of climate change issues. To retrieve this fundamental information from the elastic backscatter lidar data acquired during the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a selective, iterated boundary location (SIBYL) algorithm has been developed and deployed. SIBYL accomplishes its goals by integrating an adaptive context-sensitive profile scanner into an iterated multiresolution spatial averaging scheme. This paper provides an in-depth overview of the architecture and performance of the SIBYL algorithm. It begins with a brief review of the theory of target detection in noise-contaminated signals, and an enumeration of the practical constraints levied on the retrieval scheme by the design of the lidar hardware, the geometry of a space-based remote sensing platform, and the spatial variability of the measurement targets. Detailed descriptions are then provided for both the adaptive threshold algorithm used to detect features of interest within individual lidar profiles and the fully automated multiresolution averaging engine within which this profile scanner functions. The resulting fusion of profile scanner and averaging engine is specifically designed to optimize the trade-offs between the widely varying signal-to-noise ratio of the measurements and the disparate spatial resolutions of the detection targets. Throughout the paper, specific algorithm performance details are illustrated using examples drawn from the existing CALIPSO dataset. Overall performance is established by comparisons to existing layer height distributions obtained by other airborne and space-based lidars.

  14. Real-time piloted simulation of fully automatic guidance and control for rotorcraft nap-of-the-earth (NOE) flight following planned profiles

    NASA Technical Reports Server (NTRS)

    Clement, Warren F.; Gorder, Pater J.; Jewell, Wayne F.; Coppenbarger, Richard

    1990-01-01

    Developing a single-pilot all-weather NOE capability requires fully automatic NOE navigation and flight control. Innovative guidance and control concepts are being investigated to (1) organize the onboard computer-based storage and real-time updating of NOE terrain profiles and obstacles; (2) define a class of automatic anticipative pursuit guidance algorithms to follow the vertical, lateral, and longitudinal guidance commands; (3) automate a decision-making process for unexpected obstacle avoidance; and (4) provide several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the recorded environment which is then used to determine an appropriate evasive maneuver if a nonconformity is observed. This research effort has been evaluated in both fixed-base and moving-base real-time piloted simulations thereby evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and reengagement of the automatic system.

  15. Self-consistent hybrid functionals for solids: a fully-automated implementation

    NASA Astrophysics Data System (ADS)

    Erba, A.

    2017-08-01

    A fully-automated algorithm for the determination of the system-specific optimal fraction of exact exchange in self-consistent hybrid functionals of the density-functional-theory is illustrated, as implemented into the public Crystal program. The exchange fraction of this new class of functionals is self-consistently updated proportionally to the inverse of the dielectric response of the system within an iterative procedure (Skone et al 2014 Phys. Rev. B 89, 195112). Each iteration of the present scheme, in turn, implies convergence of a self-consistent-field (SCF) and a coupled-perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) procedure. The present implementation, beside improving the user-friendliness of self-consistent hybrids, exploits the unperturbed and electric-field perturbed density matrices from previous iterations as guesses for subsequent SCF and CPHF/KS iterations, which is documented to reduce the overall computational cost of the whole process by a factor of 2.

  16. A Fully Automated Supraglacial lake area and volume Tracking ("FAST") algorithm: development and application using MODIS imagery of West Greenland

    NASA Astrophysics Data System (ADS)

    Williamson, Andrew; Arnold, Neil; Banwell, Alison; Willis, Ian

    2017-04-01

    Supraglacial lakes (SGLs) on the Greenland Ice Sheet (GrIS) influence ice dynamics if draining rapidly by hydrofracture, which can occur in under 24 hours. MODerate-resolution Imaging Spectroradiometer (MODIS) data are often used to investigate SGLs, including calculating SGL area changes through time, but no existing work presents a method that tracks changes in individual (and total) SGL volume in MODIS imagery over a melt season. Here, we present such a method. First, we tested three automated approaches to derive SGL areas from MODIS imagery by comparing calculated areas for the Paakitsoq and Store Glacier regions in West Greenland with areas derived from Landsat-8 (LS8) images. Second, we applied a physically-based depth-calculation algorithm to the pixels within the SGL boundaries from the best performing method, and validated the resultant depths with those calculated using the same method applied to LS8 imagery. Our results indicated that SGL areas are most accurately generated using dynamic thresholding of MODIS band 1 (red) with a 0.640 threshold value. Calculated SGL area, depth and volume values from MODIS were closely comparable to those derived from LS8. The best performing area- and depth-detection methods were then incorporated into a Fully Automated SGL Tracking ("FAST") algorithm that tracks individual SGLs between successive MODIS images. It identified 43 (Paakitsoq) and 19 (Store Glacier) rapidly draining SGLs during 2014, representing 21% and 15% of the respective total SGL populations, including some clusters of rapidly draining SGLs. We found no relationship between the water volumes contained within these rapidly draining SGLs and the ice thicknesses beneath them, indicating that a critical water volume linearly related to ice thickness cannot explain the incidence of rapid drainage. The FAST algorithm, which we believe to be the most comprehensive SGL tracking algorithm developed to date, has the potential to investigate statistical relationships between SGL areas, volumes and drainage events over wide areas of the GrIS, and over multiple seasons. It could also allow further insights into factors that may trigger rapid SGL drainage.

  17. Segmentation of anatomical branching structures based on texture features and conditional random field

    NASA Astrophysics Data System (ADS)

    Nuzhnaya, Tatyana; Bakic, Predrag; Kontos, Despina; Megalooikonomou, Vasileios; Ling, Haibin

    2012-02-01

    This work is a part of our ongoing study aimed at understanding a relation between the topology of anatomical branching structures with the underlying image texture. Morphological variability of the breast ductal network is associated with subsequent development of abnormalities in patients with nipple discharge such as papilloma, breast cancer and atypia. In this work, we investigate complex dependence among ductal components to perform segmentation, the first step for analyzing topology of ductal lobes. Our automated framework is based on incorporating a conditional random field with texture descriptors of skewness, coarseness, contrast, energy and fractal dimension. These features are selected to capture the architectural variability of the enhanced ducts by encoding spatial variations between pixel patches in galactographic image. The segmentation algorithm was applied to a dataset of 20 x-ray galactograms obtained at the Hospital of the University of Pennsylvania. We compared the performance of the proposed approach with fully and semi automated segmentation algorithms based on neural network classification, fuzzy-connectedness, vesselness filter and graph cuts. Global consistency error and confusion matrix analysis were used as accuracy measurements. For the proposed approach, the true positive rate was higher and the false negative rate was significantly lower compared to other fully automated methods. This indicates that segmentation based on CRF incorporated with texture descriptors has potential to efficiently support the analysis of complex topology of the ducts and aid in development of realistic breast anatomy phantoms.

  18. Automated measurement of human body shape and curvature using computer vision

    NASA Astrophysics Data System (ADS)

    Pearson, Jeremy D.; Hobson, Clifford A.; Dangerfield, Peter H.

    1993-06-01

    A system to measure the surface shape of the human body has been constructed. The system uses a fringe pattern generated by projection of multi-stripe structured light. The optical methodology used is fully described and the algorithms used to process acquired digital images are outlined. The system has been applied to the measurement of the shape of the human back in scoliosis.

  19. Automated main-chain model building by template matching and iterative fragment extension.

    PubMed

    Terwilliger, Thomas C

    2003-01-01

    An algorithm for the automated macromolecular model building of polypeptide backbones is described. The procedure is hierarchical. In the initial stages, many overlapping polypeptide fragments are built. In subsequent stages, the fragments are extended and then connected. Identification of the locations of helical and beta-strand regions is carried out by FFT-based template matching. Fragment libraries of helices and beta-strands from refined protein structures are then positioned at the potential locations of helices and strands and the longest segments that fit the electron-density map are chosen. The helices and strands are then extended using fragment libraries consisting of sequences three amino acids long derived from refined protein structures. The resulting segments of polypeptide chain are then connected by choosing those which overlap at two or more C(alpha) positions. The fully automated procedure has been implemented in RESOLVE and is capable of model building at resolutions as low as 3.5 A. The algorithm is useful for building a preliminary main-chain model that can serve as a basis for refinement and side-chain addition.

  20. 21 CFR 866.1645 - Fully automated short-term incubation cycle antimicrobial susceptibility system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fully automated short-term incubation cycle... Diagnostic Devices § 866.1645 Fully automated short-term incubation cycle antimicrobial susceptibility system. (a) Identification. A fully automated short-term incubation cycle antimicrobial susceptibility system...

  1. Eye Tracking Metrics for Workload Estimation in Flight Deck Operation

    NASA Technical Reports Server (NTRS)

    Ellis, Kyle; Schnell, Thomas

    2010-01-01

    Flight decks of the future are being enhanced through improved avionics that adapt to both aircraft and operator state. Eye tracking allows for non-invasive analysis of pilot eye movements, from which a set of metrics can be derived to effectively and reliably characterize workload. This research identifies eye tracking metrics that correlate to aircraft automation conditions, and identifies the correlation of pilot workload to the same automation conditions. Saccade length was used as an indirect index of pilot workload: Pilots in the fully automated condition were observed to have on average, larger saccadic movements in contrast to the guidance and manual flight conditions. The data set itself also provides a general model of human eye movement behavior and so ostensibly visual attention distribution in the cockpit for approach to land tasks with various levels of automation, by means of the same metrics used for workload algorithm development.

  2. A fully automated non-external marker 4D-CT sorting algorithm using a serial cine scanning protocol.

    PubMed

    Carnes, Greg; Gaede, Stewart; Yu, Edward; Van Dyk, Jake; Battista, Jerry; Lee, Ting-Yim

    2009-04-07

    Current 4D-CT methods require external marker data to retrospectively sort image data and generate CT volumes. In this work we develop an automated 4D-CT sorting algorithm that performs without the aid of data collected from an external respiratory surrogate. The sorting algorithm requires an overlapping cine scan protocol. The overlapping protocol provides a spatial link between couch positions. Beginning with a starting scan position, images from the adjacent scan position (which spatial match the starting scan position) are selected by maximizing the normalized cross correlation (NCC) of the images at the overlapping slice position. The process was continued by 'daisy chaining' all couch positions using the selected images until an entire 3D volume was produced. The algorithm produced 16 phase volumes to complete a 4D-CT dataset. Additional 4D-CT datasets were also produced using external marker amplitude and phase angle sorting methods. The image quality of the volumes produced by the different methods was quantified by calculating the mean difference of the sorted overlapping slices from adjacent couch positions. The NCC sorted images showed a significant decrease in the mean difference (p < 0.01) for the five patients.

  3. Improving the MODIS Global Snow-Mapping Algorithm

    NASA Technical Reports Server (NTRS)

    Klein, Andrew G.; Hall, Dorothy K.; Riggs, George A.

    1997-01-01

    An algorithm (Snowmap) is under development to produce global snow maps at 500 meter resolution on a daily basis using data from the NASA MODIS instrument. MODIS, the Moderate Resolution Imaging Spectroradiometer, will be launched as part of the first Earth Observing System (EOS) platform in 1998. Snowmap is a fully automated, computationally frugal algorithm that will be ready to implement at launch. Forests represent a major limitation to the global mapping of snow cover as a forest canopy both obscures and shadows the snow underneath. Landsat Thematic Mapper (TM) and MODIS Airborne Simulator (MAS) data are used to investigate the changes in reflectance that occur as a forest stand becomes snow covered and to propose changes to the Snowmap algorithm that will improve snow classification accuracy forested areas.

  4. Lightning Jump Algorithm Development for the GOES·R Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.; hide

    2014-01-01

    Current work on the lightning jump algorithm to be used in GOES-R Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).

  5. Automated target recognition and tracking using an optical pattern recognition neural network

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    1991-01-01

    The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.

  6. Automatic high throughput empty ISO container verification

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2007-04-01

    Encouraging results are presented for the automatic analysis of radiographic images of a continuous stream of ISO containers to confirm they are truly empty. A series of image processing algorithms are described that process real-time data acquired during the actual inspection of each container and assigns each to one of the classes "empty", "not empty" or "suspect threat". This research is one step towards achieving fully automated analysis of cargo containers.

  7. Mapping the Recent US Hurricanes Triggered Flood Events in Near Real Time

    NASA Astrophysics Data System (ADS)

    Shen, X.; Lazin, R.; Anagnostou, E. N.; Wanik, D. W.; Brakenridge, G. R.

    2017-12-01

    Synthetic Aperture Radar (SAR) observations is the only reliable remote sensing data source to map flood inundation during severe weather events. Unfortunately, since state-of-art data processing algorithms cannot meet the automation and quality standard of a near-real-time (NRT) system, quality controlled inundation mapping by SAR currently depends heavily on manual processing, which limits our capability to quickly issue flood inundation maps at global scale. Specifically, most SAR-based inundation mapping algorithms are not fully automated, while those that are automated exhibit severe over- and/or under-detection errors that limit their potential. These detection errors are primarily caused by the strong overlap among the SAR backscattering probability density functions (PDF) of different land cover types. In this study, we tested a newly developed NRT SAR-based inundation mapping system, named Radar Produced Inundation Diary (RAPID), using Sentinel-1 dual polarized SAR data over recent flood events caused by Hurricanes Harvey, Irma, and Maria (2017). The system consists of 1) self-optimized multi-threshold classification, 2) over-detection removal using land-cover information and change detection, 3) under-detection compensation, and 4) machine-learning based correction. Algorithm details are introduced in another poster, H53J-1603. Good agreements were obtained by comparing the result from RAPID with visual interpretation of SAR images and manual processing from Dartmouth Flood Observatory (DFO) (See Figure 1). Specifically, the over- and under-detections that is typically noted in automated methods is significantly reduced to negligible levels. This performance indicates that RAPID can address the automation and accuracy issues of current state-of-art algorithms and has the potential to apply operationally on a number of satellite SAR missions, such as SWOT, ALOS, Sentinel etc. RAPID data can support many applications such as rapid assessment of damage losses and disaster alleviation/rescue at global scale.

  8. Ultramap v3 - a Revolution in Aerial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Reitinger, B.; Sormann, M.; Zebedin, L.; Schachinger, B.; Hoefler, M.; Tomasi, R.; Lamperter, M.; Gruber, B.; Schiester, G.; Kobald, M.; Unger, M.; Klaus, A.; Bernoegger, S.; Karner, K.; Wiechert, A.; Ponticelli, M.; Gruber, M.

    2012-07-01

    In the last years, Microsoft has driven innovation in the aerial photogrammetry community. Besides the market leading camera technology, UltraMap has grown to an outstanding photogrammetric workflow system which enables users to effectively work with large digital aerial image blocks in a highly automated way. Best example is the project-based color balancing approach which automatically balances images to a homogeneous block. UltraMap V3 continues innovation, and offers a revolution in terms of ortho processing. A fully automated dense matching module strives for high precision digital surface models (DSMs) which are calculated either on CPUs or on GPUs using a distributed processing framework. By applying constrained filtering algorithms, a digital terrain model can be derived which in turn can be used for fully automated traditional ortho texturing. By having the knowledge about the underlying geometry, seamlines can be generated automatically by applying cost functions in order to minimize visual disturbing artifacts. By exploiting the generated DSM information, a DSMOrtho is created using the balanced input images. Again, seamlines are detected automatically resulting in an automatically balanced ortho mosaic. Interactive block-based radiometric adjustments lead to a high quality ortho product based on UltraCam imagery. UltraMap v3 is the first fully integrated and interactive solution for supporting UltraCam images at best in order to deliver DSM and ortho imagery.

  9. TH-AB-207A-05: A Fully-Automated Pipeline for Generating CT Images Across a Range of Doses and Reconstruction Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, S; Lo, P; Hoffman, J

    Purpose: To evaluate the robustness of CAD or Quantitative Imaging methods, they should be tested on a variety of cases and under a variety of image acquisition and reconstruction conditions that represent the heterogeneity encountered in clinical practice. The purpose of this work was to develop a fully-automated pipeline for generating CT images that represent a wide range of dose and reconstruction conditions. Methods: The pipeline consists of three main modules: reduced-dose simulation, image reconstruction, and quantitative analysis. The first two modules of the pipeline can be operated in a completely automated fashion, using configuration files and running the modulesmore » in a batch queue. The input to the pipeline is raw projection CT data; this data is used to simulate different levels of dose reduction using a previously-published algorithm. Filtered-backprojection reconstructions are then performed using FreeCT-wFBP, a freely-available reconstruction software for helical CT. We also added support for an in-house, model-based iterative reconstruction algorithm using iterative coordinate-descent optimization, which may be run in tandem with the more conventional recon methods. The reduced-dose simulations and image reconstructions are controlled automatically by a single script, and they can be run in parallel on our research cluster. The pipeline was tested on phantom and lung screening datasets from a clinical scanner (Definition AS, Siemens Healthcare). Results: The images generated from our test datasets appeared to represent a realistic range of acquisition and reconstruction conditions that we would expect to find clinically. The time to generate images was approximately 30 minutes per dose/reconstruction combination on a hybrid CPU/GPU architecture. Conclusion: The automated research pipeline promises to be a useful tool for either training or evaluating performance of quantitative imaging software such as classifiers and CAD algorithms across the range of acquisition and reconstruction parameters present in the clinical environment. Funding support: NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less

  10. Automated control of an adaptive bi-hormonal, dual-sensor artificial pancreas and evaluation during inpatient studies

    PubMed Central

    Jacobs, Peter G.; El Youssef, Joseph; Castle, Jessica; Bakhtiani, Parkash; Branigan, Deborah; Breen, Matthew; Bauer, David; Preiser, Nicholas; Leonard, Gerald; Stonex, Tara; Preiser, Nicholas; Ward, W. Kenneth

    2014-01-01

    Automated control of blood glucose in patients with type 1 diabetes has not yet been fully implemented. The aim of this study was to design and clinically evaluate a system that integrates a control algorithm with off-the-shelf subcutaneous sensors and pumps to automate the delivery of the hormones glucagon and insulin in response to continuous glucose sensor measurements. The automated component of the system runs an adaptive proportional derivative control algorithm which determines hormone delivery rates based on the sensed glucose measurements and the meal announcements by the patient. We provide details about the system design and the control algorithm, which incorporates both a fading memory proportional derivative controller (FMPD) and an adaptive system for estimating changing sensitivity to insulin based on a glucoregulatory model of insulin action. For an inpatient study carried out in eight subjects using Dexcom SEVEN PLUS sensors, pre-study HbA1c averaged 7.6, which translates to an estimated average glucose of 171 mg/dL. In contrast, during use of the automated system, after initial stabilization, glucose averaged 145 mg/dL and subjects were kept within the euglycemic range (between 70 and 180 mg/dL) for 73.1% of the time, indicating improved glycemic control. A further study on five additional subjects in which we used a newer and more reliable glucose sensor (Dexcom G4 PLATINUM) and made improvements to the insulin and glucagon pump communication system resulted in elimination of hypoglycemic events. For this G4 study, the system was able to maintain subjects’ glucose levels within the near-euglycemic range for 71.6% of the study duration and the mean venous glucose level was 151 mg/dL. PMID:24835122

  11. Fully automated disease severity assessment and treatment monitoring in retinopathy of prematurity using deep learning

    NASA Astrophysics Data System (ADS)

    Brown, James M.; Campbell, J. Peter; Beers, Andrew; Chang, Ken; Donohue, Kyra; Ostmo, Susan; Chan, R. V. Paul; Dy, Jennifer; Erdogmus, Deniz; Ioannidis, Stratis; Chiang, Michael F.; Kalpathy-Cramer, Jayashree

    2018-03-01

    Retinopathy of prematurity (ROP) is a disease that affects premature infants, where abnormal growth of the retinal blood vessels can lead to blindness unless treated accordingly. Infants considered at risk of severe ROP are monitored for symptoms of plus disease, characterized by arterial tortuosity and venous dilation at the posterior pole, with a standard photographic definition. Disagreement among ROP experts in diagnosing plus disease has driven the development of computer-based methods that classify images based on hand-crafted features extracted from the vasculature. However, most of these approaches are semi-automated, which are time-consuming and subject to variability. In contrast, deep learning is a fully automated approach that has shown great promise in a wide variety of domains, including medical genetics, informatics and imaging. Convolutional neural networks (CNNs) are deep networks which learn rich representations of disease features that are highly robust to variations in acquisition and image quality. In this study, we utilized a U-Net architecture to perform vessel segmentation and then a GoogLeNet to perform disease classification. The classifier was trained on 3,000 retinal images and validated on an independent test set of patients with different observed progressions and treatments. We show that our fully automated algorithm can be used to monitor the progression of plus disease over multiple patient visits with results that are consistent with the experts' consensus diagnosis. Future work will aim to further validate the method on larger cohorts of patients to assess its applicability within the clinic as a treatment monitoring tool.

  12. Field performance of a low-cost and fully-automated blood counting system operated by trained and untrained users (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xie, Dengling; Xie, Yanjun; Liu, Peng; Tong, Lieshu; Chu, Kaiqin; Smith, Zachary J.

    2017-02-01

    Current flow-based blood counting devices require expensive and centralized medical infrastructure and are not appropriate for field use. In this paper we report a method to count red blood cells, white blood cells as well as platelets through a low-cost and fully-automated blood counting system. The approach consists of using a compact, custom-built microscope with large field-of-view to record bright-field and fluorescence images of samples that are diluted with a single, stable reagent mixture and counted using automatic algorithms. Sample collection is performed manually using a spring loaded lancet, and volume-metering capillary tubes. The capillaries are then dropped into a tube of pre-measured reagents and gently shaken for 10-30 seconds. The sample is loaded into a measurement chamber and placed on a custom 3D printed platform. Sample translation and focusing is fully automated, and a user has only to press a button for the measurement and analysis to commence. Cost of the system is minimized through the use of custom-designed motorized components. We performed a series of comparative experiments by trained and untrained users on blood from adults and children. We compare the performance of our system, as operated by trained and untrained users, to the clinical gold standard using a Bland-Altman analysis, demonstrating good agreement of our system to the clinical standard. The system's low cost, complete automation, and good field performance indicate that it can be successfully translated for use in low-resource settings where central hematology laboratories are not accessible.

  13. Feature Based Retention Time Alignment for Improved HDX MS Analysis

    NASA Astrophysics Data System (ADS)

    Venable, John D.; Scuba, William; Brock, Ansgar

    2013-04-01

    An algorithm for retention time alignment of mass shifted hydrogen-deuterium exchange (HDX) data based on an iterative distance minimization procedure is described. The algorithm performs pairwise comparisons in an iterative fashion between a list of features from a reference file and a file to be time aligned to calculate a retention time mapping function. Features are characterized by their charge, retention time and mass of the monoisotopic peak. The algorithm is able to align datasets with mass shifted features, which is a prerequisite for aligning hydrogen-deuterium exchange mass spectrometry datasets. Confidence assignments from the fully automated processing of a commercial HDX software package are shown to benefit significantly from retention time alignment prior to extraction of deuterium incorporation values.

  14. Phase-amplitude imaging: its application to fully automated analysis of magnetic field measurements in laser-produced plasmas.

    PubMed

    Kalal, M; Nugent, K A; Luther-Davies, B

    1987-05-01

    An interferometric technique which enables simultaneous phase and amplitude imaging of optically transparent objects is discussed with respect to its application for the measurement of spontaneous toroidal magnetic fields generated in laser-produced plasmas. It is shown that this technique can replace the normal independent pair of optical systems (interferometry and shadowgraphy) by one system and use computer image processing to recover both the plasma density and magnetic field information with high accuracy. A fully automatic algorithm for the numerical analysis of the data has been developed and its performance demonstrated for the case of simulated as well as experimental data.

  15. Phase-amplitude imaging: its application to fully automated analysis of magnetic field measurements in laser-produced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalal, M.; Nugent, K.A.; Luther-Davies, B.

    1987-05-01

    An interferometric technique which enables simultaneous phase and amplitude imaging of optically transparent objects is discussed with respect to its application for the measurement of spontaneous toroidal magnetic fields generated in laser-produced plasmas. It is shown that this technique can replace the normal independent pair of optical systems (interferometry and shadowgraphy) by one system and use computer image processing to recover both the plasma density and magnetic field information with high accuracy. A fully automatic algorithm for the numerical analysis of the data has been developed and its performance demonstrated for the case of simulated as well as experimental data.

  16. Evaluation of a New Backtrack Free Path Planning Algorithm for Manipulators

    NASA Astrophysics Data System (ADS)

    Islam, Md. Nazrul; Tamura, Shinsuke; Murata, Tomonari; Yanase, Tatsuro

    This paper evaluates a newly proposed backtrack free path planning algorithm (BFA) for manipulators. BFA is an exact algorithm, i.e. it is resolution complete. Different from existing resolution complete algorithms, its computation time and memory space are proportional to the number of arms. Therefore paths can be calculated within practical and predetermined time even for manipulators with many arms, and it becomes possible to plan complicated motions of multi-arm manipulators in fully automated environments. The performance of BFA is evaluated for 2-dimensional environments while changing the number of arms and obstacle placements. Its performance under locus and attitude constraints is also evaluated. Evaluation results show that the computation volume of the algorithm is almost the same as the theoretical one, i.e. it increases linearly with the number of arms even in complicated environments. Moreover BFA achieves the constant performance independent of environments.

  17. Development and Evaluation of an Automated Machine Learning Algorithm for In-Hospital Mortality Risk Adjustment Among Critical Care Patients.

    PubMed

    Delahanty, Ryan J; Kaufman, David; Jones, Spencer S

    2018-06-01

    Risk adjustment algorithms for ICU mortality are necessary for measuring and improving ICU performance. Existing risk adjustment algorithms are not widely adopted. Key barriers to adoption include licensing and implementation costs as well as labor costs associated with human-intensive data collection. Widespread adoption of electronic health records makes automated risk adjustment feasible. Using modern machine learning methods and open source tools, we developed and evaluated a retrospective risk adjustment algorithm for in-hospital mortality among ICU patients. The Risk of Inpatient Death score can be fully automated and is reliant upon data elements that are generated in the course of usual hospital processes. One hundred thirty-one ICUs in 53 hospitals operated by Tenet Healthcare. A cohort of 237,173 ICU patients discharged between January 2014 and December 2016. The data were randomly split into training (36 hospitals), and validation (17 hospitals) data sets. Feature selection and model training were carried out using the training set while the discrimination, calibration, and accuracy of the model were assessed in the validation data set. Model discrimination was evaluated based on the area under receiver operating characteristic curve; accuracy and calibration were assessed via adjusted Brier scores and visual analysis of calibration curves. Seventeen features, including a mix of clinical and administrative data elements, were retained in the final model. The Risk of Inpatient Death score demonstrated excellent discrimination (area under receiver operating characteristic curve = 0.94) and calibration (adjusted Brier score = 52.8%) in the validation dataset; these results compare favorably to the published performance statistics for the most commonly used mortality risk adjustment algorithms. Low adoption of ICU mortality risk adjustment algorithms impedes progress toward increasing the value of the healthcare delivered in ICUs. The Risk of Inpatient Death score has many attractive attributes that address the key barriers to adoption of ICU risk adjustment algorithms and performs comparably to existing human-intensive algorithms. Automated risk adjustment algorithms have the potential to obviate known barriers to adoption such as cost-prohibitive licensing fees and significant direct labor costs. Further evaluation is needed to ensure that the level of performance observed in this study could be achieved at independent sites.

  18. Automated Detection and Analysis of Interplanetary Shocks with Real-Time Application

    NASA Astrophysics Data System (ADS)

    Vorotnikov, V.; Smith, C. W.; Hu, Q.; Szabo, A.; Skoug, R. M.; Cohen, C. M.

    2006-12-01

    The ACE real-time data stream provides web-based now-casting capabilities for solar wind conditions upstream of Earth. Our goal is to provide an automated code that finds and analyzes interplanetary shocks as they occur for possible real-time application to space weather nowcasting. Shock analysis algorithms based on the Rankine-Hugoniot jump conditions exist and are in wide-spread use today for the interactive analysis of interplanetary shocks yielding parameters such as shock speed and propagation direction and shock strength in the form of compression ratios. Although these codes can be automated in a reasonable manner to yield solutions not far from those obtained by user-directed interactive analysis, event detection presents an added obstacle and the first step in a fully automated analysis. We present a fully automated Rankine-Hugoniot analysis code that can scan the ACE science data, find shock candidates, analyze the events, obtain solutions in good agreement with those derived from interactive applications, and dismiss false positive shock candidates on the basis of the conservation equations. The intent is to make this code available to NOAA for use in real-time space weather applications. The code has the added advantage of being able to scan spacecraft data sets to provide shock solutions for use outside real-time applications and can easily be applied to science-quality data sets from other missions. Use of the code for this purpose will also be explored.

  19. Automated liver sampling using a gradient dual-echo Dixon-based technique.

    PubMed

    Bashir, Mustafa R; Dale, Brian M; Merkle, Elmar M; Boll, Daniel T

    2012-05-01

    Magnetic resonance spectroscopy of the liver requires input from a physicist or physician at the time of acquisition to insure proper voxel selection, while in multiecho chemical shift imaging, numerous regions of interest must be manually selected in order to ensure analysis of a representative portion of the liver parenchyma. A fully automated technique could improve workflow by selecting representative portions of the liver prior to human analysis. Complete volumes from three-dimensional gradient dual-echo acquisitions with two-point Dixon reconstruction acquired at 1.5 and 3 T were analyzed in 100 subjects, using an automated liver sampling algorithm, based on ratio pairs calculated from signal intensity image data as fat-only/water-only and log(in-phase/opposed-phase) on a voxel-by-voxel basis. Using different gridding variations of the algorithm, the average correct liver volume samples ranged from 527 to 733 mL. The average percentage of sample located within the liver ranged from 95.4 to 97.1%, whereas the average incorrect volume selected was 16.5-35.4 mL (2.9-4.6%). Average run time was 19.7-79.0 s. The algorithm consistently selected large samples of the hepatic parenchyma with small amounts of erroneous extrahepatic sampling, and run times were feasible for execution on an MRI system console during exam acquisition. Copyright © 2011 Wiley Periodicals, Inc.

  20. 2D Bayesian automated tilted-ring fitting of disc galaxies in large H I galaxy surveys: 2DBAT

    NASA Astrophysics Data System (ADS)

    Oh, Se-Heon; Staveley-Smith, Lister; Spekkens, Kristine; Kamphuis, Peter; Koribalski, Bärbel S.

    2018-01-01

    We present a novel algorithm based on a Bayesian method for 2D tilted-ring analysis of disc galaxy velocity fields. Compared to the conventional algorithms based on a chi-squared minimization procedure, this new Bayesian-based algorithm suffers less from local minima of the model parameters even with highly multimodal posterior distributions. Moreover, the Bayesian analysis, implemented via Markov Chain Monte Carlo sampling, only requires broad ranges of posterior distributions of the parameters, which makes the fitting procedure fully automated. This feature will be essential when performing kinematic analysis on the large number of resolved galaxies expected to be detected in neutral hydrogen (H I) surveys with the Square Kilometre Array and its pathfinders. The so-called 2D Bayesian Automated Tilted-ring fitter (2DBAT) implements Bayesian fits of 2D tilted-ring models in order to derive rotation curves of galaxies. We explore 2DBAT performance on (a) artificial H I data cubes built based on representative rotation curves of intermediate-mass and massive spiral galaxies, and (b) Australia Telescope Compact Array H I data from the Local Volume H I Survey. We find that 2DBAT works best for well-resolved galaxies with intermediate inclinations (20° < i < 70°), complementing 3D techniques better suited to modelling inclined galaxies.

  1. Automated calibration of the Suomi National Polar-Orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) reflective solar bands

    NASA Astrophysics Data System (ADS)

    Rausch, Kameron; Houchin, Scott; Cardema, Jason; Moy, Gabriel; Haas, Evan; De Luccia, Frank J.

    2013-12-01

    National Polar-Orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) reflective bands are currently calibrated via weekly updates to look-up tables (LUTs) utilized by operational ground processing in the Joint Polar Satellite System Interface Data Processing Segment (IDPS). The parameters in these LUTs must be predicted ahead 2 weeks and cannot adequately track the dynamically varying response characteristics of the instrument. As a result, spurious "predict-ahead" calibration errors of the order of 0.1% or greater are routinely introduced into the calibrated reflectances and radiances produced by IDPS in sensor data records (SDRs). Spurious calibration errors of this magnitude adversely impact the quality of downstream environmental data records (EDRs) derived from VIIRS SDRs such as Ocean Color/Chlorophyll and cause increased striping and band-to-band radiometric calibration uncertainty of SDR products. A novel algorithm that fully automates reflective band calibration has been developed for implementation in IDPS in late 2013. Automating the reflective solar band (RSB) calibration is extremely challenging and represents a significant advancement over the manner in which RSB calibration has traditionally been performed in heritage instruments such as the Moderate Resolution Imaging Spectroradiometer. The automated algorithm applies calibration data almost immediately after their acquisition by the instrument from views of space and on-onboard calibration sources, thereby eliminating the predict-ahead errors associated with the current offline calibration process. This new algorithm, when implemented, will significantly improve the quality of VIIRS reflective band SDRs and consequently the quality of EDRs produced from these SDRs.

  2. Multi-modal automatic montaging of adaptive optics retinal images

    PubMed Central

    Chen, Min; Cooper, Robert F.; Han, Grace K.; Gee, James; Brainard, David H.; Morgan, Jessica I. W.

    2016-01-01

    We present a fully automated adaptive optics (AO) retinal image montaging algorithm using classic scale invariant feature transform with random sample consensus for outlier removal. Our approach is capable of using information from multiple AO modalities (confocal, split detection, and dark field) and can accurately detect discontinuities in the montage. The algorithm output is compared to manual montaging by evaluating the similarity of the overlapping regions after montaging, and calculating the detection rate of discontinuities in the montage. Our results show that the proposed algorithm has high alignment accuracy and a discontinuity detection rate that is comparable (and often superior) to manual montaging. In addition, we analyze and show the benefits of using multiple modalities in the montaging process. We provide the algorithm presented in this paper as open-source and freely available to download. PMID:28018714

  3. On automating domain connectivity for overset grids

    NASA Technical Reports Server (NTRS)

    Chiu, Ing-Tsau; Meakin, Robert L.

    1995-01-01

    An alternative method for domain connectivity among systems of overset grids is presented. Reference uniform Cartesian systems of points are used to achieve highly efficient domain connectivity, and form the basis for a future fully automated system. The Cartesian systems are used to approximate body surfaces and to map the computational space of component grids. By exploiting the characteristics of Cartesian systems, Chimera type hole-cutting and identification of donor elements for intergrid boundary points can be carried out very efficiently. The method is tested for a range of geometrically complex multiple-body overset grid systems. A dynamic hole expansion/contraction algorithm is also implemented to obtain optimum domain connectivity; however, it is tested only for geometry of generic shapes.

  4. Automated quantification of proliferation with automated hot-spot selection in phosphohistone H3/MART1 dual-stained stage I/II melanoma.

    PubMed

    Nielsen, Patricia Switten; Riber-Hansen, Rikke; Schmidt, Henrik; Steiniche, Torben

    2016-04-09

    Staging of melanoma includes quantification of a proliferation index, i.e., presumed melanocytic mitoses of H&E stains are counted manually in hot spots. Yet, its reproducibility and prognostic impact increases by immunohistochemical dual staining for phosphohistone H3 (PHH3) and MART1, which also may enable fully automated quantification by image analysis. To ensure manageable workloads and repeatable measurements in modern pathology, the study aimed to present an automated quantification of proliferation with automated hot-spot selection in PHH3/MART1-stained melanomas. Formalin-fixed, paraffin-embedded tissue from 153 consecutive stage I/II melanoma patients was immunohistochemically dual-stained for PHH3 and MART1. Whole slide images were captured, and the number of PHH3/MART1-positive cells was manually and automatically counted in the global tumor area and in a manually and automatically selected hot spot, i.e., a fixed 1-mm(2) square. Bland-Altman plots and hypothesis tests compared manual and automated procedures, and the Cox proportional hazards model established their prognostic impact. The mean difference between manual and automated global counts was 2.9 cells/mm(2) (P = 0.0071) and 0.23 cells per hot spot (P = 0.96) for automated counts in manually and automatically selected hot spots. In 77 % of cases, manual and automated hot spots overlapped. Fully manual hot-spot counts yielded the highest prognostic performance with an adjusted hazard ratio of 5.5 (95 % CI, 1.3-24, P = 0.024) as opposed to 1.3 (95 % CI, 0.61-2.9, P = 0.47) for automated counts with automated hot spots. The automated index and automated hot-spot selection were highly correlated to their manual counterpart, but altogether their prognostic impact was noticeably reduced. Because correct recognition of only one PHH3/MART1-positive cell seems important, extremely high sensitivity and specificity of the algorithm is required for prognostic purposes. Thus, automated analysis may still aid and improve the pathologists' detection of mitoses in melanoma and possibly other malignancies.

  5. Automated image quality evaluation of T2 -weighted liver MRI utilizing deep learning architecture.

    PubMed

    Esses, Steven J; Lu, Xiaoguang; Zhao, Tiejun; Shanbhogue, Krishna; Dane, Bari; Bruno, Mary; Chandarana, Hersh

    2018-03-01

    To develop and test a deep learning approach named Convolutional Neural Network (CNN) for automated screening of T 2 -weighted (T 2 WI) liver acquisitions for nondiagnostic images, and compare this automated approach to evaluation by two radiologists. We evaluated 522 liver magnetic resonance imaging (MRI) exams performed at 1.5T and 3T at our institution between November 2014 and May 2016 for CNN training and validation. The CNN consisted of an input layer, convolutional layer, fully connected layer, and output layer. 351 T 2 WI were anonymized for training. Each case was annotated with a label of being diagnostic or nondiagnostic for detecting lesions and assessing liver morphology. Another independently collected 171 cases were sequestered for a blind test. These 171 T 2 WI were assessed independently by two radiologists and annotated as being diagnostic or nondiagnostic. These 171 T 2 WI were presented to the CNN algorithm and image quality (IQ) output of the algorithm was compared to that of two radiologists. There was concordance in IQ label between Reader 1 and CNN in 79% of cases and between Reader 2 and CNN in 73%. The sensitivity and the specificity of the CNN algorithm in identifying nondiagnostic IQ was 67% and 81% with respect to Reader 1 and 47% and 80% with respect to Reader 2. The negative predictive value of the algorithm for identifying nondiagnostic IQ was 94% and 86% (relative to Readers 1 and 2). We demonstrate a CNN algorithm that yields a high negative predictive value when screening for nondiagnostic T 2 WI of the liver. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:723-728. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Evaluation of Various Radar Data Quality Control Algorithms Based on Accumulated Radar Rainfall Statistics

    NASA Technical Reports Server (NTRS)

    Robinson, Michael; Steiner, Matthias; Wolff, David B.; Ferrier, Brad S.; Kessinger, Cathy; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The primary function of the TRMM Ground Validation (GV) Program is to create GV rainfall products that provide basic validation of satellite-derived precipitation measurements for select primary sites. A fundamental and extremely important step in creating high-quality GV products is radar data quality control. Quality control (QC) processing of TRMM GV radar data is based on some automated procedures, but the current QC algorithm is not fully operational and requires significant human interaction to assure satisfactory results. Moreover, the TRMM GV QC algorithm, even with continuous manual tuning, still can not completely remove all types of spurious echoes. In an attempt to improve the current operational radar data QC procedures of the TRMM GV effort, an intercomparison of several QC algorithms has been conducted. This presentation will demonstrate how various radar data QC algorithms affect accumulated radar rainfall products. In all, six different QC algorithms will be applied to two months of WSR-88D radar data from Melbourne, Florida. Daily, five-day, and monthly accumulated radar rainfall maps will be produced for each quality-controlled data set. The QC algorithms will be evaluated and compared based on their ability to remove spurious echoes without removing significant precipitation. Strengths and weaknesses of each algorithm will be assessed based on, their abilit to mitigate both erroneous additions and reductions in rainfall accumulation from spurious echo contamination and true precipitation removal, respectively. Contamination from individual spurious echo categories will be quantified to further diagnose the abilities of each radar QC algorithm. Finally, a cost-benefit analysis will be conducted to determine if a more automated QC algorithm is a viable alternative to the current, labor-intensive QC algorithm employed by TRMM GV.

  7. Automated liver elasticity calculation for 3D MRE

    NASA Astrophysics Data System (ADS)

    Dzyubak, Bogdan; Glaser, Kevin J.; Manduca, Armando; Ehman, Richard L.

    2017-03-01

    Magnetic Resonance Elastography (MRE) is a phase-contrast MRI technique which calculates quantitative stiffness images, called elastograms, by imaging the propagation of acoustic waves in tissues. It is used clinically to diagnose liver fibrosis. Automated analysis of MRE is difficult as the corresponding MRI magnitude images (which contain anatomical information) are affected by intensity inhomogeneity, motion artifact, and poor tissue- and edge-contrast. Additionally, areas with low wave amplitude must be excluded. An automated algorithm has already been successfully developed and validated for clinical 2D MRE. 3D MRE acquires substantially more data and, due to accelerated acquisition, has exacerbated image artifacts. Also, the current 3D MRE processing does not yield a confidence map to indicate MRE wave quality and guide ROI selection, as is the case in 2D. In this study, extension of the 2D automated method, with a simple wave-amplitude metric, was developed and validated against an expert reader in a set of 57 patient exams with both 2D and 3D MRE. The stiffness discrepancy with the expert for 3D MRE was -0.8% +/- 9.45% and was better than discrepancy with the same reader for 2D MRE (-3.2% +/- 10.43%), and better than the inter-reader discrepancy observed in previous studies. There were no automated processing failures in this dataset. Thus, the automated liver elasticity calculation (ALEC) algorithm is able to calculate stiffness from 3D MRE data with minimal bias and good precision, while enabling stiffness measurements to be fully reproducible and to be easily performed on the large 3D MRE datasets.

  8. Performance of optimized McRAPD in identification of 9 yeast species frequently isolated from patient samples: potential for automation.

    PubMed

    Trtkova, Jitka; Pavlicek, Petr; Ruskova, Lenka; Hamal, Petr; Koukalova, Dagmar; Raclavsky, Vladislav

    2009-11-10

    Rapid, easy, economical and accurate species identification of yeasts isolated from clinical samples remains an important challenge for routine microbiological laboratories, because susceptibility to antifungal agents, probability to develop resistance and ability to cause disease vary in different species. To overcome the drawbacks of the currently available techniques we have recently proposed an innovative approach to yeast species identification based on RAPD genotyping and termed McRAPD (Melting curve of RAPD). Here we have evaluated its performance on a broader spectrum of clinically relevant yeast species and also examined the potential of automated and semi-automated interpretation of McRAPD data for yeast species identification. A simple fully automated algorithm based on normalized melting data identified 80% of the isolates correctly. When this algorithm was supplemented by semi-automated matching of decisive peaks in first derivative plots, 87% of the isolates were identified correctly. However, a computer-aided visual matching of derivative plots showed the best performance with average 98.3% of the accurately identified isolates, almost matching the 99.4% performance of traditional RAPD fingerprinting. Since McRAPD technique omits gel electrophoresis and can be performed in a rapid, economical and convenient way, we believe that it can find its place in routine identification of medically important yeasts in advanced diagnostic laboratories that are able to adopt this technique. It can also serve as a broad-range high-throughput technique for epidemiological surveillance.

  9. Automated 3D renal segmentation based on image partitioning

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, Varduhi; Voiculescu, Irina D.

    2016-03-01

    Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.

  10. I-TASSER: fully automated protein structure prediction in CASP8.

    PubMed

    Zhang, Yang

    2009-01-01

    The I-TASSER algorithm for 3D protein structure prediction was tested in CASP8, with the procedure fully automated in both the Server and Human sections. The quality of the server models is close to that of human ones but the human predictions incorporate more diverse templates from other servers which improve the human predictions in some of the distant homology targets. For the first time, the sequence-based contact predictions from machine learning techniques are found helpful for both template-based modeling (TBM) and template-free modeling (FM). In TBM, although the accuracy of the sequence based contact predictions is on average lower than that from template-based ones, the novel contacts in the sequence-based predictions, which are complementary to the threading templates in the weakly or unaligned regions, are important to improve the global and local packing in these regions. Moreover, the newly developed atomic structural refinement algorithm was tested in CASP8 and found to improve the hydrogen-bonding networks and the overall TM-score, which is mainly due to its ability of removing steric clashes so that the models can be generated from cluster centroids. Nevertheless, one of the major issues of the I-TASSER pipeline is the model selection where the best models could not be appropriately recognized when the correct templates are detected only by the minority of the threading algorithms. There are also problems related with domain-splitting and mirror image recognition which mainly influences the performance of I-TASSER modeling in the FM-based structure predictions. Copyright 2009 Wiley-Liss, Inc.

  11. Chimenea and other tools: Automated imaging of multi-epoch radio-synthesis data with CASA

    NASA Astrophysics Data System (ADS)

    Staley, T. D.; Anderson, G. E.

    2015-11-01

    In preparing the way for the Square Kilometre Array and its pathfinders, there is a pressing need to begin probing the transient sky in a fully robotic fashion using the current generation of radio telescopes. Effective exploitation of such surveys requires a largely automated data-reduction process. This paper introduces an end-to-end automated reduction pipeline, AMIsurvey, used for calibrating and imaging data from the Arcminute Microkelvin Imager Large Array. AMIsurvey makes use of several component libraries which have been packaged separately for open-source release. The most scientifically significant of these is chimenea, which implements a telescope-agnostic algorithm for automated imaging of pre-calibrated multi-epoch radio-synthesis data, of the sort typically acquired for transient surveys or follow-up. The algorithm aims to improve upon standard imaging pipelines by utilizing iterative RMS-estimation and automated source-detection to avoid so called 'Clean-bias', and makes use of CASA subroutines for the underlying image-synthesis operations. At a lower level, AMIsurvey relies upon two libraries, drive-ami and drive-casa, built to allow use of mature radio-astronomy software packages from within Python scripts. While targeted at automated imaging, the drive-casa interface can also be used to automate interaction with any of the CASA subroutines from a generic Python process. Additionally, these packages may be of wider technical interest beyond radio-astronomy, since they demonstrate use of the Python library pexpect to emulate terminal interaction with an external process. This approach allows for rapid development of a Python interface to any legacy or externally-maintained pipeline which accepts command-line input, without requiring alterations to the original code.

  12. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data.

    PubMed

    Schultz, Elise V; Schultz, Christopher J; Carey, Lawrence D; Cecil, Daniel J; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  13. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    NASA Technical Reports Server (NTRS)

    Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  14. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    PubMed Central

    SCHULTZ, ELISE V.; SCHULTZ, CHRISTOPHER J.; CAREY, LAWRENCE D.; CECIL, DANIEL J.; BATEMAN, MONTE

    2017-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system’s performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system’s performance is evaluated with adjustments to parameter sensitivity. The system’s performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system’s performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system. PMID:29303164

  15. Development of an integrated spacecraft Guidance, Navigation, & Control subsystem for automated proximity operations

    NASA Astrophysics Data System (ADS)

    Schulte, Peter Z.; Spencer, David A.

    2016-01-01

    This paper describes the development and validation process of a highly automated Guidance, Navigation, & Control subsystem for a small satellite on-orbit inspection application, enabling proximity operations without human-in-the-loop interaction. The paper focuses on the integration and testing of Guidance, Navigation, & Control software and the development of decision logic to address the question of how such a system can be effectively implemented for full automation. This process is unique because a multitude of operational scenarios must be considered and a set of complex interactions between subsystem algorithms must be defined to achieve the automation goal. The Prox-1 mission is currently under development within the Space Systems Design Laboratory at the Georgia Institute of Technology. The mission involves the characterization of new small satellite component technologies, deployment of the LightSail 3U CubeSat, entering into a trailing orbit relative to LightSail using ground-in-the-loop commands, and demonstration of automated proximity operations through formation flight and natural motion circumnavigation maneuvers. Operations such as these may be utilized for many scenarios including on-orbit inspection, refueling, repair, construction, reconnaissance, docking, and debris mitigation activities. Prox-1 uses onboard sensors and imaging instruments to perform Guidance, Navigation, & Control operations during on-orbit inspection of LightSail. Navigation filters perform relative orbit determination based on images of the target spacecraft, and guidance algorithms conduct automated maneuver planning. A slew and tracking controller sends attitude actuation commands to a set of control moment gyroscopes, and other controllers manage desaturation, detumble, thruster firing, and target acquisition/recovery. All Guidance, Navigation, & Control algorithms are developed in a MATLAB/Simulink six degree-of-freedom simulation environment and are integrated using decision logic to autonomously determine when actions should be performed. The complexity of this decision logic is the primary challenge of the automated process, and the Stateflow tool in Simulink is used to establish logical relationships and manage data flow between each of the individual hardware and software components. Once the integrated simulation is fully developed in MATLAB/Simulink, the algorithms are autocoded to C/C++ and integrated into flight software. Hardware-in-the-loop testing provides validation of the Guidance, Navigation, & Control subsystem performance.

  16. a Fully Automated Pipeline for Classification Tasks with AN Application to Remote Sensing

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Claesen, M.; Takeda, H.; De Moor, B.

    2016-06-01

    Nowadays deep learning has been intensively in spotlight owing to its great victories at major competitions, which undeservedly pushed `shallow' machine learning methods, relatively naive/handy algorithms commonly used by industrial engineers, to the background in spite of their facilities such as small requisite amount of time/dataset for training. We, with a practical point of view, utilized shallow learning algorithms to construct a learning pipeline such that operators can utilize machine learning without any special knowledge, expensive computation environment, and a large amount of labelled data. The proposed pipeline automates a whole classification process, namely feature-selection, weighting features and the selection of the most suitable classifier with optimized hyperparameters. The configuration facilitates particle swarm optimization, one of well-known metaheuristic algorithms for the sake of generally fast and fine optimization, which enables us not only to optimize (hyper)parameters but also to determine appropriate features/classifier to the problem, which has conventionally been a priori based on domain knowledge and remained untouched or dealt with naïve algorithms such as grid search. Through experiments with the MNIST and CIFAR-10 datasets, common datasets in computer vision field for character recognition and object recognition problems respectively, our automated learning approach provides high performance considering its simple setting (i.e. non-specialized setting depending on dataset), small amount of training data, and practical learning time. Moreover, compared to deep learning the performance stays robust without almost any modification even with a remote sensing object recognition problem, which in turn indicates that there is a high possibility that our approach contributes to general classification problems.

  17. Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.

    PubMed

    Liu, Shuang; Xie, Yiting; Reeves, Anthony P

    2016-05-01

    A fully automated segmentation algorithm, progressive surface resolution (PSR), is presented in this paper to determine the closed surface of approximately convex blob-like structures that are common in biomedical imaging. The PSR algorithm was applied to the cortical surface segmentation of 460 vertebral bodies on 46 low-dose chest CT images, which can be potentially used for automated bone mineral density measurement and compression fracture detection. The target surface is realized by a closed triangular mesh, which thereby guarantees the enclosure. The surface vertices of the triangular mesh representation are constrained along radial trajectories that are uniformly distributed in 3D angle space. The segmentation is accomplished by determining for each radial trajectory the location of its intersection with the target surface. The surface is first initialized based on an input high confidence boundary image and then resolved progressively based on a dynamic attraction map in an order of decreasing degree of evidence regarding the target surface location. For the visual evaluation, the algorithm achieved acceptable segmentation for 99.35 % vertebral bodies. Quantitative evaluation was performed on 46 vertebral bodies and achieved overall mean Dice coefficient of 0.939 (with max [Formula: see text] 0.957, min [Formula: see text] 0.906 and standard deviation [Formula: see text] 0.011) using manual annotations as the ground truth. Both visual and quantitative evaluations demonstrate encouraging performance of the PSR algorithm. This novel surface resolution strategy provides uniform angular resolution for the segmented surface with computation complexity and runtime that are linearly constrained by the total number of vertices of the triangular mesh representation.

  18. Automated coronary artery calcification detection on low-dose chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Cham, Matthew D.; Henschke, Claudia; Yankelevitz, David; Reeves, Anthony P.

    2014-03-01

    Coronary artery calcification (CAC) measurement from low-dose CT images can be used to assess the risk of coronary artery disease. A fully automatic algorithm to detect and measure CAC from low-dose non-contrast, non-ECG-gated chest CT scans is presented. Based on the automatically detected CAC, the Agatston score (AS), mass score and volume score were computed. These were compared with scores obtained manually from standard-dose ECG-gated scans and low-dose un-gated scans of the same patient. The automatic algorithm segments the heart region based on other pre-segmented organs to provide a coronary region mask. The mitral valve and aortic valve calcification is identified and excluded. All remaining voxels greater than 180HU within the mask region are considered as CAC candidates. The heart segmentation algorithm was evaluated on 400 non-contrast cases with both low-dose and regular dose CT scans. By visual inspection, 371 (92.8%) of the segmentations were acceptable. The automated CAC detection algorithm was evaluated on 41 low-dose non-contrast CT scans. Manual markings were performed on both low-dose and standard-dose scans for these cases. Using linear regression, the correlation of the automatic AS with the standard-dose manual scores was 0.86; with the low-dose manual scores the correlation was 0.91. Standard risk categories were also computed. The automated method risk category agreed with manual markings of gated scans for 24 cases while 15 cases were 1 category off. For low-dose scans, the automatic method agreed with 33 cases while 7 cases were 1 category off.

  19. Automated patient setup and gating using cone beam computed tomography projections

    NASA Astrophysics Data System (ADS)

    Wan, Hanlin; Bertholet, Jenny; Ge, Jiajia; Poulsen, Per; Parikh, Parag

    2016-03-01

    In radiation therapy, fiducial markers are often implanted near tumors and used for patient positioning and respiratory gating purposes. These markers are then used to manually align the patients by matching the markers in the cone beam computed tomography (CBCT) reconstruction to those in the planning CT. This step is time-intensive and user-dependent, and often results in a suboptimal patient setup. We propose a fully automated, robust method based on dynamic programming (DP) for segmenting radiopaque fiducial markers in CBCT projection images, which are then used to automatically optimize the treatment couch position and/or gating window bounds. The mean of the absolute 2D segmentation error of our DP algorithm is 1.3+/- 1.0 mm for 87 markers on 39 patients. Intrafraction images were acquired every 3 s during treatment at two different institutions. For gated patients from Institution A (8 patients, 40 fractions), the DP algorithm increased the delivery accuracy (96+/- 6% versus 91+/- 11% , p  <  0.01) compared to the manual setup using kV fluoroscopy. For non-gated patients from Institution B (6 patients, 16 fractions), the DP algorithm performed similarly (1.5+/- 0.8 mm versus 1.6+/- 0.9 mm, p  =  0.48) compared to the manual setup matching the fiducial markers in the CBCT to the mean position. Our proposed automated patient setup algorithm only takes 1-2 s to run, requires no user intervention, and performs as well as or better than the current clinical setup.

  20. Automated Quantitative Characterization of Retinal Vascular Leakage and Microaneurysms in Ultra-widefield Fluorescein Angiography

    PubMed Central

    Ehlers, Justis P.; Wang, Kevin; Vasanji, Amit; Hu, Ming; Srivastava, Sunil K.

    2017-01-01

    Summary Ultra-widefield fluorescein angiography (UWFA) is an emerging imaging modality used to characterize pathology in the retinal vasculature such as microaneurysms (MA) and vascular leakage. Despites its potential value for diagnosis and disease surveillance, objective quantitative assessment of retinal pathology by UWFA is currently limited because it requires laborious manual segmentation by trained human graders. In this report, we describe a novel fully automated software platform, which segments MAs and leakage areas in native and dewarped UWFA images with retinal vascular disease. Comparison of the algorithm to human grader generated gold standards demonstrated significant strong correlations for MA and leakage areas (ICC=0.78-0.87 and ICC=0.70-0.86, respectively, p=2.1×10-7 to 3.5×10-10 and p=7.8×10-6 to 1.3×10-9, respectively). These results suggest the algorithm performs similarly to human graders in MA and leakage segmentation and may be of significant utility in clinical and research settings. PMID:28432113

  1. RootGraph: a graphic optimization tool for automated image analysis of plant roots

    PubMed Central

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N.; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J.

    2015-01-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions. PMID:26224880

  2. Automated acoustic localization and call association for vocalizing humpback whales on the Navy's Pacific Missile Range Facility.

    PubMed

    Helble, Tyler A; Ierley, Glenn R; D'Spain, Gerald L; Martin, Stephen W

    2015-01-01

    Time difference of arrival (TDOA) methods for acoustically localizing multiple marine mammals have been applied to recorded data from the Navy's Pacific Missile Range Facility in order to localize and track humpback whales. Modifications to established methods were necessary in order to simultaneously track multiple animals on the range faster than real-time and in a fully automated way, while minimizing the number of incorrect localizations. The resulting algorithms were run with no human intervention at computational speeds faster than the data recording speed on over forty days of acoustic recordings from the range, spanning multiple years. Spatial localizations based on correlating sequences of units originating from within the range produce estimates having a standard deviation typically 10 m or less (due primarily to TDOA measurement errors), and a bias of 20 m or less (due primarily to sound speed mismatch). An automated method for associating units to individual whales is presented, enabling automated humpback song analyses to be performed.

  3. UBO Detector - A cluster-based, fully automated pipeline for extracting white matter hyperintensities.

    PubMed

    Jiang, Jiyang; Liu, Tao; Zhu, Wanlin; Koncz, Rebecca; Liu, Hao; Lee, Teresa; Sachdev, Perminder S; Wen, Wei

    2018-07-01

    We present 'UBO Detector', a cluster-based, fully automated pipeline for extracting and calculating variables for regions of white matter hyperintensities (WMH) (available for download at https://cheba.unsw.edu.au/group/neuroimaging-pipeline). It takes T1-weighted and fluid attenuated inversion recovery (FLAIR) scans as input, and SPM12 and FSL functions are utilised for pre-processing. The candidate clusters are then generated by FMRIB's Automated Segmentation Tool (FAST). A supervised machine learning algorithm, k-nearest neighbor (k-NN), is applied to determine whether the candidate clusters are WMH or non-WMH. UBO Detector generates both image and text (volumes and the number of WMH clusters) outputs for whole brain, periventricular, deep, and lobar WMH, as well as WMH in arterial territories. The computation time for each brain is approximately 15 min. We validated the performance of UBO Detector by showing a) high segmentation (similarity index (SI) = 0.848) and volumetric (intraclass correlation coefficient (ICC) = 0.985) agreement between the UBO Detector-derived and manually traced WMH; b) highly correlated (r 2  > 0.9) and a steady increase of WMH volumes over time; and c) significant associations of periventricular (t = 22.591, p < 0.001) and deep (t = 14.523, p < 0.001) WMH volumes generated by UBO Detector with Fazekas rating scores. With parallel computing enabled in UBO Detector, the processing can take advantage of multi-core CPU's that are commonly available on workstations. In conclusion, UBO Detector is a reliable, efficient and fully automated WMH segmentation pipeline. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hori, Yasuaki; Yasuno, Yoshiaki; Sakai, Shingo; Matsumoto, Masayuki; Sugawara, Tomoko; Madjarova, Violeta; Yamanari, Masahiro; Makita, Shuichi; Yasui, Takeshi; Araki, Tsutomu; Itoh, Masahide; Yatagai, Toyohiko

    2006-03-01

    A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibility of the algorithm.

  5. Towards operational multisensor registration

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J. M.; Kwok, Ronald; Curlander, John C.

    1991-01-01

    To use data from a number of different remote sensors in a synergistic manner, a multidimensional analysis of the data is necessary. However, prior to this analysis, processing to correct for the systematic geometric distortion characteristic of each sensor is required. Furthermore, the registration process must be fully automated to handle a large volume of data and high data rates. A conceptual approach towards an operational multisensor registration algorithm is presented. The performance requirements of the algorithm are first formulated given the spatially, temporally, and spectrally varying factors that influence the image characteristics and the science requirements of various applications. Several registration techniques that fit within the structure of this algorithm are also presented. Their performance was evaluated using a multisensor test data set assembled from LANDSAT TM, SEASAT, SIR-B, Thermal Infrared Multispectral Scanner (TIMS), and SPOT sensors.

  6. Automated Wildfire Detection Through Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Miller, Jerry; Borne, Kirk; Thomas, Brian; Huang, Zhenping; Chi, Yuechen

    2005-01-01

    Wildfires have a profound impact upon the biosphere and our society in general. They cause loss of life, destruction of personal property and natural resources and alter the chemistry of the atmosphere. In response to the concern over the consequences of wildland fire and to support the fire management community, the National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data and Information Service (NESDIS) located in Camp Springs, Maryland gradually developed an operational system to routinely monitor wildland fire by satellite observations. The Hazard Mapping System, as it is known today, allows a team of trained fire analysts to examine and integrate, on a daily basis, remote sensing data from Geostationary Operational Environmental Satellite (GOES), Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors and generate a 24 hour fire product for the conterminous United States. Although assisted by automated fire detection algorithms, N O M has not been able to eliminate the human element from their fire detection procedures. As a consequence, the manually intensive effort has prevented NOAA from transitioning to a global fire product as urged particularly by climate modelers. NASA at Goddard Space Flight Center in Greenbelt, Maryland is helping N O M more fully automate the Hazard Mapping System by training neural networks to mimic the decision-making process of the frre analyst team as well as the automated algorithms.

  7. Fully automated reconstruction of three-dimensional vascular tree structures from two orthogonal views using computational algorithms and productionrules

    NASA Astrophysics Data System (ADS)

    Liu, Iching; Sun, Ying

    1992-10-01

    A system for reconstructing 3-D vascular structure from two orthogonally projected images is presented. The formidable problem of matching segments between two views is solved using knowledge of the epipolar constraint and the similarity of segment geometry and connectivity. The knowledge is represented in a rule-based system, which also controls the operation of several computational algorithms for tracking segments in each image, representing 2-D segments with directed graphs, and reconstructing 3-D segments from matching 2-D segment pairs. Uncertain reasoning governs the interaction between segmentation and matching; it also provides a framework for resolving the matching ambiguities in an iterative way. The system was implemented in the C language and the C Language Integrated Production System (CLIPS) expert system shell. Using video images of a tree model, the standard deviation of reconstructed centerlines was estimated to be 0.8 mm (1.7 mm) when the view direction was parallel (perpendicular) to the epipolar plane. Feasibility of clinical use was shown using x-ray angiograms of a human chest phantom. The correspondence of vessel segments between two views was accurate. Computational time for the entire reconstruction process was under 30 s on a workstation. A fully automated system for two-view reconstruction that does not require the a priori knowledge of vascular anatomy is demonstrated.

  8. Systematic and fully automated identification of protein sequence patterns.

    PubMed

    Hart, R K; Royyuru, A K; Stolovitzky, G; Califano, A

    2000-01-01

    We present an efficient algorithm to systematically and automatically identify patterns in protein sequence families. The procedure is based on the Splash deterministic pattern discovery algorithm and on a framework to assess the statistical significance of patterns. We demonstrate its application to the fully automated discovery of patterns in 974 PROSITE families (the complete subset of PROSITE families which are defined by patterns and contain DR records). Splash generates patterns with better specificity and undiminished sensitivity, or vice versa, in 28% of the families; identical statistics were obtained in 48% of the families, worse statistics in 15%, and mixed behavior in the remaining 9%. In about 75% of the cases, Splash patterns identify sequence sites that overlap more than 50% with the corresponding PROSITE pattern. The procedure is sufficiently rapid to enable its use for daily curation of existing motif and profile databases. Third, our results show that the statistical significance of discovered patterns correlates well with their biological significance. The trypsin subfamily of serine proteases is used to illustrate this method's ability to exhaustively discover all motifs in a family that are statistically and biologically significant. Finally, we discuss applications of sequence patterns to multiple sequence alignment and the training of more sensitive score-based motif models, akin to the procedure used by PSI-BLAST. All results are available at httpl//www.research.ibm.com/spat/.

  9. Pulmonary Lobe Segmentation with Probabilistic Segmentation of the Fissures and a Groupwise Fissure Prior

    PubMed Central

    Bragman, Felix J.S.; McClelland, Jamie R.; Jacob, Joseph; Hurst, John R.; Hawkes, David J.

    2017-01-01

    A fully automated, unsupervised lobe segmentation algorithm is presented based on a probabilistic segmentation of the fissures and the simultaneous construction of a population model of the fissures. A two-class probabilistic segmentation segments the lung into candidate fissure voxels and the surrounding parenchyma. This was combined with anatomical information and a groupwise fissure prior to drive non-parametric surface fitting to obtain the final segmentation. The performance of our fissure segmentation was validated on 30 patients from the COPDGene cohort, achieving a high median F1-score of 0.90 and showed general insensitivity to filter parameters. We evaluated our lobe segmentation algorithm on the LOLA11 dataset, which contains 55 cases at varying levels of pathology. We achieved the highest score of 0.884 of the automated algorithms. Our method was further tested quantitatively and qualitatively on 80 patients from the COPDGene study at varying levels of functional impairment. Accurate segmentation of the lobes is shown at various degrees of fissure incompleteness for 96% of all cases. We also show the utility of including a groupwise prior in segmenting the lobes in regions of grossly incomplete fissures. PMID:28436850

  10. Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis.

    PubMed

    Kammen, Alexandra; Law, Meng; Tjan, Bosco S; Toga, Arthur W; Shi, Yonggang

    2016-01-15

    Diffusion MRI tractography provides a non-invasive modality to examine the human retinofugal projection, which consists of the optic nerves, optic chiasm, optic tracts, the lateral geniculate nuclei (LGN) and the optic radiations. However, the pathway has several anatomic features that make it particularly challenging to study with tractography, including its location near blood vessels and bone-air interface at the base of the cerebrum, crossing fibers at the chiasm, somewhat-tortuous course around the temporal horn via Meyer's Loop, and multiple closely neighboring fiber bundles. To date, these unique complexities of the visual pathway have impeded the development of a robust and automated reconstruction method using tractography. To overcome these challenges, we develop a novel, fully automated system to reconstruct the retinofugal visual pathway from high-resolution diffusion imaging data. Using multi-shell, high angular resolution diffusion imaging (HARDI) data, we reconstruct precise fiber orientation distributions (FODs) with high order spherical harmonics (SPHARM) to resolve fiber crossings, which allows the tractography algorithm to successfully navigate the complicated anatomy surrounding the retinofugal pathway. We also develop automated algorithms for the identification of ROIs used for fiber bundle reconstruction. In particular, we develop a novel approach to extract the LGN region of interest (ROI) based on intrinsic shape analysis of a fiber bundle computed from a seed region at the optic chiasm to a target at the primary visual cortex. By combining automatically identified ROIs and FOD-based tractography, we obtain a fully automated system to compute the main components of the retinofugal pathway, including the optic tract and the optic radiation. We apply our method to the multi-shell HARDI data of 215 subjects from the Human Connectome Project (HCP). Through comparisons with post-mortem dissection measurements, we demonstrate the retinotopic organization of the optic radiation including a successful reconstruction of Meyer's loop. Then, using the reconstructed optic radiation bundle from the HCP cohort, we construct a probabilistic atlas and demonstrate its consistency with a post-mortem atlas. Finally, we generate a shape-based representation of the optic radiation for morphometry analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Automated Morphological Analysis of Microglia After Stroke.

    PubMed

    Heindl, Steffanie; Gesierich, Benno; Benakis, Corinne; Llovera, Gemma; Duering, Marco; Liesz, Arthur

    2018-01-01

    Microglia are the resident immune cells of the brain and react quickly to changes in their environment with transcriptional regulation and morphological changes. Brain tissue injury such as ischemic stroke induces a local inflammatory response encompassing microglial activation. The change in activation status of a microglia is reflected in its gradual morphological transformation from a highly ramified into a less ramified or amoeboid cell shape. For this reason, the morphological changes of microglia are widely utilized to quantify microglial activation and studying their involvement in virtually all brain diseases. However, the currently available methods, which are mainly based on manual rating of immunofluorescent microscopic images, are often inaccurate, rater biased, and highly time consuming. To address these issues, we created a fully automated image analysis tool, which enables the analysis of microglia morphology from a confocal Z-stack and providing up to 59 morphological features. We developed the algorithm on an exploratory dataset of microglial cells from a stroke mouse model and validated the findings on an independent data set. In both datasets, we could demonstrate the ability of the algorithm to sensitively discriminate between the microglia morphology in the peri-infarct and the contralateral, unaffected cortex. Dimensionality reduction by principal component analysis allowed to generate a highly sensitive compound score for microglial shape analysis. Finally, we tested for concordance of results between the novel automated analysis tool and the conventional manual analysis and found a high degree of correlation. In conclusion, our novel method for the fully automatized analysis of microglia morphology shows excellent accuracy and time efficacy compared to traditional analysis methods. This tool, which we make openly available, could find application to study microglia morphology using fluorescence imaging in a wide range of brain disease models.

  12. Automation of image data processing. (Polish Title: Automatyzacja proces u przetwarzania danych obrazowych)

    NASA Astrophysics Data System (ADS)

    Preuss, R.

    2014-12-01

    This article discusses the current capabilities of automate processing of the image data on the example of using PhotoScan software by Agisoft. At present, image data obtained by various registration systems (metric and non - metric cameras) placed on airplanes, satellites, or more often on UAVs is used to create photogrammetric products. Multiple registrations of object or land area (large groups of photos are captured) are usually performed in order to eliminate obscured area as well as to raise the final accuracy of the photogrammetric product. Because of such a situation t he geometry of the resulting image blocks is far from the typical configuration of images. For fast images georeferencing automatic image matching algorithms are currently applied. They can create a model of a block in the local coordinate system or using initial exterior orientation and measured control points can provide image georeference in an external reference frame. In the case of non - metric image application, it is also possible to carry out self - calibration process at this stage. Image matching algorithm is also used in generation of dense point clouds reconstructing spatial shape of the object (area). In subsequent processing steps it is possible to obtain typical photogrammetric products such as orthomosaic, DSM or DTM and a photorealistic solid model of an object . All aforementioned processing steps are implemented in a single program in contrary to standard commercial software dividing all steps into dedicated modules. Image processing leading to final geo referenced products can be fully automated including sequential implementation of the processing steps at predetermined control parameters. The paper presents the practical results of the application fully automatic generation of othomosaic for both images obtained by a metric Vexell camera and a block of images acquired by a non - metric UAV system

  13. Progress in Fully Automated Abdominal CT Interpretation

    PubMed Central

    Summers, Ronald M.

    2016-01-01

    OBJECTIVE Automated analysis of abdominal CT has advanced markedly over just the last few years. Fully automated assessment of organs, lymph nodes, adipose tissue, muscle, bowel, spine, and tumors are some examples where tremendous progress has been made. Computer-aided detection of lesions has also improved dramatically. CONCLUSION This article reviews the progress and provides insights into what is in store in the near future for automated analysis for abdominal CT, ultimately leading to fully automated interpretation. PMID:27101207

  14. Automated cortical bone segmentation for multirow-detector CT imaging with validation and application to human studies

    PubMed Central

    Li, Cheng; Jin, Dakai; Chen, Cheng; Letuchy, Elena M.; Janz, Kathleen F.; Burns, Trudy L.; Torner, James C; Levy, Steven M.; Saha, Punam K

    2015-01-01

    Purpose: Cortical bone supports and protects human skeletal functions and plays an important role in determining bone strength and fracture risk. Cortical bone segmentation at a peripheral site using multirow-detector CT (MD-CT) imaging is useful for in vivo assessment of bone strength and fracture risk. Major challenges for the task emerge from limited spatial resolution, low signal-to-noise ratio, presence of cortical pores, and structural complexity over the transition between trabecular and cortical bones. An automated algorithm for cortical bone segmentation at the distal tibia from in vivo MD-CT imaging is presented and its performance and application are examined. Methods: The algorithm is completed in two major steps—(1) bone filling, alignment, and region-of-interest computation and (2) segmentation of cortical bone. After the first step, the following sequence of tasks is performed to accomplish cortical bone segmentation—(1) detection of marrow space and possible pores, (2) computation of cortical bone thickness, detection of recession points, and confirmation and filling of true pores, and (3) detection of endosteal boundary and delineation of cortical bone. Effective generalizations of several digital topologic and geometric techniques are introduced and a fully automated algorithm is presented for cortical bone segmentation. Results: An accuracy of 95.1% in terms of volume of agreement with manual outlining of cortical bone was observed in human MD-CT scans, while an accuracy of 88.5% was achieved when compared with manual outlining on postregistered high resolution micro-CT imaging. An intraclass correlation coefficient of 0.98 was obtained in cadaveric repeat scans. A pilot study was conducted to describe gender differences in cortical bone properties. This study involved 51 female and 46 male participants (age: 19–20 yr) from the Iowa Bone Development Study. Results from this pilot study suggest that, on average after adjustment for height and weight differences, males have thicker cortex (mean difference 0.33 mm and effect size 0.92 at the anterior region) with lower bone mineral density (mean difference −28.73 mg/cm3 and effect size 1.35 at the posterior region) as compared to females. Conclusions: The algorithm presented is suitable for fully automated segmentation of cortical bone in MD-CT imaging of the distal tibia with high accuracy and reproducibility. Analysis of data from a pilot study demonstrated that the cortical bone indices allow quantification of gender differences in cortical bone from MD-CT imaging. Application to larger population groups, including those with compromised bone, is needed. PMID:26233184

  15. [The study of medical supplies automation replenishment algorithm in hospital on medical supplies supplying chain].

    PubMed

    Sheng, Xi

    2012-07-01

    The thesis aims to study the automation replenishment algorithm in hospital on medical supplies supplying chain. The mathematical model and algorithm of medical supplies automation replenishment are designed through referring to practical data form hospital on the basis of applying inventory theory, greedy algorithm and partition algorithm. The automation replenishment algorithm is proved to realize automatic calculation of the medical supplies distribution amount and optimize medical supplies distribution scheme. A conclusion could be arrived that the model and algorithm of inventory theory, if applied in medical supplies circulation field, could provide theoretical and technological support for realizing medical supplies automation replenishment of hospital on medical supplies supplying chain.

  16. Automated Liquid-Level Control of a Nutrient Reservoir for a Hydroponic System

    NASA Technical Reports Server (NTRS)

    Smith, Boris; Asumadu, Johnson A.; Dogan, Numan S.

    1997-01-01

    A microprocessor-based system for control of the liquid level of a nutrient reservoir for a plant hydroponic growing system has been developed. The system uses an ultrasonic transducer to sense the liquid level or height. A National Instruments' Multifunction Analog and Digital Input/Output PC Kit includes NI-DAQ DOS/Windows driver software for an IBM 486 personal computer. A Labview Full Development system for Windows is the graphical programming system being used. The system allows liquid level control to within 0.1 cm for all levels tried between 8 and 36 cm in the hydroponic system application. The detailed algorithms have been developed and a fully automated microprocessor based nutrient replenishment system has been described for this hydroponic system.

  17. Barcoding T Cell Calcium Response Diversity with Methods for Automated and Accurate Analysis of Cell Signals (MAAACS)

    PubMed Central

    Sergé, Arnauld; Bernard, Anne-Marie; Phélipot, Marie-Claire; Bertaux, Nicolas; Fallet, Mathieu; Grenot, Pierre; Marguet, Didier; He, Hai-Tao; Hamon, Yannick

    2013-01-01

    We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells. PMID:24086124

  18. Automatic detection of left and right ventricles from CTA enables efficient alignment of anatomy with myocardial perfusion data.

    PubMed

    Piccinelli, Marina; Faber, Tracy L; Arepalli, Chesnal D; Appia, Vikram; Vinten-Johansen, Jakob; Schmarkey, Susan L; Folks, Russell D; Garcia, Ernest V; Yezzi, Anthony

    2014-02-01

    Accurate alignment between cardiac CT angiographic studies (CTA) and nuclear perfusion images is crucial for improved diagnosis of coronary artery disease. This study evaluated in an animal model the accuracy of a CTA fully automated biventricular segmentation algorithm, a necessary step for automatic and thus efficient PET/CT alignment. Twelve pigs with acute infarcts were imaged using Rb-82 PET and 64-slice CTA. Post-mortem myocardium mass measurements were obtained. Endocardial and epicardial myocardial boundaries were manually and automatically detected on the CTA and both segmentations used to perform PET/CT alignment. To assess the segmentation performance, image-based myocardial masses were compared to experimental data; the hand-traced profiles were used as a reference standard to assess the global and slice-by-slice robustness of the automated algorithm in extracting myocardium, LV, and RV. Mean distances between the automated and the manual 3D segmented surfaces were computed. Finally, differences in rotations and translations between the manual and automatic surfaces were estimated post-PET/CT alignment. The largest, smallest, and median distances between interactive and automatic surfaces averaged 1.2 ± 2.1, 0.2 ± 1.6, and 0.7 ± 1.9 mm. The average angular and translational differences in CT/PET alignments were 0.4°, -0.6°, and -2.3° about x, y, and z axes, and 1.8, -2.1, and 2.0 mm in x, y, and z directions. Our automatic myocardial boundary detection algorithm creates surfaces from CTA that are similar in accuracy and provide similar alignments with PET as those obtained from interactive tracing. Specific difficulties in a reliable segmentation of the apex and base regions will require further improvements in the automated technique.

  19. Automated biphasic morphological assessment of hepatitis B-related liver fibrosis using second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Tong-Hong; Chen, Tse-Ching; Teng, Xiao; Liang, Kung-Hao; Yeh, Chau-Ting

    2015-08-01

    Liver fibrosis assessment by biopsy and conventional staining scores is based on histopathological criteria. Variations in sample preparation and the use of semi-quantitative histopathological methods commonly result in discrepancies between medical centers. Thus, minor changes in liver fibrosis might be overlooked in multi-center clinical trials, leading to statistically non-significant data. Here, we developed a computer-assisted, fully automated, staining-free method for hepatitis B-related liver fibrosis assessment. In total, 175 liver biopsies were divided into training (n = 105) and verification (n = 70) cohorts. Collagen was observed using second harmonic generation (SHG) microscopy without prior staining, and hepatocyte morphology was recorded using two-photon excitation fluorescence (TPEF) microscopy. The training cohort was utilized to establish a quantification algorithm. Eleven of 19 computer-recognizable SHG/TPEF microscopic morphological features were significantly correlated with the ISHAK fibrosis stages (P < 0.001). A biphasic scoring method was applied, combining support vector machine and multivariate generalized linear models to assess the early and late stages of fibrosis, respectively, based on these parameters. The verification cohort was used to verify the scoring method, and the area under the receiver operating characteristic curve was >0.82 for liver cirrhosis detection. Since no subjective gradings are needed, interobserver discrepancies could be avoided using this fully automated method.

  20. Automated biphasic morphological assessment of hepatitis B-related liver fibrosis using second harmonic generation microscopy.

    PubMed

    Wang, Tong-Hong; Chen, Tse-Ching; Teng, Xiao; Liang, Kung-Hao; Yeh, Chau-Ting

    2015-08-11

    Liver fibrosis assessment by biopsy and conventional staining scores is based on histopathological criteria. Variations in sample preparation and the use of semi-quantitative histopathological methods commonly result in discrepancies between medical centers. Thus, minor changes in liver fibrosis might be overlooked in multi-center clinical trials, leading to statistically non-significant data. Here, we developed a computer-assisted, fully automated, staining-free method for hepatitis B-related liver fibrosis assessment. In total, 175 liver biopsies were divided into training (n = 105) and verification (n = 70) cohorts. Collagen was observed using second harmonic generation (SHG) microscopy without prior staining, and hepatocyte morphology was recorded using two-photon excitation fluorescence (TPEF) microscopy. The training cohort was utilized to establish a quantification algorithm. Eleven of 19 computer-recognizable SHG/TPEF microscopic morphological features were significantly correlated with the ISHAK fibrosis stages (P < 0.001). A biphasic scoring method was applied, combining support vector machine and multivariate generalized linear models to assess the early and late stages of fibrosis, respectively, based on these parameters. The verification cohort was used to verify the scoring method, and the area under the receiver operating characteristic curve was >0.82 for liver cirrhosis detection. Since no subjective gradings are needed, interobserver discrepancies could be avoided using this fully automated method.

  1. Discriminative parameter estimation for random walks segmentation.

    PubMed

    Baudin, Pierre-Yves; Goodman, Danny; Kumrnar, Puneet; Azzabou, Noura; Carlier, Pierre G; Paragios, Nikos; Kumar, M Pawan

    2013-01-01

    The Random Walks (RW) algorithm is one of the most efficient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Specifically, they provide a hard segmentation of the images, instead of a probabilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach significantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.

  2. Automated Liver Elasticity Calculation for 3D MRE

    PubMed Central

    Dzyubak, Bogdan; Glaser, Kevin J.; Manduca, Armando; Ehman, Richard L.

    2017-01-01

    Magnetic Resonance Elastography (MRE) is a phase-contrast MRI technique which calculates quantitative stiffness images, called elastograms, by imaging the propagation of acoustic waves in tissues. It is used clinically to diagnose liver fibrosis. Automated analysis of MRE is difficult as the corresponding MRI magnitude images (which contain anatomical information) are affected by intensity inhomogeneity, motion artifact, and poor tissue- and edge-contrast. Additionally, areas with low wave amplitude must be excluded. An automated algorithm has already been successfully developed and validated for clinical 2D MRE. 3D MRE acquires substantially more data and, due to accelerated acquisition, has exacerbated image artifacts. Also, the current 3D MRE processing does not yield a confidence map to indicate MRE wave quality and guide ROI selection, as is the case in 2D. In this study, extension of the 2D automated method, with a simple wave-amplitude metric, was developed and validated against an expert reader in a set of 57 patient exams with both 2D and 3D MRE. The stiffness discrepancy with the expert for 3D MRE was −0.8% ± 9.45% and was better than discrepancy with the same reader for 2D MRE (−3.2% ± 10.43%), and better than the inter-reader discrepancy observed in previous studies. There were no automated processing failures in this dataset. Thus, the automated liver elasticity calculation (ALEC) algorithm is able to calculate stiffness from 3D MRE data with minimal bias and good precision, while enabling stiffness measurements to be fully reproducible and to be easily performed on the large 3D MRE datasets. PMID:29033488

  3. Brain tissues volume measurements from 2D MRI using parametric approach

    NASA Astrophysics Data System (ADS)

    L'vov, A. A.; Toropova, O. A.; Litovka, Yu. V.

    2018-04-01

    The purpose of the paper is to propose a fully automated method of volume assessment of structures within human brain. Our statistical approach uses maximum interdependency principle for decision making process of measurements consistency and unequal observations. Detecting outliers performed using maximum normalized residual test. We propose a statistical model which utilizes knowledge of tissues distribution in human brain and applies partial data restoration for precision improvement. The approach proposes completed computationally efficient and independent from segmentation algorithm used in the application.

  4. An Imaging System for Automated Characteristic Length Measurement of Debrisat Fragments

    NASA Technical Reports Server (NTRS)

    Moraguez, Mathew; Patankar, Kunal; Fitz-Coy, Norman; Liou, J.-C.; Sorge, Marlon; Cowardin, Heather; Opiela, John; Krisko, Paula H.

    2015-01-01

    The debris fragments generated by DebriSat's hypervelocity impact test are currently being processed and characterized through an effort of NASA and USAF. The debris characteristics will be used to update satellite breakup models. In particular, the physical dimensions of the debris fragments must be measured to provide characteristic lengths for use in these models. Calipers and commercial 3D scanners were considered as measurement options, but an automated imaging system was ultimately developed to measure debris fragments. By automating the entire process, the measurement results are made repeatable and the human factor associated with calipers and 3D scanning is eliminated. Unlike using calipers to measure, the imaging system obtains non-contact measurements to avoid damaging delicate fragments. Furthermore, this fully automated measurement system minimizes fragment handling, which reduces the potential for fragment damage during the characterization process. In addition, the imaging system reduces the time required to determine the characteristic length of the debris fragment. In this way, the imaging system can measure the tens of thousands of DebriSat fragments at a rate of about six minutes per fragment, compared to hours per fragment in NASA's current 3D scanning measurement approach. The imaging system utilizes a space carving algorithm to generate a 3D point cloud of the article being measured and a custom developed algorithm then extracts the characteristic length from the point cloud. This paper describes the measurement process, results, challenges, and future work of the imaging system used for automated characteristic length measurement of DebriSat fragments.

  5. Increasing signal processing sophistication in the calculation of the respiratory modulation of the photoplethysmogram (DPOP).

    PubMed

    Addison, Paul S; Wang, Rui; Uribe, Alberto A; Bergese, Sergio D

    2015-06-01

    DPOP (∆POP or Delta-POP) is a non-invasive parameter which measures the strength of respiratory modulations present in the pulse oximetry photoplethysmogram (pleth) waveform. It has been proposed as a non-invasive surrogate parameter for pulse pressure variation (PPV) used in the prediction of the response to volume expansion in hypovolemic patients. Many groups have reported on the DPOP parameter and its correlation with PPV using various semi-automated algorithmic implementations. The study reported here demonstrates the performance gains made by adding increasingly sophisticated signal processing components to a fully automated DPOP algorithm. A DPOP algorithm was coded and its performance systematically enhanced through a series of code module alterations and additions. Each algorithm iteration was tested on data from 20 mechanically ventilated OR patients. Correlation coefficients and ROC curve statistics were computed at each stage. For the purposes of the analysis we split the data into a manually selected 'stable' region subset of the data containing relatively noise free segments and a 'global' set incorporating the whole data record. Performance gains were measured in terms of correlation against PPV measurements in OR patients undergoing controlled mechanical ventilation. Through increasingly advanced pre-processing and post-processing enhancements to the algorithm, the correlation coefficient between DPOP and PPV improved from a baseline value of R = 0.347 to R = 0.852 for the stable data set, and, correspondingly, R = 0.225 to R = 0.728 for the more challenging global data set. Marked gains in algorithm performance are achievable for manually selected stable regions of the signals using relatively simple algorithm enhancements. Significant additional algorithm enhancements, including a correction for low perfusion values, were required before similar gains were realised for the more challenging global data set.

  6. Automated mammographic breast density estimation using a fully convolutional network.

    PubMed

    Lee, Juhun; Nishikawa, Robert M

    2018-03-01

    The purpose of this study was to develop a fully automated algorithm for mammographic breast density estimation using deep learning. Our algorithm used a fully convolutional network, which is a deep learning framework for image segmentation, to segment both the breast and the dense fibroglandular areas on mammographic images. Using the segmented breast and dense areas, our algorithm computed the breast percent density (PD), which is the faction of dense area in a breast. Our dataset included full-field digital screening mammograms of 604 women, which included 1208 mediolateral oblique (MLO) and 1208 craniocaudal (CC) views. We allocated 455, 58, and 91 of 604 women and their exams into training, testing, and validation datasets, respectively. We established ground truth for the breast and the dense fibroglandular areas via manual segmentation and segmentation using a simple thresholding based on BI-RADS density assessments by radiologists, respectively. Using the mammograms and ground truth, we fine-tuned a pretrained deep learning network to train the network to segment both the breast and the fibroglandular areas. Using the validation dataset, we evaluated the performance of the proposed algorithm against radiologists' BI-RADS density assessments. Specifically, we conducted a correlation analysis between a BI-RADS density assessment of a given breast and its corresponding PD estimate by the proposed algorithm. In addition, we evaluated our algorithm in terms of its ability to classify the BI-RADS density using PD estimates, and its ability to provide consistent PD estimates for the left and the right breast and the MLO and CC views of the same women. To show the effectiveness of our algorithm, we compared the performance of our algorithm against a state of the art algorithm, laboratory for individualized breast radiodensity assessment (LIBRA). The PD estimated by our algorithm correlated well with BI-RADS density ratings by radiologists. Pearson's rho values of our algorithm for CC view, MLO view, and CC-MLO-averaged were 0.81, 0.79, and 0.85, respectively, while those of LIBRA were 0.58, 0.71, and 0.69, respectively. For CC view and CC-MLO averaged cases, the difference in rho values between the proposed algorithm and LIBRA showed statistical significance (P < 0.006). In addition, our algorithm provided reliable PD estimates for the left and the right breast (Pearson's ρ > 0.87) and for the MLO and CC views (Pearson's ρ = 0.76). However, LIBRA showed a lower Pearson's rho value (0.66) for both the left and right breasts for the CC view. In addition, our algorithm showed an excellent ability to separate each sub BI-RADS breast density class (statistically significant, p-values = 0.0001 or less); only one comparison pair, density 1 and density 2 in the CC view, was not statistically significant (P = 0.54). However, LIBRA failed to separate breasts in density 1 and 2 for both the CC and MLO views (P > 0.64). We have developed a new deep learning based algorithm for breast density segmentation and estimation. We showed that the proposed algorithm correlated well with BI-RADS density assessments by radiologists and outperformed an existing state of the art algorithm. © 2018 American Association of Physicists in Medicine.

  7. Adaptive Algorithms for Automated Processing of Document Images

    DTIC Science & Technology

    2011-01-01

    ABSTRACT Title of dissertation: ADAPTIVE ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES Mudit Agrawal, Doctor of Philosophy, 2011...2011 4. TITLE AND SUBTITLE Adaptive Algorithms for Automated Processing of Document Images 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES by Mudit Agrawal Dissertation submitted to the Faculty of the Graduate School of the University

  8. PepLine: a software pipeline for high-throughput direct mapping of tandem mass spectrometry data on genomic sequences.

    PubMed

    Ferro, Myriam; Tardif, Marianne; Reguer, Erwan; Cahuzac, Romain; Bruley, Christophe; Vermat, Thierry; Nugues, Estelle; Vigouroux, Marielle; Vandenbrouck, Yves; Garin, Jérôme; Viari, Alain

    2008-05-01

    PepLine is a fully automated software which maps MS/MS fragmentation spectra of trypsic peptides to genomic DNA sequences. The approach is based on Peptide Sequence Tags (PSTs) obtained from partial interpretation of QTOF MS/MS spectra (first module). PSTs are then mapped on the six-frame translations of genomic sequences (second module) giving hits. Hits are then clustered to detect potential coding regions (third module). Our work aimed at optimizing the algorithms of each component to allow the whole pipeline to proceed in a fully automated manner using raw nucleic acid sequences (i.e., genomes that have not been "reduced" to a database of ORFs or putative exons sequences). The whole pipeline was tested on controlled MS/MS spectra sets from standard proteins and from Arabidopsis thaliana envelope chloroplast samples. Our results demonstrate that PepLine competed with protein database searching softwares and was fast enough to potentially tackle large data sets and/or high size genomes. We also illustrate the potential of this approach for the detection of the intron/exon structure of genes.

  9. An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform

    DTIC Science & Technology

    2018-01-01

    ARL-TR-8270 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter...Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform by Kwok F Tom Sensors and Electron...1 October 2016–30 September 2017 4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a

  10. [Algorithm for the automated processing of rheosignals].

    PubMed

    Odinets, G S

    1988-01-01

    Algorithm for rheosignals recognition for a microprocessing device with a representation apparatus and with automated and manual cursor control was examined. The algorithm permits to automate rheosignals registrating and processing taking into account their changeability.

  11. Automated assembly of fast-axis collimation (FAC) lenses for diode laser bar modules

    NASA Astrophysics Data System (ADS)

    Miesner, Jörn; Timmermann, Andre; Meinschien, Jens; Neumann, Bernhard; Wright, Steve; Tekin, Tolga; Schröder, Henning; Westphalen, Thomas; Frischkorn, Felix

    2009-02-01

    Laser diodes and diode laser bars are key components in high power semiconductor lasers and solid state laser systems. During manufacture, the assembly of the fast axis collimation (FAC) lens is a crucial step. The goal of our activities is to design an automated assembly system for high volume production. In this paper the results of an intermediate milestone will be reported: a demonstration system was designed, realized and tested to prove the feasibility of all of the system components and process features. The demonstration system consists of a high precision handling system, metrology for process feedback, a powerful digital image processing system and tooling for glue dispensing, UV curing and laser operation. The system components as well as their interaction with each other were tested in an experimental system in order to glean design knowledge for the fully automated assembly system. The adjustment of the FAC lens is performed by a series of predefined steps monitored by two cameras concurrently imaging the far field and the near field intensity distributions. Feedback from these cameras processed by a powerful and efficient image processing algorithm control a five axis precision motion system to optimize the fast axis collimation of the laser beam. Automated cementing of the FAC to the diode bar completes the process. The presentation will show the system concept, the algorithm of the adjustment as well as experimental results. A critical discussion of the results will close the talk.

  12. Evaluation of Cross-Protocol Stability of a Fully Automated Brain Multi-Atlas Parcellation Tool.

    PubMed

    Liang, Zifei; He, Xiaohai; Ceritoglu, Can; Tang, Xiaoying; Li, Yue; Kutten, Kwame S; Oishi, Kenichi; Miller, Michael I; Mori, Susumu; Faria, Andreia V

    2015-01-01

    Brain parcellation tools based on multiple-atlas algorithms have recently emerged as a promising method with which to accurately define brain structures. When dealing with data from various sources, it is crucial that these tools are robust for many different imaging protocols. In this study, we tested the robustness of a multiple-atlas, likelihood fusion algorithm using Alzheimer's Disease Neuroimaging Initiative (ADNI) data with six different protocols, comprising three manufacturers and two magnetic field strengths. The entire brain was parceled into five different levels of granularity. In each level, which defines a set of brain structures, ranging from eight to 286 regions, we evaluated the variability of brain volumes related to the protocol, age, and diagnosis (healthy or Alzheimer's disease). Our results indicated that, with proper pre-processing steps, the impact of different protocols is minor compared to biological effects, such as age and pathology. A precise knowledge of the sources of data variation enables sufficient statistical power and ensures the reliability of an anatomical analysis when using this automated brain parcellation tool on datasets from various imaging protocols, such as clinical databases.

  13. Dual ant colony operational modal analysis parameter estimation method

    NASA Astrophysics Data System (ADS)

    Sitarz, Piotr; Powałka, Bartosz

    2018-01-01

    Operational Modal Analysis (OMA) is a common technique used to examine the dynamic properties of a system. Contrary to experimental modal analysis, the input signal is generated in object ambient environment. Operational modal analysis mainly aims at determining the number of pole pairs and at estimating modal parameters. Many methods are used for parameter identification. Some methods operate in time while others in frequency domain. The former use correlation functions, the latter - spectral density functions. However, while some methods require the user to select poles from a stabilisation diagram, others try to automate the selection process. Dual ant colony operational modal analysis parameter estimation method (DAC-OMA) presents a new approach to the problem, avoiding issues involved in the stabilisation diagram. The presented algorithm is fully automated. It uses deterministic methods to define the interval of estimated parameters, thus reducing the problem to optimisation task which is conducted with dedicated software based on ant colony optimisation algorithm. The combination of deterministic methods restricting parameter intervals and artificial intelligence yields very good results, also for closely spaced modes and significantly varied mode shapes within one measurement point.

  14. Validation of an automated electronic algorithm and "dashboard" to identify and characterize decompensated heart failure admissions across a medical center.

    PubMed

    Cox, Zachary L; Lewis, Connie M; Lai, Pikki; Lenihan, Daniel J

    2017-01-01

    We aim to validate the diagnostic performance of the first fully automatic, electronic heart failure (HF) identification algorithm and evaluate the implementation of an HF Dashboard system with 2 components: real-time identification of decompensated HF admissions and accurate characterization of disease characteristics and medical therapy. We constructed an HF identification algorithm requiring 3 of 4 identifiers: B-type natriuretic peptide >400 pg/mL; admitting HF diagnosis; history of HF International Classification of Disease, Ninth Revision, diagnosis codes; and intravenous diuretic administration. We validated the diagnostic accuracy of the components individually (n = 366) and combined in the HF algorithm (n = 150) compared with a blinded provider panel in 2 separate cohorts. We built an HF Dashboard within the electronic medical record characterizing the disease and medical therapies of HF admissions identified by the HF algorithm. We evaluated the HF Dashboard's performance over 26 months of clinical use. Individually, the algorithm components displayed variable sensitivity and specificity, respectively: B-type natriuretic peptide >400 pg/mL (89% and 87%); diuretic (80% and 92%); and International Classification of Disease, Ninth Revision, code (56% and 95%). The HF algorithm achieved a high specificity (95%), positive predictive value (82%), and negative predictive value (85%) but achieved limited sensitivity (56%) secondary to missing provider-generated identification data. The HF Dashboard identified and characterized 3147 HF admissions over 26 months. Automated identification and characterization systems can be developed and used with a substantial degree of specificity for the diagnosis of decompensated HF, although sensitivity is limited by clinical data input. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Automated Interval velocity picking for Atlantic Multi-Channel Seismic Data

    NASA Astrophysics Data System (ADS)

    Singh, Vishwajit

    2016-04-01

    This paper described the challenge in developing and testing a fully automated routine for measuring interval velocities from multi-channel seismic data. Various approaches are employed for generating an interactive algorithm picking interval velocity for continuous 1000-5000 normal moveout (NMO) corrected gather and replacing the interpreter's effort for manual picking the coherent reflections. The detailed steps and pitfalls for picking the interval velocities from seismic reflection time measurements are describe in these approaches. Key ingredients these approaches utilized for velocity analysis stage are semblance grid and starting model of interval velocity. Basin-Hopping optimization is employed for convergence of the misfit function toward local minima. SLiding-Overlapping Window (SLOW) algorithm are designed to mitigate the non-linearity and ill- possessedness of root-mean-square velocity. Synthetic data case studies addresses the performance of the velocity picker generating models perfectly fitting the semblance peaks. A similar linear relationship between average depth and reflection time for synthetic model and estimated models proposed picked interval velocities as the starting model for the full waveform inversion to project more accurate velocity structure of the subsurface. The challenges can be categorized as (1) building accurate starting model for projecting more accurate velocity structure of the subsurface, (2) improving the computational cost of algorithm by pre-calculating semblance grid to make auto picking more feasible.

  16. Pixelated Checkerboard Metasurface for Ultra-Wideband Radar Cross Section Reduction.

    PubMed

    Haji-Ahmadi, Mohammad-Javad; Nayyeri, Vahid; Soleimani, Mohammad; Ramahi, Omar M

    2017-09-12

    In this paper we designed and fabricated a metasurface working as a radar cross section (RCS) reducer over an ultra wide band of frequency from 3.8 to 10.7 GHz. The designed metasurface is a chessboard-like surface made of alternating tiles, with each tile composed of identical unit cells. We develop a novel, simple, highly robust and fully automated approach for designing the unit cells. First, a topology optimization algorithm is used to engineer the shape of the two unit cells. The area of each unit cell is pixelated. A particle swarm optimization algorithm is applied wherein each pixel corresponds to a bit having a binary value of 1 or 0 indicating metallization or no metallization. With the objective of reducing the RCS over a specified frequency range, the optimization algorithm is then linked to a full wave three-dimensional electromagnetic simulator. To validate the design procedure, a surface was designed, fabricated and experimentally tested showing significantly enhanced performance than previous works. Additionally, angular analysis is also presented showing good stability and wide-angle behavior of the designed RCS reducer. The automated design procedure has a wide range of applications and can be easily extended to design surfaces for antennas, energy harvesters, noise mitigation in electronic circuit boards amongst others.

  17. Automated segmentation of geographic atrophy in fundus autofluorescence images using supervised pixel classification.

    PubMed

    Hu, Zhihong; Medioni, Gerard G; Hernandez, Matthias; Sadda, Srinivas R

    2015-01-01

    Geographic atrophy (GA) is a manifestation of the advanced or late stage of age-related macular degeneration (AMD). AMD is the leading cause of blindness in people over the age of 65 in the western world. The purpose of this study is to develop a fully automated supervised pixel classification approach for segmenting GA, including uni- and multifocal patches in fundus autofluorescene (FAF) images. The image features include region-wise intensity measures, gray-level co-occurrence matrix measures, and Gaussian filter banks. A [Formula: see text]-nearest-neighbor pixel classifier is applied to obtain a GA probability map, representing the likelihood that the image pixel belongs to GA. Sixteen randomly chosen FAF images were obtained from 16 subjects with GA. The algorithm-defined GA regions are compared with manual delineation performed by a certified image reading center grader. Eight-fold cross-validation is applied to evaluate the algorithm performance. The mean overlap ratio (OR), area correlation (Pearson's [Formula: see text]), accuracy (ACC), true positive rate (TPR), specificity (SPC), positive predictive value (PPV), and false discovery rate (FDR) between the algorithm- and manually defined GA regions are [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text], respectively.

  18. Conceptual design of the CZMIL data processing system (DPS): algorithms and software for fusing lidar, hyperspectral data, and digital images

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong; Tuell, Grady

    2010-04-01

    The Data Processing System (DPS) of the Coastal Zone Mapping and Imaging Lidar (CZMIL) has been designed to automatically produce a number of novel environmental products through the fusion of Lidar, spectrometer, and camera data in a single software package. These new products significantly transcend use of the system as a bathymeter, and support use of CZMIL as a complete coastal and benthic mapping tool. The DPS provides a spinning globe capability for accessing data files; automated generation of combined topographic and bathymetric point clouds; a fully-integrated manual editor and data analysis tool; automated generation of orthophoto mosaics; automated generation of reflectance data cubes from the imaging spectrometer; a coupled air-ocean spectral optimization model producing images of chlorophyll and CDOM concentrations; and a fusion based capability to produce images and classifications of the shallow water seafloor. Adopting a multitasking approach, we expect to achieve computation of the point clouds, DEMs, and reflectance images at a 1:1 processing to acquisition ratio.

  19. Automated red blood cells extraction from holographic images using fully convolutional neural networks.

    PubMed

    Yi, Faliu; Moon, Inkyu; Javidi, Bahram

    2017-10-01

    In this paper, we present two models for automatically extracting red blood cells (RBCs) from RBCs holographic images based on a deep learning fully convolutional neural network (FCN) algorithm. The first model, called FCN-1, only uses the FCN algorithm to carry out RBCs prediction, whereas the second model, called FCN-2, combines the FCN approach with the marker-controlled watershed transform segmentation scheme to achieve RBCs extraction. Both models achieve good segmentation accuracy. In addition, the second model has much better performance in terms of cell separation than traditional segmentation methods. In the proposed methods, the RBCs phase images are first numerically reconstructed from RBCs holograms recorded with off-axis digital holographic microscopy. Then, some RBCs phase images are manually segmented and used as training data to fine-tune the FCN. Finally, each pixel in new input RBCs phase images is predicted into either foreground or background using the trained FCN models. The RBCs prediction result from the first model is the final segmentation result, whereas the result from the second model is used as the internal markers of the marker-controlled transform algorithm for further segmentation. Experimental results show that the given schemes can automatically extract RBCs from RBCs phase images and much better RBCs separation results are obtained when the FCN technique is combined with the marker-controlled watershed segmentation algorithm.

  20. Automated red blood cells extraction from holographic images using fully convolutional neural networks

    PubMed Central

    Yi, Faliu; Moon, Inkyu; Javidi, Bahram

    2017-01-01

    In this paper, we present two models for automatically extracting red blood cells (RBCs) from RBCs holographic images based on a deep learning fully convolutional neural network (FCN) algorithm. The first model, called FCN-1, only uses the FCN algorithm to carry out RBCs prediction, whereas the second model, called FCN-2, combines the FCN approach with the marker-controlled watershed transform segmentation scheme to achieve RBCs extraction. Both models achieve good segmentation accuracy. In addition, the second model has much better performance in terms of cell separation than traditional segmentation methods. In the proposed methods, the RBCs phase images are first numerically reconstructed from RBCs holograms recorded with off-axis digital holographic microscopy. Then, some RBCs phase images are manually segmented and used as training data to fine-tune the FCN. Finally, each pixel in new input RBCs phase images is predicted into either foreground or background using the trained FCN models. The RBCs prediction result from the first model is the final segmentation result, whereas the result from the second model is used as the internal markers of the marker-controlled transform algorithm for further segmentation. Experimental results show that the given schemes can automatically extract RBCs from RBCs phase images and much better RBCs separation results are obtained when the FCN technique is combined with the marker-controlled watershed segmentation algorithm. PMID:29082078

  1. Automated biphasic morphological assessment of hepatitis B-related liver fibrosis using second harmonic generation microscopy

    PubMed Central

    Wang, Tong-Hong; Chen, Tse-Ching; Teng, Xiao; Liang, Kung-Hao; Yeh, Chau-Ting

    2015-01-01

    Liver fibrosis assessment by biopsy and conventional staining scores is based on histopathological criteria. Variations in sample preparation and the use of semi-quantitative histopathological methods commonly result in discrepancies between medical centers. Thus, minor changes in liver fibrosis might be overlooked in multi-center clinical trials, leading to statistically non-significant data. Here, we developed a computer-assisted, fully automated, staining-free method for hepatitis B-related liver fibrosis assessment. In total, 175 liver biopsies were divided into training (n = 105) and verification (n = 70) cohorts. Collagen was observed using second harmonic generation (SHG) microscopy without prior staining, and hepatocyte morphology was recorded using two-photon excitation fluorescence (TPEF) microscopy. The training cohort was utilized to establish a quantification algorithm. Eleven of 19 computer-recognizable SHG/TPEF microscopic morphological features were significantly correlated with the ISHAK fibrosis stages (P < 0.001). A biphasic scoring method was applied, combining support vector machine and multivariate generalized linear models to assess the early and late stages of fibrosis, respectively, based on these parameters. The verification cohort was used to verify the scoring method, and the area under the receiver operating characteristic curve was >0.82 for liver cirrhosis detection. Since no subjective gradings are needed, interobserver discrepancies could be avoided using this fully automated method. PMID:26260921

  2. ATALARS Operational Requirements: Automated Tactical Aircraft Launch and Recovery System

    DOT National Transportation Integrated Search

    1988-04-01

    The Automated Tactical Aircraft Launch and Recovery System (ATALARS) is a fully automated air traffic management system intended for the military service but is also fully compatible with civil air traffic control systems. This report documents a fir...

  3. Automated Re-Entry System using FNPEG

    NASA Technical Reports Server (NTRS)

    Johnson, Wyatt R.; Lu, Ping; Stachowiak, Susan J.

    2017-01-01

    This paper discusses the implementation and simulated performance of the FNPEG (Fully Numerical Predictor-corrector Entry Guidance) algorithm into GNC FSW (Guidance, Navigation, and Control Flight Software) for use in an autonomous re-entry vehicle. A few modifications to FNPEG are discussed that result in computational savings -- a change to the state propagator, and a modification to cross-range lateral logic. Finally, some Monte Carlo results are presented using a representative vehicle in both a high-fidelity 6-DOF (degree-of-freedom) sim as well as in a 3-DOF sim for independent validation.

  4. An Automated Energy Detection Algorithm Based on Morphological and Statistical Processing Techniques

    DTIC Science & Technology

    2018-01-09

    ARL-TR-8272 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological and...is no longer needed. Do not return it to the originator. ARL-TR-8272 ● JAN 2018 US Army Research Laboratory An Automated Energy ...4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological and Statistical Processing Techniques 5a. CONTRACT NUMBER

  5. CHARACTERIZATION OF THE COMPLETE FIBER NETWORK TOPOLOGY OF PLANAR FIBROUS TISSUES AND SCAFFOLDS

    PubMed Central

    D'Amore, Antonio; Stella, John A.; Wagner, William R.; Sacks, Michael S.

    2010-01-01

    Understanding how engineered tissue scaffold architecture affects cell morphology, metabolism, phenotypic expression, as well as predicting material mechanical behavior have recently received increased attention. In the present study, an image-based analysis approach that provides an automated tool to characterize engineered tissue fiber network topology is presented. Micro-architectural features that fully defined fiber network topology were detected and quantified, which include fiber orientation, connectivity, intersection spatial density, and diameter. Algorithm performance was tested using scanning electron microscopy (SEM) images of electrospun poly(ester urethane)urea (ES-PEUU) scaffolds. SEM images of rabbit mesenchymal stem cell (MSC) seeded collagen gel scaffolds and decellularized rat carotid arteries were also analyzed to further evaluate the ability of the algorithm to capture fiber network morphology regardless of scaffold type and the evaluated size scale. The image analysis procedure was validated qualitatively and quantitatively, comparing fiber network topology manually detected by human operators (n=5) with that automatically detected by the algorithm. Correlation values between manual detected and algorithm detected results for the fiber angle distribution and for the fiber connectivity distribution were 0.86 and 0.93 respectively. Algorithm detected fiber intersections and fiber diameter values were comparable (within the mean ± standard deviation) with those detected by human operators. This automated approach identifies and quantifies fiber network morphology as demonstrated for three relevant scaffold types and provides a means to: (1) guarantee objectivity, (2) significantly reduce analysis time, and (3) potentiate broader analysis of scaffold architecture effects on cell behavior and tissue development both in vitro and in vivo. PMID:20398930

  6. Characterizing volcanic activity: Application of freely-available webcams

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Harrild, M.; Webley, P. W.

    2017-12-01

    In recent years, freely-available web-based cameras, or webcams, have become more readily available allowing an increased level of monitoring at active volcanoes across the globe. While these cameras have been extensively used as qualitative tools, they provide a unique dataset to perform quantitative analyzes of the changing behavior of the particular volcano within the cameras field of view. We focus on the multitude of these freely-available webcams and present a new algorithm to detect changes in volcanic activity using nighttime webcam data. Our approach uses a quick, efficient, and fully automated algorithm to identify changes in webcam data in near real-time, including techniques such as edge detection, Gaussian mixture models, and temporal/spatial statistical tests, which are applied to each target image. Often the image metadata (exposure, gain settings, aperture, focal length, etc.) are unknown, meaning we developed our algorithm to identify the quantity of volcanically incandescent pixels as well as the number of specific algorithm tests needed to detect thermal activity, instead of directly correlating brightness in the webcam to eruption temperatures. We compared our algorithm results to a manual analysis of webcam data for several volcanoes and determined a false detection rate of less than 3% for the automated approach. In our presentation, we describe the different tests integrated into our algorithm, lessons learned, and how we applied our method to several volcanoes across the North Pacific during its development and implementation. We will finish with a discussion on the global applicability of our approach and how to build a 24/7, 365 day a year tool that can be used as an additional data source for real-time analysis of volcanic activity.

  7. Enabling phenotypic big data with PheNorm.

    PubMed

    Yu, Sheng; Ma, Yumeng; Gronsbell, Jessica; Cai, Tianrun; Ananthakrishnan, Ashwin N; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Liao, Katherine P; Cai, Tianxi

    2018-01-01

    Electronic health record (EHR)-based phenotyping infers whether a patient has a disease based on the information in his or her EHR. A human-annotated training set with gold-standard disease status labels is usually required to build an algorithm for phenotyping based on a set of predictive features. The time intensiveness of annotation and feature curation severely limits the ability to achieve high-throughput phenotyping. While previous studies have successfully automated feature curation, annotation remains a major bottleneck. In this paper, we present PheNorm, a phenotyping algorithm that does not require expert-labeled samples for training. The most predictive features, such as the number of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes or mentions of the target phenotype, are normalized to resemble a normal mixture distribution with high area under the receiver operating curve (AUC) for prediction. The transformed features are then denoised and combined into a score for accurate disease classification. We validated the accuracy of PheNorm with 4 phenotypes: coronary artery disease, rheumatoid arthritis, Crohn's disease, and ulcerative colitis. The AUCs of the PheNorm score reached 0.90, 0.94, 0.95, and 0.94 for the 4 phenotypes, respectively, which were comparable to the accuracy of supervised algorithms trained with sample sizes of 100-300, with no statistically significant difference. The accuracy of the PheNorm algorithms is on par with algorithms trained with annotated samples. PheNorm fully automates the generation of accurate phenotyping algorithms and demonstrates the capacity for EHR-driven annotations to scale to the next level - phenotypic big data. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Real -time dispatching modelling for trucks with different capacities in open pit mines / Modelowanie w czasie rzeczywistym przewozów ciężarówek o różnej ładowności w kopalni odkrywkowej

    NASA Astrophysics Data System (ADS)

    Ahangaran, Daryoush Kaveh; Yasrebi, Amir Bijan; Wetherelt, Andy; Foster, Patrick

    2012-10-01

    Application of fully automated systems for truck dispatching plays a major role in decreasing the transportation costs which often represent the majority of costs spent on open pit mining. Consequently, the application of a truck dispatching system has become fundamentally important in most of the world's open pit mines. Recent experiences indicate that by decreasing a truck's travelling time and the associated waiting time of its associated shovel then due to the application of a truck dispatching system the rate of production will be considerably improved. Computer-based truck dispatching systems using algorithms, advanced and accurate software are examples of these innovations. Developing an algorithm of a computer- based program appropriated to a specific mine's conditions is considered as one of the most important activities in connection with computer-based dispatching in open pit mines. In this paper the changing trend of programming and dispatching control algorithms and automation conditions will be discussed. Furthermore, since the transportation fleet of most mines use trucks with different capacities, innovative methods, operational optimisation techniques and the best possible methods for developing the required algorithm for real-time dispatching are selected by conducting research on mathematical-based planning methods. Finally, a real-time dispatching model compatible with the requirement of trucks with different capacities is developed by using two techniques of flow networks and integer programming.

  9. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm.

    PubMed

    Schmidt, Taly Gilat; Wang, Adam S; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-10-01

    The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.

  10. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm

    PubMed Central

    Schmidt, Taly Gilat; Wang, Adam S.; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-01-01

    Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. PMID:27921070

  11. Systematic assignment of thermodynamic constraints in metabolic network models

    PubMed Central

    Kümmel, Anne; Panke, Sven; Heinemann, Matthias

    2006-01-01

    Background The availability of genome sequences for many organisms enabled the reconstruction of several genome-scale metabolic network models. Currently, significant efforts are put into the automated reconstruction of such models. For this, several computational tools have been developed that particularly assist in identifying and compiling the organism-specific lists of metabolic reactions. In contrast, the last step of the model reconstruction process, which is the definition of the thermodynamic constraints in terms of reaction directionalities, still needs to be done manually. No computational method exists that allows for an automated and systematic assignment of reaction directions in genome-scale models. Results We present an algorithm that – based on thermodynamics, network topology and heuristic rules – automatically assigns reaction directions in metabolic models such that the reaction network is thermodynamically feasible with respect to the production of energy equivalents. It first exploits all available experimentally derived Gibbs energies of formation to identify irreversible reactions. As these thermodynamic data are not available for all metabolites, in a next step, further reaction directions are assigned on the basis of network topology considerations and thermodynamics-based heuristic rules. Briefly, the algorithm identifies reaction subsets from the metabolic network that are able to convert low-energy co-substrates into their high-energy counterparts and thus net produce energy. Our algorithm aims at disabling such thermodynamically infeasible cyclic operation of reaction subnetworks by assigning reaction directions based on a set of thermodynamics-derived heuristic rules. We demonstrate our algorithm on a genome-scale metabolic model of E. coli. The introduced systematic direction assignment yielded 130 irreversible reactions (out of 920 total reactions), which corresponds to about 70% of all irreversible reactions that are required to disable thermodynamically infeasible energy production. Conclusion Although not being fully comprehensive, our algorithm for systematic reaction direction assignment could define a significant number of irreversible reactions automatically with low computational effort. We envision that the presented algorithm is a valuable part of a computational framework that assists the automated reconstruction of genome-scale metabolic models. PMID:17123434

  12. Algorithm of the automated choice of points of the acupuncture for EHF-therapy

    NASA Astrophysics Data System (ADS)

    Lyapina, E. P.; Chesnokov, I. A.; Anisimov, Ya. E.; Bushuev, N. A.; Murashov, E. P.; Eliseev, Yu. Yu.; Syuzanna, H.

    2007-05-01

    Offered algorithm of the automated choice of points of the acupuncture for EHF-therapy. The recipe formed by algorithm of an automated choice of points for acupunctural actions has a recommendational character. Clinical investigations showed that application of the developed algorithm in EHF-therapy allows to normalize energetic state of the meridians and to effectively solve many problems of an organism functioning.

  13. A highly accurate symmetric optical flow based high-dimensional nonlinear spatial normalization of brain images.

    PubMed

    Wen, Ying; Hou, Lili; He, Lianghua; Peterson, Bradley S; Xu, Dongrong

    2015-05-01

    Spatial normalization plays a key role in voxel-based analyses of brain images. We propose a highly accurate algorithm for high-dimensional spatial normalization of brain images based on the technique of symmetric optical flow. We first construct a three dimension optical model with the consistency assumption of intensity and consistency of the gradient of intensity under a constraint of discontinuity-preserving spatio-temporal smoothness. Then, an efficient inverse consistency optical flow is proposed with aims of higher registration accuracy, where the flow is naturally symmetric. By employing a hierarchical strategy ranging from coarse to fine scales of resolution and a method of Euler-Lagrange numerical analysis, our algorithm is capable of registering brain images data. Experiments using both simulated and real datasets demonstrated that the accuracy of our algorithm is not only better than that of those traditional optical flow algorithms, but also comparable to other registration methods used extensively in the medical imaging community. Moreover, our registration algorithm is fully automated, requiring a very limited number of parameters and no manual intervention. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Novel image analysis approach for quantifying expression of nuclear proteins assessed by immunohistochemistry: application to measurement of oestrogen and progesterone receptor levels in breast cancer.

    PubMed

    Rexhepaj, Elton; Brennan, Donal J; Holloway, Peter; Kay, Elaine W; McCann, Amanda H; Landberg, Goran; Duffy, Michael J; Jirstrom, Karin; Gallagher, William M

    2008-01-01

    Manual interpretation of immunohistochemistry (IHC) is a subjective, time-consuming and variable process, with an inherent intra-observer and inter-observer variability. Automated image analysis approaches offer the possibility of developing rapid, uniform indicators of IHC staining. In the present article we describe the development of a novel approach for automatically quantifying oestrogen receptor (ER) and progesterone receptor (PR) protein expression assessed by IHC in primary breast cancer. Two cohorts of breast cancer patients (n = 743) were used in the study. Digital images of breast cancer tissue microarrays were captured using the Aperio ScanScope XT slide scanner (Aperio Technologies, Vista, CA, USA). Image analysis algorithms were developed using MatLab 7 (MathWorks, Apple Hill Drive, MA, USA). A fully automated nuclear algorithm was developed to discriminate tumour from normal tissue and to quantify ER and PR expression in both cohorts. Random forest clustering was employed to identify optimum thresholds for survival analysis. The accuracy of the nuclear algorithm was initially confirmed by a histopathologist, who validated the output in 18 representative images. In these 18 samples, an excellent correlation was evident between the results obtained by manual and automated analysis (Spearman's rho = 0.9, P < 0.001). Optimum thresholds for survival analysis were identified using random forest clustering. This revealed 7% positive tumour cells as the optimum threshold for the ER and 5% positive tumour cells for the PR. Moreover, a 7% cutoff level for the ER predicted a better response to tamoxifen than the currently used 10% threshold. Finally, linear regression was employed to demonstrate a more homogeneous pattern of expression for the ER (R = 0.860) than for the PR (R = 0.681). In summary, we present data on the automated quantification of the ER and the PR in 743 primary breast tumours using a novel unsupervised image analysis algorithm. This novel approach provides a useful tool for the quantification of biomarkers on tissue specimens, as well as for objective identification of appropriate cutoff thresholds for biomarker positivity. It also offers the potential to identify proteins with a homogeneous pattern of expression.

  15. TU-C-BRE-11: 3D EPID-Based in Vivo Dosimetry: A Major Step Forward Towards Optimal Quality and Safety in Radiation Oncology Practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mijnheer, B; Mans, A; Olaciregui-Ruiz, I

    Purpose: To develop a 3D in vivo dosimetry method that is able to substitute pre-treatment verification in an efficient way, and to terminate treatment delivery if the online measured 3D dose distribution deviates too much from the predicted dose distribution. Methods: A back-projection algorithm has been further developed and implemented to enable automatic 3D in vivo dose verification of IMRT/VMAT treatments using a-Si EPIDs. New software tools were clinically introduced to allow automated image acquisition, to periodically inspect the record-and-verify database, and to automatically run the EPID dosimetry software. The comparison of the EPID-reconstructed and planned dose distribution is donemore » offline to raise automatically alerts and to schedule actions when deviations are detected. Furthermore, a software package for online dose reconstruction was also developed. The RMS of the difference between the cumulative planned and reconstructed 3D dose distributions was used for triggering a halt of a linac. Results: The implementation of fully automated 3D EPID-based in vivo dosimetry was able to replace pre-treatment verification for more than 90% of the patient treatments. The process has been fully automated and integrated in our clinical workflow where over 3,500 IMRT/VMAT treatments are verified each year. By optimizing the dose reconstruction algorithm and the I/O performance, the delivered 3D dose distribution is verified in less than 200 ms per portal image, which includes the comparison between the reconstructed and planned dose distribution. In this way it was possible to generate a trigger that can stop the irradiation at less than 20 cGy after introducing large delivery errors. Conclusion: The automatic offline solution facilitated the large scale clinical implementation of 3D EPID-based in vivo dose verification of IMRT/VMAT treatments; the online approach has been successfully tested for various severe delivery errors.« less

  16. The WHO 2016 verbal autopsy instrument: An international standard suitable for automated analysis by InterVA, InSilicoVA, and Tariff 2.0

    PubMed Central

    Chandramohan, Daniel; Clark, Samuel J.; Jakob, Robert; Leitao, Jordana; Rao, Chalapati; Riley, Ian; Setel, Philip W.

    2018-01-01

    Background Verbal autopsy (VA) is a practical method for determining probable causes of death at the population level in places where systems for medical certification of cause of death are weak. VA methods suitable for use in routine settings, such as civil registration and vital statistics (CRVS) systems, have developed rapidly in the last decade. These developments have been part of a growing global momentum to strengthen CRVS systems in low-income countries. With this momentum have come pressure for continued research and development of VA methods and the need for a single standard VA instrument on which multiple automated diagnostic methods can be developed. Methods and findings In 2016, partners harmonized a WHO VA standard instrument that fully incorporates the indicators necessary to run currently available automated diagnostic algorithms. The WHO 2016 VA instrument, together with validated approaches to analyzing VA data, offers countries solutions to improving information about patterns of cause-specific mortality. This VA instrument offers the opportunity to harmonize the automated diagnostic algorithms in the future. Conclusions Despite all improvements in design and technology, VA is only recommended where medical certification of cause of death is not possible. The method can nevertheless provide sufficient information to guide public health priorities in communities in which physician certification of deaths is largely unavailable. The WHO 2016 VA instrument, together with validated approaches to analyzing VA data, offers countries solutions to improving information about patterns of cause-specific mortality. PMID:29320495

  17. Automated Antibody De Novo Sequencing and Its Utility in Biopharmaceutical Discovery

    NASA Astrophysics Data System (ADS)

    Sen, K. Ilker; Tang, Wilfred H.; Nayak, Shruti; Kil, Yong J.; Bern, Marshall; Ozoglu, Berk; Ueberheide, Beatrix; Davis, Darryl; Becker, Christopher

    2017-05-01

    Applications of antibody de novo sequencing in the biopharmaceutical industry range from the discovery of new antibody drug candidates to identifying reagents for research and determining the primary structure of innovator products for biosimilar development. When murine, phage display, or patient-derived monoclonal antibodies against a target of interest are available, but the cDNA or the original cell line is not, de novo protein sequencing is required to humanize and recombinantly express these antibodies, followed by in vitro and in vivo testing for functional validation. Availability of fully automated software tools for monoclonal antibody de novo sequencing enables efficient and routine analysis. Here, we present a novel method to automatically de novo sequence antibodies using mass spectrometry and the Supernovo software. The robustness of the algorithm is demonstrated through a series of stress tests.

  18. Abstraction and Assume-Guarantee Reasoning for Automated Software Verification

    NASA Technical Reports Server (NTRS)

    Chaki, S.; Clarke, E.; Giannakopoulou, D.; Pasareanu, C. S.

    2004-01-01

    Compositional verification and abstraction are the key techniques to address the state explosion problem associated with model checking of concurrent software. A promising compositional approach is to prove properties of a system by checking properties of its components in an assume-guarantee style. This article proposes a framework for performing abstraction and assume-guarantee reasoning of concurrent C code in an incremental and fully automated fashion. The framework uses predicate abstraction to extract and refine finite state models of software and it uses an automata learning algorithm to incrementally construct assumptions for the compositional verification of the abstract models. The framework can be instantiated with different assume-guarantee rules. We have implemented our approach in the COMFORT reasoning framework and we show how COMFORT out-performs several previous software model checking approaches when checking safety properties of non-trivial concurrent programs.

  19. Automated processing of first-pass radioisotope ventriculography data to determine essential central circulation parameters

    NASA Astrophysics Data System (ADS)

    Krotov, Aleksei; Pankin, Victor

    2017-09-01

    The assessment of central circulation (including heart function) parameters is vital in the preventive diagnostics of inherent and acquired heart failures and during polychemotherapy. The protocols currently applied in Russia do not fully utilize the first-pass assessment (FPRNA) and that results in poor data formalization, while the FPRNA is the one of the fastest, affordable and compact methods among other radioisotope diagnostics protocols. A non-imaging algorithm basing on existing protocols has been designed to use the readings of an additional detector above vena subclavia to determine the total blood volume (TBV), not requiring blood sampling in contrast to current protocols. An automated processing of precordial detector readings is presented, in order to determine the heart strike volume (SV). Two techniques to estimate the ejection fraction (EF) of the heart are discussed.

  20. Bioprocessing automation in cell therapy manufacturing: Outcomes of special interest group automation workshop.

    PubMed

    Ball, Oliver; Robinson, Sarah; Bure, Kim; Brindley, David A; Mccall, David

    2018-04-01

    Phacilitate held a Special Interest Group workshop event in Edinburgh, UK, in May 2017. The event brought together leading stakeholders in the cell therapy bioprocessing field to identify present and future challenges and propose potential solutions to automation in cell therapy bioprocessing. Here, we review and summarize discussions from the event. Deep biological understanding of a product, its mechanism of action and indication pathogenesis underpin many factors relating to bioprocessing and automation. To fully exploit the opportunities of bioprocess automation, therapeutics developers must closely consider whether an automation strategy is applicable, how to design an 'automatable' bioprocess and how to implement process modifications with minimal disruption. Major decisions around bioprocess automation strategy should involve all relevant stakeholders; communication between technical and business strategy decision-makers is of particular importance. Developers should leverage automation to implement in-process testing, in turn applicable to process optimization, quality assurance (QA)/ quality control (QC), batch failure control, adaptive manufacturing and regulatory demands, but a lack of precedent and technical opportunities can complicate such efforts. Sparse standardization across product characterization, hardware components and software platforms is perceived to complicate efforts to implement automation. The use of advanced algorithmic approaches such as machine learning may have application to bioprocess and supply chain optimization. Automation can substantially de-risk the wider supply chain, including tracking and traceability, cryopreservation and thawing and logistics. The regulatory implications of automation are currently unclear because few hardware options exist and novel solutions require case-by-case validation, but automation can present attractive regulatory incentives. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  1. Fully Automated Sunspot Detection and Classification Using SDO HMI Imagery in MATLAB

    DTIC Science & Technology

    2014-03-27

    FULLY AUTOMATED SUNSPOT DETECTION AND CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB THESIS Gordon M. Spahr, Second Lieutenant, USAF AFIT-ENP-14-M-34...CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air...DISTRIUBUTION UNLIMITED. AFIT-ENP-14-M-34 FULLY AUTOMATED SUNSPOT DETECTION AND CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB Gordon M. Spahr, BS Second

  2. Breast boundary detection with active contours

    NASA Astrophysics Data System (ADS)

    Balic, I.; Goyal, P.; Roy, O.; Duric, N.

    2014-03-01

    Ultrasound tomography is a modality that can be used to image various characteristics of the breast, such as sound speed, attenuation, and reflectivity. In the considered setup, the breast is immersed in water and scanned along the coronal axis from the chest wall to the nipple region. To improve image visualization, it is desirable to remove the water background. To this end, the 3D boundary of the breast must be accurately estimated. We present an iterative algorithm based on active contours that automatically detects the boundary of a breast using a 3D stack of attenuation images obtained from an ultrasound tomography scanner. We build upon an existing method to design an algorithm that is fast, fully automated, and reliable. We demonstrate the effectiveness of the proposed technique using clinical data sets.

  3. Fully Mechanically Controlled Automated Electron Microscopic Tomography

    DOE PAGES

    Liu, Jinxin; Li, Hongchang; Zhang, Lei; ...

    2016-07-11

    Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins' functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000-160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisitionmore » without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging.« less

  4. PLIP: fully automated protein-ligand interaction profiler.

    PubMed

    Salentin, Sebastian; Schreiber, Sven; Haupt, V Joachim; Adasme, Melissa F; Schroeder, Michael

    2015-07-01

    The characterization of interactions in protein-ligand complexes is essential for research in structural bioinformatics, drug discovery and biology. However, comprehensive tools are not freely available to the research community. Here, we present the protein-ligand interaction profiler (PLIP), a novel web service for fully automated detection and visualization of relevant non-covalent protein-ligand contacts in 3D structures, freely available at projects.biotec.tu-dresden.de/plip-web. The input is either a Protein Data Bank structure, a protein or ligand name, or a custom protein-ligand complex (e.g. from docking). In contrast to other tools, the rule-based PLIP algorithm does not require any structure preparation. It returns a list of detected interactions on single atom level, covering seven interaction types (hydrogen bonds, hydrophobic contacts, pi-stacking, pi-cation interactions, salt bridges, water bridges and halogen bonds). PLIP stands out by offering publication-ready images, PyMOL session files to generate custom images and parsable result files to facilitate successive data processing. The full python source code is available for download on the website. PLIP's command-line mode allows for high-throughput interaction profiling. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. An automated approach for annual layer counting in ice cores

    NASA Astrophysics Data System (ADS)

    Winstrup, M.; Svensson, A.; Rasmussen, S. O.; Winther, O.; Steig, E.; Axelrod, A.

    2012-04-01

    The temporal resolution of some ice cores is sufficient to preserve seasonal information in the ice core record. In such cases, annual layer counting represents one of the most accurate methods to produce a chronology for the core. Yet, manual layer counting is a tedious and sometimes ambiguous job. As reliable layer recognition becomes more difficult, a manual approach increasingly relies on human interpretation of the available data. Thus, much may be gained by an automated and therefore objective approach for annual layer identification in ice cores. We have developed a novel method for automated annual layer counting in ice cores, which relies on Bayesian statistics. It uses algorithms from the statistical framework of Hidden Markov Models (HMM), originally developed for use in machine speech recognition. The strength of this layer detection algorithm lies in the way it is able to imitate the manual procedures for annual layer counting, while being based on purely objective criteria for annual layer identification. With this methodology, it is possible to determine the most likely position of multiple layer boundaries in an entire section of ice core data at once. It provides a probabilistic uncertainty estimate of the resulting layer count, hence ensuring a proper treatment of ambiguous layer boundaries in the data. Furthermore multiple data series can be incorporated to be used at once, hence allowing for a full multi-parameter annual layer counting method similar to a manual approach. In this study, the automated layer counting algorithm has been applied to data from the NGRIP ice core, Greenland. The NGRIP ice core has very high temporal resolution with depth, and hence the potential to be dated by annual layer counting far back in time. In previous studies [Andersen et al., 2006; Svensson et al., 2008], manual layer counting has been carried out back to 60 kyr BP. A comparison between the counted annual layers based on the two approaches will be presented and their differences discussed. Within the estimated uncertainties, the two methodologies agree. This shows the potential for a fully automated annual layer counting method to be operational for data sections where the annual layering is unknown.

  6. Automated road network extraction from high spatial resolution multi-spectral imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Qiaoping

    For the last three decades, the Geomatics Engineering and Computer Science communities have considered automated road network extraction from remotely-sensed imagery to be a challenging and important research topic. The main objective of this research is to investigate the theory and methodology of automated feature extraction for image-based road database creation, refinement or updating, and to develop a series of algorithms for road network extraction from high resolution multi-spectral imagery. The proposed framework for road network extraction from multi-spectral imagery begins with an image segmentation using the k-means algorithm. This step mainly concerns the exploitation of the spectral information for feature extraction. The road cluster is automatically identified using a fuzzy classifier based on a set of predefined road surface membership functions. These membership functions are established based on the general spectral signature of road pavement materials and the corresponding normalized digital numbers on each multi-spectral band. Shape descriptors of the Angular Texture Signature are defined and used to reduce the misclassifications between roads and other spectrally similar objects (e.g., crop fields, parking lots, and buildings). An iterative and localized Radon transform is developed for the extraction of road centerlines from the classified images. The purpose of the transform is to accurately and completely detect the road centerlines. It is able to find short, long, and even curvilinear lines. The input image is partitioned into a set of subset images called road component images. An iterative Radon transform is locally applied to each road component image. At each iteration, road centerline segments are detected based on an accurate estimation of the line parameters and line widths. Three localization approaches are implemented and compared using qualitative and quantitative methods. Finally, the road centerline segments are grouped into a road network. The extracted road network is evaluated against a reference dataset using a line segment matching algorithm. The entire process is unsupervised and fully automated. Based on extensive experimentation on a variety of remotely-sensed multi-spectral images, the proposed methodology achieves a moderate success in automating road network extraction from high spatial resolution multi-spectral imagery.

  7. An iterative method for airway segmentation using multiscale leakage detection

    NASA Astrophysics Data System (ADS)

    Nadeem, Syed Ahmed; Jin, Dakai; Hoffman, Eric A.; Saha, Punam K.

    2017-02-01

    There are growing applications of quantitative computed tomography for assessment of pulmonary diseases by characterizing lung parenchyma as well as the bronchial tree. Many large multi-center studies incorporating lung imaging as a study component are interested in phenotypes relating airway branching patterns, wall-thickness, and other morphological measures. To our knowledge, there are no fully automated airway tree segmentation methods, free of the need for user review. Even when there are failures in a small fraction of segmentation results, the airway tree masks must be manually reviewed for all results which is laborious considering that several thousands of image data sets are evaluated in large studies. In this paper, we present a CT-based novel airway tree segmentation algorithm using iterative multi-scale leakage detection, freezing, and active seed detection. The method is fully automated requiring no manual inputs or post-segmentation editing. It uses simple intensity based connectivity and a new leakage detection algorithm to iteratively grow an airway tree starting from an initial seed inside the trachea. It begins with a conservative threshold and then, iteratively shifts toward generous values. The method was applied on chest CT scans of ten non-smoking subjects at total lung capacity and ten at functional residual capacity. Airway segmentation results were compared to an expert's manually edited segmentations. Branch level accuracy of the new segmentation method was examined along five standardized segmental airway paths (RB1, RB4, RB10, LB1, LB10) and two generations beyond these branches. The method successfully detected all branches up to two generations beyond these segmental bronchi with no visual leakages.

  8. Nucleosome positioning from tiling microarray data.

    PubMed

    Yassour, Moran; Kaplan, Tommy; Jaimovich, Ariel; Friedman, Nir

    2008-07-01

    The packaging of DNA around nucleosomes in eukaryotic cells plays a crucial role in regulation of gene expression, and other DNA-related processes. To better understand the regulatory role of nucleosomes, it is important to pinpoint their position in a high (5-10 bp) resolution. Toward this end, several recent works used dense tiling arrays to map nucleosomes in a high-throughput manner. These data were then parsed and hand-curated, and the positions of nucleosomes were assessed. In this manuscript, we present a fully automated algorithm to analyze such data and predict the exact location of nucleosomes. We introduce a method, based on a probabilistic graphical model, to increase the resolution of our predictions even beyond that of the microarray used. We show how to build such a model and how to compile it into a simple Hidden Markov Model, allowing for a fast and accurate inference of nucleosome positions. We applied our model to nucleosomal data from mid-log yeast cells reported by Yuan et al. and compared our predictions to those of the original paper; to a more recent method that uses five times denser tiling arrays as explained by Lee et al.; and to a curated set of literature-based nucleosome positions. Our results suggest that by applying our algorithm to the same data used by Yuan et al. our fully automated model traced 13% more nucleosomes, and increased the overall accuracy by about 20%. We believe that such an improvement opens the way for a better understanding of the regulatory mechanisms controlling gene expression, and how they are encoded in the DNA.

  9. The future of fully automated vehicles : opportunities for vehicle- and ride-sharing, with cost and emissions savings.

    DOT National Transportation Integrated Search

    2014-08-01

    Fully automated or autonomous vehicles (AVs) hold great promise for the future of transportation. By 2020 : Google, auto manufacturers and other technology providers intend to introduce self-driving cars to the public with : either limited or fully a...

  10. Virtual commissioning of automated micro-optical assembly

    NASA Astrophysics Data System (ADS)

    Schlette, Christian; Losch, Daniel; Haag, Sebastian; Zontar, Daniel; Roßmann, Jürgen; Brecher, Christian

    2015-02-01

    In this contribution, we present a novel approach to enable virtual commissioning for process developers in micro-optical assembly. Our approach aims at supporting micro-optics experts to effectively develop assisted or fully automated assembly solutions without detailed prior experience in programming while at the same time enabling them to easily implement their own libraries of expert schemes and algorithms for handling optical components. Virtual commissioning is enabled by a 3D simulation and visualization system in which the functionalities and properties of automated systems are modeled, simulated and controlled based on multi-agent systems. For process development, our approach supports event-, state- and time-based visual programming techniques for the agents and allows for their kinematic motion simulation in combination with looped-in simulation results for the optical components. First results have been achieved for simply switching the agents to command the real hardware setup after successful process implementation and validation in the virtual environment. We evaluated and adapted our system to meet the requirements set by industrial partners-- laser manufacturers as well as hardware suppliers of assembly platforms. The concept is applied to the automated assembly of optical components for optically pumped semiconductor lasers and positioning of optical components for beam-shaping

  11. Automated model-based quantitative analysis of phantoms with spherical inserts in FDG PET scans.

    PubMed

    Ulrich, Ethan J; Sunderland, John J; Smith, Brian J; Mohiuddin, Imran; Parkhurst, Jessica; Plichta, Kristin A; Buatti, John M; Beichel, Reinhard R

    2018-01-01

    Quality control plays an increasingly important role in quantitative PET imaging and is typically performed using phantoms. The purpose of this work was to develop and validate a fully automated analysis method for two common PET/CT quality assurance phantoms: the NEMA NU-2 IQ and SNMMI/CTN oncology phantom. The algorithm was designed to only utilize the PET scan to enable the analysis of phantoms with thin-walled inserts. We introduce a model-based method for automated analysis of phantoms with spherical inserts. Models are first constructed for each type of phantom to be analyzed. A robust insert detection algorithm uses the model to locate all inserts inside the phantom. First, candidates for inserts are detected using a scale-space detection approach. Second, candidates are given an initial label using a score-based optimization algorithm. Third, a robust model fitting step aligns the phantom model to the initial labeling and fixes incorrect labels. Finally, the detected insert locations are refined and measurements are taken for each insert and several background regions. In addition, an approach for automated selection of NEMA and CTN phantom models is presented. The method was evaluated on a diverse set of 15 NEMA and 20 CTN phantom PET/CT scans. NEMA phantoms were filled with radioactive tracer solution at 9.7:1 activity ratio over background, and CTN phantoms were filled with 4:1 and 2:1 activity ratio over background. For quantitative evaluation, an independent reference standard was generated by two experts using PET/CT scans of the phantoms. In addition, the automated approach was compared against manual analysis, which represents the current clinical standard approach, of the PET phantom scans by four experts. The automated analysis method successfully detected and measured all inserts in all test phantom scans. It is a deterministic algorithm (zero variability), and the insert detection RMS error (i.e., bias) was 0.97, 1.12, and 1.48 mm for phantom activity ratios 9.7:1, 4:1, and 2:1, respectively. For all phantoms and at all contrast ratios, the average RMS error was found to be significantly lower for the proposed automated method compared to the manual analysis of the phantom scans. The uptake measurements produced by the automated method showed high correlation with the independent reference standard (R 2 ≥ 0.9987). In addition, the average computing time for the automated method was 30.6 s and was found to be significantly lower (P ≪ 0.001) compared to manual analysis (mean: 247.8 s). The proposed automated approach was found to have less error when measured against the independent reference than the manual approach. It can be easily adapted to other phantoms with spherical inserts. In addition, it eliminates inter- and intraoperator variability in PET phantom analysis and is significantly more time efficient, and therefore, represents a promising approach to facilitate and simplify PET standardization and harmonization efforts. © 2017 American Association of Physicists in Medicine.

  12. lumpR 2.0.0: an R package facilitating landscape discretisation for hillslope-based hydrological models

    NASA Astrophysics Data System (ADS)

    Pilz, Tobias; Francke, Till; Bronstert, Axel

    2017-08-01

    The characteristics of a landscape pose essential factors for hydrological processes. Therefore, an adequate representation of the landscape of a catchment in hydrological models is vital. However, many of such models exist differing, amongst others, in spatial concept and discretisation. The latter constitutes an essential pre-processing step, for which many different algorithms along with numerous software implementations exist. In that context, existing solutions are often model specific, commercial, or depend on commercial back-end software, and allow only a limited or no workflow automation at all. Consequently, a new package for the scientific software and scripting environment R, called lumpR, was developed. lumpR employs an algorithm for hillslope-based landscape discretisation directed to large-scale application via a hierarchical multi-scale approach. The package addresses existing limitations as it is free and open source, easily extendible to other hydrological models, and the workflow can be fully automated. Moreover, it is user-friendly as the direct coupling to a GIS allows for immediate visual inspection and manual adjustment. Sufficient control is furthermore retained via parameter specification and the option to include expert knowledge. Conversely, completely automatic operation also allows for extensive analysis of aspects related to landscape discretisation. In a case study, the application of the package is presented. A sensitivity analysis of the most important discretisation parameters demonstrates its efficient workflow automation. Considering multiple streamflow metrics, the employed model proved reasonably robust to the discretisation parameters. However, parameters determining the sizes of subbasins and hillslopes proved to be more important than the others, including the number of representative hillslopes, the number of attributes employed for the lumping algorithm, and the number of sub-discretisations of the representative hillslopes.

  13. BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities.

    PubMed

    Griffanti, Ludovica; Zamboni, Giovanna; Khan, Aamira; Li, Linxin; Bonifacio, Guendalina; Sundaresan, Vaanathi; Schulz, Ursula G; Kuker, Wilhelm; Battaglini, Marco; Rothwell, Peter M; Jenkinson, Mark

    2016-11-01

    Reliable quantification of white matter hyperintensities of presumed vascular origin (WMHs) is increasingly needed, given the presence of these MRI findings in patients with several neurological and vascular disorders, as well as in elderly healthy subjects. We present BIANCA (Brain Intensity AbNormality Classification Algorithm), a fully automated, supervised method for WMH detection, based on the k-nearest neighbour (k-NN) algorithm. Relative to previous k-NN based segmentation methods, BIANCA offers different options for weighting the spatial information, local spatial intensity averaging, and different options for the choice of the number and location of the training points. BIANCA is multimodal and highly flexible so that the user can adapt the tool to their protocol and specific needs. We optimised and validated BIANCA on two datasets with different MRI protocols and patient populations (a "predominantly neurodegenerative" and a "predominantly vascular" cohort). BIANCA was first optimised on a subset of images for each dataset in terms of overlap and volumetric agreement with a manually segmented WMH mask. The correlation between the volumes extracted with BIANCA (using the optimised set of options), the volumes extracted from the manual masks and visual ratings showed that BIANCA is a valid alternative to manual segmentation. The optimised set of options was then applied to the whole cohorts and the resulting WMH volume estimates showed good correlations with visual ratings and with age. Finally, we performed a reproducibility test, to evaluate the robustness of BIANCA, and compared BIANCA performance against existing methods. Our findings suggest that BIANCA, which will be freely available as part of the FSL package, is a reliable method for automated WMH segmentation in large cross-sectional cohort studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Automated extraction of chemical structure information from digital raster images

    PubMed Central

    Park, Jungkap; Rosania, Gus R; Shedden, Kerby A; Nguyen, Mandee; Lyu, Naesung; Saitou, Kazuhiro

    2009-01-01

    Background To search for chemical structures in research articles, diagrams or text representing molecules need to be translated to a standard chemical file format compatible with cheminformatic search engines. Nevertheless, chemical information contained in research articles is often referenced as analog diagrams of chemical structures embedded in digital raster images. To automate analog-to-digital conversion of chemical structure diagrams in scientific research articles, several software systems have been developed. But their algorithmic performance and utility in cheminformatic research have not been investigated. Results This paper aims to provide critical reviews for these systems and also report our recent development of ChemReader – a fully automated tool for extracting chemical structure diagrams in research articles and converting them into standard, searchable chemical file formats. Basic algorithms for recognizing lines and letters representing bonds and atoms in chemical structure diagrams can be independently run in sequence from a graphical user interface-and the algorithm parameters can be readily changed-to facilitate additional development specifically tailored to a chemical database annotation scheme. Compared with existing software programs such as OSRA, Kekule, and CLiDE, our results indicate that ChemReader outperforms other software systems on several sets of sample images from diverse sources in terms of the rate of correct outputs and the accuracy on extracting molecular substructure patterns. Conclusion The availability of ChemReader as a cheminformatic tool for extracting chemical structure information from digital raster images allows research and development groups to enrich their chemical structure databases by annotating the entries with published research articles. Based on its stable performance and high accuracy, ChemReader may be sufficiently accurate for annotating the chemical database with links to scientific research articles. PMID:19196483

  15. Model-Independent Phenotyping of C. elegans Locomotion Using Scale-Invariant Feature Transform

    PubMed Central

    Koren, Yelena; Sznitman, Raphael; Arratia, Paulo E.; Carls, Christopher; Krajacic, Predrag; Brown, André E. X.; Sznitman, Josué

    2015-01-01

    To uncover the genetic basis of behavioral traits in the model organism C. elegans, a common strategy is to study locomotion defects in mutants. Despite efforts to introduce (semi-)automated phenotyping strategies, current methods overwhelmingly depend on worm-specific features that must be hand-crafted and as such are not generalizable for phenotyping motility in other animal models. Hence, there is an ongoing need for robust algorithms that can automatically analyze and classify motility phenotypes quantitatively. To this end, we have developed a fully-automated approach to characterize C. elegans’ phenotypes that does not require the definition of nematode-specific features. Rather, we make use of the popular computer vision Scale-Invariant Feature Transform (SIFT) from which we construct histograms of commonly-observed SIFT features to represent nematode motility. We first evaluated our method on a synthetic dataset simulating a range of nematode crawling gaits. Next, we evaluated our algorithm on two distinct datasets of crawling C. elegans with mutants affecting neuromuscular structure and function. Not only is our algorithm able to detect differences between strains, results capture similarities in locomotory phenotypes that lead to clustering that is consistent with expectations based on genetic relationships. Our proposed approach generalizes directly and should be applicable to other animal models. Such applicability holds promise for computational ethology as more groups collect high-resolution image data of animal behavior. PMID:25816290

  16. Enhanced Automated Guidance System for Horizontal Auger Boring Based on Image Processing

    PubMed Central

    Wu, Lingling; Wen, Guojun; Wang, Yudan; Huang, Lei; Zhou, Jiang

    2018-01-01

    Horizontal auger boring (HAB) is a widely used trenchless technology for the high-accuracy installation of gravity or pressure pipelines on line and grade. Differing from other pipeline installations, HAB requires a more precise and automated guidance system for use in a practical project. This paper proposes an economic and enhanced automated optical guidance system, based on optimization research of light-emitting diode (LED) light target and five automated image processing bore-path deviation algorithms. An LED target was optimized for many qualities, including light color, filter plate color, luminous intensity, and LED layout. The image preprocessing algorithm, feature extraction algorithm, angle measurement algorithm, deflection detection algorithm, and auto-focus algorithm, compiled in MATLAB, are used to automate image processing for deflection computing and judging. After multiple indoor experiments, this guidance system is applied in a project of hot water pipeline installation, with accuracy controlled within 2 mm in 48-m distance, providing accurate line and grade controls and verifying the feasibility and reliability of the guidance system. PMID:29462855

  17. Enhanced Automated Guidance System for Horizontal Auger Boring Based on Image Processing.

    PubMed

    Wu, Lingling; Wen, Guojun; Wang, Yudan; Huang, Lei; Zhou, Jiang

    2018-02-15

    Horizontal auger boring (HAB) is a widely used trenchless technology for the high-accuracy installation of gravity or pressure pipelines on line and grade. Differing from other pipeline installations, HAB requires a more precise and automated guidance system for use in a practical project. This paper proposes an economic and enhanced automated optical guidance system, based on optimization research of light-emitting diode (LED) light target and five automated image processing bore-path deviation algorithms. An LED light target was optimized for many qualities, including light color, filter plate color, luminous intensity, and LED layout. The image preprocessing algorithm, direction location algorithm, angle measurement algorithm, deflection detection algorithm, and auto-focus algorithm, compiled in MATLAB, are used to automate image processing for deflection computing and judging. After multiple indoor experiments, this guidance system is applied in a project of hot water pipeline installation, with accuracy controlled within 2 mm in 48-m distance, providing accurate line and grade controls and verifying the feasibility and reliability of the guidance system.

  18. A visual analytic framework for data fusion in investigative intelligence

    NASA Astrophysics Data System (ADS)

    Cai, Guoray; Gross, Geoff; Llinas, James; Hall, David

    2014-05-01

    Intelligence analysis depends on data fusion systems to provide capabilities of detecting and tracking important objects, events, and their relationships in connection to an analytical situation. However, automated data fusion technologies are not mature enough to offer reliable and trustworthy information for situation awareness. Given the trend of increasing sophistication of data fusion algorithms and loss of transparency in data fusion process, analysts are left out of the data fusion process cycle with little to no control and confidence on the data fusion outcome. Following the recent rethinking of data fusion as human-centered process, this paper proposes a conceptual framework towards developing alternative data fusion architecture. This idea is inspired by the recent advances in our understanding of human cognitive systems, the science of visual analytics, and the latest thinking about human-centered data fusion. Our conceptual framework is supported by an analysis of the limitation of existing fully automated data fusion systems where the effectiveness of important algorithmic decisions depend on the availability of expert knowledge or the knowledge of the analyst's mental state in an investigation. The success of this effort will result in next generation data fusion systems that can be better trusted while maintaining high throughput.

  19. Addressing fundamental architectural challenges of an activity-based intelligence and advanced analytics (ABIAA) system

    NASA Astrophysics Data System (ADS)

    Yager, Kevin; Albert, Thomas; Brower, Bernard V.; Pellechia, Matthew F.

    2015-06-01

    The domain of Geospatial Intelligence Analysis is rapidly shifting toward a new paradigm of Activity Based Intelligence (ABI) and information-based Tipping and Cueing. General requirements for an advanced ABIAA system present significant challenges in architectural design, computing resources, data volumes, workflow efficiency, data mining and analysis algorithms, and database structures. These sophisticated ABI software systems must include advanced algorithms that automatically flag activities of interest in less time and within larger data volumes than can be processed by human analysts. In doing this, they must also maintain the geospatial accuracy necessary for cross-correlation of multi-intelligence data sources. Historically, serial architectural workflows have been employed in ABIAA system design for tasking, collection, processing, exploitation, and dissemination. These simpler architectures may produce implementations that solve short term requirements; however, they have serious limitations that preclude them from being used effectively in an automated ABIAA system with multiple data sources. This paper discusses modern ABIAA architectural considerations providing an overview of an advanced ABIAA system and comparisons to legacy systems. It concludes with a recommended strategy and incremental approach to the research, development, and construction of a fully automated ABIAA system.

  20. Automated design of infrared digital metamaterials by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sugino, Yuya; Ishikawa, Atsushi; Hayashi, Yasuhiko; Tsuruta, Kenji

    2017-08-01

    We demonstrate automatic design of infrared (IR) metamaterials using a genetic algorithm (GA) and experimentally characterize their IR properties. To implement the automated design scheme of the metamaterial structures, we adopt a digital metamaterial consisting of 7 × 7 Au nano-pixels with an area of 200 nm × 200 nm, and their placements are coded as binary genes in the GA optimization process. The GA combined with three-dimensional (3D) finite element method (FEM) simulation is developed and applied to automatically construct a digital metamaterial to exhibit pronounced plasmonic resonances at the target IR frequencies. Based on the numerical results, the metamaterials are fabricated on a Si substrate over an area of 1 mm × 1 mm by using an EB lithography, Cr/Au (2/20 nm) depositions, and liftoff process. In the FT-IR measurement, pronounced plasmonic responses of each metamaterial are clearly observed near the targeted frequencies, although the synthesized pixel arrangements of the metamaterials are seemingly random. The corresponding numerical simulations reveal the important resonant behavior of each pixel and their hybridized systems. Our approach is fully computer-aided without artificial manipulation, thus paving the way toward the novel device design for next-generation plasmonic device applications.

  1. HITCal: a software tool for analysis of video head impulse test responses.

    PubMed

    Rey-Martinez, Jorge; Batuecas-Caletrio, Angel; Matiño, Eusebi; Perez Fernandez, Nicolás

    2015-09-01

    The developed software (HITCal) may be a useful tool in the analysis and measurement of the saccadic video head impulse test (vHIT) responses and with the experience obtained during its use the authors suggest that HITCal is an excellent method for enhanced exploration of vHIT outputs. To develop a (software) method to analyze and explore the vHIT responses, mainly saccades. HITCal was written using a computational development program; the function to access a vHIT file was programmed; extended head impulse exploration and measurement tools were created and an automated saccade analysis was developed using an experimental algorithm. For pre-release HITCal laboratory tests, a database of head impulse tests (HITs) was created with the data collected retrospectively in three reference centers. This HITs database was evaluated by humans and was also computed with HITCal. The authors have successfully built HITCal and it has been released as open source software; the developed software was fully operative and all the proposed characteristics were incorporated in the released version. The automated saccades algorithm implemented in HITCal has good concordance with the assessment by human observers (Cohen's kappa coefficient = 0.7).

  2. Fully automated processing of fMRI data in SPM: from MRI scanner to PACS.

    PubMed

    Maldjian, Joseph A; Baer, Aaron H; Kraft, Robert A; Laurienti, Paul J; Burdette, Jonathan H

    2009-01-01

    Here we describe the Wake Forest University Pipeline, a fully automated method for the processing of fMRI data using SPM. The method includes fully automated data transfer and archiving from the point of acquisition, real-time batch script generation, distributed grid processing, interface to SPM in MATLAB, error recovery and data provenance, DICOM conversion and PACS insertion. It has been used for automated processing of fMRI experiments, as well as for the clinical implementation of fMRI and spin-tag perfusion imaging. The pipeline requires no manual intervention, and can be extended to any studies requiring offline processing.

  3. Fully-automated segmentation of fluid regions in exudative age-related macular degeneration subjects: Kernel graph cut in neutrosophic domain

    PubMed Central

    Rashno, Abdolreza; Nazari, Behzad; Koozekanani, Dara D.; Drayna, Paul M.; Sadri, Saeed; Rabbani, Hossein

    2017-01-01

    A fully-automated method based on graph shortest path, graph cut and neutrosophic (NS) sets is presented for fluid segmentation in OCT volumes for exudative age related macular degeneration (EAMD) subjects. The proposed method includes three main steps: 1) The inner limiting membrane (ILM) and the retinal pigment epithelium (RPE) layers are segmented using proposed methods based on graph shortest path in NS domain. A flattened RPE boundary is calculated such that all three types of fluid regions, intra-retinal, sub-retinal and sub-RPE, are located above it. 2) Seed points for fluid (object) and tissue (background) are initialized for graph cut by the proposed automated method. 3) A new cost function is proposed in kernel space, and is minimized with max-flow/min-cut algorithms, leading to a binary segmentation. Important properties of the proposed steps are proven and quantitative performance of each step is analyzed separately. The proposed method is evaluated using a publicly available dataset referred as Optima and a local dataset from the UMN clinic. For fluid segmentation in 2D individual slices, the proposed method outperforms the previously proposed methods by 18%, 21% with respect to the dice coefficient and sensitivity, respectively, on the Optima dataset, and by 16%, 11% and 12% with respect to the dice coefficient, sensitivity and precision, respectively, on the local UMN dataset. Finally, for 3D fluid volume segmentation, the proposed method achieves true positive rate (TPR) and false positive rate (FPR) of 90% and 0.74%, respectively, with a correlation of 95% between automated and expert manual segmentations using linear regression analysis. PMID:29059257

  4. Transthoracic 3D echocardiographic left heart chamber quantification in patients with bicuspid aortic valve disease.

    PubMed

    van den Hoven, Allard T; Mc-Ghie, Jackie S; Chelu, Raluca G; Duijnhouwer, Anthonie L; Baggen, Vivan J M; Coenen, Adriaan; Vletter, Wim B; Dijkshoorn, Marcel L; van den Bosch, Annemien E; Roos-Hesselink, Jolien W

    2017-12-01

    Integration of volumetric heart chamber quantification by 3D echocardiography into clinical practice has been hampered by several factors which a new fully automated algorithm (Left Heart Model, (LHM)) may help overcome. This study therefore aims to evaluate the feasibility and accuracy of the LHM software in quantifying left atrial and left ventricular volumes and left ventricular ejection fraction in a cohort of patients with a bicuspid aortic valve. Patients with a bicuspid aortic valve were prospectively included. All patients underwent 2D and 3D transthoracic echocardiography and computed tomography. Left atrial and ventricular volumes were obtained using the automated program, which did not require manual contour detection. For comparison manual and semi-automated measurements were performed using conventional 2D and 3D datasets. 53 patients were included, in four of those patients no 3D dataset could be acquired. Additionally, 12 patients were excluded based on poor imaging quality. Left ventricular end-diastolic and end-systolic volumes and ejection fraction calculated by the LHM correlated well with manual 2D and 3D measurements (Pearson's r between 0.43 and 0.97, p < 0.05). Left atrial volume (LAV) also correlated significantly although LHM did estimate larger LAV compared to both 2DE and 3DE (Pearson's r between 0.61 and 0.81, p < 0.01). The fully automated software works well in a real-world setting and helps to overcome some of the major hurdles in integrating 3D analysis into daily practice, as it is user-independent and highly reproducible in a group of patients with a clearly defined and well-studied valvular abnormality.

  5. A Fully-Automated Subcortical and Ventricular Shape Generation Pipeline Preserving Smoothness and Anatomical Topology

    PubMed Central

    Tang, Xiaoying; Luo, Yuan; Chen, Zhibin; Huang, Nianwei; Johnson, Hans J.; Paulsen, Jane S.; Miller, Michael I.

    2018-01-01

    In this paper, we present a fully-automated subcortical and ventricular shape generation pipeline that acts on structural magnetic resonance images (MRIs) of the human brain. Principally, the proposed pipeline consists of three steps: (1) automated structure segmentation using the diffeomorphic multi-atlas likelihood-fusion algorithm; (2) study-specific shape template creation based on the Delaunay triangulation; (3) deformation-based shape filtering using the large deformation diffeomorphic metric mapping for surfaces. The proposed pipeline is shown to provide high accuracy, sufficient smoothness, and accurate anatomical topology. Two datasets focused upon Huntington's disease (HD) were used for evaluating the performance of the proposed pipeline. The first of these contains a total of 16 MRI scans, each with a gold standard available, on which the proposed pipeline's outputs were observed to be highly accurate and smooth when compared with the gold standard. Visual examinations and outlier analyses on the second dataset, which contains a total of 1,445 MRI scans, revealed 100% success rates for the putamen, the thalamus, the globus pallidus, the amygdala, and the lateral ventricle in both hemispheres and rates no smaller than 97% for the bilateral hippocampus and caudate. Another independent dataset, consisting of 15 atlas images and 20 testing images, was also used to quantitatively evaluate the proposed pipeline, with high accuracy having been obtained. In short, the proposed pipeline is herein demonstrated to be effective, both quantitatively and qualitatively, using a large collection of MRI scans. PMID:29867332

  6. Fully automated muscle quality assessment by Gabor filtering of second harmonic generation images

    NASA Astrophysics Data System (ADS)

    Paesen, Rik; Smolders, Sophie; Vega, José Manolo de Hoyos; Eijnde, Bert O.; Hansen, Dominique; Ameloot, Marcel

    2016-02-01

    Although structural changes on the sarcomere level of skeletal muscle are known to occur due to various pathologies, rigorous studies of the reduced sarcomere quality remain scarce. This can possibly be explained by the lack of an objective tool for analyzing and comparing sarcomere images across biological conditions. Recent developments in second harmonic generation (SHG) microscopy and increasing insight into the interpretation of sarcomere SHG intensity profiles have made SHG microscopy a valuable tool to study microstructural properties of sarcomeres. Typically, sarcomere integrity is analyzed by fitting a set of manually selected, one-dimensional SHG intensity profiles with a supramolecular SHG model. To circumvent this tedious manual selection step, we developed a fully automated image analysis procedure to map the sarcomere disorder for the entire image at once. The algorithm relies on a single-frequency wavelet-based Gabor approach and includes a newly developed normalization procedure allowing for unambiguous data interpretation. The method was validated by showing the correlation between the sarcomere disorder, quantified by the M-band size obtained from manually selected profiles, and the normalized Gabor value ranging from 0 to 1 for decreasing disorder. Finally, to elucidate the applicability of our newly developed protocol, Gabor analysis was used to study the effect of experimental autoimmune encephalomyelitis on the sarcomere regularity. We believe that the technique developed in this work holds great promise for high-throughput, unbiased, and automated image analysis to study sarcomere integrity by SHG microscopy.

  7. A Fully-Automated Subcortical and Ventricular Shape Generation Pipeline Preserving Smoothness and Anatomical Topology.

    PubMed

    Tang, Xiaoying; Luo, Yuan; Chen, Zhibin; Huang, Nianwei; Johnson, Hans J; Paulsen, Jane S; Miller, Michael I

    2018-01-01

    In this paper, we present a fully-automated subcortical and ventricular shape generation pipeline that acts on structural magnetic resonance images (MRIs) of the human brain. Principally, the proposed pipeline consists of three steps: (1) automated structure segmentation using the diffeomorphic multi-atlas likelihood-fusion algorithm; (2) study-specific shape template creation based on the Delaunay triangulation; (3) deformation-based shape filtering using the large deformation diffeomorphic metric mapping for surfaces. The proposed pipeline is shown to provide high accuracy, sufficient smoothness, and accurate anatomical topology. Two datasets focused upon Huntington's disease (HD) were used for evaluating the performance of the proposed pipeline. The first of these contains a total of 16 MRI scans, each with a gold standard available, on which the proposed pipeline's outputs were observed to be highly accurate and smooth when compared with the gold standard. Visual examinations and outlier analyses on the second dataset, which contains a total of 1,445 MRI scans, revealed 100% success rates for the putamen, the thalamus, the globus pallidus, the amygdala, and the lateral ventricle in both hemispheres and rates no smaller than 97% for the bilateral hippocampus and caudate. Another independent dataset, consisting of 15 atlas images and 20 testing images, was also used to quantitatively evaluate the proposed pipeline, with high accuracy having been obtained. In short, the proposed pipeline is herein demonstrated to be effective, both quantitatively and qualitatively, using a large collection of MRI scans.

  8. The Statistical Loop Analyzer (SLA)

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.

    1985-01-01

    The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.

  9. An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis.

    PubMed

    Varela, J A; Vázquez, S A; Martínez-Núñez, E

    2017-05-01

    A novel computational method is proposed in this work for use in discovering reaction mechanisms and solving the kinetics of transition metal-catalyzed reactions. The method does not rely on either chemical intuition or assumed a priori mechanisms, and it works in a fully automated fashion. Its core is a procedure, recently developed by one of the authors, that combines accelerated direct dynamics with an efficient geometry-based post-processing algorithm to find transition states (Martinez-Nunez, E., J. Comput. Chem. 2015 , 36 , 222-234). In the present work, several auxiliary tools have been added to deal with the specific features of transition metal catalytic reactions. As a test case, we chose the cobalt-catalyzed hydroformylation of ethylene because of its well-established mechanism, and the fact that it has already been used in previous automated computational studies. Besides the generally accepted mechanism of Heck and Breslow, several side reactions, such as hydrogenation of the alkene, emerged from our calculations. Additionally, the calculated rate law for the hydroformylation reaction agrees reasonably well with those obtained in previous experimental and theoretical studies.

  10. Automated in vivo identification of fungal infection on human scalp using optical coherence tomography and machine learning

    NASA Astrophysics Data System (ADS)

    Dubey, Kavita; Srivastava, Vishal; Singh Mehta, Dalip

    2018-04-01

    Early identification of fungal infection on the human scalp is crucial for avoiding hair loss. The diagnosis of fungal infection on the human scalp is based on a visual assessment by trained experts or doctors. Optical coherence tomography (OCT) has the ability to capture fungal infection information from the human scalp with a high resolution. In this study, we present a fully automated, non-contact, non-invasive optical method for rapid detection of fungal infections based on the extracted features from A-line and B-scan images of OCT. A multilevel ensemble machine model is designed to perform automated classification, which shows the superiority of our classifier to the best classifier based on the features extracted from OCT images. In this study, 60 samples (30 fungal, 30 normal) were imaged by OCT and eight features were extracted. The classification algorithm had an average sensitivity, specificity and accuracy of 92.30, 90.90 and 91.66%, respectively, for identifying fungal and normal human scalps. This remarkable classifying ability makes the proposed model readily applicable to classifying the human scalp.

  11. Particle swarm optimizer for weighting factor selection in intensity-modulated radiation therapy optimization algorithms.

    PubMed

    Yang, Jie; Zhang, Pengcheng; Zhang, Liyuan; Shu, Huazhong; Li, Baosheng; Gui, Zhiguo

    2017-01-01

    In inverse treatment planning of intensity-modulated radiation therapy (IMRT), the objective function is typically the sum of the weighted sub-scores, where the weights indicate the importance of the sub-scores. To obtain a high-quality treatment plan, the planner manually adjusts the objective weights using a trial-and-error procedure until an acceptable plan is reached. In this work, a new particle swarm optimization (PSO) method which can adjust the weighting factors automatically was investigated to overcome the requirement of manual adjustment, thereby reducing the workload of the human planner and contributing to the development of a fully automated planning process. The proposed optimization method consists of three steps. (i) First, a swarm of weighting factors (i.e., particles) is initialized randomly in the search space, where each particle corresponds to a global objective function. (ii) Then, a plan optimization solver is employed to obtain the optimal solution for each particle, and the values of the evaluation functions used to determine the particle's location and the population global location for the PSO are calculated based on these results. (iii) Next, the weighting factors are updated based on the particle's location and the population global location. Step (ii) is performed alternately with step (iii) until the termination condition is reached. In this method, the evaluation function is a combination of several key points on the dose volume histograms. Furthermore, a perturbation strategy - the crossover and mutation operator hybrid approach - is employed to enhance the population diversity, and two arguments are applied to the evaluation function to improve the flexibility of the algorithm. In this study, the proposed method was used to develop IMRT treatment plans involving five unequally spaced 6MV photon beams for 10 prostate cancer cases. The proposed optimization algorithm yielded high-quality plans for all of the cases, without human planner intervention. A comparison of the results with the optimized solution obtained using a similar optimization model but with human planner intervention revealed that the proposed algorithm produced optimized plans superior to that developed using the manual plan. The proposed algorithm can generate admissible solutions within reasonable computational times and can be used to develop fully automated IMRT treatment planning methods, thus reducing human planners' workloads during iterative processes. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Day/night whole sky imagers for 24-h cloud and sky assessment: history and overview.

    PubMed

    Shields, Janet E; Karr, Monette E; Johnson, Richard W; Burden, Art R

    2013-03-10

    A family of fully automated digital whole sky imagers (WSIs) has been developed at the Marine Physical Laboratory over many years, for a variety of research and military applications. The most advanced of these, the day/night whole sky imagers (D/N WSIs), acquire digital imagery of the full sky down to the horizon under all conditions from full sunlight to starlight. Cloud algorithms process the imagery to automatically detect the locations of cloud for both day and night. The instruments can provide absolute radiance distribution over the full radiance range from starlight through daylight. The WSIs were fielded in 1984, followed by the D/N WSIs in 1992. These many years of experience and development have resulted in very capable instruments and algorithms that remain unique. This article discusses the history of the development of the D/N WSIs, system design, algorithms, and data products. The paper cites many reports with more detailed technical documentation. Further details of calibration, day and night algorithms, and cloud free line-of-sight results will be discussed in future articles.

  13. Automatic Blocking Of QR and LU Factorizations for Locality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Q; Kennedy, K; You, H

    2004-03-26

    QR and LU factorizations for dense matrices are important linear algebra computations that are widely used in scientific applications. To efficiently perform these computations on modern computers, the factorization algorithms need to be blocked when operating on large matrices to effectively exploit the deep cache hierarchy prevalent in today's computer memory systems. Because both QR (based on Householder transformations) and LU factorization algorithms contain complex loop structures, few compilers can fully automate the blocking of these algorithms. Though linear algebra libraries such as LAPACK provides manually blocked implementations of these algorithms, by automatically generating blocked versions of the computations, moremore » benefit can be gained such as automatic adaptation of different blocking strategies. This paper demonstrates how to apply an aggressive loop transformation technique, dependence hoisting, to produce efficient blockings for both QR and LU with partial pivoting. We present different blocking strategies that can be generated by our optimizer and compare the performance of auto-blocked versions with manually tuned versions in LAPACK, both using reference BLAS, ATLAS BLAS and native BLAS specially tuned for the underlying machine architectures.« less

  14. An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study.

    PubMed

    De Tobel, J; Radesh, P; Vandermeulen, D; Thevissen, P W

    2017-12-01

    Automated methods to evaluate growth of hand and wrist bones on radiographs and magnetic resonance imaging have been developed. They can be applied to estimate age in children and subadults. Automated methods require the software to (1) recognise the region of interest in the image(s), (2) evaluate the degree of development and (3) correlate this to the age of the subject based on a reference population. For age estimation based on third molars an automated method for step (1) has been presented for 3D magnetic resonance imaging and is currently being optimised (Unterpirker et al. 2015). To develop an automated method for step (2) based on lower third molars on panoramic radiographs. A modified Demirjian staging technique including ten developmental stages was developed. Twenty panoramic radiographs per stage per gender were retrospectively selected for FDI element 38. Two observers decided in consensus about the stages. When necessary, a third observer acted as a referee to establish the reference stage for the considered third molar. This set of radiographs was used as training data for machine learning algorithms for automated staging. First, image contrast settings were optimised to evaluate the third molar of interest and a rectangular bounding box was placed around it in a standardised way using Adobe Photoshop CC 2017 software. This bounding box indicated the region of interest for the next step. Second, several machine learning algorithms available in MATLAB R2017a software were applied for automated stage recognition. Third, the classification performance was evaluated in a 5-fold cross-validation scenario, using different validation metrics (accuracy, Rank-N recognition rate, mean absolute difference, linear kappa coefficient). Transfer Learning as a type of Deep Learning Convolutional Neural Network approach outperformed all other tested approaches. Mean accuracy equalled 0.51, mean absolute difference was 0.6 stages and mean linearly weighted kappa was 0.82. The overall performance of the presented automated pilot technique to stage lower third molar development on panoramic radiographs was similar to staging by human observers. It will be further optimised in future research, since it represents a necessary step to achieve a fully automated dental age estimation method, which to date is not available.

  15. Automated Speech Rate Measurement in Dysarthria.

    PubMed

    Martens, Heidi; Dekens, Tomas; Van Nuffelen, Gwen; Latacz, Lukas; Verhelst, Werner; De Bodt, Marc

    2015-06-01

    In this study, a new algorithm for automated determination of speech rate (SR) in dysarthric speech is evaluated. We investigated how reliably the algorithm calculates the SR of dysarthric speech samples when compared with calculation performed by speech-language pathologists. The new algorithm was trained and tested using Dutch speech samples of 36 speakers with no history of speech impairment and 40 speakers with mild to moderate dysarthria. We tested the algorithm under various conditions: according to speech task type (sentence reading, passage reading, and storytelling) and algorithm optimization method (speaker group optimization and individual speaker optimization). Correlations between automated and human SR determination were calculated for each condition. High correlations between automated and human SR determination were found in the various testing conditions. The new algorithm measures SR in a sufficiently reliable manner. It is currently being integrated in a clinical software tool for assessing and managing prosody in dysarthric speech. Further research is needed to fine-tune the algorithm to severely dysarthric speech, to make the algorithm less sensitive to background noise, and to evaluate how the algorithm deals with syllabic consonants.

  16. An Automated Cloud-edge Detection Algorithm Using Cloud Physics and Radar Data

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.; Grainger, Cedric A.

    2003-01-01

    An automated cloud edge detection algorithm was developed and extensively tested. The algorithm uses in-situ cloud physics data measured by a research aircraft coupled with ground-based weather radar measurements to determine whether the aircraft is in or out of cloud. Cloud edges are determined when the in/out state changes, subject to a hysteresis constraint. The hysteresis constraint prevents isolated transient cloud puffs or data dropouts from being identified as cloud boundaries. The algorithm was verified by detailed manual examination of the data set in comparison to the results from application of the automated algorithm.

  17. High throughput light absorber discovery, Part 1: An algorithm for automated tauc analysis

    DOE PAGES

    Suram, Santosh K.; Newhouse, Paul F.; Gregoire, John M.

    2016-09-23

    High-throughput experimentation provides efficient mapping of composition-property relationships, and its implementation for the discovery of optical materials enables advancements in solar energy and other technologies. In a high throughput pipeline, automated data processing algorithms are often required to match experimental throughput, and we present an automated Tauc analysis algorithm for estimating band gap energies from optical spectroscopy data. The algorithm mimics the judgment of an expert scientist, which is demonstrated through its application to a variety of high throughput spectroscopy data, including the identification of indirect or direct band gaps in Fe 2O 3, Cu 2V 2O 7, and BiVOmore » 4. Here, the applicability of the algorithm to estimate a range of band gap energies for various materials is demonstrated by a comparison of direct-allowed band gaps estimated by expert scientists and by automated algorithm for 60 optical spectra.« less

  18. Fully automatic guidance and control for rotorcraft nap-of-the-Earth flight following planned profiles. Volume 1: Real-time piloted simulation

    NASA Technical Reports Server (NTRS)

    Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.

    1991-01-01

    Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-based and moving-based real-time piloted simulations, thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.

  19. Fully Automatic Guidance and Control for Rotorcraft Nap-of-the-earth Flight Following Planned Profiles. Volume 2: Mathematical Model

    NASA Technical Reports Server (NTRS)

    Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.

    1991-01-01

    Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-base and moving-base real-time piloted simulations; thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.

  20. eqMAXEL: A new automatic earthquake location algorithm implementation for Earthworm

    NASA Astrophysics Data System (ADS)

    Lisowski, S.; Friberg, P. A.; Sheen, D. H.

    2017-12-01

    A common problem with automated earthquake location systems for a local to regional scale seismic network is false triggering and false locations inside the network caused by larger regional to teleseismic distance earthquakes. This false location issue also presents a problem for earthquake early warning systems where societal impacts of false alarms can be very expensive. Towards solving this issue, Sheen et al. (2016) implemented a robust maximum-likelihood earthquake location algorithm known as MAXEL. It was shown with both synthetics and real-data for a small number of arrivals, that large regional events were easily identifiable through metrics in the MAXEL algorithm. In the summer of 2017, we collaboratively implemented the MAXEL algorithm into a fully functional Earthworm module and tested it in regions of the USA where false detections and alarming are observed. We show robust improvement in the ability of the Earthworm system to filter out regional and teleseismic events that would have falsely located inside the network using the traditional Earthworm hypoinverse solution. We also explore using different grid sizes in the implementation of the MAXEL algorithm, which was originally designed with South Korea as the target network size.

  1. Using medication list--problem list mismatches as markers of potential error.

    PubMed Central

    Carpenter, James D.; Gorman, Paul N.

    2002-01-01

    The goal of this project was to specify and develop an algorithm that will check for drug and problem list mismatches in an electronic medical record (EMR). The algorithm is based on the premise that a patient's problem list and medication list should agree, and a mismatch may indicate medication error. Successful development of this algorithm could mean detection of some errors, such as medication orders entered into a wrong patient record, or drug therapy omissions, that are not otherwise detected via automated means. Additionally, mismatches may identify opportunities to improve problem list integrity. To assess the concept's feasibility, this study compared medications listed in a pharmacy information system with findings in an online nursing adult admission assessment, serving as a proxy for the problem list. Where drug and problem list mismatches were discovered, examination of the patient record confirmed the mismatch, and identified any potential causes. Evaluation of the algorithm in diabetes treatment indicates that it successfully detects both potential medication error and opportunities to improve problem list completeness. This algorithm, once fully developed and deployed, could prove a valuable way to improve the patient problem list, and could decrease the risk of medication error. PMID:12463796

  2. Fully convolutional neural network for removing background in noisy images of uranium bearing particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarolli, Jay G.; Naes, Benjamin E.; Butler, Lamar

    A fully convolutional neural network (FCN) was developed to supersede automatic or manual thresholding algorithms used for tabulating SIMS particle search data. The FCN was designed to perform a binary classification of pixels in each image belonging to a particle or not, thereby effectively removing background signal without manually or automatically determining an intensity threshold. Using 8,000 images from 28 different particle screening analyses, the FCN was trained to accurately predict pixels belonging to a particle with near 99% accuracy. Background eliminated images were then segmented using a watershed technique in order to determine isotopic ratios of particles. A comparisonmore » of the isotopic distributions of an independent data set segmented using the neural network, compared to a commercially available automated particle measurement (APM) program developed by CAMECA, highlighted the necessity for effective background removal to ensure that resulting particle identification is not only accurate, but preserves valuable signal that could be lost due to improper segmentation. The FCN approach improves the robustness of current state-of-the-art particle searching algorithms by reducing user input biases, resulting in an improved absolute signal per particle and decreased uncertainty of the determined isotope ratios.« less

  3. Automated Interpretation of Blood Culture Gram Stains by Use of a Deep Convolutional Neural Network.

    PubMed

    Smith, Kenneth P; Kang, Anthony D; Kirby, James E

    2018-03-01

    Microscopic interpretation of stained smears is one of the most operator-dependent and time-intensive activities in the clinical microbiology laboratory. Here, we investigated application of an automated image acquisition and convolutional neural network (CNN)-based approach for automated Gram stain classification. Using an automated microscopy platform, uncoverslipped slides were scanned with a 40× dry objective, generating images of sufficient resolution for interpretation. We collected 25,488 images from positive blood culture Gram stains prepared during routine clinical workup. These images were used to generate 100,213 crops containing Gram-positive cocci in clusters, Gram-positive cocci in chains/pairs, Gram-negative rods, or background (no cells). These categories were targeted for proof-of-concept development as they are associated with the majority of bloodstream infections. Our CNN model achieved a classification accuracy of 94.9% on a test set of image crops. Receiver operating characteristic (ROC) curve analysis indicated a robust ability to differentiate between categories with an area under the curve of >0.98 for each. After training and validation, we applied the classification algorithm to new images collected from 189 whole slides without human intervention. Sensitivity and specificity were 98.4% and 75.0% for Gram-positive cocci in chains and pairs, 93.2% and 97.2% for Gram-positive cocci in clusters, and 96.3% and 98.1% for Gram-negative rods. Taken together, our data support a proof of concept for a fully automated classification methodology for blood-culture Gram stains. Importantly, the algorithm was highly adept at identifying image crops with organisms and could be used to present prescreened, classified crops to technologists to accelerate smear review. This concept could potentially be extended to all Gram stain interpretive activities in the clinical laboratory. Copyright © 2018 American Society for Microbiology.

  4. Computer-aided endovascular aortic repair using fully automated two- and three-dimensional fusion imaging.

    PubMed

    Panuccio, Giuseppe; Torsello, Giovanni Federico; Pfister, Markus; Bisdas, Theodosios; Bosiers, Michel J; Torsello, Giovanni; Austermann, Martin

    2016-12-01

    To assess the usability of a fully automated fusion imaging engine prototype, matching preinterventional computed tomography with intraoperative fluoroscopic angiography during endovascular aortic repair. From June 2014 to February 2015, all patients treated electively for abdominal and thoracoabdominal aneurysms were enrolled prospectively. Before each procedure, preoperative planning was performed with a fully automated fusion engine prototype based on computed tomography angiography, creating a mesh model of the aorta. In a second step, this three-dimensional dataset was registered with the two-dimensional intraoperative fluoroscopy. The main outcome measure was the applicability of the fully automated fusion engine. Secondary outcomes were freedom from failure of automatic segmentation or of the automatic registration as well as accuracy of the mesh model, measuring deviations from intraoperative angiography in millimeters, if applicable. Twenty-five patients were enrolled in this study. The fusion imaging engine could be used in successfully 92% of the cases (n = 23). Freedom from failure of automatic segmentation was 44% (n = 11). The freedom from failure of the automatic registration was 76% (n = 19), the median error of the automatic registration process was 0 mm (interquartile range, 0-5 mm). The fully automated fusion imaging engine was found to be applicable in most cases, albeit in several cases a fully automated data processing was not possible, requiring manual intervention. The accuracy of the automatic registration yielded excellent results and promises a useful and simple to use technology. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  5. Red Blood Cell Count Automation Using Microscopic Hyperspectral Imaging Technology.

    PubMed

    Li, Qingli; Zhou, Mei; Liu, Hongying; Wang, Yiting; Guo, Fangmin

    2015-12-01

    Red blood cell counts have been proven to be one of the most frequently performed blood tests and are valuable for early diagnosis of some diseases. This paper describes an automated red blood cell counting method based on microscopic hyperspectral imaging technology. Unlike the light microscopy-based red blood count methods, a combined spatial and spectral algorithm is proposed to identify red blood cells by integrating active contour models and automated two-dimensional k-means with spectral angle mapper algorithm. Experimental results show that the proposed algorithm has better performance than spatial based algorithm because the new algorithm can jointly use the spatial and spectral information of blood cells.

  6. Parallel solution-phase synthesis of a 2-aminothiazole library including fully automated work-up.

    PubMed

    Buchstaller, Hans-Peter; Anlauf, Uwe

    2011-02-01

    A straightforward and effective procedure for the solution phase preparation of a 2-aminothiazole combinatorial library is described. Reaction, work-up and isolation of the title compounds as free bases was accomplished in a fully automated fashion using the Chemspeed ASW 2000 automated synthesizer. The compounds were obtained in good yields and excellent purities without any further purification procedure.

  7. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Brad M.; Nathan, Diane L.; Wang Yan

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., 'FOR PROCESSING') andmore » vendor postprocessed (i.e., 'FOR PRESENTATION'), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Results: Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r= 0.82, p < 0.001) and processed (r= 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r= 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's {kappa}{>=} 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). Conclusions: The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies.« less

  8. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    PubMed Central

    Keller, Brad M.; Nathan, Diane L.; Wang, Yan; Zheng, Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina

    2012-01-01

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., “FOR PROCESSING”) and vendor postprocessed (i.e., “FOR PRESENTATION”), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Results: Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r = 0.82, p < 0.001) and processed (r = 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r = 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's κ ≥ 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). Conclusions: The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies. PMID:22894417

  9. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation.

    PubMed

    Keller, Brad M; Nathan, Diane L; Wang, Yan; Zheng, Yuanjie; Gee, James C; Conant, Emily F; Kontos, Despina

    2012-08-01

    The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., "FOR PROCESSING") and vendor postprocessed (i.e., "FOR PRESENTATION"), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r = 0.82, p < 0.001) and processed (r = 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r = 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's κ ≥ 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies.

  10. SU-G-206-01: A Fully Automated CT Tool to Facilitate Phantom Image QA for Quantitative Imaging in Clinical Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahi-Anwar, M; Lo, P; Kim, H

    Purpose: The use of Quantitative Imaging (QI) methods in Clinical Trials requires both verification of adherence to a specified protocol and an assessment of scanner performance under that protocol, which are currently accomplished manually. This work introduces automated phantom identification and image QA measure extraction towards a fully-automated CT phantom QA system to perform these functions and facilitate the use of Quantitative Imaging methods in clinical trials. Methods: This study used a retrospective cohort of CT phantom scans from existing clinical trial protocols - totaling 84 phantoms, across 3 phantom types using various scanners and protocols. The QA system identifiesmore » the input phantom scan through an ensemble of threshold-based classifiers. Each classifier - corresponding to a phantom type - contains a template slice, which is compared to the input scan on a slice-by-slice basis, resulting in slice-wise similarity metric values for each slice compared. Pre-trained thresholds (established from a training set of phantom images matching the template type) are used to filter the similarity distribution, and the slice with the most optimal local mean similarity, with local neighboring slices meeting the threshold requirement, is chosen as the classifier’s matched slice (if it existed). The classifier with the matched slice possessing the most optimal local mean similarity is then chosen as the ensemble’s best matching slice. If the best matching slice exists, image QA algorithm and ROIs corresponding to the matching classifier extracted the image QA measures. Results: Automated phantom identification performed with 84.5% accuracy and 88.8% sensitivity on 84 phantoms. Automated image quality measurements (following standard protocol) on identified water phantoms (n=35) matched user QA decisions with 100% accuracy. Conclusion: We provide a fullyautomated CT phantom QA system consistent with manual QA performance. Further work will include parallel component to automatically verify image acquisition parameters and automated adherence to specifications. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics; NIH Grant support from: U01 CA181156.« less

  11. Automation and Intensity Modulated Radiation Therapy for Individualized High-Quality Tangent Breast Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purdie, Thomas G., E-mail: Tom.Purdie@rmp.uhn.on.ca; Department of Radiation Oncology, University of Toronto, Toronto, Ontario; Techna Institute, University Health Network, Toronto, Ontario

    Purpose: To demonstrate the large-scale clinical implementation and performance of an automated treatment planning methodology for tangential breast intensity modulated radiation therapy (IMRT). Methods and Materials: Automated planning was used to prospectively plan tangential breast IMRT treatment for 1661 patients between June 2009 and November 2012. The automated planning method emulates the manual steps performed by the user during treatment planning, including anatomical segmentation, beam placement, optimization, dose calculation, and plan documentation. The user specifies clinical requirements of the plan to be generated through a user interface embedded in the planning system. The automated method uses heuristic algorithms to definemore » and simplify the technical aspects of the treatment planning process. Results: Automated planning was used in 1661 of 1708 patients receiving tangential breast IMRT during the time interval studied. Therefore, automated planning was applicable in greater than 97% of cases. The time for treatment planning using the automated process is routinely 5 to 6 minutes on standard commercially available planning hardware. We have shown a consistent reduction in plan rejections from plan reviews through the standard quality control process or weekly quality review multidisciplinary breast rounds as we have automated the planning process for tangential breast IMRT. Clinical plan acceptance increased from 97.3% using our previous semiautomated inverse method to 98.9% using the fully automated method. Conclusions: Automation has become the routine standard method for treatment planning of tangential breast IMRT at our institution and is clinically feasible on a large scale. The method has wide clinical applicability and can add tremendous efficiency, standardization, and quality to the current treatment planning process. The use of automated methods can allow centers to more rapidly adopt IMRT and enhance access to the documented improvements in care for breast cancer patients, using technologies that are widely available and already in clinical use.« less

  12. Automation and intensity modulated radiation therapy for individualized high-quality tangent breast treatment plans.

    PubMed

    Purdie, Thomas G; Dinniwell, Robert E; Fyles, Anthony; Sharpe, Michael B

    2014-11-01

    To demonstrate the large-scale clinical implementation and performance of an automated treatment planning methodology for tangential breast intensity modulated radiation therapy (IMRT). Automated planning was used to prospectively plan tangential breast IMRT treatment for 1661 patients between June 2009 and November 2012. The automated planning method emulates the manual steps performed by the user during treatment planning, including anatomical segmentation, beam placement, optimization, dose calculation, and plan documentation. The user specifies clinical requirements of the plan to be generated through a user interface embedded in the planning system. The automated method uses heuristic algorithms to define and simplify the technical aspects of the treatment planning process. Automated planning was used in 1661 of 1708 patients receiving tangential breast IMRT during the time interval studied. Therefore, automated planning was applicable in greater than 97% of cases. The time for treatment planning using the automated process is routinely 5 to 6 minutes on standard commercially available planning hardware. We have shown a consistent reduction in plan rejections from plan reviews through the standard quality control process or weekly quality review multidisciplinary breast rounds as we have automated the planning process for tangential breast IMRT. Clinical plan acceptance increased from 97.3% using our previous semiautomated inverse method to 98.9% using the fully automated method. Automation has become the routine standard method for treatment planning of tangential breast IMRT at our institution and is clinically feasible on a large scale. The method has wide clinical applicability and can add tremendous efficiency, standardization, and quality to the current treatment planning process. The use of automated methods can allow centers to more rapidly adopt IMRT and enhance access to the documented improvements in care for breast cancer patients, using technologies that are widely available and already in clinical use. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Does bacteriology laboratory automation reduce time to results and increase quality management?

    PubMed

    Dauwalder, O; Landrieve, L; Laurent, F; de Montclos, M; Vandenesch, F; Lina, G

    2016-03-01

    Due to reductions in financial and human resources, many microbiological laboratories have merged to build very large clinical microbiology laboratories, which allow the use of fully automated laboratory instruments. For clinical chemistry and haematology, automation has reduced the time to results and improved the management of laboratory quality. The aim of this review was to examine whether fully automated laboratory instruments for microbiology can reduce time to results and impact quality management. This study focused on solutions that are currently available, including the BD Kiestra™ Work Cell Automation and Total Lab Automation and the Copan WASPLab(®). Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. Automated Detection and Analysis of Interplanetary Shocks Running Real-Time on the Web

    NASA Astrophysics Data System (ADS)

    Vorotnikov, V.; Smith, C. W.; Hu, Q.; Szabo, A.; Skoug, R. M.; Cohen, C. M.; Davis, A. J.

    2008-05-01

    The ACE real-time data stream provides web-based now-casting capabilities for solar wind conditions upstream of Earth. We have built a fully automated code that finds and analyzes interplanetary shocks as they occur and posts their solutions on the Web for possible real-time application to space weather nowcasting. Shock analysis algorithms based on the Rankine-Hugoniot jump conditions exist and are in wide-spread use today for the interactive analysis of interplanetary shocks yielding parameters such as shock speed and propagation direction and shock strength in the form of compression ratios. At a previous meeting we reported on efforts to develop a fully automated code that used ACE Level-2 (science quality) data to prove the applicability and correctness of the code and the associated shock-finder. We have since adapted the code to run ACE RTSW data provided by NOAA. This data lacks the full 3-dimensional velocity vector for the solar wind and contains only a single component wind speed. We show that by assuming the wind velocity to be radial strong shock solutions remain essentially unchanged and the analysis performs as well as it would if 3-D velocity components were available. This is due, at least in part, to the fact that strong shocks tend to have nearly radial shock normals and it is the strong shocks that are most effective in space weather applications. Strong shocks are the only shocks that concern us in this application. The code is now running on the Web and the results are available to all.

  15. Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system.

    PubMed

    Ikeya, Teppei; Takeda, Mitsuhiro; Yoshida, Hitoshi; Terauchi, Tsutomu; Jee, Jun-Goo; Kainosho, Masatsune; Güntert, Peter

    2009-08-01

    Stereo-array isotope labeling (SAIL) has been combined with the fully automated NMR structure determination algorithm FLYA to determine the three-dimensional structure of the protein ubiquitin from different sets of input NMR spectra. SAIL provides a complete stereo- and regio-specific pattern of stable isotopes that results in sharper resonance lines and reduced signal overlap, without information loss. Here we show that as a result of the superior quality of the SAIL NMR spectra, reliable, fully automated analyses of the NMR spectra and structure calculations are possible using fewer input spectra than with conventional uniformly 13C/15N-labeled proteins. FLYA calculations with SAIL ubiquitin, using a single three-dimensional "through-bond" spectrum (and 2D HSQC spectra) in addition to the 13C-edited and 15N-edited NOESY spectra for conformational restraints, yielded structures with an accuracy of 0.83-1.15 A for the backbone RMSD to the conventionally determined solution structure of SAIL ubiquitin. NMR structures can thus be determined almost exclusively from the NOESY spectra that yield the conformational restraints, without the need to record many spectra only for determining intermediate, auxiliary data of the chemical shift assignments. The FLYA calculations for this report resulted in 252 ubiquitin structure bundles, obtained with different input data but identical structure calculation and refinement methods. These structures cover the entire range from highly accurate structures to seriously, but not trivially, wrong structures, and thus constitute a valuable database for the substantiation of structure validation methods.

  16. Three-dimensional automated choroidal volume assessment on standard spectral-domain optical coherence tomography and correlation with the level of diabetic macular edema.

    PubMed

    Gerendas, Bianca S; Waldstein, Sebastian M; Simader, Christian; Deak, Gabor; Hajnajeeb, Bilal; Zhang, Li; Bogunovic, Hrvoje; Abramoff, Michael D; Kundi, Michael; Sonka, Milan; Schmidt-Erfurth, Ursula

    2014-11-01

    To measure choroidal thickness on spectral-domain optical coherence tomography (SD OCT) images using automated algorithms and to correlate choroidal pathology with retinal changes attributable to diabetic macular edema (DME). Post hoc analysis of multicenter clinical trial baseline data. SD OCT raster scans/fluorescein angiograms were obtained from 284 treatment-naïve eyes of 142 patients with clinically significant DME and from 20 controls. Three-dimensional (3D) SD OCT images were evaluated by a certified independent reading center analyzing retinal changes associated with diabetic retinopathy. Choroidal thicknesses were analyzed using a fully automated algorithm. Angiograms were assessed manually. Multiple endpoint correction according to Bonferroni-Holm was applied. Main outcome measures were average retinal/choroidal thickness on fovea-centered or peak of edema (thickest point of edema)-centered Early Treatment Diabetic Retinopathy Study grid, maximum area of leakage, and the correlation between retinal and choroidal thicknesses. Total choroidal thickness is significantly reduced in DME (175 ± 23 μm; P = .0016) and nonedematous fellow eyes (177 ± 20 μm; P = .009) of patients compared with healthy control eyes (190 ± 23 μm). Retinal/choroidal thickness values showed no significant correlation (1-mm: P = .27, r(2) = 0.01; 3-mm: P = .96, r(2) < 0.0001; 6-mm: P = .42, r(2) = 0.006). No significant difference was found in the 1- or 3-mm circle of a retinal peak of edema-centered grid. All other measurements of choroidal/retinal thickness (DME vs healthy, DME vs peak of edema-centered, DME vs fellow, healthy vs fellow, peak of edema-centered vs healthy, peak of edema-centered vs fellow eyes) were compared but no statistically significant correlation was found. By tendency a thinner choroid correlates with larger retinal leakage areas. Automated algorithms can be used to reliably assess choroidal thickness in eyes with DME. Choroidal thickness was generally reduced in patients with diabetes if DME is present in 1 eye; however, no correlation was found between choroidal/retinal pathologies, suggesting different pathogenetic pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. QuickNGS elevates Next-Generation Sequencing data analysis to a new level of automation.

    PubMed

    Wagle, Prerana; Nikolić, Miloš; Frommolt, Peter

    2015-07-01

    Next-Generation Sequencing (NGS) has emerged as a widely used tool in molecular biology. While time and cost for the sequencing itself are decreasing, the analysis of the massive amounts of data remains challenging. Since multiple algorithmic approaches for the basic data analysis have been developed, there is now an increasing need to efficiently use these tools to obtain results in reasonable time. We have developed QuickNGS, a new workflow system for laboratories with the need to analyze data from multiple NGS projects at a time. QuickNGS takes advantage of parallel computing resources, a comprehensive back-end database, and a careful selection of previously published algorithmic approaches to build fully automated data analysis workflows. We demonstrate the efficiency of our new software by a comprehensive analysis of 10 RNA-Seq samples which we can finish in only a few minutes of hands-on time. The approach we have taken is suitable to process even much larger numbers of samples and multiple projects at a time. Our approach considerably reduces the barriers that still limit the usability of the powerful NGS technology and finally decreases the time to be spent before proceeding to further downstream analysis and interpretation of the data.

  18. Microaneurysms detection with the radon cliff operator in retinal fundus images

    NASA Astrophysics Data System (ADS)

    Giancardo, Luca; Mériaudeau, Fabrice; Karnowski, Thomas P.; Tobin, Kenneth W.; Li, Yaqin; Chaum, Edward

    2010-03-01

    Diabetic Retinopathy (DR) is one of the leading causes of blindness in the industrialized world. Early detection is the key in providing effective treatment. However, the current number of trained eye care specialists is inadequate to screen the increasing number of diabetic patients. In recent years, automated and semi-automated systems to detect DR with color fundus images have been developed with encouraging, but not fully satisfactory results. In this study we present the initial results of a new technique for the detection and localization of microaneurysms, an early sign of DR. The algorithm is based on three steps: candidates selection, the actual microaneurysms detection and a final probability evaluation. We introduce the new Radon Cliff operator which is our main contribution to the field. Making use of the Radon transform, the operator is able to detect single noisy Gaussian-like circular structures regardless of their size or strength. The advantages over existing microaneurysms detectors are manifold: the size of the lesions can be unknown, it automatically distinguishes lesions from the vasculature and it provides a fair approach to microaneurysm localization even without post-processing the candidates with machine learning techniques, facilitating the training phase. The algorithm is evaluated on a publicly available dataset from the Retinopathy Online Challenge.

  19. 3D marker-controlled watershed for kidney segmentation in clinical CT exams.

    PubMed

    Wieclawek, Wojciech

    2018-02-27

    Image segmentation is an essential and non trivial task in computer vision and medical image analysis. Computed tomography (CT) is one of the most accessible medical examination techniques to visualize the interior of a patient's body. Among different computer-aided diagnostic systems, the applications dedicated to kidney segmentation represent a relatively small group. In addition, literature solutions are verified on relatively small databases. The goal of this research is to develop a novel algorithm for fully automated kidney segmentation. This approach is designed for large database analysis including both physiological and pathological cases. This study presents a 3D marker-controlled watershed transform developed and employed for fully automated CT kidney segmentation. The original and the most complex step in the current proposition is an automatic generation of 3D marker images. The final kidney segmentation step is an analysis of the labelled image obtained from marker-controlled watershed transform. It consists of morphological operations and shape analysis. The implementation is conducted in a MATLAB environment, Version 2017a, using i.a. Image Processing Toolbox. 170 clinical CT abdominal studies have been subjected to the analysis. The dataset includes normal as well as various pathological cases (agenesis, renal cysts, tumors, renal cell carcinoma, kidney cirrhosis, partial or radical nephrectomy, hematoma and nephrolithiasis). Manual and semi-automated delineations have been used as a gold standard. Wieclawek Among 67 delineated medical cases, 62 cases are 'Very good', whereas only 5 are 'Good' according to Cohen's Kappa interpretation. The segmentation results show that mean values of Sensitivity, Specificity, Dice, Jaccard, Cohen's Kappa and Accuracy are 90.29, 99.96, 91.68, 85.04, 91.62 and 99.89% respectively. All 170 medical cases (with and without outlines) have been classified by three independent medical experts as 'Very good' in 143-148 cases, as 'Good' in 15-21 cases and as 'Moderate' in 6-8 cases. An automatic kidney segmentation approach for CT studies to compete with commonly known solutions was developed. The algorithm gives promising results, that were confirmed during validation procedure done on a relatively large database, including 170 CTs with both physiological and pathological cases.

  20. Breast Density Estimation with Fully Automated Volumetric Method: Comparison to Radiologists' Assessment by BI-RADS Categories.

    PubMed

    Singh, Tulika; Sharma, Madhurima; Singla, Veenu; Khandelwal, Niranjan

    2016-01-01

    The objective of our study was to calculate mammographic breast density with a fully automated volumetric breast density measurement method and to compare it to breast imaging reporting and data system (BI-RADS) breast density categories assigned by two radiologists. A total of 476 full-field digital mammography examinations with standard mediolateral oblique and craniocaudal views were evaluated by two blinded radiologists and BI-RADS density categories were assigned. Using a fully automated software, mean fibroglandular tissue volume, mean breast volume, and mean volumetric breast density were calculated. Based on percentage volumetric breast density, a volumetric density grade was assigned from 1 to 4. The weighted overall kappa was 0.895 (almost perfect agreement) for the two radiologists' BI-RADS density estimates. A statistically significant difference was seen in mean volumetric breast density among the BI-RADS density categories. With increased BI-RADS density category, increase in mean volumetric breast density was also seen (P < 0.001). A significant positive correlation was found between BI-RADS categories and volumetric density grading by fully automated software (ρ = 0.728, P < 0.001 for first radiologist and ρ = 0.725, P < 0.001 for second radiologist). Pairwise estimates of the weighted kappa between Volpara density grade and BI-RADS density category by two observers showed fair agreement (κ = 0.398 and 0.388, respectively). In our study, a good correlation was seen between density grading using fully automated volumetric method and density grading using BI-RADS density categories assigned by the two radiologists. Thus, the fully automated volumetric method may be used to quantify breast density on routine mammography. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  1. Library-based illumination synthesis for critical CMOS patterning.

    PubMed

    Yu, Jue-Chin; Yu, Peichen; Chao, Hsueh-Yung

    2013-07-01

    In optical microlithography, the illumination source for critical complementary metal-oxide-semiconductor layers needs to be determined in the early stage of a technology node with very limited design information, leading to simple binary shapes. Recently, the availability of freeform sources permits us to increase pattern fidelity and relax mask complexities with minimal insertion risks to the current manufacturing flow. However, source optimization across many patterns is often treated as a design-of-experiments problem, which may not fully exploit the benefits of a freeform source. In this paper, a rigorous source-optimization algorithm is presented via linear superposition of optimal sources for pre-selected patterns. We show that analytical solutions are made possible by using Hopkins formulation and quadratic programming. The algorithm allows synthesized illumination to be linked with assorted pattern libraries, which has a direct impact on design rule studies for early planning and design automation for full wafer optimization.

  2. Spectral Unmixing With Multiple Dictionaries

    NASA Astrophysics Data System (ADS)

    Cohen, Jeremy E.; Gillis, Nicolas

    2018-02-01

    Spectral unmixing aims at recovering the spectral signatures of materials, called endmembers, mixed in a hyperspectral or multispectral image, along with their abundances. A typical assumption is that the image contains one pure pixel per endmember, in which case spectral unmixing reduces to identifying these pixels. Many fully automated methods have been proposed in recent years, but little work has been done to allow users to select areas where pure pixels are present manually or using a segmentation algorithm. Additionally, in a non-blind approach, several spectral libraries may be available rather than a single one, with a fixed number (or an upper or lower bound) of endmembers to chose from each. In this paper, we propose a multiple-dictionary constrained low-rank matrix approximation model that address these two problems. We propose an algorithm to compute this model, dubbed M2PALS, and its performance is discussed on both synthetic and real hyperspectral images.

  3. BMPix and PEAK tools: New methods for automated laminae recognition and counting—Application to glacial varves from Antarctic marine sediment

    NASA Astrophysics Data System (ADS)

    Weber, M. E.; Reichelt, L.; Kuhn, G.; Pfeiffer, M.; Korff, B.; Thurow, J.; Ricken, W.

    2010-03-01

    We present tools for rapid and quantitative detection of sediment lamination. The BMPix tool extracts color and gray scale curves from images at pixel resolution. The PEAK tool uses the gray scale curve and performs, for the first time, fully automated counting of laminae based on three methods. The maximum count algorithm counts every bright peak of a couplet of two laminae (annual resolution) in a smoothed curve. The zero-crossing algorithm counts every positive and negative halfway passage of the curve through a wide moving average, separating the record into bright and dark intervals (seasonal resolution). The same is true for the frequency truncation method, which uses Fourier transformation to decompose the curve into its frequency components before counting positive and negative passages. The algorithms are available at doi:10.1594/PANGAEA.729700. We applied the new methods successfully to tree rings, to well-dated and already manually counted marine varves from Saanich Inlet, and to marine laminae from the Antarctic continental margin. In combination with AMS14C dating, we found convincing evidence that laminations in Weddell Sea sites represent varves, deposited continuously over several millennia during the last glacial maximum. The new tools offer several advantages over previous methods. The counting procedures are based on a moving average generated from gray scale curves instead of manual counting. Hence, results are highly objective and rely on reproducible mathematical criteria. Also, the PEAK tool measures the thickness of each year or season. Since all information required is displayed graphically, interactive optimization of the counting algorithms can be achieved quickly and conveniently.

  4. Novel Automated Approach to Predict the Outcome of Laser Peripheral Iridotomy for Primary Angle Closure Suspect Eyes Using Anterior Segment Optical Coherence Tomography.

    PubMed

    Koh, Victor; Swamidoss, Issac Niwas; Aquino, Maria Cecilia D; Chew, Paul T; Sng, Chelvin

    2018-04-27

    Develop an algorithm to predict the success of laser peripheral iridotomy (LPI) in primary angle closure suspect (PACS), using pre-treatment anterior segment optical coherence tomography (ASOCT) scans. A total of 116 eyes with PACS underwent LPI and time-domain ASOCT scans (temporal and nasal cuts) were performed before and 1 month after LPI. All the post-treatment scans were classified to one of the following categories: (a) both angles open, (b) one of two angles open and (c) both angles closed. After LPI, success is defined as one or more angles changed from close to open. In this proposed method, the pre and post-LPI ASOCT scans were registered at the corresponding angles based on similarities between the respective local descriptor features and random sample consensus technique was used to identify the largest consensus set of correspondences between the pre and post-LPI ASOCT scans. Subsequently, features such as correlation co-efficient (CC) and structural similarity index (SSIM) were extracted and correlated with the success of LPI. We included 116 eyes and 91 (78.44%) eyes fulfilled the criteria for success after LPI. Using the CC and SSIM index scores from this training set of ASOCT images, our algorithm showed that the success of LPI in eyes with narrow angles can be predicted with 89.7% accuracy, specificity of 95.2% and sensitivity of 36.4% based on pre-LPI ASOCT scans only. Using pre-LPI ASOCT scans, our proposed algorithm showed good accuracy in predicting the success of LPI for PACS eyes. This fully-automated algorithm could aid decision making in offering LPI as a prophylactic treatment for PACS.

  5. Imaging Performance of a Handheld Ultrasound System With Real-Time Computer-Aided Detection of Lumbar Spine Anatomy: A Feasibility Study.

    PubMed

    Tiouririne, Mohamed; Dixon, Adam J; Mauldin, F William; Scalzo, David; Krishnaraj, Arun

    2017-08-01

    The aim of this study was to evaluate the imaging performance of a handheld ultrasound system and the accuracy of an automated lumbar spine computer-aided detection (CAD) algorithm in the spines of human subjects. This study was approved by the institutional review board of the University of Virginia. The authors designed a handheld ultrasound system with enhanced bone image quality and fully automated CAD of lumbar spine anatomy. The imaging performance was evaluated by imaging the lumbar spines of 68 volunteers with body mass index between 18.5 and 48 kg/m. The accuracy, sensitivity, and specificity of the lumbar spine CAD algorithm were assessed by comparing the algorithm's results to ground-truth segmentations of neuraxial anatomy provided by radiologists. The lumbar spine CAD algorithm detected the epidural space with a sensitivity of 94.2% (95% confidence interval [CI], 85.1%-98.1%) and a specificity of 85.5% (95% CI, 81.7%-88.6%) and measured its depth with an error of approximately ±0.5 cm compared with measurements obtained manually from the 2-dimensional ultrasound images. The spine midline was detected with a sensitivity of 93.9% (95% CI, 85.8%-97.7%) and specificity of 91.3% (95% CI, 83.6%-96.9%), and its lateral position within the ultrasound image was measured with an error of approximately ±0.3 cm. The bone enhancement imaging mode produced images with 5.1- to 10-fold enhanced bone contrast when compared with a comparable handheld ultrasound imaging system. The results of this study demonstrate the feasibility of CAD for assisting with real-time interpretation of ultrasound images of the lumbar spine at the bedside.

  6. Costs and consequences of automated algorithms versus manual grading for the detection of referable diabetic retinopathy.

    PubMed

    Scotland, G S; McNamee, P; Fleming, A D; Goatman, K A; Philip, S; Prescott, G J; Sharp, P F; Williams, G J; Wykes, W; Leese, G P; Olson, J A

    2010-06-01

    To assess the cost-effectiveness of an improved automated grading algorithm for diabetic retinopathy against a previously described algorithm, and in comparison with manual grading. Efficacy of the alternative algorithms was assessed using a reference graded set of images from three screening centres in Scotland (1253 cases with observable/referable retinopathy and 6333 individuals with mild or no retinopathy). Screening outcomes and grading and diagnosis costs were modelled for a cohort of 180 000 people, with prevalence of referable retinopathy at 4%. Algorithm (b), which combines image quality assessment with detection algorithms for microaneurysms (MA), blot haemorrhages and exudates, was compared with a simpler algorithm (a) (using image quality assessment and MA/dot haemorrhage (DH) detection), and the current practice of manual grading. Compared with algorithm (a), algorithm (b) would identify an additional 113 cases of referable retinopathy for an incremental cost of pound 68 per additional case. Compared with manual grading, automated grading would be expected to identify between 54 and 123 fewer referable cases, for a grading cost saving between pound 3834 and pound 1727 per case missed. Extrapolation modelling over a 20-year time horizon suggests manual grading would cost between pound 25,676 and pound 267,115 per additional quality adjusted life year gained. Algorithm (b) is more cost-effective than the algorithm based on quality assessment and MA/DH detection. With respect to the value of introducing automated detection systems into screening programmes, automated grading operates within the recommended national standards in Scotland and is likely to be considered a cost-effective alternative to manual disease/no disease grading.

  7. Automated Speech Rate Measurement in Dysarthria

    ERIC Educational Resources Information Center

    Martens, Heidi; Dekens, Tomas; Van Nuffelen, Gwen; Latacz, Lukas; Verhelst, Werner; De Bodt, Marc

    2015-01-01

    Purpose: In this study, a new algorithm for automated determination of speech rate (SR) in dysarthric speech is evaluated. We investigated how reliably the algorithm calculates the SR of dysarthric speech samples when compared with calculation performed by speech-language pathologists. Method: The new algorithm was trained and tested using Dutch…

  8. Molecular simulation workflows as parallel algorithms: the execution engine of Copernicus, a distributed high-performance computing platform.

    PubMed

    Pronk, Sander; Pouya, Iman; Lundborg, Magnus; Rotskoff, Grant; Wesén, Björn; Kasson, Peter M; Lindahl, Erik

    2015-06-09

    Computational chemistry and other simulation fields are critically dependent on computing resources, but few problems scale efficiently to the hundreds of thousands of processors available in current supercomputers-particularly for molecular dynamics. This has turned into a bottleneck as new hardware generations primarily provide more processing units rather than making individual units much faster, which simulation applications are addressing by increasingly focusing on sampling with algorithms such as free-energy perturbation, Markov state modeling, metadynamics, or milestoning. All these rely on combining results from multiple simulations into a single observation. They are potentially powerful approaches that aim to predict experimental observables directly, but this comes at the expense of added complexity in selecting sampling strategies and keeping track of dozens to thousands of simulations and their dependencies. Here, we describe how the distributed execution framework Copernicus allows the expression of such algorithms in generic workflows: dataflow programs. Because dataflow algorithms explicitly state dependencies of each constituent part, algorithms only need to be described on conceptual level, after which the execution is maximally parallel. The fully automated execution facilitates the optimization of these algorithms with adaptive sampling, where undersampled regions are automatically detected and targeted without user intervention. We show how several such algorithms can be formulated for computational chemistry problems, and how they are executed efficiently with many loosely coupled simulations using either distributed or parallel resources with Copernicus.

  9. Association between fully automated MRI-based volumetry of different brain regions and neuropsychological test performance in patients with amnestic mild cognitive impairment and Alzheimer's disease.

    PubMed

    Arlt, Sönke; Buchert, Ralph; Spies, Lothar; Eichenlaub, Martin; Lehmbeck, Jan T; Jahn, Holger

    2013-06-01

    Fully automated magnetic resonance imaging (MRI)-based volumetry may serve as biomarker for the diagnosis in patients with mild cognitive impairment (MCI) or dementia. We aimed at investigating the relation between fully automated MRI-based volumetric measures and neuropsychological test performance in amnestic MCI and patients with mild dementia due to Alzheimer's disease (AD) in a cross-sectional and longitudinal study. In order to assess a possible prognostic value of fully automated MRI-based volumetry for future cognitive performance, the rate of change of neuropsychological test performance over time was also tested for its correlation with fully automated MRI-based volumetry at baseline. In 50 subjects, 18 with amnestic MCI, 21 with mild AD, and 11 controls, neuropsychological testing and T1-weighted MRI were performed at baseline and at a mean follow-up interval of 2.1 ± 0.5 years (n = 19). Fully automated MRI volumetry of the grey matter volume (GMV) was performed using a combined stereotactic normalisation and segmentation approach as provided by SPM8 and a set of pre-defined binary lobe masks. Left and right hippocampus masks were derived from probabilistic cytoarchitectonic maps. Volumes of the inner and outer liquor space were also determined automatically from the MRI. Pearson's test was used for the correlation analyses. Left hippocampal GMV was significantly correlated with performance in memory tasks, and left temporal GMV was related to performance in language tasks. Bilateral frontal, parietal and occipital GMVs were correlated to performance in neuropsychological tests comprising multiple domains. Rate of GMV change in the left hippocampus was correlated with decline of performance in the Boston Naming Test (BNT), Mini-Mental Status Examination, and trail making test B (TMT-B). The decrease of BNT and TMT-A performance over time correlated with the loss of grey matter in multiple brain regions. We conclude that fully automated MRI-based volumetry allows detection of regional grey matter volume loss that correlates with neuropsychological performance in patients with amnestic MCI or mild AD. Because of the high level of automation, MRI-based volumetry may easily be integrated into clinical routine to complement the current diagnostic procedure.

  10. Comparison of manual & automated analysis methods for corneal endothelial cell density measurements by specular microscopy.

    PubMed

    Huang, Jianyan; Maram, Jyotsna; Tepelus, Tudor C; Modak, Cristina; Marion, Ken; Sadda, SriniVas R; Chopra, Vikas; Lee, Olivia L

    2017-08-07

    To determine the reliability of corneal endothelial cell density (ECD) obtained by automated specular microscopy versus that of validated manual methods and factors that predict such reliability. Sharp central images from 94 control and 106 glaucomatous eyes were captured with Konan specular microscope NSP-9900. All images were analyzed by trained graders using Konan CellChek Software, employing the fully- and semi-automated methods as well as Center Method. Images with low cell count (input cells number <100) and/or guttata were compared with the Center and Flex-Center Methods. ECDs were compared and absolute error was used to assess variation. The effect on ECD of age, cell count, cell size, and cell size variation was evaluated. No significant difference was observed between the Center and Flex-Center Methods in corneas with guttata (p=0.48) or low ECD (p=0.11). No difference (p=0.32) was observed in ECD of normal controls <40 yrs old between the fully-automated method and manual Center Method. However, in older controls and glaucomatous eyes, ECD was overestimated by the fully-automated method (p=0.034) and semi-automated method (p=0.025) as compared to manual method. Our findings show that automated analysis significantly overestimates ECD in the eyes with high polymegathism and/or large cell size, compared to the manual method. Therefore, we discourage reliance upon the fully-automated method alone to perform specular microscopy analysis, particularly if an accurate ECD value is imperative. Copyright © 2017. Published by Elsevier España, S.L.U.

  11. Coronary artery calcification identification and labeling in low-dose chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Liu, Shuang; Miller, Albert; Miller, Jeffrey A.; Markowitz, Steven; Akhund, Ali; Reeves, Anthony P.

    2017-03-01

    A fully automated computer algorithm has been developed to evaluate coronary artery calcification (CAC) from lowdose CT scans. CAC is identified and evaluated in three main coronary artery groups: Left Main and Left Anterior Descending Artery (LM + LAD) CAC, Left Circumflex Artery (LCX) CAC, and Right Coronary Artery (RCA) CAC. The artery labeling is achieved by segmenting all CAC candidates in the heart region and applying geometric constraints on the candidates using locally pre-identified anatomy regions. This algorithm was evaluated on 1,359 low-dose ungated CT scans, in which each artery CAC content was categorically visually scored by a radiologist into none, mild, moderate and extensive. The Spearman correlation coefficient R was used to assess the agreement between three automated CAC scores (Agatston-weighted, volume, and mass) and categorical visual scores. For Agatston-weighted automated scores, R was 0.87 for total CAC, 0.82 for LM + LAD CAC, 0.66 for LCX CAC and 0.72 for RCA CAC; results using volume and mass scores were similar. CAC detection sensitivities were: 0.87 for total, 0.82 for LM + LAD, 0.65 for LCX and 0.74 for RCA. To assess the impact of image noise, the dataset was further partitioned into three subsets based on heart region noise level (low<=80HU, medium=(80HU, 110HU], high>110HU). The low and medium noise subsets had higher sensitivities and correlations than the high noise subset. These results indicate that location specific heart risk assessment is possible from low-dose chest CT images.

  12. A volumetric pulmonary CT segmentation method with applications in emphysema assessment

    NASA Astrophysics Data System (ADS)

    Silva, José Silvestre; Silva, Augusto; Santos, Beatriz S.

    2006-03-01

    A segmentation method is a mandatory pre-processing step in many automated or semi-automated analysis tasks such as region identification and densitometric analysis, or even for 3D visualization purposes. In this work we present a fully automated volumetric pulmonary segmentation algorithm based on intensity discrimination and morphologic procedures. Our method first identifies the trachea as well as primary bronchi and then the pulmonary region is identified by applying a threshold and morphologic operations. When both lungs are in contact, additional procedures are performed to obtain two separated lung volumes. To evaluate the performance of the method, we compared contours extracted from 3D lung surfaces with reference contours, using several figures of merit. Results show that the worst case generally occurs at the middle sections of high resolution CT exams, due the presence of aerial and vascular structures. Nevertheless, the average error is inferior to the average error associated with radiologist inter-observer variability, which suggests that our method produces lung contours similar to those drawn by radiologists. The information created by our segmentation algorithm is used by an identification and representation method in pulmonary emphysema that also classifies emphysema according to its severity degree. Two clinically proved thresholds are applied which identify regions with severe emphysema, and with highly severe emphysema. Based on this thresholding strategy, an application for volumetric emphysema assessment was developed offering new display paradigms concerning the visualization of classification results. This framework is easily extendable to accommodate other classifiers namely those related with texture based segmentation as it is often the case with interstitial diseases.

  13. Development of a fully automated software system for rapid analysis/processing of the falling weight deflectometer data.

    DOT National Transportation Integrated Search

    2009-02-01

    The Office of Special Investigations at Iowa Department of Transportation (DOT) collects FWD data on regular basis to evaluate pavement structural conditions. The primary objective of this study was to develop a fully-automated software system for ra...

  14. New fully automated software for assessment of brachial artery flow- mediated dilation with advantages of continuous measurement.

    PubMed

    Ercan, Ertuğrul; Kırılmaz, Bahadır; Kahraman, İsmail; Bayram, Vildan; Doğan, Hüseyin

    2012-11-01

    Flow-mediated dilation (FMD) is used to evaluate endothelial functions. Computer-assisted analysis utilizing edge detection permits continuous measurements along the vessel wall. We have developed a new fully automated software program to allow accurate and reproducible measurement. FMD has been measured and analyzed in 18 coronary artery disease (CAD) patients and 17 controls both by manually and by the software developed (computer supported) methods. The agreement between methods was assessed by Bland-Altman analysis. The mean age, body mass index and cardiovascular risk factors were higher in CAD group. Automated FMD% measurement for the control subjects was 18.3±8.5 and 6.8±6.5 for the CAD group (p=0.0001). The intraobserver and interobserver correlation for automated measurement was high (r=0.974, r=0.981, r=0.937, r=0.918, respectively). Manual FMD% at 60th second was correlated with automated FMD % (r=0.471, p=0.004). The new fully automated software© can be used to precise measurement of FMD with low intra- and interobserver variability than manual assessment.

  15. Automated breast segmentation in ultrasound computer tomography SAFT images

    NASA Astrophysics Data System (ADS)

    Hopp, T.; You, W.; Zapf, M.; Tan, W. Y.; Gemmeke, H.; Ruiter, N. V.

    2017-03-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging system for breast cancer diagnosis. An essential step before further processing is to remove the water background from the reconstructed images. In this paper we present a fully-automated image segmentation method based on three-dimensional active contours. The active contour method is extended by applying gradient vector flow and encoding the USCT aperture characteristics as additional weighting terms. A surface detection algorithm based on a ray model is developed to initialize the active contour, which is iteratively deformed to capture the breast outline in USCT reflection images. The evaluation with synthetic data showed that the method is able to cope with noisy images, and is not influenced by the position of the breast and the presence of scattering objects within the breast. The proposed method was applied to 14 in-vivo images resulting in an average surface deviation from a manual segmentation of 2.7 mm. We conclude that automated segmentation of USCT reflection images is feasible and produces results comparable to a manual segmentation. By applying the proposed method, reproducible segmentation results can be obtained without manual interaction by an expert.

  16. Online, offline, realtime: recent developments in industrial photogrammetry

    NASA Astrophysics Data System (ADS)

    Boesemann, Werner

    2003-01-01

    In recent years industrial photogrammetry has emerged from a highly specialized niche technology to a well established tool in industrial coordinate measurement applications with numerous installations in a significantly growing market of flexible and portable optical measurement systems. This is due to the development of powerful, but affordable video and computer technology. The increasing industrial requirements for accuracy, speed, robustness and ease of use of these systems together with a demand for the highest possible degree of automation have forced universities and system manufacturer to develop hard- and software solutions to meet these requirements. The presentation will show the latest trends in hardware development, especially new generation digital and/or intelligent cameras, aspects of image engineering like use of controlled illumination or projection technologies, and algorithmic and software aspects like automation strategies or new camera models. The basic qualities of digital photogrammetry- like portability and flexibility on one hand and fully automated quality control on the other - sometimes lead to certain conflicts in the design of measurement systems for different online, offline, or real-time solutions. The presentation will further show, how these tools and methods are combined in different configurations to be able to cover the still growing demands of the industrial end-users.

  17. Photogrammetry in the line: recent developments in industrial photogrammetry

    NASA Astrophysics Data System (ADS)

    Boesemann, Werner

    2003-05-01

    In recent years industrial photogrammetry has emerged from a highly specialized niche technology to a well established tool in industrial coordinate measurement applications with numerous installations in a significantly growing market of flexible and portable optical measurement systems. This is due to the development of powerful, but affordable video and computer technology. The increasing industrial requirements for accuracy, speed, robustness and ease of use of these systems together with a demand for the highest possible degree of automation have forced universities and system manufacturers to develop hard- and software solutions to meet these requirements. The presentation will show the latest trends in hardware development, especially new generation digital and/or intelligent cameras, aspects of image engineering like use of controlled illumination or projection technologies,and algorithmic and software aspects like automation strategies or new camera models. The basic qualities of digital photogrammetry-like portability and flexibility on one hand and fully automated quality control on the other -- sometimes lead to certain conflicts in the design of measurement systems for different online, offline or real-time solutions. The presentation will further show, how these tools and methods are combined in different configurations to be able to cover the still growing demands of the industrial end-users.

  18. Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies.

    PubMed

    Sun, Wanxin; Chang, Shi; Tai, Dean C S; Tan, Nancy; Xiao, Guangfa; Tang, Huihuan; Yu, Hanry

    2008-01-01

    Liver fibrosis is associated with an abnormal increase in an extracellular matrix in chronic liver diseases. Quantitative characterization of fibrillar collagen in intact tissue is essential for both fibrosis studies and clinical applications. Commonly used methods, histological staining followed by either semiquantitative or computerized image analysis, have limited sensitivity, accuracy, and operator-dependent variations. The fibrillar collagen in sinusoids of normal livers could be observed through second-harmonic generation (SHG) microscopy. The two-photon excited fluorescence (TPEF) images, recorded simultaneously with SHG, clearly revealed the hepatocyte morphology. We have systematically optimized the parameters for the quantitative SHG/TPEF imaging of liver tissue and developed fully automated image analysis algorithms to extract the information of collagen changes and cell necrosis. Subtle changes in the distribution and amount of collagen and cell morphology are quantitatively characterized in SHG/TPEF images. By comparing to traditional staining, such as Masson's trichrome and Sirius red, SHG/TPEF is a sensitive quantitative tool for automated collagen characterization in liver tissue. Our system allows for enhanced detection and quantification of sinusoidal collagen fibers in fibrosis research and clinical diagnostics.

  19. A combined spectral and object-based approach to transparent cloud removal in an operational setting for Landsat ETM+

    NASA Astrophysics Data System (ADS)

    Watmough, Gary R.; Atkinson, Peter M.; Hutton, Craig W.

    2011-04-01

    The automated cloud cover assessment (ACCA) algorithm has provided automated estimates of cloud cover for the Landsat ETM+ mission since 2001. However, due to the lack of a band around 1.375 μm, cloud edges and transparent clouds such as cirrus cannot be detected. Use of Landsat ETM+ imagery for terrestrial land analysis is further hampered by the relatively long revisit period due to a nadir only viewing sensor. In this study, the ACCA threshold parameters were altered to minimise omission errors in the cloud masks. Object-based analysis was used to reduce the commission errors from the extended cloud filters. The method resulted in the removal of optically thin cirrus cloud and cloud edges which are often missed by other methods in sub-tropical areas. Although not fully automated, the principles of the method developed here provide an opportunity for using otherwise sub-optimal or completely unusable Landsat ETM+ imagery for operational applications. Where specific images are required for particular research goals the method can be used to remove cloud and transparent cloud helping to reduce bias in subsequent land cover classifications.

  20. Parallel peak pruning for scalable SMP contour tree computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, Hamish A.; Weber, Gunther H.; Sewell, Christopher M.

    As data sets grow to exascale, automated data analysis and visualisation are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this formmore » of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. Here in this paper, we report the first shared SMP algorithm for fully parallel contour tree computation, withfor-mal guarantees of O(lgnlgt) parallel steps and O(n lgn) work, and implementations with up to 10x parallel speed up in OpenMP and up to 50x speed up in NVIDIA Thrust.« less

  1. Spatial Statistics for Tumor Cell Counting and Classification

    NASA Astrophysics Data System (ADS)

    Wirjadi, Oliver; Kim, Yoo-Jin; Breuel, Thomas

    To count and classify cells in histological sections is a standard task in histology. One example is the grading of meningiomas, benign tumors of the meninges, which requires to assess the fraction of proliferating cells in an image. As this process is very time consuming when performed manually, automation is required. To address such problems, we propose a novel application of Markov point process methods in computer vision, leading to algorithms for computing the locations of circular objects in images. In contrast to previous algorithms using such spatial statistics methods in image analysis, the present one is fully trainable. This is achieved by combining point process methods with statistical classifiers. Using simulated data, the method proposed in this paper will be shown to be more accurate and more robust to noise than standard image processing methods. On the publicly available SIMCEP benchmark for cell image analysis algorithms, the cell count performance of the present paper is significantly more accurate than results published elsewhere, especially when cells form dense clusters. Furthermore, the proposed system performs as well as a state-of-the-art algorithm for the computer-aided histological grading of meningiomas when combined with a simple k-nearest neighbor classifier for identifying proliferating cells.

  2. Automation of a high risk medication regime algorithm in a home health care population.

    PubMed

    Olson, Catherine H; Dierich, Mary; Westra, Bonnie L

    2014-10-01

    Create an automated algorithm for predicting elderly patients' medication-related risks for readmission and validate it by comparing results with a manual analysis of the same patient population. Outcome and Assessment Information Set (OASIS) and medication data were reused from a previous, manual study of 911 patients from 15 Medicare-certified home health care agencies. The medication data was converted into standardized drug codes using APIs managed by the National Library of Medicine (NLM), and then integrated in an automated algorithm that calculates patients' high risk medication regime scores (HRMRs). A comparison of the results between algorithm and manual process was conducted to determine how frequently the HRMR scores were derived which are predictive of readmission. HRMR scores are composed of polypharmacy (number of drugs), Potentially Inappropriate Medications (PIM) (drugs risky to the elderly), and Medication Regimen Complexity Index (MRCI) (complex dose forms, instructions or administration). The algorithm produced polypharmacy, PIM, and MRCI scores that matched with 99%, 87% and 99% of the scores, respectively, from the manual analysis. Imperfect match rates resulted from discrepancies in how drugs were classified and coded by the manual analysis vs. the automated algorithm. HRMR rules lack clarity, resulting in clinical judgments for manual coding that were difficult to replicate in the automated analysis. The high comparison rates for the three measures suggest that an automated clinical tool could use patients' medication records to predict their risks of avoidable readmissions. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. 21 CFR 864.5200 - Automated cell counter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated cell counter. 864.5200 Section 864.5200....5200 Automated cell counter. (a) Identification. An automated cell counter is a fully-automated or semi-automated device used to count red blood cells, white blood cells, or blood platelets using a sample of the...

  4. 21 CFR 864.5240 - Automated blood cell diluting apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated blood cell diluting apparatus. 864.5240... § 864.5240 Automated blood cell diluting apparatus. (a) Identification. An automated blood cell diluting apparatus is a fully automated or semi-automated device used to make appropriate dilutions of a blood sample...

  5. 21 CFR 864.5240 - Automated blood cell diluting apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated blood cell diluting apparatus. 864.5240... § 864.5240 Automated blood cell diluting apparatus. (a) Identification. An automated blood cell diluting apparatus is a fully automated or semi-automated device used to make appropriate dilutions of a blood sample...

  6. Automation of Endmember Pixel Selection in SEBAL/METRIC Model

    NASA Astrophysics Data System (ADS)

    Bhattarai, N.; Quackenbush, L. J.; Im, J.; Shaw, S. B.

    2015-12-01

    The commonly applied surface energy balance for land (SEBAL) and its variant, mapping evapotranspiration (ET) at high resolution with internalized calibration (METRIC) models require manual selection of endmember (i.e. hot and cold) pixels to calibrate sensible heat flux. Current approaches for automating this process are based on statistical methods and do not appear to be robust under varying climate conditions and seasons. In this paper, we introduce a new approach based on simple machine learning tools and search algorithms that provides an automatic and time efficient way of identifying endmember pixels for use in these models. The fully automated models were applied on over 100 cloud-free Landsat images with each image covering several eddy covariance flux sites in Florida and Oklahoma. Observed land surface temperatures at automatically identified hot and cold pixels were within 0.5% of those from pixels manually identified by an experienced operator (coefficient of determination, R2, ≥ 0.92, Nash-Sutcliffe efficiency, NSE, ≥ 0.92, and root mean squared error, RMSE, ≤ 1.67 K). Daily ET estimates derived from the automated SEBAL and METRIC models were in good agreement with their manual counterparts (e.g., NSE ≥ 0.91 and RMSE ≤ 0.35 mm day-1). Automated and manual pixel selection resulted in similar estimates of observed ET across all sites. The proposed approach should reduce time demands for applying SEBAL/METRIC models and allow for their more widespread and frequent use. This automation can also reduce potential bias that could be introduced by an inexperienced operator and extend the domain of the models to new users.

  7. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation

    PubMed Central

    2013-01-01

    The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening. PMID:23938087

  8. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation.

    PubMed

    Hodneland, Erlend; Kögel, Tanja; Frei, Dominik Michael; Gerdes, Hans-Hermann; Lundervold, Arvid

    2013-08-09

    : The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening.

  9. Maximizing coupling-efficiency of high-power diode lasers utilizing hybrid assembly technology

    NASA Astrophysics Data System (ADS)

    Zontar, D.; Dogan, M.; Fulghum, S.; Müller, T.; Haag, S.; Brecher, C.

    2015-03-01

    In this paper, we present hybrid assembly technology to maximize coupling efficiency for spatially combined laser systems. High quality components, such as center-turned focusing units, as well as suitable assembly strategies are necessary to obtain highest possible output ratios. Alignment strategies are challenging tasks due to their complexity and sensitivity. Especially in low-volume production fully automated systems are economically at a disadvantage, as operator experience is often expensive. However reproducibility and quality of automatically assembled systems can be superior. Therefore automated and manual assembly techniques are combined to obtain high coupling efficiency while preserving maximum flexibility. The paper will describe necessary equipment and software to enable hybrid assembly processes. Micromanipulator technology with high step-resolution and six degrees of freedom provide a large number of possible evaluation points. Automated algorithms are necess ary to speed-up data gathering and alignment to efficiently utilize available granularity for manual assembly processes. Furthermore, an engineering environment is presented to enable rapid prototyping of automation tasks with simultaneous data ev aluation. Integration with simulation environments, e.g. Zemax, allows the verification of assembly strategies in advance. Data driven decision making ensures constant high quality, documents the assembly process and is a basis for further improvement. The hybrid assembly technology has been applied on several applications for efficiencies above 80% and will be discussed in this paper. High level coupling efficiency has been achieved with minimized assembly as a result of semi-automated alignment. This paper will focus on hybrid automation for optimizing and attaching turning mirrors and collimation lenses.

  10. Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurugol, Sila, E-mail: sila.kurugol@childrens.harvard.edu; Come, Carolyn E.; Diaz, Alejandro A.

    Purpose: The purpose of this work is to develop a fully automated pipeline to compute aorta morphology and calcification measures in large cohorts of CT scans that can be used to investigate the potential of these measures as imaging biomarkers of cardiovascular disease. Methods: The first step of the automated pipeline is aorta segmentation. The algorithm the authors propose first detects an initial aorta boundary by exploiting cross-sectional circularity of aorta in axial slices and aortic arch in reformatted oblique slices. This boundary is then refined by a 3D level-set segmentation that evolves the boundary to the location of nearbymore » edges. The authors then detect the aortic calcifications with thresholding and filter out the false positive regions due to nearby high intensity structures based on their anatomical location. The authors extract the centerline and oblique cross sections of the segmented aortas and compute the aorta morphology and calcification measures of the first 2500 subjects from COPDGene study. These measures include volume and number of calcified plaques and measures of vessel morphology such as average cross-sectional area, tortuosity, and arch width. Results: The authors computed the agreement between the algorithm and expert segmentations on 45 CT scans and obtained a closest point mean error of 0.62 ± 0.09 mm and a Dice coefficient of 0.92 ± 0.01. The calcification detection algorithm resulted in an improved true positive detection rate of 0.96 compared to previous work. The measurements of aorta size agreed with the measurements reported in previous work. The initial results showed associations of aorta morphology with calcification and with aging. These results may indicate aorta stiffening and unwrapping with calcification and aging. Conclusions: The authors have developed an objective tool to assess aorta morphology and aortic calcium plaques on CT scans that may be used to provide information about the presence of cardiovascular disease and its clinical impact in smokers.« less

  11. Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions.

    PubMed

    Kurugol, Sila; Come, Carolyn E; Diaz, Alejandro A; Ross, James C; Kinney, Greg L; Black-Shinn, Jennifer L; Hokanson, John E; Budoff, Matthew J; Washko, George R; San Jose Estepar, Raul

    2015-09-01

    The purpose of this work is to develop a fully automated pipeline to compute aorta morphology and calcification measures in large cohorts of CT scans that can be used to investigate the potential of these measures as imaging biomarkers of cardiovascular disease. The first step of the automated pipeline is aorta segmentation. The algorithm the authors propose first detects an initial aorta boundary by exploiting cross-sectional circularity of aorta in axial slices and aortic arch in reformatted oblique slices. This boundary is then refined by a 3D level-set segmentation that evolves the boundary to the location of nearby edges. The authors then detect the aortic calcifications with thresholding and filter out the false positive regions due to nearby high intensity structures based on their anatomical location. The authors extract the centerline and oblique cross sections of the segmented aortas and compute the aorta morphology and calcification measures of the first 2500 subjects from COPDGene study. These measures include volume and number of calcified plaques and measures of vessel morphology such as average cross-sectional area, tortuosity, and arch width. The authors computed the agreement between the algorithm and expert segmentations on 45 CT scans and obtained a closest point mean error of 0.62 ± 0.09 mm and a Dice coefficient of 0.92 ± 0.01. The calcification detection algorithm resulted in an improved true positive detection rate of 0.96 compared to previous work. The measurements of aorta size agreed with the measurements reported in previous work. The initial results showed associations of aorta morphology with calcification and with aging. These results may indicate aorta stiffening and unwrapping with calcification and aging. The authors have developed an objective tool to assess aorta morphology and aortic calcium plaques on CT scans that may be used to provide information about the presence of cardiovascular disease and its clinical impact in smokers.

  12. Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions

    PubMed Central

    Kurugol, Sila; Come, Carolyn E.; Diaz, Alejandro A.; Ross, James C.; Kinney, Greg L.; Black-Shinn, Jennifer L.; Hokanson, John E.; Budoff, Matthew J.; Washko, George R.; San Jose Estepar, Raul

    2015-01-01

    Purpose: The purpose of this work is to develop a fully automated pipeline to compute aorta morphology and calcification measures in large cohorts of CT scans that can be used to investigate the potential of these measures as imaging biomarkers of cardiovascular disease. Methods: The first step of the automated pipeline is aorta segmentation. The algorithm the authors propose first detects an initial aorta boundary by exploiting cross-sectional circularity of aorta in axial slices and aortic arch in reformatted oblique slices. This boundary is then refined by a 3D level-set segmentation that evolves the boundary to the location of nearby edges. The authors then detect the aortic calcifications with thresholding and filter out the false positive regions due to nearby high intensity structures based on their anatomical location. The authors extract the centerline and oblique cross sections of the segmented aortas and compute the aorta morphology and calcification measures of the first 2500 subjects from COPDGene study. These measures include volume and number of calcified plaques and measures of vessel morphology such as average cross-sectional area, tortuosity, and arch width. Results: The authors computed the agreement between the algorithm and expert segmentations on 45 CT scans and obtained a closest point mean error of 0.62 ± 0.09 mm and a Dice coefficient of 0.92 ± 0.01. The calcification detection algorithm resulted in an improved true positive detection rate of 0.96 compared to previous work. The measurements of aorta size agreed with the measurements reported in previous work. The initial results showed associations of aorta morphology with calcification and with aging. These results may indicate aorta stiffening and unwrapping with calcification and aging. Conclusions: The authors have developed an objective tool to assess aorta morphology and aortic calcium plaques on CT scans that may be used to provide information about the presence of cardiovascular disease and its clinical impact in smokers. PMID:26328995

  13. Automated ultrasound edge-tracking software comparable to established semi-automated reference software for carotid intima-media thickness analysis.

    PubMed

    Shenouda, Ninette; Proudfoot, Nicole A; Currie, Katharine D; Timmons, Brian W; MacDonald, Maureen J

    2018-05-01

    Many commercial ultrasound systems are now including automated analysis packages for the determination of carotid intima-media thickness (cIMT); however, details regarding their algorithms and methodology are not published. Few studies have compared their accuracy and reliability with previously established automated software, and those that have were in asymptomatic adults. Therefore, this study compared cIMT measures from a fully automated ultrasound edge-tracking software (EchoPAC PC, Version 110.0.2; GE Medical Systems, Horten, Norway) to an established semi-automated reference software (Artery Measurement System (AMS) II, Version 1.141; Gothenburg, Sweden) in 30 healthy preschool children (ages 3-5 years) and 27 adults with coronary artery disease (CAD; ages 48-81 years). For both groups, Bland-Altman plots revealed good agreement with a negligible mean cIMT difference of -0·03 mm. Software differences were statistically, but not clinically, significant for preschool images (P = 0·001) and were not significant for CAD images (P = 0·09). Intra- and interoperator repeatability was high and comparable between software for preschool images (ICC, 0·90-0·96; CV, 1·3-2·5%), but slightly higher with the automated ultrasound than the semi-automated reference software for CAD images (ICC, 0·98-0·99; CV, 1·4-2·0% versus ICC, 0·84-0·89; CV, 5·6-6·8%). These findings suggest that the automated ultrasound software produces valid cIMT values in healthy preschool children and adults with CAD. Automated ultrasound software may be useful for ensuring consistency among multisite research initiatives or large cohort studies involving repeated cIMT measures, particularly in adults with documented CAD. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  14. 21 CFR 866.1645 - Fully automated short-term incubation cycle antimicrobial susceptibility system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fully automated short-term incubation cycle antimicrobial susceptibility system. 866.1645 Section 866.1645 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES...

  15. 21 CFR 866.1645 - Fully automated short-term incubation cycle antimicrobial susceptibility system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fully automated short-term incubation cycle antimicrobial susceptibility system. 866.1645 Section 866.1645 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES...

  16. 21 CFR 866.1645 - Fully automated short-term incubation cycle antimicrobial susceptibility system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fully automated short-term incubation cycle antimicrobial susceptibility system. 866.1645 Section 866.1645 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES...

  17. 21 CFR 866.1645 - Fully automated short-term incubation cycle antimicrobial susceptibility system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fully automated short-term incubation cycle antimicrobial susceptibility system. 866.1645 Section 866.1645 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES...

  18. Geometrical characterization of fluorescently labelled surfaces from noisy 3D microscopy data.

    PubMed

    Shelton, Elijah; Serwane, Friedhelm; Campàs, Otger

    2018-03-01

    Modern fluorescence microscopy enables fast 3D imaging of biological and inert systems alike. In many studies, it is important to detect the surface of objects and quantitatively characterize its local geometry, including its mean curvature. We present a fully automated algorithm to determine the location and curvatures of an object from 3D fluorescence images, such as those obtained using confocal or light-sheet microscopy. The algorithm aims at reconstructing surface labelled objects with spherical topology and mild deformations from the spherical geometry with high accuracy, rather than reconstructing arbitrarily deformed objects with lower fidelity. Using both synthetic data with known geometrical characteristics and experimental data of spherical objects, we characterize the algorithm's accuracy over the range of conditions and parameters typically encountered in 3D fluorescence imaging. We show that the algorithm can detect the location of the surface and obtain a map of local mean curvatures with relative errors typically below 2% and 20%, respectively, even in the presence of substantial levels of noise. Finally, we apply this algorithm to analyse the shape and curvature map of fluorescently labelled oil droplets embedded within multicellular aggregates and deformed by cellular forces. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  19. Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm.

    PubMed

    Saberkari, Hamidreza; Bahrami, Sheyda; Shamsi, Mousa; Amoshahy, Mohammad Javad; Ghavifekr, Habib Badri; Sedaaghi, Mohammad Hossein

    2015-01-01

    DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.

  20. Anesthesiology, automation, and artificial intelligence.

    PubMed

    Alexander, John C; Joshi, Girish P

    2018-01-01

    There have been many attempts to incorporate automation into the practice of anesthesiology, though none have been successful. Fundamentally, these failures are due to the underlying complexity of anesthesia practice and the inability of rule-based feedback loops to fully master it. Recent innovations in artificial intelligence, especially machine learning, may usher in a new era of automation across many industries, including anesthesiology. It would be wise to consider the implications of such potential changes before they have been fully realized.

  1. An Automatic Quality Control Pipeline for High-Throughput Screening Hit Identification.

    PubMed

    Zhai, Yufeng; Chen, Kaisheng; Zhong, Yang; Zhou, Bin; Ainscow, Edward; Wu, Ying-Ta; Zhou, Yingyao

    2016-09-01

    The correction or removal of signal errors in high-throughput screening (HTS) data is critical to the identification of high-quality lead candidates. Although a number of strategies have been previously developed to correct systematic errors and to remove screening artifacts, they are not universally effective and still require fair amount of human intervention. We introduce a fully automated quality control (QC) pipeline that can correct generic interplate systematic errors and remove intraplate random artifacts. The new pipeline was first applied to ~100 large-scale historical HTS assays; in silico analysis showed auto-QC led to a noticeably stronger structure-activity relationship. The method was further tested in several independent HTS runs, where QC results were sampled for experimental validation. Significantly increased hit confirmation rates were obtained after the QC steps, confirming that the proposed method was effective in enriching true-positive hits. An implementation of the algorithm is available to the screening community. © 2016 Society for Laboratory Automation and Screening.

  2. Identification of column edges of DNA fragments by using K-means clustering and mean algorithm on lane histograms of DNA agarose gel electrophoresis images

    NASA Astrophysics Data System (ADS)

    Turan, Muhammed K.; Sehirli, Eftal; Elen, Abdullah; Karas, Ismail R.

    2015-07-01

    Gel electrophoresis (GE) is one of the most used method to separate DNA, RNA, protein molecules according to size, weight and quantity parameters in many areas such as genetics, molecular biology, biochemistry, microbiology. The main way to separate each molecule is to find borders of each molecule fragment. This paper presents a software application that show columns edges of DNA fragments in 3 steps. In the first step the application obtains lane histograms of agarose gel electrophoresis images by doing projection based on x-axis. In the second step, it utilizes k-means clustering algorithm to classify point values of lane histogram such as left side values, right side values and undesired values. In the third step, column edges of DNA fragments is shown by using mean algorithm and mathematical processes to separate DNA fragments from the background in a fully automated way. In addition to this, the application presents locations of DNA fragments and how many DNA fragments exist on images captured by a scientific camera.

  3. Cellular neural networks, the Navier-Stokes equation, and microarray image reconstruction.

    PubMed

    Zineddin, Bachar; Wang, Zidong; Liu, Xiaohui

    2011-11-01

    Although the last decade has witnessed a great deal of improvements achieved for the microarray technology, many major developments in all the main stages of this technology, including image processing, are still needed. Some hardware implementations of microarray image processing have been proposed in the literature and proved to be promising alternatives to the currently available software systems. However, the main drawback of those proposed approaches is the unsuitable addressing of the quantification of the gene spot in a realistic way without any assumption about the image surface. Our aim in this paper is to present a new image-reconstruction algorithm using the cellular neural network that solves the Navier-Stokes equation. This algorithm offers a robust method for estimating the background signal within the gene-spot region. The MATCNN toolbox for Matlab is used to test the proposed method. Quantitative comparisons are carried out, i.e., in terms of objective criteria, between our approach and some other available methods. It is shown that the proposed algorithm gives highly accurate and realistic measurements in a fully automated manner within a remarkably efficient time.

  4. 21 CFR 864.5200 - Automated cell counter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....5200 Automated cell counter. (a) Identification. An automated cell counter is a fully-automated or semi-automated device used to count red blood cells, white blood cells, or blood platelets using a sample of the patient's peripheral blood (blood circulating in one of the body's extremities, such as the arm). These...

  5. 21 CFR 864.5200 - Automated cell counter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....5200 Automated cell counter. (a) Identification. An automated cell counter is a fully-automated or semi-automated device used to count red blood cells, white blood cells, or blood platelets using a sample of the patient's peripheral blood (blood circulating in one of the body's extremities, such as the arm). These...

  6. 21 CFR 864.5200 - Automated cell counter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....5200 Automated cell counter. (a) Identification. An automated cell counter is a fully-automated or semi-automated device used to count red blood cells, white blood cells, or blood platelets using a sample of the patient's peripheral blood (blood circulating in one of the body's extremities, such as the arm). These...

  7. 21 CFR 864.5200 - Automated cell counter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....5200 Automated cell counter. (a) Identification. An automated cell counter is a fully-automated or semi-automated device used to count red blood cells, white blood cells, or blood platelets using a sample of the patient's peripheral blood (blood circulating in one of the body's extremities, such as the arm). These...

  8. Ontology-Based Administration of Web Directories

    NASA Astrophysics Data System (ADS)

    Horvat, Marko; Gledec, Gordan; Bogunović, Nikola

    Administration of a Web directory and maintenance of its content and the associated structure is a delicate and labor intensive task performed exclusively by human domain experts. Subsequently there is an imminent risk of a directory structures becoming unbalanced, uneven and difficult to use to all except for a few users proficient with the particular Web directory and its domain. These problems emphasize the need to establish two important issues: i) generic and objective measures of Web directories structure quality, and ii) mechanism for fully automated development of a Web directory's structure. In this paper we demonstrate how to formally and fully integrate Web directories with the Semantic Web vision. We propose a set of criteria for evaluation of a Web directory's structure quality. Some criterion functions are based on heuristics while others require the application of ontologies. We also suggest an ontology-based algorithm for construction of Web directories. By using ontologies to describe the semantics of Web resources and Web directories' categories it is possible to define algorithms that can build or rearrange the structure of a Web directory. Assessment procedures can provide feedback and help steer the ontology-based construction process. The issues raised in the article can be equally applied to new and existing Web directories.

  9. Semantic segmentation of mFISH images using convolutional networks.

    PubMed

    Pardo, Esteban; Morgado, José Mário T; Malpica, Norberto

    2018-04-30

    Multicolor in situ hybridization (mFISH) is a karyotyping technique used to detect major chromosomal alterations using fluorescent probes and imaging techniques. Manual interpretation of mFISH images is a time consuming step that can be automated using machine learning; in previous works, pixel or patch wise classification was employed, overlooking spatial information which can help identify chromosomes. In this work, we propose a fully convolutional semantic segmentation network for the interpretation of mFISH images, which uses both spatial and spectral information to classify each pixel in an end-to-end fashion. The semantic segmentation network developed was tested on samples extracted from a public dataset using cross validation. Despite having no labeling information of the image it was tested on, our algorithm yielded an average correct classification ratio (CCR) of 87.41%. Previously, this level of accuracy was only achieved with state of the art algorithms when classifying pixels from the same image in which the classifier has been trained. These results provide evidence that fully convolutional semantic segmentation networks may be employed in the computer aided diagnosis of genetic diseases with improved performance over the current image analysis methods. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.

  10. Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB.

    PubMed

    Chatziioannou, Aristotelis; Moulos, Panagiotis; Kolisis, Fragiskos N

    2009-10-27

    The microarray data analysis realm is ever growing through the development of various tools, open source and commercial. However there is absence of predefined rational algorithmic analysis workflows or batch standardized processing to incorporate all steps, from raw data import up to the derivation of significantly differentially expressed gene lists. This absence obfuscates the analytical procedure and obstructs the massive comparative processing of genomic microarray datasets. Moreover, the solutions provided, heavily depend on the programming skills of the user, whereas in the case of GUI embedded solutions, they do not provide direct support of various raw image analysis formats or a versatile and simultaneously flexible combination of signal processing methods. We describe here Gene ARMADA (Automated Robust MicroArray Data Analysis), a MATLAB implemented platform with a Graphical User Interface. This suite integrates all steps of microarray data analysis including automated data import, noise correction and filtering, normalization, statistical selection of differentially expressed genes, clustering, classification and annotation. In its current version, Gene ARMADA fully supports 2 coloured cDNA and Affymetrix oligonucleotide arrays, plus custom arrays for which experimental details are given in tabular form (Excel spreadsheet, comma separated values, tab-delimited text formats). It also supports the analysis of already processed results through its versatile import editor. Besides being fully automated, Gene ARMADA incorporates numerous functionalities of the Statistics and Bioinformatics Toolboxes of MATLAB. In addition, it provides numerous visualization and exploration tools plus customizable export data formats for seamless integration by other analysis tools or MATLAB, for further processing. Gene ARMADA requires MATLAB 7.4 (R2007a) or higher and is also distributed as a stand-alone application with MATLAB Component Runtime. Gene ARMADA provides a highly adaptable, integrative, yet flexible tool which can be used for automated quality control, analysis, annotation and visualization of microarray data, constituting a starting point for further data interpretation and integration with numerous other tools.

  11. mActive: A Randomized Clinical Trial of an Automated mHealth Intervention for Physical Activity Promotion.

    PubMed

    Martin, Seth S; Feldman, David I; Blumenthal, Roger S; Jones, Steven R; Post, Wendy S; McKibben, Rebeccah A; Michos, Erin D; Ndumele, Chiadi E; Ratchford, Elizabeth V; Coresh, Josef; Blaha, Michael J

    2015-11-09

    We hypothesized that a fully automated mobile health (mHealth) intervention with tracking and texting components would increase physical activity. mActive enrolled smartphone users aged 18 to 69 years at an ambulatory cardiology center in Baltimore, Maryland. We used sequential randomization to evaluate the intervention's 2 core components. After establishing baseline activity during a blinded run-in (week 1), in phase I (weeks 2 to 3), we randomized 2:1 to unblinded versus blinded tracking. Unblinding allowed continuous access to activity data through a smartphone interface. In phase II (weeks 4 to 5), we randomized unblinded participants 1:1 to smart texts versus no texts. Smart texts provided smartphone-delivered coaching 3 times/day aimed at individual encouragement and fostering feedback loops by a fully automated, physician-written, theory-based algorithm using real-time activity data and 16 personal factors with a 10 000 steps/day goal. Forty-eight outpatients (46% women, 21% nonwhite) enrolled with a mean±SD age of 58±8 years, body mass index of 31±6 kg/m(2), and baseline activity of 9670±4350 steps/day. Daily activity data capture was 97.4%. The phase I change in activity was nonsignificantly higher in unblinded participants versus blinded controls by 1024 daily steps (95% confidence interval [CI], -580 to 2628; P=0.21). In phase II, participants receiving texts increased their daily steps over those not receiving texts by 2534 (95% CI, 1318 to 3750; P<0.001) and over blinded controls by 3376 (95% CI, 1951 to 4801; P<0.001). An automated tracking-texting intervention increased physical activity with, but not without, the texting component. These results support new mHealth tracking technologies as facilitators in need of behavior change drivers. URL: http://ClinicalTrials.gov/. Unique identifier: NCT01917812. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  12. Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research.

    PubMed

    Ababneh, Sufyan Y; Prescott, Jeff W; Gurcan, Metin N

    2011-08-01

    In this paper, a new, fully automated, content-based system is proposed for knee bone segmentation from magnetic resonance images (MRI). The purpose of the bone segmentation is to support the discovery and characterization of imaging biomarkers for the incidence and progression of osteoarthritis, a debilitating joint disease, which affects a large portion of the aging population. The segmentation algorithm includes a novel content-based, two-pass disjoint block discovery mechanism, which is designed to support automation, segmentation initialization, and post-processing. The block discovery is achieved by classifying the image content to bone and background blocks according to their similarity to the categories in the training data collected from typical bone structures. The classified blocks are then used to design an efficient graph-cut based segmentation algorithm. This algorithm requires constructing a graph using image pixel data followed by applying a maximum-flow algorithm which generates a minimum graph-cut that corresponds to an initial image segmentation. Content-based refinements and morphological operations are then applied to obtain the final segmentation. The proposed segmentation technique does not require any user interaction and can distinguish between bone and highly similar adjacent structures, such as fat tissues with high accuracy. The performance of the proposed system is evaluated by testing it on 376 MR images from the Osteoarthritis Initiative (OAI) database. This database included a selection of single images containing the femur and tibia from 200 subjects with varying levels of osteoarthritis severity. Additionally, a full three-dimensional segmentation of the bones from ten subjects with 14 slices each, and synthetic images with background having intensity and spatial characteristics similar to those of bone are used to assess the robustness and consistency of the developed algorithm. The results show an automatic bone detection rate of 0.99 and an average segmentation accuracy of 0.95 using the Dice similarity index. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Automated Test Assembly for Cognitive Diagnosis Models Using a Genetic Algorithm

    ERIC Educational Resources Information Center

    Finkelman, Matthew; Kim, Wonsuk; Roussos, Louis A.

    2009-01-01

    Much recent psychometric literature has focused on cognitive diagnosis models (CDMs), a promising class of instruments used to measure the strengths and weaknesses of examinees. This article introduces a genetic algorithm to perform automated test assembly alongside CDMs. The algorithm is flexible in that it can be applied whether the goal is to…

  14. Automated algorithm for CBCT-based dose calculations of prostate radiotherapy with bilateral hip prostheses.

    PubMed

    Almatani, Turki; Hugtenburg, Richard P; Lewis, Ryan D; Barley, Susan E; Edwards, Mark A

    2016-10-01

    Cone beam CT (CBCT) images contain more scatter than a conventional CT image and therefore provide inaccurate Hounsfield units (HUs). Consequently, CBCT images cannot be used directly for radiotherapy dose calculation. The aim of this study is to enable dose calculations to be performed with the use of CBCT images taken during radiotherapy and evaluate the necessity of replanning. A patient with prostate cancer with bilateral metallic prosthetic hip replacements was imaged using both CT and CBCT. The multilevel threshold (MLT) algorithm was used to categorize pixel values in the CBCT images into segments of homogeneous HU. The variation in HU with position in the CBCT images was taken into consideration. This segmentation method relies on the operator dividing the CBCT data into a set of volumes where the variation in the relationship between pixel values and HUs is small. An automated MLT algorithm was developed to reduce the operator time associated with the process. An intensity-modulated radiation therapy plan was generated from CT images of the patient. The plan was then copied to the segmented CBCT (sCBCT) data sets with identical settings, and the doses were recalculated and compared. Gamma evaluation showed that the percentage of points in the rectum with γ < 1 (3%/3 mm) were 98.7% and 97.7% in the sCBCT using MLT and the automated MLT algorithms, respectively. Compared with the planning CT (pCT) plan, the MLT algorithm showed -0.46% dose difference with 8 h operator time while the automated MLT algorithm showed -1.3%, which are both considered to be clinically acceptable, when using collapsed cone algorithm. The segmentation of CBCT images using the method in this study can be used for dose calculation. For a patient with prostate cancer with bilateral hip prostheses and the associated issues with CT imaging, the MLT algorithms achieved a sufficient dose calculation accuracy that is clinically acceptable. The automated MLT algorithm reduced the operator time associated with implementing the MLT algorithm to achieve clinically acceptable accuracy. This saved time makes the automated MLT algorithm superior and easier to implement in the clinical setting. The MLT algorithm has been extended to the complex example of a patient with bilateral hip prostheses, which with the introduction of automation is feasible for use in adaptive radiotherapy, as an alternative to obtaining a new pCT and reoutlining the structures.

  15. An ODE-Based Wall Model for Turbulent Flow Simulations

    NASA Technical Reports Server (NTRS)

    Berger, Marsha J.; Aftosmis, Michael J.

    2017-01-01

    Fully automated meshing for Reynolds-Averaged Navier-Stokes Simulations, Mesh generation for complex geometry continues to be the biggest bottleneck in the RANS simulation process; Fully automated Cartesian methods routinely used for inviscid simulations about arbitrarily complex geometry; These methods lack of an obvious & robust way to achieve near wall anisotropy; Goal: Extend these methods for RANS simulation without sacrificing automation, at an affordable cost; Note: Nothing here is limited to Cartesian methods, and much becomes simpler in a body-fitted setting.

  16. Anesthesiology, automation, and artificial intelligence

    PubMed Central

    Alexander, John C.; Joshi, Girish P.

    2018-01-01

    ABSTRACT There have been many attempts to incorporate automation into the practice of anesthesiology, though none have been successful. Fundamentally, these failures are due to the underlying complexity of anesthesia practice and the inability of rule-based feedback loops to fully master it. Recent innovations in artificial intelligence, especially machine learning, may usher in a new era of automation across many industries, including anesthesiology. It would be wise to consider the implications of such potential changes before they have been fully realized. PMID:29686578

  17. Retention time alignment of LC/MS data by a divide-and-conquer algorithm.

    PubMed

    Zhang, Zhongqi

    2012-04-01

    Liquid chromatography-mass spectrometry (LC/MS) has become the method of choice for characterizing complex mixtures. These analyses often involve quantitative comparison of components in multiple samples. To achieve automated sample comparison, the components of interest must be detected and identified, and their retention times aligned and peak areas calculated. This article describes a simple pairwise iterative retention time alignment algorithm, based on the divide-and-conquer approach, for alignment of ion features detected in LC/MS experiments. In this iterative algorithm, ion features in the sample run are first aligned with features in the reference run by applying a single constant shift of retention time. The sample chromatogram is then divided into two shorter chromatograms, which are aligned to the reference chromatogram the same way. Each shorter chromatogram is further divided into even shorter chromatograms. This process continues until each chromatogram is sufficiently narrow so that ion features within it have a similar retention time shift. In six pairwise LC/MS alignment examples containing a total of 6507 confirmed true corresponding feature pairs with retention time shifts up to five peak widths, the algorithm successfully aligned these features with an error rate of 0.2%. The alignment algorithm is demonstrated to be fast, robust, fully automatic, and superior to other algorithms. After alignment and gap-filling of detected ion features, their abundances can be tabulated for direct comparison between samples.

  18. Using electronic medical records to increase the efficiency of catheter-associated urinary tract infection surveillance for National Health and Safety Network reporting.

    PubMed

    Shepard, John; Hadhazy, Eric; Frederick, John; Nicol, Spencer; Gade, Padmaja; Cardon, Andrew; Wilson, Jorge; Vetteth, Yohan; Madison, Sasha

    2014-03-01

    Streamlining health care-associated infection surveillance is essential for health care facilities owing to the continuing increases in reporting requirements. Stanford Hospital, a 583-bed adult tertiary care center, used their electronic medical record (EMR) to develop an electronic algorithm to reduce the time required to conduct catheter-associated urinary tract infection (CAUTI) surveillance in adults. The algorithm provides inclusion and exclusion criteria, using the National Healthcare Safety Network definitions, for patients with a CAUTI. The algorithm was validated by trained infection preventionists through complete chart review for a random sample of cultures collected during the study period, September 1, 2012, to February 28, 2013. During the study period, a total of 6,379 positive urine cultures were identified. The Stanford Hospital electronic CAUTI algorithm identified 6,101 of these positive cultures (95.64%) as not a CAUTI, 191 (2.99%) as a possible CAUTI requiring further validation, and 87 (1.36%) as a definite CAUTI. Overall, use of the algorithm reduced CAUTI surveillance requirements at Stanford Hospital by 97.01%. The electronic algorithm proved effective in increasing the efficiency of CAUTI surveillance. The data suggest that CAUTI surveillance using the National Healthcare Safety Network definitions can be fully automated. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. All rights reserved.

  19. Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments

    PubMed Central

    Sachs, Christian Carsten; Grünberger, Alexander; Helfrich, Stefan; Probst, Christopher; Wiechert, Wolfgang; Kohlheyer, Dietrich; Nöh, Katharina

    2016-01-01

    Background Microfluidic lab-on-chip technology combined with live-cell imaging has enabled the observation of single cells in their spatio-temporal context. The mother machine (MM) cultivation system is particularly attractive for the long-term investigation of rod-shaped bacteria since it facilitates continuous cultivation and observation of individual cells over many generations in a highly parallelized manner. To date, the lack of fully automated image analysis software limits the practical applicability of the MM as a phenotypic screening tool. Results We present an image analysis pipeline for the automated processing of MM time lapse image stacks. The pipeline supports all analysis steps, i.e., image registration, orientation correction, channel/cell detection, cell tracking, and result visualization. Tailored algorithms account for the specialized MM layout to enable a robust automated analysis. Image data generated in a two-day growth study (≈ 90 GB) is analyzed in ≈ 30 min with negligible differences in growth rate between automated and manual evaluation quality. The proposed methods are implemented in the software molyso (MOther machine AnaLYsis SOftware) that provides a new profiling tool to analyze unbiasedly hitherto inaccessible large-scale MM image stacks. Conclusion Presented is the software molyso, a ready-to-use open source software (BSD-licensed) for the unsupervised analysis of MM time-lapse image stacks. molyso source code and user manual are available at https://github.com/modsim/molyso. PMID:27661996

  20. Automated multimodal spectral histopathology for quantitative diagnosis of residual tumour during basal cell carcinoma surgery.

    PubMed

    Boitor, Radu; Kong, Kenny; Shipp, Dustin; Varma, Sandeep; Koloydenko, Alexey; Kulkarni, Kusum; Elsheikh, Somaia; Schut, Tom Bakker; Caspers, Peter; Puppels, Gerwin; van der Wolf, Martin; Sokolova, Elena; Nijsten, T E C; Salence, Brogan; Williams, Hywel; Notingher, Ioan

    2017-12-01

    Multimodal spectral histopathology (MSH), an optical technique combining tissue auto-fluorescence (AF) imaging and Raman micro-spectroscopy (RMS), was previously proposed for detection of residual basal cell carcinoma (BCC) at the surface of surgically-resected skin tissue. Here we report the development of a fully-automated prototype instrument based on MSH designed to be used in the clinic and operated by a non-specialist spectroscopy user. The algorithms for the AF image processing and Raman spectroscopy classification had been first optimised on a manually-operated laboratory instrument and then validated on the automated prototype using skin samples from independent patients. We present results on a range of skin samples excised during Mohs micrographic surgery, and demonstrate consistent diagnosis obtained in repeat test measurement, in agreement with the reference histopathology diagnosis. We also show that the prototype instrument can be operated by clinical users (a skin surgeon and a core medical trainee, after only 1-8 hours of training) to obtain consistent results in agreement with histopathology. The development of the new automated prototype and demonstration of inter-instrument transferability of the diagnosis models are important steps on the clinical translation path: it allows the testing of the MSH technology in a relevant clinical environment in order to evaluate its performance on a sufficiently large number of patients.

  1. SEM AutoAnalysis: enhancing photomask and NIL defect disposition and review

    NASA Astrophysics Data System (ADS)

    Schulz, Kristian; Egodage, Kokila; Tabbone, Gilles; Ehrlich, Christian; Garetto, Anthony

    2017-06-01

    For defect disposition and repair verification regarding printability, AIMS™ is the state of the art measurement tool in industry. With its unique capability of capturing aerial images of photomasks it is the one method that comes closest to emulating the printing behaviour of a scanner. However for nanoimprint lithography (NIL) templates aerial images cannot be applied to evaluate the success of a repair process. Hence, for NIL defect dispositioning scanning, electron microscopy (SEM) imaging is the method of choice. In addition, it has been a standard imaging method for further root cause analysis of defects and defect review on optical photomasks which enables 2D or even 3D mask profiling at high resolutions. In recent years a trend observed in mask shops has been the automation of processes that traditionally were driven by operators. This of course has brought many advantages one of which is freeing cost intensive labour from conducting repetitive and tedious work. Furthermore, it reduces variability in processes due to different operator skill and experience levels which at the end contributes to eliminating the human factor. Taking these factors into consideration, one of the software based solutions available under the FAVOR® brand to support customer needs is the aerial image evaluation software, AIMS™ AutoAnalysis (AAA). It provides fully automated analysis of AIMS™ images and runs in parallel to measurements. This is enabled by its direct connection and communication with the AIMS™tools. As one of many positive outcomes, generating automated result reports is facilitated, standardizing the mask manufacturing workflow. Today, AAA has been successfully introduced into production at multiple customers and is supporting the workflow as described above. These trends indeed have triggered the demand for similar automation with respect to SEM measurements leading to the development of SEM AutoAnalysis (SAA). It aims towards a fully automated SEM image evaluation process utilizing a completely different algorithm due to the different nature of SEM images and aerial images. Both AAA and SAA are the building blocks towards an image evaluation suite in the mask shop industry.

  2. Efficient receiver tuning using differential evolution strategies

    NASA Astrophysics Data System (ADS)

    Wheeler, Caleb H.; Toland, Trevor G.

    2016-08-01

    Differential evolution (DE) is a powerful and computationally inexpensive optimization strategy that can be used to search an entire parameter space or to converge quickly on a solution. The Kilopixel Array Pathfinder Project (KAPPa) is a heterodyne receiver system delivering 5 GHz of instantaneous bandwidth in the tuning range of 645-695 GHz. The fully automated KAPPa receiver test system finds optimal receiver tuning using performance feedback and DE. We present an adaptation of DE for use in rapid receiver characterization. The KAPPa DE algorithm is written in Python 2.7 and is fully integrated with the KAPPa instrument control, data processing, and visualization code. KAPPa develops the technologies needed to realize heterodyne focal plane arrays containing 1000 pixels. Finding optimal receiver tuning by investigating large parameter spaces is one of many challenges facing the characterization phase of KAPPa. This is a difficult task via by-hand techniques. Characterizing or tuning in an automated fashion without need for human intervention is desirable for future large scale arrays. While many optimization strategies exist, DE is ideal for time and performance constraints because it can be set to converge to a solution rapidly with minimal computational overhead. We discuss how DE is utilized in the KAPPa system and discuss its performance and look toward the future of 1000 pixel array receivers and consider how the KAPPa DE system might be applied.

  3. High-throughput, fully-automated volumetry for prediction of MMSE and CDR decline in mild cognitive impairment

    PubMed Central

    Kovacevic, Sanja; Rafii, Michael S.; Brewer, James B.

    2008-01-01

    Medial temporal lobe (MTL) atrophy is associated with increased risk for conversion to Alzheimer's disease (AD), but manual tracing techniques and even semi-automated techniques for volumetric assessment are not practical in the clinical setting. In addition, most studies that examined MTL atrophy in AD have focused only on the hippocampus. It is unknown the extent to which volumes of amygdala and temporal horn of the lateral ventricle predict subsequent clinical decline. This study examined whether measures of hippocampus, amygdala, and temporal horn volume predict clinical decline over the following 6-month period in patients with mild cognitive impairment (MCI). Fully-automated volume measurements were performed in 269 MCI patients. Baseline volumes of the hippocampus, amygdala, and temporal horn were evaluated as predictors of change in Mini-mental State Exam (MMSE) and Clinical Dementia Rating Sum of Boxes (CDR SB) over a 6-month interval. Fully-automated measurements of baseline hippocampus and amygdala volumes correlated with baseline delayed recall scores. Patients with smaller baseline volumes of the hippocampus and amygdala or larger baseline volumes of the temporal horn had more rapid subsequent clinical decline on MMSE and CDR SB. Fully-automated and rapid measurement of segmental MTL volumes may help clinicians predict clinical decline in MCI patients. PMID:19474571

  4. Cardiac imaging: working towards fully-automated machine analysis & interpretation.

    PubMed

    Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido

    2017-03-01

    Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered: This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary: Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation.

  5. (-)-[(18) F]Flubatine: evaluation in rhesus monkeys and a report of the first fully automated radiosynthesis validated for clinical use.

    PubMed

    Hockley, Brian G; Stewart, Megan N; Sherman, Phillip; Quesada, Carole; Kilbourn, Michael R; Albin, Roger L; Scott, Peter J H

    2013-10-01

    (-)-[(18) F]Flubatine was selected for clinical imaging of α4 β2 nicotinic acetylcholine receptors because of its high affinity and appropriate kinetic profile. A fully automated synthesis of (-)-[(18) F]flubatine as a sterile isotonic solution suitable for clinical use is reported, as well as the first evaluation in nonhuman primates (rhesus macaques). (-)-[(18) F]Flubatine was prepared by fluorination of the Boc-protected trimethylammonium iodide precursor with [(18) F]fluoride in an automated synthesis module. Subsequent deprotection of the Boc group with 1-M HCl yielded (-)-[(18) F]flubatine, which was purified by semi-preparative HPLC. (-)-[(18) F]Flubatine was prepared in 25% radiochemical yield (formulated for clinical use at end of synthesis, n = 3), >95% radiochemical purity, and specific activity = 4647 Ci/mmol (171.9 GBq/µmol). Doses met all quality control criteria confirming their suitability for clinical use. Evaluation of (-)-[(18) F]flubatine in rhesus macaques was performed with a Concorde MicroPET P4 scanner (Concorde MicroSystems, Knoxville, TN). The brain was imaged for 90 min, and data were reconstructed using the 3-D maximum a posteriori algorithm. Image analysis revealed higher uptake and slower washout in the thalamus than those in other areas of the brain and peak uptake at 45 min. Injection of 2.5 µg/kg of nifene at 60 min initiated a slow washout of [(18) F]flubatine, with about 25% clearance from the thalamus by the end of imaging at 90 min. Copyright © 2013 John Wiley & Sons, Ltd.

  6. An Automated Energy Detection Algorithm Based on Kurtosis-Histogram Excision

    DTIC Science & Technology

    2018-01-01

    ARL-TR-8269 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Kurtosis-Histogram Excision...needed. Do not return it to the originator. ARL-TR-8269 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources

  7. Liver vessels segmentation using a hybrid geometrical moments/graph cuts method

    PubMed Central

    Esneault, Simon; Lafon, Cyril; Dillenseger, Jean-Louis

    2010-01-01

    This paper describes a fast and fully-automatic method for liver vessel segmentation on CT scan pre-operative images. The basis of this method is the introduction of a 3-D geometrical moment-based detector of cylindrical shapes within the min-cut/max-flow energy minimization framework. This method represents an original way to introduce a data term as a constraint into the widely used Boykov’s graph cuts algorithm and hence, to automate the segmentation. The method is evaluated and compared with others on a synthetic dataset. Finally, the relevancy of our method regarding the planning of a -necessarily accurate- percutaneous high intensity focused ultrasound surgical operation is demonstrated with some examples. PMID:19783500

  8. Some selected quantitative methods of thermal image analysis in Matlab.

    PubMed

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Model-Based Infrared Metrology for Advanced Technology Nodes and 300 mm Wafer Processing

    NASA Astrophysics Data System (ADS)

    Rosenthal, Peter A.; Duran, Carlos; Tower, Josh; Mazurenko, Alex; Mantz, Ulrich; Weidner, Peter; Kasic, Alexander

    2005-09-01

    The use of infrared spectroscopy for production semiconductor process monitoring has evolved recently from primarily unpatterned, i.e. blanket test wafer measurements in a limited historical application space of blanket epitaxial, BPSG, and FSG layers to new applications involving patterned product wafer measurements, and new measurement capabilities. Over the last several years, the semiconductor industry has adopted a new set of materials associated with copper/low-k interconnects, and new structures incorporating exotic materials including silicon germanium, SOI substrates and high aspect ratio trenches. The new device architectures and more chemically sophisticated materials have raised new process control and metrology challenges that are not addressed by current measurement technology. To address the challenges we have developed a new infrared metrology tool designed for emerging semiconductor production processes, in a package compatible with modern production and R&D environments. The tool incorporates recent advances in reflectance instrumentation including highly accurate signal processing, optimized reflectometry optics, and model-based calibration and analysis algorithms. To meet the production requirements of the modern automated fab, the measurement hardware has been integrated with a fully automated 300 mm platform incorporating front opening unified pod (FOUP) interfaces, automated pattern recognition and high throughput ultra clean robotics. The tool employs a suite of automated dispersion-model analysis algorithms capable of extracting a variety of layer properties from measured spectra. The new tool provides excellent measurement precision, tool matching, and a platform for deploying many new production and development applications. In this paper we will explore the use of model based infrared analysis as a tool for characterizing novel bottle capacitor structures employed in high density dynamic random access memory (DRAM) chips. We will explore the capability of the tool for characterizing multiple geometric parameters associated with the manufacturing process that are important to the yield and performance of advanced bottle DRAM devices.

  10. Automated Processing of 2-D Gel Electrophoretograms of Genomic DNA for Hunting Pathogenic DNA Molecular Changes.

    PubMed

    Takahashi; Nakazawa; Watanabe; Konagaya

    1999-01-01

    We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.

  11. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography.

    PubMed

    Xu, Yang; Liu, Yuan-Zhi; Boppart, Stephen A; Carney, P Scott

    2016-03-10

    In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted parameter search problems. We further present the results of this algorithm applied to phantom and biological tissue samples and compare with manually adjusted results. With the automated algorithm, near-optimal ISAM reconstruction can be achieved without manual adjustment. At the same time, the technical barrier for the nonexpert using ISAM imaging is also significantly lowered.

  12. Investigating the Effects of Motion Streaks on pQCT-Derived Leg Muscle Density and Its Association With Fractures.

    PubMed

    Chan, Adrian C H; Adachi, Jonathan D; Papaioannou, Alexandra; Wong, Andy Kin On

    Lower peripheral quantitative computed tomography (pQCT)-derived leg muscle density has been associated with fragility fractures in postmenopausal women. Limb movement during image acquisition may result in motion streaks in muscle that could dilute this relationship. This cross-sectional study examined a subset of women from the Canadian Multicentre Osteoporosis Study. pQCT leg scans were qualitatively graded (1-5) for motion severity. Muscle and motion streak were segmented using semi-automated (watershed) and fully automated (threshold-based) methods, computing area, and density. Binary logistic regression evaluated odds ratios (ORs) for fragility or all-cause fractures related to each of these measures with covariate adjustment. Among the 223 women examined (mean age: 72.7 ± 7.1 years, body mass index: 26.30 ± 4.97 kg/m 2 ), muscle density was significantly lower after removing motion (p < 0.001) for both methods. Motion streak areas segmented using the semi-automated method correlated better with visual motion grades (rho = 0.90, p < 0.01) compared to the fully automated method (rho = 0.65, p < 0.01). Although the analysis-reanalysis precision of motion streak area segmentation using the semi-automated method is above 5% error (6.44%), motion-corrected muscle density measures remained well within 2% analytical error. The effect of motion-correction on strengthening the association between muscle density and fragility fractures was significant when motion grade was ≥3 (p interaction <0.05). This observation was most dramatic for the semi-automated algorithm (OR: 1.62 [0.82,3.17] before to 2.19 [1.05,4.59] after correction). Although muscle density showed an overall association with all-cause fractures (OR: 1.49 [1.05,2.12]), the effect of motion-correction was again, most impactful within individuals with scans showing grade 3 or above motion. Correcting for motion in pQCT leg scans strengthened the relationship between muscle density and fragility fractures, particularly in scans with motion grades of 3 or above. Motion streaks are not confounders to the relationship between pQCT-derived leg muscle density and fractures, but may introduce heterogeneity in muscle density measurements, rendering associations with fractures to be weaker. Copyright © 2016. Published by Elsevier Inc.

  13. Fully-automated approach to hippocampus segmentation using a graph-cuts algorithm combined with atlas-based segmentation and morphological opening.

    PubMed

    Kwak, Kichang; Yoon, Uicheul; Lee, Dong-Kyun; Kim, Geon Ha; Seo, Sang Won; Na, Duk L; Shim, Hack-Joon; Lee, Jong-Min

    2013-09-01

    The hippocampus has been known to be an important structure as a biomarker for Alzheimer's disease (AD) and other neurological and psychiatric diseases. However, it requires accurate, robust and reproducible delineation of hippocampal structures. In this study, an automated hippocampal segmentation method based on a graph-cuts algorithm combined with atlas-based segmentation and morphological opening was proposed. First of all, the atlas-based segmentation was applied to define initial hippocampal region for a priori information on graph-cuts. The definition of initial seeds was further elaborated by incorporating estimation of partial volume probabilities at each voxel. Finally, morphological opening was applied to reduce false positive of the result processed by graph-cuts. In the experiments with twenty-seven healthy normal subjects, the proposed method showed more reliable results (similarity index=0.81±0.03) than the conventional atlas-based segmentation method (0.72±0.04). Also as for segmentation accuracy which is measured in terms of the ratios of false positive and false negative, the proposed method (precision=0.76±0.04, recall=0.86±0.05) produced lower ratios than the conventional methods (0.73±0.05, 0.72±0.06) demonstrating its plausibility for accurate, robust and reliable segmentation of hippocampus. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Automated segmentation and characterization of esophageal wall in vivo by tethered capsule optical coherence tomography endomicroscopy

    PubMed Central

    Ughi, Giovanni J.; Gora, Michalina J.; Swager, Anne-Fré; Soomro, Amna; Grant, Catriona; Tiernan, Aubrey; Rosenberg, Mireille; Sauk, Jenny S.; Nishioka, Norman S.; Tearney, Guillermo J.

    2016-01-01

    Optical coherence tomography (OCT) is an optical diagnostic modality that can acquire cross-sectional images of the microscopic structure of the esophagus, including Barrett’s esophagus (BE) and associated dysplasia. We developed a swallowable tethered capsule OCT endomicroscopy (TCE) device that acquires high-resolution images of entire gastrointestinal (GI) tract luminal organs. This device has a potential to become a screening method that identifies patients with an abnormal esophagus that should be further referred for upper endoscopy. Currently, the characterization of the OCT-TCE esophageal wall data set is performed manually, which is time-consuming and inefficient. Additionally, since the capsule optics optimally focus light approximately 500 µm outside the capsule wall and the best quality images are obtained when the tissue is in full contact with the capsule, it is crucial to provide feedback for the operator about tissue contact during the imaging procedure. In this study, we developed a fully automated algorithm for the segmentation of in vivo OCT-TCE data sets and characterization of the esophageal wall. The algorithm provides a two-dimensional representation of both the contact map from the data collected in human clinical studies as well as a tissue map depicting areas of BE with or without dysplasia. Results suggest that these techniques can potentially improve the current TCE data acquisition procedure and provide an efficient characterization of the diseased esophageal wall. PMID:26977350

  15. Genome-Wide Comparative Gene Family Classification

    PubMed Central

    Frech, Christian; Chen, Nansheng

    2010-01-01

    Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species. PMID:20976221

  16. Automated analysis of art object surfaces using time-averaged digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Lukomski, Michal; Krzemien, Leszek

    2013-05-01

    Technical development and practical evaluation of a laboratory built, out-of-plane digital speckle pattern interferometer (DSPI) are reported. The instrument was used for non-invasive, non-contact detection and characterization of early-stage damage, like fracturing and layer separation, of painted objects of art. A fully automated algorithm was developed for recording and analysis of vibrating objects utilizing continuous-wave laser light. The algorithm uses direct, numerical fitting or Hilbert transformation for an independent, quantitative evaluation of the Bessel function at every point of the investigated surface. The procedure does not require phase modulation and thus can be implemented within any, even the simplest, DSPI apparatus. The proposed deformation analysis is fast and computationally inexpensive. Diagnosis of physical state of the surface of a panel painting attributed to Nicolaus Haberschrack (a late-mediaeval painter active in Krakow) from the collection of the National Museum in Krakow is presented as an example of an in situ application of the developed methodology. It has allowed the effectiveness of the deformation analysis to be evaluated for the surface of a real painting (heterogeneous colour and texture) in a conservation studio where vibration level was considerably higher than in the laboratory. It has been established that the methodology, which offers automatic analysis of the interferometric fringe patterns, has a considerable potential to facilitate and render more precise the condition surveys of works of art.

  17. 21 CFR 864.5620 - Automated hemoglobin system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated hemoglobin system. 864.5620 Section 864....5620 Automated hemoglobin system. (a) Identification. An automated hemoglobin system is a fully... hemoglobin content of human blood. (b) Classification. Class II (performance standards). [45 FR 60601, Sept...

  18. 21 CFR 864.5620 - Automated hemoglobin system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated hemoglobin system. 864.5620 Section 864....5620 Automated hemoglobin system. (a) Identification. An automated hemoglobin system is a fully... hemoglobin content of human blood. (b) Classification. Class II (performance standards). [45 FR 60601, Sept...

  19. Oscillometric Blood Pressure Estimation: Past, Present, and Future.

    PubMed

    Forouzanfar, Mohamad; Dajani, Hilmi R; Groza, Voicu Z; Bolic, Miodrag; Rajan, Sreeraman; Batkin, Izmail

    2015-01-01

    The use of automated blood pressure (BP) monitoring is growing as it does not require much expertise and can be performed by patients several times a day at home. Oscillometry is one of the most common measurement methods used in automated BP monitors. A review of the literature shows that a large variety of oscillometric algorithms have been developed for accurate estimation of BP but these algorithms are scattered in many different publications or patents. Moreover, considering that oscillometric devices dominate the home BP monitoring market, little effort has been made to survey the underlying algorithms that are used to estimate BP. In this review, a comprehensive survey of the existing oscillometric BP estimation algorithms is presented. The survey covers a broad spectrum of algorithms including the conventional maximum amplitude and derivative oscillometry as well as the recently proposed learning algorithms, model-based algorithms, and algorithms that are based on analysis of pulse morphology and pulse transit time. The aim is to classify the diverse underlying algorithms, describe each algorithm briefly, and discuss their advantages and disadvantages. This paper will also review the artifact removal techniques in oscillometry and the current standards for the automated BP monitors.

  20. An FTIR point sensor for identifying chemical WMD and hazardous materials

    NASA Astrophysics Data System (ADS)

    Norman, Mark L.; Gagnon, Aaron M.; Reffner, John A.; Schiering, David W.; Allen, Jeffrey D.

    2004-03-01

    A new point sensor for identifying chemical weapons of mass destruction and other hazardous materials based on Fourier transform infrared (FT-IR) spectroscopy is presented. The sensor is a portable, fully functional FT-IR system that features a miniaturized Michelson interferometer, an integrated diamond attenuated total reflection (ATR) sample interface, and an embedded on-board computer. Samples are identified by an automated search algorithm that compares their infrared spectra to digitized databases that include reference spectra of nerve and blister agents, toxic industrial chemicals, and other hazardous materials. The hardware and software are designed for use by technicians with no background in infrared spectroscopy. The unit, which is fully self-contained, can be hand-carried and used in a hot zone by personnel in Level A protective gear, and subsequently decontaminated by spraying or immersion. Wireless control by a remote computer is also possible. Details of the system design and performance, including results of field validation tests, are discussed.

  1. Towards Automated Screening of Two-dimensional Crystals

    PubMed Central

    Cheng, Anchi; Leung, Albert; Fellmann, Denis; Quispe, Joel; Suloway, Christian; Pulokas, James; Carragher, Bridget; Potter, Clinton S.

    2007-01-01

    Screening trials to determine the presence of two-dimensional (2D) protein crystals suitable for three-dimensional structure determination using electron crystallography is a very labor-intensive process. Methods compatible with fully automated screening have been developed for the process of crystal production by dialysis and for producing negatively stained grids of the resulting trials. Further automation via robotic handling of the EM grids, and semi-automated transmission electron microscopic imaging and evaluation of the trial grids is also possible. We, and others, have developed working prototypes for several of these tools and tested and evaluated them in a simple screen of 24 crystallization conditions. While further development of these tools is certainly required for a turn-key system, the goal of fully automated screening appears to be within reach. PMID:17977016

  2. Automated Fast Screening Method for Cocaine Identification in Seized Drug Samples Using a Portable Fourier Transform Infrared (FT-IR) Instrument.

    PubMed

    Mainali, Dipak; Seelenbinder, John

    2016-05-01

    Quick and presumptive identification of seized drug samples without destroying evidence is necessary for law enforcement officials to control the trafficking and abuse of drugs. This work reports an automated screening method to detect the presence of cocaine in seized samples using portable Fourier transform infrared (FT-IR) spectrometers. The method is based on the identification of well-defined characteristic vibrational frequencies related to the functional group of the cocaine molecule and is fully automated through the use of an expert system. Traditionally, analysts look for key functional group bands in the infrared spectra and characterization of the molecules present is dependent on user interpretation. This implies the need for user expertise, especially in samples that likely are mixtures. As such, this approach is biased and also not suitable for non-experts. The method proposed in this work uses the well-established "center of gravity" peak picking mathematical algorithm and combines it with the conditional reporting feature in MicroLab software to provide an automated method that can be successfully employed by users with varied experience levels. The method reports the confidence level of cocaine present only when a certain number of cocaine related peaks are identified by the automated method. Unlike library search and chemometric methods that are dependent on the library database or the training set samples used to build the calibration model, the proposed method is relatively independent of adulterants and diluents present in the seized mixture. This automated method in combination with a portable FT-IR spectrometer provides law enforcement officials, criminal investigators, or forensic experts a quick field-based prescreening capability for the presence of cocaine in seized drug samples. © The Author(s) 2016.

  3. Investigating Factors Affecting the Uptake of Automated Assessment Technology

    ERIC Educational Resources Information Center

    Dreher, Carl; Reiners, Torsten; Dreher, Heinz

    2011-01-01

    Automated assessment is an emerging innovation in educational praxis, however its pedagogical potential is not fully utilised in Australia, particularly regarding automated essay grading. The rationale for this research is that the usage of automated assessment currently lags behind the capacity that the technology provides, thus restricting the…

  4. Automated meteorological data from commercial aircraft via satellite: Present experience and future implications

    NASA Technical Reports Server (NTRS)

    Steinberg, R.

    1978-01-01

    A low-cost communications system to provide meteorological data from commercial aircraft, in neat real-time, on a fully automated basis has been developed. The complete system including the low profile antenna and all installation hardware weighs 34 kg. The prototype system was installed on a B-747 aircraft and provided meteorological data (wind angle and velocity, temperature, altitude and position as a function of time) on a fully automated basis. The results were exceptional. This concept is expected to have important implications for operational meteorology and airline route forecasting.

  5. Smart Phase Tuning in Microwave Photonic Integrated Circuits Toward Automated Frequency Multiplication by Design

    NASA Astrophysics Data System (ADS)

    Nabavi, N.

    2018-07-01

    The author investigates the monitoring methods for fine adjustment of the previously proposed on-chip architecture for frequency multiplication and translation of harmonics by design. Digital signal processing (DSP) algorithms are utilized to create an optimized microwave photonic integrated circuit functionality toward automated frequency multiplication. The implemented DSP algorithms are formed on discrete Fourier transform and optimization-based algorithms (Greedy and gradient-based algorithms), which are analytically derived and numerically compared based on the accuracy and speed of convergence criteria.

  6. SU-F-T-423: Automating Treatment Planning for Cervical Cancer in Low- and Middle- Income Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisling, K; Zhang, L; Yang, J

    Purpose: To develop and test two independent algorithms that automatically create the photon treatment fields for a four-field box beam arrangement, a common treatment technique for cervical cancer in low- and middle-income countries. Methods: Two algorithms were developed and integrated into Eclipse using its Advanced Programming Interface:3D Method: We automatically segment bony anatomy on CT using an in-house multi-atlas contouring tool and project the structures into the beam’s-eye-view. We identify anatomical landmarks on the projections to define the field apertures. 2D Method: We generate DRRs for all four beams. An atlas of DRRs for six standard patients with corresponding fieldmore » apertures are deformably registered to the test patient DRRs. The set of deformed atlas apertures are fitted to an expected shape to define the final apertures. Both algorithms were tested on 39 patient CTs, and the resulting treatment fields were scored by a radiation oncologist. We also investigated the feasibility of using one algorithm as an independent check of the other algorithm. Results: 96% of the 3D-Method-generated fields and 79% of the 2D-method-generated fields were scored acceptable for treatment (“Per Protocol” or “Acceptable Variation”). The 3D Method generated more fields scored “Per Protocol” than the 2D Method (62% versus 17%). The 4% of the 3D-Method-generated fields that were scored “Unacceptable Deviation” were all due to an improper L5 vertebra contour resulting in an unacceptable superior jaw position. When these same patients were planned with the 2D method, the superior jaw was acceptable, suggesting that the 2D method can be used to independently check the 3D method. Conclusion: Our results show that our 3D Method is feasible for automatically generating cervical treatment fields. Furthermore, the 2D Method can serve as an automatic, independent check of the automatically-generated treatment fields. These algorithms will be implemented for fully automated cervical treatment planning.« less

  7. Automated method for measuring the extent of selective logging damage with airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Melendy, L.; Hagen, S. C.; Sullivan, F. B.; Pearson, T. R. H.; Walker, S. M.; Ellis, P.; Kustiyo; Sambodo, Ari Katmoko; Roswintiarti, O.; Hanson, M. A.; Klassen, A. W.; Palace, M. W.; Braswell, B. H.; Delgado, G. M.

    2018-05-01

    Selective logging has an impact on the global carbon cycle, as well as on the forest micro-climate, and longer-term changes in erosion, soil and nutrient cycling, and fire susceptibility. Our ability to quantify these impacts is dependent on methods and tools that accurately identify the extent and features of logging activity. LiDAR-based measurements of these features offers significant promise. Here, we present a set of algorithms for automated detection and mapping of critical features associated with logging - roads/decks, skid trails, and gaps - using commercial airborne LiDAR data as input. The automated algorithm was applied to commercial LiDAR data collected over two logging concessions in Kalimantan, Indonesia in 2014. The algorithm results were compared to measurements of the logging features collected in the field soon after logging was complete. The automated algorithm-mapped road/deck and skid trail features match closely with features measured in the field, with agreement levels ranging from 69% to 99% when adjusting for GPS location error. The algorithm performed most poorly with gaps, which, by their nature, are variable due to the unpredictable impact of tree fall versus the linear and regular features directly created by mechanical means. Overall, the automated algorithm performs well and offers significant promise as a generalizable tool useful to efficiently and accurately capture the effects of selective logging, including the potential to distinguish reduced impact logging from conventional logging.

  8. Automated Algorithm for J-Tpeak and Tpeak-Tend Assessment of Drug-Induced Proarrhythmia Risk

    DOE PAGES

    Johannesen, Lars; Vicente, Jose; Hosseini, Meisam; ...

    2016-12-30

    Prolongation of the heart rate corrected QT (QTc) interval is a sensitive marker of torsade de pointes risk; however it is not specific as QTc prolonging drugs that block inward currents are often not associated with torsade. Recent work demonstrated that separate analysis of the heart rate corrected J-T peakc (J-T peakc) and T peak-T end intervals can identify QTc prolonging drugs with inward current block and is being proposed as a part of a new cardiac safety paradigm for new drugs (the “CiPA” initiative). In this work, we describe an automated measurement methodology for assessment of the J-T peakcmore » and T peak-T end intervals using the vector magnitude lead. The automated measurement methodology was developed using data from one clinical trial and was evaluated using independent data from a second clinical trial. Comparison between the automated and the prior semi-automated measurements shows that the automated algorithm reproduces the semi-automated measurements with a mean difference of single-deltas <1 ms and no difference in intra-time point variability (p for all > 0.39). In addition, the time-profile of the baseline and placebo-adjusted changes are within 1 ms for 63% of the time-points (86% within 2 ms). Importantly, the automated results lead to the same conclusions about the electrophysiological mechanisms of the studied drugs. We have developed an automated algorithm for assessment of J-T peakc and T peak-T end intervals that can be applied in clinical drug trials. Under the CiPA initiative this ECG assessment would determine if there are unexpected ion channel effects in humans compared to preclinical studies. In conclusion, the algorithm is being released as open-source software.« less

  9. Automated Algorithm for J-Tpeak and Tpeak-Tend Assessment of Drug-Induced Proarrhythmia Risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannesen, Lars; Vicente, Jose; Hosseini, Meisam

    Prolongation of the heart rate corrected QT (QTc) interval is a sensitive marker of torsade de pointes risk; however it is not specific as QTc prolonging drugs that block inward currents are often not associated with torsade. Recent work demonstrated that separate analysis of the heart rate corrected J-T peakc (J-T peakc) and T peak-T end intervals can identify QTc prolonging drugs with inward current block and is being proposed as a part of a new cardiac safety paradigm for new drugs (the “CiPA” initiative). In this work, we describe an automated measurement methodology for assessment of the J-T peakcmore » and T peak-T end intervals using the vector magnitude lead. The automated measurement methodology was developed using data from one clinical trial and was evaluated using independent data from a second clinical trial. Comparison between the automated and the prior semi-automated measurements shows that the automated algorithm reproduces the semi-automated measurements with a mean difference of single-deltas <1 ms and no difference in intra-time point variability (p for all > 0.39). In addition, the time-profile of the baseline and placebo-adjusted changes are within 1 ms for 63% of the time-points (86% within 2 ms). Importantly, the automated results lead to the same conclusions about the electrophysiological mechanisms of the studied drugs. We have developed an automated algorithm for assessment of J-T peakc and T peak-T end intervals that can be applied in clinical drug trials. Under the CiPA initiative this ECG assessment would determine if there are unexpected ion channel effects in humans compared to preclinical studies. In conclusion, the algorithm is being released as open-source software.« less

  10. A Fully Automated Method for Quantifying and Localizing White Matter Hyperintensities on MR Images

    PubMed Central

    Wu, Minjie; Rosano, Caterina; Butters, Meryl; Whyte, Ellen; Nable, Megan; Crooks, Ryan; Meltzer, Carolyn C.; Reynolds, Charles F.; Aizenstein3, Howard J.

    2006-01-01

    White matter hyperintensities (WMH), commonly found on T2-weighted FLAIR brain MR images in the elderly, are associated with a number of neuropsychiatric disorders, including vascular dementia, Alzheimer’s disease, and late-life depression. Previous MRI studies of WMHs have primarily relied on the subjective and global (i.e., full-brain) ratings of WMH grade. In the current study we implement and validate an automated method for quantifying and localizing WMHs. We adapt a fuzzy connected algorithm to automate the segmentation of WMHs and use a demons-based image registration to automate the anatomic localization of the WMHs using the Johns Hopkins University White Matter Atlas. The method is validated using the brain MR images acquired from eleven elderly subjects with late-onset late-life depression (LLD) and eight elderly controls. This dataset was chosen because LLD subjects are known to have significant WMH burden. The volumes of WMH identified in our automated method are compared with the accepted gold standard (manual ratings). A significant correlation of the automated method and the manual ratings is found (P<0.0001), thus demonstrating similar WMH quantifications of both methods. As has been shown in other studies e.g. (Taylor, et al. 2003)), we found there was a significantly greater WMH burden in the LLD subjects versus the controls for both the manual and automated method. The effect size was greater for the automated method, suggesting that it is a more specific measure. Additionally, we describe the anatomic localization of the WMHs in LLD subjects as well as in the control subjects, and detect the regions of interest (ROIs) specific for the WMH burden of LLD patients. Given the emergence of large neuroimage databases, techniques, such as that described here, will allow for a better understanding of the relationship between WMHs and neuropsychiatric disorders. PMID:17097277

  11. Rapid Protein Global Fold Determination Using Ultrasparse Sampling, High-Dynamic Range Artifact Suppression, and Time-Shared NOESY

    PubMed Central

    Coggins, Brian E.; Werner-Allen, Jonathan W.; Yan, Anthony; Zhou, Pei

    2012-01-01

    In structural studies of large proteins by NMR, global fold determination plays an increasingly important role in providing a first look at a target’s topology and reducing assignment ambiguity in NOESY spectra of fully-protonated samples. In this work, we demonstrate the use of ultrasparse sampling, a new data processing algorithm, and a 4-D time-shared NOESY experiment (1) to collect all NOEs in 2H/13C/15N-labeled protein samples with selectively-protonated amide and ILV methyl groups at high resolution in only four days, and (2) to calculate global folds from this data using fully automated resonance assignment. The new algorithm, SCRUB, incorporates the CLEAN method for iterative artifact removal, but applies an additional level of iteration, permitting real signals to be distinguished from noise and allowing nearly all artifacts generated by real signals to be eliminated. In simulations with 1.2% of the data required by Nyquist sampling, SCRUB achieves a dynamic range over 10000:1 (250× better artifact suppression than CLEAN) and completely quantitative reproduction of signal intensities, volumes, and lineshapes. Applied to 4-D time-shared NOESY data, SCRUB processing dramatically reduces aliasing noise from strong diagonal signals, enabling the identification of weak NOE crosspeaks with intensities 100× less than diagonal signals. Nearly all of the expected peaks for interproton distances under 5 Å were observed. The practical benefit of this method is demonstrated with structure calculations for 23 kDa and 29 kDa test proteins using the automated assignment protocol of CYANA, in which unassigned 4-D time-shared NOESY peak lists produce accurate and well-converged global fold ensembles, whereas 3-D peak lists either fail to converge or produce significantly less accurate folds. The approach presented here succeeds with an order of magnitude less sampling than required by alternative methods for processing sparse 4-D data. PMID:22946863

  12. New method of contour-based mask-shape compiler

    NASA Astrophysics Data System (ADS)

    Matsuoka, Ryoichi; Sugiyama, Akiyuki; Onizawa, Akira; Sato, Hidetoshi; Toyoda, Yasutaka

    2007-10-01

    We have developed a new method of accurately profiling a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, it is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method for a DFM solution in which two dimensional data are extracted for an error free practical simulation by precise reproduction of a real mask shape in addition to the mask data simulation. The flow centering around the design data is fully automated and provides an environment where optimization and verification for fully automated model calibration with much less error is available. It also allows complete consolidation of input and output functions with an EDA system by constructing a design data oriented system structure. This method therefore is regarded as a strategic DFM approach in the semiconductor metrology.

  13. Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics

    NASA Technical Reports Server (NTRS)

    Ho, K. K.; Moody, G. B.; Peng, C. K.; Mietus, J. E.; Larson, M. G.; Levy, D.; Goldberger, A. L.

    1997-01-01

    BACKGROUND: Despite much recent interest in quantification of heart rate variability (HRV), the prognostic value of conventional measures of HRV and of newer indices based on nonlinear dynamics is not universally accepted. METHODS AND RESULTS: We have designed algorithms for analyzing ambulatory ECG recordings and measuring HRV without human intervention, using robust methods for obtaining time-domain measures (mean and SD of heart rate), frequency-domain measures (power in the bands of 0.001 to 0.01 Hz [VLF], 0.01 to 0.15 Hz [LF], and 0.15 to 0.5 Hz [HF] and total spectral power [TP] over all three of these bands), and measures based on nonlinear dynamics (approximate entropy [ApEn], a measure of complexity, and detrended fluctuation analysis [DFA], a measure of long-term correlations). The study population consisted of chronic congestive heart failure (CHF) case patients and sex- and age-matched control subjects in the Framingham Heart Study. After exclusion of technically inadequate studies and those with atrial fibrillation, we used these algorithms to study HRV in 2-hour ambulatory ECG recordings of 69 participants (mean age, 71.7+/-8.1 years). By use of separate Cox proportional-hazards models, the conventional measures SD (P<.01), LF (P<.01), VLF (P<.05), and TP (P<.01) and the nonlinear measure DFA (P<.05) were predictors of survival over a mean follow-up period of 1.9 years; other measures, including ApEn (P>.3), were not. In multivariable models, DFA was of borderline predictive significance (P=.06) after adjustment for the diagnosis of CHF and SD. CONCLUSIONS: These results demonstrate that HRV analysis of ambulatory ECG recordings based on fully automated methods can have prognostic value in a population-based study and that nonlinear HRV indices may contribute prognostic value to complement traditional HRV measures.

  14. Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging

    PubMed Central

    Patel, Tapan P.; Man, Karen; Firestein, Bonnie L.; Meaney, David F.

    2017-01-01

    Background Recent advances in genetically engineered calcium and membrane potential indicators provide the potential to estimate the activation dynamics of individual neurons within larger, mesoscale networks (100s–1000 +neurons). However, a fully integrated automated workflow for the analysis and visualization of neural microcircuits from high speed fluorescence imaging data is lacking. New method Here we introduce FluoroSNNAP, Fluorescence Single Neuron and Network Analysis Package. FluoroSNNAP is an open-source, interactive software developed in MATLAB for automated quantification of numerous biologically relevant features of both the calcium dynamics of single-cells and network activity patterns. FluoroSNNAP integrates and improves upon existing tools for spike detection, synchronization analysis, and inference of functional connectivity, making it most useful to experimentalists with little or no programming knowledge. Results We apply FluoroSNNAP to characterize the activity patterns of neuronal microcircuits undergoing developmental maturation in vitro. Separately, we highlight the utility of single-cell analysis for phenotyping a mixed population of neurons expressing a human mutant variant of the microtubule associated protein tau and wild-type tau. Comparison with existing method(s) We show the performance of semi-automated cell segmentation using spatiotemporal independent component analysis and significant improvement in detecting calcium transients using a template-based algorithm in comparison to peak-based or wavelet-based detection methods. Our software further enables automated analysis of microcircuits, which is an improvement over existing methods. Conclusions We expect the dissemination of this software will facilitate a comprehensive analysis of neuronal networks, promoting the rapid interrogation of circuits in health and disease. PMID:25629800

  15. Automated Decision-Making and Big Data: Concerns for People With Mental Illness.

    PubMed

    Monteith, Scott; Glenn, Tasha

    2016-12-01

    Automated decision-making by computer algorithms based on data from our behaviors is fundamental to the digital economy. Automated decisions impact everyone, occurring routinely in education, employment, health care, credit, and government services. Technologies that generate tracking data, including smartphones, credit cards, websites, social media, and sensors, offer unprecedented benefits. However, people are vulnerable to errors and biases in the underlying data and algorithms, especially those with mental illness. Algorithms based on big data from seemingly unrelated sources may create obstacles to community integration. Voluntary online self-disclosure and constant tracking blur traditional concepts of public versus private data, medical versus non-medical data, and human versus automated decision-making. In contrast to sharing sensitive information with a physician in a confidential relationship, there may be numerous readers of information revealed online; data may be sold repeatedly; used in proprietary algorithms; and are effectively permanent. Technological changes challenge traditional norms affecting privacy and decision-making, and continued discussions on new approaches to provide privacy protections are needed.

  16. Cardiac imaging: working towards fully-automated machine analysis & interpretation

    PubMed Central

    Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido

    2017-01-01

    Introduction Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation. PMID:28277804

  17. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors

    PubMed Central

    Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung

    2018-01-01

    The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets. PMID:29748495

  18. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors.

    PubMed

    Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung

    2018-05-10

    The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets.

  19. Testing and evaluation of tactical electro-optical sensors

    NASA Astrophysics Data System (ADS)

    Middlebrook, Christopher T.; Smith, John G.

    2002-07-01

    As integrated electro-optical sensor payloads (multi- sensors) comprised of infrared imagers, visible imagers, and lasers advance in performance, the tests and testing methods must also advance in order to fully evaluate them. Future operational requirements will require integrated sensor payloads to perform missions at further ranges and with increased targeting accuracy. In order to meet these requirements sensors will require advanced imaging algorithms, advanced tracking capability, high-powered lasers, and high-resolution imagers. To meet the U.S. Navy's testing requirements of such multi-sensors, the test and evaluation group in the Night Vision and Chemical Biological Warfare Department at NAVSEA Crane is developing automated testing methods, and improved tests to evaluate imaging algorithms, and procuring advanced testing hardware to measure high resolution imagers and line of sight stabilization of targeting systems. This paper addresses: descriptions of the multi-sensor payloads tested, testing methods used and under development, and the different types of testing hardware and specific payload tests that are being developed and used at NAVSEA Crane.

  20. Fast and straightforward analysis approach of charge transport data in single molecule junctions.

    PubMed

    Zhang, Qian; Liu, Chenguang; Tao, Shuhui; Yi, Ruowei; Su, Weitao; Zhao, Cezhou; Zhao, Chun; Dappe, Yannick J; Nichols, Richard J; Yang, Li

    2018-08-10

    In this study, we introduce an efficient data sorting algorithm, including filters for noisy signals, conductance mapping for analyzing the most dominant conductance group and sub-population groups. The capacity of our data analysis process has also been corroborated on real experimental data sets of Au-1,6-hexanedithiol-Au and Au-1,8-octanedithiol-Au molecular junctions. The fully automated and unsupervised program requires less than one minute on a standard PC to sort the data and generate histograms. The resulting one-dimensional and two-dimensional log histograms give conductance values in good agreement with previous studies. Our algorithm is a straightforward, fast and user-friendly tool for single molecule charge transport data analysis. We also analyze the data in a form of a conductance map which can offer evidence for diversity in molecular conductance. The code for automatic data analysis is openly available, well-documented and ready to use, thereby offering a useful new tool for single molecule electronics.

  1. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark.

    PubMed

    Singha, Suman; Vespe, Michele; Trieschmann, Olaf

    2013-08-15

    Today the health of ocean is in danger as it was never before mainly due to man-made pollutions. Operational activities show regular occurrence of accidental and deliberate oil spill in European waters. Since the areas covered by oil spills are usually large, satellite remote sensing particularly Synthetic Aperture Radar represents an effective option for operational oil spill detection. This paper describes the development of a fully automated approach for oil spill detection from SAR. Total of 41 feature parameters extracted from each segmented dark spot for oil spill and 'look-alike' classification and ranked according to their importance. The classification algorithm is based on a two-stage processing that combines classification tree analysis and fuzzy logic. An initial evaluation of this methodology on a large dataset has been carried out and degree of agreement between results from proposed algorithm and human analyst was estimated between 85% and 93% respectively for ENVISAT and RADARSAT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Cell Membrane Tracking in Living Brain Tissue Using Differential Interference Contrast Microscopy.

    PubMed

    Lee, John; Kolb, Ilya; Forest, Craig R; Rozell, Christopher J

    2018-04-01

    Differential interference contrast (DIC) microscopy is widely used for observing unstained biological samples that are otherwise optically transparent. Combining this optical technique with machine vision could enable the automation of many life science experiments; however, identifying relevant features under DIC is challenging. In particular, precise tracking of cell boundaries in a thick ( ) slice of tissue has not previously been accomplished. We present a novel deconvolution algorithm that achieves the state-of-the-art performance at identifying and tracking these membrane locations. Our proposed algorithm is formulated as a regularized least squares optimization that incorporates a filtering mechanism to handle organic tissue interference and a robust edge-sparsity regularizer that integrates dynamic edge tracking capabilities. As a secondary contribution, this paper also describes new community infrastructure in the form of a MATLAB toolbox for accurately simulating DIC microscopy images of in vitro brain slices. Building on existing DIC optics modeling, our simulation framework additionally contributes an accurate representation of interference from organic tissue, neuronal cell-shapes, and tissue motion due to the action of the pipette. This simulator allows us to better understand the image statistics (to improve algorithms), as well as quantitatively test cell segmentation and tracking algorithms in scenarios, where ground truth data is fully known.

  3. Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI).

    PubMed

    Delakis, Ioannis; Hammad, Omer; Kitney, Richard I

    2007-07-07

    Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting.

  4. Modeling pilot interaction with automated digital avionics systems: Guidance and control algorithms for contour and nap-of-the-Earth flight

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.

  5. Reproducibility study of whole-brain 1H spectroscopic imaging with automated quantification.

    PubMed

    Gu, Meng; Kim, Dong-Hyun; Mayer, Dirk; Sullivan, Edith V; Pfefferbaum, Adolf; Spielman, Daniel M

    2008-09-01

    A reproducibility study of proton MR spectroscopic imaging ((1)H-MRSI) of the human brain was conducted to evaluate the reliability of an automated 3D in vivo spectroscopic imaging acquisition and associated quantification algorithm. A PRESS-based pulse sequence was implemented using dualband spectral-spatial RF pulses designed to fully excite the singlet resonances of choline (Cho), creatine (Cre), and N-acetyl aspartate (NAA) while simultaneously suppressing water and lipids; 1% of the water signal was left to be used as a reference signal for robust data processing, and additional lipid suppression was obtained using adiabatic inversion recovery. Spiral k-space trajectories were used for fast spectral and spatial encoding yielding high-quality spectra from 1 cc voxels throughout the brain with a 13-min acquisition time. Data were acquired with an 8-channel phased-array coil and optimal signal-to-noise ratio (SNR) for the combined signals was achieved using a weighting based on the residual water signal. Automated quantification of the spectrum of each voxel was performed using LCModel. The complete study consisted of eight healthy adult subjects to assess intersubject variations and two subjects scanned six times each to assess intrasubject variations. The results demonstrate that reproducible whole-brain (1)H-MRSI data can be robustly obtained with the proposed methods.

  6. Fully automated corneal endothelial morphometry of images captured by clinical specular microscopy

    NASA Astrophysics Data System (ADS)

    Bucht, Curry; Söderberg, Per; Manneberg, Göran

    2009-02-01

    The corneal endothelium serves as the posterior barrier of the cornea. Factors such as clarity and refractive properties of the cornea are in direct relationship to the quality of the endothelium. The endothelial cell density is considered the most important morphological factor. Morphometry of the corneal endothelium is presently done by semi-automated analysis of pictures captured by a Clinical Specular Microscope (CSM). Because of the occasional need of operator involvement, this process can be tedious, having a negative impact on sampling size. This study was dedicated to the development of fully automated analysis of images of the corneal endothelium, captured by CSM, using Fourier analysis. Software was developed in the mathematical programming language Matlab. Pictures of the corneal endothelium, captured by CSM, were read into the analysis software. The software automatically performed digital enhancement of the images. The digitally enhanced images of the corneal endothelium were transformed, using the fast Fourier transform (FFT). Tools were developed and applied for identification and analysis of relevant characteristics of the Fourier transformed images. The data obtained from each Fourier transformed image was used to calculate the mean cell density of its corresponding corneal endothelium. The calculation was based on well known diffraction theory. Results in form of estimated cell density of the corneal endothelium were obtained, using fully automated analysis software on images captured by CSM. The cell density obtained by the fully automated analysis was compared to the cell density obtained from classical, semi-automated analysis and a relatively large correlation was found.

  7. Constructing Aligned Assessments Using Automated Test Construction

    ERIC Educational Resources Information Center

    Porter, Andrew; Polikoff, Morgan S.; Barghaus, Katherine M.; Yang, Rui

    2013-01-01

    We describe an innovative automated test construction algorithm for building aligned achievement tests. By incorporating the algorithm into the test construction process, along with other test construction procedures for building reliable and unbiased assessments, the result is much more valid tests than result from current test construction…

  8. Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification.

    PubMed

    Vrooman, Henri A; Cocosco, Chris A; van der Lijn, Fedde; Stokking, Rik; Ikram, M Arfan; Vernooij, Meike W; Breteler, Monique M B; Niessen, Wiro J

    2007-08-01

    Conventional k-Nearest-Neighbor (kNN) classification, which has been successfully applied to classify brain tissue in MR data, requires training on manually labeled subjects. This manual labeling is a laborious and time-consuming procedure. In this work, a new fully automated brain tissue classification procedure is presented, in which kNN training is automated. This is achieved by non-rigidly registering the MR data with a tissue probability atlas to automatically select training samples, followed by a post-processing step to keep the most reliable samples. The accuracy of the new method was compared to rigid registration-based training and to conventional kNN-based segmentation using training on manually labeled subjects for segmenting gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) in 12 data sets. Furthermore, for all classification methods, the performance was assessed when varying the free parameters. Finally, the robustness of the fully automated procedure was evaluated on 59 subjects. The automated training method using non-rigid registration with a tissue probability atlas was significantly more accurate than rigid registration. For both automated training using non-rigid registration and for the manually trained kNN classifier, the difference with the manual labeling by observers was not significantly larger than inter-observer variability for all tissue types. From the robustness study, it was clear that, given an appropriate brain atlas and optimal parameters, our new fully automated, non-rigid registration-based method gives accurate and robust segmentation results. A similarity index was used for comparison with manually trained kNN. The similarity indices were 0.93, 0.92 and 0.92, for CSF, GM and WM, respectively. It can be concluded that our fully automated method using non-rigid registration may replace manual segmentation, and thus that automated brain tissue segmentation without laborious manual training is feasible.

  9. Two Different Approaches to Automated Mark Up of Emotions in Text

    NASA Astrophysics Data System (ADS)

    Francisco, Virginia; Hervás, Raqucl; Gervás, Pablo

    This paper presents two different approaches to automated marking up of texts with emotional labels. For the first approach a corpus of example texts previously annotated by human evaluators is mined for an initial assignment of emotional features to words. This results in a List of Emotional Words (LEW) which becomes a useful resource for later automated mark up. The mark up algorithm in this first approach mirrors closely the steps taken during feature extraction, employing for the actual assignment of emotional features a combination of the LEW resource and WordNet for knowledge-based expansion of words not occurring in LEW. The algorithm for automated mark up is tested against new text samples to test its coverage. The second approach mark up texts during their generation. We have a knowledge base which contains the necessary information for marking up the text. This information is related to actions and characters. The algorithm in this case employ the information of the knowledge database and decides the correct emotion for every sentence. The algorithm for automated mark up is tested against four different texts. The results of the two approaches are compared and discussed with respect to three main issues: relative adequacy of each one of the representations used, correctness and coverage of the proposed algorithms, and additional techniques and solutions that may be employed to improve the results.

  10. Fusion of multiple quadratic penalty function support vector machines (QPFSVM) for automated sea mine detection and classification

    NASA Astrophysics Data System (ADS)

    Dobeck, Gerald J.; Cobb, J. Tory

    2002-08-01

    The high-resolution sonar is one of the principal sensors used by the Navy to detect and classify sea mines in minehunting operations. For such sonar systems, substantial effort has been devoted to the development of automated detection and classification (D/C) algorithms. These have been spurred by several factors including (1) aids for operators to reduce work overload, (2) more optimal use of all available data, and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and man-made clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while still maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms have been studied. We refer to this as Algorithm Fusion. The results have been remarkable, including reliable robustness to new environments. The Quadratic Penalty Function Support Vector Machine (QPFSVM) algorithm to aid in the automated detection and classification of sea mines is introduced in this paper. The QPFSVM algorithm is easy to train, simple to implement, and robust to feature space dimension. Outputs of successive SVM algorithms are cascaded in stages (fused) to improve the Probability of Classification (Pc) and reduce the number of false alarms. Even though our experience has been gained in the area of sea mine detection and classification, the principles described herein are general and can be applied to fusion of any D/C problem (e.g., automated medical diagnosis or automatic target recognition for ballistic missile defense).

  11. Automated model optimisation using the Cylc workflow engine (Cyclops v1.0)

    NASA Astrophysics Data System (ADS)

    Gorman, Richard M.; Oliver, Hilary J.

    2018-06-01

    Most geophysical models include many parameters that are not fully determined by theory, and can be tuned to improve the model's agreement with available data. We might attempt to automate this tuning process in an objective way by employing an optimisation algorithm to find the set of parameters that minimises a cost function derived from comparing model outputs with measurements. A number of algorithms are available for solving optimisation problems, in various programming languages, but interfacing such software to a complex geophysical model simulation presents certain challenges. To tackle this problem, we have developed an optimisation suite (Cyclops) based on the Cylc workflow engine that implements a wide selection of optimisation algorithms from the NLopt Python toolbox (Johnson, 2014). The Cyclops optimisation suite can be used to calibrate any modelling system that has itself been implemented as a (separate) Cylc model suite, provided it includes computation and output of the desired scalar cost function. A growing number of institutions are using Cylc to orchestrate complex distributed suites of interdependent cycling tasks within their operational forecast systems, and in such cases application of the optimisation suite is particularly straightforward. As a test case, we applied the Cyclops to calibrate a global implementation of the WAVEWATCH III (v4.18) third-generation spectral wave model, forced by ERA-Interim input fields. This was calibrated over a 1-year period (1997), before applying the calibrated model to a full (1979-2016) wave hindcast. The chosen error metric was the spatial average of the root mean square error of hindcast significant wave height compared with collocated altimeter records. We describe the results of a calibration in which up to 19 parameters were optimised.

  12. Automated Adaptive Brightness in Wireless Capsule Endoscopy Using Image Segmentation and Sigmoid Function.

    PubMed

    Shrestha, Ravi; Mohammed, Shahed K; Hasan, Md Mehedi; Zhang, Xuechao; Wahid, Khan A

    2016-08-01

    Wireless capsule endoscopy (WCE) plays an important role in the diagnosis of gastrointestinal (GI) diseases by capturing images of human small intestine. Accurate diagnosis of endoscopic images depends heavily on the quality of captured images. Along with image and frame rate, brightness of the image is an important parameter that influences the image quality which leads to the design of an efficient illumination system. Such design involves the choice and placement of proper light source and its ability to illuminate GI surface with proper brightness. Light emitting diodes (LEDs) are normally used as sources where modulated pulses are used to control LED's brightness. In practice, instances like under- and over-illumination are very common in WCE, where the former provides dark images and the later provides bright images with high power consumption. In this paper, we propose a low-power and efficient illumination system that is based on an automated brightness algorithm. The scheme is adaptive in nature, i.e., the brightness level is controlled automatically in real-time while the images are being captured. The captured images are segmented into four equal regions and the brightness level of each region is calculated. Then an adaptive sigmoid function is used to find the optimized brightness level and accordingly a new value of duty cycle of the modulated pulse is generated to capture future images. The algorithm is fully implemented in a capsule prototype and tested with endoscopic images. Commercial capsules like Pillcam and Mirocam were also used in the experiment. The results show that the proposed algorithm works well in controlling the brightness level accordingly to the environmental condition, and as a result, good quality images are captured with an average of 40% brightness level that saves power consumption of the capsule.

  13. An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Semi-Disk Structure

    DTIC Science & Technology

    2018-01-01

    statistical moments of order 2, 3, and 4. The probability density function (PDF) of the vibrational time series of a good bearing has a Gaussian...ARL-TR-8271 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter...when it is no longer needed. Do not return it to the originator. ARL-TR-8271 ● JAN 2018 US Army Research Laboratory An Automated

  14. Progress on the development of automated data analysis algorithms and software for ultrasonic inspection of composites

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Coughlin, Chris; Forsyth, David S.; Welter, John T.

    2014-02-01

    Progress is presented on the development and implementation of automated data analysis (ADA) software to address the burden in interpreting ultrasonic inspection data for large composite structures. The automated data analysis algorithm is presented in detail, which follows standard procedures for analyzing signals for time-of-flight indications and backwall amplitude dropout. ADA processing results are presented for test specimens that include inserted materials and discontinuities produced under poor manufacturing conditions.

  15. Black-Box System Testing of Real-Time Embedded Systems Using Random and Search-Based Testing

    NASA Astrophysics Data System (ADS)

    Arcuri, Andrea; Iqbal, Muhammad Zohaib; Briand, Lionel

    Testing real-time embedded systems (RTES) is in many ways challenging. Thousands of test cases can be potentially executed on an industrial RTES. Given the magnitude of testing at the system level, only a fully automated approach can really scale up to test industrial RTES. In this paper we take a black-box approach and model the RTES environment using the UML/MARTE international standard. Our main motivation is to provide a more practical approach to the model-based testing of RTES by allowing system testers, who are often not familiar with the system design but know the application domain well-enough, to model the environment to enable test automation. Environment models can support the automation of three tasks: the code generation of an environment simulator, the selection of test cases, and the evaluation of their expected results (oracles). In this paper, we focus on the second task (test case selection) and investigate three test automation strategies using inputs from UML/MARTE environment models: Random Testing (baseline), Adaptive Random Testing, and Search-Based Testing (using Genetic Algorithms). Based on one industrial case study and three artificial systems, we show how, in general, no technique is better than the others. Which test selection technique to use is determined by the failure rate (testing stage) and the execution time of test cases. Finally, we propose a practical process to combine the use of all three test strategies.

  16. Automated species-level identification and segmentation of planktonic foraminifera using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Marchitto, T. M., Jr.; Mitra, R.; Zhong, B.; Ge, Q.; Kanakiya, B.; Lobaton, E.

    2017-12-01

    Identification and picking of foraminifera from sediment samples is often a laborious and repetitive task. Previous attempts to automate this process have met with limited success, but we show that recent advances in machine learning can be brought to bear on the problem. As a `proof of concept' we have developed a system that is capable of recognizing six species of extant planktonic foraminifera that are commonly used in paleoceanographic studies. Our pipeline begins with digital photographs taken under 16 different illuminations using an LED ring, which are then fused into a single 3D image. Labeled image sets were used to train various types of image classification algorithms, and performance on unlabeled image sets was measured in terms of precision (whether IDs are correct) and recall (what fraction of the target species are found). We find that Convolutional Neural Network (CNN) approaches achieve precision and recall values between 80 and 90%, which is similar precision and better recall than human expert performance using the same type of photographs. We have also trained a CNN to segment the 3D images into individual chambers and apertures, which can not only improve identification performance but also automate the measurement of foraminifera for morphometric studies. Given that there are only 35 species of extant planktonic foraminifera larger than 150 μm, we suggest that a fully automated characterization of this assemblage is attainable. This is the first step toward the realization of a foram picking robot.

  17. A Fully Automated High-Throughput Zebrafish Behavioral Ototoxicity Assay.

    PubMed

    Todd, Douglas W; Philip, Rohit C; Niihori, Maki; Ringle, Ryan A; Coyle, Kelsey R; Zehri, Sobia F; Zabala, Leanne; Mudery, Jordan A; Francis, Ross H; Rodriguez, Jeffrey J; Jacob, Abraham

    2017-08-01

    Zebrafish animal models lend themselves to behavioral assays that can facilitate rapid screening of ototoxic, otoprotective, and otoregenerative drugs. Structurally similar to human inner ear hair cells, the mechanosensory hair cells on their lateral line allow the zebrafish to sense water flow and orient head-to-current in a behavior called rheotaxis. This rheotaxis behavior deteriorates in a dose-dependent manner with increased exposure to the ototoxin cisplatin, thereby establishing itself as an excellent biomarker for anatomic damage to lateral line hair cells. Building on work by our group and others, we have built a new, fully automated high-throughput behavioral assay system that uses automated image analysis techniques to quantify rheotaxis behavior. This novel system consists of a custom-designed swimming apparatus and imaging system consisting of network-controlled Raspberry Pi microcomputers capturing infrared video. Automated analysis techniques detect individual zebrafish, compute their orientation, and quantify the rheotaxis behavior of a zebrafish test population, producing a powerful, high-throughput behavioral assay. Using our fully automated biological assay to test a standardized ototoxic dose of cisplatin against varying doses of compounds that protect or regenerate hair cells may facilitate rapid translation of candidate drugs into preclinical mammalian models of hearing loss.

  18. An algorithm for automated layout of process description maps drawn in SBGN.

    PubMed

    Genc, Begum; Dogrusoz, Ugur

    2016-01-01

    Evolving technology has increased the focus on genomics. The combination of today's advanced techniques with decades of molecular biology research has yielded huge amounts of pathway data. A standard, named the Systems Biology Graphical Notation (SBGN), was recently introduced to allow scientists to represent biological pathways in an unambiguous, easy-to-understand and efficient manner. Although there are a number of automated layout algorithms for various types of biological networks, currently none specialize on process description (PD) maps as defined by SBGN. We propose a new automated layout algorithm for PD maps drawn in SBGN. Our algorithm is based on a force-directed automated layout algorithm called Compound Spring Embedder (CoSE). On top of the existing force scheme, additional heuristics employing new types of forces and movement rules are defined to address SBGN-specific rules. Our algorithm is the only automatic layout algorithm that properly addresses all SBGN rules for drawing PD maps, including placement of substrates and products of process nodes on opposite sides, compact tiling of members of molecular complexes and extensively making use of nested structures (compound nodes) to properly draw cellular locations and molecular complex structures. As demonstrated experimentally, the algorithm results in significant improvements over use of a generic layout algorithm such as CoSE in addressing SBGN rules on top of commonly accepted graph drawing criteria. An implementation of our algorithm in Java is available within ChiLay library (https://github.com/iVis-at-Bilkent/chilay). ugur@cs.bilkent.edu.tr or dogrusoz@cbio.mskcc.org Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  19. An algorithm for automated layout of process description maps drawn in SBGN

    PubMed Central

    Genc, Begum; Dogrusoz, Ugur

    2016-01-01

    Motivation: Evolving technology has increased the focus on genomics. The combination of today’s advanced techniques with decades of molecular biology research has yielded huge amounts of pathway data. A standard, named the Systems Biology Graphical Notation (SBGN), was recently introduced to allow scientists to represent biological pathways in an unambiguous, easy-to-understand and efficient manner. Although there are a number of automated layout algorithms for various types of biological networks, currently none specialize on process description (PD) maps as defined by SBGN. Results: We propose a new automated layout algorithm for PD maps drawn in SBGN. Our algorithm is based on a force-directed automated layout algorithm called Compound Spring Embedder (CoSE). On top of the existing force scheme, additional heuristics employing new types of forces and movement rules are defined to address SBGN-specific rules. Our algorithm is the only automatic layout algorithm that properly addresses all SBGN rules for drawing PD maps, including placement of substrates and products of process nodes on opposite sides, compact tiling of members of molecular complexes and extensively making use of nested structures (compound nodes) to properly draw cellular locations and molecular complex structures. As demonstrated experimentally, the algorithm results in significant improvements over use of a generic layout algorithm such as CoSE in addressing SBGN rules on top of commonly accepted graph drawing criteria. Availability and implementation: An implementation of our algorithm in Java is available within ChiLay library (https://github.com/iVis-at-Bilkent/chilay). Contact: ugur@cs.bilkent.edu.tr or dogrusoz@cbio.mskcc.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26363029

  20. The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.

    PubMed

    Lucas, Blake C; Bogovic, John A; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L; Pham, Dzung L; Landman, Bennett A

    2010-03-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).

  1. The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software

    PubMed Central

    Lucas, Blake C.; Bogovic, John A.; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.; Pham, Dzung

    2010-01-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). PMID:20077162

  2. Novel automated inversion algorithm for temperature reconstruction using gas isotopes from ice cores

    NASA Astrophysics Data System (ADS)

    Döring, Michael; Leuenberger, Markus C.

    2018-06-01

    Greenland past temperature history can be reconstructed by forcing the output of a firn-densification and heat-diffusion model to fit multiple gas-isotope data (δ15N or δ40Ar or δ15Nexcess) extracted from ancient air in Greenland ice cores using published accumulation-rate (Acc) datasets. We present here a novel methodology to solve this inverse problem, by designing a fully automated algorithm. To demonstrate the performance of this novel approach, we begin by intentionally constructing synthetic temperature histories and associated δ15N datasets, mimicking real Holocene data that we use as true values (targets) to be compared to the output of the algorithm. This allows us to quantify uncertainties originating from the algorithm itself. The presented approach is completely automated and therefore minimizes the subjective impact of manual parameter tuning, leading to reproducible temperature estimates. In contrast to many other ice-core-based temperature reconstruction methods, the presented approach is completely independent from ice-core stable-water isotopes, providing the opportunity to validate water-isotope-based reconstructions or reconstructions where water isotopes are used together with δ15N or δ40Ar. We solve the inverse problem T(δ15N, Acc) by using a combination of a Monte Carlo based iterative approach and the analysis of remaining mismatches between modelled and target data, based on cubic-spline filtering of random numbers and the laboratory-determined temperature sensitivity for nitrogen isotopes. Additionally, the presented reconstruction approach was tested by fitting measured δ40Ar and δ15Nexcess data, which led as well to a robust agreement between modelled and measured data. The obtained final mismatches follow a symmetric standard-distribution function. For the study on synthetic data, 95 % of the mismatches compared to the synthetic target data are in an envelope between 3.0 to 6.3 permeg for δ15N and 0.23 to 0.51 K for temperature (2σ, respectively). In addition to Holocene temperature reconstructions, the fitting approach can also be used for glacial temperature reconstructions. This is shown by fitting of the North Greenland Ice Core Project (NGRIP) δ15N data for two Dansgaard-Oeschger events using the presented approach, leading to results comparable to other studies.

  3. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition.

    PubMed

    Mathew, B; Schmitz, A; Muñoz-Descalzo, S; Ansari, N; Pampaloni, F; Stelzer, E H K; Fischer, S C

    2015-06-08

    Due to the large amount of data produced by advanced microscopy, automated image analysis is crucial in modern biology. Most applications require reliable cell nuclei segmentation. However, in many biological specimens cell nuclei are densely packed and appear to touch one another in the images. Therefore, a major difficulty of three-dimensional cell nuclei segmentation is the decomposition of cell nuclei that apparently touch each other. Current methods are highly adapted to a certain biological specimen or a specific microscope. They do not ensure similarly accurate segmentation performance, i.e. their robustness for different datasets is not guaranteed. Hence, these methods require elaborate adjustments to each dataset. We present an advanced three-dimensional cell nuclei segmentation algorithm that is accurate and robust. Our approach combines local adaptive pre-processing with decomposition based on Lines-of-Sight (LoS) to separate apparently touching cell nuclei into approximately convex parts. We demonstrate the superior performance of our algorithm using data from different specimens recorded with different microscopes. The three-dimensional images were recorded with confocal and light sheet-based fluorescence microscopes. The specimens are an early mouse embryo and two different cellular spheroids. We compared the segmentation accuracy of our algorithm with ground truth data for the test images and results from state-of-the-art methods. The analysis shows that our method is accurate throughout all test datasets (mean F-measure: 91%) whereas the other methods each failed for at least one dataset (F-measure≤69%). Furthermore, nuclei volume measurements are improved for LoS decomposition. The state-of-the-art methods required laborious adjustments of parameter values to achieve these results. Our LoS algorithm did not require parameter value adjustments. The accurate performance was achieved with one fixed set of parameter values. We developed a novel and fully automated three-dimensional cell nuclei segmentation method incorporating LoS decomposition. LoS are easily accessible features that ensure correct splitting of apparently touching cell nuclei independent of their shape, size or intensity. Our method showed superior performance compared to state-of-the-art methods, performing accurately for a variety of test images. Hence, our LoS approach can be readily applied to quantitative evaluation in drug testing, developmental and cell biology.

  4. Artificial neuron-glia networks learning approach based on cooperative coevolution.

    PubMed

    Mesejo, Pablo; Ibáñez, Oscar; Fernández-Blanco, Enrique; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana B

    2015-06-01

    Artificial Neuron-Glia Networks (ANGNs) are a novel bio-inspired machine learning approach. They extend classical Artificial Neural Networks (ANNs) by incorporating recent findings and suppositions about the way information is processed by neural and astrocytic networks in the most evolved living organisms. Although ANGNs are not a consolidated method, their performance against the traditional approach, i.e. without artificial astrocytes, was already demonstrated on classification problems. However, the corresponding learning algorithms developed so far strongly depends on a set of glial parameters which are manually tuned for each specific problem. As a consequence, previous experimental tests have to be done in order to determine an adequate set of values, making such manual parameter configuration time-consuming, error-prone, biased and problem dependent. Thus, in this paper, we propose a novel learning approach for ANGNs that fully automates the learning process, and gives the possibility of testing any kind of reasonable parameter configuration for each specific problem. This new learning algorithm, based on coevolutionary genetic algorithms, is able to properly learn all the ANGNs parameters. Its performance is tested on five classification problems achieving significantly better results than ANGN and competitive results with ANN approaches.

  5. Validation of automated white matter hyperintensity segmentation.

    PubMed

    Smart, Sean D; Firbank, Michael J; O'Brien, John T

    2011-01-01

    Introduction. White matter hyperintensities (WMHs) are a common finding on MRI scans of older people and are associated with vascular disease. We compared 3 methods for automatically segmenting WMHs from MRI scans. Method. An operator manually segmented WMHs on MRI images from a 3T scanner. The scans were also segmented in a fully automated fashion by three different programmes. The voxel overlap between manual and automated segmentation was compared. Results. Between observer overlap ratio was 63%. Using our previously described in-house software, we had overlap of 62.2%. We investigated the use of a modified version of SPM segmentation; however, this was not successful, with only 14% overlap. Discussion. Using our previously reported software, we demonstrated good segmentation of WMHs in a fully automated fashion.

  6. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging.

    PubMed

    Liu, Fang; Zhou, Zhaoye; Jang, Hyungseok; Samsonov, Alexey; Zhao, Gengyan; Kijowski, Richard

    2018-04-01

    To describe and evaluate a new fully automated musculoskeletal tissue segmentation method using deep convolutional neural network (CNN) and three-dimensional (3D) simplex deformable modeling to improve the accuracy and efficiency of cartilage and bone segmentation within the knee joint. A fully automated segmentation pipeline was built by combining a semantic segmentation CNN and 3D simplex deformable modeling. A CNN technique called SegNet was applied as the core of the segmentation method to perform high resolution pixel-wise multi-class tissue classification. The 3D simplex deformable modeling refined the output from SegNet to preserve the overall shape and maintain a desirable smooth surface for musculoskeletal structure. The fully automated segmentation method was tested using a publicly available knee image data set to compare with currently used state-of-the-art segmentation methods. The fully automated method was also evaluated on two different data sets, which include morphological and quantitative MR images with different tissue contrasts. The proposed fully automated segmentation method provided good segmentation performance with segmentation accuracy superior to most of state-of-the-art methods in the publicly available knee image data set. The method also demonstrated versatile segmentation performance on both morphological and quantitative musculoskeletal MR images with different tissue contrasts and spatial resolutions. The study demonstrates that the combined CNN and 3D deformable modeling approach is useful for performing rapid and accurate cartilage and bone segmentation within the knee joint. The CNN has promising potential applications in musculoskeletal imaging. Magn Reson Med 79:2379-2391, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. How a Fully Automated eHealth Program Simulates Three Therapeutic Processes: A Case Study.

    PubMed

    Holter, Marianne T S; Johansen, Ayna; Brendryen, Håvar

    2016-06-28

    eHealth programs may be better understood by breaking down the components of one particular program and discussing its potential for interactivity and tailoring in regard to concepts from face-to-face counseling. In the search for the efficacious elements within eHealth programs, it is important to understand how a program using lapse management may simultaneously support working alliance, internalization of motivation, and behavior maintenance. These processes have been applied to fully automated eHealth programs individually. However, given their significance in face-to-face counseling, it may be important to simulate the processes simultaneously in interactive, tailored programs. We propose a theoretical model for how fully automated behavior change eHealth programs may be more effective by simulating a therapist's support of a working alliance, internalization of motivation, and managing lapses. We show how the model is derived from theory and its application to Endre, a fully automated smoking cessation program that engages the user in several "counseling sessions" about quitting. A descriptive case study based on tools from the intervention mapping protocol shows how each therapeutic process is simulated. The program supports the user's working alliance through alliance factors, the nonembodied relational agent Endre and computerized motivational interviewing. Computerized motivational interviewing also supports internalized motivation to quit, whereas a lapse management component responds to lapses. The description operationalizes working alliance, internalization of motivation, and managing lapses, in terms of eHealth support of smoking cessation. A program may simulate working alliance, internalization of motivation, and lapse management through interactivity and individual tailoring, potentially making fully automated eHealth behavior change programs more effective.

  8. How a Fully Automated eHealth Program Simulates Three Therapeutic Processes: A Case Study

    PubMed Central

    Johansen, Ayna; Brendryen, Håvar

    2016-01-01

    Background eHealth programs may be better understood by breaking down the components of one particular program and discussing its potential for interactivity and tailoring in regard to concepts from face-to-face counseling. In the search for the efficacious elements within eHealth programs, it is important to understand how a program using lapse management may simultaneously support working alliance, internalization of motivation, and behavior maintenance. These processes have been applied to fully automated eHealth programs individually. However, given their significance in face-to-face counseling, it may be important to simulate the processes simultaneously in interactive, tailored programs. Objective We propose a theoretical model for how fully automated behavior change eHealth programs may be more effective by simulating a therapist’s support of a working alliance, internalization of motivation, and managing lapses. Methods We show how the model is derived from theory and its application to Endre, a fully automated smoking cessation program that engages the user in several “counseling sessions” about quitting. A descriptive case study based on tools from the intervention mapping protocol shows how each therapeutic process is simulated. Results The program supports the user’s working alliance through alliance factors, the nonembodied relational agent Endre and computerized motivational interviewing. Computerized motivational interviewing also supports internalized motivation to quit, whereas a lapse management component responds to lapses. The description operationalizes working alliance, internalization of motivation, and managing lapses, in terms of eHealth support of smoking cessation. Conclusions A program may simulate working alliance, internalization of motivation, and lapse management through interactivity and individual tailoring, potentially making fully automated eHealth behavior change programs more effective. PMID:27354373

  9. Automated MRI segmentation for individualized modeling of current flow in the human head.

    PubMed

    Huang, Yu; Dmochowski, Jacek P; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C

    2013-12-01

    High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly. Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials.

  10. A Modular Hierarchical Approach to 3D Electron Microscopy Image Segmentation

    PubMed Central

    Liu, Ting; Jones, Cory; Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2014-01-01

    The study of neural circuit reconstruction, i.e., connectomics, is a challenging problem in neuroscience. Automated and semi-automated electron microscopy (EM) image analysis can be tremendously helpful for connectomics research. In this paper, we propose a fully automatic approach for intra-section segmentation and inter-section reconstruction of neurons using EM images. A hierarchical merge tree structure is built to represent multiple region hypotheses and supervised classification techniques are used to evaluate their potentials, based on which we resolve the merge tree with consistency constraints to acquire final intra-section segmentation. Then, we use a supervised learning based linking procedure for the inter-section neuron reconstruction. Also, we develop a semi-automatic method that utilizes the intermediate outputs of our automatic algorithm and achieves intra-segmentation with minimal user intervention. The experimental results show that our automatic method can achieve close-to-human intra-segmentation accuracy and state-of-the-art inter-section reconstruction accuracy. We also show that our semi-automatic method can further improve the intra-segmentation accuracy. PMID:24491638

  11. A Procedural Electroencephalogram Simulator for Evaluation of Anesthesia Monitors.

    PubMed

    Petersen, Christian Leth; Görges, Matthias; Massey, Roslyn; Dumont, Guy Albert; Ansermino, J Mark

    2016-11-01

    Recent research and advances in the automation of anesthesia are driving the need to better understand electroencephalogram (EEG)-based anesthesia end points and to test the performance of anesthesia monitors. This effort is currently limited by the need to collect raw EEG data directly from patients. A procedural method to synthesize EEG signals was implemented in a mobile software application. The application is capable of sending the simulated signal to an anesthesia depth of hypnosis monitor. Systematic sweeps of the simulator generate functional monitor response profiles reminiscent of how network analyzers are used to test electronic components. Three commercial anesthesia monitors (Entropy, NeuroSENSE, and BIS) were compared with this new technology, and significant response and feature variations between the monitor models were observed; this includes reproducible, nonmonotonic apparent multistate behavior and significant hysteresis at light levels of anesthesia. Anesthesia monitor response to a procedural simulator can reveal significant differences in internal signal processing algorithms. The ability to synthesize EEG signals at different anesthetic depths potentially provides a new method for systematically testing EEG-based monitors and automated anesthesia systems with all sensor hardware fully operational before human trials.

  12. An automated 3D reconstruction method of UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping

    2015-10-01

    In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.

  13. Atmospheric ozone measurement with an inexpensive and fully automated porous tube collector-colorimeter.

    PubMed

    Li, Jianzhong; Li, Qingyang; Dyke, Jason V; Dasgupta, Purnendu K

    2008-01-15

    The bleaching action of ozone on indigo and related compounds is well known. We describe sensitive automated instrumentation for measuring ambient ozone. Air is sampled around a porous polypropylene tube filled with a solution of indigotrisulfonate. Light transmission through the tube is measured. Light transmission increases as O(3) diffuses through the membrane and bleaches the indigo. Evaporation of the solution, a function of the RH and the air temperature, can, however cause major errors. We solve this problem by adding an O(3)-inert dye that absorbs at a different wavelength. Here we provide a new algorithm for this correction and show that this very inexpensive instrument package (controlled by a BASIC Stamp Microcontroller with an on-board data logger, total parts cost US$ 300) provides data highly comparable to commercial ozone monitors over an extended period. The instrument displays an LOD of 1.2ppbv and a linear span up to 300ppbv for a sampling time of 1min. For a sampling time of 5min, the respective values are 0.24ppbv and 100ppbv O(3).

  14. Intellicount: High-Throughput Quantification of Fluorescent Synaptic Protein Puncta by Machine Learning

    PubMed Central

    Fantuzzo, J. A.; Mirabella, V. R.; Zahn, J. D.

    2017-01-01

    Abstract Synapse formation analyses can be performed by imaging and quantifying fluorescent signals of synaptic markers. Traditionally, these analyses are done using simple or multiple thresholding and segmentation approaches or by labor-intensive manual analysis by a human observer. Here, we describe Intellicount, a high-throughput, fully-automated synapse quantification program which applies a novel machine learning (ML)-based image processing algorithm to systematically improve region of interest (ROI) identification over simple thresholding techniques. Through processing large datasets from both human and mouse neurons, we demonstrate that this approach allows image processing to proceed independently of carefully set thresholds, thus reducing the need for human intervention. As a result, this method can efficiently and accurately process large image datasets with minimal interaction by the experimenter, making it less prone to bias and less liable to human error. Furthermore, Intellicount is integrated into an intuitive graphical user interface (GUI) that provides a set of valuable features, including automated and multifunctional figure generation, routine statistical analyses, and the ability to run full datasets through nested folders, greatly expediting the data analysis process. PMID:29218324

  15. A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-D MRI.

    PubMed

    Wels, Michael; Carneiro, Gustavo; Aplas, Alexander; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2008-01-01

    In this paper we present a fully automated approach to the segmentation of pediatric brain tumors in multi-spectral 3-D magnetic resonance images. It is a top-down segmentation approach based on a Markov random field (MRF) model that combines probabilistic boosting trees (PBT) and lower-level segmentation via graph cuts. The PBT algorithm provides a strong discriminative observation model that classifies tumor appearance while a spatial prior takes into account the pair-wise homogeneity in terms of classification labels and multi-spectral voxel intensities. The discriminative model relies not only on observed local intensities but also on surrounding context for detecting candidate regions for pathology. A mathematically sound formulation for integrating the two approaches into a unified statistical framework is given. The proposed method is applied to the challenging task of detection and delineation of pediatric brain tumors. This segmentation task is characterized by a high non-uniformity of both the pathology and the surrounding non-pathologic brain tissue. A quantitative evaluation illustrates the robustness of the proposed method. Despite dealing with more complicated cases of pediatric brain tumors the results obtained are mostly better than those reported for current state-of-the-art approaches to 3-D MR brain tumor segmentation in adult patients. The entire processing of one multi-spectral data set does not require any user interaction, and takes less time than previously proposed methods.

  16. Automated Quantification of Pneumothorax in CT

    PubMed Central

    Do, Synho; Salvaggio, Kristen; Gupta, Supriya; Kalra, Mannudeep; Ali, Nabeel U.; Pien, Homer

    2012-01-01

    An automated, computer-aided diagnosis (CAD) algorithm for the quantification of pneumothoraces from Multidetector Computed Tomography (MDCT) images has been developed. Algorithm performance was evaluated through comparison to manual segmentation by expert radiologists. A combination of two-dimensional and three-dimensional processing techniques was incorporated to reduce required processing time by two-thirds (as compared to similar techniques). Volumetric measurements on relative pneumothorax size were obtained and the overall performance of the automated method shows an average error of just below 1%. PMID:23082091

  17. An Overview of the Automated Dispatch Controller Algorithms in the System Advisor Model (SAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiOrio, Nicholas A

    2017-11-22

    Three automatic dispatch modes have been added to the battery model within the System Adviser Model. These controllers have been developed to perform peak shaving in an automated fashion, providing users with a way to see the benefit of reduced demand charges without manually programming a complicated dispatch control. A flexible input option allows more advanced interaction with the automated controller. This document will describe the algorithms in detail and present brief results on its use and limitations.

  18. Medical ADP Systems: Automated Medical Records Hold Promise to Improve Patient Care

    DTIC Science & Technology

    1991-01-01

    automated medical records. The report discusses the potential benefits that automation could make to the quality of patient care and the factors that impede...information systems, but no organization has fully automated one of the most critical types of information, patient medical records. The patient medical record...its review of automated medical records. GAO’s objectives in this study were to identify the (1) benefits of automating patient records and (2) factors

  19. Instrumentation Automation for Concrete Structures: Report 2, Automation Hardware and Retrofitting Techniques, and Report 3, Available Data Collection and Reduction Software

    DTIC Science & Technology

    1987-06-01

    commercial products. · OP -- Typical cutout at a plumbiinc location where an automated monitoring system has bv :• installed. The sensor used with the...This report provides a description of commercially available sensors , instruments, and ADP equipment that may be selected to fully automate...automated. The automated plumbline monitoring system includes up to twelve sensors , repeaters, a system controller, and a printer. The system may

  20. Automated planning of tangential breast intensity-modulated radiotherapy using heuristic optimization.

    PubMed

    Purdie, Thomas G; Dinniwell, Robert E; Letourneau, Daniel; Hill, Christine; Sharpe, Michael B

    2011-10-01

    To present an automated technique for two-field tangential breast intensity-modulated radiotherapy (IMRT) treatment planning. A total of 158 planned patients with Stage 0, I, and II breast cancer treated using whole-breast IMRT were retrospectively replanned using automated treatment planning tools. The tools developed are integrated into the existing clinical treatment planning system (Pinnacle(3)) and are designed to perform the manual volume delineation, beam placement, and IMRT treatment planning steps carried out by the treatment planning radiation therapist. The automated algorithm, using only the radio-opaque markers placed at CT simulation as inputs, optimizes the tangential beam parameters to geometrically minimize the amount of lung and heart treated while covering the whole-breast volume. The IMRT parameters are optimized according to the automatically delineated whole-breast volume. The mean time to generate a complete treatment plan was 6 min, 50 s ± 1 min 12 s. For the automated plans, 157 of 158 plans (99%) were deemed clinically acceptable, and 138 of 158 plans (87%) were deemed clinically improved or equal to the corresponding clinical plan when reviewed in a randomized, double-blinded study by one experienced breast radiation oncologist. In addition, overall the automated plans were dosimetrically equivalent to the clinical plans when scored for target coverage and lung and heart doses. We have developed robust and efficient automated tools for fully inversed planned tangential breast IMRT planning that can be readily integrated into clinical practice. The tools produce clinically acceptable plans using only the common anatomic landmarks from the CT simulation process as an input. We anticipate the tools will improve patient access to high-quality IMRT treatment by simplifying the planning process and will reduce the effort and cost of incorporating more advanced planning into clinical practice. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  1. A Recommendation Algorithm for Automating Corollary Order Generation

    PubMed Central

    Klann, Jeffrey; Schadow, Gunther; McCoy, JM

    2009-01-01

    Manual development and maintenance of decision support content is time-consuming and expensive. We explore recommendation algorithms, e-commerce data-mining tools that use collective order history to suggest purchases, to assist with this. In particular, previous work shows corollary order suggestions are amenable to automated data-mining techniques. Here, an item-based collaborative filtering algorithm augmented with association rule interestingness measures mined suggestions from 866,445 orders made in an inpatient hospital in 2007, generating 584 potential corollary orders. Our expert physician panel evaluated the top 92 and agreed 75.3% were clinically meaningful. Also, at least one felt 47.9% would be directly relevant in guideline development. This automated generation of a rough-cut of corollary orders confirms prior indications about automated tools in building decision support content. It is an important step toward computerized augmentation to decision support development, which could increase development efficiency and content quality while automatically capturing local standards. PMID:20351875

  2. A recommendation algorithm for automating corollary order generation.

    PubMed

    Klann, Jeffrey; Schadow, Gunther; McCoy, J M

    2009-11-14

    Manual development and maintenance of decision support content is time-consuming and expensive. We explore recommendation algorithms, e-commerce data-mining tools that use collective order history to suggest purchases, to assist with this. In particular, previous work shows corollary order suggestions are amenable to automated data-mining techniques. Here, an item-based collaborative filtering algorithm augmented with association rule interestingness measures mined suggestions from 866,445 orders made in an inpatient hospital in 2007, generating 584 potential corollary orders. Our expert physician panel evaluated the top 92 and agreed 75.3% were clinically meaningful. Also, at least one felt 47.9% would be directly relevant in guideline development. This automated generation of a rough-cut of corollary orders confirms prior indications about automated tools in building decision support content. It is an important step toward computerized augmentation to decision support development, which could increase development efficiency and content quality while automatically capturing local standards.

  3. Automated Cryocooler Monitor and Control System Software

    NASA Technical Reports Server (NTRS)

    Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad

    2011-01-01

    This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.

  4. Automated computation of autonomous spectral submanifolds for nonlinear modal analysis

    NASA Astrophysics Data System (ADS)

    Ponsioen, Sten; Pedergnana, Tiemo; Haller, George

    2018-04-01

    We discuss an automated computational methodology for computing two-dimensional spectral submanifolds (SSMs) in autonomous nonlinear mechanical systems of arbitrary degrees of freedom. In our algorithm, SSMs, the smoothest nonlinear continuations of modal subspaces of the linearized system, are constructed up to arbitrary orders of accuracy, using the parameterization method. An advantage of this approach is that the construction of the SSMs does not break down when the SSM folds over its underlying spectral subspace. A further advantage is an automated a posteriori error estimation feature that enables a systematic increase in the orders of the SSM computation until the required accuracy is reached. We find that the present algorithm provides a major speed-up, relative to numerical continuation methods, in the computation of backbone curves, especially in higher-dimensional problems. We illustrate the accuracy and speed of the automated SSM algorithm on lower- and higher-dimensional mechanical systems.

  5. A quality assurance framework for the fully automated and objective evaluation of image quality in cone-beam computed tomography.

    PubMed

    Steiding, Christian; Kolditz, Daniel; Kalender, Willi A

    2014-03-01

    Thousands of cone-beam computed tomography (CBCT) scanners for vascular, maxillofacial, neurological, and body imaging are in clinical use today, but there is no consensus on uniform acceptance and constancy testing for image quality (IQ) and dose yet. The authors developed a quality assurance (QA) framework for fully automated and time-efficient performance evaluation of these systems. In addition, the dependence of objective Fourier-based IQ metrics on direction and position in 3D volumes was investigated for CBCT. The authors designed a dedicated QA phantom 10 cm in length consisting of five compartments, each with a diameter of 10 cm, and an optional extension ring 16 cm in diameter. A homogeneous section of water-equivalent material allows measuring CT value accuracy, image noise and uniformity, and multidimensional global and local noise power spectra (NPS). For the quantitative determination of 3D high-contrast spatial resolution, the modulation transfer function (MTF) of centrally and peripherally positioned aluminum spheres was computed from edge profiles. Additional in-plane and axial resolution patterns were used to assess resolution qualitatively. The characterization of low-contrast detectability as well as CT value linearity and artifact behavior was tested by utilizing sections with soft-tissue-equivalent and metallic inserts. For an automated QA procedure, a phantom detection algorithm was implemented. All tests used in the dedicated QA program were initially verified in simulation studies and experimentally confirmed on a clinical dental CBCT system. The automated IQ evaluation of volume data sets of the dental CBCT system was achieved with the proposed phantom requiring only one scan for the determination of all desired parameters. Typically, less than 5 min were needed for phantom set-up, scanning, and data analysis. Quantitative evaluation of system performance over time by comparison to previous examinations was also verified. The maximum percentage interscan variation of repeated measurements was less than 4% and 1.7% on average for all investigated quality criteria. The NPS-based image noise differed by less than 5% from the conventional standard deviation approach and spatially selective 10% MTF values were well comparable to subjective results obtained with 3D resolution pattern. Determining only transverse spatial resolution and global noise behavior in the central field of measurement turned out to be insufficient. The proposed framework transfers QA routines employed in conventional CT in an advanced version to CBCT for fully automated and time-efficient evaluation of technical equipment. With the modular phantom design, a routine as well as an expert version for assessing IQ is provided. The QA program can be used for arbitrary CT units to evaluate 3D imaging characteristics automatically.

  6. A quality assurance framework for the fully automated and objective evaluation of image quality in cone-beam computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiding, Christian; Kolditz, Daniel; Kalender, Willi A., E-mail: willi.kalender@imp.uni-erlangen.de

    Purpose: Thousands of cone-beam computed tomography (CBCT) scanners for vascular, maxillofacial, neurological, and body imaging are in clinical use today, but there is no consensus on uniform acceptance and constancy testing for image quality (IQ) and dose yet. The authors developed a quality assurance (QA) framework for fully automated and time-efficient performance evaluation of these systems. In addition, the dependence of objective Fourier-based IQ metrics on direction and position in 3D volumes was investigated for CBCT. Methods: The authors designed a dedicated QA phantom 10 cm in length consisting of five compartments, each with a diameter of 10 cm, andmore » an optional extension ring 16 cm in diameter. A homogeneous section of water-equivalent material allows measuring CT value accuracy, image noise and uniformity, and multidimensional global and local noise power spectra (NPS). For the quantitative determination of 3D high-contrast spatial resolution, the modulation transfer function (MTF) of centrally and peripherally positioned aluminum spheres was computed from edge profiles. Additional in-plane and axial resolution patterns were used to assess resolution qualitatively. The characterization of low-contrast detectability as well as CT value linearity and artifact behavior was tested by utilizing sections with soft-tissue-equivalent and metallic inserts. For an automated QA procedure, a phantom detection algorithm was implemented. All tests used in the dedicated QA program were initially verified in simulation studies and experimentally confirmed on a clinical dental CBCT system. Results: The automated IQ evaluation of volume data sets of the dental CBCT system was achieved with the proposed phantom requiring only one scan for the determination of all desired parameters. Typically, less than 5 min were needed for phantom set-up, scanning, and data analysis. Quantitative evaluation of system performance over time by comparison to previous examinations was also verified. The maximum percentage interscan variation of repeated measurements was less than 4% and 1.7% on average for all investigated quality criteria. The NPS-based image noise differed by less than 5% from the conventional standard deviation approach and spatially selective 10% MTF values were well comparable to subjective results obtained with 3D resolution pattern. Determining only transverse spatial resolution and global noise behavior in the central field of measurement turned out to be insufficient. Conclusions: The proposed framework transfers QA routines employed in conventional CT in an advanced version to CBCT for fully automated and time-efficient evaluation of technical equipment. With the modular phantom design, a routine as well as an expert version for assessing IQ is provided. The QA program can be used for arbitrary CT units to evaluate 3D imaging characteristics automatically.« less

  7. Acoustic diagnosis of pulmonary hypertension: automated speech- recognition-inspired classification algorithm outperforms physicians

    NASA Astrophysics Data System (ADS)

    Kaddoura, Tarek; Vadlamudi, Karunakar; Kumar, Shine; Bobhate, Prashant; Guo, Long; Jain, Shreepal; Elgendi, Mohamed; Coe, James Y.; Kim, Daniel; Taylor, Dylan; Tymchak, Wayne; Schuurmans, Dale; Zemp, Roger J.; Adatia, Ian

    2016-09-01

    We hypothesized that an automated speech- recognition-inspired classification algorithm could differentiate between the heart sounds in subjects with and without pulmonary hypertension (PH) and outperform physicians. Heart sounds, electrocardiograms, and mean pulmonary artery pressures (mPAp) were recorded simultaneously. Heart sound recordings were digitized to train and test speech-recognition-inspired classification algorithms. We used mel-frequency cepstral coefficients to extract features from the heart sounds. Gaussian-mixture models classified the features as PH (mPAp ≥ 25 mmHg) or normal (mPAp < 25 mmHg). Physicians blinded to patient data listened to the same heart sound recordings and attempted a diagnosis. We studied 164 subjects: 86 with mPAp ≥ 25 mmHg (mPAp 41 ± 12 mmHg) and 78 with mPAp < 25 mmHg (mPAp 17 ± 5 mmHg) (p  < 0.005). The correct diagnostic rate of the automated speech-recognition-inspired algorithm was 74% compared to 56% by physicians (p = 0.005). The false positive rate for the algorithm was 34% versus 50% (p = 0.04) for clinicians. The false negative rate for the algorithm was 23% and 68% (p = 0.0002) for physicians. We developed an automated speech-recognition-inspired classification algorithm for the acoustic diagnosis of PH that outperforms physicians that could be used to screen for PH and encourage earlier specialist referral.

  8. Minimum Sample Size Requirements for Mokken Scale Analysis

    ERIC Educational Resources Information Center

    Straat, J. Hendrik; van der Ark, L. Andries; Sijtsma, Klaas

    2014-01-01

    An automated item selection procedure in Mokken scale analysis partitions a set of items into one or more Mokken scales, if the data allow. Two algorithms are available that pursue the same goal of selecting Mokken scales of maximum length: Mokken's original automated item selection procedure (AISP) and a genetic algorithm (GA). Minimum…

  9. Automation and Preclinical Evaluation of a Dedicated Emission Mammotomography System for Fully 3-D Molecular Breast Imaging

    DTIC Science & Technology

    2009-10-01

    molecular breast imaging, with the ability to dynamically contour any sized breast, will improve detection and potentially in vivo characterization of...Having flexible 3D positioning about the breast yielded minimal RMSD differences, which is important for high resolution molecular emission imaging. This...TITLE: Automation and Preclinical Evaluation of a Dedicated Emission Mammotomography System for Fully 3-D Molecular Breast Imaging PRINCIPAL

  10. Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH.

    PubMed

    Volk, Jochen; Herrmann, Torsten; Wüthrich, Kurt

    2008-07-01

    MATCH (Memetic Algorithm and Combinatorial Optimization Heuristics) is a new memetic algorithm for automated sequence-specific polypeptide backbone NMR assignment of proteins. MATCH employs local optimization for tracing partial sequence-specific assignments within a global, population-based search environment, where the simultaneous application of local and global optimization heuristics guarantees high efficiency and robustness. MATCH thus makes combined use of the two predominant concepts in use for automated NMR assignment of proteins. Dynamic transition and inherent mutation are new techniques that enable automatic adaptation to variable quality of the experimental input data. The concept of dynamic transition is incorporated in all major building blocks of the algorithm, where it enables switching between local and global optimization heuristics at any time during the assignment process. Inherent mutation restricts the intrinsically required randomness of the evolutionary algorithm to those regions of the conformation space that are compatible with the experimental input data. Using intact and artificially deteriorated APSY-NMR input data of proteins, MATCH performed sequence-specific resonance assignment with high efficiency and robustness.

  11. Progress on automated data analysis algorithms for ultrasonic inspection of composites

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Forsyth, David S.; Welter, John T.

    2015-03-01

    Progress is presented on the development and demonstration of automated data analysis (ADA) software to address the burden in interpreting ultrasonic inspection data for large composite structures. The automated data analysis algorithm is presented in detail, which follows standard procedures for analyzing signals for time-of-flight indications and backwall amplitude dropout. New algorithms have been implemented to reliably identify indications in time-of-flight images near the front and back walls of composite panels. Adaptive call criteria have also been applied to address sensitivity to variation in backwall signal level, panel thickness variation, and internal signal noise. ADA processing results are presented for a variety of test specimens that include inserted materials and discontinuities produced under poor manufacturing conditions. Software tools have been developed to support both ADA algorithm design and certification, producing a statistical evaluation of indication results and false calls using a matching process with predefined truth tables. Parametric studies were performed to evaluate detection and false call results with respect to varying algorithm settings.

  12. SU-F-I-45: An Automated Technique to Measure Image Contrast in Clinical CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, J; Abadi, E; Meng, B

    Purpose: To develop and validate an automated technique for measuring image contrast in chest computed tomography (CT) exams. Methods: An automated computer algorithm was developed to measure the distribution of Hounsfield units (HUs) inside four major organs: the lungs, liver, aorta, and bones. These organs were first segmented or identified using computer vision and image processing techniques. Regions of interest (ROIs) were automatically placed inside the lungs, liver, and aorta and histograms of the HUs inside the ROIs were constructed. The mean and standard deviation of each histogram were computed for each CT dataset. Comparison of the mean and standardmore » deviation of the HUs in the different organs provides different contrast values. The ROI for the bones is simply the segmentation mask of the bones. Since the histogram for bones does not follow a Gaussian distribution, the 25th and 75th percentile were computed instead of the mean. The sensitivity and accuracy of the algorithm was investigated by comparing the automated measurements with manual measurements. Fifteen contrast enhanced and fifteen non-contrast enhanced chest CT clinical datasets were examined in the validation procedure. Results: The algorithm successfully measured the histograms of the four organs in both contrast and non-contrast enhanced chest CT exams. The automated measurements were in agreement with manual measurements. The algorithm has sufficient sensitivity as indicated by the near unity slope of the automated versus manual measurement plots. Furthermore, the algorithm has sufficient accuracy as indicated by the high coefficient of determination, R2, values ranging from 0.879 to 0.998. Conclusion: Patient-specific image contrast can be measured from clinical datasets. The algorithm can be run on both contrast enhanced and non-enhanced clinical datasets. The method can be applied to automatically assess the contrast characteristics of clinical chest CT images and quantify dependencies that may not be captured in phantom data.« less

  13. Automated transit networks (ATN) : a review of the state of the industry and prospects for the future.

    DOT National Transportation Integrated Search

    2014-09-01

    The concept of Automated Transit Networks (ATN) - in which fully automated vehicles on exclusive, grade-separated guideways : provide on-demand, primarily non-stop, origin-to-destination service over an area network has been around since the 1950...

  14. Using support vector machines with tract-based spatial statistics for automated classification of Tourette syndrome children

    NASA Astrophysics Data System (ADS)

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Zhang, Jishui; Peng, Yun; He, Huiguang

    2016-03-01

    Tourette syndrome (TS) is a developmental neuropsychiatric disorder with the cardinal symptoms of motor and vocal tics which emerges in early childhood and fluctuates in severity in later years. To date, the neural basis of TS is not fully understood yet and TS has a long-term prognosis that is difficult to accurately estimate. Few studies have looked at the potential of using diffusion tensor imaging (DTI) in conjunction with machine learning algorithms in order to automate the classification of healthy children and TS children. Here we apply Tract-Based Spatial Statistics (TBSS) method to 44 TS children and 48 age and gender matched healthy children in order to extract the diffusion values from each voxel in the white matter (WM) skeleton, and a feature selection algorithm (ReliefF) was used to select the most salient voxels for subsequent classification with support vector machine (SVM). We use a nested cross validation to yield an unbiased assessment of the classification method and prevent overestimation. The accuracy (88.04%), sensitivity (88.64%) and specificity (87.50%) were achieved in our method as peak performance of the SVM classifier was achieved using the axial diffusion (AD) metric, demonstrating the potential of a joint TBSS and SVM pipeline for fast, objective classification of healthy and TS children. These results support that our methods may be useful for the early identification of subjects with TS, and hold promise for predicting prognosis and treatment outcome for individuals with TS.

  15. New approach for identifying the zero-order fringe in variable wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Galas, Jacek; Litwin, Dariusz; Daszkiewicz, Marek

    2016-12-01

    The family of VAWI techniques (for transmitted and reflected light) is especially efficient for characterizing objects, when in the interference system the optical path difference exceeds a few wavelengths. The classical approach that consists in measuring the deflection of interference fringes fails because of strong edge effects. Broken continuity of interference fringes prevents from correct identification of the zero order fringe, which leads to significant errors. The family of these methods has been proposed originally by Professor Pluta in the 1980s but that time image processing facilities and computers were hardly available. Automated devices unfold a completely new approach to the classical measurement procedures. The Institute team has taken that new opportunity and transformed the technique into fully automated measurement devices offering commercial readiness of industry-grade quality. The method itself has been modified and new solutions and algorithms simultaneously have extended the field of application. This has concerned both construction aspects of the systems and software development in context of creating computerized instruments. The VAWI collection of instruments constitutes now the core of the Institute commercial offer. It is now practically applicable in industrial environment for measuring textile and optical fibers, strips of thin films, testing of wave plates and nonlinear affects in different materials. This paper describes new algorithms for identifying the zero order fringe, which increases the performance of the system as a whole and presents some examples of measurements of optical elements.

  16. Using microwave Doppler radar in automated manufacturing applications

    NASA Astrophysics Data System (ADS)

    Smith, Gregory C.

    Since the beginning of the Industrial Revolution, manufacturers worldwide have used automation to improve productivity, gain market share, and meet growing or changing consumer demand for manufactured products. To stimulate further industrial productivity, manufacturers need more advanced automation technologies: "smart" part handling systems, automated assembly machines, CNC machine tools, and industrial robots that use new sensor technologies, advanced control systems, and intelligent decision-making algorithms to "see," "hear," "feel," and "think" at the levels needed to handle complex manufacturing tasks without human intervention. The investigator's dissertation offers three methods that could help make "smart" CNC machine tools and industrial robots possible: (1) A method for detecting acoustic emission using a microwave Doppler radar detector, (2) A method for detecting tool wear on a CNC lathe using a Doppler radar detector, and (3) An online non-contact method for detecting industrial robot position errors using a microwave Doppler radar motion detector. The dissertation studies indicate that microwave Doppler radar could be quite useful in automated manufacturing applications. In particular, the methods developed may help solve two difficult problems that hinder further progress in automating manufacturing processes: (1) Automating metal-cutting operations on CNC machine tools by providing a reliable non-contact method for detecting tool wear, and (2) Fully automating robotic manufacturing tasks by providing a reliable low-cost non-contact method for detecting on-line position errors. In addition, the studies offer a general non-contact method for detecting acoustic emission that may be useful in many other manufacturing and non-manufacturing areas, as well (e.g., monitoring and nondestructively testing structures, materials, manufacturing processes, and devices). By advancing the state of the art in manufacturing automation, the studies may help stimulate future growth in industrial productivity, which also promises to fuel economic growth and promote economic stability. The study also benefits the Department of Industrial Technology at Iowa State University and the field of Industrial Technology by contributing to the ongoing "smart" machine research program within the Department of Industrial Technology and by stimulating research into new sensor technologies within the University and within the field of Industrial Technology.

  17. Lidar Cloud Detection with Fully Convolutional Networks

    NASA Astrophysics Data System (ADS)

    Cromwell, E.; Flynn, D.

    2017-12-01

    The vertical distribution of clouds from active remote sensing instrumentation is a widely used data product from global atmospheric measuring sites. The presence of clouds can be expressed as a binary cloud mask and is a primary input for climate modeling efforts and cloud formation studies. Current cloud detection algorithms producing these masks do not accurately identify the cloud boundaries and tend to oversample or over-represent the cloud. This translates as uncertainty for assessing the radiative impact of clouds and tracking changes in cloud climatologies. The Atmospheric Radiation Measurement (ARM) program has over 20 years of micro-pulse lidar (MPL) and High Spectral Resolution Lidar (HSRL) instrument data and companion automated cloud mask product at the mid-latitude Southern Great Plains (SGP) and the polar North Slope of Alaska (NSA) atmospheric observatory. Using this data, we train a fully convolutional network (FCN) with semi-supervised learning to segment lidar imagery into geometric time-height cloud locations for the SGP site and MPL instrument. We then use transfer learning to train a FCN for (1) the MPL instrument at the NSA site and (2) for the HSRL. In our semi-supervised approach, we pre-train the classification layers of the FCN with weakly labeled lidar data. Then, we facilitate end-to-end unsupervised pre-training and transition to fully supervised learning with ground truth labeled data. Our goal is to improve the cloud mask accuracy and precision for the MPL instrument to 95% and 80%, respectively, compared to the current cloud mask algorithms of 89% and 50%. For the transfer learning based FCN for the HSRL instrument, our goal is to achieve a cloud mask accuracy of 90% and a precision of 80%.

  18. Using a Neural Network to Determine the Hatch Status of the AERI at the ARM North Slope of Alaska Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwink, AB; Turner, DD

    2012-03-19

    The fore-optics of the Atmospheric Emitted Radiance Interferometer (AERI) are protected by an automated hatch to prevent precipitation from fouling the instrument's scene mirror (Knuteson et al. 2004). Limit switches connected with the hatch controller provide a signal of the hatch state: open, closed, undetermined (typically associated with the hatch being between fully open or fully closed during the instrument's sky view period), or an error condition. The instrument then records the state of the hatch with the radiance data so that samples taken when the hatch is not open can be removed from any subsequent analysis. However, the hatchmore » controller suffered a multi-year failure for the AERI located at the ARM North Slope of Alaska (NSA) Central Facility in Barrow, Alaska, from July 2006-February 2008. The failure resulted in misreporting the state of the hatch in the 'hatchOpen' field within the AERI data files. With this error there is no simple solution to translate what was reported back to the correct hatch status, thereby making it difficult for an analysis to determine when the AERI was actually viewing the sky. As only the data collected when the hatch is fully open are scientifically useful, an algorithm was developed to determine whether the hatch was open or closed based on spectral radiance data from the AERI. Determining if the hatch is open or closed in a scene with low clouds is non-trivial, as low opaque clouds may look very similar spectrally as the closed hatch. This algorithm used a backpropagation neural network; these types of neural networks have been used with increasing frequency in atmospheric science applications.« less

  19. Towards de novo identification of metabolites by analyzing tandem mass spectra.

    PubMed

    Böcker, Sebastian; Rasche, Florian

    2008-08-15

    Mass spectrometry is among the most widely used technologies in proteomics and metabolomics. Being a high-throughput method, it produces large amounts of data that necessitates an automated analysis of the spectra. Clearly, database search methods for protein analysis can easily be adopted to analyze metabolite mass spectra. But for metabolites, de novo interpretation of spectra is even more important than for protein data, because metabolite spectra databases cover only a small fraction of naturally occurring metabolites: even the model plant Arabidopsis thaliana has a large number of enzymes whose substrates and products remain unknown. The field of bio-prospection searches biologically diverse areas for metabolites which might serve as pharmaceuticals. De novo identification of metabolite mass spectra requires new concepts and methods since, unlike proteins, metabolites possess a non-linear molecular structure. In this work, we introduce a method for fully automated de novo identification of metabolites from tandem mass spectra. Mass spectrometry data is usually assumed to be insufficient for identification of molecular structures, so we want to estimate the molecular formula of the unknown metabolite, a crucial step for its identification. The method first calculates all molecular formulas that explain the parent peak mass. Then, a graph is build where vertices correspond to molecular formulas of all peaks in the fragmentation mass spectra, whereas edges correspond to hypothetical fragmentation steps. Our algorithm afterwards calculates the maximum scoring subtree of this graph: each peak in the spectra must be scored at most once, so the subtree shall contain only one explanation per peak. Unfortunately, finding this subtree is NP-hard. We suggest three exact algorithms (including one fixed parameter tractable algorithm) as well as two heuristics to solve the problem. Tests on real mass spectra show that the FPT algorithm and the heuristics solve the problem suitably fast and provide excellent results: for all 32 test compounds the correct solution was among the top five suggestions, for 26 compounds the first suggestion of the exact algorithm was correct. http://www.bio.inf.uni-jena.de/tandemms

  20. Automated detection of a prostate Ni-Ti stent in electronic portal images.

    PubMed

    Carl, Jesper; Nielsen, Henning; Nielsen, Jane; Lund, Bente; Larsen, Erik Hoejkjaer

    2006-12-01

    Planning target volumes (PTV) in fractionated radiotherapy still have to be outlined with wide margins to the clinical target volume due to uncertainties arising from daily shift of the prostate position. A recently proposed new method of visualization of the prostate is based on insertion of a thermo-expandable Ni-Ti stent. The current study proposes a new detection algorithm for automated detection of the Ni-Ti stent in electronic portal images. The algorithm is based on the Ni-Ti stent having a cylindrical shape with a fixed diameter, which was used as the basis for an automated detection algorithm. The automated method uses enhancement of lines combined with a grayscale morphology operation that looks for enhanced pixels separated with a distance similar to the diameter of the stent. The images in this study are all from prostate cancer patients treated with radiotherapy in a previous study. Images of a stent inserted in a humanoid phantom demonstrated a localization accuracy of 0.4-0.7 mm which equals the pixel size in the image. The automated detection of the stent was compared to manual detection in 71 pairs of orthogonal images taken in nine patients. The algorithm was successful in 67 of 71 pairs of images. The method is fast, has a high success rate, good accuracy, and has a potential for unsupervised localization of the prostate before radiotherapy, which would enable automated repositioning before treatment and allow for the use of very tight PTV margins.

  1. Validation of Automated White Matter Hyperintensity Segmentation

    PubMed Central

    Smart, Sean D.; Firbank, Michael J.; O'Brien, John T.

    2011-01-01

    Introduction. White matter hyperintensities (WMHs) are a common finding on MRI scans of older people and are associated with vascular disease. We compared 3 methods for automatically segmenting WMHs from MRI scans. Method. An operator manually segmented WMHs on MRI images from a 3T scanner. The scans were also segmented in a fully automated fashion by three different programmes. The voxel overlap between manual and automated segmentation was compared. Results. Between observer overlap ratio was 63%. Using our previously described in-house software, we had overlap of 62.2%. We investigated the use of a modified version of SPM segmentation; however, this was not successful, with only 14% overlap. Discussion. Using our previously reported software, we demonstrated good segmentation of WMHs in a fully automated fashion. PMID:21904678

  2. Displaying contextual information reduces the costs of imperfect decision automation in rapid retasking of ISR assets.

    PubMed

    Rovira, Ericka; Cross, Austin; Leitch, Evan; Bonaceto, Craig

    2014-09-01

    The impact of a decision support tool designed to embed contextual mission factors was investigated. Contextual information may enable operators to infer the appropriateness of data underlying the automation's algorithm. Research has shown the costs of imperfect automation are more detrimental than perfectly reliable automation when operators are provided with decision support tools. Operators may trust and rely on the automation more appropriately if they understand the automation's algorithm. The need to develop decision support tools that are understandable to the operator provides the rationale for the current experiment. A total of 17 participants performed a simulated rapid retasking of intelligence, surveillance, and reconnaissance (ISR) assets task with manual, decision automation, or contextual decision automation differing in two levels of task demand: low or high. Automation reliability was set at 80%, resulting in participants experiencing a mixture of reliable and automation failure trials. Dependent variables included ISR coverage and response time of replanning routes. Reliable automation significantly improved ISR coverage when compared with manual performance. Although performance suffered under imperfect automation, contextual decision automation helped to reduce some of the decrements in performance. Contextual information helps overcome the costs of imperfect decision automation. Designers may mitigate some of the performance decrements experienced with imperfect automation by providing operators with interfaces that display contextual information, that is, the state of factors that affect the reliability of the automation's recommendation.

  3. Automated wholeslide analysis of multiplex-brightfield IHC images for cancer cells and carcinoma-associated fibroblasts

    NASA Astrophysics Data System (ADS)

    Lorsakul, Auranuch; Andersson, Emilia; Vega Harring, Suzana; Sade, Hadassah; Grimm, Oliver; Bredno, Joerg

    2017-03-01

    Multiplex-brightfield immunohistochemistry (IHC) staining and quantitative measurement of multiple biomarkers can support therapeutic targeting of carcinoma-associated fibroblasts (CAF). This paper presents an automated digitalpathology solution to simultaneously analyze multiple biomarker expressions within a single tissue section stained with an IHC duplex assay. Our method was verified against ground truth provided by expert pathologists. In the first stage, the automated method quantified epithelial-carcinoma cells expressing cytokeratin (CK) using robust nucleus detection and supervised cell-by-cell classification algorithms with a combination of nucleus and contextual features. Using fibroblast activation protein (FAP) as biomarker for CAFs, the algorithm was trained, based on ground truth obtained from pathologists, to automatically identify tumor-associated stroma using a supervised-generation rule. The algorithm reported distance to nearest neighbor in the populations of tumor cells and activated-stromal fibroblasts as a wholeslide measure of spatial relationships. A total of 45 slides from six indications (breast, pancreatic, colorectal, lung, ovarian, and head-and-neck cancers) were included for training and verification. CK-positive cells detected by the algorithm were verified by a pathologist with good agreement (R2=0.98) to ground-truth count. For the area occupied by FAP-positive cells, the inter-observer agreement between two sets of ground-truth measurements was R2=0.93 whereas the algorithm reproduced the pathologists' areas with R2=0.96. The proposed methodology enables automated image analysis to measure spatial relationships of cells stained in an IHC-multiplex assay. Our proof-of-concept results show an automated algorithm can be trained to reproduce the expert assessment and provide quantitative readouts that potentially support a cutoff determination in hypothesis testing related to CAF-targeting-therapy decisions.

  4. Automated meteorological data from commercial aircraft via satellite - Present experience and future implications

    NASA Technical Reports Server (NTRS)

    Steinberg, R.

    1978-01-01

    The National Aeronautics and Space Administration has developed a low-cost communications system to provide meteorological data from commercial aircraft, in near real-time, on a fully automated basis. The complete system including the low profile antenna and all installation hardware weighs 34 kg. The prototype system has been installed on a Pan American B-747 aircraft and has been providing meteorological data (wind angle and velocity, temperature, altitude and position as a function of time) on a fully automated basis for the past several months. The results have been exceptional. This concept is expected to have important implications for operational meteorology and airline route forecasting.

  5. TVR-DART: A More Robust Algorithm for Discrete Tomography From Limited Projection Data With Automated Gray Value Estimation.

    PubMed

    Xiaodong Zhuge; Palenstijn, Willem Jan; Batenburg, Kees Joost

    2016-01-01

    In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorithm, and is aimed at imaging of objects consisting of only a few different material compositions, each corresponding to a different gray value in the reconstruction. By exploiting two types of prior knowledge of the scanned object simultaneously, TVR-DART solves the discrete reconstruction problem within an optimization framework inspired by compressive sensing to steer the current reconstruction toward a solution with the specified number of discrete gray values. The gray values and the thresholds are estimated as the reconstruction improves through iterations. Extensive experiments from simulated data, experimental μCT, and electron tomography data sets show that TVR-DART is capable of providing more accurate reconstruction than existing algorithms under noisy conditions from a small number of projection images and/or from a small angular range. Furthermore, the new algorithm requires less effort on parameter tuning compared with the original DART algorithm. With TVR-DART, we aim to provide the tomography society with an easy-to-use and robust algorithm for DT.

  6. Uncertainties in the Item Parameter Estimates and Robust Automated Test Assembly

    ERIC Educational Resources Information Center

    Veldkamp, Bernard P.; Matteucci, Mariagiulia; de Jong, Martijn G.

    2013-01-01

    Item response theory parameters have to be estimated, and because of the estimation process, they do have uncertainty in them. In most large-scale testing programs, the parameters are stored in item banks, and automated test assembly algorithms are applied to assemble operational test forms. These algorithms treat item parameters as fixed values,…

  7. A Fully Automated Method to Detect and Segment a Manufactured Object in an Underwater Color Image

    NASA Astrophysics Data System (ADS)

    Barat, Christian; Phlypo, Ronald

    2010-12-01

    We propose a fully automated active contours-based method for the detection and the segmentation of a moored manufactured object in an underwater image. Detection of objects in underwater images is difficult due to the variable lighting conditions and shadows on the object. The proposed technique is based on the information contained in the color maps and uses the visual attention method, combined with a statistical approach for the detection and an active contour for the segmentation of the object to overcome the above problems. In the classical active contour method the region descriptor is fixed and the convergence of the method depends on the initialization. With our approach, this dependence is overcome with an initialization using the visual attention results and a criterion to select the best region descriptor. This approach improves the convergence and the processing time while providing the advantages of a fully automated method.

  8. Computer-aided liver volumetry: performance of a fully-automated, prototype post-processing solution for whole-organ and lobar segmentation based on MDCT imaging.

    PubMed

    Fananapazir, Ghaneh; Bashir, Mustafa R; Marin, Daniele; Boll, Daniel T

    2015-06-01

    To evaluate the performance of a prototype, fully-automated post-processing solution for whole-liver and lobar segmentation based on MDCT datasets. A polymer liver phantom was used to assess accuracy of post-processing applications comparing phantom volumes determined via Archimedes' principle with MDCT segmented datasets. For the IRB-approved, HIPAA-compliant study, 25 patients were enrolled. Volumetry performance compared the manual approach with the automated prototype, assessing intraobserver variability, and interclass correlation for whole-organ and lobar segmentation using ANOVA comparison. Fidelity of segmentation was evaluated qualitatively. Phantom volume was 1581.0 ± 44.7 mL, manually segmented datasets estimated 1628.0 ± 47.8 mL, representing a mean overestimation of 3.0%, automatically segmented datasets estimated 1601.9 ± 0 mL, representing a mean overestimation of 1.3%. Whole-liver and segmental volumetry demonstrated no significant intraobserver variability for neither manual nor automated measurements. For whole-liver volumetry, automated measurement repetitions resulted in identical values; reproducible whole-organ volumetry was also achieved with manual segmentation, p(ANOVA) 0.98. For lobar volumetry, automated segmentation improved reproducibility over manual approach, without significant measurement differences for either methodology, p(ANOVA) 0.95-0.99. Whole-organ and lobar segmentation results from manual and automated segmentation showed no significant differences, p(ANOVA) 0.96-1.00. Assessment of segmentation fidelity found that segments I-IV/VI showed greater segmentation inaccuracies compared to the remaining right hepatic lobe segments. Automated whole-liver segmentation showed non-inferiority of fully-automated whole-liver segmentation compared to manual approaches with improved reproducibility and post-processing duration; automated dual-seed lobar segmentation showed slight tendencies for underestimating the right hepatic lobe volume and greater variability in edge detection for the left hepatic lobe compared to manual segmentation.

  9. Advantages and challenges in automated apatite fission track counting

    NASA Astrophysics Data System (ADS)

    Enkelmann, E.; Ehlers, T. A.

    2012-04-01

    Fission track thermochronometer data are often a core element of modern tectonic and denudation studies. Soon after the development of the fission track methods interest emerged for the developed an automated counting procedure to replace the time consuming labor of counting fission tracks under the microscope. Automated track counting became feasible in recent years with increasing improvements in computer software and hardware. One such example used in this study is the commercial automated fission track counting procedure from Autoscan Systems Pty that has been highlighted through several venues. We conducted experiments that are designed to reliably and consistently test the ability of this fully automated counting system to recognize fission tracks in apatite and a muscovite external detector. Fission tracks were analyzed in samples with a step-wise increase in sample complexity. The first set of experiments used a large (mm-size) slice of Durango apatite cut parallel to the prism plane. Second, samples with 80-200 μm large apatite grains of Fish Canyon Tuff were analyzed. This second sample set is characterized by complexities often found in apatites in different rock types. In addition to the automated counting procedure, the same samples were also analyzed using conventional counting procedures. We found for all samples that the fully automated fission track counting procedure using the Autoscan System yields a larger scatter in the fission track densities measured compared to conventional (manual) track counting. This scatter typically resulted from the false identification of tracks due surface and mineralogical defects, regardless of the image filtering procedure used. Large differences between track densities analyzed with the automated counting persisted between different grains analyzed in one sample as well as between different samples. As a result of these differences a manual correction of the fully automated fission track counts is necessary for each individual surface area and grain counted. This manual correction procedure significantly increases (up to four times) the time required to analyze a sample with the automated counting procedure compared to the conventional approach.

  10. Segmentation of 3D ultrasound computer tomography reflection images using edge detection and surface fitting

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Zapf, M.; Ruiter, N. V.

    2014-03-01

    An essential processing step for comparison of Ultrasound Computer Tomography images to other modalities, as well as for the use in further image processing, is to segment the breast from the background. In this work we present a (semi-) automated 3D segmentation method which is based on the detection of the breast boundary in coronal slice images and a subsequent surface fitting. The method was evaluated using a software phantom and in-vivo data. The fully automatically processed phantom results showed that a segmentation of approx. 10% of the slices of a dataset is sufficient to recover the overall breast shape. Application to 16 in-vivo datasets was performed successfully using semi-automated processing, i.e. using a graphical user interface for manual corrections of the automated breast boundary detection. The processing time for the segmentation of an in-vivo dataset could be significantly reduced by a factor of four compared to a fully manual segmentation. Comparison to manually segmented images identified a smoother surface for the semi-automated segmentation with an average of 11% of differing voxels and an average surface deviation of 2mm. Limitations of the edge detection may be overcome by future updates of the KIT USCT system, allowing a fully-automated usage of our segmentation approach.

  11. Automated Conflict Resolution For Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2005-01-01

    The ability to detect and resolve conflicts automatically is considered to be an essential requirement for the next generation air traffic control system. While systems for automated conflict detection have been used operationally by controllers for more than 20 years, automated resolution systems have so far not reached the level of maturity required for operational deployment. Analytical models and algorithms for automated resolution have been traffic conditions to demonstrate that they can handle the complete spectrum of conflict situations encountered in actual operations. The resolution algorithm described in this paper was formulated to meet the performance requirements of the Automated Airspace Concept (AAC). The AAC, which was described in a recent paper [1], is a candidate for the next generation air traffic control system. The AAC's performance objectives are to increase safety and airspace capacity and to accommodate user preferences in flight operations to the greatest extent possible. In the AAC, resolution trajectories are generated by an automation system on the ground and sent to the aircraft autonomously via data link .The algorithm generating the trajectories must take into account the performance characteristics of the aircraft, the route structure of the airway system, and be capable of resolving all types of conflicts for properly equipped aircraft without requiring supervision and approval by a controller. Furthermore, the resolution trajectories should be compatible with the clearances, vectors and flight plan amendments that controllers customarily issue to pilots in resolving conflicts. The algorithm described herein, although formulated specifically to meet the needs of the AAC, provides a generic engine for resolving conflicts. Thus, it can be incorporated into any operational concept that requires a method for automated resolution, including concepts for autonomous air to air resolution.

  12. Fully automated system for the quantification of human osteoarthritic knee joint effusion volume using magnetic resonance imaging.

    PubMed

    Li, Wei; Abram, François; Pelletier, Jean-Pierre; Raynauld, Jean-Pierre; Dorais, Marc; d'Anjou, Marc-André; Martel-Pelletier, Johanne

    2010-01-01

    Joint effusion is frequently associated with osteoarthritis (OA) flare-up and is an important marker of therapeutic response. This study aimed at developing and validating a fully automated system based on magnetic resonance imaging (MRI) for the quantification of joint effusion volume in knee OA patients. MRI examinations consisted of two axial sequences: a T2-weighted true fast imaging with steady-state precession and a T1-weighted gradient echo. An automated joint effusion volume quantification system using MRI was developed and validated (a) with calibrated phantoms (cylinder and sphere) and effusion from knee OA patients; (b) with assessment by manual quantification; and (c) by direct aspiration. Twenty-five knee OA patients with joint effusion were included in the study. The automated joint effusion volume quantification was developed as a four stage sequencing process: bone segmentation, filtering of unrelated structures, segmentation of joint effusion, and subvoxel volume calculation. Validation experiments revealed excellent coefficients of variation with the calibrated cylinder (1.4%) and sphere (0.8%) phantoms. Comparison of the OA knee joint effusion volume assessed by the developed automated system and by manual quantification was also excellent (r = 0.98; P < 0.0001), as was the comparison with direct aspiration (r = 0.88; P = 0.0008). The newly developed fully automated MRI-based system provided precise quantification of OA knee joint effusion volume with excellent correlation with data from phantoms, a manual system, and joint aspiration. Such an automated system will be instrumental in improving the reproducibility/reliability of the evaluation of this marker in clinical application.

  13. Automated Conflict Resolution, Arrival Management and Weather Avoidance for ATM

    NASA Technical Reports Server (NTRS)

    Erzberger, H.; Lauderdale, Todd A.; Chu, Yung-Cheng

    2010-01-01

    The paper describes a unified solution to three types of separation assurance problems that occur in en-route airspace: separation conflicts, arrival sequencing, and weather-cell avoidance. Algorithms for solving these problems play a key role in the design of future air traffic management systems such as NextGen. Because these problems can arise simultaneously in any combination, it is necessary to develop integrated algorithms for solving them. A unified and comprehensive solution to these problems provides the foundation for a future air traffic management system that requires a high level of automation in separation assurance. The paper describes the three algorithms developed for solving each problem and then shows how they are used sequentially to solve any combination of these problems. The first algorithm resolves loss-of-separation conflicts and is an evolution of an algorithm described in an earlier paper. The new version generates multiple resolutions for each conflict and then selects the one giving the least delay. Two new algorithms, one for sequencing and merging of arrival traffic, referred to as the Arrival Manager, and the other for weather-cell avoidance are the major focus of the paper. Because these three problems constitute a substantial fraction of the workload of en-route controllers, integrated algorithms to solve them is a basic requirement for automated separation assurance. The paper also reviews the Advanced Airspace Concept, a proposed design for a ground-based system that postulates redundant systems for separation assurance in order to achieve both high levels of safety and airspace capacity. It is proposed that automated separation assurance be introduced operationally in several steps, each step reducing controller workload further while increasing airspace capacity. A fast time simulation was used to determine performance statistics of the algorithm at up to 3 times current traffic levels.

  14. An Automated Method to Identify Mesoscale Convective Complexes (MCCs) Implementing Graph Theory

    NASA Astrophysics Data System (ADS)

    Whitehall, K. D.; Mattmann, C. A.; Jenkins, G. S.; Waliser, D. E.; Rwebangira, R.; Demoz, B.; Kim, J.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Joyce, M. J.; Loikith, P.; Lee, H.; Khudikyan, S.; Boustani, M.; Goodman, A.; Zimdars, P. A.; Whittell, J.

    2013-12-01

    Mesoscale convective complexes (MCCs) are convectively-driven weather systems with a duration of ~10 - 12 hours and contributions of large amounts to the rainfall daily and monthly totals. More than 400 MCCs occur annually over various locations on the globe. In West Africa, ~170 MCCs occur annually during the 180 days representing the summer months (June - November), and contribute ~75% of the annual wet season rainfall. The main objective of this study is to improve automatic identification of MCC over West Africa. The spatial expanse of MCCs and the spatio-temporal variability in their convective characteristics make them difficult to characterize even in dense networks of radars and/or surface gauges. As such there exist criteria for identifying MCCs with satellite images - mostly using infrared (IR) data. Automated MCC identification methods are based on forward and/or backward in time spatial-temporal analysis of the IR satellite data and characteristically incorporate a manual component as these algorithms routinely falter with merging and splitting cloud systems between satellite images. However, these algorithms are not readily transferable to voluminous data or other satellite-derived datasets (e.g. TRMM), thus hindering comprehensive studies of these features both at weather and climate timescales. Recognizing the existing limitations of automated methods, this study explores the applicability of graph theory to creating a fully automated method for deriving a West African MCC dataset from hourly infrared satellite images between 2001- 2012. Graph theory, though not heavily implemented in the atmospheric sciences, has been used for the predicting (nowcasting) of thunderstorms from radar and satellite data by considering the relationship between atmospheric variables at a given time, or for the spatial-temporal analysis of cloud volumes. From these few studies, graph theory appears to be innately applicable to the complexity, non-linearity and inherent chaos of the atmospheric system. Our preliminary results show that the use of graph theory improves data management thus allowing for longer periods to be studied, and creates a transferable method that allows for other data to be utilized.

  15. Fast internal marker tracking algorithm for onboard MV and kV imaging systems

    PubMed Central

    Mao, W.; Wiersma, R. D.; Xing, L.

    2008-01-01

    Intrafraction organ motion can limit the advantage of highly conformal dose techniques such as intensity modulated radiation therapy (IMRT) due to target position uncertainty. To ensure high accuracy in beam targeting, real-time knowledge of the target location is highly desired throughout the beam delivery process. This knowledge can be gained through imaging of internally implanted radio-opaque markers with fluoroscopic or electronic portal imaging devices (EPID). In the case of MV based images, marker detection can be problematic due to the significantly lower contrast between different materials in comparison to their kV-based counterparts. This work presents a fully automated algorithm capable of detecting implanted metallic markers in both kV and MV images with high consistency. Using prior CT information, the algorithm predefines the volumetric search space without manual region-of-interest (ROI) selection by the user. Depending on the template selected, both spherical and cylindrical markers can be detected. Multiple markers can be simultaneously tracked without indexing confusion. Phantom studies show detection success rates of 100% for both kV and MV image data. In addition, application of the algorithm to real patient image data results in successful detection of all implanted markers for MV images. Near real-time operational speeds of ∼10 frames∕sec for the detection of five markers in a 1024×768 image are accomplished using an ordinary PC workstation. PMID:18561670

  16. Identification of Shearer Cutting Patterns Using Vibration Signals Based on a Least Squares Support Vector Machine with an Improved Fruit Fly Optimization Algorithm

    PubMed Central

    Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Liu, Ze; Xu, Jing

    2016-01-01

    Shearers play an important role in fully mechanized coal mining face and accurately identifying their cutting pattern is very helpful for improving the automation level of shearers and ensuring the safety of coal mining. The least squares support vector machine (LSSVM) has been proven to offer strong potential in prediction and classification issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. In this paper, an improved fly optimization algorithm (IFOA) to optimize the parameters of LSSVM was presented and the LSSVM coupled with IFOA (IFOA-LSSVM) was used to identify the shearer cutting pattern. The vibration acceleration signals of five cutting patterns were collected and the special state features were extracted based on the ensemble empirical mode decomposition (EEMD) and the kernel function. Some examples on the IFOA-LSSVM model were further presented and the results were compared with LSSVM, PSO-LSSVM, GA-LSSVM and FOA-LSSVM models in detail. The comparison results indicate that the proposed approach was feasible, efficient and outperformed the others. Finally, an industrial application example at the coal mining face was demonstrated to specify the effect of the proposed system. PMID:26771615

  17. SeqMule: automated pipeline for analysis of human exome/genome sequencing data.

    PubMed

    Guo, Yunfei; Ding, Xiaolei; Shen, Yufeng; Lyon, Gholson J; Wang, Kai

    2015-09-18

    Next-generation sequencing (NGS) technology has greatly helped us identify disease-contributory variants for Mendelian diseases. However, users are often faced with issues such as software compatibility, complicated configuration, and no access to high-performance computing facility. Discrepancies exist among aligners and variant callers. We developed a computational pipeline, SeqMule, to perform automated variant calling from NGS data on human genomes and exomes. SeqMule integrates computational-cluster-free parallelization capability built on top of the variant callers, and facilitates normalization/intersection of variant calls to generate consensus set with high confidence. SeqMule integrates 5 alignment tools, 5 variant calling algorithms and accepts various combinations all by one-line command, therefore allowing highly flexible yet fully automated variant calling. In a modern machine (2 Intel Xeon X5650 CPUs, 48 GB memory), when fast turn-around is needed, SeqMule generates annotated VCF files in a day from a 30X whole-genome sequencing data set; when more accurate calling is needed, SeqMule generates consensus call set that improves over single callers, as measured by both Mendelian error rate and consistency. SeqMule supports Sun Grid Engine for parallel processing, offers turn-key solution for deployment on Amazon Web Services, allows quality check, Mendelian error check, consistency evaluation, HTML-based reports. SeqMule is available at http://seqmule.openbioinformatics.org.

  18. Virtobot 2.0: the future of automated surface documentation and CT-guided needle placement in forensic medicine.

    PubMed

    Ebert, Lars Christian; Ptacek, Wolfgang; Breitbeck, Robert; Fürst, Martin; Kronreif, Gernot; Martinez, Rosa Maria; Thali, Michael; Flach, Patricia M

    2014-06-01

    In this paper we present the second prototype of a robotic system to be used in forensic medicine. The system is capable of performing automated surface documentation using photogrammetry, optical surface scanning and image-guided, post-mortem needle placement for tissue sampling, liquid sampling, or the placement of guide wires. The upgraded system includes workflow optimizations, an automatic tool-change mechanism, a new software module for trajectory planning and a fully automatic computed tomography-data-set registration algorithm. We tested the placement accuracy of the system by using a needle phantom with radiopaque markers as targets. The system is routinely used for surface documentation and resulted in 24 surface documentations over the course of 11 months. We performed accuracy tests for needle placement using a biopsy phantom, and the Virtobot placed introducer needles with an accuracy of 1.4 mm (±0.9 mm). The second prototype of the Virtobot system is an upgrade of the first prototype but mainly focuses on streamlining the workflow and increasing the level of automation and also has an easier user interface. These upgrades make the Virtobot a potentially valuable tool for case documentation in a scalpel-free setting that uses purely imaging techniques and minimally invasive procedures and is the next step toward the future of virtual autopsy.

  19. The Automation and Exoplanet Orbital Characterization from the Gemini Planet Imager Exoplanet Survey

    NASA Astrophysics Data System (ADS)

    Jinfei Wang, Jason; Graham, James; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry; Kalas, Paul; arriaga, Pauline; Chilcote, Jeffrey K.; De Rosa, Robert J.; Ruffio, Jean-Baptiste; Sivaramakrishnan, Anand; Gemini Planet Imager Exoplanet Survey Collaboration

    2018-01-01

    The Gemini Planet Imager (GPI) Exoplanet Survey (GPIES) is a multi-year 600-star survey to discover and characterize young Jovian exoplanets and their planet forming environments. For large surveys like GPIES, it is critical to have a uniform dataset processed with the latest techniques and calibrations. I will describe the GPI Data Cruncher, an automated data processing framework that is able to generate fully reduced data minutes after the data are taken and can also reprocess the entire campaign in a single day on a supercomputer. The Data Cruncher integrates into a larger automated data processing infrastructure which syncs, logs, and displays the data. I will discuss the benefits of the GPIES data infrastructure, including optimizing observing strategies, finding planets, characterizing instrument performance, and constraining giant planet occurrence. I will also discuss my work in characterizing the exoplanets we have imaged in GPIES through monitoring their orbits. Using advanced data processing algorithms and GPI's precise astrometric calibration, I will show that GPI can achieve one milliarcsecond astrometry on the extensively-studied planet Beta Pic b. With GPI, we can confidently rule out a possible transit of Beta Pic b, but have precise timings on a Hill sphere transit, and I will discuss efforts to search for transiting circumplanetary material this year. I will also discuss the orbital monitoring of other exoplanets as part of GPIES.

  20. Advances in Mössbauer data analysis

    NASA Astrophysics Data System (ADS)

    de Souza, Paulo A.

    1998-08-01

    The whole Mössbauer community generates a huge amount of data in several fields of human knowledge since the first publication of Rudolf Mössbauer. Interlaboratory measurements of the same substance may result in minor differences in the Mössbauer Parameters (MP) of isomer shift, quadrupole splitting and internal magnetic field. Therefore, a conventional data bank of published MP will be of limited help in identification of substances. Data bank search for exact information became incapable to differentiate the values of Mössbauer parameters within the experimental errors (e.g., IS = 0.22 mm/s from IS = 0.23 mm/s), but physically both values may be considered the same. An artificial neural network (ANN) is able to identify a substance and its crystalline structure from measured MP, and its slight variations do not represent an obstacle for the ANN identification. A barrier to the popularization of Mössbauer spectroscopy as an analytical technique is the absence of a full automated equipment, since the analysis of a Mössbauer spectrum normally is time-consuming and requires a specialist. In this work, the fitting process of a Mössbauer spectrum was completely automated through the use of genetic algorithms and fuzzy logic. Both software and hardware systems were implemented turning out to be a fully automated Mössbauer data analysis system. The developed system will be presented.

  1. Automated tracking for advanced satellite laser ranging systems

    NASA Astrophysics Data System (ADS)

    McGarry, Jan F.; Degnan, John J.; Titterton, Paul J., Sr.; Sweeney, Harold E.; Conklin, Brion P.; Dunn, Peter J.

    1996-06-01

    NASA's Satellite Laser Ranging Network was originally developed during the 1970's to track satellites carrying corner cube reflectors. Today eight NASA systems, achieving millimeter ranging precision, are part of a global network of more than 40 stations that track 17 international satellites. To meet the tracking demands of a steadily growing satellite constellation within existing resources, NASA is embarking on a major automation program. While manpower on the current systems will be reduced to a single operator, the fully automated SLR2000 system is being designed to operate for months without human intervention. Because SLR2000 must be eyesafe and operate in daylight, tracking is often performed in a low probability of detection and high noise environment. The goal is to automatically select the satellite, setup the tracking and ranging hardware, verify acquisition, and close the tracking loop to optimize data yield. TO accomplish the autotracking tasks, we are investigating (1) improved satellite force models, (2) more frequent updates of orbital ephemerides, (3) lunar laser ranging data processing techniques to distinguish satellite returns from noise, and (4) angular detection and search techniques to acquire the satellite. A Monte Carlo simulator has been developed to allow optimization of the autotracking algorithms by modeling the relevant system errors and then checking performance against system truth. A combination of simulator and preliminary field results will be presented.

  2. Automated detection of diabetic retinopathy lesions on ultrawidefield pseudocolour images.

    PubMed

    Wang, Kang; Jayadev, Chaitra; Nittala, Muneeswar G; Velaga, Swetha B; Ramachandra, Chaithanya A; Bhaskaranand, Malavika; Bhat, Sandeep; Solanki, Kaushal; Sadda, SriniVas R

    2018-03-01

    We examined the sensitivity and specificity of an automated algorithm for detecting referral-warranted diabetic retinopathy (DR) on Optos ultrawidefield (UWF) pseudocolour images. Patients with diabetes were recruited for UWF imaging. A total of 383 subjects (754 eyes) were enrolled. Nonproliferative DR graded to be moderate or higher on the 5-level International Clinical Diabetic Retinopathy (ICDR) severity scale was considered as grounds for referral. The software automatically detected DR lesions using the previously trained classifiers and classified each image in the test set as referral-warranted or not warranted. Sensitivity, specificity and the area under the receiver operating curve (AUROC) of the algorithm were computed. The automated algorithm achieved a 91.7%/90.3% sensitivity (95% CI 90.1-93.9/80.4-89.4) with a 50.0%/53.6% specificity (95% CI 31.7-72.8/36.5-71.4) for detecting referral-warranted retinopathy at the patient/eye levels, respectively; the AUROC was 0.873/0.851 (95% CI 0.819-0.922/0.804-0.894). Diabetic retinopathy (DR) lesions were detected from Optos pseudocolour UWF images using an automated algorithm. Images were classified as referral-warranted DR with a high degree of sensitivity and moderate specificity. Automated analysis of UWF images could be of value in DR screening programmes and could allow for more complete and accurate disease staging. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  3. ROBOCAL: An automated NDA (nondestructive analysis) calorimetry and gamma isotopic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, J.R.; Powell, W.D.; Ostenak, C.A.

    1989-11-01

    ROBOCAL, which is presently being developed and tested at Los Alamos National Laboratory, is a full-scale, prototype robotic system for remote calorimetric and gamma-ray analysis of special nuclear materials. It integrates a fully automated, multidrawer, vertical stacker-retriever system for staging unmeasured nuclear materials, and a fully automated gantry robot for computer-based selection and transfer of nuclear materials to calorimetric and gamma-ray measurement stations. Since ROBOCAL is designed for minimal operator intervention, a completely programmed user interface is provided to interact with the automated mechanical and assay systems. The assay system is designed to completely integrate calorimetric and gamma-ray data acquisitionmore » and to perform state-of-the-art analyses on both homogeneous and heterogeneous distributions of nuclear materials in a wide variety of matrices.« less

  4. Fully automated urban traffic system

    NASA Technical Reports Server (NTRS)

    Dobrotin, B. M.; Hansen, G. R.; Peng, T. K. C.; Rennels, D. A.

    1977-01-01

    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible.

  5. A fully automated digitally controlled 30-inch telescope

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.; Moore, E. P.; Carlson, R.

    1975-01-01

    A fully automated 30-inch (75-cm) telescope has been successfully designed and constructed from a military surplus Nike-Ajax radar mount. Novel features include: closed-loop operation between mountain telescope and campus computer 30 km apart via microwave link, a TV-type sensor which is photon shot-noise limited, a special lightweight primary mirror, and a stepping motor drive capable of slewing and settling one degree in one second or a radian in fifteen seconds.

  6. 5 years of experience with a large-scale mentoring program for medical students.

    PubMed

    Pinilla, Severin; Pander, Tanja; von der Borch, Philip; Fischer, Martin R; Dimitriadis, Konstantinos

    2015-01-01

    In this paper we present our 5-year-experience with a large-scale mentoring program for undergraduate medical students at the Ludwig Maximilians-Universität Munich (LMU). We implemented a two-tiered program with a peer-mentoring concept for preclinical students and a 1:1-mentoring concept for clinical students aided by a fully automated online-based matching algorithm. Approximately 20-30% of each student cohort participates in our voluntary mentoring program. Defining ideal program evaluation strategies, recruiting mentors from beyond the academic environment and accounting for the mentoring network reality remain challenging. We conclude that a two-tiered program is well accepted by students and faculty. In addition the online-based matching seems to be effective for large-scale mentoring programs.

  7. Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks.

    PubMed

    Brown, James M; Campbell, J Peter; Beers, Andrew; Chang, Ken; Ostmo, Susan; Chan, R V Paul; Dy, Jennifer; Erdogmus, Deniz; Ioannidis, Stratis; Kalpathy-Cramer, Jayashree; Chiang, Michael F

    2018-05-02

    Retinopathy of prematurity (ROP) is a leading cause of childhood blindness worldwide. The decision to treat is primarily based on the presence of plus disease, defined as dilation and tortuosity of retinal vessels. However, clinical diagnosis of plus disease is highly subjective and variable. To implement and validate an algorithm based on deep learning to automatically diagnose plus disease from retinal photographs. A deep convolutional neural network was trained using a data set of 5511 retinal photographs. Each image was previously assigned a reference standard diagnosis (RSD) based on consensus of image grading by 3 experts and clinical diagnosis by 1 expert (ie, normal, pre-plus disease, or plus disease). The algorithm was evaluated by 5-fold cross-validation and tested on an independent set of 100 images. Images were collected from 8 academic institutions participating in the Imaging and Informatics in ROP (i-ROP) cohort study. The deep learning algorithm was tested against 8 ROP experts, each of whom had more than 10 years of clinical experience and more than 5 peer-reviewed publications about ROP. Data were collected from July 2011 to December 2016. Data were analyzed from December 2016 to September 2017. A deep learning algorithm trained on retinal photographs. Receiver operating characteristic analysis was performed to evaluate performance of the algorithm against the RSD. Quadratic-weighted κ coefficients were calculated for ternary classification (ie, normal, pre-plus disease, and plus disease) to measure agreement with the RSD and 8 independent experts. Of the 5511 included retinal photographs, 4535 (82.3%) were graded as normal, 805 (14.6%) as pre-plus disease, and 172 (3.1%) as plus disease, based on the RSD. Mean (SD) area under the receiver operating characteristic curve statistics were 0.94 (0.01) for the diagnosis of normal (vs pre-plus disease or plus disease) and 0.98 (0.01) for the diagnosis of plus disease (vs normal or pre-plus disease). For diagnosis of plus disease in an independent test set of 100 retinal images, the algorithm achieved a sensitivity of 93% with 94% specificity. For detection of pre-plus disease or worse, the sensitivity and specificity were 100% and 94%, respectively. On the same test set, the algorithm achieved a quadratic-weighted κ coefficient of 0.92 compared with the RSD, outperforming 6 of 8 ROP experts. This fully automated algorithm diagnosed plus disease in ROP with comparable or better accuracy than human experts. This has potential applications in disease detection, monitoring, and prognosis in infants at risk of ROP.

  8. Enhancing reproducibility of ultrasonic measurements by new users

    NASA Astrophysics Data System (ADS)

    Pramanik, Manojit; Gupta, Madhumita; Krishnan, Kajoli Banerjee

    2013-03-01

    Perception of operator influences ultrasound image acquisition and processing. Lower costs are attracting new users to medical ultrasound. Anticipating an increase in this trend, we conducted a study to quantify the variability in ultrasonic measurements made by novice users and identify methods to reduce it. We designed a protocol with four presets and trained four new users to scan and manually measure the head circumference of a fetal phantom with an ultrasound scanner. In the first phase, the users followed this protocol in seven distinct sessions. They then received feedback on the quality of the scans from an expert. In the second phase, two of the users repeated the entire protocol aided by visual cues provided to them during scanning. We performed off-line measurements on all the images using a fully automated algorithm capable of measuring the head circumference from fetal phantom images. The ground truth (198.1±1.6 mm) was based on sixteen scans and measurements made by an expert. Our analysis shows that: (1) the inter-observer variability of manual measurements was 5.5 mm, whereas the inter-observer variability of automated measurements was only 0.6 mm in the first phase (2) consistency of image appearance improved and mean manual measurements was 4-5 mm closer to the ground truth in the second phase (3) automated measurements were more precise, accurate and less sensitive to different presets compared to manual measurements in both phases. Our results show that visual aids and automation can bring more reproducibility to ultrasonic measurements made by new users.

  9. Automated detection of jet contrails using the AVHRR split window

    NASA Technical Reports Server (NTRS)

    Engelstad, M.; Sengupta, S. K.; Lee, T.; Welch, R. M.

    1992-01-01

    This paper investigates the automated detection of jet contrails using data from the Advanced Very High Resolution Radiometer. A preliminary algorithm subtracts the 11.8-micron image from the 10.8-micron image, creating a difference image on which contrails are enhanced. Then a three-stage algorithm searches the difference image for the nearly-straight line segments which characterize contrails. First, the algorithm searches for elevated, linear patterns called 'ridges'. Second, it applies a Hough transform to the detected ridges to locate nearly-straight lines. Third, the algorithm determines which of the nearly-straight lines are likely to be contrails. The paper applies this technique to several test scenes.

  10. Improving single molecule force spectroscopy through automated real-time data collection and quantification of experimental conditions

    PubMed Central

    Scholl, Zackary N.; Marszalek, Piotr E.

    2013-01-01

    The benefits of single molecule force spectroscopy (SMFS) clearly outweigh the challenges which include small sample sizes, tedious data collection and introduction of human bias during the subjective data selection. These difficulties can be partially eliminated through automation of the experimental data collection process for atomic force microscopy (AFM). Automation can be accomplished using an algorithm that triages usable force-extension recordings quickly with positive and negative selection. We implemented an algorithm based on the windowed fast Fourier transform of force-extension traces that identifies peaks using force-extension regimes to correctly identify usable recordings from proteins composed of repeated domains. This algorithm excels as a real-time diagnostic because it involves <30 ms computational time, has high sensitivity and specificity, and efficiently detects weak unfolding events. We used the statistics provided by the automated procedure to clearly demonstrate the properties of molecular adhesion and how these properties change with differences in the cantilever tip and protein functional groups and protein age. PMID:24001740

  11. Advances in algorithm fusion for automated sea mine detection and classification

    NASA Astrophysics Data System (ADS)

    Dobeck, Gerald J.; Cobb, J. Tory

    2002-11-01

    Along with other sensors, the Navy uses high-resolution sonar to detect and classify sea mines in mine-hunting operations. Scientists and engineers have devoted substantial effort to the development of automated detection and classification (D/C) algorithms for these high-resolution systems. Several factors spurred these efforts, including: (1) aids for operators to reduce work overload; (2) more optimal use of all available data; and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and manmade clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms (Algorithm Fusion) have been studied. To date, the results have been remarkable, including reliable robustness to new environments. In this paper a brief history of existing Algorithm Fusion technology and some techniques recently used to improve performance are presented. An exploration of new developments is presented in conclusion.

  12. Evaluation of Machine Learning and Rules-Based Approaches for Predicting Antimicrobial Resistance Profiles in Gram-negative Bacilli from Whole Genome Sequence Data.

    PubMed

    Pesesky, Mitchell W; Hussain, Tahir; Wallace, Meghan; Patel, Sanket; Andleeb, Saadia; Burnham, Carey-Ann D; Dantas, Gautam

    2016-01-01

    The time-to-result for culture-based microorganism recovery and phenotypic antimicrobial susceptibility testing necessitates initial use of empiric (frequently broad-spectrum) antimicrobial therapy. If the empiric therapy is not optimal, this can lead to adverse patient outcomes and contribute to increasing antibiotic resistance in pathogens. New, more rapid technologies are emerging to meet this need. Many of these are based on identifying resistance genes, rather than directly assaying resistance phenotypes, and thus require interpretation to translate the genotype into treatment recommendations. These interpretations, like other parts of clinical diagnostic workflows, are likely to be increasingly automated in the future. We set out to evaluate the two major approaches that could be amenable to automation pipelines: rules-based methods and machine learning methods. The rules-based algorithm makes predictions based upon current, curated knowledge of Enterobacteriaceae resistance genes. The machine-learning algorithm predicts resistance and susceptibility based on a model built from a training set of variably resistant isolates. As our test set, we used whole genome sequence data from 78 clinical Enterobacteriaceae isolates, previously identified to represent a variety of phenotypes, from fully-susceptible to pan-resistant strains for the antibiotics tested. We tested three antibiotic resistance determinant databases for their utility in identifying the complete resistome for each isolate. The predictions of the rules-based and machine learning algorithms for these isolates were compared to results of phenotype-based diagnostics. The rules based and machine-learning predictions achieved agreement with standard-of-care phenotypic diagnostics of 89.0 and 90.3%, respectively, across twelve antibiotic agents from six major antibiotic classes. Several sources of disagreement between the algorithms were identified. Novel variants of known resistance factors and incomplete genome assembly confounded the rules-based algorithm, resulting in predictions based on gene family, rather than on knowledge of the specific variant found. Low-frequency resistance caused errors in the machine-learning algorithm because those genes were not seen or seen infrequently in the test set. We also identified an example of variability in the phenotype-based results that led to disagreement with both genotype-based methods. Genotype-based antimicrobial susceptibility testing shows great promise as a diagnostic tool, and we outline specific research goals to further refine this methodology.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    March-Leuba, J.A.

    Nuclear plants of the 21st century will employ higher levels of automation and fault tolerance to increase availability, reduce accident risk, and lower operating costs. Key developments in control algorithms, fault diagnostics, fault tolerance, and communication in a distributed system are needed to implement the fully automated plant. Equally challenging will be integrating developments in separate information and control fields into a cohesive system, which collectively achieves the overall goals of improved performance, safety, reliability, maintainability, and cost-effectiveness. Under the Nuclear Energy Research Initiative (NERI), the U. S. Department of Energy is sponsoring a project to address some of themore » technical issues involved in meeting the long-range goal of 21st century reactor control systems. This project, ''A New Paradigm for Automated Development Of Highly Reliable Control Architectures For Future Nuclear Plants,'' involves researchers from Oak Ridge National Laboratory, University of Tennessee, and North Carolina State University. This paper documents a research effort to develop methods for automated generation of control systems that can be traced directly to the design requirements. Our final goal is to allow the designer to specify only high-level requirements and stress factors that the control system must survive (e.g. a list of transients, or a requirement to withstand a single failure.) To this end, the ''control engine'' automatically selects and validates control algorithms and parameters that are optimized to the current state of the plant, and that have been tested under the prescribed stress factors. The control engine then automatically generates the control software from validated algorithms. Examples of stress factors that the control system must ''survive'' are: transient events (e.g., set-point changes, or expected occurrences such a load rejection,) and postulated component failures. These stress factors are specified by the designer and become a database of prescribed transients and component failures. The candidate control systems are tested, and their parameters optimized, for each of these stresses. Examples of high-level requirements are: response time less than xx seconds, or overshoot less than xx% ... etc. In mathematical terms, these types of requirements are defined as ''constraints,'' and there are standard mathematical methods to minimize an objective function subject to constraints. Since, in principle, any control design that satisfies all the above constraints is acceptable, the designer must also select an objective function that describes the ''goodness'' of the control design. Examples of objective functions are: minimize the number or amount of control motions, minimize an energy balance... etc.« less

  14. Universal microfluidic automaton for autonomous sample processing: application to the Mars Organic Analyzer.

    PubMed

    Kim, Jungkyu; Jensen, Erik C; Stockton, Amanda M; Mathies, Richard A

    2013-08-20

    A fully integrated multilayer microfluidic chemical analyzer for automated sample processing and labeling, as well as analysis using capillary zone electrophoresis is developed and characterized. Using lifting gate microfluidic control valve technology, a microfluidic automaton consisting of a two-dimensional microvalve cellular array is fabricated with soft lithography in a format that enables facile integration with a microfluidic capillary electrophoresis device. The programmable sample processor performs precise mixing, metering, and routing operations that can be combined to achieve automation of complex and diverse assay protocols. Sample labeling protocols for amino acid, aldehyde/ketone and carboxylic acid analysis are performed automatically followed by automated transfer and analysis by the integrated microfluidic capillary electrophoresis chip. Equivalent performance to off-chip sample processing is demonstrated for each compound class; the automated analysis resulted in a limit of detection of ~16 nM for amino acids. Our microfluidic automaton provides a fully automated, portable microfluidic analysis system capable of autonomous analysis of diverse compound classes in challenging environments.

  15. A new memetic algorithm for mitigating tandem automated guided vehicle system partitioning problem

    NASA Astrophysics Data System (ADS)

    Pourrahimian, Parinaz

    2017-11-01

    Automated Guided Vehicle System (AGVS) provides the flexibility and automation demanded by Flexible Manufacturing System (FMS). However, with the growing concern on responsible management of resource use, it is crucial to manage these vehicles in an efficient way in order reduces travel time and controls conflicts and congestions. This paper presents the development process of a new Memetic Algorithm (MA) for optimizing partitioning problem of tandem AGVS. MAs employ a Genetic Algorithm (GA), as a global search, and apply a local search to bring the solutions to a local optimum point. A new Tabu Search (TS) has been developed and combined with a GA to refine the newly generated individuals by GA. The aim of the proposed algorithm is to minimize the maximum workload of the system. After all, the performance of the proposed algorithm is evaluated using Matlab. This study also compared the objective function of the proposed MA with GA. The results showed that the TS, as a local search, significantly improves the objective function of the GA for different system sizes with large and small numbers of zone by 1.26 in average.

  16. Automated MRI Segmentation for Individualized Modeling of Current Flow in the Human Head

    PubMed Central

    Huang, Yu; Dmochowski, Jacek P.; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C.

    2013-01-01

    Objective High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography (HD-EEG) require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images (MRI) requires labor-intensive manual segmentation, even when leveraging available automated segmentation tools. Also, accurate placement of many high-density electrodes on individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. Approach A fully automated segmentation technique based on Statical Parametric Mapping 8 (SPM8), including an improved tissue probability map (TPM) and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on 4 healthy subjects and 7 stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. Main results The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view (FOV) extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly. Significance Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials. PMID:24099977

  17. Automated MRI segmentation for individualized modeling of current flow in the human head

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Dmochowski, Jacek P.; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C.

    2013-12-01

    Objective. High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. Approach. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets.Main results. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly.Significance. Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials.

  18. Analysis of HER2 status in breast carcinoma by fully automated HER2 fluorescence in situ hybridization (FISH): comparison of two immunohistochemical tests and manual FISH.

    PubMed

    Yoon, Nara; Do, In-Gu; Cho, Eun Yoon

    2014-09-01

    Easy and accurate HER2 testing is essential when considering the prognostic and predictive significance of HER2 in breast cancer. The use of a fully automated, quantitative FISH assay would be helpful to detect HER2 amplification in breast cancer tissue specimens with reduced inter-laboratory variability. We compared the concordance of HER2 status as assessed by an automated FISH staining system to manual FISH testing. Using 60 formalin-fixed paraffin-embedded breast carcinoma specimens, we assessed HER2 immunoexpression with two antibodies (DAKO HercepTest and CB11). In addition, HER2 status was evaluated with automated FISH using the Leica FISH System for BOND and a manual FISH using the Abbott PathVysion DNA Probe Kit. All but one specimen were successfully stained using both FISH methods. When the data were divided into two groups according to HER2/CEP17 ratio, positive and negative, the results from both the automated and manual FISH techniques were identical for all 59 evaluable specimens. The HER2 and CEP17 copy numbers and HER2/CEP17 ratio showed great agreement between both FISH methods. The automated FISH technique was interpretable with signal intensity similar to those of the manual FISH technique. In contrast with manual FISH, the automated FISH technique showed well-preserved architecture due to low membrane digestion. HER2 immunohistochemistry and FISH results showed substantial significant agreement (κ = 1.0, p < 0.001). HER2 status can be reliably determined using a fully automated HER2 FISH system with high concordance to the well-established manual FISH method. Because of stable signal intensity and high staining quality, the automated FISH technique may be more appropriate than manual FISH for routine applications. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  19. Improving Automated Endmember Identification for Linear Unmixing of HyspIRI Spectral Data.

    NASA Astrophysics Data System (ADS)

    Gader, P.

    2016-12-01

    The size of data sets produced by imaging spectrometers is increasing rapidly. There is already a processing bottleneck. Part of the reason for this bottleneck is the need for expert input using interactive software tools. This process can be very time consuming and laborious but is currently crucial to ensuring the quality of the analysis. Automated algorithms can mitigate this problem. Although it is unlikely that processing systems can become completely automated, there is an urgent need to increase the level of automation. Spectral unmixing is a key component to processing HyspIRI data. Algorithms such as MESMA have been demonstrated to achieve results but require carefully, expert construction of endmember libraries. Unfortunately, many endmembers found by automated algorithms for finding endmembers are deemed unsuitable by experts because they are not physically reasonable. Unfortunately, endmembers that are not physically reasonable can achieve very low errors between the linear mixing model with those endmembers and the original data. Therefore, this error is not a reasonable way to resolve the problem on "non-physical" endmembers. There are many potential approaches for resolving these issues, including using Bayesian priors, but very little attention has been given to this problem. The study reported on here considers a modification of the Sparsity Promoting Iterated Constrained Endmember (SPICE) algorithm. SPICE finds endmembers and abundances and estimates the number of endmembers. The SPICE algorithm seeks to minimize a quadratic objective function with respect to endmembers E and fractions P. The modified SPICE algorithm, which we refer to as SPICED, is obtained by adding the term D to the objective function. The term D pressures the algorithm to minimize sum of the squared differences between each endmember and a weighted sum of the data. By appropriately modifying the, the endmembers are pushed towards a subset of the data with the potential for becoming exactly equal to the data points. The algorithm has been applied to spectral data and the differences between the endmembers resulting from ecorded. The results so far are that the endmembers found SPICED are approximately 25% closer to the data with indistinguishable reconstruction error compared to those found using SPICE.

  20. A Dynamic Health Assessment Approach for Shearer Based on Artificial Immune Algorithm

    PubMed Central

    Wang, Zhongbin; Xu, Xihua; Si, Lei; Ji, Rui; Liu, Xinhua; Tan, Chao

    2016-01-01

    In order to accurately identify the dynamic health of shearer, reducing operating trouble and production accident of shearer and improving coal production efficiency further, a dynamic health assessment approach for shearer based on artificial immune algorithm was proposed. The key technologies such as system framework, selecting the indicators for shearer dynamic health assessment, and health assessment model were provided, and the flowchart of the proposed approach was designed. A simulation example, with an accuracy of 96%, based on the collected data from industrial production scene was provided. Furthermore, the comparison demonstrated that the proposed method exhibited higher classification accuracy than the classifiers based on back propagation-neural network (BP-NN) and support vector machine (SVM) methods. Finally, the proposed approach was applied in an engineering problem of shearer dynamic health assessment. The industrial application results showed that the paper research achievements could be used combining with shearer automation control system in fully mechanized coal face. The simulation and the application results indicated that the proposed method was feasible and outperforming others. PMID:27123002

  1. Learning optimal embedded cascades.

    PubMed

    Saberian, Mohammad Javad; Vasconcelos, Nuno

    2012-10-01

    The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.

  2. FoldMiner and LOCK 2: protein structure comparison and motif discovery on the web.

    PubMed

    Shapiro, Jessica; Brutlag, Douglas

    2004-07-01

    The FoldMiner web server (http://foldminer.stanford.edu/) provides remote access to methods for protein structure alignment and unsupervised motif discovery. FoldMiner is unique among such algorithms in that it improves both the motif definition and the sensitivity of a structural similarity search by combining the search and motif discovery methods and using information from each process to enhance the other. In a typical run, a query structure is aligned to all structures in one of several databases of single domain targets in order to identify its structural neighbors and to discover a motif that is the basis for the similarity among the query and statistically significant targets. This process is fully automated, but options for manual refinement of the results are available as well. The server uses the Chime plugin and customized controls to allow for visualization of the motif and of structural superpositions. In addition, we provide an interface to the LOCK 2 algorithm for rapid alignments of a query structure to smaller numbers of user-specified targets.

  3. An online peak extraction algorithm for ion mobility spectrometry data.

    PubMed

    Kopczynski, Dominik; Rahmann, Sven

    2015-01-01

    Ion mobility (IM) spectrometry (IMS), coupled with multi-capillary columns (MCCs), has been gaining importance for biotechnological and medical applications because of its ability to detect and quantify volatile organic compounds (VOC) at low concentrations in the air or in exhaled breath at ambient pressure and temperature. Ongoing miniaturization of spectrometers creates the need for reliable data analysis on-the-fly in small embedded low-power devices. We present the first fully automated online peak extraction method for MCC/IMS measurements consisting of several thousand individual spectra. Each individual spectrum is processed as it arrives, removing the need to store the measurement before starting the analysis, as is currently the state of the art. Thus the analysis device can be an inexpensive low-power system such as the Raspberry Pi. The key idea is to extract one-dimensional peak models (with four parameters) from each spectrum and then merge these into peak chains and finally two-dimensional peak models. We describe the different algorithmic steps in detail and evaluate the online method against state-of-the-art peak extraction methods.

  4. Computer vision for driver assistance systems

    NASA Astrophysics Data System (ADS)

    Handmann, Uwe; Kalinke, Thomas; Tzomakas, Christos; Werner, Martin; von Seelen, Werner

    1998-07-01

    Systems for automated image analysis are useful for a variety of tasks and their importance is still increasing due to technological advances and an increase of social acceptance. Especially in the field of driver assistance systems the progress in science has reached a level of high performance. Fully or partly autonomously guided vehicles, particularly for road-based traffic, pose high demands on the development of reliable algorithms due to the conditions imposed by natural environments. At the Institut fur Neuroinformatik, methods for analyzing driving relevant scenes by computer vision are developed in cooperation with several partners from the automobile industry. We introduce a system which extracts the important information from an image taken by a CCD camera installed at the rear view mirror in a car. The approach consists of a sequential and a parallel sensor and information processing. Three main tasks namely the initial segmentation (object detection), the object tracking and the object classification are realized by integration in the sequential branch and by fusion in the parallel branch. The main gain of this approach is given by the integrative coupling of different algorithms providing partly redundant information.

  5. Live Speech Driven Head-and-Eye Motion Generators.

    PubMed

    Le, Binh H; Ma, Xiaohan; Deng, Zhigang

    2012-11-01

    This paper describes a fully automated framework to generate realistic head motion, eye gaze, and eyelid motion simultaneously based on live (or recorded) speech input. Its central idea is to learn separate yet interrelated statistical models for each component (head motion, gaze, or eyelid motion) from a prerecorded facial motion data set: 1) Gaussian Mixture Models and gradient descent optimization algorithm are employed to generate head motion from speech features; 2) Nonlinear Dynamic Canonical Correlation Analysis model is used to synthesize eye gaze from head motion and speech features, and 3) nonnegative linear regression is used to model voluntary eye lid motion and log-normal distribution is used to describe involuntary eye blinks. Several user studies are conducted to evaluate the effectiveness of the proposed speech-driven head and eye motion generator using the well-established paired comparison methodology. Our evaluation results clearly show that this approach can significantly outperform the state-of-the-art head and eye motion generation algorithms. In addition, a novel mocap+video hybrid data acquisition technique is introduced to record high-fidelity head movement, eye gaze, and eyelid motion simultaneously.

  6. Faraday rotation data analysis with least-squares elliptical fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Adam D.; McHale, G. Brent; Goerz, David A.

    2010-10-15

    A method of analyzing Faraday rotation data from pulsed magnetic field measurements is described. The method uses direct least-squares elliptical fitting to measured data. The least-squares fit conic parameters are used to rotate, translate, and rescale the measured data. Interpretation of the transformed data provides improved accuracy and time-resolution characteristics compared with many existing methods of analyzing Faraday rotation data. The method is especially useful when linear birefringence is present at the input or output of the sensing medium, or when the relative angle of the polarizers used in analysis is not aligned with precision; under these circumstances the methodmore » is shown to return the analytically correct input signal. The method may be pertinent to other applications where analysis of Lissajous figures is required, such as the velocity interferometer system for any reflector (VISAR) diagnostics. The entire algorithm is fully automated and requires no user interaction. An example of algorithm execution is shown, using data from a fiber-based Faraday rotation sensor on a capacitive discharge experiment.« less

  7. MPDATA: Third-order accuracy for variable flows

    NASA Astrophysics Data System (ADS)

    Waruszewski, Maciej; Kühnlein, Christian; Pawlowska, Hanna; Smolarkiewicz, Piotr K.

    2018-04-01

    This paper extends the multidimensional positive definite advection transport algorithm (MPDATA) to third-order accuracy for temporally and spatially varying flows. This is accomplished by identifying the leading truncation error of the standard second-order MPDATA, performing the Cauchy-Kowalevski procedure to express it in a spatial form and compensating its discrete representation-much in the same way as the standard MPDATA corrects the first-order accurate upwind scheme. The procedure of deriving the spatial form of the truncation error was automated using a computer algebra system. This enables various options in MPDATA to be included straightforwardly in the third-order scheme, thereby minimising the implementation effort in existing code bases. Following the spirit of MPDATA, the error is compensated using the upwind scheme resulting in a sign-preserving algorithm, and the entire scheme can be formulated using only two upwind passes. Established MPDATA enhancements, such as formulation in generalised curvilinear coordinates, the nonoscillatory option or the infinite-gauge variant, carry over to the fully third-order accurate scheme. A manufactured 3D analytic solution is used to verify the theoretical development and its numerical implementation, whereas global tracer-transport benchmarks demonstrate benefits for chemistry-transport models fundamental to air quality monitoring, forecasting and control. A series of explicitly-inviscid implicit large-eddy simulations of a convective boundary layer and explicitly-viscid simulations of a double shear layer illustrate advantages of the fully third-order-accurate MPDATA for fluid dynamics applications.

  8. Maximizing Your Investment in Building Automation System Technology.

    ERIC Educational Resources Information Center

    Darnell, Charles

    2001-01-01

    Discusses how organizational issues and system standardization can be important factors that determine an institution's ability to fully exploit contemporary building automation systems (BAS). Further presented is management strategy for maximizing BAS investments. (GR)

  9. Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography.

    PubMed

    Liu, Li; Gao, Simon S; Bailey, Steven T; Huang, David; Li, Dengwang; Jia, Yali

    2015-09-01

    Optical coherence tomography angiography has recently been used to visualize choroidal neovascularization (CNV) in participants with age-related macular degeneration. Identification and quantification of CNV area is important clinically for disease assessment. An automated algorithm for CNV area detection is presented in this article. It relies on denoising and a saliency detection model to overcome issues such as projection artifacts and the heterogeneity of CNV. Qualitative and quantitative evaluations were performed on scans of 7 participants. Results from the algorithm agreed well with manual delineation of CNV area.

  10. A scale space based algorithm for automated segmentation of single shot tagged MRI of shearing deformation.

    PubMed

    Sprengers, Andre M J; Caan, Matthan W A; Moerman, Kevin M; Nederveen, Aart J; Lamerichs, Rolf M; Stoker, Jaap

    2013-04-01

    This study proposes a scale space based algorithm for automated segmentation of single-shot tagged images of modest SNR. Furthermore the algorithm was designed for analysis of discontinuous or shearing types of motion, i.e. segmentation of broken tag patterns. The proposed algorithm utilises non-linear scale space for automatic segmentation of single-shot tagged images. The algorithm's ability to automatically segment tagged shearing motion was evaluated in a numerical simulation and in vivo. A typical shearing deformation was simulated in a Shepp-Logan phantom allowing for quantitative evaluation of the algorithm's success rate as a function of both SNR and the amount of deformation. For a qualitative in vivo evaluation tagged images showing deformations in the calf muscles and eye movement in a healthy volunteer were acquired. Both the numerical simulation and the in vivo tagged data demonstrated the algorithm's ability for automated segmentation of single-shot tagged MR provided that SNR of the images is above 10 and the amount of deformation does not exceed the tag spacing. The latter constraint can be met by adjusting the tag delay or the tag spacing. The scale space based algorithm for automatic segmentation of single-shot tagged MR enables the application of tagged MR to complex (shearing) deformation and the processing of datasets with relatively low SNR.

  11. Fully automated lobe-based airway taper index calculation in a low dose MDCT CF study over 4 time-points

    NASA Astrophysics Data System (ADS)

    Weinheimer, Oliver; Wielpütz, Mark O.; Konietzke, Philip; Heussel, Claus P.; Kauczor, Hans-Ulrich; Brochhausen, Christoph; Hollemann, David; Savage, Dasha; Galbán, Craig J.; Robinson, Terry E.

    2017-02-01

    Cystic Fibrosis (CF) results in severe bronchiectasis in nearly all cases. Bronchiectasis is a disease where parts of the airways are permanently dilated. The development and the progression of bronchiectasis is not evenly distributed over the entire lungs - rather, individual functional units are affected differently. We developed a fully automated method for the precise calculation of lobe-based airway taper indices. To calculate taper indices, some preparatory algorithms are needed. The airway tree is segmented, skeletonized and transformed to a rooted acyclic graph. This graph is used to label the airways. Then a modified version of the previously validated integral based method (IBM) for airway geometry determination is utilized. The rooted graph, the airway lumen and wall information are then used to calculate the airway taper indices. Using a computer-generated phantom simulating 10 cross sections of airways we present results showing a high accuracy of the modified IBM. The new taper index calculation method was applied to 144 volumetric inspiratory low-dose MDCT scans. The scans were acquired from 36 children with mild CF at 4 time-points (baseline, 3 month, 1 year, 2 years). We found a moderate correlation with the visual lobar Brody bronchiectasis scores by three raters (r2 = 0.36, p < .0001). The taper index has the potential to be a precise imaging biomarker but further improvements are needed. In combination with other imaging biomarkers, taper index calculation can be an important tool for monitoring the progression and the individual treatment of patients with bronchiectasis.

  12. Astronomical algorithms for automated analysis of tissue protein expression in breast cancer

    PubMed Central

    Ali, H R; Irwin, M; Morris, L; Dawson, S-J; Blows, F M; Provenzano, E; Mahler-Araujo, B; Pharoah, P D; Walton, N A; Brenton, J D; Caldas, C

    2013-01-01

    Background: High-throughput evaluation of tissue biomarkers in oncology has been greatly accelerated by the widespread use of tissue microarrays (TMAs) and immunohistochemistry. Although TMAs have the potential to facilitate protein expression profiling on a scale to rival experiments of tumour transcriptomes, the bottleneck and imprecision of manually scoring TMAs has impeded progress. Methods: We report image analysis algorithms adapted from astronomy for the precise automated analysis of IHC in all subcellular compartments. The power of this technique is demonstrated using over 2000 breast tumours and comparing quantitative automated scores against manual assessment by pathologists. Results: All continuous automated scores showed good correlation with their corresponding ordinal manual scores. For oestrogen receptor (ER), the correlation was 0.82, P<0.0001, for BCL2 0.72, P<0.0001 and for HER2 0.62, P<0.0001. Automated scores showed excellent concordance with manual scores for the unsupervised assignment of cases to ‘positive' or ‘negative' categories with agreement rates of up to 96%. Conclusion: The adaptation of astronomical algorithms coupled with their application to large annotated study cohorts, constitutes a powerful tool for the realisation of the enormous potential of digital pathology. PMID:23329232

  13. Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies.

    PubMed

    Atkinson, Jonathan A; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E; Griffiths, Marcus; Wells, Darren M

    2017-10-01

    Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. © The Authors 2017. Published by Oxford University Press.

  14. Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies

    PubMed Central

    Atkinson, Jonathan A.; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E.; Griffiths, Marcus

    2017-01-01

    Abstract Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. PMID:29020748

  15. Dual-Energy Computed Tomography Angiography of the Head and Neck With Single-Source Computed Tomography: A New Technical (Split Filter) Approach for Bone Removal.

    PubMed

    Kaemmerer, Nadine; Brand, Michael; Hammon, Matthias; May, Matthias; Wuest, Wolfgang; Krauss, Bernhard; Uder, Michael; Lell, Michael M

    2016-10-01

    Dual-energy computed tomographic angiography (DE-CTA) has been demonstrated to improve the visualization of the head and neck vessels. The aim of this study was to test the potential of split-filter single-source dual-energy CT to automatically remove bone from the final CTA data set. Dual-energy CTA was performed in 50 consecutive patients to evaluate the supra-aortic arteries, either to grade carotid artery stenosis or to rule out traumatic dissections. Dual-energy CTA was performed on a 128-slice single-source CT system equipped with a special filter array to separate the 120-kV spectrum into a high- and a low-energy spectrum for DE-based automated bone removal. Image quality of fully automated bone suppression and subsequent manual optimization was evaluated by 2 radiologists on maximum intensity projections using a 4-grade scoring system. The effect of image reconstruction with an iterative metal artifact reduction algorithm on DE postprocessing was tested using a 3-grade scoring system, and the time demand for each postprocessing step was measured. Two patients were excluded due to insufficient arterial contrast enhancement; in the remaining 48 patients, automated bone removal could be performed successfully. The addition of iterative metal artifact reduction algorithm improved image quality in 58.3% of the cases. After manual optimization, DE-CTA image quality was rated excellent in 7, good in 29, and moderate in 10 patients. Interobserver agreement was high (κ = 0.85). Stenosis grading was not influenced using DE-CTA with bone removal as compared with the original CTA. The time demand for DE image reconstruction was significantly higher than for single-energy reconstruction (42.1 vs 20.9 seconds). Our results suggest that bone removal in DE-CTA of the head and neck vessels with a single-source CT is feasible and can be performed within acceptable time and moderate user interaction.

  16. Automated method to differentiate between native and mirror protein models obtained from contact maps.

    PubMed

    Kurczynska, Monika; Kotulska, Malgorzata

    2018-01-01

    Mirror protein structures are often considered as artifacts in modeling protein structures. However, they may soon become a new branch of biochemistry. Moreover, methods of protein structure reconstruction, based on their residue-residue contact maps, need methodology to differentiate between models of native and mirror orientation, especially regarding the reconstructed backbones. We analyzed 130 500 structural protein models obtained from contact maps of 1 305 SCOP domains belonging to all 7 structural classes. On average, the same numbers of native and mirror models were obtained among 100 models generated for each domain. Since their structural features are often not sufficient for differentiating between the two types of model orientations, we proposed to apply various energy terms (ETs) from PyRosetta to separate native and mirror models. To automate the procedure for differentiating these models, the k-means clustering algorithm was applied. Using total energy did not allow to obtain appropriate clusters-the accuracy of the clustering for class A (all helices) was no more than 0.52. Therefore, we tested a series of different k-means clusterings based on various combinations of ETs. Finally, applying two most differentiating ETs for each class allowed to obtain satisfying results. To unify the method for differentiating between native and mirror models, independent of their structural class, the two best ETs for each class were considered. Finally, the k-means clustering algorithm used three common ETs: probability of amino acid assuming certain values of dihedral angles Φ and Ψ, Ramachandran preferences and Coulomb interactions. The accuracies of clustering with these ETs were in the range between 0.68 and 0.76, with sensitivity and selectivity in the range between 0.68 and 0.87, depending on the structural class. The method can be applied to all fully-automated tools for protein structure reconstruction based on contact maps, especially those analyzing big sets of models.

  17. Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation

    NASA Astrophysics Data System (ADS)

    Qin, Wenjian; Wu, Jia; Han, Fei; Yuan, Yixuan; Zhao, Wei; Ibragimov, Bulat; Gu, Jia; Xing, Lei

    2018-05-01

    Segmentation of liver in abdominal computed tomography (CT) is an important step for radiation therapy planning of hepatocellular carcinoma. Practically, a fully automatic segmentation of liver remains challenging because of low soft tissue contrast between liver and its surrounding organs, and its highly deformable shape. The purpose of this work is to develop a novel superpixel-based and boundary sensitive convolutional neural network (SBBS-CNN) pipeline for automated liver segmentation. The entire CT images were first partitioned into superpixel regions, where nearby pixels with similar CT number were aggregated. Secondly, we converted the conventional binary segmentation into a multinomial classification by labeling the superpixels into three classes: interior liver, liver boundary, and non-liver background. By doing this, the boundary region of the liver was explicitly identified and highlighted for the subsequent classification. Thirdly, we computed an entropy-based saliency map for each CT volume, and leveraged this map to guide the sampling of image patches over the superpixels. In this way, more patches were extracted from informative regions (e.g. the liver boundary with irregular changes) and fewer patches were extracted from homogeneous regions. Finally, deep CNN pipeline was built and trained to predict the probability map of the liver boundary. We tested the proposed algorithm in a cohort of 100 patients. With 10-fold cross validation, the SBBS-CNN achieved mean Dice similarity coefficients of 97.31  ±  0.36% and average symmetric surface distance of 1.77  ±  0.49 mm. Moreover, it showed superior performance in comparison with state-of-art methods, including U-Net, pixel-based CNN, active contour, level-sets and graph-cut algorithms. SBBS-CNN provides an accurate and effective tool for automated liver segmentation. It is also envisioned that the proposed framework is directly applicable in other medical image segmentation scenarios.

  18. Automated method to differentiate between native and mirror protein models obtained from contact maps

    PubMed Central

    Kurczynska, Monika

    2018-01-01

    Mirror protein structures are often considered as artifacts in modeling protein structures. However, they may soon become a new branch of biochemistry. Moreover, methods of protein structure reconstruction, based on their residue-residue contact maps, need methodology to differentiate between models of native and mirror orientation, especially regarding the reconstructed backbones. We analyzed 130 500 structural protein models obtained from contact maps of 1 305 SCOP domains belonging to all 7 structural classes. On average, the same numbers of native and mirror models were obtained among 100 models generated for each domain. Since their structural features are often not sufficient for differentiating between the two types of model orientations, we proposed to apply various energy terms (ETs) from PyRosetta to separate native and mirror models. To automate the procedure for differentiating these models, the k-means clustering algorithm was applied. Using total energy did not allow to obtain appropriate clusters–the accuracy of the clustering for class A (all helices) was no more than 0.52. Therefore, we tested a series of different k-means clusterings based on various combinations of ETs. Finally, applying two most differentiating ETs for each class allowed to obtain satisfying results. To unify the method for differentiating between native and mirror models, independent of their structural class, the two best ETs for each class were considered. Finally, the k-means clustering algorithm used three common ETs: probability of amino acid assuming certain values of dihedral angles Φ and Ψ, Ramachandran preferences and Coulomb interactions. The accuracies of clustering with these ETs were in the range between 0.68 and 0.76, with sensitivity and selectivity in the range between 0.68 and 0.87, depending on the structural class. The method can be applied to all fully-automated tools for protein structure reconstruction based on contact maps, especially those analyzing big sets of models. PMID:29787567

  19. Semiautomatic tumor segmentation with multimodal images in a conditional random field framework.

    PubMed

    Hu, Yu-Chi; Grossberg, Michael; Mageras, Gikas

    2016-04-01

    Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between different image modalities while integrating interactive human guidance. The algorithm provides a statistical segmentation framework partly automating the segmentation task while still maintaining critical human oversight. The statistical models presented are trained interactively using simple brush strokes to indicate tumor and nontumor tissues and using intermediate results within a patient's image study. To accomplish the segmentation, we construct the energy function in the conditional random field (CRF) framework. For each slice, the energy function is set using the estimated probabilities from both user brush stroke data and prior approved segmented slices within a patient study. The progressive segmentation is obtained using a graph-cut-based minimization. Although no similar semiautomated algorithm is currently available, we evaluated our method with an MRI data set from Medical Image Computing and Computer Assisted Intervention Society multimodal brain segmentation challenge (BRATS 2012 and 2013) against a similar fully automatic method based on CRF and a semiautomatic method based on grow-cut, and our method shows superior performance.

  20. Joint volumetric extraction and enhancement of vasculature from low-SNR 3-D fluorescence microscopy images.

    PubMed

    Almasi, Sepideh; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L; Xu, Xiaoyin

    2017-03-01

    To simultaneously overcome the challenges imposed by the nature of optical imaging characterized by a range of artifacts including space-varying signal to noise ratio (SNR), scattered light, and non-uniform illumination, we developed a novel method that segments the 3-D vasculature directly from original fluorescence microscopy images eliminating the need for employing pre- and post-processing steps such as noise removal and segmentation refinement as used with the majority of segmentation techniques. Our method comprises two initialization and constrained recovery and enhancement stages. The initialization approach is fully automated using features derived from bi-scale statistical measures and produces seed points robust to non-uniform illumination, low SNR, and local structural variations. This algorithm achieves the goal of segmentation via design of an iterative approach that extracts the structure through voting of feature vectors formed by distance, local intensity gradient, and median measures. Qualitative and quantitative analysis of the experimental results obtained from synthetic and real data prove the effcacy of this method in comparison to the state-of-the-art enhancing-segmenting methods. The algorithmic simplicity, freedom from having a priori probabilistic information about the noise, and structural definition gives this algorithm a wide potential range of applications where i.e. structural complexity significantly complicates the segmentation problem.

  1. Effect of Watermarking on Diagnostic Preservation of Atherosclerotic Ultrasound Video in Stroke Telemedicine.

    PubMed

    Dey, Nilanjan; Bose, Soumyo; Das, Achintya; Chaudhuri, Sheli Sinha; Saba, Luca; Shafique, Shoaib; Nicolaides, Andrew; Suri, Jasjit S

    2016-04-01

    Embedding of diagnostic and health care information requires secure encryption and watermarking. This research paper presents a comprehensive study for the behavior of some well established watermarking algorithms in frequency domain for the preservation of stroke-based diagnostic parameters. Two different sets of watermarking algorithms namely: two correlation-based (binary logo hiding) and two singular value decomposition (SVD)-based (gray logo hiding) watermarking algorithms are used for embedding ownership logo. The diagnostic parameters in atherosclerotic plaque ultrasound video are namely: (a) bulb identification and recognition which consists of identifying the bulb edge points in far and near carotid walls; (b) carotid bulb diameter; and (c) carotid lumen thickness all along the carotid artery. The tested data set consists of carotid atherosclerotic movies taken under IRB protocol from University of Indiana Hospital, USA-AtheroPoint™ (Roseville, CA, USA) joint pilot study. ROC (receiver operating characteristic) analysis was performed on the bulb detection process that showed an accuracy and sensitivity of 100 % each, respectively. The diagnostic preservation (DPsystem) for SVD-based approach was above 99 % with PSNR (Peak signal-to-noise ratio) above 41, ensuring the retention of diagnostic parameter devalorization as an effect of watermarking. Thus, the fully automated proposed system proved to be an efficient method for watermarking the atherosclerotic ultrasound video for stroke application.

  2. Microscopic image analysis for reticulocyte based on watershed algorithm

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Liu, G. F.; Liu, J. G.; Wang, G.

    2007-12-01

    We present a watershed-based algorithm in the analysis of light microscopic image for reticulocyte (RET), which will be used in an automated recognition system for RET in peripheral blood. The original images, obtained by micrography, are segmented by modified watershed algorithm and are recognized in term of gray entropy and area of connective area. In the process of watershed algorithm, judgment conditions are controlled according to character of the image, besides, the segmentation is performed by morphological subtraction. The algorithm was simulated with MATLAB software. It is similar for automated and manual scoring and there is good correlation(r=0.956) between the methods, which is resulted from 50 pieces of RET images. The result indicates that the algorithm for peripheral blood RETs is comparable to conventional manual scoring, and it is superior in objectivity. This algorithm avoids time-consuming calculation such as ultra-erosion and region-growth, which will speed up the computation consequentially.

  3. Automated activity-aware prompting for activity initiation.

    PubMed

    Holder, Lawrence B; Cook, Diane J

    2013-01-01

    Performing daily activities without assistance is important to maintaining an independent functional lifestyle. As a result, automated activity prompting systems can potentially extend the period of time that adults can age in place. In this paper we introduce AP, an algorithm to automate activity prompting based on smart home technology. AP learns prompt rules based on the time when activities are typically performed as well as the relationship between activities that normally occur in a sequence. We evaluate the AP algorithm based on smart home datasets and demonstrate its ability to operate within a physical smart environment.

  4. A unified approach to VLSI layout automation and algorithm mapping on processor arrays

    NASA Technical Reports Server (NTRS)

    Venkateswaran, N.; Pattabiraman, S.; Srinivasan, Vinoo N.

    1993-01-01

    Development of software tools for designing supercomputing systems is highly complex and cost ineffective. To tackle this a special purpose PAcube silicon compiler which integrates different design levels from cell to processor arrays has been proposed. As a part of this, we present in this paper a novel methodology which unifies the problems of Layout Automation and Algorithm Mapping.

  5. Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties

    Treesearch

    Michael Palace; Michael Keller; Gregory P. Asner; Stephen Hagen; Bobby Braswell

    2008-01-01

    We developed an automated tree crown analysis algorithm using 1-m panchromatic IKONOS satellite images to examine forest canopy structure in the Brazilian Amazon. The algorithm was calibrated on the landscape level with tree geometry and forest stand data at the Fazenda Cauaxi (3.75◦ S, 48.37◦ W) in the eastern Amazon, and then compared with forest...

  6. Evaluation of an automated microplate technique in the Galileo system for ABO and Rh(D) blood grouping.

    PubMed

    Xu, Weiyi; Wan, Feng; Lou, Yufeng; Jin, Jiali; Mao, Weilin

    2014-01-01

    A number of automated devices for pretransfusion testing have recently become available. This study evaluated the Immucor Galileo System, a fully automated device based on the microplate hemagglutination technique for ABO/Rh (D) determinations. Routine ABO/Rh typing tests were performed on 13,045 samples using the Immucor automated instruments. Manual tube method was used to resolve ABO forward and reverse grouping discrepancies. D-negative test results were investigated and confirmed manually by the indirect antiglobulin test (IAT). The system rejected 70 tests for sample inadequacy. 87 samples were read as "No-type-determined" due to forward and reverse grouping discrepancies. 25 tests gave these results because of sample hemolysis. After further tests, we found 34 tests were caused by weakened RBC antibodies, 5 tests were attributable to weak A and/or B antigens, 4 tests were due to mixed-field reactions, and 8 tests had high titer cold agglutinin with blood qualifications which react only at temperatures below 34 degrees C. In the remaining 11 cases, irregular RBC antibodies were identified in 9 samples (seven anti-M and two anti-P) and two subgroups were identified in 2 samples (one A1 and one A2) by a reference laboratory. As for D typing, 2 weak D+ samples missed by automated systems gave negative results, but weak-positive reactions were observed in the IAT. The Immucor Galileo System is reliable and suited for ABO and D blood groups, some reasons may cause a discrepancy in ABO/D typing using a fully automated system. It is suggested that standardization of sample collection may improve the performance of the fully automated system.

  7. Fully automated system for the quantification of human osteoarthritic knee joint effusion volume using magnetic resonance imaging

    PubMed Central

    2010-01-01

    Introduction Joint effusion is frequently associated with osteoarthritis (OA) flare-up and is an important marker of therapeutic response. This study aimed at developing and validating a fully automated system based on magnetic resonance imaging (MRI) for the quantification of joint effusion volume in knee OA patients. Methods MRI examinations consisted of two axial sequences: a T2-weighted true fast imaging with steady-state precession and a T1-weighted gradient echo. An automated joint effusion volume quantification system using MRI was developed and validated (a) with calibrated phantoms (cylinder and sphere) and effusion from knee OA patients; (b) with assessment by manual quantification; and (c) by direct aspiration. Twenty-five knee OA patients with joint effusion were included in the study. Results The automated joint effusion volume quantification was developed as a four stage sequencing process: bone segmentation, filtering of unrelated structures, segmentation of joint effusion, and subvoxel volume calculation. Validation experiments revealed excellent coefficients of variation with the calibrated cylinder (1.4%) and sphere (0.8%) phantoms. Comparison of the OA knee joint effusion volume assessed by the developed automated system and by manual quantification was also excellent (r = 0.98; P < 0.0001), as was the comparison with direct aspiration (r = 0.88; P = 0.0008). Conclusions The newly developed fully automated MRI-based system provided precise quantification of OA knee joint effusion volume with excellent correlation with data from phantoms, a manual system, and joint aspiration. Such an automated system will be instrumental in improving the reproducibility/reliability of the evaluation of this marker in clinical application. PMID:20846392

  8. Development and validation of an automated operational modal analysis algorithm for vibration-based monitoring and tensile load estimation

    NASA Astrophysics Data System (ADS)

    Rainieri, Carlo; Fabbrocino, Giovanni

    2015-08-01

    In the last few decades large research efforts have been devoted to the development of methods for automated detection of damage and degradation phenomena at an early stage. Modal-based damage detection techniques are well-established methods, whose effectiveness for Level 1 (existence) and Level 2 (location) damage detection is demonstrated by several studies. The indirect estimation of tensile loads in cables and tie-rods is another attractive application of vibration measurements. It provides interesting opportunities for cheap and fast quality checks in the construction phase, as well as for safety evaluations and structural maintenance over the structure lifespan. However, the lack of automated modal identification and tracking procedures has been for long a relevant drawback to the extensive application of the above-mentioned techniques in the engineering practice. An increasing number of field applications of modal-based structural health and performance assessment are appearing after the development of several automated output-only modal identification procedures in the last few years. Nevertheless, additional efforts are still needed to enhance the robustness of automated modal identification algorithms, control the computational efforts and improve the reliability of modal parameter estimates (in particular, damping). This paper deals with an original algorithm for automated output-only modal parameter estimation. Particular emphasis is given to the extensive validation of the algorithm based on simulated and real datasets in view of continuous monitoring applications. The results point out that the algorithm is fairly robust and demonstrate its ability to provide accurate and precise estimates of the modal parameters, including damping ratios. As a result, it has been used to develop systems for vibration-based estimation of tensile loads in cables and tie-rods. Promising results have been achieved for non-destructive testing as well as continuous monitoring purposes. They are documented in the last sections of the paper.

  9. Integrating Test-Form Formatting into Automated Test Assembly

    ERIC Educational Resources Information Center

    Diao, Qi; van der Linden, Wim J.

    2013-01-01

    Automated test assembly uses the methodology of mixed integer programming to select an optimal set of items from an item bank. Automated test-form generation uses the same methodology to optimally order the items and format the test form. From an optimization point of view, production of fully formatted test forms directly from the item pool using…

  10. Wire-Guide Manipulator For Automated Welding

    NASA Technical Reports Server (NTRS)

    Morris, Tim; White, Kevin; Gordon, Steve; Emerich, Dave; Richardson, Dave; Faulkner, Mike; Stafford, Dave; Mccutcheon, Kim; Neal, Ken; Milly, Pete

    1994-01-01

    Compact motor drive positions guide for welding filler wire. Drive part of automated wire feeder in partly or fully automated welding system. Drive unit contains three parallel subunits. Rotations of lead screws in three subunits coordinated to obtain desired motions in three degrees of freedom. Suitable for both variable-polarity plasma arc welding and gas/tungsten arc welding.

  11. Fully automated corneal endothelial morphometry of images captured by clinical specular microscopy

    NASA Astrophysics Data System (ADS)

    Bucht, Curry; Söderberg, Per; Manneberg, Göran

    2010-02-01

    The corneal endothelium serves as the posterior barrier of the cornea. Factors such as clarity and refractive properties of the cornea are in direct relationship to the quality of the endothelium. The endothelial cell density is considered the most important morphological factor of the corneal endothelium. Pathological conditions and physical trauma may threaten the endothelial cell density to such an extent that the optical property of the cornea and thus clear eyesight is threatened. Diagnosis of the corneal endothelium through morphometry is an important part of several clinical applications. Morphometry of the corneal endothelium is presently carried out by semi automated analysis of pictures captured by a Clinical Specular Microscope (CSM). Because of the occasional need of operator involvement, this process can be tedious, having a negative impact on sampling size. This study was dedicated to the development and use of fully automated analysis of a very large range of images of the corneal endothelium, captured by CSM, using Fourier analysis. Software was developed in the mathematical programming language Matlab. Pictures of the corneal endothelium, captured by CSM, were read into the analysis software. The software automatically performed digital enhancement of the images, normalizing lights and contrasts. The digitally enhanced images of the corneal endothelium were Fourier transformed, using the fast Fourier transform (FFT) and stored as new images. Tools were developed and applied for identification and analysis of relevant characteristics of the Fourier transformed images. The data obtained from each Fourier transformed image was used to calculate the mean cell density of its corresponding corneal endothelium. The calculation was based on well known diffraction theory. Results in form of estimated cell density of the corneal endothelium were obtained, using fully automated analysis software on 292 images captured by CSM. The cell density obtained by the fully automated analysis was compared to the cell density obtained from classical, semi-automated analysis and a relatively large correlation was found.

  12. Alternative Fuels Data Center

    Science.gov Websites

    Autonomous Vehicle Operation A person can operate a fully autonomous vehicle with the automated federal motor vehicle safety standards and is registered as a fully autonomous vehicle. Other conditions

  13. A Fully Automated Diabetes Prevention Program, Alive-PD: Program Design and Randomized Controlled Trial Protocol

    PubMed Central

    Azar, Kristen MJ; Block, Torin J; Romanelli, Robert J; Carpenter, Heather; Hopkins, Donald; Palaniappan, Latha; Block, Clifford H

    2015-01-01

    Background In the United States, 86 million adults have pre-diabetes. Evidence-based interventions that are both cost effective and widely scalable are needed to prevent diabetes. Objective Our goal was to develop a fully automated diabetes prevention program and determine its effectiveness in a randomized controlled trial. Methods Subjects with verified pre-diabetes were recruited to participate in a trial of the effectiveness of Alive-PD, a newly developed, 1-year, fully automated behavior change program delivered by email and Web. The program involves weekly tailored goal-setting, team-based and individual challenges, gamification, and other opportunities for interaction. An accompanying mobile phone app supports goal-setting and activity planning. For the trial, participants were randomized by computer algorithm to start the program immediately or after a 6-month delay. The primary outcome measures are change in HbA1c and fasting glucose from baseline to 6 months. The secondary outcome measures are change in HbA1c, glucose, lipids, body mass index (BMI), weight, waist circumference, and blood pressure at 3, 6, 9, and 12 months. Randomization and delivery of the intervention are independent of clinic staff, who are blinded to treatment assignment. Outcomes will be evaluated for the intention-to-treat and per-protocol populations. Results A total of 340 subjects with pre-diabetes were randomized to the intervention (n=164) or delayed-entry control group (n=176). Baseline characteristics were as follows: mean age 55 (SD 8.9); mean BMI 31.1 (SD 4.3); male 68.5%; mean fasting glucose 109.9 (SD 8.4) mg/dL; and mean HbA1c 5.6 (SD 0.3)%. Data collection and analysis are in progress. We hypothesize that participants in the intervention group will achieve statistically significant reductions in fasting glucose and HbA1c as compared to the control group at 6 months post baseline. Conclusions The randomized trial will provide rigorous evidence regarding the efficacy of this Web- and Internet-based program in reducing or preventing progression of glycemic markers and indirectly in preventing progression to diabetes. Trial Registration ClinicalTrials.gov NCT01479062; http://clinicaltrials.gov/show/NCT01479062 (Archived by WebCite at http://www.webcitation.org/6U8ODy1vo). PMID:25608692

  14. Automated identification of cone photoreceptors in adaptive optics retinal images.

    PubMed

    Li, Kaccie Y; Roorda, Austin

    2007-05-01

    In making noninvasive measurements of the human cone mosaic, the task of labeling each individual cone is unavoidable. Manual labeling is a time-consuming process, setting the motivation for the development of an automated method. An automated algorithm for labeling cones in adaptive optics (AO) retinal images is implemented and tested on real data. The optical fiber properties of cones aided the design of the algorithm. Out of 2153 manually labeled cones from six different images, the automated method correctly identified 94.1% of them. The agreement between the automated and the manual labeling methods varied from 92.7% to 96.2% across the six images. Results between the two methods disagreed for 1.2% to 9.1% of the cones. Voronoi analysis of large montages of AO retinal images confirmed the general hexagonal-packing structure of retinal cones as well as the general cone density variability across portions of the retina. The consistency of our measurements demonstrates the reliability and practicality of having an automated solution to this problem.

  15. Automated protein NMR structure determination using wavelet de-noised NOESY spectra.

    PubMed

    Dancea, Felician; Günther, Ulrich

    2005-11-01

    A major time-consuming step of protein NMR structure determination is the generation of reliable NOESY cross peak lists which usually requires a significant amount of manual interaction. Here we present a new algorithm for automated peak picking involving wavelet de-noised NOESY spectra in a process where the identification of peaks is coupled to automated structure determination. The core of this method is the generation of incremental peak lists by applying different wavelet de-noising procedures which yield peak lists of a different noise content. In combination with additional filters which probe the consistency of the peak lists, good convergence of the NOESY-based automated structure determination could be achieved. These algorithms were implemented in the context of the ARIA software for automated NOE assignment and structure determination and were validated for a polysulfide-sulfur transferase protein of known structure. The procedures presented here should be commonly applicable for efficient protein NMR structure determination and automated NMR peak picking.

  16. Xenon International Automated Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-08-05

    The Xenon International Automated Control software monitors, displays status, and allows for manual operator control as well as fully automatic control of multiple commercial and PNNL designed hardware components to generate and transmit atmospheric radioxenon concentration measurements every six hours.

  17. Development of Fully Automated Low-Cost Immunoassay System for Research Applications.

    PubMed

    Wang, Guochun; Das, Champak; Ledden, Bradley; Sun, Qian; Nguyen, Chien

    2017-10-01

    Enzyme-linked immunosorbent assay (ELISA) automation for routine operation in a small research environment would be very attractive. A portable fully automated low-cost immunoassay system was designed, developed, and evaluated with several protein analytes. It features disposable capillary columns as the reaction sites and uses real-time calibration for improved accuracy. It reduces the overall assay time to less than 75 min with the ability of easy adaptation of new testing targets. The running cost is extremely low due to the nature of automation, as well as reduced material requirements. Details about system configuration, components selection, disposable fabrication, system assembly, and operation are reported. The performance of the system was initially established with a rabbit immunoglobulin G (IgG) assay, and an example of assay adaptation with an interleukin 6 (IL6) assay is shown. This system is ideal for research use, but could work for broader testing applications with further optimization.

  18. REBOCOL (Robotic Calorimetry): An automated NDA (Nondestructive assay) calorimetry and gamma isotopic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, J.R.; Bonner, C.A.; Ostenak, C.A.

    1989-01-01

    ROBOCAL, which is presently being developed and tested at Los Alamos National Laboratory, is a full-scale, prototypical robotic system, for remote calorimetric and gamma-ray analysis of special nuclear materials. It integrates a fully automated, multi-drawer, vertical stacker-retriever system for staging unmeasured nuclear materials, and a fully automated gantry robot for computer-based selection and transfer of nuclear materials to calorimetric and gamma-ray measurement stations. Since ROBOCAL is designed for minimal operator intervention, a completely programmed user interface and data-base system are provided to interact with the automated mechanical and assay systems. The assay system is designed to completely integrate calorimetric andmore » gamma-ray data acquisition and to perform state-of-the-art analyses on both homogeneous and heterogeneous distributions of nuclear materials in a wide variety of matrices. 10 refs., 10 figs., 4 tabs.« less

  19. Two Automated Techniques for Carotid Lumen Diameter Measurement: Regional versus Boundary Approaches.

    PubMed

    Araki, Tadashi; Kumar, P Krishna; Suri, Harman S; Ikeda, Nobutaka; Gupta, Ajay; Saba, Luca; Rajan, Jeny; Lavra, Francesco; Sharma, Aditya M; Shafique, Shoaib; Nicolaides, Andrew; Laird, John R; Suri, Jasjit S

    2016-07-01

    The degree of stenosis in the carotid artery can be predicted using automated carotid lumen diameter (LD) measured from B-mode ultrasound images. Systolic velocity-based methods for measurement of LD are subjective. With the advancement of high resolution imaging, image-based methods have started to emerge. However, they require robust image analysis for accurate LD measurement. This paper presents two different algorithms for automated segmentation of the lumen borders in carotid ultrasound images. Both algorithms are modeled as a two stage process. Stage one consists of a global-based model using scale-space framework for the extraction of the region of interest. This stage is common to both algorithms. Stage two is modeled using a local-based strategy that extracts the lumen interfaces. At this stage, the algorithm-1 is modeled as a region-based strategy using a classification framework, whereas the algorithm-2 is modeled as a boundary-based approach that uses the level set framework. Two sets of databases (DB), Japan DB (JDB) (202 patients, 404 images) and Hong Kong DB (HKDB) (50 patients, 300 images) were used in this study. Two trained neuroradiologists performed manual LD tracings. The mean automated LD measured was 6.35 ± 0.95 mm for JDB and 6.20 ± 1.35 mm for HKDB. The precision-of-merit was: 97.4 % and 98.0 % w.r.t to two manual tracings for JDB and 99.7 % and 97.9 % w.r.t to two manual tracings for HKDB. Statistical tests such as ANOVA, Chi-Squared, T-test, and Mann-Whitney test were conducted to show the stability and reliability of the automated techniques.

  20. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent identification number, the distance between branching point to the parent root base, the root length, the root radius and the nodes that belong to each individual root path. This information is relevant for the analysis of dynamic root system development as well as the parameterisation of root architecture models. Here, we show results of Root System Analyzer applied to analyse the root systems of wheat plants grown in rhizotrons. Different treatments with respect to soil moisture and apatite concentrations were used to test the effects of those conditions on root system development. Photographs of the root systems were taken at high spatial and temporal resolution and root systems are automatically tracked.

Top