DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Y; Huang, H; Su, T
Purpose: Texture-based quantification of image heterogeneity has been a popular topic for imaging studies in recent years. As previous studies mainly focus on oncological applications, we report our recent efforts of applying such techniques on cardiac perfusion imaging. A fully automated procedure has been developed to perform texture analysis for measuring the image heterogeneity. Clinical data were used to evaluate the preliminary performance of such methods. Methods: Myocardial perfusion images of Thallium-201 scans were collected from 293 patients with suspected coronary artery disease. Each subject underwent a Tl-201 scan and a percutaneous coronary intervention (PCI) within three months. The PCImore » Result was used as the gold standard of coronary ischemia of more than 70% stenosis. Each Tl-201 scan was spatially normalized to an image template for fully automatic segmentation of the LV. The segmented voxel intensities were then carried into the texture analysis with our open-source software Chang Gung Image Texture Analysis toolbox (CGITA). To evaluate the clinical performance of the image heterogeneity for detecting the coronary stenosis, receiver operating characteristic (ROC) analysis was used to compute the overall accuracy, sensitivity and specificity as well as the area under curve (AUC). Those indices were compared to those obtained from the commercially available semi-automatic software QPS. Results: With the fully automatic procedure to quantify heterogeneity from Tl-201 scans, we were able to achieve a good discrimination with good accuracy (74%), sensitivity (73%), specificity (77%) and AUC of 0.82. Such performance is similar to those obtained from the semi-automatic QPS software that gives a sensitivity of 71% and specificity of 77%. Conclusion: Based on fully automatic procedures of data processing, our preliminary data indicate that the image heterogeneity of myocardial perfusion imaging can provide useful information for automatic determination of the myocardial ischemia.« less
Feasibility Study on Fully Automatic High Quality Translation: Volume II. Final Technical Report.
ERIC Educational Resources Information Center
Lehmann, Winifred P.; Stachowitz, Rolf
This second volume of a two-volume report on a fully automatic high quality translation (FAHQT) contains relevant papers contributed by specialists on the topic of machine translation. The papers presented here cover such topics as syntactical analysis in transformational grammar and in machine translation, lexical features in translation and…
Yavuzer, Yasemin; Karataş, Zeynep
2013-01-01
This study aimed to examine the mediating role of anger in the relationship between automatic thoughts and physical aggression in adolescents. The study included 224 adolescents in the 9th grade of 3 different high schools in central Burdur during the 2011-2012 academic year. Participants completed the Aggression Questionnaire and Automatic Thoughts Scale in their classrooms during counseling sessions. Data were analyzed using simple and multiple linear regression analysis. There were positive correlations between the adolescents' automatic thoughts, and physical aggression, and anger. According to regression analysis, automatic thoughts effectively predicted the level of physical aggression (b= 0.233, P < 0.001)) and anger (b= 0.325, P < 0.001). Analysis of the mediating role of anger showed that anger fully mediated the relationship between automatic thoughts and physical aggression (Sobel z = 5.646, P < 0.001). Anger fully mediated the relationship between automatic thoughts and physical aggression. Providing adolescents with anger management skills training is very important for the prevention of physical aggression. Such training programs should include components related to the development of an awareness of dysfunctional and anger-triggering automatic thoughts, and how to change them. As the study group included adolescents from Burdur, the findings can only be generalized to groups with similar characteristics.
Automatic classification of seismic events within a regional seismograph network
NASA Astrophysics Data System (ADS)
Tiira, Timo; Kortström, Jari; Uski, Marja
2015-04-01
A fully automatic method for seismic event classification within a sparse regional seismograph network is presented. The tool is based on a supervised pattern recognition technique, Support Vector Machine (SVM), trained here to distinguish weak local earthquakes from a bulk of human-made or spurious seismic events. The classification rules rely on differences in signal energy distribution between natural and artificial seismic sources. Seismic records are divided into four windows, P, P coda, S, and S coda. For each signal window STA is computed in 20 narrow frequency bands between 1 and 41 Hz. The 80 discrimination parameters are used as a training data for the SVM. The SVM models are calculated for 19 on-line seismic stations in Finland. The event data are compiled mainly from fully automatic event solutions that are manually classified after automatic location process. The station-specific SVM training events include 11-302 positive (earthquake) and 227-1048 negative (non-earthquake) examples. The best voting rules for combining results from different stations are determined during an independent testing period. Finally, the network processing rules are applied to an independent evaluation period comprising 4681 fully automatic event determinations, of which 98 % have been manually identified as explosions or noise and 2 % as earthquakes. The SVM method correctly identifies 94 % of the non-earthquakes and all the earthquakes. The results imply that the SVM tool can identify and filter out blasts and spurious events from fully automatic event solutions with a high level of confidence. The tool helps to reduce work-load in manual seismic analysis by leaving only ~5 % of the automatic event determinations, i.e. the probable earthquakes for more detailed seismological analysis. The approach presented is easy to adjust to requirements of a denser or wider high-frequency network, once enough training examples for building a station-specific data set are available.
Yang, Zhen; Bogovic, John A; Carass, Aaron; Ye, Mao; Searson, Peter C; Prince, Jerry L
2013-03-13
With the rapid development of microscopy for cell imaging, there is a strong and growing demand for image analysis software to quantitatively study cell morphology. Automatic cell segmentation is an important step in image analysis. Despite substantial progress, there is still a need to improve the accuracy, efficiency, and adaptability to different cell morphologies. In this paper, we propose a fully automatic method for segmenting cells in fluorescence images of confluent cell monolayers. This method addresses several challenges through a combination of ideas. 1) It realizes a fully automatic segmentation process by first detecting the cell nuclei as initial seeds and then using a multi-object geometric deformable model (MGDM) for final segmentation. 2) To deal with different defects in the fluorescence images, the cell junctions are enhanced by applying an order-statistic filter and principal curvature based image operator. 3) The final segmentation using MGDM promotes robust and accurate segmentation results, and guarantees no overlaps and gaps between neighboring cells. The automatic segmentation results are compared with manually delineated cells, and the average Dice coefficient over all distinguishable cells is 0.88.
Gloger, Oliver; Kühn, Jens; Stanski, Adam; Völzke, Henry; Puls, Ralf
2010-07-01
Automatic 3D liver segmentation in magnetic resonance (MR) data sets has proven to be a very challenging task in the domain of medical image analysis. There exist numerous approaches for automatic 3D liver segmentation on computer tomography data sets that have influenced the segmentation of MR images. In contrast to previous approaches to liver segmentation in MR data sets, we use all available MR channel information of different weightings and formulate liver tissue and position probabilities in a probabilistic framework. We apply multiclass linear discriminant analysis as a fast and efficient dimensionality reduction technique and generate probability maps then used for segmentation. We develop a fully automatic three-step 3D segmentation approach based upon a modified region growing approach and a further threshold technique. Finally, we incorporate characteristic prior knowledge to improve the segmentation results. This novel 3D segmentation approach is modularized and can be applied for normal and fat accumulated liver tissue properties. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Morais, Pedro; Queirós, Sandro; Heyde, Brecht; Engvall, Jan; 'hooge, Jan D.; Vilaça, João L.
2017-09-01
Cardiovascular diseases are among the leading causes of death and frequently result in local myocardial dysfunction. Among the numerous imaging modalities available to detect these dysfunctional regions, cardiac deformation imaging through tagged magnetic resonance imaging (t-MRI) has been an attractive approach. Nevertheless, fully automatic analysis of these data sets is still challenging. In this work, we present a fully automatic framework to estimate left ventricular myocardial deformation from t-MRI. This strategy performs automatic myocardial segmentation based on B-spline explicit active surfaces, which are initialized using an annular model. A non-rigid image-registration technique is then used to assess myocardial deformation. Three experiments were set up to validate the proposed framework using a clinical database of 75 patients. First, automatic segmentation accuracy was evaluated by comparing against manual delineations at one specific cardiac phase. The proposed solution showed an average perpendicular distance error of 2.35 ± 1.21 mm and 2.27 ± 1.02 mm for the endo- and epicardium, respectively. Second, starting from either manual or automatic segmentation, myocardial tracking was performed and the resulting strain curves were compared. It is shown that the automatic segmentation adds negligible differences during the strain-estimation stage, corroborating its accuracy. Finally, segmental strain was compared with scar tissue extent determined by delay-enhanced MRI. The results proved that both strain components were able to distinguish between normal and infarct regions. Overall, the proposed framework was shown to be accurate, robust, and attractive for clinical practice, as it overcomes several limitations of a manual analysis.
NASA Astrophysics Data System (ADS)
Armando, Alessandro; Giunchiglia, Enrico; Ponta, Serena Elisa
We present an approach to the formal specification and automatic analysis of business processes under authorization constraints based on the action language \\cal{C}. The use of \\cal{C} allows for a natural and concise modeling of the business process and the associated security policy and for the automatic analysis of the resulting specification by using the Causal Calculator (CCALC). Our approach improves upon previous work by greatly simplifying the specification step while retaining the ability to perform a fully automatic analysis. To illustrate the effectiveness of the approach we describe its application to a version of a business process taken from the banking domain and use CCALC to determine resource allocation plans complying with the security policy.
Automatic zebrafish heartbeat detection and analysis for zebrafish embryos.
Pylatiuk, Christian; Sanchez, Daniela; Mikut, Ralf; Alshut, Rüdiger; Reischl, Markus; Hirth, Sofia; Rottbauer, Wolfgang; Just, Steffen
2014-08-01
A fully automatic detection and analysis method of heartbeats in videos of nonfixed and nonanesthetized zebrafish embryos is presented. This method reduces the manual workload and time needed for preparation and imaging of the zebrafish embryos, as well as for evaluating heartbeat parameters such as frequency, beat-to-beat intervals, and arrhythmicity. The method is validated by a comparison of the results from automatic and manual detection of the heart rates of wild-type zebrafish embryos 36-120 h postfertilization and of embryonic hearts with bradycardia and pauses in the cardiac contraction.
INFORMATION STORAGE AND RETRIEVAL, REPORTS ON EVALUATION PROCEDURES AND RESULTS 1965-1967.
ERIC Educational Resources Information Center
SALTON, GERALD
A DETAILED ANALYSIS OF THE RETRIEVAL EVALUATION RESULTS OBTAINED WITH THE AUTOMATIC SMART DOCUMENT RETRIEVAL SYSTEM FOR DOCUMENT COLLECTIONS IN THE FIELDS OF AERODYNAMICS, COMPUTER SCIENCE, AND DOCUMENTATION IS GIVEN IN THIS REPORT. THE VARIOUS COMPONENTS OF FULLY AUTOMATIC DOCUMENT RETRIEVAL SYSTEMS ARE DISCUSSED IN DETAIL, INCLUDING THE FORMS OF…
Automatic high throughput empty ISO container verification
NASA Astrophysics Data System (ADS)
Chalmers, Alex
2007-04-01
Encouraging results are presented for the automatic analysis of radiographic images of a continuous stream of ISO containers to confirm they are truly empty. A series of image processing algorithms are described that process real-time data acquired during the actual inspection of each container and assigns each to one of the classes "empty", "not empty" or "suspect threat". This research is one step towards achieving fully automated analysis of cargo containers.
Almeida, Diogo F; Ruben, Rui B; Folgado, João; Fernandes, Paulo R; Audenaert, Emmanuel; Verhegghe, Benedict; De Beule, Matthieu
2016-12-01
Femur segmentation can be an important tool in orthopedic surgical planning. However, in order to overcome the need of an experienced user with extensive knowledge on the techniques, segmentation should be fully automatic. In this paper a new fully automatic femur segmentation method for CT images is presented. This method is also able to define automatically the medullary canal and performs well even in low resolution CT scans. Fully automatic femoral segmentation was performed adapting a template mesh of the femoral volume to medical images. In order to achieve this, an adaptation of the active shape model (ASM) technique based on the statistical shape model (SSM) and local appearance model (LAM) of the femur with a novel initialization method was used, to drive the template mesh deformation in order to fit the in-image femoral shape in a time effective approach. With the proposed method a 98% convergence rate was achieved. For high resolution CT images group the average error is less than 1mm. For the low resolution image group the results are also accurate and the average error is less than 1.5mm. The proposed segmentation pipeline is accurate, robust and completely user free. The method is robust to patient orientation, image artifacts and poorly defined edges. The results excelled even in CT images with a significant slice thickness, i.e., above 5mm. Medullary canal segmentation increases the geometric information that can be used in orthopedic surgical planning or in finite element analysis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Quantification of regional fat volume in rat MRI
NASA Astrophysics Data System (ADS)
Sacha, Jaroslaw P.; Cockman, Michael D.; Dufresne, Thomas E.; Trokhan, Darren
2003-05-01
Multiple initiatives in the pharmaceutical and beauty care industries are directed at identifying therapies for weight management. Body composition measurements are critical for such initiatives. Imaging technologies that can be used to measure body composition noninvasively include DXA (dual energy x-ray absorptiometry) and MRI (magnetic resonance imaging). Unlike other approaches, MRI provides the ability to perform localized measurements of fat distribution. Several factors complicate the automatic delineation of fat regions and quantification of fat volumes. These include motion artifacts, field non-uniformity, brightness and contrast variations, chemical shift misregistration, and ambiguity in delineating anatomical structures. We have developed an approach to deal practically with those challenges. The approach is implemented in a package, the Fat Volume Tool, for automatic detection of fat tissue in MR images of the rat abdomen, including automatic discrimination between abdominal and subcutaneous regions. We suppress motion artifacts using masking based on detection of implicit landmarks in the images. Adaptive object extraction is used to compensate for intensity variations. This approach enables us to perform fat tissue detection and quantification in a fully automated manner. The package can also operate in manual mode, which can be used for verification of the automatic analysis or for performing supervised segmentation. In supervised segmentation, the operator has the ability to interact with the automatic segmentation procedures to touch-up or completely overwrite intermediate segmentation steps. The operator's interventions steer the automatic segmentation steps that follow. This improves the efficiency and quality of the final segmentation. Semi-automatic segmentation tools (interactive region growing, live-wire, etc.) improve both the accuracy and throughput of the operator when working in manual mode. The quality of automatic segmentation has been evaluated by comparing the results of fully automated analysis to manual analysis of the same images. The comparison shows a high degree of correlation that validates the quality of the automatic segmentation approach.
Automatic short axis orientation of the left ventricle in 3D ultrasound recordings
NASA Astrophysics Data System (ADS)
Pedrosa, João.; Heyde, Brecht; Heeren, Laurens; Engvall, Jan; Zamorano, Jose; Papachristidis, Alexandros; Edvardsen, Thor; Claus, Piet; D'hooge, Jan
2016-04-01
The recent advent of three-dimensional echocardiography has led to an increased interest from the scientific community in left ventricle segmentation frameworks for cardiac volume and function assessment. An automatic orientation of the segmented left ventricular mesh is an important step to obtain a point-to-point correspondence between the mesh and the cardiac anatomy. Furthermore, this would allow for an automatic division of the left ventricle into the standard 17 segments and, thus, fully automatic per-segment analysis, e.g. regional strain assessment. In this work, a method for fully automatic short axis orientation of the segmented left ventricle is presented. The proposed framework aims at detecting the inferior right ventricular insertion point. 211 three-dimensional echocardiographic images were used to validate this framework by comparison to manual annotation of the inferior right ventricular insertion point. A mean unsigned error of 8, 05° +/- 18, 50° was found, whereas the mean signed error was 1, 09°. Large deviations between the manual and automatic annotations (> 30°) only occurred in 3, 79% of cases. The average computation time was 666ms in a non-optimized MATLAB environment, which potentiates real-time application. In conclusion, a successful automatic real-time method for orientation of the segmented left ventricle is proposed.
Lin, Kun-Ju; Huang, Jia-Yann; Chen, Yung-Sheng
2011-12-01
Glomerular filtration rate (GFR) is a common accepted standard estimation of renal function. Gamma camera-based methods for estimating renal uptake of (99m)Tc-diethylenetriaminepentaacetic acid (DTPA) without blood or urine sampling have been widely used. Of these, the method introduced by Gates has been the most common method. Currently, most of gamma cameras are equipped with a commercial program for GFR determination, a semi-quantitative analysis by manually drawing region of interest (ROI) over each kidney. Then, the GFR value can be computed from the scintigraphic determination of (99m)Tc-DTPA uptake within the kidney automatically. Delineating the kidney area is difficult when applying a fixed threshold value. Moreover, hand-drawn ROIs are tedious, time consuming, and dependent highly on operator skill. Thus, we developed a fully automatic renal ROI estimation system based on the temporal changes in intensity counts, intensity-pair distribution image contrast enhancement method, adaptive thresholding, and morphological operations that can locate the kidney area and obtain the GFR value from a (99m)Tc-DTPA renogram. To evaluate the performance of the proposed approach, 30 clinical dynamic renograms were introduced. The fully automatic approach failed in one patient with very poor renal function. Four patients had a unilateral kidney, and the others had bilateral kidneys. The automatic contours from the remaining 54 kidneys were compared with the contours of manual drawing. The 54 kidneys were included for area error and boundary error analyses. There was high correlation between two physicians' manual contours and the contours obtained by our approach. For area error analysis, the mean true positive area overlap is 91%, the mean false negative is 13.4%, and the mean false positive is 9.3%. The boundary error is 1.6 pixels. The GFR calculated using this automatic computer-aided approach is reproducible and may be applied to help nuclear medicine physicians in clinical practice.
Research and Development of Fully Automatic Alien Smoke Stack and Packaging System
NASA Astrophysics Data System (ADS)
Yang, Xudong; Ge, Qingkuan; Peng, Tao; Zuo, Ping; Dong, Weifu
2017-12-01
The problem of low efficiency of manual sorting packaging for the current tobacco distribution center, which developed a set of safe efficient and automatic type of alien smoke stack and packaging system. The functions of fully automatic alien smoke stack and packaging system adopt PLC control technology, servo control technology, robot technology, image recognition technology and human-computer interaction technology. The characteristics, principles, control process and key technology of the system are discussed in detail. Through the installation and commissioning fully automatic alien smoke stack and packaging system has a good performance and has completed the requirements for shaped cigarette.
Tingelhoff, K; Moral, A I; Kunkel, M E; Rilk, M; Wagner, I; Eichhorn, K G; Wahl, F M; Bootz, F
2007-01-01
Segmentation of medical image data is getting more and more important over the last years. The results are used for diagnosis, surgical planning or workspace definition of robot-assisted systems. The purpose of this paper is to find out whether manual or semi-automatic segmentation is adequate for ENT surgical workflow or whether fully automatic segmentation of paranasal sinuses and nasal cavity is needed. We present a comparison of manual and semi-automatic segmentation of paranasal sinuses and the nasal cavity. Manual segmentation is performed by custom software whereas semi-automatic segmentation is realized by a commercial product (Amira). For this study we used a CT dataset of the paranasal sinuses which consists of 98 transversal slices, each 1.0 mm thick, with a resolution of 512 x 512 pixels. For the analysis of both segmentation procedures we used volume, extension (width, length and height), segmentation time and 3D-reconstruction. The segmentation time was reduced from 960 minutes with manual to 215 minutes with semi-automatic segmentation. We found highest variances segmenting nasal cavity. For the paranasal sinuses manual and semi-automatic volume differences are not significant. Dependent on the segmentation accuracy both approaches deliver useful results and could be used for e.g. robot-assisted systems. Nevertheless both procedures are not useful for everyday surgical workflow, because they take too much time. Fully automatic and reproducible segmentation algorithms are needed for segmentation of paranasal sinuses and nasal cavity.
Pipeline Reduction of Binary Light Curves from Large-Scale Surveys
NASA Astrophysics Data System (ADS)
Prša, Andrej; Zwitter, Tomaž
2007-08-01
One of the most important changes in observational astronomy of the 21st Century is a rapid shift from classical object-by-object observations to extensive automatic surveys. As CCD detectors are getting better and their prices are getting lower, more and more small and medium-size observatories are refocusing their attention to detection of stellar variability through systematic sky-scanning missions. This trend is additionally powered by the success of pioneering surveys such as ASAS, DENIS, OGLE, TASS, their space counterpart Hipparcos and others. Such surveys produce massive amounts of data and it is not at all clear how these data are to be reduced and analysed. This is especially striking in the eclipsing binary (EB) field, where most frequently used tools are optimized for object-by-object analysis. A clear need for thorough, reliable and fully automated approaches to modeling and analysis of EB data is thus obvious. This task is very difficult because of limited data quality, non-uniform phase coverage and parameter degeneracy. The talk will review recent advancements in putting together semi-automatic and fully automatic pipelines for EB data processing. Automatic procedures have already been used to process the Hipparcos data, LMC/SMC observations, OGLE and ASAS catalogs etc. We shall discuss the advantages and shortcomings of these procedures and overview the current status of automatic EB modeling pipelines for the upcoming missions such as CoRoT, Kepler, Gaia and others.
AutoBayes Program Synthesis System Users Manual
NASA Technical Reports Server (NTRS)
Schumann, Johann; Jafari, Hamed; Pressburger, Tom; Denney, Ewen; Buntine, Wray; Fischer, Bernd
2008-01-01
Program synthesis is the systematic, automatic construction of efficient executable code from high-level declarative specifications. AutoBayes is a fully automatic program synthesis system for the statistical data analysis domain; in particular, it solves parameter estimation problems. It has seen many successful applications at NASA and is currently being used, for example, to analyze simulation results for Orion. The input to AutoBayes is a concise description of a data analysis problem composed of a parameterized statistical model and a goal that is a probability term involving parameters and input data. The output is optimized and fully documented C/C++ code computing the values for those parameters that maximize the probability term. AutoBayes can solve many subproblems symbolically rather than having to rely on numeric approximation algorithms, thus yielding effective, efficient, and compact code. Statistical analysis is faster and more reliable, because effort can be focused on model development and validation rather than manual development of solution algorithms and code.
NASA Astrophysics Data System (ADS)
Brook, A.; Cristofani, E.; Vandewal, M.; Matheis, C.; Jonuscheit, J.; Beigang, R.
2012-05-01
The present study proposes a fully integrated, semi-automatic and near real-time mode-operated image processing methodology developed for Frequency-Modulated Continuous-Wave (FMCW) THz images with the center frequencies around: 100 GHz and 300 GHz. The quality control of aeronautics composite multi-layered materials and structures using Non-Destructive Testing is the main focus of this work. Image processing is applied on the 3-D images to extract useful information. The data is processed by extracting areas of interest. The detected areas are subjected to image analysis for more particular investigation managed by a spatial model. Finally, the post-processing stage examines and evaluates the spatial accuracy of the extracted information.
Panuccio, Giuseppe; Torsello, Giovanni Federico; Pfister, Markus; Bisdas, Theodosios; Bosiers, Michel J; Torsello, Giovanni; Austermann, Martin
2016-12-01
To assess the usability of a fully automated fusion imaging engine prototype, matching preinterventional computed tomography with intraoperative fluoroscopic angiography during endovascular aortic repair. From June 2014 to February 2015, all patients treated electively for abdominal and thoracoabdominal aneurysms were enrolled prospectively. Before each procedure, preoperative planning was performed with a fully automated fusion engine prototype based on computed tomography angiography, creating a mesh model of the aorta. In a second step, this three-dimensional dataset was registered with the two-dimensional intraoperative fluoroscopy. The main outcome measure was the applicability of the fully automated fusion engine. Secondary outcomes were freedom from failure of automatic segmentation or of the automatic registration as well as accuracy of the mesh model, measuring deviations from intraoperative angiography in millimeters, if applicable. Twenty-five patients were enrolled in this study. The fusion imaging engine could be used in successfully 92% of the cases (n = 23). Freedom from failure of automatic segmentation was 44% (n = 11). The freedom from failure of the automatic registration was 76% (n = 19), the median error of the automatic registration process was 0 mm (interquartile range, 0-5 mm). The fully automated fusion imaging engine was found to be applicable in most cases, albeit in several cases a fully automated data processing was not possible, requiring manual intervention. The accuracy of the automatic registration yielded excellent results and promises a useful and simple to use technology. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Maklad, Ahmed S.; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Shimada, Mitsuo; Iinuma, Gen
2017-03-01
In abdominal disease diagnosis and various abdominal surgeries planning, segmentation of abdominal blood vessel (ABVs) is a very imperative task. Automatic segmentation enables fast and accurate processing of ABVs. We proposed a fully automatic approach for segmenting ABVs through contrast enhanced CT images by a hybrid of 3D region growing and 4D curvature analysis. The proposed method comprises three stages. First, candidates of bone, kidneys, ABVs and heart are segmented by an auto-adapted threshold. Second, bone is auto-segmented and classified into spine, ribs and pelvis. Third, ABVs are automatically segmented in two sub-steps: (1) kidneys and abdominal part of the heart are segmented, (2) ABVs are segmented by a hybrid approach that integrates a 3D region growing and 4D curvature analysis. Results are compared with two conventional methods. Results show that the proposed method is very promising in segmenting and classifying bone, segmenting whole ABVs and may have potential utility in clinical use.
A novel fully automatic scheme for fiducial marker-based alignment in electron tomography.
Han, Renmin; Wang, Liansan; Liu, Zhiyong; Sun, Fei; Zhang, Fa
2015-12-01
Although the topic of fiducial marker-based alignment in electron tomography (ET) has been widely discussed for decades, alignment without human intervention remains a difficult problem. Specifically, the emergence of subtomogram averaging has increased the demand for batch processing during tomographic reconstruction; fully automatic fiducial marker-based alignment is the main technique in this process. However, the lack of an accurate method for detecting and tracking fiducial markers precludes fully automatic alignment. In this paper, we present a novel, fully automatic alignment scheme for ET. Our scheme has two main contributions: First, we present a series of algorithms to ensure a high recognition rate and precise localization during the detection of fiducial markers. Our proposed solution reduces fiducial marker detection to a sampling and classification problem and further introduces an algorithm to solve the parameter dependence of marker diameter and marker number. Second, we propose a novel algorithm to solve the tracking of fiducial markers by reducing the tracking problem to an incomplete point set registration problem. Because a global optimization of a point set registration occurs, the result of our tracking is independent of the initial image position in the tilt series, allowing for the robust tracking of fiducial markers without pre-alignment. The experimental results indicate that our method can achieve an accurate tracking, almost identical to the current best one in IMOD with half automatic scheme. Furthermore, our scheme is fully automatic, depends on fewer parameters (only requires a gross value of the marker diameter) and does not require any manual interaction, providing the possibility of automatic batch processing of electron tomographic reconstruction. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Mu, Jin; Stegmann, Karsten; Mayfield, Elijah; Rose, Carolyn; Fischer, Frank
2012-01-01
Research related to online discussions frequently faces the problem of analyzing huge corpora. Natural Language Processing (NLP) technologies may allow automating this analysis. However, the state-of-the-art in machine learning and text mining approaches yields models that do not transfer well between corpora related to different topics. Also,…
SPAR reference manual. [for stress analysis
NASA Technical Reports Server (NTRS)
Whetstone, W. D.
1974-01-01
SPAR is a system of related programs which may be operated either in batch or demand (teletype) mode. Information exchange between programs is automatically accomplished through one or more direct access libraries, known collectively as the data complex. Card input is command-oriented, in free-field form. Capabilities available in the first production release of the system are fully documented, and include linear stress analysis, linear bifurcation buckling analysis, and linear vibrational analysis.
Eccles, B A; Klevecz, R R
1986-06-01
Mitotic frequency in a synchronous culture of mammalian cells was determined fully automatically and in real time using low-intensity phase-contrast microscopy and a newvicon video camera connected to an EyeCom III image processor. Image samples, at a frequency of one per minute for 50 hours, were analyzed by first extracting the high-frequency picture components, then thresholding and probing for annular objects indicative of putative mitotic cells. Both the extraction of high-frequency components and the recognition of rings of varying radii and discontinuities employed novel algorithms. Spatial and temporal relationships between annuli were examined to discern the occurrences of mitoses, and such events were recorded in a computer data file. At present, the automatic analysis is suited for random cell proliferation rate measurements or cell cycle studies. The automatic identification of mitotic cells as described here provides a measure of the average proliferative activity of the cell population as a whole and eliminates more than eight hours of manual review per time-lapse video recording.
NASA Astrophysics Data System (ADS)
Sidiropoulos, Panagiotis; Muller, Jan-Peter; Watson, Gillian; Michael, Gregory; Walter, Sebastian
2018-02-01
This work presents the coregistered, orthorectified and mosaiced high-resolution products of the MC11 quadrangle of Mars, which have been processed using novel, fully automatic, techniques. We discuss the development of a pipeline that achieves fully automatic and parameter independent geometric alignment of high-resolution planetary images, starting from raw input images in NASA PDS format and following all required steps to produce a coregistered geotiff image, a corresponding footprint and useful metadata. Additionally, we describe the development of a radiometric calibration technique that post-processes coregistered images to make them radiometrically consistent. Finally, we present a batch-mode application of the developed techniques over the MC11 quadrangle to validate their potential, as well as to generate end products, which are released to the planetary science community, thus assisting in the analysis of Mars static and dynamic features. This case study is a step towards the full automation of signal processing tasks that are essential to increase the usability of planetary data, but currently, require the extensive use of human resources.
Fully automatic oil spill detection from COSMO-SkyMed imagery using a neural network approach
NASA Astrophysics Data System (ADS)
Avezzano, Ruggero G.; Del Frate, Fabio; Latini, Daniele
2012-09-01
The increased amount of available Synthetic Aperture Radar (SAR) images acquired over the ocean represents an extraordinary potential for improving oil spill detection activities. On the other side this involves a growing workload on the operators at analysis centers. In addition, even if the operators go through extensive training to learn manual oil spill detection, they can provide different and subjective responses. Hence, the upgrade and improvements of algorithms for automatic detection that can help in screening the images and prioritizing the alarms are of great benefit. In the framework of an ASI Announcement of Opportunity for the exploitation of COSMO-SkyMed data, a research activity (ASI contract L/020/09/0) aiming at studying the possibility to use neural networks architectures to set up fully automatic processing chains using COSMO-SkyMed imagery has been carried out and results are presented in this paper. The automatic identification of an oil spill is seen as a three step process based on segmentation, feature extraction and classification. We observed that a PCNN (Pulse Coupled Neural Network) was capable of providing a satisfactory performance in the different dark spots extraction, close to what it would be produced by manual editing. For the classification task a Multi-Layer Perceptron (MLP) Neural Network was employed.
Colombi, Davide; Dinkel, Julien; Weinheimer, Oliver; Obermayer, Berenike; Buzan, Teodora; Nabers, Diana; Bauer, Claudia; Oltmanns, Ute; Palmowski, Karin; Herth, Felix; Kauczor, Hans Ulrich; Sverzellati, Nicola
2015-01-01
Objectives To describe changes over time in extent of idiopathic pulmonary fibrosis (IPF) at multidetector computed tomography (MDCT) assessed by semi-quantitative visual scores (VSs) and fully automatic histogram-based quantitative evaluation and to test the relationship between these two methods of quantification. Methods Forty IPF patients (median age: 70 y, interquartile: 62-75 years; M:F, 33:7) that underwent 2 MDCT at different time points with a median interval of 13 months (interquartile: 10-17 months) were retrospectively evaluated. In-house software YACTA quantified automatically lung density histogram (10th-90th percentile in 5th percentile steps). Longitudinal changes in VSs and in the percentiles of attenuation histogram were obtained in 20 untreated patients and 20 patients treated with pirfenidone. Pearson correlation analysis was used to test the relationship between VSs and selected percentiles. Results In follow-up MDCT, visual overall extent of parenchymal abnormalities (OE) increased in median by 5 %/year (interquartile: 0 %/y; +11 %/y). Substantial difference was found between treated and untreated patients in HU changes of the 40th and of the 80th percentiles of density histogram. Correlation analysis between VSs and selected percentiles showed higher correlation between the changes (Δ) in OE and Δ 40th percentile (r=0.69; p<0.001) as compared to Δ 80th percentile (r=0.58; p<0.001); closer correlation was found between Δ ground-glass extent and Δ 40th percentile (r=0.66, p<0.001) as compared to Δ 80th percentile (r=0.47, p=0.002), while the Δ reticulations correlated better with the Δ 80th percentile (r=0.56, p<0.001) in comparison to Δ 40th percentile (r=0.43, p=0.003). Conclusions There is a relevant and fully automatically measurable difference at MDCT in VSs and in histogram analysis at one year follow-up of IPF patients, whether treated or untreated: Δ 40th percentile might reflect the change in overall extent of lung abnormalities, notably of ground-glass pattern; furthermore Δ 80th percentile might reveal the course of reticular opacities. PMID:26110421
Feasibility Study on Fully Automatic High Quality Translation: Volume I. Final Technical Report.
ERIC Educational Resources Information Center
Lehmann, Winifred P.; Stachowitz, Rolf
The object of this theoretical inquiry is to examine the controversial issue of a fully automatic high quality translation (FAHQT) in the light of past and projected advances in linguistic theory and hardware/software capability. This first volume of a two-volume report discusses the requirements of translation and aspects of human and machine…
Fang, Yu-Hua Dean; Chiu, Shao-Chieh; Lu, Chin-Song; Weng, Yi-Hsin
2015-01-01
Purpose. We aimed at improving the existing methods for the fully automatic quantification of striatal uptake of [99mTc]-TRODAT with SPECT imaging. Procedures. A normal [99mTc]-TRODAT template was first formed based on 28 healthy controls. Images from PD patients (n = 365) and nPD subjects (28 healthy controls and 33 essential tremor patients) were spatially normalized to the normal template. We performed an inverse transform on the predefined striatal and reference volumes of interest (VOIs) and applied the transformed VOIs to the original image data to calculate the striatal-to-reference ratio (SRR). The diagnostic performance of the SRR was determined through receiver operating characteristic (ROC) analysis. Results. The SRR measured with our new and automatic method demonstrated excellent diagnostic performance with 92% sensitivity, 90% specificity, 92% accuracy, and an area under the curve (AUC) of 0.94. For the evaluation of the mean SRR and the clinical duration, a quadratic function fit the data with R 2 = 0.84. Conclusions. We developed and validated a fully automatic method for the quantification of the SRR in a large study sample. This method has an excellent diagnostic performance and exhibits a strong correlation between the mean SRR and the clinical duration in PD patients. PMID:26366413
Fang, Yu-Hua Dean; Chiu, Shao-Chieh; Lu, Chin-Song; Yen, Tzu-Chen; Weng, Yi-Hsin
2015-01-01
We aimed at improving the existing methods for the fully automatic quantification of striatal uptake of [(99m)Tc]-TRODAT with SPECT imaging. A normal [(99m)Tc]-TRODAT template was first formed based on 28 healthy controls. Images from PD patients (n = 365) and nPD subjects (28 healthy controls and 33 essential tremor patients) were spatially normalized to the normal template. We performed an inverse transform on the predefined striatal and reference volumes of interest (VOIs) and applied the transformed VOIs to the original image data to calculate the striatal-to-reference ratio (SRR). The diagnostic performance of the SRR was determined through receiver operating characteristic (ROC) analysis. The SRR measured with our new and automatic method demonstrated excellent diagnostic performance with 92% sensitivity, 90% specificity, 92% accuracy, and an area under the curve (AUC) of 0.94. For the evaluation of the mean SRR and the clinical duration, a quadratic function fit the data with R (2) = 0.84. We developed and validated a fully automatic method for the quantification of the SRR in a large study sample. This method has an excellent diagnostic performance and exhibits a strong correlation between the mean SRR and the clinical duration in PD patients.
Automatic estimation of extent of resection and residual tumor volume of patients with glioblastoma.
Meier, Raphael; Porz, Nicole; Knecht, Urspeter; Loosli, Tina; Schucht, Philippe; Beck, Jürgen; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio
2017-10-01
OBJECTIVE In the treatment of glioblastoma, residual tumor burden is the only prognostic factor that can be actively influenced by therapy. Therefore, an accurate, reproducible, and objective measurement of residual tumor burden is necessary. This study aimed to evaluate the use of a fully automatic segmentation method-brain tumor image analysis (BraTumIA)-for estimating the extent of resection (EOR) and residual tumor volume (RTV) of contrast-enhancing tumor after surgery. METHODS The imaging data of 19 patients who underwent primary resection of histologically confirmed supratentorial glioblastoma were retrospectively reviewed. Contrast-enhancing tumors apparent on structural preoperative and immediate postoperative MR imaging in this patient cohort were segmented by 4 different raters and the automatic segmentation BraTumIA software. The manual and automatic results were quantitatively compared. RESULTS First, the interrater variabilities in the estimates of EOR and RTV were assessed for all human raters. Interrater agreement in terms of the coefficient of concordance (W) was higher for RTV (W = 0.812; p < 0.001) than for EOR (W = 0.775; p < 0.001). Second, the volumetric estimates of BraTumIA for all 19 patients were compared with the estimates of the human raters, which showed that for both EOR (W = 0.713; p < 0.001) and RTV (W = 0.693; p < 0.001) the estimates of BraTumIA were generally located close to or between the estimates of the human raters. No statistically significant differences were detected between the manual and automatic estimates. BraTumIA showed a tendency to overestimate contrast-enhancing tumors, leading to moderate agreement with expert raters with respect to the literature-based, survival-relevant threshold values for EOR. CONCLUSIONS BraTumIA can generate volumetric estimates of EOR and RTV, in a fully automatic fashion, which are comparable to the estimates of human experts. However, automated analysis showed a tendency to overestimate the volume of a contrast-enhancing tumor, whereas manual analysis is prone to subjectivity, thereby causing considerable interrater variability.
Vessel extraction in retinal images using automatic thresholding and Gabor Wavelet.
Ali, Aziah; Hussain, Aini; Wan Zaki, Wan Mimi Diyana
2017-07-01
Retinal image analysis has been widely used for early detection and diagnosis of multiple systemic diseases. Accurate vessel extraction in retinal image is a crucial step towards a fully automated diagnosis system. This work affords an efficient unsupervised method for extracting blood vessels from retinal images by combining existing Gabor Wavelet (GW) method with automatic thresholding. Green channel image is extracted from color retinal image and used to produce Gabor feature image using GW. Both green channel image and Gabor feature image undergo vessel-enhancement step in order to highlight blood vessels. Next, the two vessel-enhanced images are transformed to binary images using automatic thresholding before combined to produce the final vessel output. Combining the images results in significant improvement of blood vessel extraction performance compared to using individual image. Effectiveness of the proposed method was proven via comparative analysis with existing methods validated using publicly available database, DRIVE.
Kalal, M; Nugent, K A; Luther-Davies, B
1987-05-01
An interferometric technique which enables simultaneous phase and amplitude imaging of optically transparent objects is discussed with respect to its application for the measurement of spontaneous toroidal magnetic fields generated in laser-produced plasmas. It is shown that this technique can replace the normal independent pair of optical systems (interferometry and shadowgraphy) by one system and use computer image processing to recover both the plasma density and magnetic field information with high accuracy. A fully automatic algorithm for the numerical analysis of the data has been developed and its performance demonstrated for the case of simulated as well as experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalal, M.; Nugent, K.A.; Luther-Davies, B.
1987-05-01
An interferometric technique which enables simultaneous phase and amplitude imaging of optically transparent objects is discussed with respect to its application for the measurement of spontaneous toroidal magnetic fields generated in laser-produced plasmas. It is shown that this technique can replace the normal independent pair of optical systems (interferometry and shadowgraphy) by one system and use computer image processing to recover both the plasma density and magnetic field information with high accuracy. A fully automatic algorithm for the numerical analysis of the data has been developed and its performance demonstrated for the case of simulated as well as experimental data.
A fully-automatic fast segmentation of the sub-basal layer nerves in corneal images.
Guimarães, Pedro; Wigdahl, Jeff; Poletti, Enea; Ruggeri, Alfredo
2014-01-01
Corneal nerves changes have been linked to damage caused by surgical interventions or prolonged contact lens wear. Furthermore nerve tortuosity has been shown to correlate with the severity of diabetic neuropathy. For these reasons there has been an increasing interest on the analysis of these structures. In this work we propose a novel, robust, and fast fully automatic algorithm capable of tracing the sub-basal plexus nerves from human corneal confocal images. We resort to logGabor filters and support vector machines to trace the corneal nerves. The proposed algorithm traced most of the corneal nerves correctly (sensitivity of 0.88 ± 0.06 and false discovery rate of 0.08 ± 0.06). The displayed performance is comparable to a human grader. We believe that the achieved processing time (0.661 ± 0.07 s) and tracing quality are major advantages for the daily clinical practice.
Gap-free segmentation of vascular networks with automatic image processing pipeline.
Hsu, Chih-Yang; Ghaffari, Mahsa; Alaraj, Ali; Flannery, Michael; Zhou, Xiaohong Joe; Linninger, Andreas
2017-03-01
Current image processing techniques capture large vessels reliably but often fail to preserve connectivity in bifurcations and small vessels. Imaging artifacts and noise can create gaps and discontinuity of intensity that hinders segmentation of vascular trees. However, topological analysis of vascular trees require proper connectivity without gaps, loops or dangling segments. Proper tree connectivity is also important for high quality rendering of surface meshes for scientific visualization or 3D printing. We present a fully automated vessel enhancement pipeline with automated parameter settings for vessel enhancement of tree-like structures from customary imaging sources, including 3D rotational angiography, magnetic resonance angiography, magnetic resonance venography, and computed tomography angiography. The output of the filter pipeline is a vessel-enhanced image which is ideal for generating anatomical consistent network representations of the cerebral angioarchitecture for further topological or statistical analysis. The filter pipeline combined with computational modeling can potentially improve computer-aided diagnosis of cerebrovascular diseases by delivering biometrics and anatomy of the vasculature. It may serve as the first step in fully automatic epidemiological analysis of large clinical datasets. The automatic analysis would enable rigorous statistical comparison of biometrics in subject-specific vascular trees. The robust and accurate image segmentation using a validated filter pipeline would also eliminate operator dependency that has been observed in manual segmentation. Moreover, manual segmentation is time prohibitive given that vascular trees have more than thousands of segments and bifurcations so that interactive segmentation consumes excessive human resources. Subject-specific trees are a first step toward patient-specific hemodynamic simulations for assessing treatment outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Machine for Automatic Bacteriological Pour Plate Preparation
Sharpe, A. N.; Biggs, D. R.; Oliver, R. J.
1972-01-01
A fully automatic system for preparing poured plates for bacteriological analyses has been constructed and tested. The machine can make decimal dilutions of bacterial suspensions, dispense measured amounts into petri dishes, add molten agar, mix the dish contents, and label the dishes with sample and dilution numbers at the rate of 2,000 dishes per 8-hr day. In addition, the machine can be programmed to select different media so that plates for different types of bacteriological analysis may be made automatically from the same sample. The machine uses only the components of the media and sterile polystyrene petri dishes; requirements for all other materials, such as sterile pipettes and capped bottles of diluents and agar, are eliminated. Images PMID:4560475
Automatic detection of sleep macrostructure based on a sensorized T-shirt.
Bianchi, Anna M; Mendez, Martin O
2010-01-01
In the present work we apply a fully automatic procedure to the analysis of signal coming from a sensorized T-shit, worn during the night, for sleep evaluation. The goodness and reliability of the signals recorded trough the T-shirt was previously tested, while the employed algorithms for feature extraction and sleep classification were previously developed on standard ECG recordings and the obtained classification was compared to the standard clinical practice based on polysomnography (PSG). In the present work we combined T-shirt recordings and automatic classification and could obtain reliable sleep profiles, i.e. the sleep classification in WAKE, REM (rapid eye movement) and NREM stages, based on heart rate variability (HRV), respiration and movement signals.
Fully automatic cervical vertebrae segmentation framework for X-ray images.
Al Arif, S M Masudur Rahman; Knapp, Karen; Slabaugh, Greg
2018-04-01
The cervical spine is a highly flexible anatomy and therefore vulnerable to injuries. Unfortunately, a large number of injuries in lateral cervical X-ray images remain undiagnosed due to human errors. Computer-aided injury detection has the potential to reduce the risk of misdiagnosis. Towards building an automatic injury detection system, in this paper, we propose a deep learning-based fully automatic framework for segmentation of cervical vertebrae in X-ray images. The framework first localizes the spinal region in the image using a deep fully convolutional neural network. Then vertebra centers are localized using a novel deep probabilistic spatial regression network. Finally, a novel shape-aware deep segmentation network is used to segment the vertebrae in the image. The framework can take an X-ray image and produce a vertebrae segmentation result without any manual intervention. Each block of the fully automatic framework has been trained on a set of 124 X-ray images and tested on another 172 images, all collected from real-life hospital emergency rooms. A Dice similarity coefficient of 0.84 and a shape error of 1.69 mm have been achieved. Copyright © 2018 Elsevier B.V. All rights reserved.
Automatic thermographic image defect detection of composites
NASA Astrophysics Data System (ADS)
Luo, Bin; Liebenberg, Bjorn; Raymont, Jeff; Santospirito, SP
2011-05-01
Detecting defects, and especially reliably measuring defect sizes, are critical objectives in automatic NDT defect detection applications. In this work, the Sentence software is proposed for the analysis of pulsed thermography and near IR images of composite materials. Furthermore, the Sentence software delivers an end-to-end, user friendly platform for engineers to perform complete manual inspections, as well as tools that allow senior engineers to develop inspection templates and profiles, reducing the requisite thermographic skill level of the operating engineer. Finally, the Sentence software can also offer complete independence of operator decisions by the fully automated "Beep on Defect" detection functionality. The end-to-end automatic inspection system includes sub-systems for defining a panel profile, generating an inspection plan, controlling a robot-arm and capturing thermographic images to detect defects. A statistical model has been built to analyze the entire image, evaluate grey-scale ranges, import sentencing criteria and automatically detect impact damage defects. A full width half maximum algorithm has been used to quantify the flaw sizes. The identified defects are imported into the sentencing engine which then sentences (automatically compares analysis results against acceptance criteria) the inspection by comparing the most significant defect or group of defects against the inspection standards.
Wang, Yang; Wang, Xiaohua; Liu, Fangnan; Jiang, Xiaoning; Xiao, Yun; Dong, Xuehan; Kong, Xianglei; Yang, Xuemei; Tian, Donghua; Qu, Zhiyong
2016-01-01
Few studies have looked at the relationship between psychological and the mental health status of pregnant women in rural China. The current study aims to explore the potential mediating effect of negative automatic thoughts between negative life events and antenatal depression. Data were collected in June 2012 and October 2012. 495 rural pregnant women were interviewed. Depressive symptoms were measured by the Edinburgh postnatal depression scale, stresses of pregnancy were measured by the pregnancy pressure scale, negative automatic thoughts were measured by the automatic thoughts questionnaire, and negative life events were measured by the life events scale for pregnant women. We used logistic regression and path analysis to test the mediating effect. The prevalence of antenatal depression was 13.7%. In the logistic regression, the only socio-demographic and health behavior factor significantly related to antenatal depression was sleep quality. Negative life events were not associated with depression in the fully adjusted model. Path analysis showed that the eventual direct and general effects of negative automatic thoughts were 0.39 and 0.51, which were larger than the effects of negative life events. This study suggested that there was a potentially significant mediating effect of negative automatic thoughts. Pregnant women who had lower scores of negative automatic thoughts were more likely to suffer less from negative life events which might lead to antenatal depression.
Cunefare, David; Cooper, Robert F; Higgins, Brian; Katz, David F; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina
2016-05-01
Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice's coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice's coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images.
Looney, Pádraig; Stevenson, Gordon N; Nicolaides, Kypros H; Plasencia, Walter; Molloholli, Malid; Natsis, Stavros; Collins, Sally L
2018-06-07
We present a new technique to fully automate the segmentation of an organ from 3D ultrasound (3D-US) volumes, using the placenta as the target organ. Image analysis tools to estimate organ volume do exist but are too time consuming and operator dependant. Fully automating the segmentation process would potentially allow the use of placental volume to screen for increased risk of pregnancy complications. The placenta was segmented from 2,393 first trimester 3D-US volumes using a semiautomated technique. This was quality controlled by three operators to produce the "ground-truth" data set. A fully convolutional neural network (OxNNet) was trained using this ground-truth data set to automatically segment the placenta. OxNNet delivered state-of-the-art automatic segmentation. The effect of training set size on the performance of OxNNet demonstrated the need for large data sets. The clinical utility of placental volume was tested by looking at predictions of small-for-gestational-age babies at term. The receiver-operating characteristics curves demonstrated almost identical results between OxNNet and the ground-truth). Our results demonstrated good similarity to the ground-truth and almost identical clinical results for the prediction of SGA.
Automatic spatiotemporal matching of detected pleural thickenings
NASA Astrophysics Data System (ADS)
Chaisaowong, Kraisorn; Keller, Simon Kai; Kraus, Thomas
2014-01-01
Pleural thickenings can be found in asbestos exposed patient's lung. Non-invasive diagnosis including CT imaging can detect aggressive malignant pleural mesothelioma in its early stage. In order to create a quantitative documentation of automatic detected pleural thickenings over time, the differences in volume and thickness of the detected thickenings have to be calculated. Physicians usually estimate the change of each thickening via visual comparison which provides neither quantitative nor qualitative measures. In this work, automatic spatiotemporal matching techniques of the detected pleural thickenings at two points of time based on the semi-automatic registration have been developed, implemented, and tested so that the same thickening can be compared fully automatically. As result, the application of the mapping technique using the principal components analysis turns out to be advantageous than the feature-based mapping using centroid and mean Hounsfield Units of each thickening, since the resulting sensitivity was improved to 98.46% from 42.19%, while the accuracy of feature-based mapping is only slightly higher (84.38% to 76.19%).
Automatic weld torch guidance control system
NASA Technical Reports Server (NTRS)
Smaith, H. E.; Wall, W. A.; Burns, M. R., Jr.
1982-01-01
A highly reliable, fully digital, closed circuit television optical, type automatic weld seam tracking control system was developed. This automatic tracking equipment is used to reduce weld tooling costs and increase overall automatic welding reliability. The system utilizes a charge injection device digital camera which as 60,512 inidividual pixels as the light sensing elements. Through conventional scanning means, each pixel in the focal plane is sequentially scanned, the light level signal digitized, and an 8-bit word transmitted to scratch pad memory. From memory, the microprocessor performs an analysis of the digital signal and computes the tracking error. Lastly, the corrective signal is transmitted to a cross seam actuator digital drive motor controller to complete the closed loop, feedback, tracking system. This weld seam tracking control system is capable of a tracking accuracy of + or - 0.2 mm, or better. As configured, the system is applicable to square butt, V-groove, and lap joint weldments.
Fully automatic registration and segmentation of first-pass myocardial perfusion MR image sequences.
Gupta, Vikas; Hendriks, Emile A; Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F
2010-11-01
Derivation of diagnostically relevant parameters from first-pass myocardial perfusion magnetic resonance images involves the tedious and time-consuming manual segmentation of the myocardium in a large number of images. To reduce the manual interaction and expedite the perfusion analysis, we propose an automatic registration and segmentation method for the derivation of perfusion linked parameters. A complete automation was accomplished by first registering misaligned images using a method based on independent component analysis, and then using the registered data to automatically segment the myocardium with active appearance models. We used 18 perfusion studies (100 images per study) for validation in which the automatically obtained (AO) contours were compared with expert drawn contours on the basis of point-to-curve error, Dice index, and relative perfusion upslope in the myocardium. Visual inspection revealed successful segmentation in 15 out of 18 studies. Comparison of the AO contours with expert drawn contours yielded 2.23 ± 0.53 mm and 0.91 ± 0.02 as point-to-curve error and Dice index, respectively. The average difference between manually and automatically obtained relative upslope parameters was found to be statistically insignificant (P = .37). Moreover, the analysis time per slice was reduced from 20 minutes (manual) to 1.5 minutes (automatic). We proposed an automatic method that significantly reduced the time required for analysis of first-pass cardiac magnetic resonance perfusion images. The robustness and accuracy of the proposed method were demonstrated by the high spatial correspondence and statistically insignificant difference in perfusion parameters, when AO contours were compared with expert drawn contours. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.
Automatic Implementation of Ttethernet-Based Time-Triggered Avionics Applications
NASA Astrophysics Data System (ADS)
Gorcitz, Raul Adrian; Carle, Thomas; Lesens, David; Monchaux, David; Potop-Butucaruy, Dumitru; Sorel, Yves
2015-09-01
The design of safety-critical embedded systems such as those used in avionics still involves largely manual phases. But in avionics the definition of standard interfaces embodied in standards such as ARINC 653 or TTEthernet should allow the definition of fully automatic code generation flows that reduce the costs while improving the quality of the generated code, much like compilers have done when replacing manual assembly coding. In this paper, we briefly present such a fully automatic implementation tool, called Lopht, for ARINC653-based time-triggered systems, and then explain how it is currently extended to include support for TTEthernet networks.
Determinants of wood dust exposure in the Danish furniture industry.
Mikkelsen, Anders B; Schlunssen, Vivi; Sigsgaard, Torben; Schaumburg, Inger
2002-11-01
This paper investigates the relation between wood dust exposure in the furniture industry and occupational hygiene variables. During the winter 1997-98 54 factories were visited and 2362 personal, passive inhalable dust samples were obtained; the geometric mean was 0.95 mg/m(3) and the geometric standard deviation was 2.08. In a first measuring round 1685 dust concentrations were obtained. For some of the workers repeated measurements were carried out 1 (351) and 2 weeks (326) after the first measurement. Hygiene variables like job, exhaust ventilation, cleaning procedures, etc., were documented. A multivariate analysis based on mixed effects models was used with hygiene variables being fixed effects and worker, machine, department and factory being random effects. A modified stepwise strategy of model making was adopted taking into account the hierarchically structured variables and making possible the exclusion of non-influential random as well as fixed effects. For woodworking, the following determinants of exposure increase the dust concentration: manual and automatic sanding and use of compressed air with fully automatic and semi-automatic machines and for cleaning of work pieces. Decreased dust exposure resulted from the use of compressed air with manual machines, working at fully automatic or semi-automatic machines, functioning exhaust ventilation, work on the night shift, daily cleaning of rooms, cleaning of work pieces with a brush, vacuum cleaning of machines, supplementary fresh air intake and safety representative elected within the last 2 yr. For handling and assembling, increased exposure results from work at automatic machines and presence of wood dust on the workpieces. Work on the evening shift, supplementary fresh air intake, work in a chair factory and special cleaning staff produced decreased exposure to wood dust. The implications of the results for the prevention of wood dust exposure are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarroll, R; UT Health Science Center, Graduate School of Biomedical Sciences, Houston, TX; Beadle, B
Purpose: To investigate and validate the use of an independent deformable-based contouring algorithm for automatic verification of auto-contoured structures in the head and neck towards fully automated treatment planning. Methods: Two independent automatic contouring algorithms [(1) Eclipse’s Smart Segmentation followed by pixel-wise majority voting, (2) an in-house multi-atlas based method] were used to create contours of 6 normal structures of 10 head-and-neck patients. After rating by a radiation oncologist, the higher performing algorithm was selected as the primary contouring method, the other used for automatic verification of the primary. To determine the ability of the verification algorithm to detect incorrectmore » contours, contours from the primary method were shifted from 0.5 to 2cm. Using a logit model the structure-specific minimum detectable shift was identified. The models were then applied to a set of twenty different patients and the sensitivity and specificity of the models verified. Results: Per physician rating, the multi-atlas method (4.8/5 point scale, with 3 rated as generally acceptable for planning purposes) was selected as primary and the Eclipse-based method (3.5/5) for verification. Mean distance to agreement and true positive rate were selected as covariates in an optimized logit model. These models, when applied to a group of twenty different patients, indicated that shifts could be detected at 0.5cm (brain), 0.75cm (mandible, cord), 1cm (brainstem, cochlea), or 1.25cm (parotid), with sensitivity and specificity greater than 0.95. If sensitivity and specificity constraints are reduced to 0.9, detectable shifts of mandible and brainstem were reduced by 0.25cm. These shifts represent additional safety margins which might be considered if auto-contours are used for automatic treatment planning without physician review. Conclusion: Automatically contoured structures can be automatically verified. This fully automated process could be used to flag auto-contours for special review or used with safety margins in a fully automatic treatment planning system.« less
ARES v2: new features and improved performance
NASA Astrophysics Data System (ADS)
Sousa, S. G.; Santos, N. C.; Adibekyan, V.; Delgado-Mena, E.; Israelian, G.
2015-05-01
Aims: We present a new upgraded version of ARES. The new version includes a series of interesting new features such as automatic radial velocity correction, a fully automatic continuum determination, and an estimation of the errors for the equivalent widths. Methods: The automatic correction of the radial velocity is achieved with a simple cross-correlation function, and the automatic continuum determination, as well as the estimation of the errors, relies on a new approach to evaluating the spectral noise at the continuum level. Results: ARES v2 is totally compatible with its predecessor. We show that the fully automatic continuum determination is consistent with the previous methods applied for this task. It also presents a significant improvement on its performance thanks to the implementation of a parallel computation using the OpenMP library. Automatic Routine for line Equivalent widths in stellar Spectra - ARES webpage: http://www.astro.up.pt/~sousasag/ares/Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 075.D-0800(A).
Automatic Detection and Vulnerability Analysis of Areas Endangered by Heavy Rain
NASA Astrophysics Data System (ADS)
Krauß, Thomas; Fischer, Peter
2016-08-01
In this paper we present a new method for fully automatic detection and derivation of areas endangered by heavy rainfall based only on digital elevation models. Tracking news show that the majority of occuring natural hazards are flood events. So already many flood prediction systems were developed. But most of these existing systems for deriving areas endangered by flooding events are based only on horizontal and vertical distances to existing rivers and lakes. Typically such systems take not into account dangers arising directly from heavy rain events. In a study conducted by us together with a german insurance company a new approach for detection of areas endangered by heavy rain was proven to give a high correlation of the derived endangered areas and the losses claimed at the insurance company. Here we describe three methods for classification of digital terrain models and analyze their usability for automatic detection and vulnerability analysis for areas endangered by heavy rainfall and analyze the results using the available insurance data.
Building Extraction from Remote Sensing Data Using Fully Convolutional Networks
NASA Astrophysics Data System (ADS)
Bittner, K.; Cui, S.; Reinartz, P.
2017-05-01
Building detection and footprint extraction are highly demanded for many remote sensing applications. Though most previous works have shown promising results, the automatic extraction of building footprints still remains a nontrivial topic, especially in complex urban areas. Recently developed extensions of the CNN framework made it possible to perform dense pixel-wise classification of input images. Based on these abilities we propose a methodology, which automatically generates a full resolution binary building mask out of a Digital Surface Model (DSM) using a Fully Convolution Network (FCN) architecture. The advantage of using the depth information is that it provides geometrical silhouettes and allows a better separation of buildings from background as well as through its invariance to illumination and color variations. The proposed framework has mainly two steps. Firstly, the FCN is trained on a large set of patches consisting of normalized DSM (nDSM) as inputs and available ground truth building mask as target outputs. Secondly, the generated predictions from FCN are viewed as unary terms for a Fully connected Conditional Random Fields (FCRF), which enables us to create a final binary building mask. A series of experiments demonstrate that our methodology is able to extract accurate building footprints which are close to the buildings original shapes to a high degree. The quantitative and qualitative analysis show the significant improvements of the results in contrast to the multy-layer fully connected network from our previous work.
Gait analysis--precise, rapid, automatic, 3-D position and orientation kinematics and dynamics.
Mann, R W; Antonsson, E K
1983-01-01
A fully automatic optoelectronic photogrammetric technique is presented for measuring the spatial kinematics of human motion (both position and orientation) and estimating the inertial (net) dynamics. Calibration and verification showed that in a two-meter cube viewing volume, the system achieves one millimeter of accuracy and resolution in translation and 20 milliradians in rotation. Since double differentiation of generalized position data to determine accelerations amplifies noise, the frequency domain characteristics of the system were investigated. It was found that the noise and all other errors in the kinematic data contribute less than five percent error to the resulting dynamics.
Caboche, Ségolène; Even, Gaël; Loywick, Alexandre; Audebert, Christophe; Hot, David
2017-12-19
The increase in available sequence data has advanced the field of microbiology; however, making sense of these data without bioinformatics skills is still problematic. We describe MICRA, an automatic pipeline, available as a web interface, for microbial identification and characterization through reads analysis. MICRA uses iterative mapping against reference genomes to identify genes and variations. Additional modules allow prediction of antibiotic susceptibility and resistance and comparing the results of several samples. MICRA is fast, producing few false-positive annotations and variant calls compared to current methods, making it a tool of great interest for fully exploiting sequencing data.
NASA Astrophysics Data System (ADS)
Přibil, Jiří; Přibilová, Anna; Frollo, Ivan
2017-12-01
The paper focuses on two methods of evaluation of successfulness of speech signal enhancement recorded in the open-air magnetic resonance imager during phonation for the 3D human vocal tract modeling. The first approach enables to obtain a comparison based on statistical analysis by ANOVA and hypothesis tests. The second method is based on classification by Gaussian mixture models (GMM). The performed experiments have confirmed that the proposed ANOVA and GMM classifiers for automatic evaluation of the speech quality are functional and produce fully comparable results with the standard evaluation based on the listening test method.
A Modular Hierarchical Approach to 3D Electron Microscopy Image Segmentation
Liu, Ting; Jones, Cory; Seyedhosseini, Mojtaba; Tasdizen, Tolga
2014-01-01
The study of neural circuit reconstruction, i.e., connectomics, is a challenging problem in neuroscience. Automated and semi-automated electron microscopy (EM) image analysis can be tremendously helpful for connectomics research. In this paper, we propose a fully automatic approach for intra-section segmentation and inter-section reconstruction of neurons using EM images. A hierarchical merge tree structure is built to represent multiple region hypotheses and supervised classification techniques are used to evaluate their potentials, based on which we resolve the merge tree with consistency constraints to acquire final intra-section segmentation. Then, we use a supervised learning based linking procedure for the inter-section neuron reconstruction. Also, we develop a semi-automatic method that utilizes the intermediate outputs of our automatic algorithm and achieves intra-segmentation with minimal user intervention. The experimental results show that our automatic method can achieve close-to-human intra-segmentation accuracy and state-of-the-art inter-section reconstruction accuracy. We also show that our semi-automatic method can further improve the intra-segmentation accuracy. PMID:24491638
Automatic intraaortic balloon pump timing using an intrabeat dicrotic notch prediction algorithm.
Schreuder, Jan J; Castiglioni, Alessandro; Donelli, Andrea; Maisano, Francesco; Jansen, Jos R C; Hanania, Ramzi; Hanlon, Pat; Bovelander, Jan; Alfieri, Ottavio
2005-03-01
The efficacy of intraaortic balloon counterpulsation (IABP) during arrhythmic episodes is questionable. A novel algorithm for intrabeat prediction of the dicrotic notch was used for real time IABP inflation timing control. A windkessel model algorithm was used to calculate real-time aortic flow from aortic pressure. The dicrotic notch was predicted using a percentage of calculated peak flow. Automatic inflation timing was set at intrabeat predicted dicrotic notch and was combined with automatic IAB deflation. Prophylactic IABP was applied in 27 patients with low ejection fraction (< 35%) undergoing cardiac surgery. Analysis of IABP at a 1:4 ratio revealed that IAB inflation occurred at a mean of 0.6 +/- 5 ms from the dicrotic notch. In all patients accurate automatic timing at a 1:1 assist ratio was performed. Seventeen patients had episodes of severe arrhythmia, the novel IABP inflation algorithm accurately assisted 318 of 320 arrhythmic beats at a 1:1 ratio. The novel real-time intrabeat IABP inflation timing algorithm performed accurately in all patients during both regular rhythms and severe arrhythmia, allowing fully automatic intrabeat IABP timing.
Automatic systems and the low-level wind hazard
NASA Technical Reports Server (NTRS)
Schaeffer, Dwight R.
1987-01-01
Automatic flight control systems provide means for significantly enhancing survivability in severe wind hazards. The technology required to produce the necessary control algorithms is available and has been made technically feasible by the advent of digital flight control systems and accurate, low-noise sensors, especially strap-down inertial sensors. The application of this technology and these means has not generally been enabled except for automatic landing systems, and even then the potential has not been fully exploited. To fully exploit the potential of automatic systems for enhancing safety in wind hazards requires providing incentives, creating demand, inspiring competition, education, and eliminating prejudicial disincentitives to overcome the economic penalties associated with the extensive and riskly development and certification of these systems. If these changes will come about at all, it will likely be through changes in the regulations provided by the certifying agencies.
Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George
2017-06-26
We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.
Automatic Segmentation of High-Throughput RNAi Fluorescent Cellular Images
Yan, Pingkum; Zhou, Xiaobo; Shah, Mubarak; Wong, Stephen T. C.
2010-01-01
High-throughput genome-wide RNA interference (RNAi) screening is emerging as an essential tool to assist biologists in understanding complex cellular processes. The large number of images produced in each study make manual analysis intractable; hence, automatic cellular image analysis becomes an urgent need, where segmentation is the first and one of the most important steps. In this paper, a fully automatic method for segmentation of cells from genome-wide RNAi screening images is proposed. Nuclei are first extracted from the DNA channel by using a modified watershed algorithm. Cells are then extracted by modeling the interaction between them as well as combining both gradient and region information in the Actin and Rac channels. A new energy functional is formulated based on a novel interaction model for segmenting tightly clustered cells with significant intensity variance and specific phenotypes. The energy functional is minimized by using a multiphase level set method, which leads to a highly effective cell segmentation method. Promising experimental results demonstrate that automatic segmentation of high-throughput genome-wide multichannel screening can be achieved by using the proposed method, which may also be extended to other multichannel image segmentation problems. PMID:18270043
NASA Astrophysics Data System (ADS)
Álvarez, Charlens; Martínez, Fabio; Romero, Eduardo
2015-01-01
The pelvic magnetic Resonance images (MRI) are used in Prostate cancer radiotherapy (RT), a process which is part of the radiation planning. Modern protocols require a manual delineation, a tedious and variable activity that may take about 20 minutes per patient, even for trained experts. That considerable time is an important work ow burden in most radiological services. Automatic or semi-automatic methods might improve the efficiency by decreasing the measure times while conserving the required accuracy. This work presents a fully automatic atlas- based segmentation strategy that selects the more similar templates for a new MRI using a robust multi-scale SURF analysis. Then a new segmentation is achieved by a linear combination of the selected templates, which are previously non-rigidly registered towards the new image. The proposed method shows reliable segmentations, obtaining an average DICE Coefficient of 79%, when comparing with the expert manual segmentation, under a leave-one-out scheme with the training database.
Hutson, Joel David; Hutson, Kelda Nadine
2014-07-01
A recent study hypothesized that avian-like wrist folding in quadrupedal dinosaurs could have aided their distinctive style of locomotion with semi-pronated and therefore medially facing palms. However, soft tissues that automatically guide avian wrist folding rarely fossilize, and automatic wrist folding of unknown function in extant crocodilians has not been used to test this hypothesis. Therefore, an investigation of the relative contributions of soft tissues to wrist range of motion (ROM) in the extant phylogenetic bracket of dinosaurs, and the quadrupedal function of crocodilian wrist folding, could inform these questions. Here, we repeatedly measured wrist ROM in degrees through fully fleshed, skinned, minus muscles/tendons, minus ligaments, and skeletonized stages in the American alligator Alligator mississippiensis and the ostrich Struthio camelus. The effects of dissection treatment and observer were statistically significant for alligator wrist folding and ostrich wrist flexion, but not ostrich wrist folding. Final skeletonized wrist folding ROM was higher than (ostrich) or equivalent to (alligator) initial fully fleshed ROM, while final ROM was lower than initial ROM for ostrich wrist flexion. These findings suggest that, unlike the hinge/ball and socket-type elbow and shoulder joints in these archosaurs, ROM within gliding/planar diarthrotic joints is more restricted to the extent of articular surfaces. The alligator data indicate that the crocodilian wrist mechanism functions to automatically lock their semi-pronated palms into a rigid column, which supports the hypothesis that this palmar orientation necessitated soft tissue stiffening mechanisms in certain dinosaurs, although ROM-restricted articulations argue against the presence of an extensive automatic mechanism. Anat Rec, 297:1228-1249, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
Spanier, A B; Caplan, N; Sosna, J; Acar, B; Joskowicz, L
2018-01-01
The goal of medical content-based image retrieval (M-CBIR) is to assist radiologists in the decision-making process by retrieving medical cases similar to a given image. One of the key interests of radiologists is lesions and their annotations, since the patient treatment depends on the lesion diagnosis. Therefore, a key feature of M-CBIR systems is the retrieval of scans with the most similar lesion annotations. To be of value, M-CBIR systems should be fully automatic to handle large case databases. We present a fully automatic end-to-end method for the retrieval of CT scans with similar liver lesion annotations. The input is a database of abdominal CT scans labeled with liver lesions, a query CT scan, and optionally one radiologist-specified lesion annotation of interest. The output is an ordered list of the database CT scans with the most similar liver lesion annotations. The method starts by automatically segmenting the liver in the scan. It then extracts a histogram-based features vector from the segmented region, learns the features' relative importance, and ranks the database scans according to the relative importance measure. The main advantages of our method are that it fully automates the end-to-end querying process, that it uses simple and efficient techniques that are scalable to large datasets, and that it produces quality retrieval results using an unannotated CT scan. Our experimental results on 9 CT queries on a dataset of 41 volumetric CT scans from the 2014 Image CLEF Liver Annotation Task yield an average retrieval accuracy (Normalized Discounted Cumulative Gain index) of 0.77 and 0.84 without/with annotation, respectively. Fully automatic end-to-end retrieval of similar cases based on image information alone, rather that on disease diagnosis, may help radiologists to better diagnose liver lesions.
NASA Astrophysics Data System (ADS)
Chęciński, Jakub; Frankowski, Marek
2016-10-01
We present a tool for fully-automated generation of both simulations configuration files (Mif) and Matlab scripts for automated data analysis, dedicated for Object Oriented Micromagnetic Framework (OOMMF). We introduce extended graphical user interface (GUI) that allows for fast, error-proof and easy creation of Mifs, without any programming skills usually required for manual Mif writing necessary. With MAGE we provide OOMMF extensions for complementing it by mangetoresistance and spin-transfer-torque calculations, as well as local magnetization data selection for output. Our software allows for creation of advanced simulations conditions like simultaneous parameters sweeps and synchronic excitation application. Furthermore, since output of such simulation could be long and complicated we provide another GUI allowing for automated creation of Matlab scripts suitable for analysis of such data with Fourier and wavelet transforms as well as user-defined operations.
NASA Technical Reports Server (NTRS)
Stein, J. A.
1974-01-01
Fully-automatic tube-joint soldering machine can be used to make leakproof joints in aluminum tubes of 3/16 to 2 in. in diameter. Machine consists of temperature-control unit, heater transformer and heater head, vibrator, and associated circuitry controls, and indicators.
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Gorder, Pater J.; Jewell, Wayne F.; Coppenbarger, Richard
1990-01-01
Developing a single-pilot all-weather NOE capability requires fully automatic NOE navigation and flight control. Innovative guidance and control concepts are being investigated to (1) organize the onboard computer-based storage and real-time updating of NOE terrain profiles and obstacles; (2) define a class of automatic anticipative pursuit guidance algorithms to follow the vertical, lateral, and longitudinal guidance commands; (3) automate a decision-making process for unexpected obstacle avoidance; and (4) provide several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the recorded environment which is then used to determine an appropriate evasive maneuver if a nonconformity is observed. This research effort has been evaluated in both fixed-base and moving-base real-time piloted simulations thereby evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and reengagement of the automatic system.
Surface smoothness: cartilage biomarkers for knee OA beyond the radiologist
NASA Astrophysics Data System (ADS)
Tummala, Sudhakar; Dam, Erik B.
2010-03-01
Fully automatic imaging biomarkers may allow quantification of patho-physiological processes that a radiologist would not be able to assess reliably. This can introduce new insight but is problematic to validate due to lack of meaningful ground truth expert measurements. Rather than quantification accuracy, such novel markers must therefore be validated against clinically meaningful end-goals such as the ability to allow correct diagnosis. We present a method for automatic cartilage surface smoothness quantification in the knee joint. The quantification is based on a curvature flow method used on tibial and femoral cartilage compartments resulting from an automatic segmentation scheme. These smoothness estimates are validated for their ability to diagnose osteoarthritis and compared to smoothness estimates based on manual expert segmentations and to conventional cartilage volume quantification. We demonstrate that the fully automatic markers eliminate the time required for radiologist annotations, and in addition provide a diagnostic marker superior to the evaluated semi-manual markers.
Ihlow, Alexander; Schweizer, Patrick; Seiffert, Udo
2008-01-23
To find candidate genes that potentially influence the susceptibility or resistance of crop plants to powdery mildew fungi, an assay system based on transient-induced gene silencing (TIGS) as well as transient over-expression in single epidermal cells of barley has been developed. However, this system relies on quantitative microscopic analysis of the barley/powdery mildew interaction and will only become a high-throughput tool of phenomics upon automation of the most time-consuming steps. We have developed a high-throughput screening system based on a motorized microscope which evaluates the specimens fully automatically. A large-scale double-blind verification of the system showed an excellent agreement of manual and automated analysis and proved the system to work dependably. Furthermore, in a series of bombardment experiments an RNAi construct targeting the Mlo gene was included, which is expected to phenocopy resistance mediated by recessive loss-of-function alleles such as mlo5. In most cases, the automated analysis system recorded a shift towards resistance upon RNAi of Mlo, thus providing proof of concept for its usefulness in detecting gene-target effects. Besides saving labor and enabling a screening of thousands of candidate genes, this system offers continuous operation of expensive laboratory equipment and provides a less subjective analysis as well as a complete and enduring documentation of the experimental raw data in terms of digital images. In general, it proves the concept of enabling available microscope hardware to handle challenging screening tasks fully automatically.
Three-Dimensional Computer Graphics Brain-Mapping Project.
1987-03-15
NEUROQUANT . This package was directed towards quantitative microneuroanatomic data acquisition and analysis. Using this interface, image frames captured...populations of brains. This would have been aprohibitive task if done manually with a densitometer and film, due to user error and bias. NEUROQUANT functioned...of cells were of interest. NEUROQUANT is presently being implemented with a more fully automatic method of localizing the cell bodies directly
Optimization and automation of quantitative NMR data extraction.
Bernstein, Michael A; Sýkora, Stan; Peng, Chen; Barba, Agustín; Cobas, Carlos
2013-06-18
NMR is routinely used to quantitate chemical species. The necessary experimental procedures to acquire quantitative data are well-known, but relatively little attention has been applied to data processing and analysis. We describe here a robust expert system that can be used to automatically choose the best signals in a sample for overall concentration determination and determine analyte concentration using all accepted methods. The algorithm is based on the complete deconvolution of the spectrum which makes it tolerant of cases where signals are very close to one another and includes robust methods for the automatic classification of NMR resonances and molecule-to-spectrum multiplets assignments. With the functionality in place and optimized, it is then a relatively simple matter to apply the same workflow to data in a fully automatic way. The procedure is desirable for both its inherent performance and applicability to NMR data acquired for very large sample sets.
Automatic differential analysis of NMR experiments in complex samples.
Margueritte, Laure; Markov, Petar; Chiron, Lionel; Starck, Jean-Philippe; Vonthron-Sénécheau, Catherine; Bourjot, Mélanie; Delsuc, Marc-André
2018-06-01
Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studies require the acquisition of many diverse NMR measurements on series of samples. Although acquisition can easily be performed automatically, the number of NMR experiments involved in these studies increases very rapidly, and this data avalanche requires to resort to automatic processing and analysis. We present here a program that allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion-ordered spectroscopy experiments from a series of samples acquired in different conditions. The program provides all the signal processing steps, as well as peak-picking and bucketing of 1D and 2D spectra, the program and its components are fully available. In an experiment mimicking the search of a bioactive species in a natural extract, we use it for the automatic detection of small amounts of artemisinin added to a series of plant extracts and for the generation of the spectral fingerprint of this molecule. This program called Plasmodesma is a novel tool that should be useful to decipher complex mixtures, particularly in the discovery of biologically active natural products from plants extracts but can also in drug discovery or metabolomics studies. Copyright © 2017 John Wiley & Sons, Ltd.
Automatic detection of articulation disorders in children with cleft lip and palate.
Maier, Andreas; Hönig, Florian; Bocklet, Tobias; Nöth, Elmar; Stelzle, Florian; Nkenke, Emeka; Schuster, Maria
2009-11-01
Speech of children with cleft lip and palate (CLP) is sometimes still disordered even after adequate surgical and nonsurgical therapies. Such speech shows complex articulation disorders, which are usually assessed perceptually, consuming time and manpower. Hence, there is a need for an easy to apply and reliable automatic method. To create a reference for an automatic system, speech data of 58 children with CLP were assessed perceptually by experienced speech therapists for characteristic phonetic disorders at the phoneme level. The first part of the article aims to detect such characteristics by a semiautomatic procedure and the second to evaluate a fully automatic, thus simple, procedure. The methods are based on a combination of speech processing algorithms. The semiautomatic method achieves moderate to good agreement (kappa approximately 0.6) for the detection of all phonetic disorders. On a speaker level, significant correlations between the perceptual evaluation and the automatic system of 0.89 are obtained. The fully automatic system yields a correlation on the speaker level of 0.81 to the perceptual evaluation. This correlation is in the range of the inter-rater correlation of the listeners. The automatic speech evaluation is able to detect phonetic disorders at an experts'level without any additional human postprocessing.
An artificial intelligence approach to classify and analyse EEG traces.
Castellaro, C; Favaro, G; Castellaro, A; Casagrande, A; Castellaro, S; Puthenparampil, D V; Salimbeni, C Fattorello
2002-06-01
We present a fully automatic system for the classification and analysis of adult electroencephalograms (EEGs). The system is based on an artificial neural network which classifies the single epochs of trace, and on an Expert System (ES) which studies the time and space correlation among the outputs of the neural network; compiling a final report. On the last 2000 EEGs representing different kinds of alterations according to clinical occurrences, the system was able to produce 80% good or very good final comments and 18% sufficient comments, which represent the documents delivered to the patient. In the remaining 2% the automatic comment needed some modifications prior to be presented to the patient. No clinical false-negative classifications did arise, i.e. no altered traces were classified as 'normal' by the neural network. The analysis method we describe is based on the interpretation of objective measures performed on the trace. It can improve the quality and reliability of the EEG exam and appears useful for the EEG medical reports although it cannot totally substitute the medical doctor who should now read the automatic EEG analysis in light of the patient's history and age.
Kim, Jungkyu; Jensen, Erik C; Stockton, Amanda M; Mathies, Richard A
2013-08-20
A fully integrated multilayer microfluidic chemical analyzer for automated sample processing and labeling, as well as analysis using capillary zone electrophoresis is developed and characterized. Using lifting gate microfluidic control valve technology, a microfluidic automaton consisting of a two-dimensional microvalve cellular array is fabricated with soft lithography in a format that enables facile integration with a microfluidic capillary electrophoresis device. The programmable sample processor performs precise mixing, metering, and routing operations that can be combined to achieve automation of complex and diverse assay protocols. Sample labeling protocols for amino acid, aldehyde/ketone and carboxylic acid analysis are performed automatically followed by automated transfer and analysis by the integrated microfluidic capillary electrophoresis chip. Equivalent performance to off-chip sample processing is demonstrated for each compound class; the automated analysis resulted in a limit of detection of ~16 nM for amino acids. Our microfluidic automaton provides a fully automated, portable microfluidic analysis system capable of autonomous analysis of diverse compound classes in challenging environments.
Fully automated screening of immunocytochemically stained specimens for early cancer detection
NASA Astrophysics Data System (ADS)
Bell, André A.; Schneider, Timna E.; Müller-Frank, Dirk A. C.; Meyer-Ebrecht, Dietrich; Böcking, Alfred; Aach, Til
2007-03-01
Cytopathological cancer diagnoses can be obtained less invasive than histopathological investigations. Cells containing specimens can be obtained without pain or discomfort, bloody biopsies are avoided, and the diagnosis can, in some cases, even be made earlier. Since no tissue biopsies are necessary these methods can also be used in screening applications, e.g., for cervical cancer. Among the cytopathological methods a diagnosis based on the analysis of the amount of DNA in individual cells achieves high sensitivity and specificity. Yet this analysis is time consuming, which is prohibitive for a screening application. Hence, it will be advantageous to retain, by a preceding selection step, only a subset of suspicious specimens. This can be achieved using highly sensitive immunocytochemical markers like p16 ink4a for preselection of suspicious cells and specimens. We present a method to fully automatically acquire images at distinct positions at cytological specimens using a conventional computer controlled microscope and an autofocus algorithm. Based on the thus obtained images we automatically detect p16 ink4a-positive objects. This detection in turn is based on an analysis of the color distribution of the p16 ink4a marker in the Lab-colorspace. A Gaussian-mixture-model is used to describe this distribution and the method described in this paper so far achieves a sensitivity of up to 90%.
Develop Advanced Nonlinear Signal Analysis Topographical Mapping System
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1997-01-01
During the development of the SSME, a hierarchy of advanced signal analysis techniques for mechanical signature analysis has been developed by NASA and AI Signal Research Inc. (ASRI) to improve the safety and reliability for Space Shuttle operations. These techniques can process and identify intelligent information hidden in a measured signal which is often unidentifiable using conventional signal analysis methods. Currently, due to the highly interactive processing requirements and the volume of dynamic data involved, detailed diagnostic analysis is being performed manually which requires immense man-hours with extensive human interface. To overcome this manual process, NASA implemented this program to develop an Advanced nonlinear signal Analysis Topographical Mapping System (ATMS) to provide automatic/unsupervised engine diagnostic capabilities. The ATMS will utilize a rule-based Clips expert system to supervise a hierarchy of diagnostic signature analysis techniques in the Advanced Signal Analysis Library (ASAL). ASAL will perform automatic signal processing, archiving, and anomaly detection/identification tasks in order to provide an intelligent and fully automated engine diagnostic capability. The ATMS has been successfully developed under this contract. In summary, the program objectives to design, develop, test and conduct performance evaluation for an automated engine diagnostic system have been successfully achieved. Software implementation of the entire ATMS system on MSFC's OISPS computer has been completed. The significance of the ATMS developed under this program is attributed to the fully automated coherence analysis capability for anomaly detection and identification which can greatly enhance the power and reliability of engine diagnostic evaluation. The results have demonstrated that ATMS can significantly save time and man-hours in performing engine test/flight data analysis and performance evaluation of large volumes of dynamic test data.
Fully Automatic Speech-Based Analysis of the Semantic Verbal Fluency Task.
König, Alexandra; Linz, Nicklas; Tröger, Johannes; Wolters, Maria; Alexandersson, Jan; Robert, Phillipe
2018-06-08
Semantic verbal fluency (SVF) tests are routinely used in screening for mild cognitive impairment (MCI). In this task, participants name as many items as possible of a semantic category under a time constraint. Clinicians measure task performance manually by summing the number of correct words and errors. More fine-grained variables add valuable information to clinical assessment, but are time-consuming. Therefore, the aim of this study is to investigate whether automatic analysis of the SVF could provide these as accurate as manual and thus, support qualitative screening of neurocognitive impairment. SVF data were collected from 95 older people with MCI (n = 47), Alzheimer's or related dementias (ADRD; n = 24), and healthy controls (HC; n = 24). All data were annotated manually and automatically with clusters and switches. The obtained metrics were validated using a classifier to distinguish HC, MCI, and ADRD. Automatically extracted clusters and switches were highly correlated (r = 0.9) with manually established values, and performed as well on the classification task separating HC from persons with ADRD (area under curve [AUC] = 0.939) and MCI (AUC = 0.758). The results show that it is possible to automate fine-grained analyses of SVF data for the assessment of cognitive decline. © 2018 S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.
1991-01-01
Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-based and moving-based real-time piloted simulations, thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.
1991-01-01
Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-base and moving-base real-time piloted simulations; thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.
López-Linares, Karen; Aranjuelo, Nerea; Kabongo, Luis; Maclair, Gregory; Lete, Nerea; Ceresa, Mario; García-Familiar, Ainhoa; Macía, Iván; González Ballester, Miguel A
2018-05-01
Computerized Tomography Angiography (CTA) based follow-up of Abdominal Aortic Aneurysms (AAA) treated with Endovascular Aneurysm Repair (EVAR) is essential to evaluate the progress of the patient and detect complications. In this context, accurate quantification of post-operative thrombus volume is required. However, a proper evaluation is hindered by the lack of automatic, robust and reproducible thrombus segmentation algorithms. We propose a new fully automatic approach based on Deep Convolutional Neural Networks (DCNN) for robust and reproducible thrombus region of interest detection and subsequent fine thrombus segmentation. The DetecNet detection network is adapted to perform region of interest extraction from a complete CTA and a new segmentation network architecture, based on Fully Convolutional Networks and a Holistically-Nested Edge Detection Network, is presented. These networks are trained, validated and tested in 13 post-operative CTA volumes of different patients using a 4-fold cross-validation approach to provide more robustness to the results. Our pipeline achieves a Dice score of more than 82% for post-operative thrombus segmentation and provides a mean relative volume difference between ground truth and automatic segmentation that lays within the experienced human observer variance without the need of human intervention in most common cases. Copyright © 2018 Elsevier B.V. All rights reserved.
Oost, Elco; Koning, Gerhard; Sonka, Milan; Oemrawsingh, Pranobe V; Reiber, Johan H C; Lelieveldt, Boudewijn P F
2006-09-01
This paper describes a new approach to the automated segmentation of X-ray left ventricular (LV) angiograms, based on active appearance models (AAMs) and dynamic programming. A coupling of shape and texture information between the end-diastolic (ED) and end-systolic (ES) frame was achieved by constructing a multiview AAM. Over-constraining of the model was compensated for by employing dynamic programming, integrating both intensity and motion features in the cost function. Two applications are compared: a semi-automatic method with manual model initialization, and a fully automatic algorithm. The first proved to be highly robust and accurate, demonstrating high clinical relevance. Based on experiments involving 70 patient data sets, the algorithm's success rate was 100% for ED and 99% for ES, with average unsigned border positioning errors of 0.68 mm for ED and 1.45 mm for ES. Calculated volumes were accurate and unbiased. The fully automatic algorithm, with intrinsically less user interaction was less robust, but showed a high potential, mostly due to a controlled gradient descent in updating the model parameters. The success rate of the fully automatic method was 91% for ED and 83% for ES, with average unsigned border positioning errors of 0.79 mm for ED and 1.55 mm for ES.
PaCeQuant: A Tool for High-Throughput Quantification of Pavement Cell Shape Characteristics1[OPEN
Poeschl, Yvonne; Plötner, Romina
2017-01-01
Pavement cells (PCs) are the most frequently occurring cell type in the leaf epidermis and play important roles in leaf growth and function. In many plant species, PCs form highly complex jigsaw-puzzle-shaped cells with interlocking lobes. Understanding of their development is of high interest for plant science research because of their importance for leaf growth and hence for plant fitness and crop yield. Studies of PC development, however, are limited, because robust methods are lacking that enable automatic segmentation and quantification of PC shape parameters suitable to reflect their cellular complexity. Here, we present our new ImageJ-based tool, PaCeQuant, which provides a fully automatic image analysis workflow for PC shape quantification. PaCeQuant automatically detects cell boundaries of PCs from confocal input images and enables manual correction of automatic segmentation results or direct import of manually segmented cells. PaCeQuant simultaneously extracts 27 shape features that include global, contour-based, skeleton-based, and PC-specific object descriptors. In addition, we included a method for classification and analysis of lobes at two-cell junctions and three-cell junctions, respectively. We provide an R script for graphical visualization and statistical analysis. We validated PaCeQuant by extensive comparative analysis to manual segmentation and existing quantification tools and demonstrated its usability to analyze PC shape characteristics during development and between different genotypes. PaCeQuant thus provides a platform for robust, efficient, and reproducible quantitative analysis of PC shape characteristics that can easily be applied to study PC development in large data sets. PMID:28931626
Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry
NASA Astrophysics Data System (ADS)
Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio
2016-03-01
Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.
Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry.
Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio
2016-03-22
Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.
Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks With Jaccard Distance.
Yuan, Yading; Chao, Ming; Lo, Yeh-Chi
2017-09-01
Automatic skin lesion segmentation in dermoscopic images is a challenging task due to the low contrast between lesion and the surrounding skin, the irregular and fuzzy lesion borders, the existence of various artifacts, and various imaging acquisition conditions. In this paper, we present a fully automatic method for skin lesion segmentation by leveraging 19-layer deep convolutional neural networks that is trained end-to-end and does not rely on prior knowledge of the data. We propose a set of strategies to ensure effective and efficient learning with limited training data. Furthermore, we design a novel loss function based on Jaccard distance to eliminate the need of sample re-weighting, a typical procedure when using cross entropy as the loss function for image segmentation due to the strong imbalance between the number of foreground and background pixels. We evaluated the effectiveness, efficiency, as well as the generalization capability of the proposed framework on two publicly available databases. One is from ISBI 2016 skin lesion analysis towards melanoma detection challenge, and the other is the PH2 database. Experimental results showed that the proposed method outperformed other state-of-the-art algorithms on these two databases. Our method is general enough and only needs minimum pre- and post-processing, which allows its adoption in a variety of medical image segmentation tasks.
Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry
Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio
2016-01-01
Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83–0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments. PMID:27001047
EARLINET Single Calculus Chain - overview on methodology and strategy
NASA Astrophysics Data System (ADS)
D'Amico, G.; Amodeo, A.; Baars, H.; Binietoglou, I.; Freudenthaler, V.; Mattis, I.; Wandinger, U.; Pappalardo, G.
2015-11-01
In this paper we describe the EARLINET Single Calculus Chain (SCC), a tool for the automatic analysis of lidar measurements. The development of this tool started in the framework of EARLINET-ASOS (European Aerosol Research Lidar Network - Advanced Sustainable Observation System); it was extended within ACTRIS (Aerosol, Clouds and Trace gases Research InfraStructure Network), and it is continuing within ACTRIS-2. The main idea was to develop a data processing chain that allows all EARLINET stations to retrieve, in a fully automatic way, the aerosol backscatter and extinction profiles starting from the raw lidar data of the lidar systems they operate. The calculus subsystem of the SCC is composed of two modules: a pre-processor module which handles the raw lidar data and corrects them for instrumental effects and an optical processing module for the retrieval of aerosol optical products from the pre-processed data. All input parameters needed to perform the lidar analysis are stored in a database to keep track of all changes which may occur for any EARLINET lidar system over the time. The two calculus modules are coordinated and synchronized by an additional module (daemon) which makes the whole analysis process fully automatic. The end user can interact with the SCC via a user-friendly web interface. All SCC modules are developed using open-source and freely available software packages. The final products retrieved by the SCC fulfill all requirements of the EARLINET quality assurance programs on both instrumental and algorithm levels. Moreover, the manpower needed to provide aerosol optical products is greatly reduced and thus the near-real-time availability of lidar data is improved. The high-quality of the SCC products is proven by the good agreement between the SCC analysis, and the corresponding independent manual retrievals. Finally, the ability of the SCC to provide high-quality aerosol optical products is demonstrated for an EARLINET intense observation period.
Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil
1982-01-01
An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.
A quality score for coronary artery tree extraction results
NASA Astrophysics Data System (ADS)
Cao, Qing; Broersen, Alexander; Kitslaar, Pieter H.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke
2018-02-01
Coronary artery trees (CATs) are often extracted to aid the fully automatic analysis of coronary artery disease on coronary computed tomography angiography (CCTA) images. Automatically extracted CATs often miss some arteries or include wrong extractions which require manual corrections before performing successive steps. For analyzing a large number of datasets, a manual quality check of the extraction results is time-consuming. This paper presents a method to automatically calculate quality scores for extracted CATs in terms of clinical significance of the extracted arteries and the completeness of the extracted CAT. Both right dominant (RD) and left dominant (LD) anatomical statistical models are generated and exploited in developing the quality score. To automatically determine which model should be used, a dominance type detection method is also designed. Experiments are performed on the automatically extracted and manually refined CATs from 42 datasets to evaluate the proposed quality score. In 39 (92.9%) cases, the proposed method is able to measure the quality of the manually refined CATs with higher scores than the automatically extracted CATs. In a 100-point scale system, the average scores for automatically and manually refined CATs are 82.0 (+/-15.8) and 88.9 (+/-5.4) respectively. The proposed quality score will assist the automatic processing of the CAT extractions for large cohorts which contain both RD and LD cases. To the best of our knowledge, this is the first time that a general quality score for an extracted CAT is presented.
Analysis of Technique to Extract Data from the Web for Improved Performance
NASA Astrophysics Data System (ADS)
Gupta, Neena; Singh, Manish
2010-11-01
The World Wide Web rapidly guides the world into a newly amazing electronic world, where everyone can publish anything in electronic form and extract almost all the information. Extraction of information from semi structured or unstructured documents, such as web pages, is a useful yet complex task. Data extraction, which is important for many applications, extracts the records from the HTML files automatically. Ontologies can achieve a high degree of accuracy in data extraction. We analyze method for data extraction OBDE (Ontology-Based Data Extraction), which automatically extracts the query result records from the web with the help of agents. OBDE first constructs an ontology for a domain according to information matching between the query interfaces and query result pages from different web sites within the same domain. Then, the constructed domain ontology is used during data extraction to identify the query result section in a query result page and to align and label the data values in the extracted records. The ontology-assisted data extraction method is fully automatic and overcomes many of the deficiencies of current automatic data extraction methods.
Gao, Shan; van 't Klooster, Ronald; Brandts, Anne; Roes, Stijntje D; Alizadeh Dehnavi, Reza; de Roos, Albert; Westenberg, Jos J M; van der Geest, Rob J
2017-01-01
To develop and evaluate a method that can fully automatically identify the vessel wall boundaries and quantify the wall thickness for both common carotid artery (CCA) and descending aorta (DAO) from axial magnetic resonance (MR) images. 3T MRI data acquired with T 1 -weighted gradient-echo black-blood imaging sequence from carotid (39 subjects) and aorta (39 subjects) were used to develop and test the algorithm. The vessel wall segmentation was achieved by respectively fitting a 3D cylindrical B-spline surface to the boundaries of lumen and outer wall. The tube-fitting was based on the edge detection performed on the signal intensity (SI) profile along the surface normal. To achieve a fully automated process, Hough Transform (HT) was developed to estimate the lumen centerline and radii for the target vessel. Using the outputs of HT, a tube model for lumen segmentation was initialized and deformed to fit the image data. Finally, lumen segmentation was dilated to initiate the adaptation procedure of outer wall tube. The algorithm was validated by determining: 1) its performance against manual tracing; 2) its interscan reproducibility in quantifying vessel wall thickness (VWT); 3) its capability of detecting VWT difference in hypertensive patients compared with healthy controls. Statistical analysis including Bland-Altman analysis, t-test, and sample size calculation were performed for the purpose of algorithm evaluation. The mean distance between the manual and automatically detected lumen/outer wall contours was 0.00 ± 0.23/0.09 ± 0.21 mm for CCA and 0.12 ± 0.24/0.14 ± 0.35 mm for DAO. No significant difference was observed between the interscan VWT assessment using automated segmentation for both CCA (P = 0.19) and DAO (P = 0.94). Both manual and automated segmentation detected significantly higher carotid (P = 0.016 and P = 0.005) and aortic (P < 0.001 and P = 0.021) wall thickness in the hypertensive patients. A reliable and reproducible pipeline for fully automatic vessel wall quantification was developed and validated on healthy volunteers as well as patients with increased vessel wall thickness. This method holds promise for helping in efficient image interpretation for large-scale cohort studies. 4 J. Magn. Reson. Imaging 2017;45:215-228. © 2016 International Society for Magnetic Resonance in Medicine.
McClymont, Darryl; Mehnert, Andrew; Trakic, Adnan; Kennedy, Dominic; Crozier, Stuart
2014-04-01
To present and evaluate a fully automatic method for segmentation (i.e., detection and delineation) of suspicious tissue in breast MRI. The method, based on mean-shift clustering and graph-cuts on a region adjacency graph, was developed and its parameters tuned using multimodal (T1, T2, DCE-MRI) clinical breast MRI data from 35 subjects (training data). It was then tested using two data sets. Test set 1 comprises data for 85 subjects (93 lesions) acquired using the same protocol and scanner system used to acquire the training data. Test set 2 comprises data for eight subjects (nine lesions) acquired using a similar protocol but a different vendor's scanner system. Each lesion was manually delineated in three-dimensions by an experienced breast radiographer to establish segmentation ground truth. The regions of interest identified by the method were compared with the ground truth and the detection and delineation accuracies quantitatively evaluated. One hundred percent of the lesions were detected with a mean of 4.5 ± 1.2 false positives per subject. This false-positive rate is nearly 50% better than previously reported for a fully automatic breast lesion detection system. The median Dice coefficient for Test set 1 was 0.76 (interquartile range, 0.17), and 0.75 (interquartile range, 0.16) for Test set 2. The results demonstrate the efficacy and accuracy of the proposed method as well as its potential for direct application across different MRI systems. It is (to the authors' knowledge) the first fully automatic method for breast lesion detection and delineation in breast MRI.
Slide Set: Reproducible image analysis and batch processing with ImageJ.
Nanes, Benjamin A
2015-11-01
Most imaging studies in the biological sciences rely on analyses that are relatively simple. However, manual repetition of analysis tasks across multiple regions in many images can complicate even the simplest analysis, making record keeping difficult, increasing the potential for error, and limiting reproducibility. While fully automated solutions are necessary for very large data sets, they are sometimes impractical for the small- and medium-sized data sets common in biology. Here we present the Slide Set plugin for ImageJ, which provides a framework for reproducible image analysis and batch processing. Slide Set organizes data into tables, associating image files with regions of interest and other relevant information. Analysis commands are automatically repeated over each image in the data set, and multiple commands can be chained together for more complex analysis tasks. All analysis parameters are saved, ensuring transparency and reproducibility. Slide Set includes a variety of built-in analysis commands and can be easily extended to automate other ImageJ plugins, reducing the manual repetition of image analysis without the set-up effort or programming expertise required for a fully automated solution.
volBrain: An Online MRI Brain Volumetry System
Manjón, José V.; Coupé, Pierrick
2016-01-01
The amount of medical image data produced in clinical and research settings is rapidly growing resulting in vast amount of data to analyze. Automatic and reliable quantitative analysis tools, including segmentation, allow to analyze brain development and to understand specific patterns of many neurological diseases. This field has recently experienced many advances with successful techniques based on non-linear warping and label fusion. In this work we present a novel and fully automatic pipeline for volumetric brain analysis based on multi-atlas label fusion technology that is able to provide accurate volumetric information at different levels of detail in a short time. This method is available through the volBrain online web interface (http://volbrain.upv.es), which is publically and freely accessible to the scientific community. Our new framework has been compared with current state-of-the-art methods showing very competitive results. PMID:27512372
A vibration-based health monitoring program for a large and seismically vulnerable masonry dome
NASA Astrophysics Data System (ADS)
Pecorelli, M. L.; Ceravolo, R.; De Lucia, G.; Epicoco, R.
2017-05-01
Vibration-based health monitoring of monumental structures must rely on efficient and, as far as possible, automatic modal analysis procedures. Relatively low excitation energy provided by traffic, wind and other sources is usually sufficient to detect structural changes, as those produced by earthquakes and extreme events. Above all, in-operation modal analysis is a non-invasive diagnostic technique that can support optimal strategies for the preservation of architectural heritage, especially if complemented by model-driven procedures. In this paper, the preliminary steps towards a fully automated vibration-based monitoring of the world’s largest masonry oval dome (internal axes of 37.23 by 24.89 m) are presented. More specifically, the paper reports on signal treatment operations conducted to set up the permanent dynamic monitoring system of the dome and to realise a robust automatic identification procedure. Preliminary considerations on the effects of temperature on dynamic parameters are finally reported.
volBrain: An Online MRI Brain Volumetry System.
Manjón, José V; Coupé, Pierrick
2016-01-01
The amount of medical image data produced in clinical and research settings is rapidly growing resulting in vast amount of data to analyze. Automatic and reliable quantitative analysis tools, including segmentation, allow to analyze brain development and to understand specific patterns of many neurological diseases. This field has recently experienced many advances with successful techniques based on non-linear warping and label fusion. In this work we present a novel and fully automatic pipeline for volumetric brain analysis based on multi-atlas label fusion technology that is able to provide accurate volumetric information at different levels of detail in a short time. This method is available through the volBrain online web interface (http://volbrain.upv.es), which is publically and freely accessible to the scientific community. Our new framework has been compared with current state-of-the-art methods showing very competitive results.
Differential GPS/inertial navigation approach/landing flight test results
NASA Technical Reports Server (NTRS)
Snyder, Scott; Schipper, Brian; Vallot, Larry; Parker, Nigel; Spitzer, Cary
1992-01-01
In November of 1990 a joint Honeywell/NASA-Langley differential GPS/inertial flight test was conducted at Wallops Island, Virginia. The test objective was to acquire a system performance database and demonstrate automatic landing using an integrated differential GPS/INS (Global Positioning System/inertial navigation system) with barometric and radar altimeters. The flight test effort exceeded program objectives with over 120 landings, 36 of which were fully automatic differential GPS/inertial landings. Flight test results obtained from post-flight data analysis are discussed. These results include characteristics of differential GPS/inertial error, using the Wallops Island Laser Tracker as a reference. Data on the magnitude of the differential corrections and vertical channel performance with and without radar altimeter augmentation are provided.
Forsberg, Daniel; Lindblom, Maria; Quick, Petter; Gauffin, Håkan
2016-09-01
To present a semi-automatic method with minimal user interaction for quantitative analysis of the patellofemoral motion pattern. 4D CT data capturing the patellofemoral motion pattern of a continuous flexion and extension were collected for five patients prone to patellar luxation both pre- and post-surgically. For the proposed method, an observer would place landmarks in a single 3D volume, which then are automatically propagated to the other volumes in a time sequence. From the landmarks in each volume, the measures patellar displacement, patellar tilt and angle between femur and tibia were computed. Evaluation of the observer variability showed the proposed semi-automatic method to be favorable over a fully manual counterpart, with an observer variability of approximately 1.5[Formula: see text] for the angle between femur and tibia, 1.5 mm for the patellar displacement, and 4.0[Formula: see text]-5.0[Formula: see text] for the patellar tilt. The proposed method showed that surgery reduced the patellar displacement and tilt at maximum extension with approximately 10-15 mm and 15[Formula: see text]-20[Formula: see text] for three patients but with less evident differences for two of the patients. A semi-automatic method suitable for quantification of the patellofemoral motion pattern as captured by 4D CT data has been presented. Its observer variability is on par with that of other methods but with the distinct advantage to support continuous motions during the image acquisition.
Advances of FishNet towards a fully automatic monitoring system for fish migration
NASA Astrophysics Data System (ADS)
Kratzert, Frederik; Mader, Helmut
2017-04-01
Restoring the continuum of river networks, affected by anthropogenic constructions, is one of the main objectives of the Water Framework Directive. Regarding fish migration, fish passes are a widely used measure. Often the functionality of these fish passes needs to be assessed by monitoring. Over the last years, we developed a new semi-automatic monitoring system (FishCam) which allows the contact free observation of fish migration in fish passes through videos. The system consists of a detection tunnel, equipped with a camera, a motion sensor and artificial light sources, as well as a software (FishNet), which helps to analyze the video data. In its latest version, the software is capable of detecting and tracking objects in the videos as well as classifying them into "fish" and "no-fish" objects. This allows filtering out the videos containing at least one fish (approx. 5 % of all grabbed videos) and reduces the manual labor to the analysis of these videos. In this state the entire system has already been used in over 20 different fish passes across Austria for a total of over 140 months of monitoring resulting in more than 1.4 million analyzed videos. As a next step towards a fully automatic monitoring system, a key feature is the automatized classification of the detected fish into their species, which is still an unsolved task in a fully automatic monitoring environment. Recent advances in the field of machine learning, especially image classification with deep convolutional neural networks, sound promising in order to solve this problem. In this study, different approaches for the fish species classification are tested. Besides an image-only based classification approach using deep convolutional neural networks, various methods that combine the power of convolutional neural networks as image descriptors with additional features, such as the fish length and the time of appearance, are explored. To facilitate the development and testing phase of this approach, a subset of six fish species of Austrian rivers and streams is considered in this study. All scripts and the data to reproduce the results of this study will be made publicly available on GitHub* at the beginning of the EGU2017 General Assembly. * https://github.com/kratzert/EGU2017_public/
NASA Astrophysics Data System (ADS)
Bakhous, Christine; Aubert, Benjamin; Vazquez, Carlos; Cresson, Thierry; Parent, Stefan; De Guise, Jacques
2018-02-01
The 3D analysis of the spine deformities (scoliosis) has a high potential in its clinical diagnosis and treatment. In a biplanar radiographs context, a 3D analysis requires a 3D reconstruction from a pair of 2D X-rays. Whether being fully-/semiautomatic or manual, this task is complex because of the noise, the structure superimposition and partial information due to a limited projections number. Being involved in the axial vertebra rotation (AVR), which is a fundamental clinical parameter for scoliosis diagnosis, pedicles are important landmarks for the 3D spine modeling and pre-operative planning. In this paper, we focus on the extension of a fully-automatic 3D spine reconstruction method where the Vertebral Body Centers (VBCs) are automatically detected using Convolutional Neural Network (CNN) and then regularized using a Statistical Shape Model (SSM) framework. In this global process, pedicles are inferred statistically during the SSM regularization. Our contribution is to add a CNN-based regression model for pedicle detection allowing a better pedicle localization and improving the clinical parameters estimation (e.g. AVR, Cobb angle). Having 476 datasets including healthy patients and Adolescent Idiopathic Scoliosis (AIS) cases with different scoliosis grades (Cobb angles up to 116°), we used 380 for training, 48 for testing and 48 for validation. Adding the local CNN-based pedicle detection decreases the mean absolute error of the AVR by 10%. The 3D mean Euclidian distance error between detected pedicles and ground truth decreases by 17% and the maximum error by 19%. Moreover, a general improvement is observed in the 3D spine reconstruction and reflected in lower errors on the Cobb angle estimation.
ARCOCT: Automatic detection of lumen border in intravascular OCT images.
Cheimariotis, Grigorios-Aris; Chatzizisis, Yiannis S; Koutkias, Vassilis G; Toutouzas, Konstantinos; Giannopoulos, Andreas; Riga, Maria; Chouvarda, Ioanna; Antoniadis, Antonios P; Doulaverakis, Charalambos; Tsamboulatidis, Ioannis; Kompatsiaris, Ioannis; Giannoglou, George D; Maglaveras, Nicos
2017-11-01
Intravascular optical coherence tomography (OCT) is an invaluable tool for the detection of pathological features on the arterial wall and the investigation of post-stenting complications. Computational lumen border detection in OCT images is highly advantageous, since it may support rapid morphometric analysis. However, automatic detection is very challenging, since OCT images typically include various artifacts that impact image clarity, including features such as side branches and intraluminal blood presence. This paper presents ARCOCT, a segmentation method for fully-automatic detection of lumen border in OCT images. ARCOCT relies on multiple, consecutive processing steps, accounting for image preparation, contour extraction and refinement. In particular, for contour extraction ARCOCT employs the transformation of OCT images based on physical characteristics such as reflectivity and absorption of the tissue and, for contour refinement, local regression using weighted linear least squares and a 2nd degree polynomial model is employed to achieve artifact and small-branch correction as well as smoothness of the artery mesh. Our major focus was to achieve accurate contour delineation in the various types of OCT images, i.e., even in challenging cases with branches and artifacts. ARCOCT has been assessed in a dataset of 1812 images (308 from stented and 1504 from native segments) obtained from 20 patients. ARCOCT was compared against ground-truth manual segmentation performed by experts on the basis of various geometric features (e.g. area, perimeter, radius, diameter, centroid, etc.) and closed contour matching indicators (the Dice index, the Hausdorff distance and the undirected average distance), using standard statistical analysis methods. The proposed method was proven very efficient and close to the ground-truth, exhibiting non statistically-significant differences for most of the examined metrics. ARCOCT allows accurate and fully-automated lumen border detection in OCT images. Copyright © 2017 Elsevier B.V. All rights reserved.
Fully automated corneal endothelial morphometry of images captured by clinical specular microscopy
NASA Astrophysics Data System (ADS)
Bucht, Curry; Söderberg, Per; Manneberg, Göran
2009-02-01
The corneal endothelium serves as the posterior barrier of the cornea. Factors such as clarity and refractive properties of the cornea are in direct relationship to the quality of the endothelium. The endothelial cell density is considered the most important morphological factor. Morphometry of the corneal endothelium is presently done by semi-automated analysis of pictures captured by a Clinical Specular Microscope (CSM). Because of the occasional need of operator involvement, this process can be tedious, having a negative impact on sampling size. This study was dedicated to the development of fully automated analysis of images of the corneal endothelium, captured by CSM, using Fourier analysis. Software was developed in the mathematical programming language Matlab. Pictures of the corneal endothelium, captured by CSM, were read into the analysis software. The software automatically performed digital enhancement of the images. The digitally enhanced images of the corneal endothelium were transformed, using the fast Fourier transform (FFT). Tools were developed and applied for identification and analysis of relevant characteristics of the Fourier transformed images. The data obtained from each Fourier transformed image was used to calculate the mean cell density of its corresponding corneal endothelium. The calculation was based on well known diffraction theory. Results in form of estimated cell density of the corneal endothelium were obtained, using fully automated analysis software on images captured by CSM. The cell density obtained by the fully automated analysis was compared to the cell density obtained from classical, semi-automated analysis and a relatively large correlation was found.
Micro-Raman spectroscopy: The analysis of micrometer and submicrometer atmospheric aerosols
NASA Technical Reports Server (NTRS)
Klainer, S. M.; Milanovich, F. P.
1985-01-01
A nondestructive method of molecular analysis which is required to fully utilize the information contained within a collected particle is discussed. Upper atmosphere reaction mechanisms are assessed when the chemical compounds, the use of micro-Raman spectrometric techniques to perform micron and submicron particle analysis was evaluated. The results are favorable and it is concluded that micron and submicron particles can be analyzed by the micron-Raman approach. Completely automatic analysis should be possible to 0.3 micro m. No problems are anticipated with photo or thermal decomposition. Sample and impurity fluorescence are the key source of background as they cannot be completely eliminated.
NASA Astrophysics Data System (ADS)
Jacobs, Colin; Ma, Kevin; Moin, Paymann; Liu, Brent
2010-03-01
Multiple Sclerosis (MS) is a common neurological disease affecting the central nervous system characterized by pathologic changes including demyelination and axonal injury. MR imaging has become the most important tool to evaluate the disease progression of MS which is characterized by the occurrence of white matter lesions. Currently, radiologists evaluate and assess the multiple sclerosis lesions manually by estimating the lesion volume and amount of lesions. This process is extremely time-consuming and sensitive to intra- and inter-observer variability. Therefore, there is a need for automatic segmentation of the MS lesions followed by lesion quantification. We have developed a fully automatic segmentation algorithm to identify the MS lesions. The segmentation algorithm is accelerated by parallel computing using Graphics Processing Units (GPU) for practical implementation into a clinical environment. Subsequently, characterized quantification of the lesions is performed. The quantification results, which include lesion volume and amount of lesions, are stored in a structured report together with the lesion location in the brain to establish a standardized representation of the disease progression of the patient. The development of this structured report in collaboration with radiologists aims to facilitate outcome analysis and treatment assessment of the disease and will be standardized based on DICOM-SR. The results can be distributed to other DICOM-compliant clinical systems that support DICOM-SR such as PACS. In addition, the implementation of a fully automatic segmentation and quantification system together with a method for storing, distributing, and visualizing key imaging and informatics data in DICOM-SR for MS lesions improves the clinical workflow of radiologists and visualizations of the lesion segmentations and will provide 3-D insight into the distribution of lesions in the brain.
NASA Astrophysics Data System (ADS)
Letort, Jean; Guilbert, Jocelyn; Cotton, Fabrice; Bondár, István; Cano, Yoann; Vergoz, Julien
2015-06-01
The depth of an earthquake is difficult to estimate because of the trade-off between depth and origin time estimations, and because it can be biased by lateral Earth heterogeneities. To face this challenge, we have developed a new, blind and fully automatic teleseismic depth analysis. The results of this new method do not depend on epistemic uncertainties due to depth-phase picking and identification. The method consists of a modification of the cepstral analysis from Letort et al. and Bonner et al., which aims to detect surface reflected (pP, sP) waves in a signal at teleseismic distances (30°-90°) through the study of the spectral holes in the shape of the signal spectrum. The ability of our automatic method to improve depth estimations is shown by relocation of the recent moderate seismicity of the Guerrero subduction area (Mexico). We have therefore estimated the depth of 152 events using teleseismic data from the IRIS stations and arrays. One advantage of this method is that it can be applied for single stations (from IRIS) as well as for classical arrays. In the Guerrero area, our new cepstral analysis efficiently clusters event locations and provides an improved view of the geometry of the subduction. Moreover, we have also validated our method through relocation of the same events using the new International Seismological Centre (ISC)-locator algorithm, as well as comparing our cepstral depths with the available Harvard-Centroid Moment Tensor (CMT) solutions and the three available ground thrust (GT5) events (where lateral localization is assumed to be well constrained with uncertainty <5 km) for this area. These comparisons indicate an overestimation of focal depths in the ISC catalogue for deeper parts of the subduction, and they show a systematic bias between the estimated cepstral depths and the ISC-locator depths. Using information from the CMT catalogue relating to the predominant focal mechanism for this area, this bias can be explained as a misidentification of sP phases by pP phases, which shows the greater interest for the use of this new automatic cepstral analysis, as it is less sensitive to phase identification.
Fully automatic multi-atlas segmentation of CTA for partial volume correction in cardiac SPECT/CT
NASA Astrophysics Data System (ADS)
Liu, Qingyi; Mohy-ud-Din, Hassan; Boutagy, Nabil E.; Jiang, Mingyan; Ren, Silin; Stendahl, John C.; Sinusas, Albert J.; Liu, Chi
2017-05-01
Anatomical-based partial volume correction (PVC) has been shown to improve image quality and quantitative accuracy in cardiac SPECT/CT. However, this method requires manual segmentation of various organs from contrast-enhanced computed tomography angiography (CTA) data. In order to achieve fully automatic CTA segmentation for clinical translation, we investigated the most common multi-atlas segmentation methods. We also modified the multi-atlas segmentation method by introducing a novel label fusion algorithm for multiple organ segmentation to eliminate overlap and gap voxels. To evaluate our proposed automatic segmentation, eight canine 99mTc-labeled red blood cell SPECT/CT datasets that incorporated PVC were analyzed, using the leave-one-out approach. The Dice similarity coefficient of each organ was computed. Compared to the conventional label fusion method, our proposed label fusion method effectively eliminated gaps and overlaps and improved the CTA segmentation accuracy. The anatomical-based PVC of cardiac SPECT images with automatic multi-atlas segmentation provided consistent image quality and quantitative estimation of intramyocardial blood volume, as compared to those derived using manual segmentation. In conclusion, our proposed automatic multi-atlas segmentation method of CTAs is feasible, practical, and facilitates anatomical-based PVC of cardiac SPECT/CT images.
Machine-Aided Translation: From Terminology Banks to Interactive Translation Systems.
ERIC Educational Resources Information Center
Greenfield, Concetta C.; Serain, Daniel
The rapid growth of the need for technical translations in recent years has led specialists to utilize computer technology to improve the efficiency and quality of translation. The two approaches considered were automatic translation and terminology banks. Since the results of fully automatic translation were considered unsatisfactory by various…
A Flexible and Configurable Architecture for Automatic Control Remote Laboratories
ERIC Educational Resources Information Center
Kalúz, Martin; García-Zubía, Javier; Fikar, Miroslav; Cirka, Luboš
2015-01-01
In this paper, we propose a novel approach in hardware and software architecture design for implementation of remote laboratories for automatic control. In our contribution, we show the solution with flexible connectivity at back-end, providing features of multipurpose usage with different types of experimental devices, and fully configurable…
Ultramap v3 - a Revolution in Aerial Photogrammetry
NASA Astrophysics Data System (ADS)
Reitinger, B.; Sormann, M.; Zebedin, L.; Schachinger, B.; Hoefler, M.; Tomasi, R.; Lamperter, M.; Gruber, B.; Schiester, G.; Kobald, M.; Unger, M.; Klaus, A.; Bernoegger, S.; Karner, K.; Wiechert, A.; Ponticelli, M.; Gruber, M.
2012-07-01
In the last years, Microsoft has driven innovation in the aerial photogrammetry community. Besides the market leading camera technology, UltraMap has grown to an outstanding photogrammetric workflow system which enables users to effectively work with large digital aerial image blocks in a highly automated way. Best example is the project-based color balancing approach which automatically balances images to a homogeneous block. UltraMap V3 continues innovation, and offers a revolution in terms of ortho processing. A fully automated dense matching module strives for high precision digital surface models (DSMs) which are calculated either on CPUs or on GPUs using a distributed processing framework. By applying constrained filtering algorithms, a digital terrain model can be derived which in turn can be used for fully automated traditional ortho texturing. By having the knowledge about the underlying geometry, seamlines can be generated automatically by applying cost functions in order to minimize visual disturbing artifacts. By exploiting the generated DSM information, a DSMOrtho is created using the balanced input images. Again, seamlines are detected automatically resulting in an automatically balanced ortho mosaic. Interactive block-based radiometric adjustments lead to a high quality ortho product based on UltraCam imagery. UltraMap v3 is the first fully integrated and interactive solution for supporting UltraCam images at best in order to deliver DSM and ortho imagery.
Fully automatic detection and visualization of patient specific coronary supply regions
NASA Astrophysics Data System (ADS)
Fritz, Dominik; Wiedemann, Alexander; Dillmann, Ruediger; Scheuering, Michael
2008-03-01
Coronary territory maps, which associate myocardial regions with the corresponding coronary artery that supply them, are a common visualization technique to assist the physician in the diagnosis of coronary artery disease. However, the commonly used visualization is based on the AHA-17-segment model, which is an empirical population based model. Therefore, it does not necessarily cope with the often highly individual coronary anatomy of a specific patient. In this paper we introduce a novel fully automatic approach to compute the patient individual coronary supply regions in CTA datasets. This approach is divided in three consecutive steps. First, the aorta is fully automatically located in the dataset with a combination of a Hough transform and a cylindrical model matching approach. Having the location of the aorta, a segmentation and skeletonization of the coronary tree is triggered. In the next step, the three main branches (LAD, LCX and RCX) are automatically labeled, based on the knowledge of the pose of the aorta and the left ventricle. In the last step the labeled coronary tree is projected on the left ventricular surface, which can afterward be subdivided into the coronary supply regions, based on a Voronoi transform. The resulting supply regions can be either shown in 3D on the epicardiac surface of the left ventricle, or as a subdivision of a polarmap.
NASA Astrophysics Data System (ADS)
Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Vavruch, Ludvig; Tropp, Hans; Knutsson, Hans
2013-03-01
Reliable measurements of spinal deformities in idiopathic scoliosis are vital, since they are used for assessing the degree of scoliosis, deciding upon treatment and monitoring the progression of the disease. However, commonly used two dimensional methods (e.g. the Cobb angle) do not fully capture the three dimensional deformity at hand in scoliosis, of which axial vertebral rotation (AVR) is considered to be of great importance. There are manual methods for measuring the AVR, but they are often time-consuming and related with a high intra- and inter-observer variability. In this paper, we present a fully automatic method for estimating the AVR in images from computed tomography. The proposed method is evaluated on four scoliotic patients with 17 vertebrae each and compared with manual measurements performed by three observers using the standard method by Aaro-Dahlborn. The comparison shows that the difference in measured AVR between automatic and manual measurements are on the same level as the inter-observer difference. This is further supported by a high intraclass correlation coefficient (0.971-0.979), obtained when comparing the automatic measurements with the manual measurements of each observer. Hence, the provided results and the computational performance, only requiring approximately 10 to 15 s for processing an entire volume, demonstrate the potential clinical value of the proposed method.
Nondestructive Vibratory Testing and Evaluation Procedure for Military Roads and Streets.
1984-07-01
the addition of an auto- matic data acquisition system to the instrumentation control panel. This system , presently available, would automatically ...the data used to further develop and define the basic correlations. c. Consideration be given to installing an automatic data acquisi- tion system to...glows red any time the force generator is not fully elevated. Depressing this switch will stop the automatic cycle at any point and clear all system
NASA Astrophysics Data System (ADS)
Lu, Xiaoguang; Xue, Hui; Jolly, Marie-Pierre; Guetter, Christoph; Kellman, Peter; Hsu, Li-Yueh; Arai, Andrew; Zuehlsdorff, Sven; Littmann, Arne; Georgescu, Bogdan; Guehring, Jens
2011-03-01
Cardiac perfusion magnetic resonance imaging (MRI) has proven clinical significance in diagnosis of heart diseases. However, analysis of perfusion data is time-consuming, where automatic detection of anatomic landmarks and key-frames from perfusion MR sequences is helpful for anchoring structures and functional analysis of the heart, leading toward fully automated perfusion analysis. Learning-based object detection methods have demonstrated their capabilities to handle large variations of the object by exploring a local region, i.e., context. Conventional 2D approaches take into account spatial context only. Temporal signals in perfusion data present a strong cue for anchoring. We propose a joint context model to encode both spatial and temporal evidence. In addition, our spatial context is constructed not only based on the landmark of interest, but also the landmarks that are correlated in the neighboring anatomies. A discriminative model is learned through a probabilistic boosting tree. A marginal space learning strategy is applied to efficiently learn and search in a high dimensional parameter space. A fully automatic system is developed to simultaneously detect anatomic landmarks and key frames in both RV and LV from perfusion sequences. The proposed approach was evaluated on a database of 373 cardiac perfusion MRI sequences from 77 patients. Experimental results of a 4-fold cross validation show superior landmark detection accuracies of the proposed joint spatial-temporal approach to the 2D approach that is based on spatial context only. The key-frame identification results are promising.
PaCeQuant: A Tool for High-Throughput Quantification of Pavement Cell Shape Characteristics.
Möller, Birgit; Poeschl, Yvonne; Plötner, Romina; Bürstenbinder, Katharina
2017-11-01
Pavement cells (PCs) are the most frequently occurring cell type in the leaf epidermis and play important roles in leaf growth and function. In many plant species, PCs form highly complex jigsaw-puzzle-shaped cells with interlocking lobes. Understanding of their development is of high interest for plant science research because of their importance for leaf growth and hence for plant fitness and crop yield. Studies of PC development, however, are limited, because robust methods are lacking that enable automatic segmentation and quantification of PC shape parameters suitable to reflect their cellular complexity. Here, we present our new ImageJ-based tool, PaCeQuant, which provides a fully automatic image analysis workflow for PC shape quantification. PaCeQuant automatically detects cell boundaries of PCs from confocal input images and enables manual correction of automatic segmentation results or direct import of manually segmented cells. PaCeQuant simultaneously extracts 27 shape features that include global, contour-based, skeleton-based, and PC-specific object descriptors. In addition, we included a method for classification and analysis of lobes at two-cell junctions and three-cell junctions, respectively. We provide an R script for graphical visualization and statistical analysis. We validated PaCeQuant by extensive comparative analysis to manual segmentation and existing quantification tools and demonstrated its usability to analyze PC shape characteristics during development and between different genotypes. PaCeQuant thus provides a platform for robust, efficient, and reproducible quantitative analysis of PC shape characteristics that can easily be applied to study PC development in large data sets. © 2017 American Society of Plant Biologists. All Rights Reserved.
Kim, Jinsuh; Leira, Enrique C; Callison, Richard C; Ludwig, Bryan; Moritani, Toshio; Magnotta, Vincent A; Madsen, Mark T
2010-05-01
We developed fully automated software for dynamic susceptibility contrast (DSC) MR perfusion-weighted imaging (PWI) to efficiently and reliably derive critical hemodynamic information for acute stroke treatment decisions. Brain MR PWI was performed in 80 consecutive patients with acute nonlacunar ischemic stroke within 24h after onset of symptom from January 2008 to August 2009. These studies were automatically processed to generate hemodynamic parameters that included cerebral blood flow and cerebral blood volume, and the mean transit time (MTT). To develop reliable software for PWI analysis, we used computationally robust algorithms including the piecewise continuous regression method to determine bolus arrival time (BAT), log-linear curve fitting, arrival time independent deconvolution method and sophisticated motion correction methods. An optimal arterial input function (AIF) search algorithm using a new artery-likelihood metric was also developed. Anatomical locations of the automatically determined AIF were reviewed and validated. The automatically computed BAT values were statistically compared with estimated BAT by a single observer. In addition, gamma-variate curve-fitting errors of AIF and inter-subject variability of AIFs were analyzed. Lastly, two observes independently assessed the quality and area of hypoperfusion mismatched with restricted diffusion area from motion corrected MTT maps and compared that with time-to-peak (TTP) maps using the standard approach. The AIF was identified within an arterial branch and enhanced areas of perfusion deficit were visualized in all evaluated cases. Total processing time was 10.9+/-2.5s (mean+/-s.d.) without motion correction and 267+/-80s (mean+/-s.d.) with motion correction on a standard personal computer. The MTT map produced with our software adequately estimated brain areas with perfusion deficit and was significantly less affected by random noise of the PWI when compared with the TTP map. Results of image quality assessment by two observers revealed that the MTT maps exhibited superior quality over the TTP maps (88% good rating of MTT as compared to 68% of TTP). Our software allowed fully automated deconvolution analysis of DSC PWI using proven efficient algorithms that can be applied to acute stroke treatment decisions. Our streamlined method also offers promise for further development of automated quantitative analysis of the ischemic penumbra. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rücker, Andrea; Boss, Stefan; Von Freyberg, Jana; Zappa, Massimiliano; Kirchner, James
2016-04-01
In many mountainous catchments the seasonal snowpack stores a significant volume of water, which is released as streamflow during the melting period. The predicted change in future climate will bring new challenges in water resource management in snow-dominated headwater catchments and their receiving lowlands. To improve predictions of hydrologic extreme events, particularly summer droughts, it is important characterize the relationship between winter snowpack and summer (low) flows in such areas (e.g., Godsey et al., 2014). In this context, stable water isotopes (18O, 2H) are a powerful tool for fingerprinting the sources of streamflow and tracing water flow pathways. For this reason, we have established an isotope sampling network in the Alptal catchment (46.4 km2) in Central-Switzerland as part of the SREP-Drought project (Snow Resources and the Early Prediction of hydrological DROUGHT in mountainous streams). Samples of precipitation (daily), snow cores (weekly) and runoff (daily) are analyzed for their isotopic signature in a regular cycle. Precipitation is also sampled along a horizontal transect at the valley bottom, and along an elevational transect. Additionally, the analysis of snow meltwater is of importance. As the sample collection of snow meltwater in mountainous terrain is often impractical, we have developed a fully automatic snow lysimeter system, which measures meltwater volume and collects samples for isotope analysis at daily intervals. The system consists of three lysimeters built from Decagon-ECRN-100 High Resolution Rain Gauges as standard component that allows monitoring of meltwater flow. Each lysimeter leads the meltwater into a 10-liter container that is automatically sampled and then emptied daily. These water samples are replaced regularly and analyzed afterwards on their isotopic composition in the lab. Snow melt events as well as system status can be monitored in real time. In our presentation we describe the automatic snow lysimeter system and present initial results from field tests in winter 2015/2016 under natural conditions at an experimental field site. Fully functional deployment in a forested and an open field location in the Erlenbach subcatchment (0.7 km2) is envisaged for winter 2016/2017. Godsey, S.E.,* J.W. Kirchner and C.L. Tague, Effects of changes in winter snowpacks on summer low flows: case studies in the Sierra Nevada, California, USA, Hydrological Processes, 28, 5048-5064, doi: 10.1002/hyp.9943, 2014.
Gorzalczany, Marian B; Rudzinski, Filip
2017-06-07
This paper presents a generalization of self-organizing maps with 1-D neighborhoods (neuron chains) that can be effectively applied to complex cluster analysis problems. The essence of the generalization consists in introducing mechanisms that allow the neuron chain--during learning--to disconnect into subchains, to reconnect some of the subchains again, and to dynamically regulate the overall number of neurons in the system. These features enable the network--working in a fully unsupervised way (i.e., using unlabeled data without a predefined number of clusters)--to automatically generate collections of multiprototypes that are able to represent a broad range of clusters in data sets. First, the operation of the proposed approach is illustrated on some synthetic data sets. Then, this technique is tested using several real-life, complex, and multidimensional benchmark data sets available from the University of California at Irvine (UCI) Machine Learning repository and the Knowledge Extraction based on Evolutionary Learning data set repository. A sensitivity analysis of our approach to changes in control parameters and a comparative analysis with an alternative approach are also performed.
Image segmentation evaluation for very-large datasets
NASA Astrophysics Data System (ADS)
Reeves, Anthony P.; Liu, Shuang; Xie, Yiting
2016-03-01
With the advent of modern machine learning methods and fully automated image analysis there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. Current approaches of visual inspection and manual markings do not scale well to big data. We present a new approach that depends on fully automated algorithm outcomes for segmentation documentation, requires no manual marking, and provides quantitative evaluation for computer algorithms. The documentation of new image segmentations and new algorithm outcomes are achieved by visual inspection. The burden of visual inspection on large datasets is minimized by (a) customized visualizations for rapid review and (b) reducing the number of cases to be reviewed through analysis of quantitative segmentation evaluation. This method has been applied to a dataset of 7,440 whole-lung CT images for 6 different segmentation algorithms designed to fully automatically facilitate the measurement of a number of very important quantitative image biomarkers. The results indicate that we could achieve 93% to 99% successful segmentation for these algorithms on this relatively large image database. The presented evaluation method may be scaled to much larger image databases.
Rios Velazquez, Emmanuel; Meier, Raphael; Dunn, William D; Alexander, Brian; Wiest, Roland; Bauer, Stefan; Gutman, David A; Reyes, Mauricio; Aerts, Hugo J W L
2015-11-18
Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman's correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4 - 0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55-0.77 and 0.65, CI: 0.54-0.76), comparable to manually defined volumes (0.64, CI: 0.53-0.75 and 0.63, CI: 0.52-0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.
Ughi, Giovanni J; Adriaenssens, Tom; Desmet, Walter; D’hooge, Jan
2012-01-01
Intravascular optical coherence tomography (IV-OCT) is an imaging modality that can be used for the assessment of intracoronary stents. Recent publications pointed to the fact that 3D visualizations have potential advantages compared to conventional 2D representations. However, 3D imaging still requires a time consuming manual procedure not suitable for on-line application during coronary interventions. We propose an algorithm for a rapid and fully automatic 3D visualization of IV-OCT pullbacks. IV-OCT images are first processed for the segmentation of the different structures. This also allows for automatic pullback calibration. Then, according to the segmentation results, different structures are depicted with different colors to visualize the vessel wall, the stent and the guide-wire in details. Final 3D rendering results are obtained through the use of a commercial 3D DICOM viewer. Manual analysis was used as ground-truth for the validation of the segmentation algorithms. A correlation value of 0.99 and good limits of agreement (Bland Altman statistics) were found over 250 images randomly extracted from 25 in vivo pullbacks. Moreover, 3D rendering was compared to angiography, pictures of deployed stents made available by the manufacturers and to conventional 2D imaging corroborating visualization results. Computational time for the visualization of an entire data sets resulted to be ~74 sec. The proposed method allows for the on-line use of 3D IV-OCT during percutaneous coronary interventions, potentially allowing treatments optimization. PMID:23243578
Initial clinical trial of a closed loop, fully automatic intra-aortic balloon pump.
Kantrowitz, A; Freed, P S; Cardona, R R; Gage, K; Marinescu, G N; Westveld, A H; Litch, B; Suzuki, A; Hayakawa, H; Takano, T
1992-01-01
A new generation, closed loop, fully automatic intraaortic balloon pump (CL-IABP) system continuously optimizes diastolic augmentation by adjusting balloon pump parameters beat by beat without operator intervention. In dogs in sinus rhythm and with experimentally induced arrhythmias, the new CL-IABP system provided safe, effective augmentation. To investigate the system's suitability for clinical use, 10 patients meeting standard indications for IABP were studied. The patients were pumped by the fully automatic IABP system for an average of 20 hr (range, 1-48 hr). At start-up, the system optimized pumping parameters within 7-20 sec. Evaluation of 186 recordings made at hourly intervals showed that inflation began within 20 msec of the dicrotic notch 99% of the time. In 100% of the recordings, deflation straddled the first half of ventricular ejection. Peak pressure across the balloon membrane averaged 55 mmHg and, in no case, exceeded 100 mmHg. Examination of the data showed that as soon as the system was actuated it provided consistently beneficial diastolic augmentation without any further operator intervention. Eight patients improved and two died (one of irreversible cardiogenic shock and one of ischemic cardiomyopathy). No complications were attributable to the investigational aspects of the system. A fully automated IABP is feasible in the clinical setting, and it may have advantages relative to current generation IABP systems.
Recent Research on the Automated Mass Measuring System
NASA Astrophysics Data System (ADS)
Yao, Hong; Ren, Xiao-Ping; Wang, Jian; Zhong, Rui-Lin; Ding, Jing-An
The research development of robotic measurement system as well as the representative automatic system were introduced in the paper, and then discussed a sub-multiple calibration scheme adopted on a fully-automatic CCR10 system effectively. Automatic robot system can be able to perform the dissemination of the mass scale without any manual intervention as well as the fast speed calibration of weight samples against a reference weight. At the last, evaluation of the expanded uncertainty was given out.
Automatic Assessment of 3D Modeling Exams
ERIC Educational Resources Information Center
Sanna, A.; Lamberti, F.; Paravati, G.; Demartini, C.
2012-01-01
Computer-based assessment of exams provides teachers and students with two main benefits: fairness and effectiveness in the evaluation process. This paper proposes a fully automatic evaluation tool for the Graphic and Virtual Design (GVD) curriculum at the First School of Architecture of the Politecnico di Torino, Italy. In particular, the tool is…
The Use of Opto-Electronics in Viscometry.
ERIC Educational Resources Information Center
Mazza, R. J.; Washbourn, D. H.
1982-01-01
Describes a semi-automatic viscometer which incorporates a microprocessor system and uses optoelectronics to detect flow of liquid through the capillary, flow time being displayed on a timer with accuracy of 0.01 second. The system could be made fully automatic with an additional microprocessor circuit and inclusion of a pump. (Author/JN)
Zhou, Yongxin; Bai, Jing
2007-01-01
A framework that combines atlas registration, fuzzy connectedness (FC) segmentation, and parametric bias field correction (PABIC) is proposed for the automatic segmentation of brain magnetic resonance imaging (MRI). First, the atlas is registered onto the MRI to initialize the following FC segmentation. Original techniques are proposed to estimate necessary initial parameters of FC segmentation. Further, the result of the FC segmentation is utilized to initialize a following PABIC algorithm. Finally, we re-apply the FC technique on the PABIC corrected MRI to get the final segmentation. Thus, we avoid expert human intervention and provide a fully automatic method for brain MRI segmentation. Experiments on both simulated and real MRI images demonstrate the validity of the method, as well as the limitation of the method. Being a fully automatic method, it is expected to find wide applications, such as three-dimensional visualization, radiation therapy planning, and medical database construction.
Toews, Matthew; Wells, William M.; Collins, Louis; Arbel, Tal
2013-01-01
This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for identifying group-related differences in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between all subjects, FBM models images as a collage of distinct, localized image features which may not be present in all subjects. FBM thus explicitly accounts for the case where the same anatomical tissue cannot be reliably identified in all subjects due to disease or anatomical variability. A probabilistic model describes features in terms of their appearance, geometry, and relationship to sub-groups of a population, and is automatically learned from a set of subject images and group labels. Features identified indicate group-related anatomical structure that can potentially be used as disease biomarkers or as a basis for computer-aided diagnosis. Scale-invariant image features are used, which reflect generic, salient patterns in the image. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer’s (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and obtains an equal error classification rate of 0.78 on new subjects. PMID:20426102
Agile Multi-Scale Decompositions for Automatic Image Registration
NASA Technical Reports Server (NTRS)
Murphy, James M.; Leija, Omar Navarro; Le Moigne, Jacqueline
2016-01-01
In recent works, the first and third authors developed an automatic image registration algorithm based on a multiscale hybrid image decomposition with anisotropic shearlets and isotropic wavelets. This prototype showed strong performance, improving robustness over registration with wavelets alone. However, this method imposed a strict hierarchy on the order in which shearlet and wavelet features were used in the registration process, and also involved an unintegrated mixture of MATLAB and C code. In this paper, we introduce a more agile model for generating features, in which a flexible and user-guided mix of shearlet and wavelet features are computed. Compared to the previous prototype, this method introduces a flexibility to the order in which shearlet and wavelet features are used in the registration process. Moreover, the present algorithm is now fully coded in C, making it more efficient and portable than the MATLAB and C prototype. We demonstrate the versatility and computational efficiency of this approach by performing registration experiments with the fully-integrated C algorithm. In particular, meaningful timing studies can now be performed, to give a concrete analysis of the computational costs of the flexible feature extraction. Examples of synthetically warped and real multi-modal images are analyzed.
Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho
2015-10-14
Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.
Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-il Dan; Ko, Hyoungho
2015-01-01
Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms. PMID:26473877
Wein, Wolfgang; Karamalis, Athanasios; Baumgartner, Adrian; Navab, Nassir
2015-06-01
The transfer of preoperative CT data into the tracking system coordinates within an operating room is of high interest for computer-aided orthopedic surgery. In this work, we introduce a solution for intra-operative ultrasound-CT registration of bones. We have developed methods for fully automatic real-time bone detection in ultrasound images and global automatic registration to CT. The bone detection algorithm uses a novel bone-specific feature descriptor and was thoroughly evaluated on both in-vivo and ex-vivo data. A global optimization strategy aligns the bone surface, followed by a soft tissue aware intensity-based registration to provide higher local registration accuracy. We evaluated the system on femur, tibia and fibula anatomy in a cadaver study with human legs, where magnetically tracked bone markers were implanted to yield ground truth information. An overall median system error of 3.7 mm was achieved on 11 datasets. Global and fully automatic registration of bones aquired with ultrasound to CT is feasible, with bone detection and tracking operating in real time for immediate feedback to the surgeon.
Application of Artificial Intelligence to Improve Aircraft Survivability.
1985-12-01
may be as smooth and effective as possible. 3. Fully Automatic Digital Engine Control ( FADEC ) Under development at the Naval Weapons Center, a major...goal of the FADEC program is to significantly reduce engine vulnerability by fully automating the regulation of engine controls. Given a thrust
MatchGUI: A Graphical MATLAB-Based Tool for Automatic Image Co-Registration
NASA Technical Reports Server (NTRS)
Ansar, Adnan I.
2011-01-01
MatchGUI software, based on MATLAB, automatically matches two images and displays the match result by superimposing one image on the other. A slider bar allows focus to shift between the two images. There are tools for zoom, auto-crop to overlap region, and basic image markup. Given a pair of ortho-rectified images (focused primarily on Mars orbital imagery for now), this software automatically co-registers the imagery so that corresponding image pixels are aligned. MatchGUI requires minimal user input, and performs a registration over scale and inplane rotation fully automatically
Some selected quantitative methods of thermal image analysis in Matlab.
Koprowski, Robert
2016-05-01
The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shen, Jun; Baum, Thomas; Cordes, Christian; Ott, Beate; Skurk, Thomas; Kooijman, Hendrik; Rummeny, Ernst J; Hauner, Hans; Menze, Bjoern H; Karampinos, Dimitrios C
2016-09-01
To develop a fully automatic algorithm for abdominal organs and adipose tissue compartments segmentation and to assess organ and adipose tissue volume changes in longitudinal water-fat magnetic resonance imaging (MRI) data. Axial two-point Dixon images were acquired in 20 obese women (age range 24-65, BMI 34.9±3.8kg/m(2)) before and after a four-week calorie restriction. Abdominal organs, subcutaneous adipose tissue (SAT) compartments (abdominal, anterior, posterior), SAT regions along the feet-head direction and regional visceral adipose tissue (VAT) were assessed by a fully automatic algorithm using morphological operations and a multi-atlas-based segmentation method. The accuracy of organ segmentation represented by Dice coefficients ranged from 0.672±0.155 for the pancreas to 0.943±0.023 for the liver. Abdominal SAT changes were significantly greater in the posterior than the anterior SAT compartment (-11.4%±5.1% versus -9.5%±6.3%, p<0.001). The loss of VAT that was not located around any organ (-16.1%±8.9%) was significantly greater than the loss of VAT 5cm around liver, left and right kidney, spleen, and pancreas (p<0.05). The presented fully automatic algorithm showed good performance in abdominal adipose tissue and organ segmentation, and allowed the detection of SAT and VAT subcompartments changes during weight loss. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Automatic chemical vapor deposition
NASA Technical Reports Server (NTRS)
Kennedy, B. W.
1981-01-01
Report reviews chemical vapor deposition (CVD) for processing integrated circuits and describes fully automatic machine for CVD. CVD proceeds at relatively low temperature, allows wide choice of film compositions (including graded or abruptly changing compositions), and deposits uniform films of controllable thickness at fairly high growth rate. Report gives overview of hardware, reactants, and temperature ranges used with CVD machine.
Detection of buried magnetic objects by a SQUID gradiometer system
NASA Astrophysics Data System (ADS)
Meyer, Hans-Georg; Hartung, Konrad; Linzen, Sven; Schneider, Michael; Stolz, Ronny; Fried, Wolfgang; Hauspurg, Sebastian
2009-05-01
We present a magnetic detection system based on superconducting gradiometric sensors (SQUID gradiometers). The system provides a unique fast mapping of large areas with a high resolution of the magnetic field gradient as well as the local position. A main part of this work is the localization and classification of magnetic objects in the ground by automatic interpretation of geomagnetic field gradients, measured by the SQUID system. In accordance with specific features the field is decomposed into segments, which allow inferences to possible objects in the ground. The global consideration of object describing properties and their optimization using error minimization methods allows the reconstruction of superimposed features and detection of buried objects. The analysis system of measured geomagnetic fields works fully automatically. By a given surface of area-measured gradients the algorithm determines within numerical limits the absolute position of objects including depth with sub-pixel accuracy and allows an arbitrary position and attitude of sources. Several SQUID gradiometer data sets were used to show the applicability of the analysis algorithm.
Automatic Generation of Algorithms for the Statistical Analysis of Planetary Nebulae Images
NASA Technical Reports Server (NTRS)
Fischer, Bernd
2004-01-01
Analyzing data sets collected in experiments or by observations is a Core scientific activity. Typically, experimentd and observational data are &aught with uncertainty, and the analysis is based on a statistical model of the conjectured underlying processes, The large data volumes collected by modern instruments make computer support indispensible for this. Consequently, scientists spend significant amounts of their time with the development and refinement of the data analysis programs. AutoBayes [GF+02, FS03] is a fully automatic synthesis system for generating statistical data analysis programs. Externally, it looks like a compiler: it takes an abstract problem specification and translates it into executable code. Its input is a concise description of a data analysis problem in the form of a statistical model as shown in Figure 1; its output is optimized and fully documented C/C++ code which can be linked dynamically into the Matlab and Octave environments. Internally, however, it is quite different: AutoBayes derives a customized algorithm implementing the given model using a schema-based process, and then further refines and optimizes the algorithm into code. A schema is a parameterized code template with associated semantic constraints which define and restrict the template s applicability. The schema parameters are instantiated in a problem-specific way during synthesis as AutoBayes checks the constraints against the original model or, recursively, against emerging sub-problems. AutoBayes schema library contains problem decomposition operators (which are justified by theorems in a formal logic in the domain of Bayesian networks) as well as machine learning algorithms (e.g., EM, k-Means) and nu- meric optimization methods (e.g., Nelder-Mead simplex, conjugate gradient). AutoBayes augments this schema-based approach by symbolic computation to derive closed-form solutions whenever possible. This is a major advantage over other statistical data analysis systems which use numerical approximations even in cases where closed-form solutions exist. AutoBayes is implemented in Prolog and comprises approximately 75.000 lines of code. In this paper, we take one typical scientific data analysis problem-analyzing planetary nebulae images taken by the Hubble Space Telescope-and show how AutoBayes can be used to automate the implementation of the necessary anal- ysis programs. We initially follow the analysis described by Knuth and Hajian [KHO2] and use AutoBayes to derive code for the published models. We show the details of the code derivation process, including the symbolic computations and automatic integration of library procedures, and compare the results of the automatically generated and manually implemented code. We then go beyond the original analysis and use AutoBayes to derive code for a simple image segmentation procedure based on a mixture model which can be used to automate a manual preproceesing step. Finally, we combine the original approach with the simple segmentation which yields a more detailed analysis. This also demonstrates that AutoBayes makes it easy to combine different aspects of data analysis.
Chen, C; Li, H; Zhou, X; Wong, S T C
2008-05-01
Image-based, high throughput genome-wide RNA interference (RNAi) experiments are increasingly carried out to facilitate the understanding of gene functions in intricate biological processes. Automated screening of such experiments generates a large number of images with great variations in image quality, which makes manual analysis unreasonably time-consuming. Therefore, effective techniques for automatic image analysis are urgently needed, in which segmentation is one of the most important steps. This paper proposes a fully automatic method for cells segmentation in genome-wide RNAi screening images. The method consists of two steps: nuclei and cytoplasm segmentation. Nuclei are extracted and labelled to initialize cytoplasm segmentation. Since the quality of RNAi image is rather poor, a novel scale-adaptive steerable filter is designed to enhance the image in order to extract long and thin protrusions on the spiky cells. Then, constraint factor GCBAC method and morphological algorithms are combined to be an integrated method to segment tight clustered cells. Compared with the results obtained by using seeded watershed and the ground truth, that is, manual labelling results by experts in RNAi screening data, our method achieves higher accuracy. Compared with active contour methods, our method consumes much less time. The positive results indicate that the proposed method can be applied in automatic image analysis of multi-channel image screening data.
Motor automaticity in Parkinson’s disease
Wu, Tao; Hallett, Mark; Chan, Piu
2017-01-01
Bradykinesia is the most important feature contributing to motor difficulties in Parkinson’s disease (PD). However, the pathophysiology underlying bradykinesia is not fully understood. One important aspect is that PD patients have difficulty in performing learned motor skills automatically, but this problem has been generally overlooked. Here we review motor automaticity associated motor deficits in PD, such as reduced arm swing, decreased stride length, freezing of gait, micrographia and reduced facial expression. Recent neuroimaging studies have revealed some neural mechanisms underlying impaired motor automaticity in PD, including less efficient neural coding of movement, failure to shift automated motor skills to the sensorimotor striatum, instability of the automatic mode within the striatum, and use of attentional control and/or compensatory efforts to execute movements usually performed automatically in healthy people. PD patients lose previously acquired automatic skills due to their impaired sensorimotor striatum, and have difficulty in acquiring new automatic skills or restoring lost motor skills. More investigations on the pathophysiology of motor automaticity, the effect of L-dopa or surgical treatments on automaticity, and the potential role of using measures of automaticity in early diagnosis of PD would be valuable. PMID:26102020
Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit
NASA Technical Reports Server (NTRS)
Ansar, Adnan I.; Clouse, Daniel S.; McHenry, Michael C.; Zarzhitsky, Dimitri V.; Pagdett, Curtis W.
2013-01-01
This software automatically calibrates a camera or an imaging array to an inertial navigation system (INS) that is rigidly mounted to the array or imager. In effect, it recovers the coordinate frame transformation between the reference frame of the imager and the reference frame of the INS. This innovation can automatically derive the camera-to-INS alignment using image data only. The assumption is that the camera fixates on an area while the aircraft flies on orbit. The system then, fully automatically, solves for the camera orientation in the INS frame. No manual intervention or ground tie point data is required.
An Open-Source Automated Peptide Synthesizer Based on Arduino and Python.
Gali, Hariprasad
2017-10-01
The development of the first open-source automated peptide synthesizer, PepSy, using Arduino UNO and readily available components is reported. PepSy was primarily designed to synthesize small peptides in a relatively small scale (<100 µmol). Scripts to operate PepSy in a fully automatic or manual mode were written in Python. Fully automatic script includes functions to carry out resin swelling, resin washing, single coupling, double coupling, Fmoc deprotection, ivDde deprotection, on-resin oxidation, end capping, and amino acid/reagent line cleaning. Several small peptides and peptide conjugates were successfully synthesized on PepSy with reasonably good yields and purity depending on the complexity of the peptide.
GESA--a two-dimensional processing system using knowledge base techniques.
Rowlands, D G; Flook, A; Payne, P I; van Hoff, A; Niblett, T; McKee, S
1988-12-01
The successful analysis of two-dimensional (2-D) polyacrylamide electrophoresis gels demands considerable experience and understanding of the protein system under investigation as well as knowledge of the separation technique itself. The present work concerns the development of a computer system for analysing 2-D electrophoretic separations which incorporates concepts derived from artificial intelligence research such that non-experts can use the technique as a diagnostic or identification tool. Automatic analysis of 2-D gel separations has proved to be extremely difficult using statistical methods. Non-reproducibility of gel separations is also difficult to overcome using automatic systems. However, the human eye is extremely good at recognising patterns in images, and human intervention in semi-automatic computer systems can reduce the computational complexities of fully automatic systems. Moreover, the expertise and understanding of an "expert" is invaluable in reducing system complexity if it can be encapsulated satisfactorily in an expert system. The combination of user-intervention in the computer system together with the encapsulation of expert knowledge characterises the present system. The domain within which the system has been developed is that of wheat grain storage proteins (gliadins) which exhibit polymorphism to such an extent that cultivars can be uniquely identified by their gliadin patterns. The system can be adapted to other domains where a range of polymorpic protein sub-units exist. In its generalised form, the system can also be used for comparing more complex 2-D gel electrophoretic separations.
Rivolo, Simone; Nagel, Eike; Smith, Nicolas P; Lee, Jack
2014-01-01
Coronary Wave Intensity Analysis (cWIA) is a technique capable of separating the effects of proximal arterial haemodynamics from cardiac mechanics. The cWIA ability to establish a mechanistic link between coronary haemodynamics measurements and the underlying pathophysiology has been widely demonstrated. Moreover, the prognostic value of a cWIA-derived metric has been recently proved. However, the clinical application of cWIA has been hindered due to the strong dependence on the practitioners, mainly ascribable to the cWIA-derived indices sensitivity to the pre-processing parameters. Specifically, as recently demonstrated, the cWIA-derived metrics are strongly sensitive to the Savitzky-Golay (S-G) filter, typically used to smooth the acquired traces. This is mainly due to the inability of the S-G filter to deal with the different timescale features present in the measured waveforms. Therefore, we propose to apply an adaptive S-G algorithm that automatically selects pointwise the optimal filter parameters. The newly proposed algorithm accuracy is assessed against a cWIA gold standard, provided by a newly developed in-silico cWIA modelling framework, when physiological noise is added to the simulated traces. The adaptive S-G algorithm, when used to automatically select the polynomial degree of the S-G filter, provides satisfactory results with ≤ 10% error for all the metrics through all the levels of noise tested. Therefore, the newly proposed method makes cWIA fully automatic and independent from the practitioners, opening the possibility to multi-centre trials.
Chavarrías, Cristina; García-Vázquez, Verónica; Alemán-Gómez, Yasser; Montesinos, Paula; Pascau, Javier; Desco, Manuel
2016-05-01
The purpose of this study was to develop a multi-platform automatic software tool for full processing of fMRI rodent studies. Existing tools require the usage of several different plug-ins, a significant user interaction and/or programming skills. Based on a user-friendly interface, the tool provides statistical parametric brain maps (t and Z) and percentage of signal change for user-provided regions of interest. The tool is coded in MATLAB (MathWorks(®)) and implemented as a plug-in for SPM (Statistical Parametric Mapping, the Wellcome Trust Centre for Neuroimaging). The automatic pipeline loads default parameters that are appropriate for preclinical studies and processes multiple subjects in batch mode (from images in either Nifti or raw Bruker format). In advanced mode, all processing steps can be selected or deselected and executed independently. Processing parameters and workflow were optimized for rat studies and assessed using 460 male-rat fMRI series on which we tested five smoothing kernel sizes and three different hemodynamic models. A smoothing kernel of FWHM = 1.2 mm (four times the voxel size) yielded the highest t values at the somatosensorial primary cortex, and a boxcar response function provided the lowest residual variance after fitting. fMRat offers the features of a thorough SPM-based analysis combined with the functionality of several SPM extensions in a single automatic pipeline with a user-friendly interface. The code and sample images can be downloaded from https://github.com/HGGM-LIM/fmrat .
Tashkeela: Novel corpus of Arabic vocalized texts, data for auto-diacritization systems.
Zerrouki, Taha; Balla, Amar
2017-04-01
Arabic diacritics are often missed in Arabic scripts. This feature is a handicap for new learner to read َArabic, text to speech conversion systems, reading and semantic analysis of Arabic texts. The automatic diacritization systems are the best solution to handle this issue. But such automation needs resources as diactritized texts to train and evaluate such systems. In this paper, we describe our corpus of Arabic diacritized texts. This corpus is called Tashkeela. It can be used as a linguistic resource tool for natural language processing such as automatic diacritics systems, dis-ambiguity mechanism, features and data extraction. The corpus is freely available, it contains 75 million of fully vocalized words mainly 97 books from classical and modern Arabic language. The corpus is collected from manually vocalized texts using web crawling process.
Fully automatic algorithm for segmenting full human diaphragm in non-contrast CT Images
NASA Astrophysics Data System (ADS)
Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas
2015-03-01
The diaphragm is a sheet of muscle which separates the thorax from the abdomen and it acts as the most important muscle of the respiratory system. As such, an accurate segmentation of the diaphragm, not only provides key information for functional analysis of the respiratory system, but also can be used for locating other abdominal organs such as the liver. However, diaphragm segmentation is extremely challenging in non-contrast CT images due to the diaphragm's similar appearance to other abdominal organs. In this paper, we present a fully automatic algorithm for diaphragm segmentation in non-contrast CT images. The method is mainly based on a priori knowledge about the human diaphragm anatomy. The diaphragm domes are in contact with the lungs and the heart while its circumference runs along the lumbar vertebrae of the spine as well as the inferior border of the ribs and sternum. As such, the diaphragm can be delineated by segmentation of these organs followed by connecting relevant parts of their outline properly. More specifically, the bottom surface of the lungs and heart, the spine borders and the ribs are delineated, leading to a set of scattered points which represent the diaphragm's geometry. Next, a B-spline filter is used to find the smoothest surface which pass through these points. This algorithm was tested on a noncontrast CT image of a lung cancer patient. The results indicate that there is an average Hausdorff distance of 2.96 mm between the automatic and manually segmented diaphragms which implies a favourable accuracy.
Long-term quality assurance of [(18)F]-fluorodeoxyglucose (FDG) manufacturing.
Gaspar, Ludovit; Reich, Michal; Kassai, Zoltan; Macasek, Fedor; Rodrigo, Luis; Kruzliak, Peter; Kovac, Peter
2016-01-01
Nine years of experience with 2286 commercial synthesis allowed us to deliver comprehensive information on the quality of (18)F-FDG production. Semi-automated FDG production line using Cyclone 18/9 machine (IBA Belgium), TRACERLab MXFDG synthesiser (GE Health, USA) using alkalic hydrolysis, grade "A" isolator with dispensing robotic unit (Tema Sinergie, Italy), and automatic control system under GAMP5 (minus2, Slovakia) was assessed by TQM tools as highly reliable aseptic production line, fully compliant with Good Manufacturing Practice and just-in-time delivery of FDG radiopharmaceutical. Fluoride-18 is received in steady yield and of very high radioactive purity. Synthesis yields exhibited high variance connected probably with quality of disposable cassettes and chemicals sets. Most performance non-conformities within the manufacturing cycle occur at mechanical nodes of dispensing unit. The long-term monitoring of 2286 commercial synthesis indicated high reliability of automatic synthesizers. Shewhart chart and ANOVA analysis showed that minor non-compliances occurred were mostly caused by the declinations of less experienced staff from standard operation procedures, and also by quality of automatic cassettes. Only 15 syntheses were found unfinished and in 4 cases the product was out-of-specification of European Pharmacopoeia. Most vulnerable step of manufacturing was dispensing and filling in grade "A" isolator. Its cleanliness and sterility was fully controlled under the investigated period by applying hydrogen peroxide vapours (VHP). Our experience with quality assurance in the production of [(18)F]-fluorodeoxyglucose (FDG) at production facility of BIONT based on TRACERlab MXFDG production module can be used for bench-marking of the emerging manufacturing and automated manufacturing systems.
Long-term quality assurance of [18F]-fluorodeoxyglucose (FDG) manufacturing
Gaspar, Ludovit; Reich, Michal; Kassai, Zoltan; Macasek, Fedor; Rodrigo, Luis; Kruzliak, Peter; Kovac, Peter
2016-01-01
Nine years of experience with 2286 commercial synthesis allowed us to deliver comprehensive information on the quality of 18F-FDG production. Semi-automated FDG production line using Cyclone 18/9 machine (IBA Belgium), TRACERLab MXFDG synthesiser (GE Health, USA) using alkalic hydrolysis, grade “A” isolator with dispensing robotic unit (Tema Sinergie, Italy), and automatic control system under GAMP5 (minus2, Slovakia) was assessed by TQM tools as highly reliable aseptic production line, fully compliant with Good Manufacturing Practice and just-in-time delivery of FDG radiopharmaceutical. Fluoride-18 is received in steady yield and of very high radioactive purity. Synthesis yields exhibited high variance connected probably with quality of disposable cassettes and chemicals sets. Most performance non-conformities within the manufacturing cycle occur at mechanical nodes of dispensing unit. The long-term monitoring of 2286 commercial synthesis indicated high reliability of automatic synthesizers. Shewhart chart and ANOVA analysis showed that minor non-compliances occurred were mostly caused by the declinations of less experienced staff from standard operation procedures, and also by quality of automatic cassettes. Only 15 syntheses were found unfinished and in 4 cases the product was out-of-specification of European Pharmacopoeia. Most vulnerable step of manufacturing was dispensing and filling in grade “A” isolator. Its cleanliness and sterility was fully controlled under the investigated period by applying hydrogen peroxide vapours (VHP). Our experience with quality assurance in the production of [18F]-fluorodeoxyglucose (FDG) at production facility of BIONT based on TRACERlab MXFDG production module can be used for bench-marking of the emerging manufacturing and automated manufacturing systems. PMID:27508102
Fully automatic and precise data analysis developed for time-of-flight mass spectrometry.
Meyer, Stefan; Riedo, Andreas; Neuland, Maike B; Tulej, Marek; Wurz, Peter
2017-09-01
Scientific objectives of current and future space missions are focused on the investigation of the origin and evolution of the solar system with the particular emphasis on habitability and signatures of past and present life. For in situ measurements of the chemical composition of solid samples on planetary surfaces, the neutral atmospheric gas and the thermal plasma of planetary atmospheres, the application of mass spectrometers making use of time-of-flight mass analysers is a technique widely used. However, such investigations imply measurements with good statistics and, thus, a large amount of data to be analysed. Therefore, faster and especially robust automated data analysis with enhanced accuracy is required. In this contribution, an automatic data analysis software, which allows fast and precise quantitative data analysis of time-of-flight mass spectrometric data, is presented and discussed in detail. A crucial part of this software is a robust and fast peak finding algorithm with a consecutive numerical integration method allowing precise data analysis. We tested our analysis software with data from different time-of-flight mass spectrometers and different measurement campaigns thereof. The quantitative analysis of isotopes, using automatic data analysis, yields results with an accuracy of isotope ratios up to 100 ppm for a signal-to-noise ratio (SNR) of 10 4 . We show that the accuracy of isotope ratios is in fact proportional to SNR -1 . Furthermore, we observe that the accuracy of isotope ratios is inversely proportional to the mass resolution. Additionally, we show that the accuracy of isotope ratios is depending on the sample width T s by T s 0.5 . Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Harati, Vida; Khayati, Rasoul; Farzan, Abdolreza
2011-07-01
Uncontrollable and unlimited cell growth leads to tumor genesis in the brain. If brain tumors are not diagnosed early and cured properly, they could cause permanent brain damage or even death to patients. As in all methods of treatments, any information about tumor position and size is important for successful treatment; hence, finding an accurate and a fully automated method to give information to physicians is necessary. A fully automatic and accurate method for tumor region detection and segmentation in brain magnetic resonance (MR) images is suggested. The presented approach is an improved fuzzy connectedness (FC) algorithm based on a scale in which the seed point is selected automatically. This algorithm is independent of the tumor type in terms of its pixels intensity. Tumor segmentation evaluation results based on similarity criteria (similarity index (SI), overlap fraction (OF), and extra fraction (EF) are 92.89%, 91.75%, and 3.95%, respectively) indicate a higher performance of the proposed approach compared to the conventional methods, especially in MR images, in tumor regions with low contrast. Thus, the suggested method is useful for increasing the ability of automatic estimation of tumor size and position in brain tissues, which provides more accurate investigation of the required surgery, chemotherapy, and radiotherapy procedures. Copyright © 2011 Elsevier Ltd. All rights reserved.
Li, Zhixun; Zhang, Yingtao; Gong, Huiling; Li, Weimin; Tang, Xianglong
2016-12-01
Coronary artery disease has become the most dangerous diseases to human life. And coronary artery segmentation is the basis of computer aided diagnosis and analysis. Existing segmentation methods are difficult to handle the complex vascular texture due to the projective nature in conventional coronary angiography. Due to large amount of data and complex vascular shapes, any manual annotation has become increasingly unrealistic. A fully automatic segmentation method is necessary in clinic practice. In this work, we study a method based on reliable boundaries via multi-domains remapping and robust discrepancy correction via distance balance and quantile regression for automatic coronary artery segmentation of angiography images. The proposed method can not only segment overlapping vascular structures robustly, but also achieve good performance in low contrast regions. The effectiveness of our approach is demonstrated on a variety of coronary blood vessels compared with the existing methods. The overall segmentation performances si, fnvf, fvpf and tpvf were 95.135%, 3.733%, 6.113%, 96.268%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
An Intelligent Automation Platform for Rapid Bioprocess Design.
Wu, Tianyi; Zhou, Yuhong
2014-08-01
Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user's inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. © 2013 Society for Laboratory Automation and Screening.
An Intelligent Automation Platform for Rapid Bioprocess Design
Wu, Tianyi
2014-01-01
Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user’s inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. PMID:24088579
Ben Younes, Lassad; Nakajima, Yoshikazu; Saito, Toki
2014-03-01
Femur segmentation is well established and widely used in computer-assisted orthopedic surgery. However, most of the robust segmentation methods such as statistical shape models (SSM) require human intervention to provide an initial position for the SSM. In this paper, we propose to overcome this problem and provide a fully automatic femur segmentation method for CT images based on primitive shape recognition and SSM. Femur segmentation in CT scans was performed using primitive shape recognition based on a robust algorithm such as the Hough transform and RANdom SAmple Consensus. The proposed method is divided into 3 steps: (1) detection of the femoral head as sphere and the femoral shaft as cylinder in the SSM and the CT images, (2) rigid registration between primitives of SSM and CT image to initialize the SSM into the CT image, and (3) fitting of the SSM to the CT image edge using an affine transformation followed by a nonlinear fitting. The automated method provided good results even with a high number of outliers. The difference of segmentation error between the proposed automatic initialization method and a manual initialization method is less than 1 mm. The proposed method detects primitive shape position to initialize the SSM into the target image. Based on primitive shapes, this method overcomes the problem of inter-patient variability. Moreover, the results demonstrate that our method of primitive shape recognition can be used for 3D SSM initialization to achieve fully automatic segmentation of the femur.
Fully automatic characterization and data collection from crystals of biological macromolecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svensson, Olof; Malbet-Monaco, Stéphanie; Popov, Alexander
A fully automatic system has been developed that performs X-ray centring and characterization of, and data collection from, large numbers of cryocooled crystals without human intervention. Considerable effort is dedicated to evaluating macromolecular crystals at synchrotron sources, even for well established and robust systems. Much of this work is repetitive, and the time spent could be better invested in the interpretation of the results. In order to decrease the need for manual intervention in the most repetitive steps of structural biology projects, initial screening and data collection, a fully automatic system has been developed to mount, locate, centre to themore » optimal diffraction volume, characterize and, if possible, collect data from multiple cryocooled crystals. Using the capabilities of pixel-array detectors, the system is as fast as a human operator, taking an average of 6 min per sample depending on the sample size and the level of characterization required. Using a fast X-ray-based routine, samples are located and centred systematically at the position of highest diffraction signal and important parameters for sample characterization, such as flux, beam size and crystal volume, are automatically taken into account, ensuring the calculation of optimal data-collection strategies. The system is now in operation at the new ESRF beamline MASSIF-1 and has been used by both industrial and academic users for many different sample types, including crystals of less than 20 µm in the smallest dimension. To date, over 8000 samples have been evaluated on MASSIF-1 without any human intervention.« less
Automatic segmentation of vessels in in-vivo ultrasound scans
NASA Astrophysics Data System (ADS)
Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin; Arendt Jensen, Jørgen
2017-03-01
Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers "8L2 Linear" and "10L2w Wide Linear" (BK Ultrasound, Herlev, Denmark). The algorithm was evaluated empirically and applied to a dataset of in-vivo 1770 images recorded from 8 healthy subjects. The segmentation results were compared to manual delineation performed by two experienced users. The results showed a sensitivity and specificity of 90.41+/-11.2 % and 97.93+/-5.7% (mean+/-standard deviation), respectively. The amount of overlap of segmentation and manual segmentation, was measured by the Dice similarity coefficient, which was 91.25+/-11.6%. The empirical results demonstrated the feasibility of segmenting the vessel lumen in ultrasound scans using a fully automatic algorithm.
Nowinski, Wieslaw L; Thirunavuukarasuu, Arumugam; Ananthasubramaniam, Anand; Chua, Beng Choon; Qian, Guoyu; Nowinska, Natalia G; Marchenko, Yevgen; Volkau, Ihar
2009-10-01
Preparation of tests and student's assessment by the instructor are time consuming. We address these two tasks in neuroanatomy education by employing a digital media application with a three-dimensional (3D), interactive, fully segmented, and labeled brain atlas. The anatomical and vascular models in the atlas are linked to Terminologia Anatomica. Because the cerebral models are fully segmented and labeled, our approach enables automatic and random atlas-derived generation of questions to test location and naming of cerebral structures. This is done in four steps: test individualization by the instructor, test taking by the students at their convenience, automatic student assessment by the application, and communication of the individual assessment to the instructor. A computer-based application with an interactive 3D atlas and a preliminary mobile-based application were developed to realize this approach. The application works in two test modes: instructor and student. In the instructor mode, the instructor customizes the test by setting the scope of testing and student performance criteria, which takes a few seconds. In the student mode, the student is tested and automatically assessed. Self-testing is also feasible at any time and pace. Our approach is automatic both with respect to test generation and student assessment. It is also objective, rapid, and customizable. We believe that this approach is novel from computer-based, mobile-based, and atlas-assisted standpoints.
Automatic initialization and quality control of large-scale cardiac MRI segmentations.
Albà, Xènia; Lekadir, Karim; Pereañez, Marco; Medrano-Gracia, Pau; Young, Alistair A; Frangi, Alejandro F
2018-01-01
Continuous advances in imaging technologies enable ever more comprehensive phenotyping of human anatomy and physiology. Concomitant reduction of imaging costs has resulted in widespread use of imaging in large clinical trials and population imaging studies. Magnetic Resonance Imaging (MRI), in particular, offers one-stop-shop multidimensional biomarkers of cardiovascular physiology and pathology. A wide range of analysis methods offer sophisticated cardiac image assessment and quantification for clinical and research studies. However, most methods have only been evaluated on relatively small databases often not accessible for open and fair benchmarking. Consequently, published performance indices are not directly comparable across studies and their translation and scalability to large clinical trials or population imaging cohorts is uncertain. Most existing techniques still rely on considerable manual intervention for the initialization and quality control of the segmentation process, becoming prohibitive when dealing with thousands of images. The contributions of this paper are three-fold. First, we propose a fully automatic method for initializing cardiac MRI segmentation, by using image features and random forests regression to predict an initial position of the heart and key anatomical landmarks in an MRI volume. In processing a full imaging database, the technique predicts the optimal corrective displacements and positions in relation to the initial rough intersections of the long and short axis images. Second, we introduce for the first time a quality control measure capable of identifying incorrect cardiac segmentations with no visual assessment. The method uses statistical, pattern and fractal descriptors in a random forest classifier to detect failures to be corrected or removed from subsequent statistical analysis. Finally, we validate these new techniques within a full pipeline for cardiac segmentation applicable to large-scale cardiac MRI databases. The results obtained based on over 1200 cases from the Cardiac Atlas Project show the promise of fully automatic initialization and quality control for population studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Automatic MRI 2D brain segmentation using graph searching technique.
Pedoia, Valentina; Binaghi, Elisabetta
2013-09-01
Accurate and efficient segmentation of the whole brain in magnetic resonance (MR) images is a key task in many neuroscience and medical studies either because the whole brain is the final anatomical structure of interest or because the automatic extraction facilitates further analysis. The problem of segmenting brain MRI images has been extensively addressed by many researchers. Despite the relevant achievements obtained, automated segmentation of brain MRI imagery is still a challenging problem whose solution has to cope with critical aspects such as anatomical variability and pathological deformation. In the present paper, we describe and experimentally evaluate a method for segmenting brain from MRI images basing on two-dimensional graph searching principles for border detection. The segmentation of the whole brain over the entire volume is accomplished slice by slice, automatically detecting frames including eyes. The method is fully automatic and easily reproducible by computing the internal main parameters directly from the image data. The segmentation procedure is conceived as a tool of general applicability, although design requirements are especially commensurate with the accuracy required in clinical tasks such as surgical planning and post-surgical assessment. Several experiments were performed to assess the performance of the algorithm on a varied set of MRI images obtaining good results in terms of accuracy and stability. Copyright © 2012 John Wiley & Sons, Ltd.
A novel automatic segmentation workflow of axial breast DCE-MRI
NASA Astrophysics Data System (ADS)
Besbes, Feten; Gargouri, Norhene; Damak, Alima; Sellami, Dorra
2018-04-01
In this paper we propose a novel process of a fully automatic breast tissue segmentation which is independent from expert calibration and contrast. The proposed algorithm is composed by two major steps. The first step consists in the detection of breast boundaries. It is based on image content analysis and Moore-Neighbour tracing algorithm. As a processing step, Otsu thresholding and neighbors algorithm are applied. Then, the external area of breast is removed to get an approximated breast region. The second preprocessing step is the delineation of the chest wall which is considered as the lowest cost path linking three key points; These points are located automatically at the breast. They are respectively, the left and right boundary points and the middle upper point placed at the sternum region using statistical method. For the minimum cost path search problem, we resolve it through Dijkstra algorithm. Evaluation results reveal the robustness of our process face to different breast densities, complex forms and challenging cases. In fact, the mean overlap between manual segmentation and automatic segmentation through our method is 96.5%. A comparative study shows that our proposed process is competitive and faster than existing methods. The segmentation of 120 slices with our method is achieved at least in 20.57+/-5.2s.
ORBS: A reduction software for SITELLE and SpiOMM data
NASA Astrophysics Data System (ADS)
Martin, Thomas
2014-09-01
ORBS merges, corrects, transforms and calibrates interferometric data cubes and produces a spectral cube of the observed region for analysis. It is a fully automatic data reduction software for use with SITELLE (installed at the Canada-France-Hawaii Telescope) and SpIOMM (a prototype attached to the Observatoire du Mont Mégantic); these imaging Fourier transform spectrometers obtain a hyperspectral data cube which samples a 12 arc-minutes field of view into 4 millions of visible spectra. ORBS is highly parallelized; its core classes (ORB) have been designed to be used in a suite of softwares for data analysis (ORCS and OACS), data simulation (ORUS) and data acquisition (IRIS).
Kim, H C; Khanwilkar, P S; Bearnson, G B; Olsen, D B
1997-01-01
An automatic physiological control system for the actively filled, alternately pumped ventricles of the volumetrically coupled, electrohydraulic total artificial heart (EHTAH) was developed for long-term use. The automatic control system must ensure that the device: 1) maintains a physiological response of cardiac output, 2) compensates for an nonphysiological condition, and 3) is stable, reliable, and operates at a high power efficiency. The developed automatic control system met these requirements both in vitro, in week-long continuous mock circulation tests, and in vivo, in acute open-chested animals (calves). Satisfactory results were also obtained in a series of chronic animal experiments, including 21 days of continuous operation of the fully automatic control mode, and 138 days of operation in a manual mode, in a 159-day calf implant.
Milles, J; van der Geest, R J; Jerosch-Herold, M; Reiber, J H C; Lelieveldt, B P F
2007-01-01
This paper presents a novel method for registration of cardiac perfusion MRI. The presented method successfully corrects for breathing motion without any manual interaction using Independent Component Analysis to extract physiologically relevant features together with their time-intensity behavior. A time-varying reference image mimicking intensity changes in the data of interest is computed based on the results of ICA, and used to compute the displacement caused by breathing for each frame. Qualitative and quantitative validation of the method is carried out using 46 clinical quality, short-axis, perfusion MR datasets comprising 100 images each. Validation experiments showed a reduction of the average LV motion from 1.26+/-0.87 to 0.64+/-0.46 pixels. Time-intensity curves are also improved after registration with an average error reduced from 2.65+/-7.89% to 0.87+/-3.88% between registered data and manual gold standard. We conclude that this fully automatic ICA-based method shows an excellent accuracy, robustness and computation speed, adequate for use in a clinical environment.
Harder, Nathalie; Mora-Bermúdez, Felipe; Godinez, William J; Wünsche, Annelie; Eils, Roland; Ellenberg, Jan; Rohr, Karl
2009-11-01
Live-cell imaging allows detailed dynamic cellular phenotyping for cell biology and, in combination with small molecule or drug libraries, for high-content screening. Fully automated analysis of live cell movies has been hampered by the lack of computational approaches that allow tracking and recognition of individual cell fates over time in a precise manner. Here, we present a fully automated approach to analyze time-lapse movies of dividing cells. Our method dynamically categorizes cells into seven phases of the cell cycle and five aberrant morphological phenotypes over time. It reliably tracks cells and their progeny and can thus measure the length of mitotic phases and detect cause and effect if mitosis goes awry. We applied our computational scheme to annotate mitotic phenotypes induced by RNAi gene knockdown of CKAP5 (also known as ch-TOG) or by treatment with the drug nocodazole. Our approach can be readily applied to comparable assays aiming at uncovering the dynamic cause of cell division phenotypes.
Sochor, Jiri; Ryvolova, Marketa; Krystofova, Olga; Salas, Petr; Hubalek, Jaromir; Adam, Vojtech; Trnkova, Libuse; Havel, Ladislav; Beklova, Miroslava; Zehnalek, Josef; Provaznik, Ivo; Kizek, Rene
2010-11-29
The aim of this study was to describe behaviour, kinetics, time courses and limitations of the six different fully automated spectrometric methods--DPPH, TEAC, FRAP, DMPD, Free Radicals and Blue CrO5. Absorption curves were measured and absorbance maxima were found. All methods were calibrated using the standard compounds Trolox® and/or gallic acid. Calibration curves were determined (relative standard deviation was within the range from 1.5 to 2.5%). The obtained characteristics were compared and discussed. Moreover, the data obtained were applied to optimize and to automate all mentioned protocols. Automatic analyzer allowed us to analyse simultaneously larger set of samples, to decrease the measurement time, to eliminate the errors and to provide data of higher quality in comparison to manual analysis. The total time of analysis for one sample was decreased to 10 min for all six methods. In contrary, the total time of manual spectrometric determination was approximately 120 min. The obtained data provided good correlations between studied methods (R=0.97-0.99).
[A quickly methodology for drug intelligence using profiling of illicit heroin samples].
Zhang, Jianxin; Chen, Cunyi
2012-07-01
The aim of the paper was to evaluate a link between two heroin seizures using a descriptive method. The system involved the derivation and gas chromatographic separation of samples followed by a fully automatic data analysis and transfer to a database. Comparisons used the square cosine function between two chromatograms assimilated to vectors. The method showed good discriminatory capabilities. The probability of false positives was extremely slight. In conclusion, this method proved to be efficient and reliable, which appeared suitable for estimating the links between illicit heroin samples.
NASA Technical Reports Server (NTRS)
Jones, W. L.
1977-01-01
Major areas of research and development in ergonomics technology for space environments are discussed. Attention is given to possible applications of the technology developed by NASA in industrial settings. A group of mass spectrometers for gas analysis capable of fully automatic operation has been developed for atmosphere control on spacecraft; a version for industrial use has been constructed. Advances have been made in personal cooling technology, remote monitoring of medical information, and aerosol particle control. Experience gained by NASA during the design and development of portable life support units has recently been applied to improve breathing equipment used by fire fighters.
Automated Verification of Specifications with Typestates and Access Permissions
NASA Technical Reports Server (NTRS)
Siminiceanu, Radu I.; Catano, Nestor
2011-01-01
We propose an approach to formally verify Plural specifications based on access permissions and typestates, by model-checking automatically generated abstract state-machines. Our exhaustive approach captures all the possible behaviors of abstract concurrent programs implementing the specification. We describe the formal methodology employed by our technique and provide an example as proof of concept for the state-machine construction rules. The implementation of a fully automated algorithm to generate and verify models, currently underway, provides model checking support for the Plural tool, which currently supports only program verification via data flow analysis (DFA).
Semantic focusing allows fully automated single-layer slide scanning of cervical cytology slides.
Lahrmann, Bernd; Valous, Nektarios A; Eisenmann, Urs; Wentzensen, Nicolas; Grabe, Niels
2013-01-01
Liquid-based cytology (LBC) in conjunction with Whole-Slide Imaging (WSI) enables the objective and sensitive and quantitative evaluation of biomarkers in cytology. However, the complex three-dimensional distribution of cells on LBC slides requires manual focusing, long scanning-times, and multi-layer scanning. Here, we present a solution that overcomes these limitations in two steps: first, we make sure that focus points are only set on cells. Secondly, we check the total slide focus quality. From a first analysis we detected that superficial dust can be separated from the cell layer (thin layer of cells on the glass slide) itself. Then we analyzed 2,295 individual focus points from 51 LBC slides stained for p16 and Ki67. Using the number of edges in a focus point image, specific color values and size-inclusion filters, focus points detecting cells could be distinguished from focus points on artifacts (accuracy 98.6%). Sharpness as total focus quality of a virtual LBC slide is computed from 5 sharpness features. We trained a multi-parameter SVM classifier on 1,600 images. On an independent validation set of 3,232 cell images we achieved an accuracy of 94.8% for classifying images as focused. Our results show that single-layer scanning of LBC slides is possible and how it can be achieved. We assembled focus point analysis and sharpness classification into a fully automatic, iterative workflow, free of user intervention, which performs repetitive slide scanning as necessary. On 400 LBC slides we achieved a scanning-time of 13.9±10.1 min with 29.1±15.5 focus points. In summary, the integration of semantic focus information into whole-slide imaging allows automatic high-quality imaging of LBC slides and subsequent biomarker analysis.
EpiTools, A software suite for presurgical brain mapping in epilepsy: Intracerebral EEG.
Medina Villalon, S; Paz, R; Roehri, N; Lagarde, S; Pizzo, F; Colombet, B; Bartolomei, F; Carron, R; Bénar, C-G
2018-06-01
In pharmacoresistant epilepsy, exploration with depth electrodes can be needed to precisely define the epileptogenic zone. Accurate location of these electrodes is thus essential for the interpretation of Stereotaxic EEG (SEEG) signals. As SEEG analysis increasingly relies on signal processing, it is crucial to make a link between these results and patient's anatomy. Our aims were thus to develop a suite of software tools, called "EpiTools", able to i) precisely and automatically localize the position of each SEEG contact and ii) display the results of signal analysis in each patient's anatomy. The first tool, GARDEL (GUI for Automatic Registration and Depth Electrode Localization), is able to automatically localize SEEG contacts and to label each contact according to a pre-specified nomenclature (for instance that of FreeSurfer or MarsAtlas). The second tool, 3Dviewer, enables to visualize in the 3D anatomy of the patient the origin of signal processing results such as rate of biomarkers, connectivity graphs or Epileptogenicity Index. GARDEL was validated in 30 patients by clinicians and proved to be highly reliable to determine within the patient's individual anatomy the actual location of contacts. GARDEL is a fully automatic electrode localization tool needing limited user interaction (only for electrode naming or contact correction). The 3Dviewer is able to read signal processing results and to display them in link with patient's anatomy. EpiTools can help speeding up the interpretation of SEEG data and improving its precision. Copyright © 2018 Elsevier B.V. All rights reserved.
Tóth, László; Hoffmann, Ildikó; Gosztolya, Gábor; Vincze, Veronika; Szatlóczki, Gréta; Bánréti, Zoltán; Pákáski, Magdolna; Kálmán, János
2018-01-01
Background: Even today the reliable diagnosis of the prodromal stages of Alzheimer’s disease (AD) remains a great challenge. Our research focuses on the earliest detectable indicators of cognitive de-cline in mild cognitive impairment (MCI). Since the presence of language impairment has been reported even in the mild stage of AD, the aim of this study is to develop a sensitive neuropsychological screening method which is based on the analysis of spontaneous speech production during performing a memory task. In the future, this can form the basis of an Internet-based interactive screening software for the recognition of MCI. Methods: Participants were 38 healthy controls and 48 clinically diagnosed MCI patients. The provoked spontaneous speech by asking the patients to recall the content of 2 short black and white films (one direct, one delayed), and by answering one question. Acoustic parameters (hesitation ratio, speech tempo, length and number of silent and filled pauses, length of utterance) were extracted from the recorded speech sig-nals, first manually (using the Praat software), and then automatically, with an automatic speech recogni-tion (ASR) based tool. First, the extracted parameters were statistically analyzed. Then we applied machine learning algorithms to see whether the MCI and the control group can be discriminated automatically based on the acoustic features. Results: The statistical analysis showed significant differences for most of the acoustic parameters (speech tempo, articulation rate, silent pause, hesitation ratio, length of utterance, pause-per-utterance ratio). The most significant differences between the two groups were found in the speech tempo in the delayed recall task, and in the number of pauses for the question-answering task. The fully automated version of the analysis process – that is, using the ASR-based features in combination with machine learning - was able to separate the two classes with an F1-score of 78.8%. Conclusion: The temporal analysis of spontaneous speech can be exploited in implementing a new, auto-matic detection-based tool for screening MCI for the community. PMID:29165085
Toth, Laszlo; Hoffmann, Ildiko; Gosztolya, Gabor; Vincze, Veronika; Szatloczki, Greta; Banreti, Zoltan; Pakaski, Magdolna; Kalman, Janos
2018-01-01
Even today the reliable diagnosis of the prodromal stages of Alzheimer's disease (AD) remains a great challenge. Our research focuses on the earliest detectable indicators of cognitive decline in mild cognitive impairment (MCI). Since the presence of language impairment has been reported even in the mild stage of AD, the aim of this study is to develop a sensitive neuropsychological screening method which is based on the analysis of spontaneous speech production during performing a memory task. In the future, this can form the basis of an Internet-based interactive screening software for the recognition of MCI. Participants were 38 healthy controls and 48 clinically diagnosed MCI patients. The provoked spontaneous speech by asking the patients to recall the content of 2 short black and white films (one direct, one delayed), and by answering one question. Acoustic parameters (hesitation ratio, speech tempo, length and number of silent and filled pauses, length of utterance) were extracted from the recorded speech signals, first manually (using the Praat software), and then automatically, with an automatic speech recognition (ASR) based tool. First, the extracted parameters were statistically analyzed. Then we applied machine learning algorithms to see whether the MCI and the control group can be discriminated automatically based on the acoustic features. The statistical analysis showed significant differences for most of the acoustic parameters (speech tempo, articulation rate, silent pause, hesitation ratio, length of utterance, pause-per-utterance ratio). The most significant differences between the two groups were found in the speech tempo in the delayed recall task, and in the number of pauses for the question-answering task. The fully automated version of the analysis process - that is, using the ASR-based features in combination with machine learning - was able to separate the two classes with an F1-score of 78.8%. The temporal analysis of spontaneous speech can be exploited in implementing a new, automatic detection-based tool for screening MCI for the community. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Flexible Manufacturing System Handbook. Volume IV. Appendices
1983-02-01
and Acceptance Test(s)" on page 26 of this Proposal Request. 1.1.10 Options 1. Centralized Automatic Chip/Coolant Recovery System a. Scope The...viable, from manual- ly moving the pallet/fixture/part combinations from machine to machine to fully automatic , unmanned material handling systems , such...English. Where dimensions are shown in metric units, the English system (inch) equivalent will also be shown. Hydraulic, pneumatic , and electrical
Hu, Peijun; Wu, Fa; Peng, Jialin; Bao, Yuanyuan; Chen, Feng; Kong, Dexing
2017-03-01
Multi-organ segmentation from CT images is an essential step for computer-aided diagnosis and surgery planning. However, manual delineation of the organs by radiologists is tedious, time-consuming and poorly reproducible. Therefore, we propose a fully automatic method for the segmentation of multiple organs from three-dimensional abdominal CT images. The proposed method employs deep fully convolutional neural networks (CNNs) for organ detection and segmentation, which is further refined by a time-implicit multi-phase evolution method. Firstly, a 3D CNN is trained to automatically localize and delineate the organs of interest with a probability prediction map. The learned probability map provides both subject-specific spatial priors and initialization for subsequent fine segmentation. Then, for the refinement of the multi-organ segmentation, image intensity models, probability priors as well as a disjoint region constraint are incorporated into an unified energy functional. Finally, a novel time-implicit multi-phase level-set algorithm is utilized to efficiently optimize the proposed energy functional model. Our method has been evaluated on 140 abdominal CT scans for the segmentation of four organs (liver, spleen and both kidneys). With respect to the ground truth, average Dice overlap ratios for the liver, spleen and both kidneys are 96.0, 94.2 and 95.4%, respectively, and average symmetric surface distance is less than 1.3 mm for all the segmented organs. The computation time for a CT volume is 125 s in average. The achieved accuracy compares well to state-of-the-art methods with much higher efficiency. A fully automatic method for multi-organ segmentation from abdominal CT images was developed and evaluated. The results demonstrated its potential in clinical usage with high effectiveness, robustness and efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios Velazquez, E; Meier, R; Dunn, W
Purpose: Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. Methods: MRI sets of 67 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA), including necrosis, edema, contrast enhancing and non-enhancing tumor. Spearman’s correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Results: Auto-segmented sub-volumes showedmore » high agreement with manually delineated volumes (range (r): 0.65 – 0.91). Also showed higher correlation with VASARI features (auto r = 0.35, 0.60 and 0.59; manual r = 0.29, 0.50, 0.43, for contrast-enhancing, necrosis and edema, respectively). The contrast-enhancing volume and post-contrast abnormal volume showed the highest C-index (0.73 and 0.72), comparable to manually defined volumes (p = 0.22 and p = 0.07, respectively). The non-enhancing region defined by BraTumIA showed a significantly higher prognostic value (CI = 0.71) than the edema (CI = 0.60), both of which could not be distinguished by manual delineation. Conclusion: BraTumIA tumor sub-compartments showed higher correlation with VASARI data, and equivalent performance in terms of prognosis compared to manual sub-volumes. This method can enable more reproducible definition and quantification of imaging based biomarkers and has a large potential in high-throughput medical imaging research.« less
CleAir Monitoring System for Particulate Matter: A Case in the Napoleonic Museum in Rome
Bonacquisti, Valerio; Di Michele, Marta; Frasca, Francesca; Chianese, Angelo; Siani, Anna Maria
2017-01-01
Monitoring the air particulate concentration both outdoors and indoors is becoming a more relevant issue in the past few decades. An innovative, fully automatic, monitoring system called CleAir is presented. Such a system wants to go beyond the traditional technique (gravimetric analysis), allowing for a double monitoring approach: the traditional gravimetric analysis as well as the optical spectroscopic analysis of the scattering on the same filters in steady-state conditions. The experimental data are interpreted in terms of light percolation through highly scattering matter by means of the stretched exponential evolution. CleAir has been applied to investigate the daily distribution of particulate matter within the Napoleonic Museum in Rome as a test case. PMID:28892016
Fully automated corneal endothelial morphometry of images captured by clinical specular microscopy
NASA Astrophysics Data System (ADS)
Bucht, Curry; Söderberg, Per; Manneberg, Göran
2010-02-01
The corneal endothelium serves as the posterior barrier of the cornea. Factors such as clarity and refractive properties of the cornea are in direct relationship to the quality of the endothelium. The endothelial cell density is considered the most important morphological factor of the corneal endothelium. Pathological conditions and physical trauma may threaten the endothelial cell density to such an extent that the optical property of the cornea and thus clear eyesight is threatened. Diagnosis of the corneal endothelium through morphometry is an important part of several clinical applications. Morphometry of the corneal endothelium is presently carried out by semi automated analysis of pictures captured by a Clinical Specular Microscope (CSM). Because of the occasional need of operator involvement, this process can be tedious, having a negative impact on sampling size. This study was dedicated to the development and use of fully automated analysis of a very large range of images of the corneal endothelium, captured by CSM, using Fourier analysis. Software was developed in the mathematical programming language Matlab. Pictures of the corneal endothelium, captured by CSM, were read into the analysis software. The software automatically performed digital enhancement of the images, normalizing lights and contrasts. The digitally enhanced images of the corneal endothelium were Fourier transformed, using the fast Fourier transform (FFT) and stored as new images. Tools were developed and applied for identification and analysis of relevant characteristics of the Fourier transformed images. The data obtained from each Fourier transformed image was used to calculate the mean cell density of its corresponding corneal endothelium. The calculation was based on well known diffraction theory. Results in form of estimated cell density of the corneal endothelium were obtained, using fully automated analysis software on 292 images captured by CSM. The cell density obtained by the fully automated analysis was compared to the cell density obtained from classical, semi-automated analysis and a relatively large correlation was found.
Evaluation of arterial propagation velocity based on the automated analysis of the Pulse Wave Shape
NASA Astrophysics Data System (ADS)
Clara, F. M.; Scandurra, A. G.; Meschino, G. J.; Passoni, L. I.
2011-12-01
This paper proposes the automatic estimation of the arterial propagation velocity from the pulse wave raw records measured in the region of the radial artery. A fully automatic process is proposed to select and analyze typical pulse cycles from the raw data. An adaptive neuro-fuzzy inference system, together with a heuristic search is used to find a functional approximation of the pulse wave. The estimation of the propagation velocity is carried out via the analysis of the functional approximation obtained with the fuzzy model. The analysis of the pulse wave records with the proposed methodology showed small differences compared with the method used so far, based on a strong interaction with the user. To evaluate the proposed methodology, we estimated the propagation velocity in a population of healthy men from a wide range of ages. It has been found in these studies that propagation velocity increases linearly with age and it presents a considerable dispersion of values in healthy individuals. We conclude that this process could be used to evaluate indirectly the propagation velocity of the aorta, which is related to physiological age in healthy individuals and with the expectation of life in cardiovascular patients.
Computerized image analysis for acetic acid induced intraepithelial lesions
NASA Astrophysics Data System (ADS)
Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.
2008-03-01
Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.
Gelfusa, M; Gaudio, P; Malizia, A; Murari, A; Vega, J; Richetta, M; Gonzalez, S
2014-06-01
Recently, surveying large areas in an automatic way, for early detection of both harmful chemical agents and forest fires, has become a strategic objective of defence and public health organisations. The Lidar and Dial techniques are widely recognized as a cost-effective alternative to monitor large portions of the atmosphere. To maximize the effectiveness of the measurements and to guarantee reliable monitoring of large areas, new data analysis techniques are required. In this paper, an original tool, the Universal Multi Event Locator, is applied to the problem of automatically identifying the time location of peaks in Lidar and Dial measurements for environmental physics applications. This analysis technique improves various aspects of the measurements, ranging from the resilience to drift in the laser sources to the increase of the system sensitivity. The method is also fully general, purely software, and can therefore be applied to a large variety of problems without any additional cost. The potential of the proposed technique is exemplified with the help of data of various instruments acquired during several experimental campaigns in the field.
Mobile GPU-based implementation of automatic analysis method for long-term ECG.
Fan, Xiaomao; Yao, Qihang; Li, Ye; Chen, Runge; Cai, Yunpeng
2018-05-03
Long-term electrocardiogram (ECG) is one of the important diagnostic assistant approaches in capturing intermittent cardiac arrhythmias. Combination of miniaturized wearable holters and healthcare platforms enable people to have their cardiac condition monitored at home. The high computational burden created by concurrent processing of numerous holter data poses a serious challenge to the healthcare platform. An alternative solution is to shift the analysis tasks from healthcare platforms to the mobile computing devices. However, long-term ECG data processing is quite time consuming due to the limited computation power of the mobile central unit processor (CPU). This paper aimed to propose a novel parallel automatic ECG analysis algorithm which exploited the mobile graphics processing unit (GPU) to reduce the response time for processing long-term ECG data. By studying the architecture of the sequential automatic ECG analysis algorithm, we parallelized the time-consuming parts and reorganized the entire pipeline in the parallel algorithm to fully utilize the heterogeneous computing resources of CPU and GPU. The experimental results showed that the average executing time of the proposed algorithm on a clinical long-term ECG dataset (duration 23.0 ± 1.0 h per signal) is 1.215 ± 0.140 s, which achieved an average speedup of 5.81 ± 0.39× without compromising analysis accuracy, comparing with the sequential algorithm. Meanwhile, the battery energy consumption of the automatic ECG analysis algorithm was reduced by 64.16%. Excluding energy consumption from data loading, 79.44% of the energy consumption could be saved, which alleviated the problem of limited battery working hours for mobile devices. The reduction of response time and battery energy consumption in ECG analysis not only bring better quality of experience to holter users, but also make it possible to use mobile devices as ECG terminals for healthcare professions such as physicians and health advisers, enabling them to inspect patient ECG recordings onsite efficiently without the need of a high-quality wide-area network environment.
3D model assisted fully automated scanning laser Doppler vibrometer measurements
NASA Astrophysics Data System (ADS)
Sels, Seppe; Ribbens, Bart; Bogaerts, Boris; Peeters, Jeroen; Vanlanduit, Steve
2017-12-01
In this paper, a new fully automated scanning laser Doppler vibrometer (LDV) measurement technique is presented. In contrast to existing scanning LDV techniques which use a 2D camera for the manual selection of sample points, we use a 3D Time-of-Flight camera in combination with a CAD file of the test object to automatically obtain measurements at pre-defined locations. The proposed procedure allows users to test prototypes in a shorter time because physical measurement locations are determined without user interaction. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. The proposed method is illustrated with vibration measurements of an unmanned aerial vehicle
4D Near Real-Time Environmental Monitoring Using Highly Temporal LiDAR
NASA Astrophysics Data System (ADS)
Höfle, Bernhard; Canli, Ekrem; Schmitz, Evelyn; Crommelinck, Sophie; Hoffmeister, Dirk; Glade, Thomas
2016-04-01
The last decade has witnessed extensive applications of 3D environmental monitoring with the LiDAR technology, also referred to as laser scanning. Although several automatic methods were developed to extract environmental parameters from LiDAR point clouds, only little research has focused on highly multitemporal near real-time LiDAR (4D-LiDAR) for environmental monitoring. Large potential of applying 4D-LiDAR is given for landscape objects with high and varying rates of change (e.g. plant growth) and also for phenomena with sudden unpredictable changes (e.g. geomorphological processes). In this presentation we will report on the most recent findings of the research projects 4DEMON (http://uni-heidelberg.de/4demon) and NoeSLIDE (https://geomorph.univie.ac.at/forschung/projekte/aktuell/noeslide/). The method development in both projects is based on two real-world use cases: i) Surface parameter derivation of agricultural crops (e.g. crop height) and ii) change detection of landslides. Both projects exploit the "full history" contained in the LiDAR point cloud time series. One crucial initial step of 4D-LiDAR analysis is the co-registration over time, 3D-georeferencing and time-dependent quality assessment of the LiDAR point cloud time series. Due to the high amount of datasets (e.g. one full LiDAR scan per day), the procedure needs to be performed fully automatically. Furthermore, the online near real-time 4D monitoring system requires to set triggers that can detect removal or moving of tie reflectors (used for co-registration) or the scanner itself. This guarantees long-term data acquisition with high quality. We will present results from a georeferencing experiment for 4D-LiDAR monitoring, which performs benchmarking of co-registration, 3D-georeferencing and also fully automatic detection of events (e.g. removal/moving of reflectors or scanner). Secondly, we will show our empirical findings of an ongoing permanent LiDAR observation of a landslide (Gresten, Austria) and an agricultural maize crop stand (Heidelberg, Germany). This research demonstrates the potential and also limitations of fully automated, near real-time 4D LiDAR monitoring in geosciences.
Considerations in Phase Estimation and Event Location Using Small-aperture Regional Seismic Arrays
NASA Astrophysics Data System (ADS)
Gibbons, Steven J.; Kværna, Tormod; Ringdal, Frode
2010-05-01
The global monitoring of earthquakes and explosions at decreasing magnitudes necessitates the fully automatic detection, location and classification of an ever increasing number of seismic events. Many seismic stations of the International Monitoring System are small-aperture arrays designed to optimize the detection and measurement of regional phases. Collaboration with operators of mines within regional distances of the ARCES array, together with waveform correlation techniques, has provided an unparalleled opportunity to assess the ability of a small-aperture array to provide robust and accurate direction and slowness estimates for phase arrivals resulting from well-constrained events at sites of repeating seismicity. A significant reason for the inaccuracy of current fully-automatic event location estimates is the use of f- k slowness estimates measured in variable frequency bands. The variability of slowness and azimuth measurements for a given phase from a given source region is reduced by the application of almost any constant frequency band. However, the frequency band resulting in the most stable estimates varies greatly from site to site. Situations are observed in which regional P- arrivals from two sites, far closer than the theoretical resolution of the array, result in highly distinct populations in slowness space. This means that the f- k estimates, even at relatively low frequencies, can be sensitive to source and path-specific characteristics of the wavefield and should be treated with caution when inferring a geographical backazimuth under the assumption of a planar wavefront arriving along the great-circle path. Moreover, different frequency bands are associated with different biases meaning that slowness and azimuth station corrections (commonly denoted SASCs) cannot be calibrated, and should not be used, without reference to the frequency band employed. We demonstrate an example where fully-automatic locations based on a source-region specific fixed-parameter template are more stable than the corresponding analyst reviewed estimates. The reason is that the analyst selects a frequency band and analysis window which appears optimal for each event. In this case, the frequency band which produces the most consistent direction estimates has neither the best SNR or the greatest beam-gain, and is therefore unlikely to be chosen by an analyst without calibration data.
Brain tumor segmentation in MR slices using improved GrowCut algorithm
NASA Astrophysics Data System (ADS)
Ji, Chunhong; Yu, Jinhua; Wang, Yuanyuan; Chen, Liang; Shi, Zhifeng; Mao, Ying
2015-12-01
The detection of brain tumor from MR images is very significant for medical diagnosis and treatment. However, the existing methods are mostly based on manual or semiautomatic segmentation which are awkward when dealing with a large amount of MR slices. In this paper, a new fully automatic method for the segmentation of brain tumors in MR slices is presented. Based on the hypothesis of the symmetric brain structure, the method improves the interactive GrowCut algorithm by further using the bounding box algorithm in the pre-processing step. More importantly, local reflectional symmetry is used to make up the deficiency of the bounding box method. After segmentation, 3D tumor image is reconstructed. We evaluate the accuracy of the proposed method on MR slices with synthetic tumors and actual clinical MR images. Result of the proposed method is compared with the actual position of simulated 3D tumor qualitatively and quantitatively. In addition, our automatic method produces equivalent performance as manual segmentation and the interactive GrowCut with manual interference while providing fully automatic segmentation.
NASA Astrophysics Data System (ADS)
Shahzad, Rahil; Bos, Daniel; Budde, Ricardo P. J.; Pellikaan, Karlijn; Niessen, Wiro J.; van der Lugt, Aad; van Walsum, Theo
2017-05-01
Early structural changes to the heart, including the chambers and the coronary arteries, provide important information on pre-clinical heart disease like cardiac failure. Currently, contrast-enhanced cardiac computed tomography angiography (CCTA) is the preferred modality for the visualization of the cardiac chambers and the coronaries. In clinical practice not every patient undergoes a CCTA scan; many patients receive only a non-contrast-enhanced calcium scoring CT scan (CTCS), which has less radiation dose and does not require the administration of contrast agent. Quantifying cardiac structures in such images is challenging, as they lack the contrast present in CCTA scans. Such quantification would however be relevant, as it enables population based studies with only a CTCS scan. The purpose of this work is therefore to investigate the feasibility of automatic segmentation and quantification of cardiac structures viz whole heart, left atrium, left ventricle, right atrium, right ventricle and aortic root from CTCS scans. A fully automatic multi-atlas-based segmentation approach is used to segment the cardiac structures. Results show that the segmentation overlap between the automatic method and that of the reference standard have a Dice similarity coefficient of 0.91 on average for the cardiac chambers. The mean surface-to-surface distance error over all the cardiac structures is 1.4+/- 1.7 mm. The automatically obtained cardiac chamber volumes using the CTCS scans have an excellent correlation when compared to the volumes in corresponding CCTA scans, a Pearson correlation coefficient (R) of 0.95 is obtained. Our fully automatic method enables large-scale assessment of cardiac structures on non-contrast-enhanced CT scans.
Automated Analysis of siRNA Screens of Virus Infected Cells Based on Immunofluorescence Microscopy
NASA Astrophysics Data System (ADS)
Matula, Petr; Kumar, Anil; Wörz, Ilka; Harder, Nathalie; Erfle, Holger; Bartenschlager, Ralf; Eils, Roland; Rohr, Karl
We present an image analysis approach as part of a high-throughput microscopy screening system based on cell arrays for the identification of genes involved in Hepatitis C and Dengue virus replication. Our approach comprises: cell nucleus segmentation, quantification of virus replication level in cells, localization of regions with transfected cells, cell classification by infection status, and quality assessment of an experiment. The approach is fully automatic and has been successfully applied to a large number of cell array images from screening experiments. The experimental results show a good agreement with the expected behavior of positive as well as negative controls and encourage the application to screens from further high-throughput experiments.
Automatic food intake detection based on swallowing sounds.
Makeyev, Oleksandr; Lopez-Meyer, Paulo; Schuckers, Stephanie; Besio, Walter; Sazonov, Edward
2012-11-01
This paper presents a novel fully automatic food intake detection methodology, an important step toward objective monitoring of ingestive behavior. The aim of such monitoring is to improve our understanding of eating behaviors associated with obesity and eating disorders. The proposed methodology consists of two stages. First, acoustic detection of swallowing instances based on mel-scale Fourier spectrum features and classification using support vector machines is performed. Principal component analysis and a smoothing algorithm are used to improve swallowing detection accuracy. Second, the frequency of swallowing is used as a predictor for detection of food intake episodes. The proposed methodology was tested on data collected from 12 subjects with various degrees of adiposity. Average accuracies of >80% and >75% were obtained for intra-subject and inter-subject models correspondingly with a temporal resolution of 30s. Results obtained on 44.1 hours of data with a total of 7305 swallows show that detection accuracies are comparable for obese and lean subjects. They also suggest feasibility of food intake detection based on swallowing sounds and potential of the proposed methodology for automatic monitoring of ingestive behavior. Based on a wearable non-invasive acoustic sensor the proposed methodology may potentially be used in free-living conditions.
Automatic food intake detection based on swallowing sounds
Makeyev, Oleksandr; Lopez-Meyer, Paulo; Schuckers, Stephanie; Besio, Walter; Sazonov, Edward
2012-01-01
This paper presents a novel fully automatic food intake detection methodology, an important step toward objective monitoring of ingestive behavior. The aim of such monitoring is to improve our understanding of eating behaviors associated with obesity and eating disorders. The proposed methodology consists of two stages. First, acoustic detection of swallowing instances based on mel-scale Fourier spectrum features and classification using support vector machines is performed. Principal component analysis and a smoothing algorithm are used to improve swallowing detection accuracy. Second, the frequency of swallowing is used as a predictor for detection of food intake episodes. The proposed methodology was tested on data collected from 12 subjects with various degrees of adiposity. Average accuracies of >80% and >75% were obtained for intra-subject and inter-subject models correspondingly with a temporal resolution of 30s. Results obtained on 44.1 hours of data with a total of 7305 swallows show that detection accuracies are comparable for obese and lean subjects. They also suggest feasibility of food intake detection based on swallowing sounds and potential of the proposed methodology for automatic monitoring of ingestive behavior. Based on a wearable non-invasive acoustic sensor the proposed methodology may potentially be used in free-living conditions. PMID:23125873
NASA Astrophysics Data System (ADS)
Donoghue, C.; Rao, A.; Bull, A. M. J.; Rueckert, D.
2011-03-01
Osteoarthritis (OA) is a degenerative, debilitating disease with a large socio-economic impact. This study looks to manifold learning as an automatic approach to harness the plethora of data provided by the Osteoarthritis Initiative (OAI). We construct several Laplacian Eigenmap embeddings of articular cartilage appearance from MR images of the knee using multiple MR sequences. A region of interest (ROI) defined as the weight bearing medial femur is automatically located in all images through non-rigid registration. A pairwise intensity based similarity measure is computed between all images, resulting in a fully connected graph, where each vertex represents an image and the weight of edges is the similarity measure. Spectral analysis is then applied to these pairwise similarities, which acts to reduce the dimensionality non-linearly and embeds these images in a manifold representation. In the manifold space, images that are close to each other are considered to be more "similar" than those far away. In the experiment presented here we use manifold learning to automatically predict the morphological changes in the articular cartilage by using the co-ordinates of the images in the manifold as independent variables for multiple linear regression. In the study presented here five manifolds are generated from five sequences of 390 distinct knees. We find statistically significant correlations (up to R2 = 0.75), between our predictors and the results presented in the literature.
Fully automatic segmentation of white matter hyperintensities in MR images of the elderly.
Admiraal-Behloul, F; van den Heuvel, D M J; Olofsen, H; van Osch, M J P; van der Grond, J; van Buchem, M A; Reiber, J H C
2005-11-15
The role of quantitative image analysis in large clinical trials is continuously increasing. Several methods are available for performing white matter hyperintensity (WMH) volume quantification. They vary in the amount of the human interaction involved. In this paper, we describe a fully automatic segmentation that was used to quantify WMHs in a large clinical trial on elderly subjects. Our segmentation method combines information from 3 different MR images: proton density (PD), T2-weighted and fluid-attenuated inversion recovery (FLAIR) images; our method uses an established artificial intelligent technique (fuzzy inference system) and does not require extensive computations. The reproducibility of the segmentation was evaluated in 9 patients who underwent scan-rescan with repositioning; an inter-class correlation coefficient (ICC) of 0.91 was obtained. The effect of differences in image resolution was tested in 44 patients, scanned with 6- and 3-mm slice thickness FLAIR images; we obtained an ICC value of 0.99. The accuracy of the segmentation was evaluated on 100 patients for whom manual delineation of WMHs was available; the obtained ICC was 0.98 and the similarity index was 0.75. Besides the fact that the approach demonstrated very high volumetric and spatial agreement with expert delineation, the software did not require more than 2 min per patient (from loading the images to saving the results) on a Pentium-4 processor (512 MB RAM).
Fully automated motion correction in first-pass myocardial perfusion MR image sequences.
Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F
2008-11-01
This paper presents a novel method for registration of cardiac perfusion magnetic resonance imaging (MRI). The presented method is capable of automatically registering perfusion data, using independent component analysis (ICA) to extract physiologically relevant features together with their time-intensity behavior. A time-varying reference image mimicking intensity changes in the data of interest is computed based on the results of that ICA. This reference image is used in a two-pass registration framework. Qualitative and quantitative validation of the method is carried out using 46 clinical quality, short-axis, perfusion MR datasets comprising 100 images each. Despite varying image quality and motion patterns in the evaluation set, validation of the method showed a reduction of the average right ventricle (LV) motion from 1.26+/-0.87 to 0.64+/-0.46 pixels. Time-intensity curves are also improved after registration with an average error reduced from 2.65+/-7.89% to 0.87+/-3.88% between registered data and manual gold standard. Comparison of clinically relevant parameters computed using registered data and the manual gold standard show a good agreement. Additional tests with a simulated free-breathing protocol showed robustness against considerable deviations from a standard breathing protocol. We conclude that this fully automatic ICA-based method shows an accuracy, a robustness and a computation speed adequate for use in a clinical environment.
NASA Astrophysics Data System (ADS)
Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping
2017-02-01
Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it not only relates to the properties of the laser and the scattering particles, but also relates to the geometry of both directions of the laser beam and the flow. In this paper, focusing on the analysis of cerebral hemodynamics, we presents a method to quantify the total absolute blood flow velocity in middle cerebral artery (MCA) based on volumetric vessel reconstruction from pure DOCT images. A modified region growing segmentation method is first used to localize the MCA on successive DOCT B-scan images. Vessel skeletonization, followed by an averaging gradient angle calculation method, is then carried out to obtain Doppler angles along the entire MCA. Once the Doppler angles are determined, the absolute blood flow velocity of each position on the MCA is easily found. Given a seed point position on the MCA, our approach could achieve automatic quantification of the fully distributed absolute BFV. Based on experiments conducted using a swept-source optical coherence tomography system, our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches in the rodent brain.
Integrated Evaluation of Reliability and Power Consumption of Wireless Sensor Networks.
Dâmaso, Antônio; Rosa, Nelson; Maciel, Paulo
2017-11-05
Power consumption is a primary interest in Wireless Sensor Networks (WSNs), and a large number of strategies have been proposed to evaluate it. However, those approaches usually neither consider reliability issues nor the power consumption of applications executing in the network. A central concern is the lack of consolidated solutions that enable us to evaluate the power consumption of applications and the network stack also considering their reliabilities. To solve this problem, we introduce a fully automatic solution to design power consumption aware WSN applications and communication protocols. The solution presented in this paper comprises a methodology to evaluate the power consumption based on the integration of formal models, a set of power consumption and reliability models, a sensitivity analysis strategy to select WSN configurations and a toolbox named EDEN to fully support the proposed methodology. This solution allows accurately estimating the power consumption of WSN applications and the network stack in an automated way.
AISLE: an automatic volumetric segmentation method for the study of lung allometry.
Ren, Hongliang; Kazanzides, Peter
2011-01-01
We developed a fully automatic segmentation method for volumetric CT (computer tomography) datasets to support construction of a statistical atlas for the study of allometric laws of the lung. The proposed segmentation method, AISLE (Automated ITK-Snap based on Level-set), is based on the level-set implementation from an existing semi-automatic segmentation program, ITK-Snap. AISLE can segment the lung field without human interaction and provide intermediate graphical results as desired. The preliminary experimental results show that the proposed method can achieve accurate segmentation, in terms of volumetric overlap metric, by comparing with the ground-truth segmentation performed by a radiologist.
Etien, Erik
2013-05-01
This paper deals with the design of a speed soft sensor for induction motor. The sensor is based on the physical model of the motor. Because the validation step highlight the fact that the sensor cannot be validated for all the operating points, the model is modified in order to obtain a fully validated sensor in the whole speed range. An original feature of the proposed approach is that the modified model is derived from stability analysis using automatic control theory. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Automatic Molar Extraction from Dental Panoramic Radiographs for Forensic Personal Identification
NASA Astrophysics Data System (ADS)
Samopa, Febriliyan; Asano, Akira; Taguchi, Akira
Measurement of an individual molar provides rich information for forensic personal identification. We propose a computer-based system for extracting an individual molar from dental panoramic radiographs. A molar is obtained by extracting the region-of-interest, separating the maxilla and mandible, and extracting the boundaries between teeth. The proposed system is almost fully automatic; all that the user has to do is clicking three points on the boundary between the maxilla and the mandible.
Automatic detection of spiculation of pulmonary nodules in computed tomography images
NASA Astrophysics Data System (ADS)
Ciompi, F.; Jacobs, C.; Scholten, E. T.; van Riel, S. J.; W. Wille, M. M.; Prokop, M.; van Ginneken, B.
2015-03-01
We present a fully automatic method for the assessment of spiculation of pulmonary nodules in low-dose Computed Tomography (CT) images. Spiculation is considered as one of the indicators of nodule malignancy and an important feature to assess in order to decide on a patient-tailored follow-up procedure. For this reason, lung cancer screening scenario would benefit from the presence of a fully automatic system for the assessment of spiculation. The presented framework relies on the fact that spiculated nodules mainly differ from non-spiculated ones in their morphology. In order to discriminate the two categories, information on morphology is captured by sampling intensity profiles along circular patterns on spherical surfaces centered on the nodule, in a multi-scale fashion. Each intensity profile is interpreted as a periodic signal, where the Fourier transform is applied, obtaining a spectrum. A library of spectra is created by clustering data via unsupervised learning. The centroids of the clusters are used to label back each spectrum in the sampling pattern. A compact descriptor encoding the nodule morphology is obtained as the histogram of labels along all the spherical surfaces and used to classify spiculated nodules via supervised learning. We tested our approach on a set of nodules from the Danish Lung Cancer Screening Trial (DLCST) dataset. Our results show that the proposed method outperforms other 3-D descriptors of morphology in the automatic assessment of spiculation.
``Carbon Credits'' for Resource-Bounded Computations Using Amortised Analysis
NASA Astrophysics Data System (ADS)
Jost, Steffen; Loidl, Hans-Wolfgang; Hammond, Kevin; Scaife, Norman; Hofmann, Martin
Bounding resource usage is important for a number of areas, notably real-time embedded systems and safety-critical systems. In this paper, we present a fully automatic static type-based analysis for inferring upper bounds on resource usage for programs involving general algebraic datatypes and full recursion. Our method can easily be used to bound any countable resource, without needing to revisit proofs. We apply the analysis to the important metrics of worst-case execution time, stack- and heap-space usage. Our results from several realistic embedded control applications demonstrate good matches between our inferred bounds and measured worst-case costs for heap and stack usage. For time usage we infer good bounds for one application. Where we obtain less tight bounds, this is due to the use of software floating-point libraries.
Integration of Infrared Thermography and Photogrammetric Surveying of Built Landscape
NASA Astrophysics Data System (ADS)
Scaioni, M.; Rosina, E.; L'Erario, A.; Dìaz-Vilariño, L.
2017-05-01
The thermal analysis of buildings represents a key-step for reduction of energy consumption, also in the case of Cultural Heritage. Here the complexity of the constructions and the adopted materials might require special analysis and tailored solutions. Infrared Thermography (IRT) is an important non-destructive investigation technique that may aid in the thermal analysis of buildings. The paper reports the application of IRT on a listed building, belonging to the Cultural Heritage and to a residential one, as a demonstration that IRT is a suitable and convenient tool for analysing the existing buildings. The purposes of the analysis are the assessment of the damages and energy efficiency of the building envelope. Since in many cases the complex geometry of historic constructions may involve the thermal analysis, the integration of IRT and accurate 3D models were developed during the latest years. Here authors propose a solution based on the up-to-date photogrammetric solutions for purely image-based 3D modelling, including automatic image orientation/sensor calibration using Structure-from-Motion and dense matching. Thus, an almost fully automatic pipeline for the generation of accurate 3D models showing the temperatures on a building skin in a realistic manner is described, where the only manual task is given by the measurement of a few common points for co-registration of RGB and IR photogrammetric projects.
Sawja: Static Analysis Workshop for Java
NASA Astrophysics Data System (ADS)
Hubert, Laurent; Barré, Nicolas; Besson, Frédéric; Demange, Delphine; Jensen, Thomas; Monfort, Vincent; Pichardie, David; Turpin, Tiphaine
Static analysis is a powerful technique for automatic verification of programs but raises major engineering challenges when developing a full-fledged analyzer for a realistic language such as Java. Efficiency and precision of such a tool rely partly on low level components which only depend on the syntactic structure of the language and therefore should not be redesigned for each implementation of a new static analysis. This paper describes the Sawja library: a static analysis workshop fully compliant with Java 6 which provides OCaml modules for efficiently manipulating Java bytecode programs. We present the main features of the library, including i) efficient functional data-structures for representing a program with implicit sharing and lazy parsing, ii) an intermediate stack-less representation, and iii) fast computation and manipulation of complete programs. We provide experimental evaluations of the different features with respect to time, memory and precision.
Fully automated three-dimensional microscopy system
NASA Astrophysics Data System (ADS)
Kerschmann, Russell L.
2000-04-01
Tissue-scale structures such as vessel networks are imaged at micron resolution with the Virtual Tissue System (VT System). VT System imaging of cubic millimeters of tissue and other material extends the capabilities of conventional volumetric techniques such as confocal microscopy, and allows for the first time the integrated 2D and 3D analysis of important tissue structural relationships. The VT System eliminates the need for glass slide-mounted tissue sections and instead captures images directly from the surface of a block containing a sample. Tissues are en bloc stained with fluorochrome compounds, embedded in an optically conditioned polymer that suppresses image signals form dep within the block , and serially sectioned for imaging. Thousands of fully registered 2D images are automatically captured digitally to completely convert tissue samples into blocks of high-resolution information. The resulting multi gigabyte data sets constitute the raw material for precision visualization and analysis. Cellular function may be seen in a larger anatomical context. VT System technology makes tissue metrics, accurate cell enumeration and cell cycle analyses possible while preserving full histologic setting.
Nielsen, Patricia Switten; Riber-Hansen, Rikke; Schmidt, Henrik; Steiniche, Torben
2016-04-09
Staging of melanoma includes quantification of a proliferation index, i.e., presumed melanocytic mitoses of H&E stains are counted manually in hot spots. Yet, its reproducibility and prognostic impact increases by immunohistochemical dual staining for phosphohistone H3 (PHH3) and MART1, which also may enable fully automated quantification by image analysis. To ensure manageable workloads and repeatable measurements in modern pathology, the study aimed to present an automated quantification of proliferation with automated hot-spot selection in PHH3/MART1-stained melanomas. Formalin-fixed, paraffin-embedded tissue from 153 consecutive stage I/II melanoma patients was immunohistochemically dual-stained for PHH3 and MART1. Whole slide images were captured, and the number of PHH3/MART1-positive cells was manually and automatically counted in the global tumor area and in a manually and automatically selected hot spot, i.e., a fixed 1-mm(2) square. Bland-Altman plots and hypothesis tests compared manual and automated procedures, and the Cox proportional hazards model established their prognostic impact. The mean difference between manual and automated global counts was 2.9 cells/mm(2) (P = 0.0071) and 0.23 cells per hot spot (P = 0.96) for automated counts in manually and automatically selected hot spots. In 77 % of cases, manual and automated hot spots overlapped. Fully manual hot-spot counts yielded the highest prognostic performance with an adjusted hazard ratio of 5.5 (95 % CI, 1.3-24, P = 0.024) as opposed to 1.3 (95 % CI, 0.61-2.9, P = 0.47) for automated counts with automated hot spots. The automated index and automated hot-spot selection were highly correlated to their manual counterpart, but altogether their prognostic impact was noticeably reduced. Because correct recognition of only one PHH3/MART1-positive cell seems important, extremely high sensitivity and specificity of the algorithm is required for prognostic purposes. Thus, automated analysis may still aid and improve the pathologists' detection of mitoses in melanoma and possibly other malignancies.
Fully automated MR liver volumetry using watershed segmentation coupled with active contouring.
Huynh, Hieu Trung; Le-Trong, Ngoc; Bao, Pham The; Oto, Aytek; Suzuki, Kenji
2017-02-01
Our purpose is to develop a fully automated scheme for liver volume measurement in abdominal MR images, without requiring any user input or interaction. The proposed scheme is fully automatic for liver volumetry from 3D abdominal MR images, and it consists of three main stages: preprocessing, rough liver shape generation, and liver extraction. The preprocessing stage reduced noise and enhanced the liver boundaries in 3D abdominal MR images. The rough liver shape was revealed fully automatically by using the watershed segmentation, thresholding transform, morphological operations, and statistical properties of the liver. An active contour model was applied to refine the rough liver shape to precisely obtain the liver boundaries. The liver volumes calculated by the proposed scheme were compared to the "gold standard" references which were estimated by an expert abdominal radiologist. The liver volumes computed by using our developed scheme excellently agreed (Intra-class correlation coefficient was 0.94) with the "gold standard" manual volumes by the radiologist in the evaluation with 27 cases from multiple medical centers. The running time was 8.4 min per case on average. We developed a fully automated liver volumetry scheme in MR, which does not require any interaction by users. It was evaluated with cases from multiple medical centers. The liver volumetry performance of our developed system was comparable to that of the gold standard manual volumetry, and it saved radiologists' time for manual liver volumetry of 24.7 min per case.
Computer-assisted liver graft steatosis assessment via learning-based texture analysis.
Moccia, Sara; Mattos, Leonardo S; Patrini, Ilaria; Ruperti, Michela; Poté, Nicolas; Dondero, Federica; Cauchy, François; Sepulveda, Ailton; Soubrane, Olivier; De Momi, Elena; Diaspro, Alberto; Cesaretti, Manuela
2018-05-23
Fast and accurate graft hepatic steatosis (HS) assessment is of primary importance for lowering liver dysfunction risks after transplantation. Histopathological analysis of biopsied liver is the gold standard for assessing HS, despite being invasive and time consuming. Due to the short time availability between liver procurement and transplantation, surgeons perform HS assessment through clinical evaluation (medical history, blood tests) and liver texture visual analysis. Despite visual analysis being recognized as challenging in the clinical literature, few efforts have been invested to develop computer-assisted solutions for HS assessment. The objective of this paper is to investigate the automatic analysis of liver texture with machine learning algorithms to automate the HS assessment process and offer support for the surgeon decision process. Forty RGB images of forty different donors were analyzed. The images were captured with an RGB smartphone camera in the operating room (OR). Twenty images refer to livers that were accepted and 20 to discarded livers. Fifteen randomly selected liver patches were extracted from each image. Patch size was [Formula: see text]. This way, a balanced dataset of 600 patches was obtained. Intensity-based features (INT), histogram of local binary pattern ([Formula: see text]), and gray-level co-occurrence matrix ([Formula: see text]) were investigated. Blood-sample features (Blo) were included in the analysis, too. Supervised and semisupervised learning approaches were investigated for feature classification. The leave-one-patient-out cross-validation was performed to estimate the classification performance. With the best-performing feature set ([Formula: see text]) and semisupervised learning, the achieved classification sensitivity, specificity, and accuracy were 95, 81, and 88%, respectively. This research represents the first attempt to use machine learning and automatic texture analysis of RGB images from ubiquitous smartphone cameras for the task of graft HS assessment. The results suggest that is a promising strategy to develop a fully automatic solution to assist surgeons in HS assessment inside the OR.
NASA Technical Reports Server (NTRS)
1981-01-01
Mechanical Technology, Incorporated developed a fully automatic laser machining process that allows more precise balancing removes metal faster, eliminates excess metal removal and other operator induced inaccuracies, and provides significant reduction in balancing time. Manufacturing costs are reduced as a result.
Singha, Suman; Vespe, Michele; Trieschmann, Olaf
2013-08-15
Today the health of ocean is in danger as it was never before mainly due to man-made pollutions. Operational activities show regular occurrence of accidental and deliberate oil spill in European waters. Since the areas covered by oil spills are usually large, satellite remote sensing particularly Synthetic Aperture Radar represents an effective option for operational oil spill detection. This paper describes the development of a fully automated approach for oil spill detection from SAR. Total of 41 feature parameters extracted from each segmented dark spot for oil spill and 'look-alike' classification and ranked according to their importance. The classification algorithm is based on a two-stage processing that combines classification tree analysis and fuzzy logic. An initial evaluation of this methodology on a large dataset has been carried out and degree of agreement between results from proposed algorithm and human analyst was estimated between 85% and 93% respectively for ENVISAT and RADARSAT. Copyright © 2013 Elsevier Ltd. All rights reserved.
Integrated protocol for reliable and fast quantification and documentation of electrophoresis gels.
Rehbein, Peter; Schwalbe, Harald
2015-06-01
Quantitative analysis of electrophoresis gels is an important part in molecular cloning, as well as in protein expression and purification. Parallel quantifications in yield and purity can be most conveniently obtained from densitometric analysis. This communication reports a comprehensive, reliable and simple protocol for gel quantification and documentation, applicable for single samples and with special features for protein expression screens. As major component of the protocol, the fully annotated code of a proprietary open source computer program for semi-automatic densitometric quantification of digitized electrophoresis gels is disclosed. The program ("GelQuant") is implemented for the C-based macro-language of the widespread integrated development environment of IGOR Pro. Copyright © 2014 Elsevier Inc. All rights reserved.
A deep-learning based automatic pulmonary nodule detection system
NASA Astrophysics Data System (ADS)
Zhao, Yiyuan; Zhao, Liang; Yan, Zhennan; Wolf, Matthias; Zhan, Yiqiang
2018-02-01
Lung cancer is the deadliest cancer worldwide. Early detection of lung cancer is a promising way to lower the risk of dying. Accurate pulmonary nodule detection in computed tomography (CT) images is crucial for early diagnosis of lung cancer. The development of computer-aided detection (CAD) system of pulmonary nodules contributes to making the CT analysis more accurate and with more efficiency. Recent studies from other groups have been focusing on lung cancer diagnosis CAD system by detecting medium to large nodules. However, to fully investigate the relevance between nodule features and cancer diagnosis, a CAD that is capable of detecting nodules with all sizes is needed. In this paper, we present a deep-learning based automatic all size pulmonary nodule detection system by cascading two artificial neural networks. We firstly use a U-net like 3D network to generate nodule candidates from CT images. Then, we use another 3D neural network to refine the locations of the nodule candidates generated from the previous subsystem. With the second sub-system, we bring the nodule candidates closer to the center of the ground truth nodule locations. We evaluate our system on a public CT dataset provided by the Lung Nodule Analysis (LUNA) 2016 grand challenge. The performance on the testing dataset shows that our system achieves 90% sensitivity with an average of 4 false positives per scan. This indicates that our system can be an aid for automatic nodule detection, which is beneficial for lung cancer diagnosis.
NASA Technical Reports Server (NTRS)
Wilckens, V.
1972-01-01
Present information display concepts for pilot landing guidance are outlined considering manual control as well as substitution of man by fully competent automatics. Display improvements are achieved by compressing the distributed indicators into an accumulative display and thus reducing information scanning. Complete integration of quantitative indications, outer loop information, and real world display in a pictorial information channel geometry constitutes an interface with human ability to differentiate and integrate for optimal manual control of the aircraft.
Design Through Manufacturing: The Solid Model - Finite Element Analysis Interface
NASA Technical Reports Server (NTRS)
Rubin, Carol
2003-01-01
State-of-the-art computer aided design (CAD) presently affords engineers the opportunity to create solid models of machine parts which reflect every detail of the finished product. Ideally, these models should fulfill two very important functions: (1) they must provide numerical control information for automated manufacturing of precision parts, and (2) they must enable analysts to easily evaluate the stress levels (using finite element analysis - FEA) for all structurally significant parts used in space missions. Today's state-of-the-art CAD programs perform function (1) very well, providing an excellent model for precision manufacturing. But they do not provide a straightforward and simple means of automating the translation from CAD to FEA models, especially for aircraft-type structures. The research performed during the fellowship period investigated the transition process from the solid CAD model to the FEA stress analysis model with the final goal of creating an automatic interface between the two. During the period of the fellowship a detailed multi-year program for the development of such an interface was created. The ultimate goal of this program will be the development of a fully parameterized automatic ProE/FEA translator for parts and assemblies, with the incorporation of data base management into the solution, and ultimately including computational fluid dynamics and thermal modeling in the interface.
Liu, Yang; Li, Yi-Jun; Luo, Er-Ping; Lu, Hong-Bing; Yin, Hong
2012-01-01
Most of magnetic resonance imaging (MRI) studies about post-traumatic stress disorder (PTSD) focused primarily on measuring of small brain structure volume or regional brain volume changes. There were rare reports investigating cortical thickness alterations in recent onset PTSD. Recent advances in computational analysis made it possible to measure cortical thickness in a fully automatic way, along with voxel-based morphometry (VBM) that enables an exploration of global structural changes throughout the brain by applying statistical parametric mapping (SPM) to high-resolution MRI. In this paper, Laplacian method was utilized to estimate cortical thickness after automatic segmentation of gray matter from MR images under SPM. Then thickness maps were analyzed by SPM8. Comparison between 10 survivors from a mining disaster with recent onset PTSD and 10 survivors without PTSD from the same trauma indicates cortical thinning in the left parietal lobe, right inferior frontal gyrus, and right parahippocampal gyrus. The regional cortical thickness of the right inferior frontal gyrus showed a significant negative correlation with the CAPS score in the patients with PTSD. Our study suggests that shape-related cortical thickness analysis may be more sensitive than volumetric analysis to subtle alteration at early stage of PTSD. PMID:22720021
Castillo, Andrés M; Bernal, Andrés; Patiny, Luc; Wist, Julien
2015-08-01
We present a method for the automatic assignment of small molecules' NMR spectra. The method includes an automatic and novel self-consistent peak-picking routine that validates NMR peaks in each spectrum against peaks in the same or other spectra that are due to the same resonances. The auto-assignment routine used is based on branch-and-bound optimization and relies predominantly on integration and correlation data; chemical shift information may be included when available to fasten the search and shorten the list of viable assignments, but in most cases tested, it is not required in order to find the correct assignment. This automatic assignment method is implemented as a web-based tool that runs without any user input other than the acquired spectra. Copyright © 2015 John Wiley & Sons, Ltd.
24 CFR 1710.506 - State/Federal filing requirements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... fully explaining the purpose and significance of the amendment and referring to that section and page of... automatically suspended as a result of the state action. No action need be taken by the Secretary to effect the...
24 CFR 1710.506 - State/Federal filing requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... fully explaining the purpose and significance of the amendment and referring to that section and page of... automatically suspended as a result of the state action. No action need be taken by the Secretary to effect the...
Xenon International Automated Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-08-05
The Xenon International Automated Control software monitors, displays status, and allows for manual operator control as well as fully automatic control of multiple commercial and PNNL designed hardware components to generate and transmit atmospheric radioxenon concentration measurements every six hours.
Shaping electromagnetic waves using software-automatically-designed metasurfaces.
Zhang, Qian; Wan, Xiang; Liu, Shuo; Yuan Yin, Jia; Zhang, Lei; Jun Cui, Tie
2017-06-15
We present a fully digital procedure of designing reflective coding metasurfaces to shape reflected electromagnetic waves. The design procedure is completely automatic, controlled by a personal computer. In details, the macro coding units of metasurface are automatically divided into several types (e.g. two types for 1-bit coding, four types for 2-bit coding, etc.), and each type of the macro coding units is formed by discretely random arrangement of micro coding units. By combining an optimization algorithm and commercial electromagnetic software, the digital patterns of the macro coding units are optimized to possess constant phase difference for the reflected waves. The apertures of the designed reflective metasurfaces are formed by arranging the macro coding units with certain coding sequence. To experimentally verify the performance, a coding metasurface is fabricated by automatically designing two digital 1-bit unit cells, which are arranged in array to constitute a periodic coding metasurface to generate the required four-beam radiations with specific directions. Two complicated functional metasurfaces with circularly- and elliptically-shaped radiation beams are realized by automatically designing 4-bit macro coding units, showing excellent performance of the automatic designs by software. The proposed method provides a smart tool to realize various functional devices and systems automatically.
Huang, Hsiao-Hui; Huang, Chun-Yu; Chen, Chiao-Ning; Wang, Yun-Wen; Huang, Teng-Yi
2018-01-01
Native T1 value is emerging as a reliable indicator of abnormal heart conditions related to myocardial fibrosis. Investigators have extensively used the standardized myocardial segmentation of the American Heart Association (AHA) to measure regional T1 values of the left ventricular (LV) walls. In this paper, we present a fully automatic system to analyze modified Look-Locker inversion recovery images and to report regional T1 values of AHA segments. Ten healthy individuals participated in the T1 mapping study with a 3.0 T scanner after providing informed consent. First, we obtained masks of an LV blood-pool region and LV walls by using an image synthesis method and a layer-growing method. Subsequently, the LV walls were divided into AHA segments by identifying the boundaries of the septal regions and by using a radial projection method. The layer-growing method significantly enhanced the accuracy of the derived myocardium mask. We compared the T1 values that were obtained using manual region of interest selections and those obtained using the automatic system. The average T1 difference of the calculated segments was 4.6 ± 1.5%. This study demonstrated a practical and robust method of obtaining native T1 values of AHA segments in LV walls.
NASA Astrophysics Data System (ADS)
Barufaldi, Bruno; Borges, Lucas R.; Bakic, Predrag R.; Vieira, Marcelo A. C.; Schiabel, Homero; Maidment, Andrew D. A.
2017-03-01
Automatic exposure control (AEC) is used in mammography to obtain acceptable radiation dose and adequate image quality regardless of breast thickness and composition. Although there are physics methods for assessing the AEC, it is not clear whether mammography systems operate with optimal dose and image quality in clinical practice. In this work, we propose the use of a normalized anisotropic quality index (NAQI), validated in previous studies, to evaluate the quality of mammograms acquired using AEC. The authors used a clinical dataset that consists of 561 patients and 1,046 mammograms (craniocaudal breast views). The results show that image quality is often maintained, even at various radiation levels (mean NAQI = 0.14 +/- 0.02). However, a more careful analysis of NAQI reveals that the average image quality decreases as breast thickness increases. The NAQI is reduced by 32% on average, when the breast thickness increases from 31 to 71 mm. NAQI also decreases with lower breast density. The variation in breast parenchyma alone cannot fully account for the decrease of NAQI with thickness. Examination of images shows that images of large, fatty breasts are often inadequately processed. This work shows that NAQI can be applied in clinical mammograms to assess mammographic image quality, and highlights the limitations of the automatic exposure control for some images.
Fully automated urban traffic system
NASA Technical Reports Server (NTRS)
Dobrotin, B. M.; Hansen, G. R.; Peng, T. K. C.; Rennels, D. A.
1977-01-01
The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible.
FAMA: An automatic code for stellar parameter and abundance determination
NASA Astrophysics Data System (ADS)
Magrini, Laura; Randich, Sofia; Friel, Eileen; Spina, Lorenzo; Jacobson, Heather; Cantat-Gaudin, Tristan; Donati, Paolo; Baglioni, Roberto; Maiorca, Enrico; Bragaglia, Angela; Sordo, Rosanna; Vallenari, Antonella
2013-10-01
Context. The large amount of spectra obtained during the epoch of extensive spectroscopic surveys of Galactic stars needs the development of automatic procedures to derive their atmospheric parameters and individual element abundances. Aims: Starting from the widely-used code MOOG by C. Sneden, we have developed a new procedure to determine atmospheric parameters and abundances in a fully automatic way. The code FAMA (Fast Automatic MOOG Analysis) is presented describing its approach to derive atmospheric stellar parameters and element abundances. The code, freely distributed, is written in Perl and can be used on different platforms. Methods: The aim of FAMA is to render the computation of the atmospheric parameters and abundances of a large number of stars using measurements of equivalent widths (EWs) as automatic and as independent of any subjective approach as possible. It is based on the simultaneous search for three equilibria: excitation equilibrium, ionization balance, and the relationship between log n(Fe i) and the reduced EWs. FAMA also evaluates the statistical errors on individual element abundances and errors due to the uncertainties in the stellar parameters. The convergence criteria are not fixed "a priori" but are based on the quality of the spectra. Results: In this paper we present tests performed on the solar spectrum EWs that assess the method's dependency on the initial parameters and we analyze a sample of stars observed in Galactic open and globular clusters. The current version of FAMA is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/558/A38
NASA Astrophysics Data System (ADS)
Yu, Le; Zhang, Dengrong; Holden, Eun-Jung
2008-07-01
Automatic registration of multi-source remote-sensing images is a difficult task as it must deal with the varying illuminations and resolutions of the images, different perspectives and the local deformations within the images. This paper proposes a fully automatic and fast non-rigid image registration technique that addresses those issues. The proposed technique performs a pre-registration process that coarsely aligns the input image to the reference image by automatically detecting their matching points by using the scale invariant feature transform (SIFT) method and an affine transformation model. Once the coarse registration is completed, it performs a fine-scale registration process based on a piecewise linear transformation technique using feature points that are detected by the Harris corner detector. The registration process firstly finds in succession, tie point pairs between the input and the reference image by detecting Harris corners and applying a cross-matching strategy based on a wavelet pyramid for a fast search speed. Tie point pairs with large errors are pruned by an error-checking step. The input image is then rectified by using triangulated irregular networks (TINs) to deal with irregular local deformations caused by the fluctuation of the terrain. For each triangular facet of the TIN, affine transformations are estimated and applied for rectification. Experiments with Quickbird, SPOT5, SPOT4, TM remote-sensing images of the Hangzhou area in China demonstrate the efficiency and the accuracy of the proposed technique for multi-source remote-sensing image registration.
Weather and atmosphere observation with the ATOM all-sky camera
NASA Astrophysics Data System (ADS)
Jankowsky, Felix; Wagner, Stefan
2015-03-01
The Automatic Telescope for Optical Monitoring (ATOM) for H.E.S.S. is an 75 cm optical telescope which operates fully automated. As there is no observer present during observation, an auxiliary all-sky camera serves as weather monitoring system. This device takes an all-sky image of the whole sky every three minutes. The gathered data then undergoes live-analysis by performing astrometric comparison with a theoretical night sky model, interpreting the absence of stars as cloud coverage. The sky monitor also serves as tool for a meteorological analysis of the observation site of the the upcoming Cherenkov Telescope Array. This overview covers design and benefits of the all-sky camera and additionally gives an introduction into current efforts to integrate the device into the atmosphere analysis programme of H.E.S.S.
New York State Thruway Authority automatic vehicle classification (AVC) : research report.
DOT National Transportation Integrated Search
2008-03-31
In December 2007, the N.Y.S. Thruway Authority (Thruway) concluded a Federal : funded research effort to study technology and develop a design for retrofitting : devices required in implementing a fully automated vehicle classification system i...
Improved pressure measurement system for calibration of the NASA LeRC 10x10 supersonic wind tunnel
NASA Technical Reports Server (NTRS)
Blumenthal, Philip Z.; Helland, Stephen M.
1994-01-01
This paper discusses a method used to provide a significant improvement in the accuracy of the Electronically Scanned Pressure (ESP) Measurement System by means of a fully automatic floating pressure generating system for the ESP calibration and reference pressures. This system was used to obtain test section Mach number and flow angularity measurements over the full envelope of test conditions for the 10 x 10 Supersonic Wind Tunnel. The uncertainty analysis and actual test data demonstrated that, for most test conditions, this method could reduce errors to about one-third to one-half that obtained with the standard system.
Scanning X-ray diffraction on cardiac tissue: automatized data analysis and processing.
Nicolas, Jan David; Bernhardt, Marten; Markus, Andrea; Alves, Frauke; Burghammer, Manfred; Salditt, Tim
2017-11-01
A scanning X-ray diffraction study of cardiac tissue has been performed, covering the entire cross section of a mouse heart slice. To this end, moderate focusing by compound refractive lenses to micrometer spot size, continuous scanning, data acquisition by a fast single-photon-counting pixel detector, and fully automated analysis scripts have been combined. It was shown that a surprising amount of structural data can be harvested from such a scan, evaluating the local scattering intensity, interfilament spacing of the muscle tissue, the filament orientation, and the degree of anisotropy. The workflow of data analysis is described and a data analysis toolbox with example data for general use is provided. Since many cardiomyopathies rely on the structural integrity of the sarcomere, the contractile unit of cardiac muscle cells, the present study can be easily extended to characterize tissue from a diseased heart.
Real-time automatic registration in optical surgical navigation
NASA Astrophysics Data System (ADS)
Lin, Qinyong; Yang, Rongqian; Cai, Ken; Si, Xuan; Chen, Xiuwen; Wu, Xiaoming
2016-05-01
An image-guided surgical navigation system requires the improvement of the patient-to-image registration time to enhance the convenience of the registration procedure. A critical step in achieving this aim is performing a fully automatic patient-to-image registration. This study reports on a design of custom fiducial markers and the performance of a real-time automatic patient-to-image registration method using these markers on the basis of an optical tracking system for rigid anatomy. The custom fiducial markers are designed to be automatically localized in both patient and image spaces. An automatic localization method is performed by registering a point cloud sampled from the three dimensional (3D) pedestal model surface of a fiducial marker to each pedestal of fiducial markers searched in image space. A head phantom is constructed to estimate the performance of the real-time automatic registration method under four fiducial configurations. The head phantom experimental results demonstrate that the real-time automatic registration method is more convenient, rapid, and accurate than the manual method. The time required for each registration is approximately 0.1 s. The automatic localization method precisely localizes the fiducial markers in image space. The averaged target registration error for the four configurations is approximately 0.7 mm. The automatic registration performance is independent of the positions relative to the tracking system and the movement of the patient during the operation.
The Extraction of Terrace in the Loess Plateau Based on radial method
NASA Astrophysics Data System (ADS)
Liu, W.; Li, F.
2016-12-01
The terrace of Loess Plateau, as a typical kind of artificial landform and an important measure of soil and water conservation, its positioning and automatic extraction will simplify the work of land use investigation. The existing methods of terrace extraction mainly include visual interpretation and automatic extraction. The manual method is used in land use investigation, but it is time-consuming and laborious. Researchers put forward some automatic extraction methods. For example, Fourier transform method can recognize terrace and find accurate position from frequency domain image, but it is more affected by the linear objects in the same direction of terrace; Texture analysis method is simple and have a wide range application of image processing. The disadvantage of texture analysis method is unable to recognize terraces' edge; Object-oriented is a new method of image classification, but when introduce it to terrace extracting, fracture polygons will be the most serious problem and it is difficult to explain its geological meaning. In order to positioning the terraces, we use high- resolution remote sensing image to extract and analyze the gray value of the pixels which the radial went through. During the recognition process, we firstly use the DEM data analysis or by manual selecting, to roughly confirm the position of peak points; secondly, take each of the peak points as the center to make radials in all directions; finally, extracting the gray values of the pixels which the radials went through, and analyzing its changing characteristics to confirm whether the terrace exists. For the purpose of getting accurate position of terrace, terraces' discontinuity, extension direction, ridge width, image processing algorithm, remote sensing image illumination and other influence factors were fully considered when designing the algorithms.
3D marker-controlled watershed for kidney segmentation in clinical CT exams.
Wieclawek, Wojciech
2018-02-27
Image segmentation is an essential and non trivial task in computer vision and medical image analysis. Computed tomography (CT) is one of the most accessible medical examination techniques to visualize the interior of a patient's body. Among different computer-aided diagnostic systems, the applications dedicated to kidney segmentation represent a relatively small group. In addition, literature solutions are verified on relatively small databases. The goal of this research is to develop a novel algorithm for fully automated kidney segmentation. This approach is designed for large database analysis including both physiological and pathological cases. This study presents a 3D marker-controlled watershed transform developed and employed for fully automated CT kidney segmentation. The original and the most complex step in the current proposition is an automatic generation of 3D marker images. The final kidney segmentation step is an analysis of the labelled image obtained from marker-controlled watershed transform. It consists of morphological operations and shape analysis. The implementation is conducted in a MATLAB environment, Version 2017a, using i.a. Image Processing Toolbox. 170 clinical CT abdominal studies have been subjected to the analysis. The dataset includes normal as well as various pathological cases (agenesis, renal cysts, tumors, renal cell carcinoma, kidney cirrhosis, partial or radical nephrectomy, hematoma and nephrolithiasis). Manual and semi-automated delineations have been used as a gold standard. Wieclawek Among 67 delineated medical cases, 62 cases are 'Very good', whereas only 5 are 'Good' according to Cohen's Kappa interpretation. The segmentation results show that mean values of Sensitivity, Specificity, Dice, Jaccard, Cohen's Kappa and Accuracy are 90.29, 99.96, 91.68, 85.04, 91.62 and 99.89% respectively. All 170 medical cases (with and without outlines) have been classified by three independent medical experts as 'Very good' in 143-148 cases, as 'Good' in 15-21 cases and as 'Moderate' in 6-8 cases. An automatic kidney segmentation approach for CT studies to compete with commonly known solutions was developed. The algorithm gives promising results, that were confirmed during validation procedure done on a relatively large database, including 170 CTs with both physiological and pathological cases.
Automatic and semi-automatic approaches for arteriolar-to-venular computation in retinal photographs
NASA Astrophysics Data System (ADS)
Mendonça, Ana Maria; Remeseiro, Beatriz; Dashtbozorg, Behdad; Campilho, Aurélio
2017-03-01
The Arteriolar-to-Venular Ratio (AVR) is a popular dimensionless measure which allows the assessment of patients' condition for the early diagnosis of different diseases, including hypertension and diabetic retinopathy. This paper presents two new approaches for AVR computation in retinal photographs which include a sequence of automated processing steps: vessel segmentation, caliber measurement, optic disc segmentation, artery/vein classification, region of interest delineation, and AVR calculation. Both approaches have been tested on the INSPIRE-AVR dataset, and compared with a ground-truth provided by two medical specialists. The obtained results demonstrate the reliability of the fully automatic approach which provides AVR ratios very similar to at least one of the observers. Furthermore, the semi-automatic approach, which includes the manual modification of the artery/vein classification if needed, allows to significantly reduce the error to a level below the human error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciller, Carlos, E-mail: carlos.cillerruiz@unil.ch; Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern; Centre d’Imagerie BioMédicale, University of Lausanne, Lausanne
Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manualmore » and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.« less
Ciller, Carlos; De Zanet, Sandro I; Rüegsegger, Michael B; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L; Kowal, Jens H; Cuadra, Meritxell Bach
2015-07-15
Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor. Copyright © 2015 Elsevier Inc. All rights reserved.
Igual, Laura; Soliva, Joan Carles; Escalera, Sergio; Gimeno, Roger; Vilarroya, Oscar; Radeva, Petia
2012-12-01
We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods. Copyright © 2012 Elsevier Ltd. All rights reserved.
Automatic three-dimensional measurement of large-scale structure based on vision metrology.
Zhu, Zhaokun; Guan, Banglei; Zhang, Xiaohu; Li, Daokui; Yu, Qifeng
2014-01-01
All relevant key techniques involved in photogrammetric vision metrology for fully automatic 3D measurement of large-scale structure are studied. A new kind of coded target consisting of circular retroreflective discs is designed, and corresponding detection and recognition algorithms based on blob detection and clustering are presented. Then a three-stage strategy starting with view clustering is proposed to achieve automatic network orientation. As for matching of noncoded targets, the concept of matching path is proposed, and matches for each noncoded target are found by determination of the optimal matching path, based on a novel voting strategy, among all possible ones. Experiments on a fixed keel of airship have been conducted to verify the effectiveness and measuring accuracy of the proposed methods.
Automatic extraction of road features in urban environments using dense ALS data
NASA Astrophysics Data System (ADS)
Soilán, Mario; Truong-Hong, Linh; Riveiro, Belén; Laefer, Debra
2018-02-01
This paper describes a methodology that automatically extracts semantic information from urban ALS data for urban parameterization and road network definition. First, building façades are segmented from the ground surface by combining knowledge-based information with both voxel and raster data. Next, heuristic rules and unsupervised learning are applied to the ground surface data to distinguish sidewalk and pavement points as a means for curb detection. Then radiometric information was employed for road marking extraction. Using high-density ALS data from Dublin, Ireland, this fully automatic workflow was able to generate a F-score close to 95% for pavement and sidewalk identification with a resolution of 20 cm and better than 80% for road marking detection.
Improving reticle defect disposition via fully automated lithography simulation
NASA Astrophysics Data System (ADS)
Mann, Raunak; Goodman, Eliot; Lao, Keith; Ha, Steven; Vacca, Anthony; Fiekowsky, Peter; Fiekowsky, Dan
2016-03-01
Most advanced wafer fabs have embraced complex pattern decoration, which creates numerous challenges during in-fab reticle qualification. These optical proximity correction (OPC) techniques create assist features that tend to be very close in size and shape to the main patterns as seen in Figure 1. A small defect on an assist feature will most likely have little or no impact on the fidelity of the wafer image, whereas the same defect on a main feature could significantly decrease device functionality. In order to properly disposition these defects, reticle inspection technicians need an efficient method that automatically separates main from assist features and predicts the resulting defect impact on the wafer image. Analysis System (ADAS) defect simulation system[1]. Up until now, using ADAS simulation was limited to engineers due to the complexity of the settings that need to be manually entered in order to create an accurate result. A single error in entering one of these values can cause erroneous results, therefore full automation is necessary. In this study, we propose a new method where all needed simulation parameters are automatically loaded into ADAS. This is accomplished in two parts. First we have created a scanner parameter database that is automatically identified from mask product and level names. Second, we automatically determine the appropriate simulation printability threshold by using a new reference image (provided by the inspection tool) that contains a known measured value of the reticle critical dimension (CD). This new method automatically loads the correct scanner conditions, sets the appropriate simulation threshold, and automatically measures the percentage of CD change caused by the defect. This streamlines qualification and reduces the number of reticles being put on hold, waiting for engineer review. We also present data showing the consistency and reliability of the new method, along with the impact on the efficiency of in-fab reticle qualification.
The calculation of aircraft collision probabilities
DOT National Transportation Integrated Search
1971-10-01
The basic limitation of, air traffic compression, from the safety point of view, is the increased risk of collision due to reduced separations. In order to evolve new procedures, and eventually a fully, automatic system, it is desirable to have a mea...
Rodenacker, K; Aubele, M; Hutzler, P; Adiga, P S
1997-01-01
In molecular pathology numerical chromosome aberrations have been found to be decisive for the prognosis of malignancy in tumours. The existence of such aberrations can be detected by interphase fluorescence in situ hybridization (FISH). The gain or loss of certain base sequences in the desoxyribonucleic acid (DNA) can be estimated by counting the number of FISH signals per cell nucleus. The quantitative evaluation of such events is a necessary condition for a prospective use in diagnostic pathology. To avoid occlusions of signals, the cell nucleus has to be analyzed in three dimensions. Confocal laser scanning microscopy is the means to obtain series of optical thin sections from fluorescence stained or marked material to fulfill the conditions mentioned above. A graphical user interface (GUI) to a software package for display, inspection, count and (semi-)automatic analysis of 3-D images for pathologists is outlined including the underlying methods of 3-D image interaction and segmentation developed. The preparative methods are briefly described. Main emphasis is given to the methodical questions of computer-aided analysis of large 3-D image data sets for pathologists. Several automated analysis steps can be performed for segmentation and succeeding quantification. However tumour material is in contrast to isolated or cultured cells even for visual inspection, a difficult material. For the present a fully automated digital image analysis of 3-D data is not in sight. A semi-automatic segmentation method is thus presented here.
Tuned grid generation with ICEM CFD
NASA Technical Reports Server (NTRS)
Wulf, Armin; Akdag, Vedat
1995-01-01
ICEM CFD is a CAD based grid generation package that supports multiblock structured, unstructured tetrahedral and unstructured hexahedral grids. Major development efforts have been spent to extend ICEM CFD's multiblock structured and hexahedral unstructured grid generation capabilities. The modules added are: a parametric grid generation module and a semi-automatic hexahedral grid generation module. A fully automatic version of the hexahedral grid generation module for around a set of predefined objects in rectilinear enclosures has been developed. These modules will be presented and the procedures used will be described, and examples will be discussed.
Automatic laser beam alignment using blob detection for an environment monitoring spectroscopy
NASA Astrophysics Data System (ADS)
Khidir, Jarjees; Chen, Youhua; Anderson, Gary
2013-05-01
This paper describes a fully automated system to align an infra-red laser beam with a small retro-reflector over a wide range of distances. The component development and test were especially used for an open-path spectrometer gas detection system. Using blob detection under OpenCV library, an automatic alignment algorithm was designed to achieve fast and accurate target detection in a complex background environment. Test results are presented to show that the proposed algorithm has been successfully applied to various target distances and environment conditions.
Visual analysis of trash bin processing on garbage trucks in low resolution video
NASA Astrophysics Data System (ADS)
Sidla, Oliver; Loibner, Gernot
2015-03-01
We present a system for trash can detection and counting from a camera which is mounted on a garbage collection truck. A working prototype has been successfully implemented and tested with several hours of real-world video. The detection pipeline consists of HOG detectors for two trash can sizes, and meanshift tracking and low level image processing for the analysis of the garbage disposal process. Considering the harsh environment and unfavorable imaging conditions, the process works already good enough so that very useful measurements from video data can be extracted. The false positive/false negative rate of the full processing pipeline is about 5-6% at fully automatic operation. Video data of a full day (about 8 hrs) can be processed in about 30 minutes on a standard PC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, C.; et al.
We measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. We evaluate three neutrino interaction models based on the widely used GENIE event generator using these observables. The measurement uses a data set consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2016 with the Fermilab Booster Neutrino Beam, which has an average neutrino energy of 800 MeV, using an exposure corresponding to 5e19 protons-on-target. The analysis employs fully automatic eventmore » selection and charged particle track reconstruction and uses a data-driven technique to separate neutrino interactions from cosmic ray background events. We find that GENIE models consistently describe the shapes of a large number of kinematic distributions for fixed observed multiplicity, but we show an indication that the observed multiplicity fractions deviate from GENIE expectations.« less
Automated structure determination of proteins with the SAIL-FLYA NMR method.
Takeda, Mitsuhiro; Ikeya, Teppei; Güntert, Peter; Kainosho, Masatsune
2007-01-01
The labeling of proteins with stable isotopes enhances the NMR method for the determination of 3D protein structures in solution. Stereo-array isotope labeling (SAIL) provides an optimal stereospecific and regiospecific pattern of stable isotopes that yields sharpened lines, spectral simplification without loss of information, and the ability to collect rapidly and evaluate fully automatically the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as those that can be analyzed using conventional methods. Here, we describe a protocol for the preparation of SAIL proteins by cell-free methods, including the preparation of S30 extract and their automated structure analysis using the FLYA algorithm and the program CYANA. Once efficient cell-free expression of the unlabeled or uniformly labeled target protein has been achieved, the NMR sample preparation of a SAIL protein can be accomplished in 3 d. A fully automated FLYA structure calculation can be completed in 1 d on a powerful computer system.
Tests of neutrino interaction models with the MicroBooNE detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafique, Aleena
2018-01-01
I measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. I evaluate three neutrino interaction models based on the widely used GENIE event generator using these observables. The measurement uses a data set consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2016 with the Fermilab Booster Neutrino Beam, which has an average neutrino energy ofmore » $800$ MeV, using an exposure corresponding to $$5.0\\times10^{19}$$ protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction and uses a data-driven technique to separate neutrino interactions from cosmic ray background events. I find that GENIE models consistently describe the shapes of a large number of kinematic distributions for fixed observed multiplicity, but I show an indication that the observed multiplicity fractions deviate from GENIE expectations.« less
Integrated Evaluation of Reliability and Power Consumption of Wireless Sensor Networks
Dâmaso, Antônio; Maciel, Paulo
2017-01-01
Power consumption is a primary interest in Wireless Sensor Networks (WSNs), and a large number of strategies have been proposed to evaluate it. However, those approaches usually neither consider reliability issues nor the power consumption of applications executing in the network. A central concern is the lack of consolidated solutions that enable us to evaluate the power consumption of applications and the network stack also considering their reliabilities. To solve this problem, we introduce a fully automatic solution to design power consumption aware WSN applications and communication protocols. The solution presented in this paper comprises a methodology to evaluate the power consumption based on the integration of formal models, a set of power consumption and reliability models, a sensitivity analysis strategy to select WSN configurations and a toolbox named EDEN to fully support the proposed methodology. This solution allows accurately estimating the power consumption of WSN applications and the network stack in an automated way. PMID:29113078
Galindo, Enrique; Larralde-Corona, C Patricia; Brito, Teresa; Córdova-Aguilar, Ma Soledad; Taboada, Blanca; Vega-Alvarado, Leticia; Corkidi, Gabriel
2005-03-30
Fermentation bioprocesses typically involve two liquid phases (i.e. water and organic compounds) and one gas phase (air), together with suspended solids (i.e. biomass), which are the components to be dispersed. Characterization of multiphase dispersions is required as it determines mass transfer efficiency and bioreactor homogeneity. It is also needed for the appropriate design of contacting equipment, helping in establishing optimum operational conditions. This work describes the development of image analysis based techniques with advantages (in terms of data acquisition and processing), for the characterization of oil drops and bubble diameters in complex simulated fermentation broths. The system consists of fully digital acquisition of in situ images obtained from the inside of a mixing tank using a CCD camera synchronized with a stroboscopic light source, which are processed with a versatile commercial software. To improve the automation of particle recognition and counting, the Hough transform (HT) was used, so bubbles and oil drops were automatically detected and the processing time was reduced by 55% without losing accuracy with respect to a fully manual analysis. The system has been used for the detailed characterization of a number of operational conditions, including oil content, biomass morphology, presence of surfactants (such as proteins) and viscosity of the aqueous phase.
NASA Astrophysics Data System (ADS)
Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.
2015-12-01
During the last years, several Grid computing centres chose virtualization as a better way to manage diverse use cases with self-consistent environments on the same bare infrastructure. The maturity of control interfaces (such as OpenNebula and OpenStack) opened the possibility to easily change the amount of resources assigned to each use case by simply turning on and off virtual machines. Some of those private clouds use, in production, copies of the Virtual Analysis Facility, a fully virtualized and self-contained batch analysis cluster capable of expanding and shrinking automatically upon need: however, resources starvation occurs frequently as expansion has to compete with other virtual machines running long-living batch jobs. Such batch nodes cannot relinquish their resources in a timely fashion: the more jobs they run, the longer it takes to drain them and shut off, and making one-job virtual machines introduces a non-negligible virtualization overhead. By improving several components of the Virtual Analysis Facility we have realized an experimental “Docked” Analysis Facility for ALICE, which leverages containers instead of virtual machines for providing performance and security isolation. We will present the techniques we have used to address practical problems, such as software provisioning through CVMFS, as well as our considerations on the maturity of containers for High Performance Computing. As the abstraction layer is thinner, our Docked Analysis Facilities may feature a more fine-grained sizing, down to single-job node containers: we will show how this approach will positively impact automatic cluster resizing by deploying lightweight pilot containers instead of replacing central queue polls.
Avendi, M R; Kheradvar, Arash; Jafarkhani, Hamid
2016-05-01
Segmentation of the left ventricle (LV) from cardiac magnetic resonance imaging (MRI) datasets is an essential step for calculation of clinical indices such as ventricular volume and ejection fraction. In this work, we employ deep learning algorithms combined with deformable models to develop and evaluate a fully automatic LV segmentation tool from short-axis cardiac MRI datasets. The method employs deep learning algorithms to learn the segmentation task from the ground true data. Convolutional networks are employed to automatically detect the LV chamber in MRI dataset. Stacked autoencoders are used to infer the LV shape. The inferred shape is incorporated into deformable models to improve the accuracy and robustness of the segmentation. We validated our method using 45 cardiac MR datasets from the MICCAI 2009 LV segmentation challenge and showed that it outperforms the state-of-the art methods. Excellent agreement with the ground truth was achieved. Validation metrics, percentage of good contours, Dice metric, average perpendicular distance and conformity, were computed as 96.69%, 0.94, 1.81 mm and 0.86, versus those of 79.2-95.62%, 0.87-0.9, 1.76-2.97 mm and 0.67-0.78, obtained by other methods, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Dietz, Hans Peter; D’hooge, Jan; Barratt, Dean; Deprest, Jan
2018-01-01
Abstract. Segmentation of the levator hiatus in ultrasound allows the extraction of biometrics, which are of importance for pelvic floor disorder assessment. We present a fully automatic method using a convolutional neural network (CNN) to outline the levator hiatus in a two-dimensional image extracted from a three-dimensional ultrasound volume. In particular, our method uses a recently developed scaled exponential linear unit (SELU) as a nonlinear self-normalizing activation function, which for the first time has been applied in medical imaging with CNN. SELU has important advantages such as being parameter-free and mini-batch independent, which may help to overcome memory constraints during training. A dataset with 91 images from 35 patients during Valsalva, contraction, and rest, all labeled by three operators, is used for training and evaluation in a leave-one-patient-out cross validation. Results show a median Dice similarity coefficient of 0.90 with an interquartile range of 0.08, with equivalent performance to the three operators (with a Williams’ index of 1.03), and outperforming a U-Net architecture without the need for batch normalization. We conclude that the proposed fully automatic method achieved equivalent accuracy in segmenting the pelvic floor levator hiatus compared to a previous semiautomatic approach. PMID:29340289
Bonmati, Ester; Hu, Yipeng; Sindhwani, Nikhil; Dietz, Hans Peter; D'hooge, Jan; Barratt, Dean; Deprest, Jan; Vercauteren, Tom
2018-04-01
Segmentation of the levator hiatus in ultrasound allows the extraction of biometrics, which are of importance for pelvic floor disorder assessment. We present a fully automatic method using a convolutional neural network (CNN) to outline the levator hiatus in a two-dimensional image extracted from a three-dimensional ultrasound volume. In particular, our method uses a recently developed scaled exponential linear unit (SELU) as a nonlinear self-normalizing activation function, which for the first time has been applied in medical imaging with CNN. SELU has important advantages such as being parameter-free and mini-batch independent, which may help to overcome memory constraints during training. A dataset with 91 images from 35 patients during Valsalva, contraction, and rest, all labeled by three operators, is used for training and evaluation in a leave-one-patient-out cross validation. Results show a median Dice similarity coefficient of 0.90 with an interquartile range of 0.08, with equivalent performance to the three operators (with a Williams' index of 1.03), and outperforming a U-Net architecture without the need for batch normalization. We conclude that the proposed fully automatic method achieved equivalent accuracy in segmenting the pelvic floor levator hiatus compared to a previous semiautomatic approach.
3D image processing architecture for camera phones
NASA Astrophysics Data System (ADS)
Atanassov, Kalin; Ramachandra, Vikas; Goma, Sergio R.; Aleksic, Milivoje
2011-03-01
Putting high quality and easy-to-use 3D technology into the hands of regular consumers has become a recent challenge as interest in 3D technology has grown. Making 3D technology appealing to the average user requires that it be made fully automatic and foolproof. Designing a fully automatic 3D capture and display system requires: 1) identifying critical 3D technology issues like camera positioning, disparity control rationale, and screen geometry dependency, 2) designing methodology to automatically control them. Implementing 3D capture functionality on phone cameras necessitates designing algorithms to fit within the processing capabilities of the device. Various constraints like sensor position tolerances, sensor 3A tolerances, post-processing, 3D video resolution and frame rate should be carefully considered for their influence on 3D experience. Issues with migrating functions such as zoom and pan from the 2D usage model (both during capture and display) to 3D needs to be resolved to insure the highest level of user experience. It is also very important that the 3D usage scenario (including interactions between the user and the capture/display device) is carefully considered. Finally, both the processing power of the device and the practicality of the scheme needs to be taken into account while designing the calibration and processing methodology.
Dupont, Sara M; De Leener, Benjamin; Taso, Manuel; Le Troter, Arnaud; Nadeau, Sylvie; Stikov, Nikola; Callot, Virginie; Cohen-Adad, Julien
2017-04-15
The spinal cord white and gray matter can be affected by various pathologies such as multiple sclerosis, amyotrophic lateral sclerosis or trauma. Being able to precisely segment the white and gray matter could help with MR image analysis and hence be useful in further understanding these pathologies, and helping with diagnosis/prognosis and drug development. Up to date, white/gray matter segmentation has mostly been done manually, which is time consuming, induces a bias related to the rater and prevents large-scale multi-center studies. Recently, few methods have been proposed to automatically segment the spinal cord white and gray matter. However, no single method exists that combines the following criteria: (i) fully automatic, (ii) works on various MRI contrasts, (iii) robust towards pathology and (iv) freely available and open source. In this study we propose a multi-atlas based method for the segmentation of the spinal cord white and gray matter that addresses the previous limitations. Moreover, to study the spinal cord morphology, atlas-based approaches are increasingly used. These approaches rely on the registration of a spinal cord template to an MR image, however the registration usually doesn't take into account the spinal cord internal structure and thus lacks accuracy. In this study, we propose a new template registration framework that integrates the white and gray matter segmentation to account for the specific gray matter shape of each individual subject. Validation of segmentation was performed in 24 healthy subjects using T 2 * -weighted images, in 8 healthy subjects using diffusion weighted images (exhibiting inverted white-to-gray matter contrast compared to T 2 *-weighted), and in 5 patients with spinal cord injury. The template registration was validated in 24 subjects using T 2 *-weighted data. Results of automatic segmentation on T 2 *-weighted images was in close correspondence with the manual segmentation (Dice coefficient in the white/gray matter of 0.91/0.71 respectively). Similarly, good results were obtained in data with inverted contrast (diffusion-weighted image) and in patients. When compared to the classical template registration framework, the proposed framework that accounts for gray matter shape significantly improved the quality of the registration (comparing Dice coefficient in gray matter: p=9.5×10 -6 ). While further validation is needed to show the benefits of the new registration framework in large cohorts and in a variety of patients, this study provides a fully-integrated tool for quantitative assessment of white/gray matter morphometry and template-based analysis. All the proposed methods are implemented in the Spinal Cord Toolbox (SCT), an open-source software for processing spinal cord multi-parametric MRI data. Copyright © 2017 Elsevier Inc. All rights reserved.
Castillo, Andrés M; Bernal, Andrés; Dieden, Reiner; Patiny, Luc; Wist, Julien
2016-01-01
We present "Ask Ernö", a self-learning system for the automatic analysis of NMR spectra, consisting of integrated chemical shift assignment and prediction tools. The output of the automatic assignment component initializes and improves a database of assigned protons that is used by the chemical shift predictor. In turn, the predictions provided by the latter facilitate improvement of the assignment process. Iteration on these steps allows Ask Ernö to improve its ability to assign and predict spectra without any prior knowledge or assistance from human experts. This concept was tested by training such a system with a dataset of 2341 molecules and their (1)H-NMR spectra, and evaluating the accuracy of chemical shift predictions on a test set of 298 partially assigned molecules (2007 assigned protons). After 10 iterations, Ask Ernö was able to decrease its prediction error by 17 %, reaching an average error of 0.265 ppm. Over 60 % of the test chemical shifts were predicted within 0.2 ppm, while only 5 % still presented a prediction error of more than 1 ppm. Ask Ernö introduces an innovative approach to automatic NMR analysis that constantly learns and improves when provided with new data. Furthermore, it completely avoids the need for manually assigned spectra. This system has the potential to be turned into a fully autonomous tool able to compete with the best alternatives currently available.Graphical abstractSelf-learning loop. Any progress in the prediction (forward problem) will improve the assignment ability (reverse problem) and vice versa.
Psoriasis skin biopsy image segmentation using Deep Convolutional Neural Network.
Pal, Anabik; Garain, Utpal; Chandra, Aditi; Chatterjee, Raghunath; Senapati, Swapan
2018-06-01
Development of machine assisted tools for automatic analysis of psoriasis skin biopsy image plays an important role in clinical assistance. Development of automatic approach for accurate segmentation of psoriasis skin biopsy image is the initial prerequisite for developing such system. However, the complex cellular structure, presence of imaging artifacts, uneven staining variation make the task challenging. This paper presents a pioneering attempt for automatic segmentation of psoriasis skin biopsy images. Several deep neural architectures are tried for segmenting psoriasis skin biopsy images. Deep models are used for classifying the super-pixels generated by Simple Linear Iterative Clustering (SLIC) and the segmentation performance of these architectures is compared with the traditional hand-crafted feature based classifiers built on popularly used classifiers like K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Random Forest (RF). A U-shaped Fully Convolutional Neural Network (FCN) is also used in an end to end learning fashion where input is the original color image and the output is the segmentation class map for the skin layers. An annotated real psoriasis skin biopsy image data set of ninety (90) images is developed and used for this research. The segmentation performance is evaluated with two metrics namely, Jaccard's Coefficient (JC) and the Ratio of Correct Pixel Classification (RCPC) accuracy. The experimental results show that the CNN based approaches outperform the traditional hand-crafted feature based classification approaches. The present research shows that practical system can be developed for machine assisted analysis of psoriasis disease. Copyright © 2018 Elsevier B.V. All rights reserved.
Automatic Exposure Control Device for Digital Mammography
2001-08-01
developing innovative approaches for controlling DM exposures. These approaches entail using the digital detector and an artificial neural network to...of interest that determine the exposure parameters for the fully exposed image; and (2) to use an artificial neural network to select exposure
Automatic Exposure Control Device for Digital Mammography
2004-08-01
developing innovative approaches for controlling DM exposures. These approaches entail using the digital detector and an artificial neural network to...of interest that determine the exposure parameters for the fully exposed image; and (2) to use an artificial neural network to select exposure
Wang, Yibing; Heijmen, Ben J M; Petit, Steven F
2017-12-01
To prospectively investigate the use of an independent DVH prediction tool to detect outliers in the quality of fully automatically generated treatment plans for prostate cancer patients. A plan QA tool was developed to predict rectum, anus and bladder DVHs, based on overlap volume histograms and principal component analysis (PCA). The tool was trained with 22 automatically generated, clinical plans, and independently validated with 21 plans. Its use was prospectively investigated for 50 new plans by replanning in case of detected outliers. For rectum D mean , V 65Gy , V 75Gy , anus D mean , and bladder D mean , the difference between predicted and achieved was within 0.4 Gy or 0.3% (SD within 1.8 Gy or 1.3%). Thirteen detected outliers were re-planned, leading to moderate but statistically significant improvements (mean, max): rectum D mean (1.3 Gy, 3.4 Gy), V 65Gy (2.7%, 4.2%), anus D mean (1.6 Gy, 6.9 Gy), and bladder D mean (1.5 Gy, 5.1 Gy). The rectum V 75Gy of the new plans slightly increased (0.2%, p = 0.087). A high accuracy DVH prediction tool was developed and used for independent QA of automatically generated plans. In 28% of plans, minor dosimetric deviations were observed that could be improved by plan adjustments. Larger gains are expected for manually generated plans. Copyright © 2017 Elsevier B.V. All rights reserved.
Performance of wavelet analysis and neural networks for pathological voices identification
NASA Astrophysics Data System (ADS)
Salhi, Lotfi; Talbi, Mourad; Abid, Sabeur; Cherif, Adnane
2011-09-01
Within the medical environment, diverse techniques exist to assess the state of the voice of the patient. The inspection technique is inconvenient for a number of reasons, such as its high cost, the duration of the inspection, and above all, the fact that it is an invasive technique. This study focuses on a robust, rapid and accurate system for automatic identification of pathological voices. This system employs non-invasive, non-expensive and fully automated method based on hybrid approach: wavelet transform analysis and neural network classifier. First, we present the results obtained in our previous study while using classic feature parameters. These results allow visual identification of pathological voices. Second, quantified parameters drifting from the wavelet analysis are proposed to characterise the speech sample. On the other hand, a system of multilayer neural networks (MNNs) has been developed which carries out the automatic detection of pathological voices. The developed method was evaluated using voice database composed of recorded voice samples (continuous speech) from normophonic or dysphonic speakers. The dysphonic speakers were patients of a National Hospital 'RABTA' of Tunis Tunisia and a University Hospital in Brussels, Belgium. Experimental results indicate a success rate ranging between 75% and 98.61% for discrimination of normal and pathological voices using the proposed parameters and neural network classifier. We also compared the average classification rate based on the MNN, Gaussian mixture model and support vector machines.
Fully automatic hp-adaptivity for acoustic and electromagnetic scattering in three dimensions
NASA Astrophysics Data System (ADS)
Kurtz, Jason Patrick
We present an algorithm for fully automatic hp-adaptivity for finite element approximations of elliptic and Maxwell boundary value problems in three dimensions. The algorithm automatically generates a sequence of coarse grids, and a corresponding sequence of fine grids, such that the energy norm of the error decreases exponentially with respect to the number of degrees of freedom in either sequence. At each step, we employ a discrete optimization algorithm to determine the refinements for the current coarse grid such that the projection-based interpolation error for the current fine grid solution decreases with an optimal rate with respect to the number of degrees of freedom added by the refinement. The refinements are restricted only by the requirement that the resulting mesh is at most 1-irregular, but they may be anisotropic in both element size h and order of approximation p. While we cannot prove that our method converges at all, we present numerical evidence of exponential convergence for a diverse suite of model problems from acoustic and electromagnetic scattering. In particular we show that our method is well suited to the automatic resolution of exterior problems truncated by the introduction of a perfectly matched layer. To enable and accelerate the solution of these problems on commodity hardware, we include a detailed account of three critical aspects of our implementation, namely an efficient implementation of sum factorization, several efficient interfaces to the direct multi-frontal solver MUMPS, and some fast direct solvers for the computation of a sequence of nested projections.
Point-and-stare operation and high-speed image acquisition in real-time hyperspectral imaging
NASA Astrophysics Data System (ADS)
Driver, Richard D.; Bannon, David P.; Ciccone, Domenic; Hill, Sam L.
2010-04-01
The design and optical performance of a small-footprint, low-power, turnkey, Point-And-Stare hyperspectral analyzer, capable of fully automated field deployment in remote and harsh environments, is described. The unit is packaged for outdoor operation in an IP56 protected air-conditioned enclosure and includes a mechanically ruggedized fully reflective, aberration-corrected hyperspectral VNIR (400-1000 nm) spectrometer with a board-level detector optimized for point and stare operation, an on-board computer capable of full system data-acquisition and control, and a fully functioning internal hyperspectral calibration system for in-situ system spectral calibration and verification. Performance data on the unit under extremes of real-time survey operation and high spatial and high spectral resolution will be discussed. Hyperspectral acquisition including full parameter tracking is achieved by the addition of a fiber-optic based downwelling spectral channel for solar illumination tracking during hyperspectral acquisition and the use of other sensors for spatial and directional tracking to pinpoint view location. The system is mounted on a Pan-And-Tilt device, automatically controlled from the analyzer's on-board computer, making the HyperspecTM particularly adaptable for base security, border protection and remote deployments. A hyperspectral macro library has been developed to control hyperspectral image acquisition, system calibration and scene location control. The software allows the system to be operated in a fully automatic mode or under direct operator control through a GigE interface.
Development of a Global Agricultural Hotspot Detection and Early Warning System
NASA Astrophysics Data System (ADS)
Lemoine, G.; Rembold, F.; Urbano, F.; Csak, G.
2015-12-01
The number of web based platforms for crop monitoring has grown rapidly over the last years and anomaly maps and time profiles of remote sensing derived indicators can be accessed online thanks to a number of web based portals. However, while these systems make available a large amount of crop monitoring data to the agriculture and food security analysts, there is no global platform which provides agricultural production hotspot warning in a highly automatic and timely manner. Therefore a web based system providing timely warning evidence as maps and short narratives is currently under development by the Joint Research Centre. The system (called "HotSpot Detection System of Agriculture Production Anomalies", HSDS) will focus on water limited agricultural systems worldwide. The automatic analysis of relevant meteorological and vegetation indicators at selected administrative units (Gaul 1 level) will trigger warning messages for the areas where anomalous conditions are observed. The level of warning (ranging from "watch" to "alert") will depend on the nature and number of indicators for which an anomaly is detected. Information regarding the extent of the agricultural areas concerned by the anomaly and the progress of the agricultural season will complement the warning label. In addition, we are testing supplementary detailed information from other sources for the areas triggering a warning. These regard the automatic web-based and food security-tailored analysis of media (using the JRC Media Monitor semantic search engine) and the automatic detection of active crop area using Sentinel 1, upcoming Sentinel-2 and Landsat 8 imagery processed in Google Earth Engine. The basic processing will be fully automated and updated every 10 days exploiting low resolution rainfall estimates and satellite vegetation indices. Maps, trend graphs and statistics accompanied by short narratives edited by a team of crop monitoring experts, will be made available on the website on a monthly basis.
Automatic Abstraction in Planning
NASA Technical Reports Server (NTRS)
Christensen, J.
1991-01-01
Traditionally, abstraction in planning has been accomplished by either state abstraction or operator abstraction, neither of which has been fully automatic. We present a new method, predicate relaxation, for automatically performing state abstraction. PABLO, a nonlinear hierarchical planner, implements predicate relaxation. Theoretical, as well as empirical results are presented which demonstrate the potential advantages of using predicate relaxation in planning. We also present a new definition of hierarchical operators that allows us to guarantee a limited form of completeness. This new definition is shown to be, in some ways, more flexible than previous definitions of hierarchical operators. Finally, a Classical Truth Criterion is presented that is proven to be sound and complete for a planning formalism that is general enough to include most classical planning formalisms that are based on the STRIPS assumption.
A fast and automatic mosaic method for high-resolution satellite images
NASA Astrophysics Data System (ADS)
Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing
2015-12-01
We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.
Solar-Powered Water Distillation
NASA Technical Reports Server (NTRS)
Menninger, F. J.; Elder, R. J.
1985-01-01
Solar-powered still produces pure water at rate of 6,000 gallons per year. Still fully automatic and gravity-fed. Only outside electric power is timer clock and solenoid-operated valve. Still saves $5,000 yearly in energy costs and pays for itself in 3 1/2 years.
NASA Astrophysics Data System (ADS)
Plata, Jose J.; Nath, Pinku; Usanmaz, Demet; Carrete, Jesús; Toher, Cormac; de Jong, Maarten; Asta, Mark; Fornari, Marco; Nardelli, Marco Buongiorno; Curtarolo, Stefano
2017-10-01
One of the most accurate approaches for calculating lattice thermal conductivity, , is solving the Boltzmann transport equation starting from third-order anharmonic force constants. In addition to the underlying approximations of ab-initio parameterization, two main challenges are associated with this path: high computational costs and lack of automation in the frameworks using this methodology, which affect the discovery rate of novel materials with ad-hoc properties. Here, the Automatic Anharmonic Phonon Library (AAPL) is presented. It efficiently computes interatomic force constants by making effective use of crystal symmetry analysis, it solves the Boltzmann transport equation to obtain , and allows a fully integrated operation with minimum user intervention, a rational addition to the current high-throughput accelerated materials development framework AFLOW. An "experiment vs. theory" study of the approach is shown, comparing accuracy and speed with respect to other available packages, and for materials characterized by strong electron localization and correlation. Combining AAPL with the pseudo-hybrid functional ACBN0 is possible to improve accuracy without increasing computational requirements.
Espinoza, Karlos; Valera, Diego L; Torres, José A; López, Alejandro; Molina-Aiz, Francisco D
2015-08-12
Wind tunnels are a key experimental tool for the analysis of airflow parameters in many fields of application. Despite their great potential impact on agricultural research, few contributions have dealt with the development of automatic control systems for wind tunnels in the field of greenhouse technology. The objective of this paper is to present an automatic control system that provides precision and speed of measurement, as well as efficient data processing in low-speed wind tunnel experiments for greenhouse engineering applications. The system is based on an algorithm that identifies the system model and calculates the optimum PI controller. The validation of the system was performed on a cellulose evaporative cooling pad and on insect-proof screens to assess its response to perturbations. The control system provided an accuracy of <0.06 m·s(-1) for airflow speed and <0.50 Pa for pressure drop, thus permitting the reproducibility and standardization of the tests. The proposed control system also incorporates a fully-integrated software unit that manages the tests in terms of airflow speed and pressure drop set points.
NASA Astrophysics Data System (ADS)
Atehortúa, Angélica; Zuluaga, Maria A.; Ourselin, Sébastien; Giraldo, Diana; Romero, Eduardo
2016-03-01
An accurate ventricular function quantification is important to support evaluation, diagnosis and prognosis of several cardiac pathologies. However, expert heart delineation, specifically for the right ventricle, is a time consuming task with high inter-and-intra observer variability. A fully automatic 3D+time heart segmentation framework is herein proposed for short-axis-cardiac MRI sequences. This approach estimates the heart using exclusively information from the sequence itself without tuning any parameters. The proposed framework uses a coarse-to-fine approach, which starts by localizing the heart via spatio-temporal analysis, followed by a segmentation of the basal heart that is then propagated to the apex by using a non-rigid-registration strategy. The obtained volume is then refined by estimating the ventricular muscle by locally searching a prior endocardium- pericardium intensity pattern. The proposed framework was applied to 48 patients datasets supplied by the organizers of the MICCAI 2012 Right Ventricle segmentation challenge. Results show the robustness, efficiency and competitiveness of the proposed method both in terms of accuracy and computational load.
Rocha, José Celso; Passalia, Felipe José; Matos, Felipe Delestro; Takahashi, Maria Beatriz; Ciniciato, Diego de Souza; Maserati, Marc Peter; Alves, Mayra Fernanda; de Almeida, Tamie Guibu; Cardoso, Bruna Lopes; Basso, Andrea Cristina; Nogueira, Marcelo Fábio Gouveia
2017-08-09
Morphological analysis is the standard method of assessing embryo quality; however, its inherent subjectivity tends to generate discrepancies among evaluators. Using genetic algorithms and artificial neural networks (ANNs), we developed a new method for embryo analysis that is more robust and reliable than standard methods. Bovine blastocysts produced in vitro were classified as grade 1 (excellent or good), 2 (fair), or 3 (poor) by three experienced embryologists according to the International Embryo Technology Society (IETS) standard. The images (n = 482) were subjected to automatic feature extraction, and the results were used as input for a supervised learning process. One part of the dataset (15%) was used for a blind test posterior to the fitting, for which the system had an accuracy of 76.4%. Interestingly, when the same embryologists evaluated a sub-sample (10%) of the dataset, there was only 54.0% agreement with the standard (mode for grades). However, when using the ANN to assess this sub-sample, there was 87.5% agreement with the modal values obtained by the evaluators. The presented methodology is covered by National Institute of Industrial Property (INPI) and World Intellectual Property Organization (WIPO) patents and is currently undergoing a commercial evaluation of its feasibility.
Automated Generation of Fault Management Artifacts from a Simple System Model
NASA Technical Reports Server (NTRS)
Kennedy, Andrew K.; Day, John C.
2013-01-01
Our understanding of off-nominal behavior - failure modes and fault propagation - in complex systems is often based purely on engineering intuition; specific cases are assessed in an ad hoc fashion as a (fallible) fault management engineer sees fit. This work is an attempt to provide a more rigorous approach to this understanding and assessment by automating the creation of a fault management artifact, the Failure Modes and Effects Analysis (FMEA) through querying a representation of the system in a SysML model. This work builds off the previous development of an off-nominal behavior model for the upcoming Soil Moisture Active-Passive (SMAP) mission at the Jet Propulsion Laboratory. We further developed the previous system model to more fully incorporate the ideas of State Analysis, and it was restructured in an organizational hierarchy that models the system as layers of control systems while also incorporating the concept of "design authority". We present software that was developed to traverse the elements and relationships in this model to automatically construct an FMEA spreadsheet. We further discuss extending this model to automatically generate other typical fault management artifacts, such as Fault Trees, to efficiently portray system behavior, and depend less on the intuition of fault management engineers to ensure complete examination of off-nominal behavior.
Developments in the CCP4 molecular-graphics project.
Potterton, Liz; McNicholas, Stuart; Krissinel, Eugene; Gruber, Jan; Cowtan, Kevin; Emsley, Paul; Murshudov, Garib N; Cohen, Serge; Perrakis, Anastassis; Noble, Martin
2004-12-01
Progress towards structure determination that is both high-throughput and high-value is dependent on the development of integrated and automatic tools for electron-density map interpretation and for the analysis of the resulting atomic models. Advances in map-interpretation algorithms are extending the resolution regime in which fully automatic tools can work reliably, but at present human intervention is required to interpret poor regions of macromolecular electron density, particularly where crystallographic data is only available to modest resolution [for example, I/sigma(I) < 2.0 for minimum resolution 2.5 A]. In such cases, a set of manual and semi-manual model-building molecular-graphics tools is needed. At the same time, converting the knowledge encapsulated in a molecular structure into understanding is dependent upon visualization tools, which must be able to communicate that understanding to others by means of both static and dynamic representations. CCP4 mg is a program designed to meet these needs in a way that is closely integrated with the ongoing development of CCP4 as a program suite suitable for both low- and high-intervention computational structural biology. As well as providing a carefully designed user interface to advanced algorithms of model building and analysis, CCP4 mg is intended to present a graphical toolkit to developers of novel algorithms in these fields.
Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes
Erkol, Bulent; Moss, Randy H.; Stanley, R. Joe; Stoecker, William V.; Hvatum, Erik
2011-01-01
Background Malignant melanoma has a good prognosis if treated early. Dermoscopy images of pigmented lesions are most commonly taken at × 10 magnification under lighting at a low angle of incidence while the skin is immersed in oil under a glass plate. Accurate skin lesion segmentation from the background skin is important because some of the features anticipated to be used for diagnosis deal with shape of the lesion and others deal with the color of the lesion compared with the color of the surrounding skin. Methods In this research, gradient vector flow (GVF) snakes are investigated to find the border of skin lesions in dermoscopy images. An automatic initialization method is introduced to make the skin lesion border determination process fully automated. Results Skin lesion segmentation results are presented for 70 benign and 30 melanoma skin lesion images for the GVF-based method and a color histogram analysis technique. The average errors obtained by the GVF-based method are lower for both the benign and melanoma image sets than for the color histogram analysis technique based on comparison with manually segmented lesions determined by a dermatologist. Conclusions The experimental results for the GVF-based method demonstrate promise as an automated technique for skin lesion segmentation in dermoscopy images. PMID:15691255
Mobile sailing robot for automatic estimation of fish density and monitoring water quality
2013-01-01
Introduction The paper presents the methodology and the algorithm developed to analyze sonar images focused on fish detection in small water bodies and measurement of their parameters: volume, depth and the GPS location. The final results are stored in a table and can be exported to any numerical environment for further analysis. Material and method The measurement method for estimating the number of fish using the automatic robot is based on a sequential calculation of the number of occurrences of fish on the set trajectory. The data analysis from the sonar concerned automatic recognition of fish using the methods of image analysis and processing. Results Image analysis algorithm, a mobile robot together with its control in the 2.4 GHz band and full cryptographic communication with the data archiving station was developed as part of this study. For the three model fish ponds where verification of fish catches was carried out (548, 171 and 226 individuals), the measurement error for the described method was not exceeded 8%. Summary Created robot together with the developed software has features for remote work also in the variety of harsh weather and environmental conditions, is fully automated and can be remotely controlled using Internet. Designed system enables fish spatial location (GPS coordinates and the depth). The purpose of the robot is a non-invasive measurement of the number of fish in water reservoirs and a measurement of the quality of drinking water consumed by humans, especially in situations where local sources of pollution could have a significant impact on the quality of water collected for water treatment for people and when getting to these places is difficult. The systematically used robot equipped with the appropriate sensors, can be part of early warning system against the pollution of water used by humans (drinking water, natural swimming pools) which can be dangerous for their health. PMID:23815984
Mobile sailing robot for automatic estimation of fish density and monitoring water quality.
Koprowski, Robert; Wróbel, Zygmunt; Kleszcz, Agnieszka; Wilczyński, Sławomir; Woźnica, Andrzej; Łozowski, Bartosz; Pilarczyk, Maciej; Karczewski, Jerzy; Migula, Paweł
2013-07-01
The paper presents the methodology and the algorithm developed to analyze sonar images focused on fish detection in small water bodies and measurement of their parameters: volume, depth and the GPS location. The final results are stored in a table and can be exported to any numerical environment for further analysis. The measurement method for estimating the number of fish using the automatic robot is based on a sequential calculation of the number of occurrences of fish on the set trajectory. The data analysis from the sonar concerned automatic recognition of fish using the methods of image analysis and processing. Image analysis algorithm, a mobile robot together with its control in the 2.4 GHz band and full cryptographic communication with the data archiving station was developed as part of this study. For the three model fish ponds where verification of fish catches was carried out (548, 171 and 226 individuals), the measurement error for the described method was not exceeded 8%. Created robot together with the developed software has features for remote work also in the variety of harsh weather and environmental conditions, is fully automated and can be remotely controlled using Internet. Designed system enables fish spatial location (GPS coordinates and the depth). The purpose of the robot is a non-invasive measurement of the number of fish in water reservoirs and a measurement of the quality of drinking water consumed by humans, especially in situations where local sources of pollution could have a significant impact on the quality of water collected for water treatment for people and when getting to these places is difficult. The systematically used robot equipped with the appropriate sensors, can be part of early warning system against the pollution of water used by humans (drinking water, natural swimming pools) which can be dangerous for their health.
COSMOS: Carnegie Observatories System for MultiObject Spectroscopy
NASA Astrophysics Data System (ADS)
Oemler, A.; Clardy, K.; Kelson, D.; Walth, G.; Villanueva, E.
2017-05-01
COSMOS (Carnegie Observatories System for MultiObject Spectroscopy) reduces multislit spectra obtained with the IMACS and LDSS3 spectrographs on the Magellan Telescopes. It can be used for the quick-look analysis of data at the telescope as well as for pipeline reduction of large data sets. COSMOS is based on a precise optical model of the spectrographs, which allows (after alignment and calibration) an accurate prediction of the location of spectra features. This eliminates the line search procedure which is fundamental to many spectral reduction programs, and allows a robust data pipeline to be run in an almost fully automatic mode, allowing large amounts of data to be reduced with minimal intervention.
Digital controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Using linear-optimal estimation and control techniques, digital-adaptive control laws have been designed for a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. Two distinct discrete-time control laws are designed to interface with velocity-command and attitude-command guidance logic, and each incorporates proportional-integral compensation for non-zero-set-point regulation, as well as reduced-order Kalman filters for sensor blending and noise rejection. Adaptation to flight condition is achieved with a novel gain-scheduling method based on correlation and regression analysis. The linear-optimal design approach is found to be a valuable tool in the development of practical multivariable control laws for vehicles which evidence significant coupling and insufficient natural stability.
Digital Processing Of Young's Fringes In Speckle Photography
NASA Astrophysics Data System (ADS)
Chen, D. J.; Chiang, F. P.
1989-01-01
A new technique for fully automatic diffraction fringe measurement in point-wise speckle photograph analysis is presented in this paper. The fringe orientation and spacing are initially estimated with the help of 1-D FFT. A 2-D convolution filter is then applied to enhance the estimated image . High signal-to-noise rate (SNR) fringe pattern is achieved which makes it feasible for precise determination of the displacement components. The halo-effect is also optimally eliminated in a new way. With the computation time compared favorably with those of 2-D autocorrelation method and the iterative 2-D FFT method. High reliability and accurate determination of displacement components are achieved over a wide range of fringe density.
NASA Astrophysics Data System (ADS)
Lemieux, Louis
2001-07-01
A new fully automatic algorithm for the segmentation of the brain and cerebro-spinal fluid (CSF) from T1-weighted volume MRI scans of the head was specifically developed in the context of serial intra-cranial volumetry. The method is an extension of a previously published brain extraction algorithm. The brain mask is used as a basis for CSF segmentation based on morphological operations, automatic histogram analysis and thresholding. Brain segmentation is then obtained by iterative tracking of the brain-CSF interface. Grey matter (GM), white matter (WM) and CSF volumes are calculated based on a model of intensity probability distribution that includes partial volume effects. Accuracy was assessed using a digital phantom scan. Reproducibility was assessed by segmenting pairs of scans from 20 normal subjects scanned 8 months apart and 11 patients with epilepsy scanned 3.5 years apart. Segmentation accuracy as measured by overlap was 98% for the brain and 96% for the intra-cranial tissues. The volume errors were: total brain (TBV): -1.0%, intra-cranial (ICV):0.1%, CSF: +4.8%. For repeated scans, matching resulted in improved reproducibility. In the controls, the coefficient of reliability (CR) was 1.5% for the TVB and 1.0% for the ICV. In the patients, the Cr for the ICV was 1.2%.
Fully automated segmentation of the pectoralis muscle boundary in breast MR images
NASA Astrophysics Data System (ADS)
Wang, Lei; Filippatos, Konstantinos; Friman, Ola; Hahn, Horst K.
2011-03-01
Dynamic Contrast Enhanced MRI (DCE-MRI) of the breast is emerging as a novel tool for early tumor detection and diagnosis. The segmentation of the structures in breast DCE-MR images, such as the nipple, the breast-air boundary and the pectoralis muscle, serves as a fundamental step for further computer assisted diagnosis (CAD) applications, e.g. breast density analysis. Moreover, the previous clinical studies show that the distance between the posterior breast lesions and the pectoralis muscle can be used to assess the extent of the disease. To enable automatic quantification of the distance from a breast tumor to the pectoralis muscle, a precise delineation of the pectoralis muscle boundary is required. We present a fully automatic segmentation method based on the second derivative information represented by the Hessian matrix. The voxels proximal to the pectoralis muscle boundary exhibit roughly the same Eigen value patterns as a sheet-like object in 3D, which can be enhanced and segmented by a Hessian-based sheetness filter. A vector-based connected component filter is then utilized such that only the pectoralis muscle is preserved by extracting the largest connected component. The proposed method was evaluated quantitatively with a test data set which includes 30 breast MR images by measuring the average distances between the segmented boundary and the annotated surfaces in two ground truth sets, and the statistics showed that the mean distance was 1.434 mm with the standard deviation of 0.4661 mm, which shows great potential for integration of the approach in the clinical routine.
Feature-Based Morphometry: Discovering Group-related Anatomical Patterns
Toews, Matthew; Wells, William; Collins, D. Louis; Arbel, Tal
2015-01-01
This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). PMID:19853047
Fully automatic detection of salient features in 3-d transesophageal images.
Curiale, Ariel H; Haak, Alexander; Vegas-Sánchez-Ferrero, Gonzalo; Ren, Ben; Aja-Fernández, Santiago; Bosch, Johan G
2014-12-01
Most automated segmentation approaches to the mitral valve and left ventricle in 3-D echocardiography require a manual initialization. In this article, we propose a fully automatic scheme to initialize a multicavity segmentation approach in 3-D transesophageal echocardiography by detecting the left ventricle long axis, the mitral valve and the aortic valve location. Our approach uses a probabilistic and structural tissue classification to find structures such as the mitral and aortic valves; the Hough transform for circles to find the center of the left ventricle; and multidimensional dynamic programming to find the best position for the left ventricle long axis. For accuracy and agreement assessment, the proposed method was evaluated in 19 patients with respect to manual landmarks and as initialization of a multicavity segmentation approach for the left ventricle, the right ventricle, the left atrium, the right atrium and the aorta. The segmentation results revealed no statistically significant differences between manual and automated initialization in a paired t-test (p > 0.05). Additionally, small biases between manual and automated initialization were detected in the Bland-Altman analysis (bias, variance) for the left ventricle (-0.04, 0.10); right ventricle (-0.07, 0.18); left atrium (-0.01, 0.03); right atrium (-0.04, 0.13); and aorta (-0.05, 0.14). These results indicate that the proposed approach provides robust and accurate detection to initialize a multicavity segmentation approach without any user interaction. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Aerial applications dispersal systems control requirements study. [agriculture
NASA Technical Reports Server (NTRS)
Bauchspies, J. S.; Cleary, W. L.; Rogers, W. F.; Simpson, W.; Sanders, G. S.
1980-01-01
Performance deficiencies in aerial liquid and dry dispersal systems are identified. Five control system concepts are explored: (1) end of field on/off control; (2) manual control of particle size and application rate from the aircraft; (3) manual control of deposit rate on the field; (4) automatic alarm and shut-off control; and (5) fully automatic control. Operational aspects of the concepts and specifications for improved control configurations are discussed in detail. A research plan to provide the technology needed to develop the proposed improvements is presented along with a flight program to verify the benefits achieved.
Automatic inference of multicellular regulatory networks using informative priors.
Sun, Xiaoyun; Hong, Pengyu
2009-01-01
To fully understand the mechanisms governing animal development, computational models and algorithms are needed to enable quantitative studies of the underlying regulatory networks. We developed a mathematical model based on dynamic Bayesian networks to model multicellular regulatory networks that govern cell differentiation processes. A machine-learning method was developed to automatically infer such a model from heterogeneous data. We show that the model inference procedure can be greatly improved by incorporating interaction data across species. The proposed approach was applied to C. elegans vulval induction to reconstruct a model capable of simulating C. elegans vulval induction under 73 different genetic conditions.
The design of digital-adaptive controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.
DOT National Transportation Integrated Search
2000-03-01
The Denver Regional Transportation District (RTD) acquired a CAD/AVL system that became fully operational in 1996. The CAD/AVL system added radio channels and covert alarms in buses, located vehicles in real time, and monitored schedule adherence. Th...
Semi-automatic brain tumor segmentation by constrained MRFs using structural trajectories.
Zhao, Liang; Wu, Wei; Corso, Jason J
2013-01-01
Quantifying volume and growth of a brain tumor is a primary prognostic measure and hence has received much attention in the medical imaging community. Most methods have sought a fully automatic segmentation, but the variability in shape and appearance of brain tumor has limited their success and further adoption in the clinic. In reaction, we present a semi-automatic brain tumor segmentation framework for multi-channel magnetic resonance (MR) images. This framework does not require prior model construction and only requires manual labels on one automatically selected slice. All other slices are labeled by an iterative multi-label Markov random field optimization with hard constraints. Structural trajectories-the medical image analog to optical flow and 3D image over-segmentation are used to capture pixel correspondences between consecutive slices for pixel labeling. We show robustness and effectiveness through an evaluation on the 2012 MICCAI BRATS Challenge Dataset; our results indicate superior performance to baselines and demonstrate the utility of the constrained MRF formulation.
A new method for the automatic interpretation of Schlumberger and Wenner sounding curves
Zohdy, A.A.R.
1989-01-01
A fast iterative method for the automatic interpretation of Schlumberger and Wenner sounding curves is based on obtaining interpreted depths and resistivities from shifted electrode spacings and adjusted apparent resistivities, respectively. The method is fully automatic. It does not require an initial guess of the number of layers, their thicknesses, or their resistivities; and it does not require extrapolation of incomplete sounding curves. The number of layers in the interpreted model equals the number of digitized points on the sounding curve. The resulting multilayer model is always well-behaved with no thin layers of unusually high or unusually low resistivities. For noisy data, interpretation is done in two sets of iterations (two passes). Anomalous layers, created because of noise in the first pass, are eliminated in the second pass. Such layers are eliminated by considering the best-fitting curve from the first pass to be a smoothed version of the observed curve and automatically reinterpreting it (second pass). The application of the method is illustrated by several examples. -Author
Pathview: an R/Bioconductor package for pathway-based data integration and visualization.
Luo, Weijun; Brouwer, Cory
2013-07-15
Pathview is a novel tool set for pathway-based data integration and visualization. It maps and renders user data on relevant pathway graphs. Users only need to supply their data and specify the target pathway. Pathview automatically downloads the pathway graph data, parses the data file, maps and integrates user data onto the pathway and renders pathway graphs with the mapped data. Although built as a stand-alone program, Pathview may seamlessly integrate with pathway and functional analysis tools for large-scale and fully automated analysis pipelines. The package is freely available under the GPLv3 license through Bioconductor and R-Forge. It is available at http://bioconductor.org/packages/release/bioc/html/pathview.html and at http://Pathview.r-forge.r-project.org/. luo_weijun@yahoo.com Supplementary data are available at Bioinformatics online.
The automaticity of face perception is influenced by familiarity.
Yan, Xiaoqian; Young, Andrew W; Andrews, Timothy J
2017-10-01
In this study, we explore the automaticity of encoding for different facial characteristics and ask whether it is influenced by face familiarity. We used a matching task in which participants had to report whether the gender, identity, race, or expression of two briefly presented faces was the same or different. The task was made challenging by allowing nonrelevant dimensions to vary across trials. To test for automaticity, we compared performance on trials in which the task instruction was given at the beginning of the trial, with trials in which the task instruction was given at the end of the trial. As a strong criterion for automatic processing, we reasoned that if perception of a given characteristic (gender, race, identity, or emotion) is fully automatic, the timing of the instruction should not influence performance. We compared automaticity for the perception of familiar and unfamiliar faces. Performance with unfamiliar faces was higher for all tasks when the instruction was given at the beginning of the trial. However, we found a significant interaction between instruction and task with familiar faces. Accuracy of gender and identity judgments to familiar faces was the same regardless of whether the instruction was given before or after the trial, suggesting automatic processing of these properties. In contrast, there was an effect of instruction for judgments of expression and race to familiar faces. These results show that familiarity enhances the automatic processing of some types of facial information more than others.
Horsch, Salome; Kopczynski, Dominik; Kuthe, Elias; Baumbach, Jörg Ingo; Rahmann, Sven
2017-01-01
Motivation Disease classification from molecular measurements typically requires an analysis pipeline from raw noisy measurements to final classification results. Multi capillary column—ion mobility spectrometry (MCC-IMS) is a promising technology for the detection of volatile organic compounds in the air of exhaled breath. From raw measurements, the peak regions representing the compounds have to be identified, quantified, and clustered across different experiments. Currently, several steps of this analysis process require manual intervention of human experts. Our goal is to identify a fully automatic pipeline that yields competitive disease classification results compared to an established but subjective and tedious semi-manual process. Method We combine a large number of modern methods for peak detection, peak clustering, and multivariate classification into analysis pipelines for raw MCC-IMS data. We evaluate all combinations on three different real datasets in an unbiased cross-validation setting. We determine which specific algorithmic combinations lead to high AUC values in disease classifications across the different medical application scenarios. Results The best fully automated analysis process achieves even better classification results than the established manual process. The best algorithms for the three analysis steps are (i) SGLTR (Savitzky-Golay Laplace-operator filter thresholding regions) and LM (Local Maxima) for automated peak identification, (ii) EM clustering (Expectation Maximization) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) for the clustering step and (iii) RF (Random Forest) for multivariate classification. Thus, automated methods can replace the manual steps in the analysis process to enable an unbiased high throughput use of the technology. PMID:28910313
Fully automatic characterization and data collection from crystals of biological macromolecules.
Svensson, Olof; Malbet-Monaco, Stéphanie; Popov, Alexander; Nurizzo, Didier; Bowler, Matthew W
2015-08-01
Considerable effort is dedicated to evaluating macromolecular crystals at synchrotron sources, even for well established and robust systems. Much of this work is repetitive, and the time spent could be better invested in the interpretation of the results. In order to decrease the need for manual intervention in the most repetitive steps of structural biology projects, initial screening and data collection, a fully automatic system has been developed to mount, locate, centre to the optimal diffraction volume, characterize and, if possible, collect data from multiple cryocooled crystals. Using the capabilities of pixel-array detectors, the system is as fast as a human operator, taking an average of 6 min per sample depending on the sample size and the level of characterization required. Using a fast X-ray-based routine, samples are located and centred systematically at the position of highest diffraction signal and important parameters for sample characterization, such as flux, beam size and crystal volume, are automatically taken into account, ensuring the calculation of optimal data-collection strategies. The system is now in operation at the new ESRF beamline MASSIF-1 and has been used by both industrial and academic users for many different sample types, including crystals of less than 20 µm in the smallest dimension. To date, over 8000 samples have been evaluated on MASSIF-1 without any human intervention.
Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos
2014-01-01
Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866
Using Machine Learning to Increase Research Efficiency: A New Approach in Environmental Sciences
USDA-ARS?s Scientific Manuscript database
Data collection has evolved from tedious in-person fieldwork to automatic data gathering from multiple sensor remotely. Scientist in environmental sciences have not fully exploited this data deluge, including legacy and new data, because the traditional scientific method is focused on small, high qu...
The TREC Interactive Track: An Annotated Bibliography.
ERIC Educational Resources Information Center
Over, Paul
2001-01-01
Discussion of the study of interactive information retrieval (IR) at the Text Retrieval Conferences (TREC) focuses on summaries of the Interactive Track at each conference. Describes evolution of the track, which has changed from comparing human-machine systems with fully automatic systems to comparing interactive systems that focus on the search…
Code of Federal Regulations, 2010 CFR
2010-10-01
... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-22
... Reinvestment and Recovery Act of 2009 (Recovery Act) to EERE-funded projects for non-residential programmable...[hyphen]residential programmable thermostats; commercial scale fully-automatic wood pellet boiler systems...) Programmable Thermostats--Includes devices that permit adjustment of heating or air-conditioning operations...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...
Pilot control through the TAFCOS automatic flight control system
NASA Technical Reports Server (NTRS)
Wehrend, W. R., Jr.
1979-01-01
The set of flight control logic used in a recently completed flight test program to evaluate the total automatic flight control system (TAFCOS) with the controller operating in a fully automatic mode, was used to perform an unmanned simulation on an IBM 360 computer in which the TAFCOS concept was extended to provide a multilevel pilot interface. A pilot TAFCOS interface for direct pilot control by use of a velocity-control-wheel-steering mode was defined as well as a means for calling up conventional autopilot modes. It is concluded that the TAFCOS structure is easily adaptable to the addition of a pilot control through a stick-wheel-throttle control similar to conventional airplane controls. Conventional autopilot modes, such as airspeed-hold, altitude-hold, heading-hold, and flight path angle-hold, can also be included.
A real-time freehand ultrasound calibration system with automatic accuracy feedback and control.
Chen, Thomas Kuiran; Thurston, Adrian D; Ellis, Randy E; Abolmaesumi, Purang
2009-01-01
This article describes a fully automatic, real-time, freehand ultrasound calibration system. The system was designed to be simple and sterilizable, intended for operating-room usage. The calibration system employed an automatic-error-retrieval and accuracy-control mechanism based on a set of ground-truth data. Extensive validations were conducted on a data set of 10,000 images in 50 independent calibration trials to thoroughly investigate the accuracy, robustness, and performance of the calibration system. On average, the calibration accuracy (measured in three-dimensional reconstruction error against a known ground truth) of all 50 trials was 0.66 mm. In addition, the calibration errors converged to submillimeter in 98% of all trials within 12.5 s on average. Overall, the calibration system was able to consistently, efficiently and robustly achieve high calibration accuracy with real-time performance.
Fast and straightforward analysis approach of charge transport data in single molecule junctions.
Zhang, Qian; Liu, Chenguang; Tao, Shuhui; Yi, Ruowei; Su, Weitao; Zhao, Cezhou; Zhao, Chun; Dappe, Yannick J; Nichols, Richard J; Yang, Li
2018-08-10
In this study, we introduce an efficient data sorting algorithm, including filters for noisy signals, conductance mapping for analyzing the most dominant conductance group and sub-population groups. The capacity of our data analysis process has also been corroborated on real experimental data sets of Au-1,6-hexanedithiol-Au and Au-1,8-octanedithiol-Au molecular junctions. The fully automated and unsupervised program requires less than one minute on a standard PC to sort the data and generate histograms. The resulting one-dimensional and two-dimensional log histograms give conductance values in good agreement with previous studies. Our algorithm is a straightforward, fast and user-friendly tool for single molecule charge transport data analysis. We also analyze the data in a form of a conductance map which can offer evidence for diversity in molecular conductance. The code for automatic data analysis is openly available, well-documented and ready to use, thereby offering a useful new tool for single molecule electronics.
Yushkevich, Paul A.; Pluta, John B.; Wang, Hongzhi; Xie, Long; Ding, Song-Lin; Gertje, E. C.; Mancuso, Lauren; Kliot, Daria; Das, Sandhitsu R.; Wolk, David A.
2014-01-01
We evaluate a fully automatic technique for labeling hippocampal subfields and cortical subregions in the medial temporal lobe (MTL) in in vivo 3 Tesla MRI. The method performs segmentation on a T2-weighted MRI scan with 0.4 × 0.4 × 2.0 mm3 resolution, partial brain coverage, and oblique orientation. Hippocampal subfields, entorhinal cortex, and perirhinal cortex are labeled using a pipeline that combines multi-atlas label fusion and learning-based error correction. In contrast to earlier work on automatic subfield segmentation in T2-weighted MRI (Yushkevich et al., 2010), our approach requires no manual initialization, labels hippocampal subfields over a greater anterior-posterior extent, and labels the perirhinal cortex, which is further subdivided into Brodmann areas 35 and 36. The accuracy of the automatic segmentation relative to manual segmentation is measured using cross-validation in 29 subjects from a study of amnestic Mild Cognitive Impairment (aMCI), and is highest for the dentate gyrus (Dice coefficient is 0.823), CA1 (0.803), perirhinal cortex (0.797) and entorhinal cortex (0.786) labels. A larger cohort of 83 subjects is used to examine the effects of aMCI in the hippocampal region using both subfield volume and regional subfield thickness maps. Most significant differences between aMCI and healthy aging are observed bilaterally in the CA1 subfield and in the left Brodmann area 35. Thickness analysis results are consistent with volumetry, but provide additional regional specificity and suggest non-uniformity in the effects of aMCI on hippocampal subfields and MTL cortical subregions. PMID:25181316
Heussel, C P; Herth, F J F; Kappes, J; Hantusch, R; Hartlieb, S; Weinheimer, O; Kauczor, H U; Eberhardt, R
2009-10-01
Characterisation and quantification of emphysema are necessary for planning of local treatment and monitoring. Sensitive, easy to measure, and stable parameters have to be established and their relation to the well-known pulmonary function testing (PFT) has to be investigated. A retrospective analysis of 221 nonenhanced thin-section MDCT with a corresponding PFT was carried out, with a subgroup analysis in 102 COPD stage III+IV, 44 COPD stage 0, and 33 investigations into interstitial lung disease (ILD). The in-house YACTA software was used for automatic quantification of lung and emphysema volume [l], emphysema index, mean lung density (MLD [HU]) and 15(th) percentile [HU]. CT-derived lung volume is significantly smaller in ILD (3.8) and larger in COPD (7.2) than in controls (5.9, p < 0.0001). Emphysema volume and index are significantly higher in COPD than in controls (3.2 vs. 0.5, p < 0.0001, 45% vs. 8%, p < 0.0001). MLD and 15(th) percentile are significantly smaller in COPD (-877/-985, p < 0.0001) and significantly higher in ILD (-777, p < 0.0006/-914, p < 0.0001) than in controls (-829/-935). A relevant amount of COPD patients apparently do not suffer from emphysema, while controls who do not fulfil PFT criteria for COPD also demonstrate CT features of emphysema. Automatic quantification of thin-section CT delivers convincing parameters and ranges that are able to differentiate among emphysema, control and ILD. An emphysema index of lower 20%, MLD higher than -850, and 15(th) percentile lower than -950 might be regarded as normal (thin-section, nonenhanced, B40, YACTA). These ranges might be helpful in the judgement of individual measures.
Fully Automatic Segmentation of Fluorescein Leakage in Subjects With Diabetic Macular Edema
Rabbani, Hossein; Allingham, Michael J.; Mettu, Priyatham S.; Cousins, Scott W.; Farsiu, Sina
2015-01-01
Purpose. To create and validate software to automatically segment leakage area in real-world clinical fluorescein angiography (FA) images of subjects with diabetic macular edema (DME). Methods. Fluorescein angiography images obtained from 24 eyes of 24 subjects with DME were retrospectively analyzed. Both video and still-frame images were obtained using a Heidelberg Spectralis 6-mode HRA/OCT unit. We aligned early and late FA frames in the video by a two-step nonrigid registration method. To remove background artifacts, we subtracted early and late FA frames. Finally, after postprocessing steps, including detection and inpainting of the vessels, a robust active contour method was utilized to obtain leakage area in a 1500-μm-radius circular region centered at the fovea. Images were captured at different fields of view (FOVs) and were often contaminated with outliers, as is the case in real-world clinical imaging. Our algorithm was applied to these images with no manual input. Separately, all images were manually segmented by two retina specialists. The sensitivity, specificity, and accuracy of manual interobserver, manual intraobserver, and automatic methods were calculated. Results. The mean accuracy was 0.86 ± 0.08 for automatic versus manual, 0.83 ± 0.16 for manual interobserver, and 0.90 ± 0.08 for manual intraobserver segmentation methods. Conclusions. Our fully automated algorithm can reproducibly and accurately quantify the area of leakage of clinical-grade FA video and is congruent with expert manual segmentation. The performance was reliable for different DME subtypes. This approach has the potential to reduce time and labor costs and may yield objective and reproducible quantitative measurements of DME imaging biomarkers. PMID:25634978
Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema.
Rabbani, Hossein; Allingham, Michael J; Mettu, Priyatham S; Cousins, Scott W; Farsiu, Sina
2015-01-29
To create and validate software to automatically segment leakage area in real-world clinical fluorescein angiography (FA) images of subjects with diabetic macular edema (DME). Fluorescein angiography images obtained from 24 eyes of 24 subjects with DME were retrospectively analyzed. Both video and still-frame images were obtained using a Heidelberg Spectralis 6-mode HRA/OCT unit. We aligned early and late FA frames in the video by a two-step nonrigid registration method. To remove background artifacts, we subtracted early and late FA frames. Finally, after postprocessing steps, including detection and inpainting of the vessels, a robust active contour method was utilized to obtain leakage area in a 1500-μm-radius circular region centered at the fovea. Images were captured at different fields of view (FOVs) and were often contaminated with outliers, as is the case in real-world clinical imaging. Our algorithm was applied to these images with no manual input. Separately, all images were manually segmented by two retina specialists. The sensitivity, specificity, and accuracy of manual interobserver, manual intraobserver, and automatic methods were calculated. The mean accuracy was 0.86 ± 0.08 for automatic versus manual, 0.83 ± 0.16 for manual interobserver, and 0.90 ± 0.08 for manual intraobserver segmentation methods. Our fully automated algorithm can reproducibly and accurately quantify the area of leakage of clinical-grade FA video and is congruent with expert manual segmentation. The performance was reliable for different DME subtypes. This approach has the potential to reduce time and labor costs and may yield objective and reproducible quantitative measurements of DME imaging biomarkers. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
NASA Technical Reports Server (NTRS)
Head, James W.; Huffman, J. N.; Forsberg, A. S.; Hurwitz, D. M.; Basilevsky, A. T.; Ivanov, M. A.; Dickson, J. L.; Kumar, P. Senthil
2008-01-01
We are currently investigating new technological developments in computer visualization and analysis in order to assess their importance and utility in planetary geological analysis and mapping [1,2]. Last year we reported on the range of technologies available and on our application of these to various problems in planetary mapping [3]. In this contribution we focus on the application of these techniques and tools to Venus geological mapping at the 1:5M quadrangle scale. In our current Venus mapping projects we have utilized and tested the various platforms to understand their capabilities and assess their usefulness in defining units, establishing stratigraphic relationships, mapping structures, reaching consensus on interpretations and producing map products. We are specifically assessing how computer visualization display qualities (e.g., level of immersion, stereoscopic vs. monoscopic viewing, field of view, large vs. small display size, etc.) influence performance on scientific analysis and geological mapping. We have been exploring four different environments: 1) conventional desktops (DT), 2) semi-immersive Fishtank VR (FT) (i.e., a conventional desktop with head-tracked stereo and 6DOF input), 3) tiled wall displays (TW), and 4) fully immersive virtual reality (IVR) (e.g., "Cave Automatic Virtual Environment," or Cave system). Formal studies demonstrate that fully immersive Cave environments are superior to desktop systems for many tasks [e.g., 4].
Moghbel, Mehrdad; Mashohor, Syamsiah; Mahmud, Rozi; Saripan, M. Iqbal Bin
2016-01-01
Segmentation of liver tumors from Computed Tomography (CT) and tumor burden analysis play an important role in the choice of therapeutic strategies for liver diseases and treatment monitoring. In this paper, a new segmentation method for liver tumors from contrast-enhanced CT imaging is proposed. As manual segmentation of tumors for liver treatment planning is both labor intensive and time-consuming, a highly accurate automatic tumor segmentation is desired. The proposed framework is fully automatic requiring no user interaction. The proposed segmentation evaluated on real-world clinical data from patients is based on a hybrid method integrating cuckoo optimization and fuzzy c-means algorithm with random walkers algorithm. The accuracy of the proposed method was validated using a clinical liver dataset containing one of the highest numbers of tumors utilized for liver tumor segmentation containing 127 tumors in total with further validation of the results by a consultant radiologist. The proposed method was able to achieve one of the highest accuracies reported in the literature for liver tumor segmentation compared to other segmentation methods with a mean overlap error of 22.78 % and dice similarity coefficient of 0.75 in 3Dircadb dataset and a mean overlap error of 15.61 % and dice similarity coefficient of 0.81 in MIDAS dataset. The proposed method was able to outperform most other tumor segmentation methods reported in the literature while representing an overlap error improvement of 6 % compared to one of the best performing automatic methods in the literature. The proposed framework was able to provide consistently accurate results considering the number of tumors and the variations in tumor contrast enhancements and tumor appearances while the tumor burden was estimated with a mean error of 0.84 % in 3Dircadb dataset. PMID:27540353
Botto, Giovanni Luca; Padeletti, Luigi; Covino, Gregorio; Pieragnoli, Paolo; Liccardo, Mattia; Mariconti, Barbara; Favale, Stefano; Molon, Giulio; De Filippo, Paolo; Bolognese, Leonardo; Landolina, Maurizio; Raciti, Giovanni; Boriani, Giuseppe
2017-06-01
Ventricular and atrial arrhythmias commonly occur in heart failure patients and are a significant source of symptoms, morbidity and mortality. Some specific generators referred to as dual defibrillators, Dual CRT-Ds, have the ability to treat atrial and ventricular arrhythmias. TRADE-HF is a prospective two-arm randomized study aimed at assessing the benefits of complete automatic management of atrial arrhythmias in patients implanted with a dual CRT-D. Primary objective of the TRADE-HF study was to document reduction of unplanned hospital admission for cardiac reasons or death for cardiovascular causes or progression to permanent AF, by comparing fully-automatic device driven therapy for atrial tachycardia or fibrillation (AT/AF) to an in-hospital approach for treatment of symptomatic AT/AF. Randomized Patients were followed every 6months for 3years to assess the primary objective. Four-hundred-twenty patients have been enrolled in the study. At the end of the study 30 subjects died for cardiovascular causes, 60 had at least one hospitalization for cardiovascular causes and 14 developed permanent AF. Eighty-seven patients experienced a composite event. Hazard Ratio for device-managed automatic therapy arm compared to traditional was 0.987 (95% CI: 0.684-1.503; p=0.951). The primary endpoint analysis resulted in no difference between the device managed and in-hospital treatment arm. The TRADE-HF study failed to demonstrate a reduction in the composite of unplanned hospitalizations for cardiovascular causes or death for cardiovascular causes or progression to permanent AF using automatic atrial therapy compared to a traditional approach including hospitalization for symptomatic episodes and/or in-hospital treatment of AT/AF. Copyright © 2017 Elsevier B.V. All rights reserved.
Sentry: An Automated Close Approach Monitoring System for Near-Earth Objects
NASA Astrophysics Data System (ADS)
Chamberlin, A. B.; Chesley, S. R.; Chodas, P. W.; Giorgini, J. D.; Keesey, M. S.; Wimberly, R. N.; Yeomans, D. K.
2001-11-01
In response to international concern about potential asteroid impacts on Earth, NASA's Near-Earth Object (NEO) Program Office has implemented a new system called ``Sentry'' to automatically update the orbits of all NEOs on a daily basis and compute Earth close approaches up to 100 years into the future. Results are published on our web site (http://neo.jpl.nasa.gov/) and updated orbits and ephemerides made available via the JPL Horizons ephemeris service (http://ssd.jpl.nasa.gov/horizons.html). Sentry collects new and revised astrometric observations from the Minor Planet Center (MPC) via their electronic circulars (MPECs) in near real time as well as radar and optical astrometry sent directly from observers. NEO discoveries and identifications are detected in MPECs and processed appropriately. In addition to these daily updates, Sentry synchronizes with each monthly batch of MPC astrometry and automatically updates all NEO observation files. Daily and monthly processing of NEO astrometry is managed using a queuing system which allows for manual intervention of selected NEOs without interfering with the automatic system. At the heart of Sentry is a fully automatic orbit determination program which handles outlier rejection and ensures convergence in the new solution. Updated orbital elements and their covariances are published via Horizons and our NEO web site, typically within 24 hours. A new version of Horizons, in development, will allow computation of ephemeris uncertainties using covariance data. The positions of NEOs with updated orbits are numerically integrated up to 100 years into the future and each close approach to any perturbing body in our dynamic model (all planets, Moon, Ceres, Pallas, Vesta) is recorded. Significant approaches are flagged for extended analysis including Monte Carlo studies. Results, such as minimum encounter distances and future Earth impact probabilities, are published on our NEO web site.
Automated full-3D digitization system for documentation of paintings
NASA Astrophysics Data System (ADS)
Karaszewski, Maciej; Adamczyk, Marcin; Sitnik, Robert; Michoński, Jakub; Załuski, Wojciech; Bunsch, Eryk; Bolewicki, Paweł
2013-05-01
In this paper, a fully automated 3D digitization system for documentation of paintings is presented. It consists of a specially designed frame system for secure fixing of painting, a custom designed, structured light-based, high-resolution measurement head with no IR and UV emission. This device is automatically positioned in two axes (parallel to the surface of digitized painting) with additional manual positioning in third, perpendicular axis. Manual change of observation angle is also possible around two axes to re-measure even partially shadowed areas. The whole system is built in a way which provides full protection of digitized object (moving elements cannot reach its vicinity) and is driven by computer-controlled, highly precise servomechanisms. It can be used for automatic (without any user attention) and fast measurement of the paintings with some limitation to their properties: maximum size of the picture is 2000mm x 2000mm (with deviation of flatness smaller than 20mm) Measurement head is automatically calibrated by the system and its possible working volume starts from 50mm x 50mm x 20mm (10000 points per square mm) and ends at 120mm x 80mm x 60mm (2500 points per square mm). The directional measurements obtained with this system are automatically initially aligned due to the measurement head's position coordinates known from servomechanisms. After the whole painting is digitized, the measurements are fine-aligned with color-based ICP algorithm to remove any influence of possible inaccuracy of positioning devices. We present exemplary digitization results along with the discussion about the opportunities of analysis which appear for such high-resolution, 3D computer models of paintings.
2010-01-01
Background Cell motility is a critical parameter in many physiological as well as pathophysiological processes. In time-lapse video microscopy, manual cell tracking remains the most common method of analyzing migratory behavior of cell populations. In addition to being labor-intensive, this method is susceptible to user-dependent errors regarding the selection of "representative" subsets of cells and manual determination of precise cell positions. Results We have quantitatively analyzed these error sources, demonstrating that manual cell tracking of pancreatic cancer cells lead to mis-calculation of migration rates of up to 410%. In order to provide for objective measurements of cell migration rates, we have employed multi-target tracking technologies commonly used in radar applications to develop fully automated cell identification and tracking system suitable for high throughput screening of video sequences of unstained living cells. Conclusion We demonstrate that our automatic multi target tracking system identifies cell objects, follows individual cells and computes migration rates with high precision, clearly outperforming manual procedures. PMID:20377897
Measurement of Reconstructed Charged Particle Multiplicities of Neutrino Interactions in MicroBooNE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafique, Aleena
2017-09-25
Here, we compare the observed charged particle multiplicity distributions in the MicroBooNE liquid argon time projection chamber from neutrino interactions in a restricted final state phase space to predictions of this distribution from several GENIE models. The measurement uses a data sample consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2015-2016 with the Fermilab Booster Neutrino Beam (BNB), which has an average neutrino energy of 800 MeV, using an exposure corresponding to 5e19 protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction andmore » uses a data-driven technique to determine the contribution to each multiplicity bin from neutrino interactions and cosmic-induced backgrounds. The restricted phase space employed makes the measurement most sensitive to the higher-energy charged particles expected from primary neutrino-argon collisions and less sensitive to lower energy protons expected to be produced in final state interactions of collision products with the target argon nucleus.« less
Automated Morphological Analysis of Microglia After Stroke.
Heindl, Steffanie; Gesierich, Benno; Benakis, Corinne; Llovera, Gemma; Duering, Marco; Liesz, Arthur
2018-01-01
Microglia are the resident immune cells of the brain and react quickly to changes in their environment with transcriptional regulation and morphological changes. Brain tissue injury such as ischemic stroke induces a local inflammatory response encompassing microglial activation. The change in activation status of a microglia is reflected in its gradual morphological transformation from a highly ramified into a less ramified or amoeboid cell shape. For this reason, the morphological changes of microglia are widely utilized to quantify microglial activation and studying their involvement in virtually all brain diseases. However, the currently available methods, which are mainly based on manual rating of immunofluorescent microscopic images, are often inaccurate, rater biased, and highly time consuming. To address these issues, we created a fully automated image analysis tool, which enables the analysis of microglia morphology from a confocal Z-stack and providing up to 59 morphological features. We developed the algorithm on an exploratory dataset of microglial cells from a stroke mouse model and validated the findings on an independent data set. In both datasets, we could demonstrate the ability of the algorithm to sensitively discriminate between the microglia morphology in the peri-infarct and the contralateral, unaffected cortex. Dimensionality reduction by principal component analysis allowed to generate a highly sensitive compound score for microglial shape analysis. Finally, we tested for concordance of results between the novel automated analysis tool and the conventional manual analysis and found a high degree of correlation. In conclusion, our novel method for the fully automatized analysis of microglia morphology shows excellent accuracy and time efficacy compared to traditional analysis methods. This tool, which we make openly available, could find application to study microglia morphology using fluorescence imaging in a wide range of brain disease models.
Automatic extraction of disease-specific features from Doppler images
NASA Astrophysics Data System (ADS)
Negahdar, Mohammadreza; Moradi, Mehdi; Parajuli, Nripesh; Syeda-Mahmood, Tanveer
2017-03-01
Flow Doppler imaging is widely used by clinicians to detect diseases of the valves. In particular, continuous wave (CW) Doppler mode scan is routinely done during echocardiography and shows Doppler signal traces over multiple heart cycles. Traditionally, echocardiographers have manually traced such velocity envelopes to extract measurements such as decay time and pressure gradient which are then matched to normal and abnormal values based on clinical guidelines. In this paper, we present a fully automatic approach to deriving these measurements for aortic stenosis retrospectively from echocardiography videos. Comparison of our method with measurements made by echocardiographers shows large agreement as well as identification of new cases missed by echocardiographers.
Online fully automated three-dimensional surface reconstruction of unknown objects
NASA Astrophysics Data System (ADS)
Khalfaoui, Souhaiel; Aigueperse, Antoine; Fougerolle, Yohan; Seulin, Ralph; Fofi, David
2015-04-01
This paper presents a novel scheme for automatic and intelligent 3D digitization using robotic cells. The advantage of our procedure is that it is generic since it is not performed for a specific scanning technology. Moreover, it is not dependent on the methods used to perform the tasks associated with each elementary process. The comparison of results between manual and automatic scanning of complex objects shows that our digitization strategy is very efficient and faster than trained experts. The 3D models of the different objects are obtained with a strongly reduced number of acquisitions while moving efficiently the ranging device.
An automatic experimental apparatus to study arm reaching in New World monkeys.
Yin, Allen; An, Jehi; Lehew, Gary; Lebedev, Mikhail A; Nicolelis, Miguel A L
2016-05-01
Several species of the New World monkeys have been used as experimental models in biomedical and neurophysiological research. However, a method for controlled arm reaching tasks has not been developed for these species. We have developed a fully automated, pneumatically driven, portable, and reconfigurable experimental apparatus for arm-reaching tasks suitable for these small primates. We have utilized the apparatus to train two owl monkeys in a visually-cued arm-reaching task. Analysis of neural recordings demonstrates directional tuning of the M1 neurons. Our apparatus allows automated control, freeing the experimenter from manual experiments. The presented apparatus provides a valuable tool for conducting neurophysiological research on New World monkeys. Copyright © 2016. Published by Elsevier B.V.
Geometric aspects in digital analysis of Multi-Spectral Scanner (MSS) data
NASA Technical Reports Server (NTRS)
Mikhail, E. M.; Baker, J. R.
1973-01-01
Present automated systems of interpretation which apply pattern recognition techniques on MSS data do not fully consider the geometry of the acquisition system. In an effort to improve the usefulness of the MSS data when digitally treated, geometric aspects are analyzed and discussed. Attempts to correct for scanner instabilities in position and orientation by affine and polynomial transformations, as well as by modified collinearity equations are described. Methods of accounting for panoramic and relief effects are also discussed. It is anticipated that reliable area as well as position determinations can be accomplished during the process of automatic interpretation. A concept for a unified approach to the treatment of remote sensing data, both metric and nonmetric is presented.
Natural Language Interface for Safety Certification of Safety-Critical Software
NASA Technical Reports Server (NTRS)
Denney, Ewen; Fischer, Bernd
2011-01-01
Model-based design and automated code generation are being used increasingly at NASA. The trend is to move beyond simulation and prototyping to actual flight code, particularly in the guidance, navigation, and control domain. However, there are substantial obstacles to more widespread adoption of code generators in such safety-critical domains. Since code generators are typically not qualified, there is no guarantee that their output is correct, and consequently the generated code still needs to be fully tested and certified. The AutoCert generator plug-in supports the certification of automatically generated code by formally verifying that the generated code is free of different safety violations, by constructing an independently verifiable certificate, and by explaining its analysis in a textual form suitable for code reviews.
NASA Astrophysics Data System (ADS)
Xie, Dengling; Xie, Yanjun; Liu, Peng; Tong, Lieshu; Chu, Kaiqin; Smith, Zachary J.
2017-02-01
Current flow-based blood counting devices require expensive and centralized medical infrastructure and are not appropriate for field use. In this paper we report a method to count red blood cells, white blood cells as well as platelets through a low-cost and fully-automated blood counting system. The approach consists of using a compact, custom-built microscope with large field-of-view to record bright-field and fluorescence images of samples that are diluted with a single, stable reagent mixture and counted using automatic algorithms. Sample collection is performed manually using a spring loaded lancet, and volume-metering capillary tubes. The capillaries are then dropped into a tube of pre-measured reagents and gently shaken for 10-30 seconds. The sample is loaded into a measurement chamber and placed on a custom 3D printed platform. Sample translation and focusing is fully automated, and a user has only to press a button for the measurement and analysis to commence. Cost of the system is minimized through the use of custom-designed motorized components. We performed a series of comparative experiments by trained and untrained users on blood from adults and children. We compare the performance of our system, as operated by trained and untrained users, to the clinical gold standard using a Bland-Altman analysis, demonstrating good agreement of our system to the clinical standard. The system's low cost, complete automation, and good field performance indicate that it can be successfully translated for use in low-resource settings where central hematology laboratories are not accessible.
Fully automated contour detection of the ascending aorta in cardiac 2D phase-contrast MRI.
Codari, Marina; Scarabello, Marco; Secchi, Francesco; Sforza, Chiarella; Baselli, Giuseppe; Sardanelli, Francesco
2018-04-01
In this study we proposed a fully automated method for localizing and segmenting the ascending aortic lumen with phase-contrast magnetic resonance imaging (PC-MRI). Twenty-five phase-contrast series were randomly selected out of a large population dataset of patients whose cardiac MRI examination, performed from September 2008 to October 2013, was unremarkable. The local Ethical Committee approved this retrospective study. The ascending aorta was automatically identified on each phase of the cardiac cycle using a priori knowledge of aortic geometry. The frame that maximized the area, eccentricity, and solidity parameters was chosen for unsupervised initialization. Aortic segmentation was performed on each frame using active contouring without edges techniques. The entire algorithm was developed using Matlab R2016b. To validate the proposed method, the manual segmentation performed by a highly experienced operator was used. Dice similarity coefficient, Bland-Altman analysis, and Pearson's correlation coefficient were used as performance metrics. Comparing automated and manual segmentation of the aortic lumen on 714 images, Bland-Altman analysis showed a bias of -6.68mm 2 , a coefficient of repeatability of 91.22mm 2 , a mean area measurement of 581.40mm 2 , and a reproducibility of 85%. Automated and manual segmentation were highly correlated (R=0.98). The Dice similarity coefficient versus the manual reference standard was 94.6±2.1% (mean±standard deviation). A fully automated and robust method for identification and segmentation of ascending aorta on PC-MRI was developed. Its application on patients with a variety of pathologic conditions is advisable. Copyright © 2017 Elsevier Inc. All rights reserved.
Kohn, Nils; Fernández, Guillén
2017-12-06
Our surrounding provides a host of sensory input, which we cannot fully process without streamlining and automatic processing. Levels of automaticity differ for different cognitive and affective processes. Situational and contextual interactions between cognitive and affective processes in turn influence the level of automaticity. Automaticity can be measured by interference in Stroop tasks. We applied an emotional version of the Stroop task to investigate how stress as a contextual factor influences the affective valence-dependent level of automaticity. 120 young, healthy men were investigated for behavioral and brain interference following a stress induction or control procedure in a counter-balanced cross-over-design. Although Stroop interference was always observed, sex and emotion of the face strongly modulated interference, which was larger for fearful and male faces. These effects suggest higher automaticity when processing happy and also female faces. Supporting behavioral patterns, brain data show lower interference related brain activity in executive control related regions in response to happy and female faces. In the absence of behavioral stress effects, congruent compared to incongruent trials (reverse interference) showed little to no deactivation under stress in response to happy female and fearful male trials. These congruency effects are potentially based on altered context- stress-related facial processing that interact with sex-emotion stereotypes. Results indicate that sex and facial emotion modulate Stroop interference in brain and behavior. These effects can be explained by altered response difficulty as a consequence of the contextual and stereotype related modulation of automaticity. Copyright © 2017 Elsevier Ltd. All rights reserved.
The personal aircraft: Status and issues
NASA Technical Reports Server (NTRS)
Anders, Scott G.; Asbury, Scott C.; Brentner, Kenneth S.; Bushnell, Dennis M.; Glass, Christopher E.; Hodges, William T.; Morris, Shelby J., Jr.; Scott, Michael A.
1994-01-01
Paper summarizes the status of personal air transportation with emphasis upon VTOL and converticar capability. The former obviates the need for airport operations for personal aircraft whereas the latter provides both ground and air capability in the same vehicle. Fully automatic operation, ATC and navigation is stressed along with consideration of acoustic, environmental and cost issues.
Automation of a laboratory particleboard press
Robert L. Geimer; Gordon H. Stevens; Richard E. Kinney
1982-01-01
A manually operated particleboard press was converted to a fully automatic, programable system with updated data collection capabilities. Improved control has permitted observations of very small changes in pressing variables resulting in the development of a technique capable of reducing press times by 70 percent. Accurate control of the press is obtained through an...
Avatars, Virtual Reality Technology, and the U.S. Military: Emerging Policy Issues
2008-04-09
called “ Sentient Worldwide Simulation,” which will “mirror” real life and automatically follow real-world events in real time. Some virtual world...cities, with the final goal of creating a fully functioning virtual model of the entire world, which will be known as the Sentient Worldwide Simulation
Development of German-English Machine Translation System. Final Technical Report.
ERIC Educational Resources Information Center
Lehmann, Winfred P.; Stachowitz, Rolf A.
This report describes work on a pilot system for a fully automatic, high-quality translation of German scientific and technical text into English and gives the results of an experiment designed to show the system's capability to produce quality mechanical translation. The areas considered were: (1) grammar formalism, mainly involving the addition…
Buried in the Warm, Warm Ground
ERIC Educational Resources Information Center
Ellis-Tipton, John
2006-01-01
Buntingsdale Infant School in Shropshire has installed an environmentally friendly heating system. The school's heating system is called a Ground Source Heat Pump (GSHP). Buntingsdale, a three-classroom infant school in a wooden demountable building, is one of the first schools in Britain to use this system. The system is fully automatic: it is…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
... Front. A number of issues have not been fully addressed, however, including growing poverty, economic... intercommunal violence caused civilian deaths, continued displacement of the population, and general instability... environmental and economic factors, have created one of the worst humanitarian crises in the world. Despite...
44 CFR 60.3 - Flood plain management criteria for flood-prone areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... improvements, that fully enclosed areas below the lowest floor that are usable solely for parking of vehicles... that they permit the automatic entry and exit of floodwaters. (6) Require that manufactured homes that... building standards. Such enclosed space shall be useable solely for parking of vehicles, building access...
44 CFR 60.3 - Flood plain management criteria for flood-prone areas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... improvements, that fully enclosed areas below the lowest floor that are usable solely for parking of vehicles... that they permit the automatic entry and exit of floodwaters. (6) Require that manufactured homes that... building standards. Such enclosed space shall be useable solely for parking of vehicles, building access...
30 CFR 75.1909 - Nonpermissible diesel-powered equipment; design and performance requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... rail-mounted equipment, must be provided with a parking brake that holds the fully loaded equipment... work platforms must be provided with a means to ensure that the parking braking system is released... requirements of § 75.1908(a) must be provided with an automatic fire suppression system meeting the...
30 CFR 75.1909 - Nonpermissible diesel-powered equipment; design and performance requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... rail-mounted equipment, must be provided with a parking brake that holds the fully loaded equipment... work platforms must be provided with a means to ensure that the parking braking system is released... requirements of § 75.1908(a) must be provided with an automatic fire suppression system meeting the...
NASA Astrophysics Data System (ADS)
Patel, Ajay; van de Leemput, Sil C.; Prokop, Mathias; van Ginneken, Bram; Manniesing, Rashindra
2017-03-01
Segmentation of anatomical structures is fundamental in the development of computer aided diagnosis systems for cerebral pathologies. Manual annotations are laborious, time consuming and subject to human error and observer variability. Accurate quantification of cerebrospinal fluid (CSF) can be employed as a morphometric measure for diagnosis and patient outcome prediction. However, segmenting CSF in non-contrast CT images is complicated by low soft tissue contrast and image noise. In this paper we propose a state-of-the-art method using a multi-scale three-dimensional (3D) fully convolutional neural network (CNN) to automatically segment all CSF within the cranial cavity. The method is trained on a small dataset comprised of four manually annotated cerebral CT images. Quantitative evaluation of a separate test dataset of four images shows a mean Dice similarity coefficient of 0.87 +/- 0.01 and mean absolute volume difference of 4.77 +/- 2.70 %. The average prediction time was 68 seconds. Our method allows for fast and fully automated 3D segmentation of cerebral CSF in non-contrast CT, and shows promising results despite a limited amount of training data.
Study of living single cells in culture: automated recognition of cell behavior.
Bodin, P; Papin, S; Meyer, C; Travo, P
1988-07-01
An automated system capable of analyzing the behavior, in real time, of single living cells in culture, in a noninvasive and nondestructive way, has been developed. A large number of cell positions in single culture dishes were recorded using a computer controlled, robotized microscope. During subsequent observations, binary images obtained from video image analysis of the microscope visual field allowed the identification of the recorded cells. These cells could be revisited automatically every few minutes. Long-term studies of the behavior of cells make possible the analysis of cellular locomotary and mitotic activities as well as determination of cell shape (chosen from a defined library) for several hours or days in a fully automated way with observations spaced up to 30 minutes. Short-term studies of the behavior of cells permit the study, in a semiautomatic way, of acute effects of drugs (5 to 15 minutes) on changes of surface area and length of cells.
Trans-dimensional MCMC methods for fully automatic motion analysis in tagged MRI.
Smal, Ihor; Carranza-Herrezuelo, Noemí; Klein, Stefan; Niessen, Wiro; Meijering, Erik
2011-01-01
Tagged magnetic resonance imaging (tMRI) is a well-known noninvasive method allowing quantitative analysis of regional heart dynamics. Its clinical use has so far been limited, in part due to the lack of robustness and accuracy of existing tag tracking algorithms in dealing with low (and intrinsically time-varying) image quality. In this paper, we propose a novel probabilistic method for tag tracking, implemented by means of Bayesian particle filtering and a trans-dimensional Markov chain Monte Carlo (MCMC) approach, which efficiently combines information about the imaging process and tag appearance with prior knowledge about the heart dynamics obtained by means of non-rigid image registration. Experiments using synthetic image data (with ground truth) and real data (with expert manual annotation) from preclinical (small animal) and clinical (human) studies confirm that the proposed method yields higher consistency, accuracy, and intrinsic tag reliability assessment in comparison with other frequently used tag tracking methods.
Lv, Shidong; Wu, Yuanshuang; Zhou, Jiangsheng; Lian, Ming; Li, Changwen; Xu, Yongquan; Liu, Shunhang; Wang, Chao; Meng, Qingxiong
2014-01-01
The quality of tea is presently evaluated by the sensory assessment of professional tea tasters, however, this approach is both inconsistent and inaccurate. A more standardized and efficient method is urgently needed to objectively evaluate tea quality. In this study, the chemical fingerprint of 7 different Dayi Pu-erh tea brands and 3 different Ya'an tea brands on the market were analyzed using fully automatic headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC–MS). A total of 78 volatiles were separated, among 75 volatiles were identified by GC–MS in seven Dayi Pu-erh teas, and the major chemical components included methoxyphenolic compounds, hydrocarbons, and alcohol compounds, such as 1,2,3-trimethoxybenzene, 1,2,4-trimethoxybenzene, 2,6,10,14-tetramethyl-pentadecane, linalool and its oxides, α-terpineol, and phytol. The overlapping ratio of peaks (ORP) of the chromatogram in the seven Dayi Pu-erh tea samples was greater than 89.55%, whereas the ORP of Ya'an tea samples was less than 79.10%. The similarity and differences of the Dayi Pu-erh tea samples were also characterized using correlation coefficient similarity and principal component analysis (PCA). The results showed that the correlation coefficient of similarity of the seven Dayi Pu-erh tea samples was greater than 0.820 and was gathered in a specific area, which showed that samples from different brands were basically the same, despite have some slightly differences of chemical indexes was found. These results showed that the GC-MS fingerprint combined with the PCA approach can be used as an effective tool for the quality assessment and control of Pu-erh tea. PMID:25551231
Applying graph theory to protein structures: an atlas of coiled coils.
Heal, Jack W; Bartlett, Gail J; Wood, Christopher W; Thomson, Andrew R; Woolfson, Derek N
2018-05-02
To understand protein structure, folding and function fully and to design proteins de novo reliably, we must learn from natural protein structures that have been characterised experimentally. The number of protein structures available is large and growing exponentially, which makes this task challenging. Indeed, computational resources are becoming increasingly important for classifying and analysing this resource. Here, we use tools from graph theory to define an atlas classification scheme for automatically categorising certain protein substructures. Focusing on the α-helical coiled coils, which are ubiquitous protein-structure and protein-protein interaction motifs, we present a suite of computational resources designed for analysing these assemblies. iSOCKET enables interactive analysis of side-chain packing within proteins to identify coiled coils automatically and with considerable user control. Applying a graph theory-based atlas classification scheme to structures identified by iSOCKET gives the Atlas of Coiled Coils, a fully automated, updated overview of extant coiled coils. The utility of this approach is illustrated with the first formal classification of an emerging subclass of coiled coils called α-helical barrels. Furthermore, in the Atlas, the known coiled-coil universe is presented alongside a partial enumeration of the 'dark matter' of coiled-coil structures; i.e., those coiled-coil architectures that are theoretically possible but have not been observed to date, and thus present defined targets for protein design. iSOCKET is available as part of the open-source GitHub repository associated with this work (https://github.com/woolfson-group/isocket). This repository also contains all the data generated when classifying the protein graphs. The Atlas of Coiled Coils is available at: http://coiledcoils.chm.bris.ac.uk/atlas/app.
Automatic localization of backscattering events due to particulate in urban areas
NASA Astrophysics Data System (ADS)
Gaudio, P.; Gelfusa, M.; Malizia, Andrea; Parracino, Stefano; Richetta, M.; Murari, A.; Vega, J.
2014-10-01
Particulate matter (PM), emitted by vehicles in urban traffic, can greatly affect environment air quality and have direct implications on both human health and infrastructure integrity. The consequences for society are relevant and can impact also on national health. Limits and thresholds of pollutants emitted by vehicles are typically regulated by government agencies. In the last few years, the interest in PM emissions has grown substantially due to both air quality issues and global warming. Lidar-Dial techniques are widely recognized as a costeffective alternative to monitor large regions of the atmosphere. To maximize the effectiveness of the measurements and to guarantee reliable, automatic monitoring of large areas, new data analysis techniques are required. In this paper, an original tool, the Universal Multi-Event Locator (UMEL), is applied to the problem of automatically indentifying the time location of peaks in Lidar measurements for the detection of particulate matter emitted by anthropogenic sources like vehicles. The method developed is based on Support Vector Regression and presents various advantages with respect to more traditional techniques. In particular, UMEL is based on the morphological properties of the signals and therefore the method is insensitive to the details of the noise present in the detection system. The approach is also fully general, purely software and can therefore be applied to a large variety of problems without any additional cost. The potential of the proposed technique is exemplified with the help of data acquired during an experimental campaign in the field in Rome.
Temporal Cyber Attack Detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, Joey Burton; Draelos, Timothy J.; Galiardi, Meghan
Rigorous characterization of the performance and generalization ability of cyber defense systems is extremely difficult, making it hard to gauge uncertainty, and thus, confidence. This difficulty largely stems from a lack of labeled attack data that fully explores the potential adversarial space. Currently, performance of cyber defense systems is typically evaluated in a qualitative manner by manually inspecting the results of the system on live data and adjusting as needed. Additionally, machine learning has shown promise in deriving models that automatically learn indicators of compromise that are more robust than analyst-derived detectors. However, to generate these models, most algorithms requiremore » large amounts of labeled data (i.e., examples of attacks). Algorithms that do not require annotated data to derive models are similarly at a disadvantage, because labeled data is still necessary when evaluating performance. In this work, we explore the use of temporal generative models to learn cyber attack graph representations and automatically generate data for experimentation and evaluation. Training and evaluating cyber systems and machine learning models requires significant, annotated data, which is typically collected and labeled by hand for one-off experiments. Automatically generating such data helps derive/evaluate detection models and ensures reproducibility of results. Experimentally, we demonstrate the efficacy of generative sequence analysis techniques on learning the structure of attack graphs, based on a realistic example. These derived models can then be used to generate more data. Additionally, we provide a roadmap for future research efforts in this area.« less
A clinically viable capsule endoscopy video analysis platform for automatic bleeding detection
NASA Astrophysics Data System (ADS)
Yi, Steven; Jiao, Heng; Xie, Jean; Mui, Peter; Leighton, Jonathan A.; Pasha, Shabana; Rentz, Lauri; Abedi, Mahmood
2013-02-01
In this paper, we present a novel and clinically valuable software platform for automatic bleeding detection on gastrointestinal (GI) tract from Capsule Endoscopy (CE) videos. Typical CE videos for GI tract run about 8 hours and are manually reviewed by physicians to locate diseases such as bleedings and polyps. As a result, the process is time consuming and is prone to disease miss-finding. While researchers have made efforts to automate this process, however, no clinically acceptable software is available on the marketplace today. Working with our collaborators, we have developed a clinically viable software platform called GISentinel for fully automated GI tract bleeding detection and classification. Major functional modules of the SW include: the innovative graph based NCut segmentation algorithm, the unique feature selection and validation method (e.g. illumination invariant features, color independent features, and symmetrical texture features), and the cascade SVM classification for handling various GI tract scenes (e.g. normal tissue, food particles, bubbles, fluid, and specular reflection). Initial evaluation results on the SW have shown zero bleeding instance miss-finding rate and 4.03% false alarm rate. This work is part of our innovative 2D/3D based GI tract disease detection software platform. While the overall SW framework is designed for intelligent finding and classification of major GI tract diseases such as bleeding, ulcer, and polyp from the CE videos, this paper will focus on the automatic bleeding detection functional module.
Carraro, Luciana; Castelli, Luigi; Macchiella, Claudia
2011-01-01
Research has widely explored the differences between conservatives and liberals, and it has been also recently demonstrated that conservatives display different reactions toward valenced stimuli. However, previous studies have not yet fully illuminated the cognitive underpinnings of these differences. In the current work, we argued that political ideology is related to selective attention processes, so that negative stimuli are more likely to automatically grab the attention of conservatives as compared to liberals. In Experiment 1, we demonstrated that negative (vs. positive) information impaired the performance of conservatives, more than liberals, in an Emotional Stroop Task. This finding was confirmed in Experiment 2 and in Experiment 3 employing a Dot-Probe Task, demonstrating that threatening stimuli were more likely to attract the attention of conservatives. Overall, results support the conclusion that people embracing conservative views of the world display an automatic selective attention for negative stimuli. PMID:22096486
Film grain synthesis and its application to re-graining
NASA Astrophysics Data System (ADS)
Schallauer, Peter; Mörzinger, Roland
2006-01-01
Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.
Efficient content-based low-altitude images correlated network and strips reconstruction
NASA Astrophysics Data System (ADS)
He, Haiqing; You, Qi; Chen, Xiaoyong
2017-01-01
The manual intervention method is widely used to reconstruct strips for further aerial triangulation in low-altitude photogrammetry. Clearly the method for fully automatic photogrammetric data processing is not an expected way. In this paper, we explore a content-based approach without manual intervention or external information for strips reconstruction. Feature descriptors in the local spatial patterns are extracted by SIFT to construct vocabulary tree, in which these features are encoded in terms of TF-IDF numerical statistical algorithm to generate new representation for each low-altitude image. Then images correlated network is reconstructed by similarity measure, image matching and geometric graph theory. Finally, strips are reconstructed automatically by tracing straight lines and growing adjacent images gradually. Experimental results show that the proposed approach is highly effective in automatically rearranging strips of lowaltitude images and can provide rough relative orientation for further aerial triangulation.
Automated feature detection and identification in digital point-ordered signals
Oppenlander, Jane E.; Loomis, Kent C.; Brudnoy, David M.; Levy, Arthur J.
1998-01-01
A computer-based automated method to detect and identify features in digital point-ordered signals. The method is used for processing of non-destructive test signals, such as eddy current signals obtained from calibration standards. The signals are first automatically processed to remove noise and to determine a baseline. Next, features are detected in the signals using mathematical morphology filters. Finally, verification of the features is made using an expert system of pattern recognition methods and geometric criteria. The method has the advantage that standard features can be, located without prior knowledge of the number or sequence of the features. Further advantages are that standard features can be differentiated from irrelevant signal features such as noise, and detected features are automatically verified by parameters extracted from the signals. The method proceeds fully automatically without initial operator set-up and without subjective operator feature judgement.
An automatic rat brain extraction method based on a deformable surface model.
Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M
2013-08-15
The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.
Real-time control of focused ultrasound heating based on rapid MR thermometry.
Vimeux, F C; De Zwart, J A; Palussiére, J; Fawaz, R; Delalande, C; Canioni, P; Grenier, N; Moonen, C T
1999-03-01
Real-time control of the heating procedure is essential for hyperthermia applications of focused ultrasound (FUS). The objective of this study is to demonstrate the feasibility of MRI-controlled FUS. An automatic control system was developed using a dedicated interface between the MR system control computer and the FUS wave generator. Two algorithms were used to regulate FUS power to maintain the focal point temperature at a desired level. Automatic control of FUS power level was demonstrated ex vivo at three target temperature levels (increase of 5 degrees C, 10 degrees C, and 30 degrees C above room temperature) during 30-minute hyperthermic periods. Preliminary in vivo results on rat leg muscle confirm that necrosis estimate, calculated on-line during FUS sonication, allows prediction of tissue damage. CONCLUSIONS. The feasibility of fully automatic FUS control based on MRI thermometry has been demonstrated.
A two-dimensional air-to-air combat game - Toward an air-combat advisory system
NASA Technical Reports Server (NTRS)
Neuman, Frank
1987-01-01
Air-to-air combat is modeled as a discrete differential game, and by constraining the game to searching for the best guidance laws from the sets of those considered for each opponent, feedback and outcome charts are obtained which can be used to turn one of the automatic opponents into an intelligent opponent against a human pilot. A one-on-one two-dimensional fully automatic, or manned versus automatic, air-to-air combat game has been designed which includes both attack and evasion alternatives for both aircraft. Guidance law selection occurs by flooding the initial-condition space with four simulated fights for each initial condition, depicting the various attack/evasion strategies for the two opponents, and recording the outcomes. For each initial condition, the minimax method from differential games is employed to determine the best choice from the available strategies.
Automatization of hydrodynamic modelling in a Floreon+ system
NASA Astrophysics Data System (ADS)
Ronovsky, Ales; Kuchar, Stepan; Podhoranyi, Michal; Vojtek, David
2017-07-01
The paper describes fully automatized hydrodynamic modelling as a part of the Floreon+ system. The main purpose of hydrodynamic modelling in the disaster management is to provide an accurate overview of the hydrological situation in a given river catchment. Automatization of the process as a web service could provide us with immediate data based on extreme weather conditions, such as heavy rainfall, without the intervention of an expert. Such a service can be used by non scientific users such as fire-fighter operators or representatives of a military service organizing evacuation during floods or river dam breaks. The paper describes the whole process beginning with a definition of a schematization necessary for hydrodynamic model, gathering of necessary data and its processing for a simulation, the model itself and post processing of a result and visualization on a web service. The process is demonstrated on a real data collected during floods in our Moravian-Silesian region in 2010.
PRESBYOPIA OPTOMETRY METHOD BASED ON DIOPTER REGULATION AND CHARGE COUPLE DEVICE IMAGING TECHNOLOGY.
Zhao, Q; Wu, X X; Zhou, J; Wang, X; Liu, R F; Gao, J
2015-01-01
With the development of photoelectric technology and single-chip microcomputer technology, objective optometry, also known as automatic optometry, is becoming precise. This paper proposed a presbyopia optometry method based on diopter regulation and Charge Couple Device (CCD) imaging technology and, in the meantime, designed a light path that could measure the system. This method projects a test figure to the eye ground and then the reflected image from the eye ground is detected by CCD. The image is then automatically identified by computer and the far point and near point diopters are determined to calculate lens parameter. This is a fully automatic objective optometry method which eliminates subjective factors of the tested subject. Furthermore, it can acquire the lens parameter of presbyopia accurately and quickly and can be used to measure the lens parameter of hyperopia, myopia and astigmatism.
Mata-Granados, J M; Quesada Gómez, J M; Luque de Castro, M D
2009-05-01
Fat soluble vitamins and vitamin D metabolites are key compounds in bone metabolism. Unfortunately, variability among 25(OH)D assays limits clinician ability to monitor vitamin D status, supplementation, and toxicity. 0.5 ml serum was mixed with 0.5 ml 60% acetonitrile 150 mM sodium dodecyl sulfate, vortexed for 30 s and injected into an automatic solid-phase extraction (SPE) system for cleanup-preconcentration, then on-line transferred to a reversed-phase analytical column by a 15% methanol-acetonitrile mobile phase at 1.0 ml/min for individual separation of the target analytes. Ultraviolet detection was performed at 265 nm, 325 nm and 292 for vitamin D metabolites, vitamin A and alpha- and delta-tocopherols, respectively. Detection limits were between 0.0015 and 0.26 microg/ml for the target compounds, the precision (expressed as relative standard deviation) between 0.83 and 3.6% for repeatability and between 1.8 and 4.62% for within laboratory reproducibility. Recoveries between 97-100.2% and 95-99% were obtained for low and high concentrations of the target analytes in serum. The total analysis time was 20 min. The on-line coupling of SPE-HPLC endows the proposed method with reliability, robustness, and user unattendance, making it a useful tool for high-throughput analysis in clinical and research laboratories.
A semi-automatic annotation tool for cooking video
NASA Astrophysics Data System (ADS)
Bianco, Simone; Ciocca, Gianluigi; Napoletano, Paolo; Schettini, Raimondo; Margherita, Roberto; Marini, Gianluca; Gianforme, Giorgio; Pantaleo, Giuseppe
2013-03-01
In order to create a cooking assistant application to guide the users in the preparation of the dishes relevant to their profile diets and food preferences, it is necessary to accurately annotate the video recipes, identifying and tracking the foods of the cook. These videos present particular annotation challenges such as frequent occlusions, food appearance changes, etc. Manually annotate the videos is a time-consuming, tedious and error-prone task. Fully automatic tools that integrate computer vision algorithms to extract and identify the elements of interest are not error free, and false positive and false negative detections need to be corrected in a post-processing stage. We present an interactive, semi-automatic tool for the annotation of cooking videos that integrates computer vision techniques under the supervision of the user. The annotation accuracy is increased with respect to completely automatic tools and the human effort is reduced with respect to completely manual ones. The performance and usability of the proposed tool are evaluated on the basis of the time and effort required to annotate the same video sequences.
NASA Astrophysics Data System (ADS)
Adiri, Zakaria; El Harti, Abderrazak; Jellouli, Amine; Lhissou, Rachid; Maacha, Lhou; Azmi, Mohamed; Zouhair, Mohamed; Bachaoui, El Mostafa
2017-12-01
Certainly, lineament mapping occupies an important place in several studies, including geology, hydrogeology and topography etc. With the help of remote sensing techniques, lineaments can be better identified due to strong advances in used data and methods. This allowed exceeding the usual classical procedures and achieving more precise results. The aim of this work is the comparison of ASTER, Landsat-8 and Sentinel 1 data sensors in automatic lineament extraction. In addition to image data, the followed approach includes the use of the pre-existing geological map, the Digital Elevation Model (DEM) as well as the ground truth. Through a fully automatic approach consisting of a combination of edge detection algorithm and line-linking algorithm, we have found the optimal parameters for automatic lineament extraction in the study area. Thereafter, the comparison and the validation of the obtained results showed that the Sentinel 1 data are more efficient in restitution of lineaments. This indicates the performance of the radar data compared to those optical in this kind of study.
Strategies for automatic processing of large aftershock sequences
NASA Astrophysics Data System (ADS)
Kvaerna, T.; Gibbons, S. J.
2017-12-01
Aftershock sequences following major earthquakes present great challenges to seismic bulletin generation. The analyst resources needed to locate events increase with increased event numbers as the quality of underlying, fully automatic, event lists deteriorates. While current pipelines, designed a generation ago, are usually limited to single passes over the raw data, modern systems also allow multiple passes. Processing the raw data from each station currently generates parametric data streams that are later subject to phase-association algorithms which form event hypotheses. We consider a major earthquake scenario and propose to define a region of likely aftershock activity in which we will detect and accurately locate events using a separate, specially targeted, semi-automatic process. This effort may use either pattern detectors or more general algorithms that cover wider source regions without requiring waveform similarity. An iterative procedure to generate automatic bulletins would incorporate all the aftershock event hypotheses generated by the auxiliary process, and filter all phases from these events from the original detection lists prior to a new iteration of the global phase-association algorithm.
Markov random field based automatic image alignment for electron tomography.
Amat, Fernando; Moussavi, Farshid; Comolli, Luis R; Elidan, Gal; Downing, Kenneth H; Horowitz, Mark
2008-03-01
We present a method for automatic full-precision alignment of the images in a tomographic tilt series. Full-precision automatic alignment of cryo electron microscopy images has remained a difficult challenge to date, due to the limited electron dose and low image contrast. These facts lead to poor signal to noise ratio (SNR) in the images, which causes automatic feature trackers to generate errors, even with high contrast gold particles as fiducial features. To enable fully automatic alignment for full-precision reconstructions, we frame the problem probabilistically as finding the most likely particle tracks given a set of noisy images, using contextual information to make the solution more robust to the noise in each image. To solve this maximum likelihood problem, we use Markov Random Fields (MRF) to establish the correspondence of features in alignment and robust optimization for projection model estimation. The resulting algorithm, called Robust Alignment and Projection Estimation for Tomographic Reconstruction, or RAPTOR, has not needed any manual intervention for the difficult datasets we have tried, and has provided sub-pixel alignment that is as good as the manual approach by an expert user. We are able to automatically map complete and partial marker trajectories and thus obtain highly accurate image alignment. Our method has been applied to challenging cryo electron tomographic datasets with low SNR from intact bacterial cells, as well as several plastic section and X-ray datasets.
Murgatroyd, Francis D; Helmling, Erhard; Lemke, Bernd; Eber, Bernd; Mewis, Christian; van der Meer-Hensgens, Judith; Chang, Yanping; Khalameizer, Vladimir; Katz, Amos
2010-06-01
The Secura ICD and Consulta CRT-D are the first defibrillators to have automatic right atrial (RA), right ventricular (RV), and left ventricular (LV) capture management (CM). Complete CM was evaluated in an implantable cardioverter defibrillator (ICD) population. Two prospective clinical studies were conducted in 28 centres in Europe and Israel. Automatic CM data were compared with manual threshold measurements, the CM applicability was determined, and adjustments to pacing outputs were analysed. In total, 160 patients [age 64.6 +/- 10.4 years, 77% male, 80 ICD and 80 cardiac resynchronization therapy defibrillator (CRT-D)] were included. The differences between automatic and manual measurements were =0.25 V in 97% (RA CM) and 96% (RV CM) and were all within the safety margin. Fully automatic CM measurements were available within 1 week prior to the 3-month visit in 90% (RA), 99% (RV), and 97% (LV) of the patients. Results indicated increased output (threshold >2.5 V) due to raised RA threshold in seven (4.4%), high RV threshold in nine (5.6%), and high LV threshold in three patients (3.8%). All high threshold detections and all automatic modulations of pacing output were adjudicated appropriate. Complete CM adjusts pacing output appropriately, permitting a reduction in office visits while it may maximize device longevity. The study was registered at ClinicalTrials.gov identifiers: NCT00526227 and NCT00526162.
Espinoza, Karlos; Valera, Diego L.; Torres, José A.; López, Alejandro; Molina-Aiz, Francisco D.
2015-01-01
Wind tunnels are a key experimental tool for the analysis of airflow parameters in many fields of application. Despite their great potential impact on agricultural research, few contributions have dealt with the development of automatic control systems for wind tunnels in the field of greenhouse technology. The objective of this paper is to present an automatic control system that provides precision and speed of measurement, as well as efficient data processing in low-speed wind tunnel experiments for greenhouse engineering applications. The system is based on an algorithm that identifies the system model and calculates the optimum PI controller. The validation of the system was performed on a cellulose evaporative cooling pad and on insect-proof screens to assess its response to perturbations. The control system provided an accuracy of <0.06 m·s−1 for airflow speed and <0.50 Pa for pressure drop, thus permitting the reproducibility and standardization of the tests. The proposed control system also incorporates a fully-integrated software unit that manages the tests in terms of airflow speed and pressure drop set points. PMID:26274962
Automatic Brain Tumor Detection in T2-weighted Magnetic Resonance Images
NASA Astrophysics Data System (ADS)
Dvořák, P.; Kropatsch, W. G.; Bartušek, K.
2013-10-01
This work focuses on fully automatic detection of brain tumors. The first aim is to determine, whether the image contains a brain with a tumor, and if it does, localize it. The goal of this work is not the exact segmentation of tumors, but the localization of their approximate position. The test database contains 203 T2-weighted images of which 131 are images of healthy brain and the remaining 72 images contain brain with pathological area. The estimation, whether the image shows an afflicted brain and where a pathological area is, is done by multi resolution symmetry analysis. The first goal was tested by five-fold cross-validation technique with 100 repetitions to avoid the result dependency on sample order. This part of the proposed method reaches the true positive rate of 87.52% and the true negative rate of 93.14% for an afflicted brain detection. The evaluation of the second part of the algorithm was carried out by comparing the estimated location to the true tumor location. The detection of the tumor location reaches the rate of 95.83% of correct anomaly detection and the rate 87.5% of correct tumor location.
NASA Astrophysics Data System (ADS)
Afifi, Ahmed; Nakaguchi, Toshiya; Tsumura, Norimichi
2010-03-01
In many medical applications, the automatic segmentation of deformable organs from medical images is indispensable and its accuracy is of a special interest. However, the automatic segmentation of these organs is a challenging task according to its complex shape. Moreover, the medical images usually have noise, clutter, or occlusion and considering the image information only often leads to meager image segmentation. In this paper, we propose a fully automated technique for the segmentation of deformable organs from medical images. In this technique, the segmentation is performed by fitting a nonlinear shape model with pre-segmented images. The kernel principle component analysis (KPCA) is utilized to capture the complex organs deformation and to construct the nonlinear shape model. The presegmentation is carried out by labeling each pixel according to its high level texture features extracted using the overcomplete wavelet packet decomposition. Furthermore, to guarantee an accurate fitting between the nonlinear model and the pre-segmented images, the particle swarm optimization (PSO) algorithm is employed to adapt the model parameters for the novel images. In this paper, we demonstrate the competence of proposed technique by implementing it to the liver segmentation from computed tomography (CT) scans of different patients.
Automated detection of diabetic retinopathy on digital fundus images.
Sinthanayothin, C; Boyce, J F; Williamson, T H; Cook, H L; Mensah, E; Lal, S; Usher, D
2002-02-01
The aim was to develop an automated screening system to analyse digital colour retinal images for important features of non-proliferative diabetic retinopathy (NPDR). High performance pre-processing of the colour images was performed. Previously described automated image analysis systems were used to detect major landmarks of the retinal image (optic disc, blood vessels and fovea). Recursive region growing segmentation algorithms combined with the use of a new technique, termed a 'Moat Operator', were used to automatically detect features of NPDR. These features included haemorrhages and microaneurysms (HMA), which were treated as one group, and hard exudates as another group. Sensitivity and specificity data were calculated by comparison with an experienced fundoscopist. The algorithm for exudate recognition was applied to 30 retinal images of which 21 contained exudates and nine were without pathology. The sensitivity and specificity for exudate detection were 88.5% and 99.7%, respectively, when compared with the ophthalmologist. HMA were present in 14 retinal images. The algorithm achieved a sensitivity of 77.5% and specificity of 88.7% for detection of HMA. Fully automated computer algorithms were able to detect hard exudates and HMA. This paper presents encouraging results in automatic identification of important features of NPDR.
NASA Astrophysics Data System (ADS)
Carestia, Mariachiara; Pizzoferrato, Roberto; Gelfusa, Michela; Cenciarelli, Orlando; Ludovici, Gian Marco; Gabriele, Jessica; Malizia, Andrea; Murari, Andrea; Vega, Jesus; Gaudio, Pasquale
2015-11-01
Biosecurity and biosafety are key concerns of modern society. Although nanomaterials are improving the capacities of point detectors, standoff detection still appears to be an open issue. Laser-induced fluorescence of biological agents (BAs) has proved to be one of the most promising optical techniques to achieve early standoff detection, but its strengths and weaknesses are still to be fully investigated. In particular, different BAs tend to have similar fluorescence spectra due to the ubiquity of biological endogenous fluorophores producing a signal in the UV range, making data analysis extremely challenging. The Universal Multi Event Locator (UMEL), a general method based on support vector regression, is commonly used to identify characteristic structures in arrays of data. In the first part of this work, we investigate fluorescence emission spectra of different simulants of BAs and apply UMEL for their automatic classification. In the second part of this work, we elaborate a strategy for the application of UMEL to the discrimination of different BAs' simulants spectra. Through this strategy, it has been possible to discriminate between these BAs' simulants despite the high similarity of their fluorescence spectra. These preliminary results support the use of SVR methods to classify BAs' spectral signatures.
Wang, Jinke; Guo, Haoyan
2016-01-01
This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, with maximum cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans, with volume difference (VD) 11.15 ± 69.63 cm 3 , volume overlap error (VOE) 3.5057 ± 1.3719%, average surface distance (ASD) 0.7917 ± 0.2741 mm, root mean square distance (RMSD) 1.6957 ± 0.6568 mm, maximum symmetric absolute surface distance (MSD) 21.3430 ± 8.1743 mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, AS; Piper, J; Curry, K
2015-06-15
Purpose: Prostate MRI plays an important role in diagnosis, biopsy guidance, and therapy planning for prostate cancer. Prostate MRI contours can be used to aid in image fusion for ultrasound biopsy guidance and delivery of radiation. Our goal in this study is to evaluate an automatic atlas-based segmentation method for generating prostate and peripheral zone (PZ) contours on MRI. Methods: T2-weighted MRIs were acquired on 3T-Discovery MR750 System (GE, Milwaukee). The Volumes of Interest (VOIs): prostate and PZ were outlined by an expert radiation oncologist and used to create an atlas library for atlas-based segmentation. The atlas-segmentation accuracy was evaluatedmore » using a leave-one-out analysis. The method involved automatically finding the atlas subject that best matched the test subject followed by a normalized intensity-based free-form deformable registration of the atlas subject to the test subject. The prostate and PZ contours were transformed to the test subject using the same deformation. For each test subject the three best matches were used and the final contour was combined using Majority Vote. The atlas-segmentation process was fully automatic. Dice similarity coefficients (DSC) and mean Hausdorff values were used for comparison. Results: VOIs contours were available for 28 subjects. For the prostate, the atlas-based segmentation method resulted in an average DSC of 0.88+/−0.08 and a mean Hausdorff distance of 1.1+/−0.9mm. The number of patients (#) in DSC ranges are as follows: 0.60–0.69(1), 0.70–0.79(2), 0.80–0.89(13), >0.89(11). For the PZ, the average DSC was 0.72+/−0.17 and average Hausdorff of 0.9+/−0.9mm. The number of patients (#) in DSC ranges are as follows: <0.60(4), 0.60–0.69(6), 0.70–0.79(7), 0.80–0.89(9), >0.89(1). Conclusion: The MRI atlas-based segmentation method achieved good results for both the whole prostate and PZ compared to expert defined VOIs. The technique is fast, fully automatic, and has the potential to provide significant time savings for prostate VOI definition. AS Nelson and J Piper are partial owners of MIM Software, Inc. AS Nelson, J Piper, K Curry, and A Swallen are current employees at MIM Software, Inc.« less
Geometric convex cone volume analysis
NASA Astrophysics Data System (ADS)
Li, Hsiao-Chi; Chang, Chein-I.
2016-05-01
Convexity is a major concept used to design and develop endmember finding algorithms (EFAs). For abundance unconstrained techniques, Pixel Purity Index (PPI) and Automatic Target Generation Process (ATGP) which use Orthogonal Projection (OP) as a criterion, are commonly used method. For abundance partially constrained techniques, Convex Cone Analysis is generally preferred which makes use of convex cones to impose Abundance Non-negativity Constraint (ANC). For abundance fully constrained N-FINDR and Simplex Growing Algorithm (SGA) are most popular methods which use simplex volume as a criterion to impose ANC and Abundance Sum-to-one Constraint (ASC). This paper analyze an issue encountered in volume calculation with a hyperplane introduced to illustrate an idea of bounded convex cone. Geometric Convex Cone Volume Analysis (GCCVA) projects the boundary vectors of a convex cone orthogonally on a hyperplane to reduce the effect of background signatures and a geometric volume approach is applied to address the issue arose from calculating volume and further improve the performance of convex cone-based EFAs.
Erraguntla, Madhav; Zapletal, Josef; Lawley, Mark
2017-12-01
The impact of infectious disease on human populations is a function of many factors including environmental conditions, vector dynamics, transmission mechanics, social and cultural behaviors, and public policy. A comprehensive framework for disease management must fully connect the complete disease lifecycle, including emergence from reservoir populations, zoonotic vector transmission, and impact on human societies. The Framework for Infectious Disease Analysis is a software environment and conceptual architecture for data integration, situational awareness, visualization, prediction, and intervention assessment. Framework for Infectious Disease Analysis automatically collects biosurveillance data using natural language processing, integrates structured and unstructured data from multiple sources, applies advanced machine learning, and uses multi-modeling for analyzing disease dynamics and testing interventions in complex, heterogeneous populations. In the illustrative case studies, natural language processing from social media, news feeds, and websites was used for information extraction, biosurveillance, and situation awareness. Classification machine learning algorithms (support vector machines, random forests, and boosting) were used for disease predictions.
Assessment of Automated Analyses of Cell Migration on Flat and Nanostructured Surfaces
Grădinaru, Cristian; Łopacińska, Joanna M.; Huth, Johannes; Kestler, Hans A.; Flyvbjerg, Henrik; Mølhave, Kristian
2012-01-01
Motility studies of cells often rely on computer software that analyzes time-lapse recorded movies and establishes cell trajectories fully automatically. This raises the question of reproducibility of results, since different programs could yield significantly different results of such automated analysis. The fact that the segmentation routines of such programs are often challenged by nanostructured surfaces makes the question more pertinent. Here we illustrate how it is possible to track cells on bright field microscopy images with image analysis routines implemented in an open-source cell tracking program, PACT (Program for Automated Cell Tracking). We compare the automated motility analysis of three cell tracking programs, PACT, Autozell, and TLA, using the same movies as input for all three programs. We find that different programs track overlapping, but different subsets of cells due to different segmentation methods. Unfortunately, population averages based on such different cell populations, differ significantly in some cases. Thus, results obtained with one software package are not necessarily reproducible by other software. PMID:24688640
Beltrame, Luca; Calura, Enrica; Popovici, Razvan R; Rizzetto, Lisa; Guedez, Damariz Rivero; Donato, Michele; Romualdi, Chiara; Draghici, Sorin; Cavalieri, Duccio
2011-08-01
Many models and analysis of signaling pathways have been proposed. However, neither of them takes into account that a biological pathway is not a fixed system, but instead it depends on the organism, tissue and cell type as well as on physiological, pathological and experimental conditions. The Biological Connection Markup Language (BCML) is a format to describe, annotate and visualize pathways. BCML is able to store multiple information, permitting a selective view of the pathway as it exists and/or behave in specific organisms, tissues and cells. Furthermore, BCML can be automatically converted into data formats suitable for analysis and into a fully SBGN-compliant graphical representation, making it an important tool that can be used by both computational biologists and 'wet lab' scientists. The XML schema and the BCML software suite are freely available under the LGPL for download at http://bcml.dc-atlas.net. They are implemented in Java and supported on MS Windows, Linux and OS X.
NASA Astrophysics Data System (ADS)
Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry
2015-11-01
In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.
Fully automatic detection of deep white matter T1 hypointense lesions in multiple sclerosis
NASA Astrophysics Data System (ADS)
Spies, Lothar; Tewes, Anja; Suppa, Per; Opfer, Roland; Buchert, Ralph; Winkler, Gerhard; Raji, Alaleh
2013-12-01
A novel method is presented for fully automatic detection of candidate white matter (WM) T1 hypointense lesions in three-dimensional high-resolution T1-weighted magnetic resonance (MR) images. By definition, T1 hypointense lesions have similar intensity as gray matter (GM) and thus appear darker than surrounding normal WM in T1-weighted images. The novel method uses a standard classification algorithm to partition T1-weighted images into GM, WM and cerebrospinal fluid (CSF). As a consequence, T1 hypointense lesions are assigned an increased GM probability by the standard classification algorithm. The GM component image of a patient is then tested voxel-by-voxel against GM component images of a normative database of healthy individuals. Clusters (≥0.1 ml) of significantly increased GM density within a predefined mask of deep WM are defined as lesions. The performance of the algorithm was assessed on voxel level by a simulation study. A maximum dice similarity coefficient of 60% was found for a typical T1 lesion pattern with contrasts ranging from WM to cortical GM, indicating substantial agreement between ground truth and automatic detection. Retrospective application to 10 patients with multiple sclerosis demonstrated that 93 out of 96 T1 hypointense lesions were detected. On average 3.6 false positive T1 hypointense lesions per patient were found. The novel method is promising to support the detection of hypointense lesions in T1-weighted images which warrants further evaluation in larger patient samples.
Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry
2015-11-21
In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.
PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data.
Hernández-de-Diego, Rafael; Tarazona, Sonia; Martínez-Mira, Carlos; Balzano-Nogueira, Leandro; Furió-Tarí, Pedro; Pappas, Georgios J; Conesa, Ana
2018-05-25
The increasing availability of multi-omic platforms poses new challenges to data analysis. Joint visualization of multi-omics data is instrumental in better understanding interconnections across molecular layers and in fully utilizing the multi-omic resources available to make biological discoveries. We present here PaintOmics 3, a web-based resource for the integrated visualization of multiple omic data types onto KEGG pathway diagrams. PaintOmics 3 combines server-end capabilities for data analysis with the potential of modern web resources for data visualization, providing researchers with a powerful framework for interactive exploration of their multi-omics information. Unlike other visualization tools, PaintOmics 3 covers a comprehensive pathway analysis workflow, including automatic feature name/identifier conversion, multi-layered feature matching, pathway enrichment, network analysis, interactive heatmaps, trend charts, and more. It accepts a wide variety of omic types, including transcriptomics, proteomics and metabolomics, as well as region-based approaches such as ATAC-seq or ChIP-seq data. The tool is freely available at www.paintomics.org.
Khan, Ali R; Wang, Lei; Beg, Mirza Faisal
2008-07-01
Fully-automated brain segmentation methods have not been widely adopted for clinical use because of issues related to reliability, accuracy, and limitations of delineation protocol. By combining the probabilistic-based FreeSurfer (FS) method with the Large Deformation Diffeomorphic Metric Mapping (LDDMM)-based label-propagation method, we are able to increase reliability and accuracy, and allow for flexibility in template choice. Our method uses the automated FreeSurfer subcortical labeling to provide a coarse-to-fine introduction of information in the LDDMM template-based segmentation resulting in a fully-automated subcortical brain segmentation method (FS+LDDMM). One major advantage of the FS+LDDMM-based approach is that the automatically generated segmentations generated are inherently smooth, thus subsequent steps in shape analysis can directly follow without manual post-processing or loss of detail. We have evaluated our new FS+LDDMM method on several databases containing a total of 50 subjects with different pathologies, scan sequences and manual delineation protocols for labeling the basal ganglia, thalamus, and hippocampus. In healthy controls we report Dice overlap measures of 0.81, 0.83, 0.74, 0.86 and 0.75 for the right caudate nucleus, putamen, pallidum, thalamus and hippocampus respectively. We also find statistically significant improvement of accuracy in FS+LDDMM over FreeSurfer for the caudate nucleus and putamen of Huntington's disease and Tourette's syndrome subjects, and the right hippocampus of Schizophrenia subjects.
Salimi-Khorshidi, Gholamreza; Douaud, Gwenaëlle; Beckmann, Christian F; Glasser, Matthew F; Griffanti, Ludovica; Smith, Stephen M
2014-01-01
Many sources of fluctuation contribute to the fMRI signal, and this makes identifying the effects that are truly related to the underlying neuronal activity difficult. Independent component analysis (ICA) - one of the most widely used techniques for the exploratory analysis of fMRI data - has shown to be a powerful technique in identifying various sources of neuronally-related and artefactual fluctuation in fMRI data (both with the application of external stimuli and with the subject “at rest”). ICA decomposes fMRI data into patterns of activity (a set of spatial maps and their corresponding time series) that are statistically independent and add linearly to explain voxel-wise time series. Given the set of ICA components, if the components representing “signal” (brain activity) can be distinguished form the “noise” components (effects of motion, non-neuronal physiology, scanner artefacts and other nuisance sources), the latter can then be removed from the data, providing an effective cleanup of structured noise. Manual classification of components is labour intensive and requires expertise; hence, a fully automatic noise detection algorithm that can reliably detect various types of noise sources (in both task and resting fMRI) is desirable. In this paper, we introduce FIX (“FMRIB’s ICA-based X-noiseifier”), which provides an automatic solution for denoising fMRI data via accurate classification of ICA components. For each ICA component FIX generates a large number of distinct spatial and temporal features, each describing a different aspect of the data (e.g., what proportion of temporal fluctuations are at high frequencies). The set of features is then fed into a multi-level classifier (built around several different Classifiers). Once trained through the hand-classification of a sufficient number of training datasets, the classifier can then automatically classify new datasets. The noise components can then be subtracted from (or regressed out of) the original data, to provide automated cleanup. On conventional resting-state fMRI (rfMRI) single-run datasets, FIX achieved about 95% overall accuracy. On high-quality rfMRI data from the Human Connectome Project, FIX achieves over 99% classification accuracy, and as a result is being used in the default rfMRI processing pipeline for generating HCP connectomes. FIX is publicly available as a plugin for FSL. PMID:24389422
ERIC Educational Resources Information Center
Nash, Hannah M.; Gooch, Debbie; Hulme, Charles; Mahajan, Yatin; McArthur, Genevieve; Steinmetzger, Kurt; Snowling, Margaret J.
2017-01-01
The "automatic letter-sound integration hypothesis" (Blomert, [Blomert, L., 2011]) proposes that dyslexia results from a failure to fully integrate letters and speech sounds into automated audio-visual objects. We tested this hypothesis in a sample of English-speaking children with dyslexic difficulties (N = 13) and samples of…
Fully automatic time-window selection using machine learning for global adjoint tomography
NASA Astrophysics Data System (ADS)
Chen, Y.; Hill, J.; Lei, W.; Lefebvre, M. P.; Bozdag, E.; Komatitsch, D.; Tromp, J.
2017-12-01
Selecting time windows from seismograms such that the synthetic measurements (from simulations) and measured observations are sufficiently close is indispensable in a global adjoint tomography framework. The increasing amount of seismic data collected everyday around the world demands "intelligent" algorithms for seismic window selection. While the traditional FLEXWIN algorithm can be "automatic" to some extent, it still requires both human input and human knowledge or experience, and thus is not deemed to be fully automatic. The goal of intelligent window selection is to automatically select windows based on a learnt engine that is built upon a huge number of existing windows generated through the adjoint tomography project. We have formulated the automatic window selection problem as a classification problem. All possible misfit calculation windows are classified as either usable or unusable. Given a large number of windows with a known selection mode (select or not select), we train a neural network to predict the selection mode of an arbitrary input window. Currently, the five features we extract from the windows are its cross-correlation value, cross-correlation time lag, amplitude ratio between observed and synthetic data, window length, and minimum STA/LTA value. More features can be included in the future. We use these features to characterize each window for training a multilayer perceptron neural network (MPNN). Training the MPNN is equivalent to solve a non-linear optimization problem. We use backward propagation to derive the gradient of the loss function with respect to the weighting matrices and bias vectors and use the mini-batch stochastic gradient method to iteratively optimize the MPNN. Numerical tests show that with a careful selection of the training data and a sufficient amount of training data, we are able to train a robust neural network that is capable of detecting the waveforms in an arbitrary earthquake data with negligible detection error compared to existing selection methods (e.g. FLEXWIN). We will introduce in detail the mathematical formulation of the window-selection-oriented MPNN and show very encouraging results when applying the new algorithm to real earthquake data.
Improved sampling and analysis of images in corneal confocal microscopy.
Schaldemose, E L; Fontain, F I; Karlsson, P; Nyengaard, J R
2017-10-01
Corneal confocal microscopy (CCM) is a noninvasive clinical method to analyse and quantify corneal nerve fibres in vivo. Although the CCM technique is in constant progress, there are methodological limitations in terms of sampling of images and objectivity of the nerve quantification. The aim of this study was to present a randomized sampling method of the CCM images and to develop an adjusted area-dependent image analysis. Furthermore, a manual nerve fibre analysis method was compared to a fully automated method. 23 idiopathic small-fibre neuropathy patients were investigated using CCM. Corneal nerve fibre length density (CNFL) and corneal nerve fibre branch density (CNBD) were determined in both a manual and automatic manner. Differences in CNFL and CNBD between (1) the randomized and the most common sampling method, (2) the adjusted and the unadjusted area and (3) the manual and automated quantification method were investigated. The CNFL values were significantly lower when using the randomized sampling method compared to the most common method (p = 0.01). There was not a statistical significant difference in the CNBD values between the randomized and the most common sampling method (p = 0.85). CNFL and CNBD values were increased when using the adjusted area compared to the standard area. Additionally, the study found a significant increase in the CNFL and CNBD values when using the manual method compared to the automatic method (p ≤ 0.001). The study demonstrated a significant difference in the CNFL values between the randomized and common sampling method indicating the importance of clear guidelines for the image sampling. The increase in CNFL and CNBD values when using the adjusted cornea area is not surprising. The observed increases in both CNFL and CNBD values when using the manual method of nerve quantification compared to the automatic method are consistent with earlier findings. This study underlines the importance of improving the analysis of the CCM images in order to obtain more objective corneal nerve fibre measurements. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
[Progress in the development of insulin pumps and their advanced automatic functions].
Prázný, Martin
2015-04-01
Patients with type 1 diabetes are exposed to permanent burden consisting of careful glucose self-monitoring and precise insulin dosage based on measured glucose values, carbohydrates content in the food and both planned and non-planned physical activity. Erroneous insulin dosing causes frequent both hypoglycemia and hyperglycemia. Hypoglycemia is, however, the most clinically significant complication limiting the optimal diabetes control. Automatic features for insulin dosage integrated in insulin pumps are thus very important. Low glucose suspend (LGS) and Predictive Low Glucose Management (PLGM) use glucose sensor values to prevent hypoglycemia, shorten the time spent in hypoglycemic range and present further step forward to fully closed-loop system of insulin treatment.
Automatic multi-organ segmentation using learning-based segmentation and level set optimization.
Kohlberger, Timo; Sofka, Michal; Zhang, Jingdan; Birkbeck, Neil; Wetzl, Jens; Kaftan, Jens; Declerck, Jérôme; Zhou, S Kevin
2011-01-01
We present a novel generic segmentation system for the fully automatic multi-organ segmentation from CT medical images. Thereby we combine the advantages of learning-based approaches on point cloud-based shape representation, such a speed, robustness, point correspondences, with those of PDE-optimization-based level set approaches, such as high accuracy and the straightforward prevention of segment overlaps. In a benchmark on 10-100 annotated datasets for the liver, the lungs, and the kidneys we show that the proposed system yields segmentation accuracies of 1.17-2.89 mm average surface errors. Thereby the level set segmentation (which is initialized by the learning-based segmentations) contributes with an 20%-40% increase in accuracy.
Deep convolutional neural network for prostate MR segmentation
NASA Astrophysics Data System (ADS)
Tian, Zhiqiang; Liu, Lizhi; Fei, Baowei
2017-03-01
Automatic segmentation of the prostate in magnetic resonance imaging (MRI) has many applications in prostate cancer diagnosis and therapy. We propose a deep fully convolutional neural network (CNN) to segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage based on prostate MR images and the corresponding ground truths, and learns to make inference for pixel-wise segmentation. Experiments were performed on our in-house data set, which contains prostate MR images of 20 patients. The proposed CNN model obtained a mean Dice similarity coefficient of 85.3%+/-3.2% as compared to the manual segmentation. Experimental results show that our deep CNN model could yield satisfactory segmentation of the prostate.
NASA Technical Reports Server (NTRS)
Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.
1993-01-01
The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.
Evaluation of new data processing algorithms for planar gated ventriculography (MUGA)
Fair, Joanna R.; Telepak, Robert J.
2009-01-01
Before implementing one of two new LVEF radionuclide gated ventriculogram (MUGA) systems, the results from 312 consecutive parallel patient studies were evaluated. Each gamma‐camera acquisition was simultaneously processed by semi‐automatic Medasys Pinnacle and by fully automatic and semiautomatic Philips nuclear medicine computer systems. The Philips systems yielded LVEF results within ±5LVEF percentage points of the Medasys system in fewer than half of the studies. The remaining values were higher or lower than those from the long‐used Medasys system. These differences might have changed cancer patient chemotherapy clinical decisions. As a result, our institution elected not to implement either new system. PACS: 87.57.U‐ Nuclear medicine imaging
Automatic Building Abstraction from Aerial Photogrammetry
NASA Astrophysics Data System (ADS)
Ley, A.; Hänsch, R.; Hellwich, O.
2017-09-01
Multi-view stereo has been shown to be a viable tool for the creation of realistic 3D city models. Nevertheless, it still states significant challenges since it results in dense, but noisy and incomplete point clouds when applied to aerial images. 3D city modelling usually requires a different representation of the 3D scene than these point clouds. This paper applies a fully-automatic pipeline to generate a simplified mesh from a given dense point cloud. The mesh provides a certain level of abstraction as it only consists of relatively large planar and textured surfaces. Thus, it is possible to remove noise, outlier, as well as clutter, while maintaining a high level of accuracy.
fgui: A Method for Automatically Creating Graphical User Interfaces for Command-Line R Packages
Hoffmann, Thomas J.; Laird, Nan M.
2009-01-01
The fgui R package is designed for developers of R packages, to help rapidly, and sometimes fully automatically, create a graphical user interface for a command line R package. The interface is built upon the Tcl/Tk graphical interface included in R. The package further facilitates the developer by loading in the help files from the command line functions to provide context sensitive help to the user with no additional effort from the developer. Passing a function as the argument to the routines in the fgui package creates a graphical interface for the function, and further options are available to tweak this interface for those who want more flexibility. PMID:21625291
Freyer, Marcus; Ale, Angelique; Schulz, Ralf B; Zientkowska, Marta; Ntziachristos, Vasilis; Englmeier, Karl-Hans
2010-01-01
The recent development of hybrid imaging scanners that integrate fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) allows the utilization of x-ray information as image priors for improving optical tomography reconstruction. To fully capitalize on this capacity, we consider a framework for the automatic and fast detection of different anatomic structures in murine XCT images. To accurately differentiate between different structures such as bone, lung, and heart, a combination of image processing steps including thresholding, seed growing, and signal detection are found to offer optimal segmentation performance. The algorithm and its utilization in an inverse FMT scheme that uses priors is demonstrated on mouse images.
Application of automatic image analysis in wood science
Charles W. McMillin
1982-01-01
In this paper I describe an image analysis system and illustrate with examples the application of automatic quantitative measurement to wood science. Automatic image analysis, a powerful and relatively new technology, uses optical, video, electronic, and computer components to rapidly derive information from images with minimal operator interaction. Such instruments...
NASA Technical Reports Server (NTRS)
Thomas, R. L.; Richards, T. R.
1977-01-01
The ERDA/NASA 100 kW Mod-0 wind turbine is operating at the NASA Plum Brook Station near Sandusky, Ohio. The operation of the wind turbine has been fully demonstrated and includes start-up, synchronization to the utility network, blade pitch control for control of power and speed, and shut-down. Also, fully automatic operation has been demonstrated by use of a remote control panel, 50 miles from the site, similar to what a utility dispatcher might use. The operation systems and experience with the wind turbine loads, electrical power and aerodynamic performance obtained from testing are described.
Discriminative Cooperative Networks for Detecting Phase Transitions
NASA Astrophysics Data System (ADS)
Liu, Ye-Hua; van Nieuwenburg, Evert P. L.
2018-04-01
The classification of states of matter and their corresponding phase transitions is a special kind of machine-learning task, where physical data allow for the analysis of new algorithms, which have not been considered in the general computer-science setting so far. Here we introduce an unsupervised machine-learning scheme for detecting phase transitions with a pair of discriminative cooperative networks (DCNs). In this scheme, a guesser network and a learner network cooperate to detect phase transitions from fully unlabeled data. The new scheme is efficient enough for dealing with phase diagrams in two-dimensional parameter spaces, where we can utilize an active contour model—the snake—from computer vision to host the two networks. The snake, with a DCN "brain," moves and learns actively in the parameter space, and locates phase boundaries automatically.
Spatial-time-state fusion algorithm for defect detection through eddy current pulsed thermography
NASA Astrophysics Data System (ADS)
Xiao, Xiang; Gao, Bin; Woo, Wai Lok; Tian, Gui Yun; Xiao, Xiao Ting
2018-05-01
Eddy Current Pulsed Thermography (ECPT) has received extensive attention due to its high sensitive of detectability on surface and subsurface cracks. However, it remains as a difficult challenge in unsupervised detection as to identify defects without knowing any prior knowledge. This paper presents a spatial-time-state features fusion algorithm to obtain fully profile of the defects by directional scanning. The proposed method is intended to conduct features extraction by using independent component analysis (ICA) and automatic features selection embedding genetic algorithm. Finally, the optimal feature of each step is fused to obtain defects reconstruction by applying common orthogonal basis extraction (COBE) method. Experiments have been conducted to validate the study and verify the efficacy of the proposed method on blind defect detection.
Optical surface contouring for non-destructive inspection of turbomachinery
NASA Astrophysics Data System (ADS)
Modarress, Dariush; Schaack, David F.
1994-03-01
Detection of stress cracks and other surface defects during maintenance and in-service inspection of propulsion system components, including turbine blades and combustion compartments, is presently performed visually. There is a need for a non-contact, miniaturized, and fully fieldable instrument that may be used as an automated inspection tool for inspection of aircraft engines. During this SBIR Phase 1 program, the feasibility of a ruggedized optical probe for automatic and nondestructive inspection of complex shaped objects will be established. Through a careful analysis of the measurement requirements, geometrical and optical constraints, and consideration of issues such as manufacturability, compactness, simplicity, and cost, one or more conceptual optical designs will be developed. The proposed concept will be further developed and a prototype will be fabricated during Phase 2.
Optical surface contouring for non-destructive inspection of turbomachinery
NASA Technical Reports Server (NTRS)
Modarress, Dariush; Schaack, David F.
1994-01-01
Detection of stress cracks and other surface defects during maintenance and in-service inspection of propulsion system components, including turbine blades and combustion compartments, is presently performed visually. There is a need for a non-contact, miniaturized, and fully fieldable instrument that may be used as an automated inspection tool for inspection of aircraft engines. During this SBIR Phase 1 program, the feasibility of a ruggedized optical probe for automatic and nondestructive inspection of complex shaped objects will be established. Through a careful analysis of the measurement requirements, geometrical and optical constraints, and consideration of issues such as manufacturability, compactness, simplicity, and cost, one or more conceptual optical designs will be developed. The proposed concept will be further developed and a prototype will be fabricated during Phase 2.
Li, Shuqing; Sun, Ying; Soergel, Dagobert
2017-12-23
We present a novel approach to recommending articles from the medical literature that support clinical diagnostic decision-making, giving detailed descriptions of the associated ideas and principles. The specific goal is to retrieve biomedical articles that help answer questions of a specified type about a particular case. Based on the filtered keywords, MeSH(Medical Subject Headings) lexicon and the automatically extracted acronyms, the relationship between keywords and articles was built. The paper gives a detailed description of the process of by which keywords were measured and relevant articles identified based on link analysis in a weighted keywords network. Some important challenges identified in this study include the extraction of diagnosis-related keywords and a collection of valid sentences based on the keyword co-occurrence analysis and existing descriptions of symptoms. All data were taken from medical articles provided in the TREC (Text Retrieval Conference) clinical decision support track 2015. Ten standard topics and one demonstration topic were tested. In each case, a maximum of five articles with the highest relevance were returned. The total user satisfaction of 3.98 was 33% higher than average. The results also suggested that the smaller the number of results, the higher the average satisfaction. However, a few shortcomings were also revealed since medical literature recommendation for clinical diagnostic decision support is so complex a topic that it cannot be fully addressed through the semantic information carried solely by keywords in existing descriptions of symptoms. Nevertheless, the fact that these articles are actually relevant will no doubt inspire future research.
Linked independent component analysis for multimodal data fusion.
Groves, Adrian R; Beckmann, Christian F; Smith, Steve M; Woolrich, Mark W
2011-02-01
In recent years, neuroimaging studies have increasingly been acquiring multiple modalities of data and searching for task- or disease-related changes in each modality separately. A major challenge in analysis is to find systematic approaches for fusing these differing data types together to automatically find patterns of related changes across multiple modalities, when they exist. Independent Component Analysis (ICA) is a popular unsupervised learning method that can be used to find the modes of variation in neuroimaging data across a group of subjects. When multimodal data is acquired for the subjects, ICA is typically performed separately on each modality, leading to incompatible decompositions across modalities. Using a modular Bayesian framework, we develop a novel "Linked ICA" model for simultaneously modelling and discovering common features across multiple modalities, which can potentially have completely different units, signal- and contrast-to-noise ratios, voxel counts, spatial smoothnesses and intensity distributions. Furthermore, this general model can be configured to allow tensor ICA or spatially-concatenated ICA decompositions, or a combination of both at the same time. Linked ICA automatically determines the optimal weighting of each modality, and also can detect single-modality structured components when present. This is a fully probabilistic approach, implemented using Variational Bayes. We evaluate the method on simulated multimodal data sets, as well as on a real data set of Alzheimer's patients and age-matched controls that combines two very different types of structural MRI data: morphological data (grey matter density) and diffusion data (fractional anisotropy, mean diffusivity, and tensor mode). Copyright © 2010 Elsevier Inc. All rights reserved.
Open access for ALICE analysis based on virtualization technology
NASA Astrophysics Data System (ADS)
Buncic, P.; Gheata, M.; Schutz, Y.
2015-12-01
Open access is one of the important leverages for long-term data preservation for a HEP experiment. To guarantee the usability of data analysis tools beyond the experiment lifetime it is crucial that third party users from the scientific community have access to the data and associated software. The ALICE Collaboration has developed a layer of lightweight components built on top of virtualization technology to hide the complexity and details of the experiment-specific software. Users can perform basic analysis tasks within CernVM, a lightweight generic virtual machine, paired with an ALICE specific contextualization. Once the virtual machine is launched, a graphical user interface is automatically started without any additional configuration. This interface allows downloading the base ALICE analysis software and running a set of ALICE analysis modules. Currently the available tools include fully documented tutorials for ALICE analysis, such as the measurement of strange particle production or the nuclear modification factor in Pb-Pb collisions. The interface can be easily extended to include an arbitrary number of additional analysis modules. We present the current status of the tools used by ALICE through the CERN open access portal, and the plans for future extensions of this system.
NASA Astrophysics Data System (ADS)
Zhang, Jun; Saha, Ashirbani; Zhu, Zhe; Mazurowski, Maciej A.
2018-02-01
Breast tumor segmentation based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) remains an active as well as a challenging problem. Previous studies often rely on manual annotation for tumor regions, which is not only time-consuming but also error-prone. Recent studies have shown high promise of deep learning-based methods in various segmentation problems. However, these methods are usually faced with the challenge of limited number (e.g., tens or hundreds) of medical images for training, leading to sub-optimal segmentation performance. Also, previous methods cannot efficiently deal with prevalent class-imbalance problems in tumor segmentation, where the number of voxels in tumor regions is much lower than that in the background area. To address these issues, in this study, we propose a mask-guided hierarchical learning (MHL) framework for breast tumor segmentation via fully convolutional networks (FCN). Our strategy is first decomposing the original difficult problem into several sub-problems and then solving these relatively simpler sub-problems in a hierarchical manner. To precisely identify locations of tumors that underwent a biopsy, we further propose an FCN model to detect two landmarks defined on nipples. Finally, based on both segmentation probability maps and our identified landmarks, we proposed to select biopsied tumors from all detected tumors via a tumor selection strategy using the pathology location. We validate our MHL method using data for 272 patients, and achieve a mean Dice similarity coefficient (DSC) of 0.72 in breast tumor segmentation. Finally, in a radiogenomic analysis, we show that a previously developed image features show a comparable performance for identifying luminal A subtype when applied to the automatic segmentation and a semi-manual segmentation demonstrating a high promise for fully automated radiogenomic analysis in breast cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mijnheer, B; Mans, A; Olaciregui-Ruiz, I
Purpose: To develop a 3D in vivo dosimetry method that is able to substitute pre-treatment verification in an efficient way, and to terminate treatment delivery if the online measured 3D dose distribution deviates too much from the predicted dose distribution. Methods: A back-projection algorithm has been further developed and implemented to enable automatic 3D in vivo dose verification of IMRT/VMAT treatments using a-Si EPIDs. New software tools were clinically introduced to allow automated image acquisition, to periodically inspect the record-and-verify database, and to automatically run the EPID dosimetry software. The comparison of the EPID-reconstructed and planned dose distribution is donemore » offline to raise automatically alerts and to schedule actions when deviations are detected. Furthermore, a software package for online dose reconstruction was also developed. The RMS of the difference between the cumulative planned and reconstructed 3D dose distributions was used for triggering a halt of a linac. Results: The implementation of fully automated 3D EPID-based in vivo dosimetry was able to replace pre-treatment verification for more than 90% of the patient treatments. The process has been fully automated and integrated in our clinical workflow where over 3,500 IMRT/VMAT treatments are verified each year. By optimizing the dose reconstruction algorithm and the I/O performance, the delivered 3D dose distribution is verified in less than 200 ms per portal image, which includes the comparison between the reconstructed and planned dose distribution. In this way it was possible to generate a trigger that can stop the irradiation at less than 20 cGy after introducing large delivery errors. Conclusion: The automatic offline solution facilitated the large scale clinical implementation of 3D EPID-based in vivo dose verification of IMRT/VMAT treatments; the online approach has been successfully tested for various severe delivery errors.« less
ERIC Educational Resources Information Center
Kuhn, Stephanie A. Contrucci; Triggs, Mandy
2009-01-01
Self-injurious behavior (SIB) that occurs at high rates across all conditions of a functional analysis can suggest automatic or multiple functions. In the current study, we conducted a functional analysis for 1 individual with SIB. Results indicated that SIB was, at least in part, maintained by automatic reinforcement. Further analyses using…
ERIC Educational Resources Information Center
Nowinski, Wieslaw L.; Thirunavuukarasuu, Arumugam; Ananthasubramaniam, Anand; Chua, Beng Choon; Qian, Guoyu; Nowinska, Natalia G.; Marchenko, Yevgen; Volkau, Ihar
2009-01-01
Preparation of tests and student's assessment by the instructor are time consuming. We address these two tasks in neuroanatomy education by employing a digital media application with a three-dimensional (3D), interactive, fully segmented, and labeled brain atlas. The anatomical and vascular models in the atlas are linked to "Terminologia…
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Events of default and the Secretary's remedies for... With Terms of Leverage § 4290.1810 Events of default and the Secretary's remedies for RBIC's... and as if fully set forth in the Debentures. (b) Automatic events of default. The occurrence of one or...
Infrared-enhanced TV for fire detection
NASA Technical Reports Server (NTRS)
Hall, J. R.
1978-01-01
Closed-circuit television is superior to conventional smoke or heat sensors for detecting fires in large open spaces. Single TV camera scans entire area, whereas many conventional sensors and maze of interconnecting wiring might be required to get same coverage. Camera is monitored by person who would trip alarm if fire were detected, or electronic circuitry could process camera signal for fully-automatic alarm system.
ERIC Educational Resources Information Center
Chen, Hao-Jan Howard
2011-01-01
Authentic videos are always motivational for foreign language learners. According to the findings of many empirical studies, subtitled L2 videos are particularly useful for foreign language learning. Although there are many authentic English videos available on the Internet, most of these videos do not have subtitles. If subtitles can be added to…
LIBRA is a fully-automatic breast density estimation software solution based on a published algorithm that works on either raw (i.e., “FOR PROCESSING”) or vendor post-processed (i.e., “FOR PRESENTATION”) digital mammography images. LIBRA has been applied to over 30,000 screening exams and is being increasingly utilized in larger studies.
ERIC Educational Resources Information Center
Alfonseca, Enrique; Rodriguez, Pilar; Perez, Diana
2007-01-01
This work describes a framework that combines techniques from Adaptive Hypermedia and Natural Language processing in order to create, in a fully automated way, on-line information systems from linear texts in electronic format, such as textbooks. The process is divided into two steps: an "off-line" processing step, which analyses the source text,…
Natural Language Processing: A Tutorial. Revision
1990-01-01
English in word-for-word language translations. An oft-repeated (although fictional) anecdote illustrates the ... English by a language translation program, became: " The vodka is strong but 3 the steak is rotten." The point made is that vast amounts of knowledge...are required for effective language translations. The initial goal for Language Translation was "fully-automatic high-quality translation" (FAHOT).
Tan, Li Kuo; Liew, Yih Miin; Lim, Einly; Abdul Aziz, Yang Faridah; Chee, Kok Han; McLaughlin, Robert A
2018-06-01
In this paper, we develop and validate an open source, fully automatic algorithm to localize the left ventricular (LV) blood pool centroid in short axis cardiac cine MR images, enabling follow-on automated LV segmentation algorithms. The algorithm comprises four steps: (i) quantify motion to determine an initial region of interest surrounding the heart, (ii) identify potential 2D objects of interest using an intensity-based segmentation, (iii) assess contraction/expansion, circularity, and proximity to lung tissue to score all objects of interest in terms of their likelihood of constituting part of the LV, and (iv) aggregate the objects into connected groups and construct the final LV blood pool volume and centroid. This algorithm was tested against 1140 datasets from the Kaggle Second Annual Data Science Bowl, as well as 45 datasets from the STACOM 2009 Cardiac MR Left Ventricle Segmentation Challenge. Correct LV localization was confirmed in 97.3% of the datasets. The mean absolute error between the gold standard and localization centroids was 2.8 to 4.7 mm, or 12 to 22% of the average endocardial radius. Graphical abstract Fully automated localization of the left ventricular blood pool in short axis cardiac cine MR images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarolli, Jay G.; Naes, Benjamin E.; Butler, Lamar
A fully convolutional neural network (FCN) was developed to supersede automatic or manual thresholding algorithms used for tabulating SIMS particle search data. The FCN was designed to perform a binary classification of pixels in each image belonging to a particle or not, thereby effectively removing background signal without manually or automatically determining an intensity threshold. Using 8,000 images from 28 different particle screening analyses, the FCN was trained to accurately predict pixels belonging to a particle with near 99% accuracy. Background eliminated images were then segmented using a watershed technique in order to determine isotopic ratios of particles. A comparisonmore » of the isotopic distributions of an independent data set segmented using the neural network, compared to a commercially available automated particle measurement (APM) program developed by CAMECA, highlighted the necessity for effective background removal to ensure that resulting particle identification is not only accurate, but preserves valuable signal that could be lost due to improper segmentation. The FCN approach improves the robustness of current state-of-the-art particle searching algorithms by reducing user input biases, resulting in an improved absolute signal per particle and decreased uncertainty of the determined isotope ratios.« less
State of the art survey on MRI brain tumor segmentation.
Gordillo, Nelly; Montseny, Eduard; Sobrevilla, Pilar
2013-10-01
Brain tumor segmentation consists of separating the different tumor tissues (solid or active tumor, edema, and necrosis) from normal brain tissues: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). In brain tumor studies, the existence of abnormal tissues may be easily detectable most of the time. However, accurate and reproducible segmentation and characterization of abnormalities are not straightforward. In the past, many researchers in the field of medical imaging and soft computing have made significant survey in the field of brain tumor segmentation. Both semiautomatic and fully automatic methods have been proposed. Clinical acceptance of segmentation techniques has depended on the simplicity of the segmentation, and the degree of user supervision. Interactive or semiautomatic methods are likely to remain dominant in practice for some time, especially in these applications where erroneous interpretations are unacceptable. This article presents an overview of the most relevant brain tumor segmentation methods, conducted after the acquisition of the image. Given the advantages of magnetic resonance imaging over other diagnostic imaging, this survey is focused on MRI brain tumor segmentation. Semiautomatic and fully automatic techniques are emphasized. Copyright © 2013 Elsevier Inc. All rights reserved.
A fully automatic evolutionary classification of protein folds: Dali Domain Dictionary version 3
Dietmann, Sabine; Park, Jong; Notredame, Cedric; Heger, Andreas; Lappe, Michael; Holm, Liisa
2001-01-01
The Dali Domain Dictionary (http://www.ebi.ac.uk/dali/domain) is a numerical taxonomy of all known structures in the Protein Data Bank (PDB). The taxonomy is derived fully automatically from measurements of structural, functional and sequence similarities. Here, we report the extension of the classification to match the traditional four hierarchical levels corresponding to: (i) supersecondary structural motifs (attractors in fold space), (ii) the topology of globular domains (fold types), (iii) remote homologues (functional families) and (iv) homologues with sequence identity above 25% (sequence families). The computational definitions of attractors and functional families are new. In September 2000, the Dali classification contained 10 531 PDB entries comprising 17 101 chains, which were partitioned into five attractor regions, 1375 fold types, 2582 functional families and 3724 domain sequence families. Sequence families were further associated with 99 582 unique homologous sequences in the HSSP database, which increases the number of effectively known structures several-fold. The resulting database contains the description of protein domain architecture, the definition of structural neighbours around each known structure, the definition of structurally conserved cores and a comprehensive library of explicit multiple alignments of distantly related protein families. PMID:11125048
Fully Automated Data Collection Using PAM and the Development of PAM/SPACE Reversible Cassettes
NASA Astrophysics Data System (ADS)
Hiraki, Masahiko; Watanabe, Shokei; Chavas, Leonard M. G.; Yamada, Yusuke; Matsugaki, Naohiro; Igarashi, Noriyuki; Wakatsuki, Soichi; Fujihashi, Masahiro; Miki, Kunio; Baba, Seiki; Ueno, Go; Yamamoto, Masaki; Suzuki, Mamoru; Nakagawa, Atsushi; Watanabe, Nobuhisa; Tanaka, Isao
2010-06-01
To remotely control and automatically collect data in high-throughput X-ray data collection experiments, the Structural Biology Research Center at the Photon Factory (PF) developed and installed sample exchange robots PAM (PF Automated Mounting system) at PF macromolecular crystallography beamlines; BL-5A, BL-17A, AR-NW12A and AR-NE3A. We developed and installed software that manages the flow of the automated X-ray experiments; sample exchanges, loop-centering and X-ray diffraction data collection. The fully automated data collection function has been available since February 2009. To identify sample cassettes, PAM employs a two-dimensional bar code reader. New beamlines, BL-1A at the Photon Factory and BL32XU at SPring-8, are currently under construction as part of Targeted Proteins Research Program (TPRP) by the Ministry of Education, Culture, Sports, Science and Technology of Japan. However, different robots, PAM and SPACE (SPring-8 Precise Automatic Cryo-sample Exchanger), will be installed at BL-1A and BL32XU, respectively. For the convenience of the users of both facilities, pins and cassettes for PAM and SPACE are developed as part of the TPRP.
Fu, Yili; Gao, Wenpeng; Chen, Xiaoguang; Zhu, Minwei; Shen, Weigao; Wang, Shuguo
2010-01-01
The reference system based on the fourth ventricular landmarks (including the fastigial point and ventricular floor plane) is used in medical image analysis of the brain stem. The objective of this study was to develop a rapid, robust, and accurate method for the automatic identification of this reference system on T1-weighted magnetic resonance images. The fully automated method developed in this study consisted of four stages: preprocessing of the data set, expectation-maximization algorithm-based extraction of the fourth ventricle in the region of interest, a coarse-to-fine strategy for identifying the fastigial point, and localization of the base point. The method was evaluated on 27 Brain Web data sets qualitatively and 18 Internet Brain Segmentation Repository data sets and 30 clinical scans quantitatively. The results of qualitative evaluation indicated that the method was robust to rotation, landmark variation, noise, and inhomogeneity. The results of quantitative evaluation indicated that the method was able to identify the reference system with an accuracy of 0.7 +/- 0.2 mm for the fastigial point and 1.1 +/- 0.3 mm for the base point. It took <6 seconds for the method to identify the related landmarks on a personal computer with an Intel Core 2 6300 processor and 2 GB of random-access memory. The proposed method for the automatic identification of the reference system based on the fourth ventricular landmarks was shown to be rapid, robust, and accurate. The method has potentially utility in image registration and computer-aided surgery.
NASA Astrophysics Data System (ADS)
Georgiou, Mike F.; Sfakianakis, George N.; Johnson, Gary; Douligeris, Christos; Scandar, Silvia; Eisler, E.; Binkley, B.
1994-05-01
In an effort to improve patient care while considering cost-effectiveness, we developed a Picture Archiving and Communication System (PACS), which combines imaging cameras, computers and other peripheral equipment from multiple nuclear medicine vectors. The PACS provides fully-digital clinical operation which includes acquisition and automatic organization of patient data, distribution of the data to all networked units inside the department and other remote locations, digital analysis and quantitation of images, digital diagnostic reading of image studies and permanent data archival with the ability for fast retrieval. The PACS enabled us to significantly reduce the amount of film used, and we are currently proceeding with implementing a film-less laboratory. Hard copies are produced on paper or transparent sheets for non-digitally connected parts of the hospital. The PACS provides full-digital operation which is faster, more reliable, better organized and managed, and overall more efficient than a conventional film-based operation. In this paper, the integration of the various PACS components from multiple vendors is reviewed, and the impact of PACS, with its advantages and limitations on our clinical operation is analyzed.
e-Bitter: Bitterant Prediction by the Consensus Voting From the Machine-Learning Methods
Zheng, Suqing; Jiang, Mengying; Zhao, Chengwei; Zhu, Rui; Hu, Zhicheng; Xu, Yong; Lin, Fu
2018-01-01
In-silico bitterant prediction received the considerable attention due to the expensive and laborious experimental-screening of the bitterant. In this work, we collect the fully experimental dataset containing 707 bitterants and 592 non-bitterants, which is distinct from the fully or partially hypothetical non-bitterant dataset used in the previous works. Based on this experimental dataset, we harness the consensus votes from the multiple machine-learning methods (e.g., deep learning etc.) combined with the molecular fingerprint to build the bitter/bitterless classification models with five-fold cross-validation, which are further inspected by the Y-randomization test and applicability domain analysis. One of the best consensus models affords the accuracy, precision, specificity, sensitivity, F1-score, and Matthews correlation coefficient (MCC) of 0.929, 0.918, 0.898, 0.954, 0.936, and 0.856 respectively on our test set. For the automatic prediction of bitterant, a graphic program “e-Bitter” is developed for the convenience of users via the simple mouse click. To our best knowledge, it is for the first time to adopt the consensus model for the bitterant prediction and develop the first free stand-alone software for the experimental food scientist. PMID:29651416
e-Bitter: Bitterant Prediction by the Consensus Voting From the Machine-learning Methods
NASA Astrophysics Data System (ADS)
Zheng, Suqing; Jiang, Mengying; Zhao, Chengwei; Zhu, Rui; Hu, Zhicheng; Xu, Yong; Lin, Fu
2018-03-01
In-silico bitterant prediction received the considerable attention due to the expensive and laborious experimental-screening of the bitterant. In this work, we collect the fully experimental dataset containing 707 bitterants and 592 non-bitterants, which is distinct from the fully or partially hypothetical non-bitterant dataset used in the previous works. Based on this experimental dataset, we harness the consensus votes from the multiple machine-learning methods (e.g., deep learning etc.) combined with the molecular fingerprint to build the bitter/bitterless classification models with five-fold cross-validation, which are further inspected by the Y-randomization test and applicability domain analysis. One of the best consensus models affords the accuracy, precision, specificity, sensitivity, F1-score, and Matthews correlation coefficient (MCC) of 0.929, 0.918, 0.898, 0.954, 0.936, and 0.856 respectively on our test set. For the automatic prediction of bitterant, a graphic program “e-Bitter” is developed for the convenience of users via the simple mouse click. To our best knowledge, it is for the first time to adopt the consensus model for the bitterant prediction and develop the first free stand-alone software for the experimental food scientist.
NASA Astrophysics Data System (ADS)
Khazendar, Shan; Farren, Jessica; Al-Assam, Hisham; Sayasneh, Ahmed; Du, Hongbo; Bourne, Tom; Jassim, Sabah A.
2014-05-01
Ultrasound is an effective multipurpose imaging modality that has been widely used for monitoring and diagnosing early pregnancy events. Technology developments coupled with wide public acceptance has made ultrasound an ideal tool for better understanding and diagnosing of early pregnancy. The first measurable signs of an early pregnancy are the geometric characteristics of the Gestational Sac (GS). Currently, the size of the GS is manually estimated from ultrasound images. The manual measurement involves multiple subjective decisions, in which dimensions are taken in three planes to establish what is known as Mean Sac Diameter (MSD). The manual measurement results in inter- and intra-observer variations, which may lead to difficulties in diagnosis. This paper proposes a fully automated diagnosis solution to accurately identify miscarriage cases in the first trimester of pregnancy based on automatic quantification of the MSD. Our study shows a strong positive correlation between the manual and the automatic MSD estimations. Our experimental results based on a dataset of 68 ultrasound images illustrate the effectiveness of the proposed scheme in identifying early miscarriage cases with classification accuracies comparable with those of domain experts using K nearest neighbor classifier on automatically estimated MSDs.
Thermal image analysis using the serpentine method
NASA Astrophysics Data System (ADS)
Koprowski, Robert; Wilczyński, Sławomir
2018-03-01
Thermal imaging is an increasingly widespread alternative to other imaging methods. As a supplementary method in diagnostics, it can be used both statically and with dynamic temperature changes. The paper proposes a new image analysis method that allows for the acquisition of new diagnostic information as well as object segmentation. The proposed serpentine analysis uses known and new methods of image analysis and processing proposed by the authors. Affine transformations of an image and subsequent Fourier analysis provide a new diagnostic quality. The method is fully repeatable and automatic and independent of inter-individual variability in patients. The segmentation results are by 10% better than those obtained from the watershed method and the hybrid segmentation method based on the Canny detector. The first and second harmonics of serpentine analysis enable to determine the type of temperature changes in the region of interest (gradient, number of heat sources etc.). The presented serpentine method provides new quantitative information on thermal imaging and more. Since it allows for image segmentation and designation of contact points of two and more heat sources (local minimum), it can be used to support medical diagnostics in many areas of medicine.
Design and realization of an automatic weather station at island
NASA Astrophysics Data System (ADS)
Chen, Yong-hua; Li, Si-ren
2011-10-01
In this paper, the design and development of an automatic weather station monitoring is described. The proposed system consists of a set of sensors for measuring meteorological parameters (temperature, wind speed & direction, rain fall, visibility, etc.). To increase the reliability of the system, wind speed & direction are measured redundantly with duplicate sensors. The sensor signals are collected by the data logger CR1000 at several analog and digital inputs. The CR1000 and the sensors form a completely autonomous system which works with the other systems installed in the container. Communication with the master PC is accomplished over the method of Code Division Multiple Access (CDMA) with the Compact Caimore6550P CDMA DTU. The data are finally stored in tables on the CPU as well as on the CF-Card. The weather station was built as an efficient autonomous system which operates with the other systems to provide the required data for a fully automatic measurement system.
White matter lesion extension to automatic brain tissue segmentation on MRI.
de Boer, Renske; Vrooman, Henri A; van der Lijn, Fedde; Vernooij, Meike W; Ikram, M Arfan; van der Lugt, Aad; Breteler, Monique M B; Niessen, Wiro J
2009-05-01
A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations.
Model-based position correlation between breast images
NASA Astrophysics Data System (ADS)
Georgii, J.; Zöhrer, F.; Hahn, H. K.
2013-02-01
Nowadays, breast diagnosis is based on images of different projections and modalities, such that sensitivity and specificity of the diagnosis can be improved. However, this emburdens radiologists to find corresponding locations in these data sets, which is a time consuming task, especially since the resolution of the images increases and thus more and more data have to be considered in the diagnosis. Therefore, we aim at support radiologist by automatically synchronizing cursor positions between different views of the breast. Specifically, we present an automatic approach to compute the spatial correlation between MLO and CC mammogram or tomosynthesis projections of the breast. It is based on pre-computed finite element simulations of generic breast models, which are adapted to the patient-specific breast using a contour mapping approach. Our approach is designed to be fully automatic and efficient, such that it can be implemented directly into existing multimodal breast workstations. Additionally, it is extendable to support other breast modalities in future, too.
Automatic knee cartilage delineation using inheritable segmentation
NASA Astrophysics Data System (ADS)
Dries, Sebastian P. M.; Pekar, Vladimir; Bystrov, Daniel; Heese, Harald S.; Blaffert, Thomas; Bos, Clemens; van Muiswinkel, Arianne M. C.
2008-03-01
We present a fully automatic method for segmentation of knee joint cartilage from fat suppressed MRI. The method first applies 3-D model-based segmentation technology, which allows to reliably segment the femur, patella, and tibia by iterative adaptation of the model according to image gradients. Thin plate spline interpolation is used in the next step to position deformable cartilage models for each of the three bones with reference to the segmented bone models. After initialization, the cartilage models are fine adjusted by automatic iterative adaptation to image data based on gray value gradients. The method has been validated on a collection of 8 (3 left, 5 right) fat suppressed datasets and demonstrated the sensitivity of 83+/-6% compared to manual segmentation on a per voxel basis as primary endpoint. Gross cartilage volume measurement yielded an average error of 9+/-7% as secondary endpoint. For cartilage being a thin structure, already small deviations in distance result in large errors on a per voxel basis, rendering the primary endpoint a hard criterion.
On the possibility of producing definitive magnetic observatory data within less than one year
NASA Astrophysics Data System (ADS)
Mandić, Igor; Korte, Monika
2017-04-01
Geomagnetic observatory data are fundamental in geomagnetic field studies and are widely used in other applications. Often they are combined with satellite and ground survey data. Unfortunately, the observatory definitive data are only available with a time lag ranging from several months up to more than a year. The reason for this lag is the annual production of the final calibration values, i.e. baselines that are used to correct preliminary data from continuously recording magnetometers. In this paper, we will show that the preparation of definitive geomagnetic data is possible within a calendar year and presents an original method for prompt and automatic estimation of the observatory baselines. The new baselines, obtained in a mostly automatic manner, are compared with the baselines reported on INTERMAGNET DVDs for the 2009-2011 period. The high quality of the baselines obtained by the proposed method indicates its suitability for data processing in fully automatic observatories when automated absolute instruments will be deployed at remote sites.
An automatic holographic adaptive phoropter
NASA Astrophysics Data System (ADS)
Amirsolaimani, Babak; Peyghambarian, N.; Schwiegerling, Jim; Bablumyan, Arkady; Savidis, Nickolaos; Peyman, Gholam
2017-08-01
Phoropters are the most common instrument used to detect refractive errors. During a refractive exam, lenses are flipped in front of the patient who looks at the eye chart and tries to read the symbols. The procedure is fully dependent on the cooperation of the patient to read the eye chart, provides only a subjective measurement of visual acuity, and can at best provide a rough estimate of the patient's vision. Phoropters are difficult to use for mass screenings requiring a skilled examiner, and it is hard to screen young children and the elderly etc. We have developed a simplified, lightweight automatic phoropter that can measure the optical error of the eye objectively without requiring the patient's input. The automatic holographic adaptive phoropter is based on a Shack-Hartmann wave front sensor and three computercontrolled fluidic lenses. The fluidic lens system is designed to be able to provide power and astigmatic corrections over a large range of corrections without the need for verbal feedback from the patient in less than 20 seconds.
Automatic Quadcopter Control Avoiding Obstacle Using Camera with Integrated Ultrasonic Sensor
NASA Astrophysics Data System (ADS)
Anis, Hanafi; Haris Indra Fadhillah, Ahmad; Darma, Surya; Soekirno, Santoso
2018-04-01
Automatic navigation on the drone is being developed these days, a wide variety of types of drones and its automatic functions. Drones used in this study was an aircraft with four propellers or quadcopter. In this experiment, image processing used to recognize the position of an object and ultrasonic sensor used to detect obstacle distance. The method used to trace an obsctacle in image processing was the Lucas-Kanade-Tomasi Tracker, which had been widely used due to its high accuracy. Ultrasonic sensor used to complement the image processing success rate to be fully detected object. The obstacle avoidance system was to observe at the program decisions from some obstacle conditions read by the camera and ultrasonic sensors. Visual feedback control based PID controllers are used as a control of drones movement. The conclusion of the obstacle avoidance system was to observe at the program decisions from some obstacle conditions read by the camera and ultrasonic sensors.
Motorization of a surgical microscope for intra-operative navigation and intuitive control.
Finke, M; Schweikard, A
2010-09-01
During surgical procedures, various medical systems, e.g. microscope or C-arm, are used. Their precise and repeatable manual positioning can be very cumbersome and interrupts the surgeon's work flow. Robotized systems can assist the surgeon but they require suitable kinematics and control. However, positioning must be fast, flexible and intuitive. We describe a fully motorized surgical microscope. Hardware components as well as implemented applications are specified. The kinematic equations are described and a novel control concept is proposed. Our microscope combines fast manual handling with accurate, automatic positioning. Intuitive control is provided by a small remote control mounted to one of the surgical instruments. Positioning accuracy and repeatability are < 1 mm and vibrations caused by automatic movements fade away in about 1 s. The robotic system assists the surgeon, so that he can position the microscope precisely and repeatedly without interrupting the clinical workflow. The combination of manual und automatic control guarantees fast and flexible positioning during surgical procedures. Copyright 2010 John Wiley & Sons, Ltd.
Automatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion
Ma, Da; Cardoso, Manuel J.; Modat, Marc; Powell, Nick; Wells, Jack; Holmes, Holly; Wiseman, Frances; Tybulewicz, Victor; Fisher, Elizabeth; Lythgoe, Mark F.; Ourselin, Sébastien
2014-01-01
Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopts the similarity and truth estimation for propagated segmentations (STEPS) algorithm, which utilises a locally normalised cross correlation similarity metric for atlas selection and an extended simultaneous truth and performance level estimation (STAPLE) framework for multi-label fusion. The segmentation accuracy of the multi-atlas framework was evaluated using publicly available mouse brain atlas databases with pre-segmented manually labelled anatomical structures as the gold standard, and optimised parameters were obtained for the STEPS algorithm in the label fusion to achieve the best segmentation accuracy. We showed that our multi-atlas framework resulted in significantly higher segmentation accuracy compared to single-atlas based segmentation, as well as to the original STAPLE framework. PMID:24475148
Tidal analysis and Arrival Process Mining Using Automatic Identification System (AIS) Data
2017-01-01
files, organized by location. The data were processed using the Python programming language (van Rossum and Drake 2001), the Pandas data analysis...ER D C/ CH L TR -1 7- 2 Coastal Inlets Research Program Tidal Analysis and Arrival Process Mining Using Automatic Identification System...17-2 January 2017 Tidal Analysis and Arrival Process Mining Using Automatic Identification System (AIS) Data Brandan M. Scully Coastal and
[Study on the automatic parameters identification of water pipe network model].
Jia, Hai-Feng; Zhao, Qi-Feng
2010-01-01
Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.
Schlösser, Tom P C; Janssen, Michiel M A; Vrtovec, Tomaž; Pernuš, Franjo; Oner, F Cumhur; Viergever, Max A; Vincken, Koen L; Castelein, René M
2014-07-01
Human fully upright ambulation, with fully extended hips and knees, and the body's center of gravity directly above the hips, is unique in nature, and distinguishes humans from all other mammalians. This bipedalism is made possible by the development of a lordosis between the ischium and ilium; it allows to ambulate in this unique bipedal manner, without sacrificing forceful extension of the legs. This configuration in space introduces unique biomechanical forces with relevance for a number of spinal conditions. The aim of this study was to quantify the development of this lordosis between ischium and ilium in the normal growing and adult spine and to evaluate its correlation with the well-known clinical parameter, pelvic incidence. Consecutive series of three-dimensional computed tomography scans of the abdomen of 189 children and 310 adults without spino-pelvic pathologies were used. Scan indications were trauma screening or acute abdominal pathology. Using previously validated image processing techniques, femoral heads, center of the sacral endplate and the axes of the ischial bones were semi-automatically identified. A true sagittal view of the pelvis was automatically reconstructed, on which ischio-iliac angulation and pelvic incidence were calculated. The ischio-iliac angle was defined as the angle between the axes of the ischial bones and the line from the midpoint of the sacral endplate to the center of the femoral heads. A wide natural variation of the ischio-iliac angle (3°-46°) and pelvic incidence (14°-77°) was observed. Pearson's analysis demonstrated a significant correlation between the ischio-iliac angle and pelvic incidence (r = 0.558, P < 0.001). Linear regression analysis revealed that ischio-iliac angle, as well as pelvic incidence, increases during childhood (+7° and +10°, respectively) and becomes constant after adolescence. The development of the ischio-iliac lordosis is unique in nature, is in harmonious continuity with the highly individual lumbar lordosis and defines the way the human spine is biomechanically loaded. The practical parameter that reflects this is the pelvic incidence; both values increase during growth and remain stable in adulthood.
NASA Astrophysics Data System (ADS)
Zollo, Aldo
2016-04-01
RISS S.r.l. is a Spin-off company recently born from the initiative of the research group constituting the Seismology Laboratory of the Department of Physics of the University of Naples Federico II. RISS is an innovative start-up, based on the decade-long experience in earthquake monitoring systems and seismic data analysis of its members and has the major goal to transform the most recent innovations of the scientific research into technological products and prototypes. With this aim, RISS has recently started the development of a new software, which is an elegant solution to manage and analyse seismic data and to create automatic earthquake bulletins. The software has been initially developed to manage data recorded at the ISNet network (Irpinia Seismic Network), which is a network of seismic stations deployed in Southern Apennines along the active fault system responsible for the 1980, November 23, MS 6.9 Irpinia earthquake. The software, however, is fully exportable and can be used to manage data from different networks, with any kind of station geometry or network configuration and is able to provide reliable estimates of earthquake source parameters, whichever is the background seismicity level of the area of interest. Here we present the real-time automated procedures and the analyses performed by the software package, which is essentially a chain of different modules, each of them aimed at the automatic computation of a specific source parameter. The P-wave arrival times are first detected on the real-time streaming of data and then the software performs the phase association and earthquake binding. As soon as an event is automatically detected by the binder, the earthquake location coordinates and the origin time are rapidly estimated, using a probabilistic, non-linear, exploration algorithm. Then, the software is able to automatically provide three different magnitude estimates. First, the local magnitude (Ml) is computed, using the peak-to-peak amplitude of the equivalent Wood-Anderson displacement recordings. The moment magnitude (Mw) is then estimated from the inversion of displacement spectra. The duration magnitude (Md) is rapidly computed, based on a simple and automatic measurement of the seismic wave coda duration. Starting from the magnitude estimates, other relevant pieces of information are also computed, such as the corner frequency, the seismic moment, the source radius and the seismic energy. The ground-shaking maps on a Google map are produced, for peak ground acceleration (PGA), peak ground velocity (PGV) and instrumental intensity (in SHAKEMAP® format), or a plot of the measured peak ground values. Furthermore, based on a specific decisional scheme, the automatic discrimination between local earthquakes occurred within the network and regional/teleseismic events occurred outside the network is performed. Finally, for largest events, if a consistent number of P-wave polarity reading are available, the focal mechanism is also computed. For each event, all of the available pieces of information are stored in a local database and the results of the automatic analyses are published on an interactive web page. "The Bulletin" shows a map with event location and stations, as well as a table listing all the events, with the associated parameters. The catalogue fields are the event ID, the origin date and time, latitude, longitude, depth, Ml, Mw, Md, the number of triggered stations, the S-displacement spectra, and shaking maps. Some of these entries also provide additional information, such as the focal mechanism (when available). The picked traces are uploaded in the database and from the web interface of the Bulletin the traces can be download for more specific analysis. This innovative software represents a smart solution, with a friendly and interactive interface, for high-level analysis of seismic data analysis and it may represent a relevant tool not only for seismologists, but also for non-expert external users who are interested in the seismological data. The software is a valid tool for the automatic analysis of the background seismicity at different time scales and can be a relevant tool for the monitoring of both natural and induced seismicity.
Comprehensive eye evaluation algorithm
NASA Astrophysics Data System (ADS)
Agurto, C.; Nemeth, S.; Zamora, G.; Vahtel, M.; Soliz, P.; Barriga, S.
2016-03-01
In recent years, several research groups have developed automatic algorithms to detect diabetic retinopathy (DR) in individuals with diabetes (DM), using digital retinal images. Studies have indicated that diabetics have 1.5 times the annual risk of developing primary open angle glaucoma (POAG) as do people without DM. Moreover, DM patients have 1.8 times the risk for age-related macular degeneration (AMD). Although numerous investigators are developing automatic DR detection algorithms, there have been few successful efforts to create an automatic algorithm that can detect other ocular diseases, such as POAG and AMD. Consequently, our aim in the current study was to develop a comprehensive eye evaluation algorithm that not only detects DR in retinal images, but also automatically identifies glaucoma suspects and AMD by integrating other personal medical information with the retinal features. The proposed system is fully automatic and provides the likelihood of each of the three eye disease. The system was evaluated in two datasets of 104 and 88 diabetic cases. For each eye, we used two non-mydriatic digital color fundus photographs (macula and optic disc centered) and, when available, information about age, duration of diabetes, cataracts, hypertension, gender, and laboratory data. Our results show that the combination of multimodal features can increase the AUC by up to 5%, 7%, and 8% in the detection of AMD, DR, and glaucoma respectively. Marked improvement was achieved when laboratory results were combined with retinal image features.
Method for Automatic Selection of Parameters in Normal Tissue Complication Probability Modeling.
Christophides, Damianos; Appelt, Ane L; Gusnanto, Arief; Lilley, John; Sebag-Montefiore, David
2018-07-01
To present a fully automatic method to generate multiparameter normal tissue complication probability (NTCP) models and compare its results with those of a published model, using the same patient cohort. Data were analyzed from 345 rectal cancer patients treated with external radiation therapy to predict the risk of patients developing grade 1 or ≥2 cystitis. In total, 23 clinical factors were included in the analysis as candidate predictors of cystitis. Principal component analysis was used to decompose the bladder dose-volume histogram into 8 principal components, explaining more than 95% of the variance. The data set of clinical factors and principal components was divided into training (70%) and test (30%) data sets, with the training data set used by the algorithm to compute an NTCP model. The first step of the algorithm was to obtain a bootstrap sample, followed by multicollinearity reduction using the variance inflation factor and genetic algorithm optimization to determine an ordinal logistic regression model that minimizes the Bayesian information criterion. The process was repeated 100 times, and the model with the minimum Bayesian information criterion was recorded on each iteration. The most frequent model was selected as the final "automatically generated model" (AGM). The published model and AGM were fitted on the training data sets, and the risk of cystitis was calculated. The 2 models had no significant differences in predictive performance, both for the training and test data sets (P value > .05) and found similar clinical and dosimetric factors as predictors. Both models exhibited good explanatory performance on the training data set (P values > .44), which was reduced on the test data sets (P values < .05). The predictive value of the AGM is equivalent to that of the expert-derived published model. It demonstrates potential in saving time, tackling problems with a large number of parameters, and standardizing variable selection in NTCP modeling. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Automatic computation of 2D cardiac measurements from B-mode echocardiography
NASA Astrophysics Data System (ADS)
Park, JinHyeong; Feng, Shaolei; Zhou, S. Kevin
2012-03-01
We propose a robust and fully automatic algorithm which computes the 2D echocardiography measurements recommended by America Society of Echocardiography. The algorithm employs knowledge-based imaging technologies which can learn the expert's knowledge from the training images and expert's annotation. Based on the models constructed from the learning stage, the algorithm searches initial location of the landmark points for the measurements by utilizing heart structure of left ventricle including mitral valve aortic valve. It employs the pseudo anatomic M-mode image generated by accumulating the line images in 2D parasternal long axis view along the time to refine the measurement landmark points. The experiment results with large volume of data show that the algorithm runs fast and is robust comparable to expert.
Algorithms for the automatic generation of 2-D structured multi-block grids
NASA Technical Reports Server (NTRS)
Schoenfeld, Thilo; Weinerfelt, Per; Jenssen, Carl B.
1995-01-01
Two different approaches to the fully automatic generation of structured multi-block grids in two dimensions are presented. The work aims to simplify the user interactivity necessary for the definition of a multiple block grid topology. The first approach is based on an advancing front method commonly used for the generation of unstructured grids. The original algorithm has been modified toward the generation of large quadrilateral elements. The second method is based on the divide-and-conquer paradigm with the global domain recursively partitioned into sub-domains. For either method each of the resulting blocks is then meshed using transfinite interpolation and elliptic smoothing. The applicability of these methods to practical problems is demonstrated for typical geometries of fluid dynamics.
Real-time micro-modelling of city evacuations
NASA Astrophysics Data System (ADS)
Löhner, Rainald; Haug, Eberhard; Zinggerling, Claudio; Oñate, Eugenio
2018-01-01
A methodology to integrate geographical information system (GIS) data with large-scale pedestrian simulations has been developed. Advances in automatic data acquisition and archiving from GIS databases, automatic input for pedestrian simulations, as well as scalable pedestrian simulation tools have made it possible to simulate pedestrians at the individual level for complete cities in real time. An example that simulates the evacuation of the city of Barcelona demonstrates that this is now possible. This is the first step towards a fully integrated crowd prediction and management tool that takes into account not only data gathered in real time from cameras, cell phones or other sensors, but also merges these with advanced simulation tools to predict the future state of the crowd.
Spring is a good time to clean up your vendor contracts.
Daigrepont, Jeffery
2013-01-01
Whether it's a new purchase or renewal, every year physicians and hospitals obligate themselves financially to vendor contracts without fully understanding the terms and conditions of their commitments. Some of these contracts renew automatically without permission or approval and come with automatic price increases. In some cases, practices may even be paying for services no longer being used or maintenance fees for support services no longer needed. However, discerning what vendor and system to select or renew, based on the unique objectives of the practice or hospital, can be overwhelming. This article provides many helpful strategies for negotiating a rock-solid contract that is a win for the physician practice or hospital and holds the vendor accountable for delivery of promises.
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Strong, J.; Woodward, R. H.; Pierce, H.
1991-01-01
Results are presented on an automatic stereo analysis of cloud-top heights from nearly simultaneous satellite image pairs from the GOES and NOAA satellites, using a massively parallel processor computer. Comparisons of computer-derived height fields and manually analyzed fields show that the automatic analysis technique shows promise for performing routine stereo analysis in a real-time environment, providing a useful forecasting tool by augmenting observational data sets of severe thunderstorms and hurricanes. Simulations using synthetic stereo data show that it is possible to automatically resolve small-scale features such as 4000-m-diam clouds to about 1500 m in the vertical.
Larrabide, Ignacio; Cruz Villa-Uriol, Maria; Cárdenes, Rubén; Pozo, Jose Maria; Macho, Juan; San Roman, Luis; Blasco, Jordi; Vivas, Elio; Marzo, Alberto; Hose, D Rod; Frangi, Alejandro F
2011-05-01
Morphological descriptors are practical and essential biomarkers for diagnosis and treatment selection for intracranial aneurysm management according to the current guidelines in use. Nevertheless, relatively little work has been dedicated to improve the three-dimensional quantification of aneurysmal morphology, to automate the analysis, and hence to reduce the inherent intra and interobserver variability of manual analysis. In this paper we propose a methodology for the automated isolation and morphological quantification of saccular intracranial aneurysms based on a 3D representation of the vascular anatomy. This methodology is based on the analysis of the vasculature skeleton's topology and the subsequent application of concepts from deformable cylinders. These are expanded inside the parent vessel to identify different regions and discriminate the aneurysm sac from the parent vessel wall. The method renders as output the surface representation of the isolated aneurysm sac, which can then be quantified automatically. The proposed method provides the means for identifying the aneurysm neck in a deterministic way. The results obtained by the method were assessed in two ways: they were compared to manual measurements obtained by three independent clinicians as normally done during diagnosis and to automated measurements from manually isolated aneurysms by three independent operators, nonclinicians, experts in vascular image analysis. All the measurements were obtained using in-house tools. The results were qualitatively and quantitatively compared for a set of the saccular intracranial aneurysms (n = 26). Measurements performed on a synthetic phantom showed that the automated measurements obtained from manually isolated aneurysms where the most accurate. The differences between the measurements obtained by the clinicians and the manually isolated sacs were statistically significant (neck width: p <0.001, sac height: p = 0.002). When comparing clinicians' measurements to automatically isolated sacs, only the differences for the neck width were significant (neck width: p <0.001, sac height: p = 0.95). However, the correlation and agreement between the measurements obtained from manually and automatically isolated aneurysms for the neck width: p = 0.43 and sac height: p = 0.95 where found. The proposed method allows the automated isolation of intracranial aneurysms, eliminating the interobserver variability. In average, the computational cost of the automated method (2 min 36 s) was similar to the time required by a manual operator (measurement by clinicians: 2 min 51 s, manual isolation: 2 min 21 s) but eliminating human interaction. The automated measurements are irrespective of the viewing angle, eliminating any bias or difference between the observer criteria. Finally, the qualitative assessment of the results showed acceptable agreement between manually and automatically isolated aneurysms.
1989-08-01
Automatic Line Network Extraction from Aerial Imangery of Urban Areas Sthrough KnowledghBased Image Analysis N 04 Final Technical ReportI December...Automatic Line Network Extraction from Aerial Imagery of Urban Areas through Knowledge Based Image Analysis Accesion For NTIS CRA&I DTIC TAB 0...paittern re’ognlition. blac’kboardl oriented symbollic processing, knowledge based image analysis , image understanding, aer’ial imsagery, urban area, 17
Automatic co-segmentation of lung tumor based on random forest in PET-CT images
NASA Astrophysics Data System (ADS)
Jiang, Xueqing; Xiang, Dehui; Zhang, Bin; Zhu, Weifang; Shi, Fei; Chen, Xinjian
2016-03-01
In this paper, a fully automatic method is proposed to segment the lung tumor in clinical 3D PET-CT images. The proposed method effectively combines PET and CT information to make full use of the high contrast of PET images and superior spatial resolution of CT images. Our approach consists of three main parts: (1) initial segmentation, in which spines are removed in CT images and initial connected regions achieved by thresholding based segmentation in PET images; (2) coarse segmentation, in which monotonic downhill function is applied to rule out structures which have similar standardized uptake values (SUV) to the lung tumor but do not satisfy a monotonic property in PET images; (3) fine segmentation, random forests method is applied to accurately segment the lung tumor by extracting effective features from PET and CT images simultaneously. We validated our algorithm on a dataset which consists of 24 3D PET-CT images from different patients with non-small cell lung cancer (NSCLC). The average TPVF, FPVF and accuracy rate (ACC) were 83.65%, 0.05% and 99.93%, respectively. The correlation analysis shows our segmented lung tumor volumes has strong correlation ( average 0.985) with the ground truth 1 and ground truth 2 labeled by a clinical expert.
Chénier, Félix; Aissaoui, Rachid; Gauthier, Cindy; Gagnon, Dany H
2017-02-01
The commercially available SmartWheel TM is largely used in research and increasingly used in clinical practice to measure the forces and moments applied on the wheelchair pushrims by the user. However, in some situations (i.e. cambered wheels or increased pushrim weight), the recorded kinetics may include dynamic offsets that affect the accuracy of the measurements. In this work, an automatic method to identify and cancel these offsets is proposed and tested. First, the method was tested on an experimental bench with different cambers and pushrim weights. Then, the method was generalized to wheelchair propulsion. Nine experienced wheelchair users propelled their own wheelchairs instrumented with two SmartWheels with anti-slip pushrim covers. The dynamic offsets were correctly identified using the propulsion acquisition, without needing a separate baseline acquisition. A kinetic analysis was performed with and without dynamic offset cancellation using the proposed method. The most altered kinetic variables during propulsion were the vertical and total forces, with errors of up to 9N (p<0.001, large effect size of 5). This method is simple to implement, fully automatic and requires no further acquisitions. Therefore, we advise to use it systematically to enhance the accuracy of existing and future kinetic measurements. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Streamlining Metadata and Data Management for Evolving Digital Libraries
NASA Astrophysics Data System (ADS)
Clark, D.; Miller, S. P.; Peckman, U.; Smith, J.; Aerni, S.; Helly, J.; Sutton, D.; Chase, A.
2003-12-01
What began two years ago as an effort to stabilize the Scripps Institution of Oceanography (SIO) data archives from more than 700 cruises going back 50 years, has now become the operational fully-searchable "SIOExplorer" digital library, complete with thousands of historic photographs, images, maps, full text documents, binary data files, and 3D visualization experiences, totaling nearly 2 terabytes of digital content. Coping with data diversity and complexity has proven to be more challenging than dealing with large volumes of digital data. SIOExplorer has been built with scalability in mind, so that the addition of new data types and entire new collections may be accomplished with ease. It is a federated system, currently interoperating with three independent data-publishing authorities, each responsible for their own quality control, metadata specifications, and content selection. The IT architecture implemented at the San Diego Supercomputer Center (SDSC) streamlines the integration of additional projects in other disciplines with a suite of metadata management and collection building tools for "arbitrary digital objects." Metadata are automatically harvested from data files into domain-specific metadata blocks, and mapped into various specification standards as needed. Metadata can be browsed and objects can be viewed onscreen or downloaded for further analysis, with automatic proprietary-hold request management.
Ma, Qingchuan; Ji, Linhong; Wang, Rencheng
2018-02-01
Upright walking has both physical and social meanings for paraplegic patients. The main purpose of this paper is to reduce the automatic functioning of the powered exoskeleton and enable the user to fully control the walking procedure in real-time, aiming to further improve the engagement of the patient during rehabilitation training. For this prototype, a custom-made hub motor was placed at the bottom of the exoskeleton's foot, and a pair of crutches with the embedded wireless controller were utilized as the auxiliary device. The user could alternatively press the button of the crutch to control the movement of the leg and by repeating this procedure, the user could complete a continuous walking motion. For safety, an automatic brake and mechanical limitation for maximum step length were implemented. A gait analysis was performed to evaluate the exoskeleton's motion capability and corresponding response of user's major muscles. The kinematic results of this paper showed that this exoskeleton could assist the user to walk in a motion trend close to the normally walk, especially for ankle joint. The electromyography results indicated that this exoskeleton could decrease the loading burden of the user's lower limb while requiring more involvements of upper-limb muscles to maintain balance while walking.
Automatic analysis of the micronucleus test in primary human lymphocytes using image analysis.
Frieauff, W; Martus, H J; Suter, W; Elhajouji, A
2013-01-01
The in vitro micronucleus test (MNT) is a well-established test for early screening of new chemical entities in industrial toxicology. For assessing the clastogenic or aneugenic potential of a test compound, micronucleus induction in cells has been shown repeatedly to be a sensitive and a specific parameter. Various automated systems to replace the tedious and time-consuming visual slide analysis procedure as well as flow cytometric approaches have been discussed. The ROBIAS (Robotic Image Analysis System) for both automatic cytotoxicity assessment and micronucleus detection in human lymphocytes was developed at Novartis where the assay has been used to validate positive results obtained in the MNT in TK6 cells, which serves as the primary screening system for genotoxicity profiling in early drug development. In addition, the in vitro MNT has become an accepted alternative to support clinical studies and will be used for regulatory purposes as well. The comparison of visual with automatic analysis results showed a high degree of concordance for 25 independent experiments conducted for the profiling of 12 compounds. For concentration series of cyclophosphamide and carbendazim, a very good correlation between automatic and visual analysis by two examiners could be established, both for the relative division index used as cytotoxicity parameter, as well as for micronuclei scoring in mono- and binucleated cells. Generally, false-positive micronucleus decisions could be controlled by fast and simple relocation of the automatically detected patterns. The possibility to analyse 24 slides within 65h by automatic analysis over the weekend and the high reproducibility of the results make automatic image processing a powerful tool for the micronucleus analysis in primary human lymphocytes. The automated slide analysis for the MNT in human lymphocytes complements the portfolio of image analysis applications on ROBIAS which is supporting various assays at Novartis.
DELINEATING SUBTYPES OF SELF-INJURIOUS BEHAVIOR MAINTAINED BY AUTOMATIC REINFORCEMENT
Hagopian, Louis P.; Rooker, Griffin W.; Zarcone, Jennifer R.
2016-01-01
Self-injurious behavior (SIB) is maintained by automatic reinforcement in roughly 25% of cases. Automatically reinforced SIB typically has been considered a single functional category, and is less understood than socially reinforced SIB. Subtyping automatically reinforced SIB into functional categories has the potential to guide the development of more targeted interventions and increase our understanding of its biological underpinnings. The current study involved an analysis of 39 individuals with automatically reinforced SIB and a comparison group of 13 individuals with socially reinforced SIB. Automatically reinforced SIB was categorized into 3 subtypes based on patterns of responding in the functional analysis and the presence of self-restraint. These response features were selected as the basis for subtyping on the premise that they could reflect functional properties of SIB unique to each subtype. Analysis of treatment data revealed important differences across subtypes and provides preliminary support to warrant additional research on this proposed subtyping model. PMID:26223959
Design of automatic rotor blades folding system using NiTi shape memory alloy actuator
NASA Astrophysics Data System (ADS)
Ali, M. I. F.; Abdullah, E. J.
2016-10-01
This present paper will study the requirements for development of a new Automatic Rotor Blades Folding (ARBF) system that could possibly solve the availability, compatibility and complexity issue of upgrading a manual to a fully automatic rotor blades folding system of a helicopter. As a subject matter, the Royal Malaysian Navy Super Lynx Mk 100 was chosen as the baseline model. The aim of the study was to propose a design of SMART ARBF's Shape Memory Alloy (SMA) actuator and proof of operating concept using a developed scale down prototype model. The performance target for the full folding sequence is less than ten minutes. Further analysis on design requirements was carried out, which consisted of three main phases. Phase 1 was studying the SMA behavior on the Nickel Titanium (NiTi) SMA wire and spring (extension type). Technical values like activation requirement, contraction length, and stroke- power and stroke-temperature relationship were gathered. Phase 2 was the development of the prototype where the proposed design of stepped-retractable SMA actuator was introduced. A complete model of the SMART ARBF system that consisted of a base, a main rotor hub, four main rotor blades, four SMA actuators and also electrical wiring connections was fabricated and assembled. Phase 3 was test and analysis whereby a PINENG-PN968s-10000mAh Power Bank's 5 volts, which was reduced to 2.5 volts using LM2596 Step-Down Converter, powered and activated the NiTi spring inside each actuator. The bias spring (compression type), which functions to protract and push the blades to spread position, will compress together with the retraction of actuators and pull the blades to the folding position. Once the power was removed and SMA spring deactivated, the bias spring stiffness will extend the SMA spring and casing and push the blades back to spread position. The timing for the whole revolution was recorded. Based on the experimental analysis, the recorded timing for folding sequence is 2.5 minutes in average and therefore met the required criteria.
NASA Astrophysics Data System (ADS)
Meroni, M.; Rembold, F.; Urbano, F.; Lemoine, G.
2016-12-01
Anomaly maps and time profiles of remote sensing derived indicators relevant to monitor crop and vegetation stress can be accessed online thanks to a rapidly growing number of web based portals. However, timely and systematic global analysis and coherent interpretation of such information, as it is needed for example for SDG 2 related monitoring, remains challenging. With the ASAP system (Anomaly hot Spots of Agricultural Production) we propose a two-step analysis to provide monthly warning of production deficits in water-limited agriculture worldwide. The first step is fully automated and aims at classifying each administrative unit (1st sub-national level) into a number of possible warning levels, ranging from "none" to "watch" and up to "extended alarm". The second step involves the verification of the automatic warnings and integration into a short national level analysis by agricultural analysts. In this paper we describe the methodological development of the automatic vegetation anomaly classification system. Warnings are triggered only during the crop growing season, defined by a remote sensing based phenology. The classification takes into consideration the fraction of the agricultural and rangelands area for each administrative unit that is affected by a severe anomaly of two rainfall-based indicators (the Standardized Precipitation Index (SPI), computed at 1 and 3-month scale) and one biophysical indicator (the cumulative NDVI from the start of the growing season). The severity of the warning thus depends on the timing, the nature and the number of indicators for which an anomaly is detected. The prototype system is using global NDVI images of the METOP sensor, while a second version is being developed based on 1km Modis NDVI with temporal smoothing and near real time filtering. Also a specific water balance model is under development to include agriculture water stress information in addition to the SPI. The monthly warning classification and crop condition assessment will be made available on a website and will strengthen the JRC support to information products based on consensus assessment such as the GEOGLAM Crop Monitor for Early Warning.
An application of data mining in district heating substations for improving energy performance
NASA Astrophysics Data System (ADS)
Xue, Puning; Zhou, Zhigang; Chen, Xin; Liu, Jing
2017-11-01
Automatic meter reading system is capable of collecting and storing a huge number of district heating (DH) data. However, the data obtained are rarely fully utilized. Data mining is a promising technology to discover potential interesting knowledge from vast data. This paper applies data mining methods to analyse the massive data for improving energy performance of DH substation. The technical approach contains three steps: data selection, cluster analysis and association rule mining (ARM). Two-heating-season data of a substation are used for case study. Cluster analysis identifies six distinct heating patterns based on the primary heat of the substation. ARM reveals that secondary pressure difference and secondary flow rate have a strong correlation. Using the discovered rules, a fault occurring in remote flow meter installed at secondary network is detected accurately. The application demonstrates that data mining techniques can effectively extrapolate potential useful knowledge to better understand substation operation strategies and improve substation energy performance.
Differentiation of arterioles from venules in mouse histology images using machine learning
NASA Astrophysics Data System (ADS)
Elkerton, J. S.; Xu, Yiwen; Pickering, J. G.; Ward, Aaron D.
2016-03-01
Analysis and morphological comparison of arteriolar and venular networks are essential to our understanding of multiple diseases affecting every organ system. We have developed and evaluated the first fully automatic software system for differentiation of arterioles from venules on high-resolution digital histology images of the mouse hind limb immunostained for smooth muscle α-actin. Classifiers trained on texture and morphologic features by supervised machine learning provided excellent classification accuracy for differentiation of arterioles and venules, achieving an area under the receiver operating characteristic curve of 0.90 and balanced false-positive and false-negative rates. Feature selection was consistent across cross-validation iterations, and a small set of three features was required to achieve the reported performance, suggesting potential generalizability of the system. This system eliminates the need for laborious manual classification of the hundreds of microvessels occurring in a typical sample, and paves the way for high-throughput analysis the arteriolar and venular networks in the mouse.
Video content parsing based on combined audio and visual information
NASA Astrophysics Data System (ADS)
Zhang, Tong; Kuo, C.-C. Jay
1999-08-01
While previous research on audiovisual data segmentation and indexing primarily focuses on the pictorial part, significant clues contained in the accompanying audio flow are often ignored. A fully functional system for video content parsing can be achieved more successfully through a proper combination of audio and visual information. By investigating the data structure of different video types, we present tools for both audio and visual content analysis and a scheme for video segmentation and annotation in this research. In the proposed system, video data are segmented into audio scenes and visual shots by detecting abrupt changes in audio and visual features, respectively. Then, the audio scene is categorized and indexed as one of the basic audio types while a visual shot is presented by keyframes and associate image features. An index table is then generated automatically for each video clip based on the integration of outputs from audio and visual analysis. It is shown that the proposed system provides satisfying video indexing results.
Programmable Positioner For Spot Welding
NASA Technical Reports Server (NTRS)
Roden, William A.
1989-01-01
Welding station mechanized by installing preset indexing system and gear drive. Mechanism includes a low-cost, versatile, single-axis motion control and motor drive to provide fully-automatic weld sequencing and spot-to-spot spacing. Welding station relieves operator of some difficult, tedious tasks and increases both productivity and quality of welds. Results in welds of higher quality and greater accuracy, fewer weld defects, and faster welding operation.
Distributed Pheromone-Based Swarming Control of Unmanned Air and Ground Vehicles for RSTA
2008-03-20
Forthcoming in Proceedings of SPIE Defense & Security Conference, March 2008, Orlando, FL Distributed Pheromone -Based Swarming Control of Unmanned...describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of...onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm
NASA Astrophysics Data System (ADS)
Kontoes, Charalampos; Papoutsis, Ioannis; Herekakis, Themistoklis; Michail, Dimitrios; Ieronymidi, Emmanuela
2013-04-01
Remote sensing tools for the accurate, robust and timely assessment of the damages inflicted by forest wildfires provide information that is of paramount importance to public environmental agencies and related stakeholders before, during and after the crisis. The Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens (IAASARS/NOA) has developed a fully automatic single and/or multi date processing chain that takes as input archived Landsat 4, 5 or 7 raw images and produces precise diachronic burnt area polygons and damage assessments over the Greek territory. The methodology consists of three fully automatic stages: 1) the pre-processing stage where the metadata of the raw images are extracted, followed by the application of the LEDAPS software platform for calibration and mask production and the Automated Precise Orthorectification Package, developed by NASA, for image geo-registration and orthorectification, 2) the core-BSM (Burn Scar Mapping) processing stage which incorporates a published classification algorithm based on a series of physical indexes, the application of two filters for noise removal using graph-based techniques and the grouping of pixels classified as burnt to form the appropriate pixels clusters before proceeding to conversion from raster to vector, and 3) the post-processing stage where the products are thematically refined and enriched using auxiliary GIS layers (underlying land cover/use, administrative boundaries, etc.) and human logic/evidence to suppress false alarms and omission errors. The established processing chain has been successfully applied to the entire archive of Landsat imagery over Greece spanning from 1984 to 2012, which has been collected and managed in IAASARS/NOA. The number of full Landsat frames that were subject of process in the framework of the study was 415. These burn scar mapping products are generated for the first time to such a temporal and spatial extent and are ideal to use in further environmental time series analyzes, production of statistical indexes (frequency, geographical distribution and number of fires per prefecture) and applications, including change detection and climate change models, urban planning, correlation with manmade activities, etc.
Sharfo, Abdul Wahab M; Breedveld, Sebastiaan; Voet, Peter W J; Heijkoop, Sabrina T; Mens, Jan-Willem M; Hoogeman, Mischa S; Heijmen, Ben J M
2016-01-01
To develop and validate fully automated generation of VMAT plan-libraries for plan-of-the-day adaptive radiotherapy in locally-advanced cervical cancer. Our framework for fully automated treatment plan generation (Erasmus-iCycle) was adapted to create dual-arc VMAT treatment plan libraries for cervical cancer patients. For each of 34 patients, automatically generated VMAT plans (autoVMAT) were compared to manually generated, clinically delivered 9-beam IMRT plans (CLINICAL), and to dual-arc VMAT plans generated manually by an expert planner (manVMAT). Furthermore, all plans were benchmarked against 20-beam equi-angular IMRT plans (autoIMRT). For all plans, a PTV coverage of 99.5% by at least 95% of the prescribed dose (46 Gy) had the highest planning priority, followed by minimization of V45Gy for small bowel (SB). Other OARs considered were bladder, rectum, and sigmoid. All plans had a highly similar PTV coverage, within the clinical constraints (above). After plan normalizations for exactly equal median PTV doses in corresponding plans, all evaluated OAR parameters in autoVMAT plans were on average lower than in the CLINICAL plans with an average reduction in SB V45Gy of 34.6% (p<0.001). For 41/44 autoVMAT plans, SB V45Gy was lower than for manVMAT (p<0.001, average reduction 30.3%), while SB V15Gy increased by 2.3% (p = 0.011). AutoIMRT reduced SB V45Gy by another 2.7% compared to autoVMAT, while also resulting in a 9.0% reduction in SB V15Gy (p<0.001), but with a prolonged delivery time. Differences between manVMAT and autoVMAT in bladder, rectal and sigmoid doses were ≤ 1%. Improvements in SB dose delivery with autoVMAT instead of manVMAT were higher for empty bladder PTVs compared to full bladder PTVs, due to differences in concavity of the PTVs. Quality of automatically generated VMAT plans was superior to manually generated plans. Automatic VMAT plan generation for cervical cancer has been implemented in our clinical routine. Due to the achieved workload reduction, extension of plan libraries has become feasible.
Gendermetrics.NET: a novel software for analyzing the gender representation in scientific authoring.
Bendels, Michael H K; Brüggmann, Dörthe; Schöffel, Norman; Groneberg, David A
2016-01-01
Imbalances in female career promotion are believed to be strong in the field of academic science. A primary parameter to analyze gender inequalities is the gender authoring in scientific publications. Since the presently available data on gender distribution is largely limited to underpowered studies, we here develop a new approach to analyze authors' genders in large bibliometric databases. A SQL-Server based multiuser software suite was developed that serves as an integrative tool for analyzing bibliometric data with a special emphasis on gender and topographical analysis. The presented system allows seamless integration, inspection, modification, evaluation and visualization of bibliometric data. By providing an adaptive and almost fully automatic integration and analysis process, the inter-individual variability of analysis is kept at a low level. Depending on the scientific question, the system enables the user to perform a scientometric analysis including its visualization within a short period of time. In summary, a new software suite for analyzing gender representations in scientific articles was established. The system is suitable for the comparative analysis of scientific structures on the level of continents, countries, cities, city regions, institutions, research fields and journals.
Verhey, Janko F; Nathan, Nadia S
2004-01-01
Background Finite element method (FEM) analysis for intraoperative modeling of the left ventricle (LV) is presently not possible. Since 3D structural data of the LV is now obtainable using standard transesophageal echocardiography (TEE) devices intraoperatively, the present study describes a method to transfer this data into a commercially available FEM analysis system: ABAQUS©. Methods In this prospective study TomTec LV Analysis TEE© Software was used for semi-automatic endocardial border detection, reconstruction, and volume-rendering of the clinical 3D echocardiographic data. A newly developed software program MVCP FemCoGen©, written in Delphi, reformats the TomTec file structures in five patients for use in ABAQUS and allows visualization of regional deformation of the LV. Results This study demonstrates that a fully automated importation of 3D TEE data into FEM modeling is feasible and can be efficiently accomplished in the operating room. Conclusion For complete intraoperative 3D LV finite element analysis, three input elements are necessary: 1. time-gaited, reality-based structural information, 2. continuous LV pressure and 3. instantaneous tissue elastance. The first of these elements is now available using the methods presented herein. PMID:15473901
Study of the cerrado vegetation in the Federal District area from orbital data. M.S. Thesis
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Aoki, H.; Dossantos, J. R.
1980-01-01
The physiognomic units of cerrado in the area of Distrito Federal (DF) were studied through the visual and automatic analysis of products provided by Multispectral Scanning System (MSS) of LANDSAT. The visual analysis of the multispectral images in black and white, at the 1:250,000 scale, was made based on the texture and tonal patterns. The automatic analysis of the compatible computer tapes (CCT) was made by means of IMAGE-100 system. The following conclusions were obtained: (1) the delimitation of cerrado vegetation forms can be made by the visual and automatic analysis; (2) in the visual analysis, the principal parameter used to discriminate the cerrado forms was the tonal pattern, independently of the year's seasons, and the channel 5 gave better information; (3) in the automatic analysis, the data of the four channels of MSS can be used in the discrimination of the cerrado forms; and (4) in the automatic analysis, the four channels combination possibilities gave more information in the separation of cerrado units when soil types were considered.
Validation of automatic segmentation of ribs for NTCP modeling.
Stam, Barbara; Peulen, Heike; Rossi, Maddalena M G; Belderbos, José S A; Sonke, Jan-Jakob
2016-03-01
Determination of a dose-effect relation for rib fractures in a large patient group has been limited by the time consuming manual delineation of ribs. Automatic segmentation could facilitate such an analysis. We determine the accuracy of automatic rib segmentation in the context of normal tissue complication probability modeling (NTCP). Forty-one patients with stage I/II non-small cell lung cancer treated with SBRT to 54 Gy in 3 fractions were selected. Using the 4DCT derived mid-ventilation planning CT, all ribs were manually contoured and automatically segmented. Accuracy of segmentation was assessed using volumetric, shape and dosimetric measures. Manual and automatic dosimetric parameters Dx and EUD were tested for equivalence using the Two One-Sided T-test (TOST), and assessed for agreement using Bland-Altman analysis. NTCP models based on manual and automatic segmentation were compared. Automatic segmentation was comparable with the manual delineation in radial direction, but larger near the costal cartilage and vertebrae. Manual and automatic Dx and EUD were significantly equivalent. The Bland-Altman analysis showed good agreement. The two NTCP models were very similar. Automatic rib segmentation was significantly equivalent to manual delineation and can be used for NTCP modeling in a large patient group. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A System to Measure Both Inner and Outer Car Tire Temperatures ``in situ''
NASA Astrophysics Data System (ADS)
Koštial, P.; Mokryšová, M.; Šišáková, J.; Mošková, Z.; Rusnáková, S.
2009-02-01
In the paper, a system for the complex analysis of the internal and external tire temperatures and pressure of sporty tires is presented. Tests were performed on the test circuit of a tire producer. The CTPA 05 measuring system (complex temperature-pressure analyzer) enables simultaneous measurements of the internal temperature and pressure in a passenger or sports tire. The experimentalist determines that the CTPA 05 can be used to measure independently the external temperature of the overcoat on the front wheel driving tires at three points. Measurements of both the internal tire temperature and pressure, as well as of the external tire temperature, are collected together with GPS (global position system) data. The system of measurement is fully automatic and contactless. The obtained results are in very good agreement with those obtained by independent methods.
NASA Astrophysics Data System (ADS)
Kim, Edward; Baloch, Zubair; Kim, Caroline
2015-03-01
The number of new cases of thyroid cancer are dramatically increasing as incidences of this cancer have more than doubled since the early 1970s. Tall cell variant (TCV-PTC) papillary thyroid carcinoma is one type of thyroid cancer that is more aggressive and usually associated with higher local recurrence and distant metastasis. This variant can be identified through visual characteristics of cells in histological images. Thus, we created a fully automatic algorithm that is able to segment cells using a multi-stage approach. Our method learns the statistical characteristics of nuclei and cells during the segmentation process and utilizes this information for a more accurate result. Furthermore, we are able to analyze the detected regions and extract characteristic cell data that can be used to assist in clinical diagnosis.
Automated Antibody De Novo Sequencing and Its Utility in Biopharmaceutical Discovery
NASA Astrophysics Data System (ADS)
Sen, K. Ilker; Tang, Wilfred H.; Nayak, Shruti; Kil, Yong J.; Bern, Marshall; Ozoglu, Berk; Ueberheide, Beatrix; Davis, Darryl; Becker, Christopher
2017-05-01
Applications of antibody de novo sequencing in the biopharmaceutical industry range from the discovery of new antibody drug candidates to identifying reagents for research and determining the primary structure of innovator products for biosimilar development. When murine, phage display, or patient-derived monoclonal antibodies against a target of interest are available, but the cDNA or the original cell line is not, de novo protein sequencing is required to humanize and recombinantly express these antibodies, followed by in vitro and in vivo testing for functional validation. Availability of fully automated software tools for monoclonal antibody de novo sequencing enables efficient and routine analysis. Here, we present a novel method to automatically de novo sequence antibodies using mass spectrometry and the Supernovo software. The robustness of the algorithm is demonstrated through a series of stress tests.
Analysis of navigation and guidance requirements for commercial VTOL operations
NASA Technical Reports Server (NTRS)
Hoffman, W. C.; Zvara, J.; Hollister, W. M.
1975-01-01
The paper presents some results of a program undertaken to define navigation and guidance requirements for commercial VTOL operations in the takeoff, cruise, terminal and landing phases of flight in weather conditions up to and including Category III. Quantitative navigation requirements are given for the parameters range, coverage, operation near obstacles, horizontal accuracy, multiple landing aircraft, multiple pad requirements, inertial/radio-inertial requirements, reliability/redundancy, update rate, and data link requirements in all flight phases. A multi-configuration straw-man navigation and guidance system for commercial VTOL operations is presented. Operation of the system is keyed to a fully automatic approach for navigation, guidance and control, with pilot as monitor-manager. The system is a hybrid navigator using a relatively low-cost inertial sensor with DME updates and MLS in the approach/departure phases.
Automated Reconstruction of Historic Roof Structures from Point Clouds - Development and Examples
NASA Astrophysics Data System (ADS)
Pöchtrager, M.; Styhler-Aydın, G.; Döring-Williams, M.; Pfeifer, N.
2017-08-01
The analysis of historic roof constructions is an important task for planning the adaptive reuse of buildings or for maintenance and restoration issues. Current approaches to modeling roof constructions consist of several consecutive operations that need to be done manually or using semi-automatic routines. To increase efficiency and allow the focus to be on analysis rather than on data processing, a set of methods was developed for the fully automated analysis of the roof constructions, including integration of architectural and structural modeling. Terrestrial laser scanning permits high-detail surveying of large-scale structures within a short time. Whereas 3-D laser scan data consist of millions of single points on the object surface, we need a geometric description of structural elements in order to obtain a structural model consisting of beam axis and connections. Preliminary results showed that the developed methods work well for beams in flawless condition with a quadratic cross section and no bending. Deformations or damages such as cracks and cuts on the wooden beams can lead to incomplete representations in the model. Overall, a high degree of automation was achieved.
NASA Astrophysics Data System (ADS)
Shauly, Eitan; Parag, Allon; Khmaisy, Hafez; Krispil, Uri; Adan, Ofer; Levi, Shimon; Latinski, Sergey; Schwarzband, Ishai; Rotstein, Israel
2011-04-01
A fully automated system for process variability analysis of high density standard cell was developed. The system consists of layout analysis with device mapping: device type, location, configuration and more. The mapping step was created by a simple DRC run-set. This database was then used as an input for choosing locations for SEM images and for specific layout parameter extraction, used by SPICE simulation. This method was used to analyze large arrays of standard cell blocks, manufactured using Tower TS013LV (Low Voltage for high-speed applications) Platforms. Variability of different physical parameters like and like Lgate, Line-width-roughness and more as well as of electrical parameters like drive current (Ion), off current (Ioff) were calculated and statistically analyzed, in order to understand the variability root cause. Comparison between transistors having the same W/L but with different layout configurations and different layout environments (around the transistor) was made in terms of performances as well as process variability. We successfully defined "robust" and "less-robust" transistors configurations, and updated guidelines for Design-for-Manufacturing (DfM).
[Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System
NASA Technical Reports Server (NTRS)
Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed
2018-01-01
Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests were conducted at Edwards Air Force Base. Researchers in the ground control station looking at displays were able to verify the Automatic Dependent Surveillance-Broadcast target detection and collision avoidance resolutions.
Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.
Fechter, Tobias; Adebahr, Sonja; Baltas, Dimos; Ben Ayed, Ismail; Desrosiers, Christian; Dolz, Jose
2017-12-01
Precise delineation of organs at risk is a crucial task in radiotherapy treatment planning for delivering high doses to the tumor while sparing healthy tissues. In recent years, automated segmentation methods have shown an increasingly high performance for the delineation of various anatomical structures. However, this task remains challenging for organs like the esophagus, which have a versatile shape and poor contrast to neighboring tissues. For human experts, segmenting the esophagus from CT images is a time-consuming and error-prone process. To tackle these issues, we propose a random walker approach driven by a 3D fully convolutional neural network (CNN) to automatically segment the esophagus from CT images. First, a soft probability map is generated by the CNN. Then, an active contour model (ACM) is fitted to the CNN soft probability map to get a first estimation of the esophagus location. The outputs of the CNN and ACM are then used in conjunction with a probability model based on CT Hounsfield (HU) values to drive the random walker. Training and evaluation were done on 50 CTs from two different datasets, with clinically used peer-reviewed esophagus contours. Results were assessed regarding spatial overlap and shape similarity. The esophagus contours generated by the proposed algorithm showed a mean Dice coefficient of 0.76 ± 0.11, an average symmetric square distance of 1.36 ± 0.90 mm, and an average Hausdorff distance of 11.68 ± 6.80, compared to the reference contours. These results translate to a very good agreement with reference contours and an increase in accuracy compared to existing methods. Furthermore, when considering the results reported in the literature for the publicly available Synapse dataset, our method outperformed all existing approaches, which suggests that the proposed method represents the current state-of-the-art for automatic esophagus segmentation. We show that a CNN can yield accurate estimations of esophagus location, and that the results of this model can be refined by a random walk step taking pixel intensities and neighborhood relationships into account. One of the main advantages of our network over previous methods is that it performs 3D convolutions, thus fully exploiting the 3D spatial context and performing an efficient volume-wise prediction. The whole segmentation process is fully automatic and yields esophagus delineations in very good agreement with the gold standard, showing that it can compete with previously published methods. © 2017 American Association of Physicists in Medicine.
14CO2 processing using an improved and robust molecular sieve cartridge
NASA Astrophysics Data System (ADS)
Wotte, Anja; Wordell-Dietrich, Patrick; Wacker, Lukas; Don, Axel; Rethemeyer, Janet
2017-06-01
Radiocarbon (14C) analysis on CO2 can provide valuable information on the carbon cycle as different carbon pools differ in their 14C signature. While fresh, biogenic carbon shows atmospheric 14C concentrations, fossil carbon is 14C free. As shown in previous studies, CO2 can be collected for 14C analysis using molecular sieve cartridges (MSC). These devices have previously been made of plastic and glass, which can easily be damaged during transport. We thus constructed a robust MSC suitable for field application under tough conditions or in remote areas, which is entirely made of stainless steel. The new MSC should also be tight over several months to allow long sampling campaigns and transport times, which was proven by a one year storage test. The reliability of the 14CO2 results obtained with the MSC was evaluated by detailed tests of different procedures to clean the molecular sieve (zeolite type 13X) and for the adsorption and desorption of CO2 from the zeolite using a vacuum rig. We show that the 14CO2 results are not affected by any contamination of modern or fossil origin, cross contamination from previous samples, and by carbon isotopic fractionation. In addition, we evaluated the direct CO2 transfer from the MSC into the automatic graphitization equipment AGE with the subsequent 14C AMS analysis as graphite. This semi-automatic approach can be fully automated in the future, which would allow a high sample throughput. We obtained very promising, low blank values between 0.0018 and 0.0028 F14C (equivalent to 50,800 and 47,200 yrs BP), which are within the analytical background and lower than results obtained in previous studies.
Vrooman, Henri A; Cocosco, Chris A; van der Lijn, Fedde; Stokking, Rik; Ikram, M Arfan; Vernooij, Meike W; Breteler, Monique M B; Niessen, Wiro J
2007-08-01
Conventional k-Nearest-Neighbor (kNN) classification, which has been successfully applied to classify brain tissue in MR data, requires training on manually labeled subjects. This manual labeling is a laborious and time-consuming procedure. In this work, a new fully automated brain tissue classification procedure is presented, in which kNN training is automated. This is achieved by non-rigidly registering the MR data with a tissue probability atlas to automatically select training samples, followed by a post-processing step to keep the most reliable samples. The accuracy of the new method was compared to rigid registration-based training and to conventional kNN-based segmentation using training on manually labeled subjects for segmenting gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) in 12 data sets. Furthermore, for all classification methods, the performance was assessed when varying the free parameters. Finally, the robustness of the fully automated procedure was evaluated on 59 subjects. The automated training method using non-rigid registration with a tissue probability atlas was significantly more accurate than rigid registration. For both automated training using non-rigid registration and for the manually trained kNN classifier, the difference with the manual labeling by observers was not significantly larger than inter-observer variability for all tissue types. From the robustness study, it was clear that, given an appropriate brain atlas and optimal parameters, our new fully automated, non-rigid registration-based method gives accurate and robust segmentation results. A similarity index was used for comparison with manually trained kNN. The similarity indices were 0.93, 0.92 and 0.92, for CSF, GM and WM, respectively. It can be concluded that our fully automated method using non-rigid registration may replace manual segmentation, and thus that automated brain tissue segmentation without laborious manual training is feasible.
Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
Xu, Xuanang; Zhou, Fugen; Liu, Bo
2018-03-19
Automatic approach for bladder segmentation from computed tomography (CT) images is highly desirable in clinical practice. It is a challenging task since the bladder usually suffers large variations of appearance and low soft-tissue contrast in CT images. In this study, we present a deep learning-based approach which involves a convolutional neural network (CNN) and a 3D fully connected conditional random fields recurrent neural network (CRF-RNN) to perform accurate bladder segmentation. We also propose a novel preprocessing method, called dual-channel preprocessing, to further advance the segmentation performance of our approach. The presented approach works as following: first, we apply our proposed preprocessing method on the input CT image and obtain a dual-channel image which consists of the CT image and an enhanced bladder density map. Second, we exploit a CNN to predict a coarse voxel-wise bladder score map on this dual-channel image. Finally, a 3D fully connected CRF-RNN refines the coarse bladder score map and produce final fine-localized segmentation result. We compare our approach to the state-of-the-art V-net on a clinical dataset. Results show that our approach achieves superior segmentation accuracy, outperforming the V-net by a significant margin. The Dice Similarity Coefficient of our approach (92.24%) is 8.12% higher than that of the V-net. Moreover, the bladder probability maps performed by our approach present sharper boundaries and more accurate localizations compared with that of the V-net. Our approach achieves higher segmentation accuracy than the state-of-the-art method on clinical data. Both the dual-channel processing and the 3D fully connected CRF-RNN contribute to this improvement. The united deep network composed of the CNN and 3D CRF-RNN also outperforms a system where the CRF model acts as a post-processing method disconnected from the CNN.
NASA Astrophysics Data System (ADS)
Ajadi, O. A.; Meyer, F. J.
2014-12-01
Automatic oil spill detection and tracking from Synthetic Aperture Radar (SAR) images is a difficult task, due in large part to the inhomogeneous properties of the sea surface, the high level of speckle inherent in SAR data, the complexity and the highly non-Gaussian nature of amplitude information, and the low temporal sampling that is often achieved with SAR systems. This research presents a promising new oil spill detection and tracking method that is based on time series of SAR images. Through the combination of a number of advanced image processing techniques, the develop approach is able to mitigate some of these previously mentioned limitations of SAR-based oil-spill detection and enables fully automatic spill detection and tracking across a wide range of spatial scales. The method combines an initial automatic texture analysis with a consecutive change detection approach based on multi-scale image decomposition. The first step of the approach, a texture transformation of the original SAR images, is performed in order to normalize the ocean background and enhance the contrast between oil-covered and oil-free ocean surfaces. The Lipschitz regularity (LR), a local texture parameter, is used here due to its proven ability to normalize the reflectivity properties of ocean water and maximize the visibly of oil in water. To calculate LR, the images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), and transformed into Holder space to measure LR. After texture transformation, the now normalized images are inserted into our multi-temporal change detection algorithm. The multi-temporal change detection approach is a two-step procedure including (1) data enhancement and filtering and (2) multi-scale automatic change detection. The performance of the developed approach is demonstrated by an application to oil spill areas in the Gulf of Mexico. In this example, areas affected by oil spills were identified from a series of ALOS PALSAR images acquired in 2010. The comparison showed exceptional performance of our method. This method can be applied to emergency management and decision support systems with a need for real-time data, and it shows great potential for rapid data analysis in other areas, including volcano detection, flood boundaries, forest health, and wildfires.
Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections
NASA Astrophysics Data System (ADS)
Bertholet, J.; Wan, H.; Toftegaard, J.; Schmidt, M. L.; Chotard, F.; Parikh, P. J.; Poulsen, P. R.
2017-02-01
Radio-opaque fiducial markers of different shapes are often implanted in or near abdominal or thoracic tumors to act as surrogates for the tumor position during radiotherapy. They can be used for real-time treatment adaptation, but this requires a robust, automatic segmentation method able to handle arbitrarily shaped markers in a rotational imaging geometry such as cone-beam computed tomography (CBCT) projection images and intra-treatment images. In this study, we propose a fully automatic dynamic programming (DP) assisted template-based (TB) segmentation method. Based on an initial DP segmentation, the DPTB algorithm generates and uses a 3D marker model to create 2D templates at any projection angle. The 2D templates are used to segment the marker position as the position with highest normalized cross-correlation in a search area centered at the DP segmented position. The accuracy of the DP algorithm and the new DPTB algorithm was quantified as the 2D segmentation error (pixels) compared to a manual ground truth segmentation for 97 markers in the projection images of CBCT scans of 40 patients. Also the fraction of wrong segmentations, defined as 2D errors larger than 5 pixels, was calculated. The mean 2D segmentation error of DP was reduced from 4.1 pixels to 3.0 pixels by DPTB, while the fraction of wrong segmentations was reduced from 17.4% to 6.8%. DPTB allowed rejection of uncertain segmentations as deemed by a low normalized cross-correlation coefficient and contrast-to-noise ratio. For a rejection rate of 9.97%, the sensitivity in detecting wrong segmentations was 67% and the specificity was 94%. The accepted segmentations had a mean segmentation error of 1.8 pixels and 2.5% wrong segmentations.
Automatic recognition of falls in gait-slip training: Harness load cell based criteria.
Yang, Feng; Pai, Yi-Chung
2011-08-11
Over-head-harness systems, equipped with load cell sensors, are essential to the participants' safety and to the outcome assessment in perturbation training. The purpose of this study was to first develop an automatic outcome recognition criterion among young adults for gait-slip training and then verify such criterion among older adults. Each of 39 young and 71 older subjects, all protected by safety harness, experienced 8 unannounced, repeated slips, while walking on a 7m walkway. Each trial was monitored with a motion capture system, bilateral ground reaction force (GRF), harness force, and video recording. The fall trials were first unambiguously indentified with careful visual inspection of all video records. The recoveries without balance loss (in which subjects' trailing foot landed anteriorly to the slipping foot) were also first fully recognized from motion and GRF analyses. These analyses then set the gold standard for the outcome recognition with load cell measurements. Logistic regression analyses based on young subjects' data revealed that the peak load cell force was the best predictor of falls (with 100% accuracy) at the threshold of 30% body weight. On the other hand, the peak moving average force of load cell across 1s period, was the best predictor (with 100% accuracy) separating recoveries with backward balance loss (in which the recovery step landed posterior to slipping foot) from harness assistance at the threshold of 4.5% body weight. These threshold values were fully verified using the data from older adults (100% accuracy in recognizing falls). Because of the increasing popularity in the perturbation training coupling with the protective over-head-harness system, this new criterion could have far reaching implications in automatic outcome recognition during the movement therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.
AUTOMATIC RECOGNITION OF FALLS IN GAIT-SLIP: A HARNESS LOAD CELL BASED CRITERION
Yang, Feng; Pai, Yi-Chung
2012-01-01
Over-head-harness systems, equipped with load cell sensors, are essential to the participants’ safety and to the outcome assessment in perturbation training. The purpose of this study was to first develop an automatic outcome recognition criterion among young adults for gait-slip training and then verify such criterion among older adults. Each of 39 young and 71 older subjects, all protected by safety harness, experienced 8 unannounced, repeated slips, while walking on a 7-m walkway. Each trial was monitored with a motion capture system, bilateral ground reaction force (GRF), harness force and video recording. The fall trials were first unambiguously indentified with careful visual inspection of all video records. The recoveries without balance loss (in which subjects’ trailing foot landed anteriorly to the slipping foot) were also first fully recognized from motion and GRF analyses. These analyses then set the gold standard for the outcome recognition with load cell measurements. Logistic regression analyses based on young subjects’ data revealed that peak load cell force was the best predictor of falls (with 100% accuracy) at the threshold of 30% body weight. On the other hand, the peak moving average force of load cell across 1-s period, was the best predictor (with 100% accuracy) separating recoveries with backward balance loss (in which the recovery step landed posterior to slipping foot) from harness assistance at the threshold of 4.5% body weight. These threshold values were fully verified using the data from older adults (100% accuracy in recognizing falls). Because of the increasing popularity in the perturbation training coupling with the protective over-head-harness system, this new criterion could have far reaching implications in automatic outcome recognition during the movement therapy. PMID:21696744
Automatic brain tumor segmentation with a fast Mumford-Shah algorithm
NASA Astrophysics Data System (ADS)
Müller, Sabine; Weickert, Joachim; Graf, Norbert
2016-03-01
We propose a fully-automatic method for brain tumor segmentation that does not require any training phase. Our approach is based on a sequence of segmentations using the Mumford-Shah cartoon model with varying parameters. In order to come up with a very fast implementation, we extend the recent primal-dual algorithm of Strekalovskiy et al. (2014) from the 2D to the medically relevant 3D setting. Moreover, we suggest a new confidence refinement and show that it can increase the precision of our segmentations substantially. Our method is evaluated on 188 data sets with high-grade gliomas and 25 with low-grade gliomas from the BraTS14 database. Within a computation time of only three minutes, we achieve Dice scores that are comparable to state-of-the-art methods.
PSNet: prostate segmentation on MRI based on a convolutional neural network.
Tian, Zhiqiang; Liu, Lizhi; Zhang, Zhenfeng; Fei, Baowei
2018-04-01
Automatic segmentation of the prostate on magnetic resonance images (MRI) has many applications in prostate cancer diagnosis and therapy. We proposed a deep fully convolutional neural network (CNN) to segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage, which uses prostate MRI and the corresponding ground truths as inputs. The learned CNN model can be used to make an inference for pixel-wise segmentation. Experiments were performed on three data sets, which contain prostate MRI of 140 patients. The proposed CNN model of prostate segmentation (PSNet) obtained a mean Dice similarity coefficient of [Formula: see text] as compared to the manually labeled ground truth. Experimental results show that the proposed model could yield satisfactory segmentation of the prostate on MRI.
NASA Astrophysics Data System (ADS)
Singla, Neeru; Srivastava, Vishal; Singh Mehta, Dalip
2018-02-01
We report the first fully automated detection of human skin burn injuries in vivo, with the goal of automatic surgical margin assessment based on optical coherence tomography (OCT) images. Our proposed automated procedure entails building a machine-learning-based classifier by extracting quantitative features from normal and burn tissue images recorded by OCT. In this study, 56 samples (28 normal, 28 burned) were imaged by OCT and eight features were extracted. A linear model classifier was trained using 34 samples and 22 samples were used to test the model. Sensitivity of 91.6% and specificity of 90% were obtained. Our results demonstrate the capability of a computer-aided technique for accurately and automatically identifying burn tissue resection margins during surgical treatment.
Automatic paper sliceform design from 3D solid models.
Le-Nguyen, Tuong-Vu; Low, Kok-Lim; Ruiz, Conrado; Le, Sang N
2013-11-01
A paper sliceform or lattice-style pop-up is a form of papercraft that uses two sets of parallel paper patches slotted together to make a foldable structure. The structure can be folded flat, as well as fully opened (popped-up) to make the two sets of patches orthogonal to each other. Automatic design of paper sliceforms is still not supported by existing computational models and remains a challenge. We propose novel geometric formulations of valid paper sliceform designs that consider the stability, flat-foldability and physical realizability of the designs. Based on a set of sufficient construction conditions, we also present an automatic algorithm for generating valid sliceform designs that closely depict the given 3D solid models. By approximating the input models using a set of generalized cylinders, our method significantly reduces the search space for stable and flat-foldable sliceforms. To ensure the physical realizability of the designs, the algorithm automatically generates slots or slits on the patches such that no two cycles embedded in two different patches are interlocking each other. This guarantees local pairwise assembility between patches, which is empirically shown to lead to global assembility. Our method has been demonstrated on a number of example models, and the output designs have been successfully made into real paper sliceforms.
A Review on Automatic Mammographic Density and Parenchymal Segmentation
He, Wenda; Juette, Arne; Denton, Erika R. E.; Oliver, Arnau
2015-01-01
Breast cancer is the most frequently diagnosed cancer in women. However, the exact cause(s) of breast cancer still remains unknown. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective way to tackle breast cancer. There are more than 70 common genetic susceptibility factors included in the current non-image-based risk prediction models (e.g., the Gail and the Tyrer-Cuzick models). Image-based risk factors, such as mammographic densities and parenchymal patterns, have been established as biomarkers but have not been fully incorporated in the risk prediction models used for risk stratification in screening and/or measuring responsiveness to preventive approaches. Within computer aided mammography, automatic mammographic tissue segmentation methods have been developed for estimation of breast tissue composition to facilitate mammographic risk assessment. This paper presents a comprehensive review of automatic mammographic tissue segmentation methodologies developed over the past two decades and the evidence for risk assessment/density classification using segmentation. The aim of this review is to analyse how engineering advances have progressed and the impact automatic mammographic tissue segmentation has in a clinical environment, as well as to understand the current research gaps with respect to the incorporation of image-based risk factors in non-image-based risk prediction models. PMID:26171249
Toward Automatic Georeferencing of Archival Aerial Photogrammetric Surveys
NASA Astrophysics Data System (ADS)
Giordano, S.; Le Bris, A.; Mallet, C.
2018-05-01
Images from archival aerial photogrammetric surveys are a unique and relatively unexplored means to chronicle 3D land-cover changes over the past 100 years. They provide a relatively dense temporal sampling of the territories with very high spatial resolution. Such time series image analysis is a mandatory baseline for a large variety of long-term environmental monitoring studies. The current bottleneck for accurate comparison between epochs is their fine georeferencing step. No fully automatic method has been proposed yet and existing studies are rather limited in terms of area and number of dates. State-of-the art shows that the major challenge is the identification of ground references: cartographic coordinates and their position in the archival images. This task is manually performed, and extremely time-consuming. This paper proposes to use a photogrammetric approach, and states that the 3D information that can be computed is the key to full automation. Its original idea lies in a 2-step approach: (i) the computation of a coarse absolute image orientation; (ii) the use of the coarse Digital Surface Model (DSM) information for automatic absolute image orientation. It only relies on a recent orthoimage+DSM, used as master reference for all epochs. The coarse orthoimage, compared with such a reference, allows the identification of dense ground references and the coarse DSM provides their position in the archival images. Results on two areas and 5 dates show that this method is compatible with long and dense archival aerial image series. Satisfactory planimetric and altimetric accuracies are reported, with variations depending on the ground sampling distance of the images and the location of the Ground Control Points.
Automatic vision system for analysis of microscopic behavior of flow and transport in porous media
NASA Astrophysics Data System (ADS)
Rashidi, Mehdi; Dehmeshki, Jamshid; Dickenson, Eric; Daemi, M. Farhang
1997-10-01
This paper describes the development of a novel automated and efficient vision system to obtain velocity and concentration measurement within a porous medium. An aqueous fluid lace with a fluorescent dye to microspheres flows through a transparent, refractive-index-matched column packed with transparent crystals. For illumination purposes, a planar sheet of laser passes through the column as a CCD camera records all the laser illuminated planes. Detailed microscopic velocity and concentration fields have been computed within a 3D volume of the column. For measuring velocities, while the aqueous fluid, laced with fluorescent microspheres, flows through the transparent medium, a CCD camera records the motions of the fluorescing particles by a video cassette recorder. The recorded images are acquired automatically frame by frame and transferred to the computer for processing, by using a frame grabber an written relevant algorithms through an RS-232 interface. Since the grabbed image is poor in this stage, some preprocessings are used to enhance particles within images. Finally, these enhanced particles are monitored to calculate velocity vectors in the plane of the beam. For concentration measurements, while the aqueous fluid, laced with a fluorescent organic dye, flows through the transparent medium, a CCD camera sweeps back and forth across the column and records concentration slices on the planes illuminated by the laser beam traveling simultaneously with the camera. Subsequently, these recorded images are transferred to the computer for processing in similar fashion to the velocity measurement. In order to have a fully automatic vision system, several detailed image processing techniques are developed to match exact images that have different intensities values but the same topological characteristics. This results in normalized interstitial chemical concentrations as a function of time within the porous column.
Antibiogramj: A tool for analysing images from disk diffusion tests.
Alonso, C A; Domínguez, C; Heras, J; Mata, E; Pascual, V; Torres, C; Zarazaga, M
2017-05-01
Disk diffusion testing, known as antibiogram, is widely applied in microbiology to determine the antimicrobial susceptibility of microorganisms. The measurement of the diameter of the zone of growth inhibition of microorganisms around the antimicrobial disks in the antibiogram is frequently performed manually by specialists using a ruler. This is a time-consuming and error-prone task that might be simplified using automated or semi-automated inhibition zone readers. However, most readers are usually expensive instruments with embedded software that require significant changes in laboratory design and workflow. Based on the workflow employed by specialists to determine the antimicrobial susceptibility of microorganisms, we have designed a software tool that, from images of disk diffusion tests, semi-automatises the process. Standard computer vision techniques are employed to achieve such an automatisation. We present AntibiogramJ, a user-friendly and open-source software tool to semi-automatically determine, measure and categorise inhibition zones of images from disk diffusion tests. AntibiogramJ is implemented in Java and deals with images captured with any device that incorporates a camera, including digital cameras and mobile phones. The fully automatic procedure of AntibiogramJ for measuring inhibition zones achieves an overall agreement of 87% with an expert microbiologist; moreover, AntibiogramJ includes features to easily detect when the automatic reading is not correct and fix it manually to obtain the correct result. AntibiogramJ is a user-friendly, platform-independent, open-source, and free tool that, up to the best of our knowledge, is the most complete software tool for antibiogram analysis without requiring any investment in new equipment or changes in the laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhao, Yu; Ge, Fangfei; Liu, Tianming
2018-07-01
fMRI data decomposition techniques have advanced significantly from shallow models such as Independent Component Analysis (ICA) and Sparse Coding and Dictionary Learning (SCDL) to deep learning models such Deep Belief Networks (DBN) and Convolutional Autoencoder (DCAE). However, interpretations of those decomposed networks are still open questions due to the lack of functional brain atlases, no correspondence across decomposed or reconstructed networks across different subjects, and significant individual variabilities. Recent studies showed that deep learning, especially deep convolutional neural networks (CNN), has extraordinary ability of accommodating spatial object patterns, e.g., our recent works using 3D CNN for fMRI-derived network classifications achieved high accuracy with a remarkable tolerance for mistakenly labelled training brain networks. However, the training data preparation is one of the biggest obstacles in these supervised deep learning models for functional brain network map recognitions, since manual labelling requires tedious and time-consuming labours which will sometimes even introduce label mistakes. Especially for mapping functional networks in large scale datasets such as hundreds of thousands of brain networks used in this paper, the manual labelling method will become almost infeasible. In response, in this work, we tackled both the network recognition and training data labelling tasks by proposing a new iteratively optimized deep learning CNN (IO-CNN) framework with an automatic weak label initialization, which enables the functional brain networks recognition task to a fully automatic large-scale classification procedure. Our extensive experiments based on ABIDE-II 1099 brains' fMRI data showed the great promise of our IO-CNN framework. Copyright © 2018 Elsevier B.V. All rights reserved.
Cellular automata in photonic cavity arrays.
Li, Jing; Liew, T C H
2016-10-31
We propose theoretically a photonic Turing machine based on cellular automata in arrays of nonlinear cavities coupled with artificial gauge fields. The state of the system is recorded making use of the bistability of driven cavities, in which losses are fully compensated by an external continuous drive. The sequential update of the automaton layers is achieved automatically, by the local switching of bistable states, without requiring any additional synchronization or temporal control.
Shared control on lunar spacecraft teleoperation rendezvous operations with large time delay
NASA Astrophysics Data System (ADS)
Ya-kun, Zhang; Hai-yang, Li; Rui-xue, Huang; Jiang-hui, Liu
2017-08-01
Teleoperation could be used in space on-orbit serving missions, such as object deorbits, spacecraft approaches, and automatic rendezvous and docking back-up systems. Teleoperation rendezvous and docking in lunar orbit may encounter bottlenecks for the inherent time delay in the communication link and the limited measurement accuracy of sensors. Moreover, human intervention is unsuitable in view of the partial communication coverage problem. To solve these problems, a shared control strategy for teleoperation rendezvous and docking is detailed. The control authority in lunar orbital maneuvers that involves two spacecraft as rendezvous and docking in the final phase was discussed in this paper. The predictive display model based on the relative dynamic equations is established to overcome the influence of the large time delay in communication link. We discuss and attempt to prove via consistent, ground-based simulations the relative merits of fully autonomous control mode (i.e., onboard computer-based), fully manual control (i.e., human-driven at the ground station) and shared control mode. The simulation experiments were conducted on the nine-degrees-of-freedom teleoperation rendezvous and docking simulation platform. Simulation results indicated that the shared control methods can overcome the influence of time delay effects. In addition, the docking success probability of shared control method was enhanced compared with automatic and manual modes.
``Hands-Free'' Asteroid Astrometry
NASA Astrophysics Data System (ADS)
Monet, A. K. B.; Bowell, E.; Monet, D. G.
1997-12-01
How do you undertake a major new astrometric program with no additional financial or personnel resources? The answer: automation! Early in 1992, the authors began a collaboration to obtain astrometric positions for several classes of asteroids (V_lim 17.5 mag) whose orbits required improvement or that were otherwise of special interest. The telescope used for this work is the USNOFS 0.2-meter transit telescope, equipped with a CCD camera. The operation of this instrument has been fully automated (Stone, et al. 1996, AJ, 111, 1721. Nightly observing rosters are constructed from a ranked listing of all asteroids of interest, prepared each month by Bowell. In a typical month, about 200 observations are made, although this number can range from 0 to over 400. Reductions are done automatically as well. A typical 10-hr nightly run can be fully reduced in less than 1/2 hr. Reductions are made on a frame-by-frame basis and positions of the asteroids computed with respect to the USNO-A1.0 catalog (Monet, D.G. 1996, USNO-A1.0 Catalog -- 10 CD-ROM Set, US Naval Observatory.) Observational quality is checked by Bowell, who also recomputes orbits and reports final results to the Minor Planet Center. Orbit residuals hover around 0.3 arcsec. This poster will present a brief overview of the observing and analysis methods, an account of the first five years of results, and a description of planned improvements in instrumentation and analysis techniques.
Automatic detection of larynx cancer from contrast-enhanced magnetic resonance images
NASA Astrophysics Data System (ADS)
Doshi, Trushali; Soraghan, John; Grose, Derek; MacKenzie, Kenneth; Petropoulakis, Lykourgos
2015-03-01
Detection of larynx cancer from medical imaging is important for the quantification and for the definition of target volumes in radiotherapy treatment planning (RTP). Magnetic resonance imaging (MRI) is being increasingly used in RTP due to its high resolution and excellent soft tissue contrast. Manually detecting larynx cancer from sequential MRI is time consuming and subjective. The large diversity of cancer in terms of geometry, non-distinct boundaries combined with the presence of normal anatomical regions close to the cancer regions necessitates the development of automatic and robust algorithms for this task. A new automatic algorithm for the detection of larynx cancer from 2D gadoliniumenhanced T1-weighted (T1+Gd) MRI to assist clinicians in RTP is presented. The algorithm employs edge detection using spatial neighborhood information of pixels and incorporates this information in a fuzzy c-means clustering process to robustly separate different tissues types. Furthermore, it utilizes the information of the expected cancerous location for cancer regions labeling. Comparison of this automatic detection system with manual clinical detection on real T1+Gd axial MRI slices of 2 patients (24 MRI slices) with visible larynx cancer yields an average dice similarity coefficient of 0.78+/-0.04 and average root mean square error of 1.82+/-0.28 mm. Preliminary results show that this fully automatic system can assist clinicians in RTP by obtaining quantifiable and non-subjective repeatable detection results in a particular time-efficient and unbiased fashion.
Volumetric breast density affects performance of digital screening mammography.
Wanders, Johanna O P; Holland, Katharina; Veldhuis, Wouter B; Mann, Ritse M; Pijnappel, Ruud M; Peeters, Petra H M; van Gils, Carla H; Karssemeijer, Nico
2017-02-01
To determine to what extent automatically measured volumetric mammographic density influences screening performance when using digital mammography (DM). We collected a consecutive series of 111,898 DM examinations (2003-2011) from one screening unit of the Dutch biennial screening program (age 50-75 years). Volumetric mammographic density was automatically assessed using Volpara. We determined screening performance measures for four density categories comparable to the American College of Radiology (ACR) breast density categories. Of all the examinations, 21.6% were categorized as density category 1 ('almost entirely fatty') and 41.5, 28.9, and 8.0% as category 2-4 ('extremely dense'), respectively. We identified 667 screen-detected and 234 interval cancers. Interval cancer rates were 0.7, 1.9, 2.9, and 4.4‰ and false positive rates were 11.2, 15.1, 18.2, and 23.8‰ for categories 1-4, respectively (both p-trend < 0.001). The screening sensitivity, calculated as the proportion of screen-detected among the total of screen-detected and interval tumors, was lower in higher density categories: 85.7, 77.6, 69.5, and 61.0% for categories 1-4, respectively (p-trend < 0.001). Volumetric mammographic density, automatically measured on digital mammograms, impacts screening performance measures along the same patterns as established with ACR breast density categories. Since measuring breast density fully automatically has much higher reproducibility than visual assessment, this automatic method could help with implementing density-based supplemental screening.
Automated extraction and analysis of rock discontinuity characteristics from 3D point clouds
NASA Astrophysics Data System (ADS)
Bianchetti, Matteo; Villa, Alberto; Agliardi, Federico; Crosta, Giovanni B.
2016-04-01
A reliable characterization of fractured rock masses requires an exhaustive geometrical description of discontinuities, including orientation, spacing, and size. These are required to describe discontinuum rock mass structure, perform Discrete Fracture Network and DEM modelling, or provide input for rock mass classification or equivalent continuum estimate of rock mass properties. Although several advanced methodologies have been developed in the last decades, a complete characterization of discontinuity geometry in practice is still challenging, due to scale-dependent variability of fracture patterns and difficult accessibility to large outcrops. Recent advances in remote survey techniques, such as terrestrial laser scanning and digital photogrammetry, allow a fast and accurate acquisition of dense 3D point clouds, which promoted the development of several semi-automatic approaches to extract discontinuity features. Nevertheless, these often need user supervision on algorithm parameters which can be difficult to assess. To overcome this problem, we developed an original Matlab tool, allowing fast, fully automatic extraction and analysis of discontinuity features with no requirements on point cloud accuracy, density and homogeneity. The tool consists of a set of algorithms which: (i) process raw 3D point clouds, (ii) automatically characterize discontinuity sets, (iii) identify individual discontinuity surfaces, and (iv) analyse their spacing and persistence. The tool operates in either a supervised or unsupervised mode, starting from an automatic preliminary exploration data analysis. The identification and geometrical characterization of discontinuity features is divided in steps. First, coplanar surfaces are identified in the whole point cloud using K-Nearest Neighbor and Principal Component Analysis algorithms optimized on point cloud accuracy and specified typical facet size. Then, discontinuity set orientation is calculated using Kernel Density Estimation and principal vector similarity criteria. Poles to points are assigned to individual discontinuity objects using easy custom vector clustering and Jaccard distance approaches, and each object is segmented into planar clusters using an improved version of the DBSCAN algorithm. Modal set orientations are then recomputed by cluster-based orientation statistics to avoid the effects of biases related to cluster size and density heterogeneity of the point cloud. Finally, spacing values are measured between individual discontinuity clusters along scanlines parallel to modal pole vectors, whereas individual feature size (persistence) is measured using 3D convex hull bounding boxes. Spacing and size are provided both as raw population data and as summary statistics. The tool is optimized for parallel computing on 64bit systems, and a Graphic User Interface (GUI) has been developed to manage data processing, provide several outputs, including reclassified point clouds, tables, plots, derived fracture intensity parameters, and export to modelling software tools. We present test applications performed both on synthetic 3D data (simple 3D solids) and real case studies, validating the results with existing geomechanical datasets.
Validation of automated white matter hyperintensity segmentation.
Smart, Sean D; Firbank, Michael J; O'Brien, John T
2011-01-01
Introduction. White matter hyperintensities (WMHs) are a common finding on MRI scans of older people and are associated with vascular disease. We compared 3 methods for automatically segmenting WMHs from MRI scans. Method. An operator manually segmented WMHs on MRI images from a 3T scanner. The scans were also segmented in a fully automated fashion by three different programmes. The voxel overlap between manual and automated segmentation was compared. Results. Between observer overlap ratio was 63%. Using our previously described in-house software, we had overlap of 62.2%. We investigated the use of a modified version of SPM segmentation; however, this was not successful, with only 14% overlap. Discussion. Using our previously reported software, we demonstrated good segmentation of WMHs in a fully automated fashion.
NASA Astrophysics Data System (ADS)
Chen, Kewei; Ge, Xiaolin; Yao, Li; Bandy, Dan; Alexander, Gene E.; Prouty, Anita; Burns, Christine; Zhao, Xiaojie; Wen, Xiaotong; Korn, Ronald; Lawson, Michael; Reiman, Eric M.
2006-03-01
Having approved fluorodeoxyglucose positron emission tomography (FDG PET) for the diagnosis of Alzheimer's disease (AD) in some patients, the Centers for Medicare and Medicaid Services suggested the need to develop and test analysis techniques to optimize diagnostic accuracy. We developed an automated computer package comparing an individual's FDG PET image to those of a group of normal volunteers. The normal control group includes FDG-PET images from 82 cognitively normal subjects, 61.89+/-5.67 years of age, who were characterized demographically, clinically, neuropsychologically, and by their apolipoprotein E genotype (known to be associated with a differential risk for AD). In addition, AD-affected brain regions functionally defined as based on a previous study (Alexander, et al, Am J Psychiatr, 2002) were also incorporated. Our computer package permits the user to optionally select control subjects, matching the individual patient for gender, age, and educational level. It is fully streamlined to require minimal user intervention. With one mouse click, the program runs automatically, normalizing the individual patient image, setting up a design matrix for comparing the single subject to a group of normal controls, performing the statistics, calculating the glucose reduction overlap index of the patient with the AD-affected brain regions, and displaying the findings in reference to the AD regions. In conclusion, the package automatically contrasts a single patient to a normal subject database using sound statistical procedures. With further validation, this computer package could be a valuable tool to assist physicians in decision making and communicating findings with patients and patient families.
Tranquart, F; Mercier, L; Frinking, P; Gaud, E; Arditi, M
2012-07-01
With contrast-enhanced ultrasound (CEUS) now established as a valuable imaging modality for many applications, a more specific demand has recently emerged for quantifying perfusion and using measured parameters as objective indicators for various disease states. However, CEUS perfusion quantification remains challenging and is not well integrated in daily clinical practice. The development of VueBox™ alleviates existing limitations and enables quantification in a standardized way. VueBox™ operates as an off-line software application, after dynamic contrast-enhanced ultrasound (DCE-US) is performed. It enables linearization of DICOM clips, assessment of perfusion using patented curve-fitting models, and generation of parametric images by synthesizing perfusion information at the pixel level using color coding. VueBox™ is compatible with most of the available ultrasound platforms (nonlinear contrast-enabled), has the ability to process both bolus and disruption-replenishment kinetics loops, allows analysis results and their context to be saved, and generates analysis reports automatically. Specific features have been added to VueBox™, such as fully automatic in-plane motion compensation and an easy-to-use clip editor. Processing time has been reduced as a result of parallel programming optimized for multi-core processors. A long list of perfusion parameters is available for each of the two administration modes to address all possible demands currently reported in the literature for diagnosis or treatment monitoring. In conclusion, VueBox™ is a valid and robust quantification tool to be used for standardizing perfusion quantification and to improve the reproducibility of results across centers. © Georg Thieme Verlag KG Stuttgart · New York.
3D mapping of airway wall thickening in asthma with MSCT: a level set approach
NASA Astrophysics Data System (ADS)
Fetita, Catalin; Brillet, Pierre-Yves; Hartley, Ruth; Grenier, Philippe A.; Brightling, Christopher
2014-03-01
Assessing the airway wall thickness in multi slice computed tomography (MSCT) as image marker for airway disease phenotyping such asthma and COPD is a current trend and challenge for the scientific community working in lung imaging. This paper addresses the same problem from a different point of view: considering the expected wall thickness-to-lumen-radius ratio for a normal subject as known and constant throughout the whole airway tree, the aim is to build up a 3D map of airway wall regions of larger thickness and to define an overall score able to highlight a pathological status. In this respect, the local dimension (caliber) of the previously segmented airway lumen is obtained on each point by exploiting the granulometry morphological operator. A level set function is defined based on this caliber information and on the expected wall thickness ratio, which allows obtaining a good estimate of the airway wall throughout all segmented lumen generations. Next, the vascular (or mediastinal dense tissue) contact regions are automatically detected and excluded from analysis. For the remaining airway wall border points, the real wall thickness is estimated based on the tissue density analysis in the airway radial direction; thick wall points are highlighted on a 3D representation of the airways and several quantification scores are defined. The proposed approach is fully automatic and was evaluated (proof of concept) on a patient selection coming from different databases including mild, severe asthmatics and normal cases. This preliminary evaluation confirms the discriminative power of the proposed approach regarding different phenotypes and is currently extending to larger cohorts.
Automatic nipple detection on 3D images of an automated breast ultrasound system (ABUS)
NASA Astrophysics Data System (ADS)
Javanshir Moghaddam, Mandana; Tan, Tao; Karssemeijer, Nico; Platel, Bram
2014-03-01
Recent studies have demonstrated that applying Automated Breast Ultrasound in addition to mammography in women with dense breasts can lead to additional detection of small, early stage breast cancers which are occult in corresponding mammograms. In this paper, we proposed a fully automatic method for detecting the nipple location in 3D ultrasound breast images acquired from Automated Breast Ultrasound Systems. The nipple location is a valuable landmark to report the position of possible abnormalities in a breast or to guide image registration. To detect the nipple location, all images were normalized. Subsequently, features have been extracted in a multi scale approach and classification experiments were performed using a gentle boost classifier to identify the nipple location. The method was applied on a dataset of 100 patients with 294 different 3D ultrasound views from Siemens and U-systems acquisition systems. Our database is a representative sample of cases obtained in clinical practice by four medical centers. The automatic method could accurately locate the nipple in 90% of AP (Anterior-Posterior) views and in 79% of the other views.
Automatic neutron dosimetry system based on fluorescent nuclear track detector technology.
Akselrod, M S; Fomenko, V V; Bartz, J A; Haslett, T L
2014-10-01
For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Automatic segmentation of left ventricle in cardiac cine MRI images based on deep learning
NASA Astrophysics Data System (ADS)
Zhou, Tian; Icke, Ilknur; Dogdas, Belma; Parimal, Sarayu; Sampath, Smita; Forbes, Joseph; Bagchi, Ansuman; Chin, Chih-Liang; Chen, Antong
2017-02-01
In developing treatment of cardiovascular diseases, short axis cine MRI has been used as a standard technique for understanding the global structural and functional characteristics of the heart, e.g. ventricle dimensions, stroke volume and ejection fraction. To conduct an accurate assessment, heart structures need to be segmented from the cine MRI images with high precision, which could be a laborious task when performed manually. Herein a fully automatic framework is proposed for the segmentation of the left ventricle from the slices of short axis cine MRI scans of porcine subjects using a deep learning approach. For training the deep learning models, which generally requires a large set of data, a public database of human cine MRI scans is used. Experiments on the 3150 cine slices of 7 porcine subjects have shown that when comparing the automatic and manual segmentations the mean slice-wise Dice coefficient is about 0.930, the point-to-curve error is 1.07 mm, and the mean slice-wise Hausdorff distance is around 3.70 mm, which demonstrates the accuracy and robustness of the proposed inter-species translational approach.
Salchow, Christina; Valtin, Markus; Seel, Thomas; Schauer, Thomas
2016-06-13
Functional Electrical Stimulation via electrode arrays enables the user to form virtual electrodes (VEs) of dynamic shape, size, and position. We developed a feedback-control-assisted manual search strategy which allows the therapist to conveniently and continuously modify VEs to find a good stimulation area. This works for applications in which the desired movement consists of at least two degrees of freedom. The virtual electrode can be moved to arbitrary locations within the array, and each involved element is stimulated with an individual intensity. Meanwhile, the applied global stimulation intensity is controlled automatically to meet a predefined angle for one degree of freedom. This enables the therapist to concentrate on the remaining degree(s) of freedom while changing the VE position. This feedback-control-assisted approach aims to integrate the user's opinion and the patient's sensation. Therefore, our method bridges the gap between manual search and fully automatic identification procedures for array electrodes. Measurements in four healthy volunteers were performed to demonstrate the usefulness of our concept, using a 24-element array to generate wrist and hand extension.
A Study on the Deriving Requirements of ARGO Operation System
NASA Astrophysics Data System (ADS)
Seo, Yoon-Kyung; Rew, Dong-Young; Lim, Hyung-Chul; Park, In-Kwan; Yim, Hong-Suh; Jo, Jung Hyun; Park, Jong-Uk
2009-12-01
Korea Astronomy and Space Science Institute (KASI) has been developing one mobile and one stationary SLR system since 2008 named as ARGO-M and ARGO-F, respectively. KASI finished the step of deriving the system requirements of ARGO. The requirements include definitions and scopes of various software and hardware components which are necessary for developing the ARGO-M operation system. And the requirements define function, performance, and interface requirements. The operation system consisting of ARGO-M site, ARGO-F site, and Remote Operation Center (ROC) inside KASI is designed for remote access and the automatic tracking and control system which are the main operation concept of ARGO system. To accomplish remote operation, we are considering remote access to ARGO-F and ARGO-M from ROC. The mobile-phone service allows us to access the ARGO-F remotely and to control the system in an emergency. To implement fully automatic tracking and control function in ARGO-F, we have investigated and described the requirements about the automatic aircraft detection system and the various meteorological sensors. This paper addresses the requirements of ARGO Operation System.
Automatic Blocking Of QR and LU Factorizations for Locality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Q; Kennedy, K; You, H
2004-03-26
QR and LU factorizations for dense matrices are important linear algebra computations that are widely used in scientific applications. To efficiently perform these computations on modern computers, the factorization algorithms need to be blocked when operating on large matrices to effectively exploit the deep cache hierarchy prevalent in today's computer memory systems. Because both QR (based on Householder transformations) and LU factorization algorithms contain complex loop structures, few compilers can fully automate the blocking of these algorithms. Though linear algebra libraries such as LAPACK provides manually blocked implementations of these algorithms, by automatically generating blocked versions of the computations, moremore » benefit can be gained such as automatic adaptation of different blocking strategies. This paper demonstrates how to apply an aggressive loop transformation technique, dependence hoisting, to produce efficient blockings for both QR and LU with partial pivoting. We present different blocking strategies that can be generated by our optimizer and compare the performance of auto-blocked versions with manually tuned versions in LAPACK, both using reference BLAS, ATLAS BLAS and native BLAS specially tuned for the underlying machine architectures.« less
OKCARS : Oklahoma Collision Analysis and Response System.
DOT National Transportation Integrated Search
2012-10-01
By continuously monitoring traffic intersections to automatically detect that a collision or nearcollision : has occurred, automatically call for assistance, and automatically forewarn oncoming traffic, : our OKCARS has the capability to effectively ...
Piccinelli, Marina; Faber, Tracy L; Arepalli, Chesnal D; Appia, Vikram; Vinten-Johansen, Jakob; Schmarkey, Susan L; Folks, Russell D; Garcia, Ernest V; Yezzi, Anthony
2014-02-01
Accurate alignment between cardiac CT angiographic studies (CTA) and nuclear perfusion images is crucial for improved diagnosis of coronary artery disease. This study evaluated in an animal model the accuracy of a CTA fully automated biventricular segmentation algorithm, a necessary step for automatic and thus efficient PET/CT alignment. Twelve pigs with acute infarcts were imaged using Rb-82 PET and 64-slice CTA. Post-mortem myocardium mass measurements were obtained. Endocardial and epicardial myocardial boundaries were manually and automatically detected on the CTA and both segmentations used to perform PET/CT alignment. To assess the segmentation performance, image-based myocardial masses were compared to experimental data; the hand-traced profiles were used as a reference standard to assess the global and slice-by-slice robustness of the automated algorithm in extracting myocardium, LV, and RV. Mean distances between the automated and the manual 3D segmented surfaces were computed. Finally, differences in rotations and translations between the manual and automatic surfaces were estimated post-PET/CT alignment. The largest, smallest, and median distances between interactive and automatic surfaces averaged 1.2 ± 2.1, 0.2 ± 1.6, and 0.7 ± 1.9 mm. The average angular and translational differences in CT/PET alignments were 0.4°, -0.6°, and -2.3° about x, y, and z axes, and 1.8, -2.1, and 2.0 mm in x, y, and z directions. Our automatic myocardial boundary detection algorithm creates surfaces from CTA that are similar in accuracy and provide similar alignments with PET as those obtained from interactive tracing. Specific difficulties in a reliable segmentation of the apex and base regions will require further improvements in the automated technique.
Automatic Near-Real-Time Image Processing Chain for Very High Resolution Optical Satellite Data
NASA Astrophysics Data System (ADS)
Ostir, K.; Cotar, K.; Marsetic, A.; Pehani, P.; Perse, M.; Zaksek, K.; Zaletelj, J.; Rodic, T.
2015-04-01
In response to the increasing need for automatic and fast satellite image processing SPACE-SI has developed and implemented a fully automatic image processing chain STORM that performs all processing steps from sensor-corrected optical images (level 1) to web-delivered map-ready images and products without operator's intervention. Initial development was tailored to high resolution RapidEye images, and all crucial and most challenging parts of the planned full processing chain were developed: module for automatic image orthorectification based on a physical sensor model and supported by the algorithm for automatic detection of ground control points (GCPs); atmospheric correction module, topographic corrections module that combines physical approach with Minnaert method and utilizing anisotropic illumination model; and modules for high level products generation. Various parts of the chain were implemented also for WorldView-2, THEOS, Pleiades, SPOT 6, Landsat 5-8, and PROBA-V. Support of full-frame sensor currently in development by SPACE-SI is in plan. The proposed paper focuses on the adaptation of the STORM processing chain to very high resolution multispectral images. The development concentrated on the sub-module for automatic detection of GCPs. The initially implemented two-step algorithm that worked only with rasterized vector roads and delivered GCPs with sub-pixel accuracy for the RapidEye images, was improved with the introduction of a third step: super-fine positioning of each GCP based on a reference raster chip. The added step exploits the high spatial resolution of the reference raster to improve the final matching results and to achieve pixel accuracy also on very high resolution optical satellite data.
Automatic localization of the da Vinci surgical instrument tips in 3-D transrectal ultrasound.
Mohareri, Omid; Ramezani, Mahdi; Adebar, Troy K; Abolmaesumi, Purang; Salcudean, Septimiu E
2013-09-01
Robot-assisted laparoscopic radical prostatectomy (RALRP) using the da Vinci surgical system is the current state-of-the-art treatment option for clinically confined prostate cancer. Given the limited field of view of the surgical site in RALRP, several groups have proposed the integration of transrectal ultrasound (TRUS) imaging in the surgical workflow to assist with accurate resection of the prostate and the sparing of the neurovascular bundles (NVBs). We previously introduced a robotic TRUS manipulator and a method for automatically tracking da Vinci surgical instruments with the TRUS imaging plane, in order to facilitate the integration of intraoperative TRUS in RALRP. Rapid and automatic registration of the kinematic frames of the da Vinci surgical system and the robotic TRUS probe manipulator is a critical component of the instrument tracking system. In this paper, we propose a fully automatic registration technique based on automatic 3-D TRUS localization of robot instrument tips pressed against the air-tissue boundary anterior to the prostate. The detection approach uses a multiscale filtering technique to identify and localize surgical instrument tips in the TRUS volume, and could also be used to detect other surface fiducials in 3-D ultrasound. Experiments have been performed using a tissue phantom and two ex vivo tissue samples to show the feasibility of the proposed methods. Also, an initial in vivo evaluation of the system has been carried out on a live anaesthetized dog with a da Vinci Si surgical system and a target registration error (defined as the root mean square distance of corresponding points after registration) of 2.68 mm has been achieved. Results show this method's accuracy and consistency for automatic registration of TRUS images to the da Vinci surgical system.